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populations in mid-Norway (65°N), NH and NS, as well as 
the northernmost population of continental Norway (71°N) 
FV. They showed a high degree of differentiation from all 
other populations. The explanation to the second pattern is 
most likely chaotic genetic patchiness caused by introgres-
sion from another species, S. pallidus, into S. droebachien-
sis resulting from selective pressure. Ongoing sea urchin 
collapse and kelp forests recovery are observed in the area 
of NH, NS and FV populations. High gene flow between 
populations spanning more than 22° in latitude suggests 
a high risk of new grazing events to occur rapidly in the 
future if conditions for sea urchins are favourable. On the 
other hand, the possibility of hybridization in association 
with collapsing populations may be used as an early warn-
ing indicator for monitoring purposes.

Introduction

The green sea urchin Strongylocentrotus droebachien-
sis (O.F. Müller 1776) (Echinoidea) is a key species with 
severe impact on coastal ecosystems. By large-scale over-
grazing of kelp forests in the Pacific (Estes et  al. 1998), 
NW Atlantic (Steneck et  al. 2004) and NE Atlantic (Nor-
derhaug and Christie 2009), it has profound ecological and 
economic importance. Kelp forests are highly productive 
(Pedersen et al. 2012) and diverse (Norderhaug et al. 2012) 
systems and deliver ecosystem services including habitats 
(Norderhaug et  al. 2002), feeding grounds (Norderhaug 
et  al. 2005) and nursery areas (Godø et  al. 1989), while 
sea urchin-dominated barren grounds are low-productive 
marine deserts (Ling et al. 2015).

S. droebachiensis has a broad Arctic-boreal distribution 
in the Atlantic and Pacific (Scheibling and Hatcher 2013). 
In the NE Atlantic, it is distributed from Denmark in the 
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south [56°N, (Dahl et  al. 2005)] to Svalbard (79°N, Gul-
liksen and Sandnes 1980) and Novaja Semlja (Propp 1977) 
in the north. A large cohesive barren ground area (up to 
2000  km2) has dominated the coast of mid-Norway and 
North Norway and Russian Kola coast for more than four 
decades as a result of a sudden growth in the sea urchin 
populations (Sivertsen 1997). Observations from fisher-
men from around 1970 suggest that this barren was created 
quickly when urchins in high densities formed fronts and 
grazed all kelp forests between 63° 30′N on the Norway 
coast and beyond 71°N into Russian water (Norderhaug 
and Christie 2009). Small discrete urchin populations have 
also dominated fjords as far south as the Gullmarsfjord 
at the west coast of Sweden (back to the nineteenth cen-
tury (Norderhaug and Christie 2009). Also, in the Danish 
Strait (at approximately 56°N), boulder reefs deeper than 
13–15  m are heavily grazed by S. droebachiensis (Dahl 
et al. 2005). These S. droebachiensis populations thus pre-
vail more than nine degrees south of the population on the 
Norwegian coast.

The distribution of benthic species with pelagic prop-
agules is typically driven by the physical environment 
and how it has changed historically (Hoarau et al. 2007). 

Circulation patterns may be important for gene flow 
between urchin populations, carrying larvae from source 
to sink populations. The main current direction is from 
the south North Sea and Denmark and changes direction 
into the west flowing coastal current along the Norwegian 
Skagerrak coast which follows the coast northwards before 
it divides into two main currents heading north to Sval-
bard and east along the Barents Sea coast (Fig.  1; Sætre 
2007). Tidal currents moving water in and out from the 
fjord every day (Sætre and Aure 2007) have the potential 
of carrying larvae from fjord to coastal water. Ocean cur-
rents may provide transport corridors between discrete 
populations in open marine water. However, large dis-
tances may represent barriers to dispersal of pelagic larvae 
between populations and result in high degree of isolation 
between populations of benthic marine animals (Reisser 
et al. 2011). Gyres along the Norwegian coast increase the 
retention time and may isolate populations locally. Also, 
echinoderms are sensitive to low salinity; hence, outflow-
ing brackish surface water may represent barriers against 
dispersal of larvae out of fjords (Scheibling and Hatcher 
2013). It has been hypothesized that urchin populations 
in Norwegian sill fjords may have been trapped in cold, 

Fig. 1   Map of the study area 
including sampling stations 
and a simplified illustration of 
the dominating currents along 
the coast from the Danish Belt 
Sea to the Barents Sea. Green 
arrows indicate the northbound 
coastal current, and red arrows 
indicate ocean currents from 
the NE Atlantic. Red circles and 
white boxes show the position 
and codes of the sample sta-
tions. See Table 1 for explana-
tion of the codes. Oslofjorden 
(IO and D2), Lysefjorden (LY), 
Salangen (SI and SY) and 
Isfjorden (KW) are sill fjords, 
whereas the fjords represented 
by NH, NS VI and FV are 
open fjords/coastal areas. DV 
is located in the Danish Straits. 
The squares indicates groups 
(South and North) used in 
Migrate analysis
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saline deep water inside fjord basins and isolated since 
the last ice age (Fredriksen 1999). Historical geographical 
barriers created during the ice ages are important for the 
current distribution of shallow water marine species with 
pelagic dispersal propagules (Hu et al. 2011; Reisser et al. 
2011).

To what extent these small, southernmost populations 
supply larvae to populations further north is unknown.  
S. droebachiensis has high fecundity and is a free spawner 
with a planktonic larval stage lasting 4–21 weeks (Strath-
mann 1978; Hart and Scheibling 1988; Metaxas 2013); 
the dispersal potential is large exceeding 1000 km on the 
coasts of Nova Scotia despite relatively slow surface cur-
rents (Addison and Hart 2004). As the average planktonic 
larval stage duration for the species along the Norwegian 
coast is reported to be 16 weeks (Fagerli et al. 2013), high 
dispersal potential is also expected for NE Atlantic S. droe-
bachiensis. Mature females are usually found February 
to April, spawning peaks in March, and the main settling 
period is during summer (Fagerli et al. 2013). In a study of 
population genetic structure of S. droebachiensis by the use 
of microsatellites, Addison and Hart (2004) found gener-
ally little differentiation between populations along the NW 
Atlantic coast, but considerable differentiation between 
one analysed population from the NE (North Norway) and 
populations in the NW Atlantic. They found no evidence 
of gene flow across the Atlantic, and the genetic differ-
ence between the NE and the NW Atlantic was even larger 
than the difference between populations in the NW Atlantic 
and populations from the Pacific coast. Marks et al. (2008) 
found indication of first stage speciation between S. droe-
bachiensis from the NW and NE Atlantic. The NW Atlantic 
populations seem more closely related to populations from 
the N Pacific than NE Atlantic, but gene flow studies from 
the NE Atlantic are lacking.

The main aims of this study were to analyse genetic 
diversity and gene flow among S. droebachiensis popula-
tions in the NE Atlantic and assess possible links to physi-
cal features like ocean currents and fjord topography, 
as well as observed changes in this species distribution. 
Microsatellites recently developed for studying NE Atlan-
tic populations were used in this study (Anglès d’Auriac 
et  al. 2014). We compared differentiation across the spe-
cies’ geographical distribution in the NE Atlantic (i.e. from 
Denmark in the south to Svalbard in the north) and from 
sill fjords, open fjords and coastal populations. Increased 
knowledge of gene flow between urchin populations and 
detection of genetic patterns disruption is important to 
assess risk for future grazing events and is thus highly rel-
evant for the management of NE Atlantic coastal areas. For 
instance, a strong gene flow may show rapid recruitment 
ability and grazing events in the future. By contrast, detec-
tion of localized disruption of such a gene flow might be 
informative pertaining to ongoing ecosystem changes pos-
sibly affecting the equilibrium of the species and therefore 
associated grazing events along the Norwegian coast.

Materials and methods

Area of investigation and field sampling

The study area was chosen to cover the NE Atlantic dis-
tribution range of Strongylocentrotus droebachiensis. We 
included stations from the open coast as well as inside sill 
fjords and open fjords. Samples were primarily taken from 
2 to 22 m depth, as abundant urchins were only found deep 
at the southern populations (Table 1). Sea urchins were col-
lected by SCUBA divers at each of the 11 stations: 7 from 
open coastal areas or fjord mouths (DV, D2, NH, NS, VI, 

Table 1   Stations used in the study. Station name, station code, sampling 
depth (metre), urchin size (average diameter ± standard deviation), posi-
tion (WGS1984, latitude and longitude), distance (km) downstream the 

Vejrø station and number of analysed individuals per population (N) are 
shown

Sea Area Station Code Depth Size Lat. (°N) Long. (°E) Distance N

Belt Sea Denmark Vejrø DV 20 40.1 (5.5) 55.93862 10.76797 0 30

Skagerrak Oslo fjord Drøbak D2 20 22.1 (1.9) 59.66278 10.62596 430 28

Skagerrak Oslo fjord Svestad IO 20 30.0 (6.3) 59.77624 10.59165 440 30

North Sea Rogaland Lysefjorden LY 22 48.0 (7.6) 59.00875 6.315985 815 30

Norwegian Sea Torghatten Helløya NH 5 46.1 (5.6) 65.38705 12.0149 1645 30

Norwegian Sea Vega, nord Skogsholmen NS 5 38.4 (5.4) 65.81499 12.04164 2035 25

Norwegian Sea Vestfjord Tysfjord VI 2 38.3 (5.2) 68.23613 16.22802 2110 30

Norwegian Sea Salangen Løksefjorden SI 5 35.3 (4.6) 68.91894 17.70712 2380 29

Norwegian Sea Salangen Meløyvær SY 2 48.2 (5.1) 69.07234 16.47666 2335 29

Barents Sea Kongsfjord Veidnes FV 5 52.1 (5.3) 70.72 29.44 2865 30

Barents Sea Svalbard Kapp Wijk KW 5 25.9 (3.1) 78.6 15.1667 3335 30
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SY, FV, Table 1) and 4 from inside sills in fjords (IO, LY, 
SI, KW). Gonad material from 30 to 40 large urchins was 
sampled and fixed on site by ethanol. Sea urchins from 
Lysefjorden were collected and put in a styrofoam box and 
transported express to the laboratory in Oslo where sam-
ples were preserved within 8 h after they were collected.

Geographical distance calculations

Geographical distances were calculated as the distance 
from the southernmost population located close to the Vejrø 
Island in Denmark to all other stations further north. Since, 
to our knowledge, GIS maps (shape files or other) of ocean 
currents of the NE Atlantic do not exist, we created shape 
files in a GIS made from approximate, manually drawn 
paths following the main currents across Kattegat, along 
the Swedish and Norwegian coast, and crossing the Barents 
Sea to Svalbard (Fig.  1) based on a published map from 
Sætre and Aure (2007). Thus, the geographical distances 
calculated are not exact and the actual travelling distance 
may well be much longer, taking into account smaller cur-
rents and gyres and wind-driven deviations that may pro-
long the actual travel distance considerably. The geographi-
cal distance can thus be regarded as the least possible travel 
distance from Denmark and northwards following the main 
coastal currents and is assumed to be of sufficient precision 
for the purpose of this study.

Laboratory analysis

Rapid crude DNA extraction using 96  % ethanol-pre-
served gonad tissue was performed as described in Anglès 
d’Auriac et  al. (2014). A total of 321 individuals were 
analysed using 10 microsatellites loci specifically devel-
oped for the Northeast Atlantic S. droebachiensis (Anglès 
d’Auriac et  al. 2014). Among these microsatellites, 
Strdro-837 and Strdro-849 acted as polysomic and were not 
included in the analysis. Briefly, a 3-primer PCR approach 
was used using a M13 tail for the forward primers as well 
as labelled forward M13 primers in addition to the reverse 
primers. Simplex PCR amplifications were performed 
using iProof mastermix (Bio-Rad, Hercules, CA, USA) and 
a CFX96 thermocycler (Bio-Rad). The amplification prod-
ucts of up to four different microsatellite loci, each labelled 
with a different dye, were mixed for product size charac-
terization using a 3730XL DNA analyser (Applied Bio-
systems, Foster City, CA, USA). Alleles were scored using 
GeneMapper software version 4.0 (Applied Biosystems).

Two populations, NH and NS, were found to be highly 
differentiated from the others. These were found in the 
middle of the sampling area. To exclude the possibility of 
this deviation resulting from sampling the wrong species, 
in particular S. pallidus (Gagnon and Gilkinson 1994), 

we sequenced part of the mitochondrial cytochrome oxy-
dase I (COI) on three individuals from each NH and NS 
stations as well as from the Northernmost and Southern-
most Norwegian stations, respectively, KW and D2. A 
1056-bp COI fragment was amplified using the follow-
ing primers: 5-ACACTTTATTTGATTTTTGG-3 (for-
ward) and 5-CCCATTGAAAGAACGTAGTGAAAGTG-3  
(reverse) described by Lee (2003); Balakirev et  al. 
(2008). The phylogenetic analysis included 12 additional 
sequences from GenBank. PCR amplifications were per-
formed using a CFX96 Bio-Rad thermocycler (Bio-Rad, 
Hercules, CA, USA) in 15 μl reaction volume containing 
7.5  μl SsoFast or iProof mastermix (Bio-Rad), 0.1  μM 
of each primers and 2.5 μl sample (8 ng/μl DNA). Reac-
tion volume was completed with sterile deionized water. 
PCR amplifications were carried out under the following 
conditions: a denaturing step for 2  min (SsoFast) or 30  s 
(iProof) at 98 °C, followed by 40 cycles of 98 °C for 10 s, 
50  °C for 30  s and 72  °C for 40  s followed with a final 
extension at 72  °C for 2  min. Cycle sequencing was per-
formed in both directions using amplification primers and 
BigDye Terminator version 3.1 kit (Life technologies, 
Applied Biosystems). One  microlitre PCR template was 
used with 0.5  µl Terminator mix, 0.32  µl 10  µM forward 
or reverse primer, 1.75 µl Terminator 5X buffer in a final 
volume of 10  µl. Cycle sequencing was performed using 
an ABI 7500 qPCR machine (Life technologies, Applied 
Biosystems) as following: 96  °C for 1  min followed by 
28 cycles of 96  °C for 10  s, 50  °C for 5  s and 60  °C for 
4 min. Sequence purification was performed using BigDye 
XTerminator Purification kit (Life technologies, Applied 
Biosystems) adding to each PCR sample well 10 µl XTer-
mination solution and 45  µl Sam solution, final volume 
of 65 µl. The PCR plate was then sealed and vortexed for 
30 min prior to being processed by an ABI3730XL DNA 
analyser (Life technologies, Applied Biosystems). Trace 
files analyses and sequence alignments were performed 
using CodonCode Aligner version 5.1.5 (CodonCode Cor-
poration), and the evolutionary history was inferred using 
the UPGMA method (unweighted pair group means analy-
sis). The evolutionary distances were computed using the 
Kimura 2-parameter method [3] and are in the units of the 
number of base substitutions per site. The analysis involved 
24 nucleotide sequences. All positions containing gaps and 
missing data were eliminated. There were a total of 771 
positions in the final dataset. The analysis was conducted 
using MEGA version 6.06 (Tamura et al. 2013).

Statistical analysis

Data files from GeneMapper were imported into Microsoft 
Excel (version 14) and formatted for analysis in GenAlEx 
(version 6.5.01 (Peakall and Smouse 2012). GenAlEx was 
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used to calculate allele frequencies as well as for analysis 
of molecular variance (AMOVA; Excoffier et al. 1992) and 
principal coordinate analysis. This add-in was also used to 
export data for other programs, like MicroChecker [ver-
sion 2.2.3 (Van Oosterhout et al. 2004)] which was applied 
for estimating null allele frequencies. We used Arlequin 
[version 3.5.1.2 (Excoffier and Lischer 2010)] to estimate 
deviations from Hardy–Weinberg equilibrium and linkage 
disequilibrium evaluation.

A search for substructures in genetic variation was con-
ducted in Structure version 2.3.3 (Pritchard et  al. 2000) 
implemented at https://lifeportal.uio.no/. The analysis was 
run with 106 burn-in iterations followed by 106 Markov 
chain Monte Carlo steps, applying an admixture model 
with correlated allele frequencies utilizing location infor-
mation (LOCPRIOR and LOCISPOP set to 1, but USE-
POPINFO set to 0). Results of 10 independent runs with 
K = 1–10 clusters were input to Structure Harvester (Earl 
and vonHoldt 2012) to evaluate probabilities of K with 
the Evanno et  al. (2005) method and then summarized in 
CLUMPP version 1.1.2 (Jakobsson and Rosenberg 2007) 
and finally plotted with Distruct (Rosenberg 2004).

Most loci showed considerable heterozygote deficien-
cies, which resulted in significant departures from HW 
expectations. This involved all loci except Strdro-97 and 
7209 and indicated the possible presence of null alleles 
although using simplex PCR reduces the possible occur-
rence of false-negative loci amplification results. We 
applied corrections as suggested by the Brookfield1 algo-
rithm (Brookfield 1996) implemented in MicroChecker 
(Van Oosterhout et  al. 2004), which entails replacing one 
of two alleles in a homozygous state with a missing value. 
We chose the Brookfield1 approach as being the most con-
servative, i.e. requiring the least manipulation of data. This 
correction removed most of the HW deviations, although 
some remained. Later analyses were performed on the cor-
rected as well as the original data. We observed linkage dis-
equilibria between certain loci in some populations, but no 
pairs of loci showed signs of linkage across all populations. 
Thus, all loci were retained in further analyses.

Genetic differentiation between populations was esti-
mated as Jost’s D (obtained in GenAlEx) as well as FST, 
based on null-allele-corrected allele frequencies. For 
Jost’s D, we used null allele corrections as decribed above, 
while FST values were computed in the FreeNA software 
(Chapuis and Estoup 2007). This software estimates null 
allele frequencies using the EM algorithm (Dempster et al. 
1977) and then calculates an FST matrix applying the ENA 
correction (Chapuis and Estoup 2007) based on adjusted 
frequencies of visible alleles (thus disregarding the null 
alleles).

Effects of null alleles on inbreeding (fixation index, FIS)  
were analysed with INEST version 2.0 (Chybicki and 

Burczyk 2009), applying the default Bayesian approach 
using 300,000 steps, sampling every 100 steps and discard-
ing the first 30,000 steps as burn-in.

Testing for selection on the eight loci was conducted in 
BayeScan version 2.1 (Foll and Gaggiotti 2008), applying 
default settings. Data were corrected for null alleles prior to 
these analyses, and only Group 1 populations and individuals 
as identified by Structure (see ‘Results’ section) were included.

We estimated gene flow between geographical regions 
using Migrate version 3.36.11 (Beerli 2006, 2009). This 
approach is based on a coalescence model and provides 
mutation-scaled estimates of effective population sizes (Ne) 
and migration parameters between populations under speci-
fied dispersal scenarios (models) using genetic data. Poste-
rior distributions of parameters (effective population sizes 
and migration rates) were generated by Bayesian inference 
using Markov Chain Monte Carlo runs. Basically, we ran 
three migration models: migration from A to B only, from 
B to A only or both ways. Posterior model probabilities 
were compared using Bayes factors. Parameters were free 
to vary over intervals specified as priors, set for each run. 
We applied uniform prior distributions of effective popula-
tion size Θ from 0 to 200 and for migration rate M from 0 
to 100. Mutation rate was constant over all loci. We applied 
a static heating scheme of 4 chains with temperatures pro-
posed by the program (1, 1.5, 3 and 106 degrees), with 
swapping intervals set at 10. Only Group 1 individuals (as 
identified by the Structure analysis) were included in the 
datasets, since Group 2 individuals only occurred in a few 
areas, whereas Group 1 was present at all but one sampling 
stations. Since there was evidence for selection on five out 
of eight loci (see ‘Results’ section from BayeScan runs), 
only three loci were included in the dataset (Strdro-97-R, 
Strdro-7209 and Strdro-5563). We pooled the DV, IO, D2 
and LY samples into one ‘South’ group and individuals 
from NH, VI, SI and SY into one ‘North’ group (Fig. 1).

Results

Genetic diversity and differentiation

All loci were polymorphic, with between 11 (Strdro-97 
and 7209) and 26 (Strdro-5563) alleles detected per locus 
(Table  2). Populations did not differ markedly in allelic 
richness, with average number of alleles ranging between 
7.12 and 10.0 per locus (Table 3). The number of private 
alleles ranged from none at stations DV and IO to 6 at sta-
tion KW (=average 0.75 per locus, Table 3). Genetic diver-
sity (expected heterozygosity) varied only slightly, from the 
highest estimate in population NH (0.69) to the lowest in SI 
(0.56). Observed heterozygosity was highest in LY (0.43) 
and lowest in KW (0.3) (Table 3).

https://lifeportal.uio.no/
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Genetic differentiation between populations is here 
presented as estimates of FST and Jost’s DEST estimates 
(Table  3). Although several populations differed signifi-
cantly from each other, the genetic differentiation between 
populations was generally low (DEST < 0.06) over a wide 
geographical range (56–79°N). However, two coastal sta-
tions (NH Helløya and NS Skogsholmen at 65°N in the 
middle of the distribution area) stood apart, showing a 
much higher level of divergence (DEST 0.11–0.32, Table 4). 
Estimates of FST were generally lower than DEST, ranging 
from 0.01 to 0.10. Nonetheless, FST estimates also differed 
significantly from zero in exactly the same pairwise com-
parisons as DEST.

Only five loci (Strdro-97, 1356, 4147, 5563 and 7209) 
differentiated significantly (p  <  0.05) between popula-
tions in an overall calculation, resulting in an overall DEST 

Table 2   Characterization of 8 microsatellite loci for S. droebachien-
sis using 321 individuals

Number of alleles (A), number of individuals amplified (N), observed 
heterozygosity (Ho), expected heterozygosity (He), *  including the 
18-bp M13 forward tail

Locus Size range (bp)* A N Ho He

Strdro-97 159–189 11 320 0.27 0.32

Strdro-1051 186–220 17 295 0.35 0.68

Strdro-4147 75–115 19 282 0.29 0.76

Strdro-7209 128–162 11 281 0.25 0.27

Strdro-5563 165–269 26 287 0.30 0.65

Strdro-1356 164–254 25 306 0.56 0.88

Strdro-7412 92–124 15 308 0.71 0.82

Strdro-5950 96–152 22 274 0.39 0.86

Table 3   Allelic richness, private alleles, expected and observed heterozygosity (genetic diversity) within populations

Standard errors in parentheses

Population DV D2 IO LY NH NS VI SI SY FV KW

Total no. of Alleles 60 61 66 60 80 69 71 57 73 74 65

Mean no. Alleles 7.500 7.625 8.250 7.500 10.000 8.625 8.875 7.125 9.125 9.250 8.125

(1.336) (1.499) (1.656) (1.086) (0.886) (1.238) (1.368) (1.125) (1.552) (1.191) (1.093)

Total no. Private Alleles 0 1 0 4 2 3 5 3 2 3 6

Mean no. Private Alleles 0.000 0.125 0.000 0.500 0.250 0.375 0.625 0.375 0.250 0.375 0.750

(0.000) (0.125) (0.000) (0.189) (0.164) (0.263) (0.183) (0.263) (0.164) (0.263) (0.250)

Expected heterozygosity 0.601 0.593 0.607 0.597 0.665 0.644 0.605 0.524 0.615 0.648 0.562

(0.085) (0.102) (0.101) (0.088) (0.071) (0.075) (0.075) (0.080) (0.094) (0.078) (0.105)

Observed heterozygosity 0.398 0.398 0.409 0.431 0.404 0.425 0.395 0.308 0.385 0.396 0.299

(0.090) (0.075) (0.062) (0.104) (0.046) (0.082) (0.078) (0.065) (0.064) (0.052) (0.068)

Table 4   Genetic differentiation between populations and sub-populations

FST estimates are given above the diagonal, and Jost’s DEST below. Estimates significantly different from zero are set in bold. FST with 95 % con-
fidence limits were estimated in FreeNA with the ENA method for null allele correction. DEST values were calculated in GenAlEx on null-allele-
corrected data, with significance values estimated by 999 random permutations. The significance level for DEST was adjusted to 0.017 using the 
false discovery rate (10 comparisons for each station). Sub-population NH1 is not included (only 5 individuals)

D2 DV FV2 FV1 KW NH2 NS SI SY IO LY VI

D2 −0.007 0.1053 0.0217 0.0057 0.1192 0.1316 0.0295 0.0239 0.0018 0.0031 0.0075

DV −0.006 0.0948 0.0381 0.0173 0.1081 0.1200 0.0336 0.0265 0.0020 −0.0013 0.0111

FV2 0.251 0.217 0.1476 0.1090 −0.0033 0.0038 0.0959 0.0667 0.1103 0.1103 0.0771

FV1 0.032 0.038 0.293 0.0125 0.1754 0.1891 0.0130 0.0410 0.0343 0.0409 0.0247

KW −0.004 0.009 0.230 0.004 0.1304 0.1378 0.0071 0.0069 0.0113 0.0189 0.0054

NH2 0.288 0.253 −0.019 0.351 0.288 −0.0028 0.1329 0.0941 0.1191 0.1289 0.1051

NS 0.321 0.279 −0.004 0.375 0.310 −0.023 0.1377 0.0967 0.1293 0.1401 0.1154

SI 0.037 0.045 0.222 0.012 0.003 0.298 0.309 0.0044 0.0377 0.0371 0.0039

SY 0.030 0.039 0.168 0.065 0.009 0.230 0.250 0.008 0.0233 0.0328 0.0064

IO −0.002 0.001 0.237 0.061 0.014 0.271 0.308 0.059 0.035 −0.0005 0.0249

LY 0.007 −0.005 0.229 0.061 0.027 0.281 0.317 0.049 0.056 0.001 0.0184

VI 0.008 0.012 0.189 0.036 0.000 0.252 0.278 0.003 0.002 0.034 0.021
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of 0.085 (SE 0.050). Among these five loci, Strdro-97 and 
7209 contributed little to differentiation (DEST 0.009 and 
0.012), while the remaining three loci showed stronger dif-
ferentiation (DEST 0.116–0.471). This was due to marked 
differences in allele frequencies at these loci, particularly 
at Strdro-5563 and 1356. Figure 2 shows allele frequencies 
on the latter locus, while similar figures for other loci are 
given in Supplementary Information.

FIS estimates in INEST became lower in all populations 
when null alleles were allowed in the calculations, and 
this model was preferred over the alternative by the DIC 
criterion in all cases. Estimates of FIS varied from 0.022 
(population LY) to 0.22 (population IO, Table 5). However, 
the posterior 95  % probability intervals included zero for 
all population estimates. Thus, all FIS estimates were not 
significantly different from zero, indicating no significant 
inbreeding in these populations. Increasing the number 

of MCMC steps from 300,000 to 600,000 had negligi-
ble effects on the estimates of FIS as well as the posterior 
distributions.

An analysis of molecular variance (AMOVA) with 
Group 1 animals partitioned most of the genetic variance 
(96.4  %) to within populations and the remaining 3.6  % 
among populations (Table 6). Variation within individuals 
was suppressed in this analysis. AMOVA results did not 
change with null-allele-corrected data.

Analysis of population structure clearly indicated two 
subgroups (Fig. 3). With K = 2, the highest rate of change 
(delta K = 479.3; 32 times higher than any other step) and 
mean log probability of K levelled off at higher K. Con-
cordant with the genetic differentiation estimates, one clus-
ter dominated stations from south to north, except the NH 
and NS station in mid-Norway, which were mainly allo-
cated to the second cluster, and the FV station where indi-
viduals were evenly divided among clusters (Fig. 4).

Isolation by distance (IBD)

Based on the expectation that larval transport occurs pri-
marily from south to north following the Norwegian coastal 
current, we plotted an estimate of genetic differentiation 
between the southernmost population from the Belt Sea 
(DV) and all other populations versus estimated distance 
between stations (Fig. 4). Linearized FST values (i.e. FST/
(1 −  FST)) were then plotted against estimated distances 
from the southernmost site DV, to test a hypothesis of IBD 
given an assumed dominant northwards transport of pelagic 
larvae.

Species identity

The S. droebachiensis mitochondrial partial COI sequences 
from this study are available at the European Nucleotide 
Archive: http://www.ebi.ac.uk/ena/data/view/LN828950-
LN828961. Our sequences clustered with another sequence 
from Norway (positions 5894-7003 in GenBank accession 
number AM900391, Fig. 5). Three sequences from the NW 
Atlantic grouped in a separate clade within S. droebachien-
sis, while S. pallidus sequences formed a distinct sister 
clade to S. droebachiensis. Thus, there is no doubt about 
the maternal species affiliation of our study populations, 
whereas possible S. pallidus paternal hybridization cannot 
be concluded upon with this analysis alone.

Gene flow in Migrate

Our main purpose in estimating gene flow was to test the 
hypothesis that S. droebachiensis larvae primarily dis-
perse from south to north following the coastal current. 
Hence, the primary objective was to compare migration 

Fig. 2   Allele frequencies by populations shown for locus 
Strdro-1356. See Supplement 1 for the other 7 loci

http://www.ebi.ac.uk/ena/data/view/LN828950-LN828961
http://www.ebi.ac.uk/ena/data/view/LN828950-LN828961
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models, rather than obtain absolute estimates of number 
of migrants. For the composite North and South popula-
tions, we found that the model of northwards migration had 
a much higher probability than the alternatives (Table  7). 
We were unable to obtain satisfactory estimates of effec-
tive population size (Θ) the ‘North’ group, which showed 
considerable variation of the estimate across the prior space 
as reflected in the differences between modes, median and 
mean estimates (Table 8). By contrast, the estimates for the 
‘South’ group and the migration rate converged well, with 
the corresponding estimates closely tied.

The effective population size of the South’ group was 
clearly smaller than that of the ‘North’ group. Even so, the 
estimated mutation-scaled migration rate M from ‘South’ to 
‘North’ was high (Table 8).

Discussion

Two patterns superimposed could be distinguished of 
genetic differentiation of the NE Atlantic S. droebachien-
sis populations. The first pattern showed a consistent weak 
differentiation across its latitudinal distribution range 
which could be explained by an isolation by distance model 
(Fig. 4). This pattern is consistent with larvae being spread 
with ocean currents coming from the area of the southern-
most population in the Danish Belt Sea area, going to the 
Norwegian Skagerrak coast and onwards by the coastal 
current turning west and north before dividing to the west 
coast of Svalbard and East Finnmark, respectively. The 
Danish (and southern Norwegian populations) may be fed 
with larvae from reef populations in the southeast North 
Sea and Danish Skagerrak. Parts of the current along the 
Danish Skagerrak coast turns south and penetrates into the 

Table 5   Estimates of the fixation index (FIS) in INEST 2.0

Estimates are given for models with and without considering null alleles. The deviance information criterion (DIC) for both models is also given. 
The final column provides the 95 % posterior probability intervals for the model including null alleles

Population Number of individu-
als

FIS w/o null alleles FIS with null alleles DIC without null 
alleles

DIC with null 
alleles

95 % posterior prob-
ability interval

DV 30 0.3454 0.0597 1195.5 1172.5 0–0.3027

D2 28 0.3380 0.1346 1179.8 1177.8 0–0.3027

IO 30 0.3499 0.2198 1262.8 1259.7 0–0.3615

LY 30 0.2781 0.0220 1213.3 1170.7 0–0.2250

NH2 25 0.4027 0.1115 1125.0 1112.8 0–0.3007

NS 25 0.3725 0.1141 1120.5 1105.8 0–0.2830

VI 30 0.3499 0.0848 1289.4 1267.8 0–0.2046

SI 29 0.4129 0.0817 1049.3 1041.9 0–0.2552

SY 29 0.3910 0.1936 1268.9 1262.5 0–0.3645

FV1 14 0.2501 0.1068 489.3 484.0 0–0.2759

FV2 16 0.3635 0.1367 704.4 701.8 0–0.3323

KW 30 0.4821 0.1192 1169.9 1151.9 0–0.3450

Table 6   Analysis of molecular variance (AMOVA) populations 
within Group 1

The rightmost column shows partitioning of genetic variance. Overall 
FST = 0.036 (p = 0.001)

Source df SS MS Est. Var. %

Among populations 10 74.951 7.495 0.099 3.6

Within populations 531 1424.004 2.682 2.6882 96.4

Total 541 1498.956 2.781 100.0

Fig. 3   Clustering of 8-locus genotypes with Structure in two groups 
(K =  2 preferred by both log probability of K and by the Evanno 
method). Group 1, coloured in orange, gathers most individuals and 

populations, whereas group 2, coloured in blue, is found in NS, NH 
and about half of FV individuals
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Belt Sea area on deep water, while parts mix with Baltic 
water and later becomes the Norwegian coastal current.

This study thus supports the hypothesis that urchin 
populations in fjords and on the coast are generally not 
isolated, rather there seems to be relatively high gene flow 
from southern to northern populations and further into east 
Finnmark and west Svalbard, respectively. Northwards-
flowing currents transport larvae from population to popu-
lation, at least occasionally. With a larval phase lasting on 
average 16 weeks (Fagerli et al. 2013), larvae may be car-
ried long distances from the source population before set-
tling, providing an effective northwards-directional gene 
flow in the studied geographical area. The degree of isola-
tion was relatively small across a large geographical area 
(over 3300  km from 56 to 79°N). Approximately 96 and 
4  % of the observed genetic variation was found within 
and between the populations included in Group 1, respec-
tively (according to AMOVA, Table 6). This is in line with 
what was found by Addison and Hart (2004) who found no 
differentiation among populations from Atlantic Canada 
consistent with high level of genetic flow or a low rate of 
genetic drift. There were thus few signs of isolation of pop-
ulations even inside sill fjords, suggesting that sea urchins 
are in general not isolated by fjord circulation in sill fjords 
as earlier hypothesized by Fredriksen (1999), but there is 
likely considerable supply of larvae from upstream areas. 
The reason why sea urchin populations are only being 
found inside fjords in south Norway therefore seems not to 
be a lack of supply of larvae, but rather unfavourable condi-
tions outside the fjords. This is discussed further below. LY 
Lysefjorden population showed some indications of higher 
isolation. While it did not deviate much in the isolation by 

distance model (Fig. 4), it had a relatively high numbers of 
private alleles (Table 4). The Lysefjorden is characterized 
by a shallow sill (13 m) and very little water exchange with 
the outside fjord water (Aure et al. 2001). Urchins are only 
found on rather deep water (from 22 m and below), and this 
population show signs of being trapped in deep water for 
long periods by the fjord circulation, and the results may 
show signs of higher isolation compared to the coastal 
and other fjord populations. This may indicate that physi-
cal fjord features may isolate some populations more than 
others.

The second main differentiation pattern, to our sur-
prise, showed that two coastal populations in mid-Norway 
(65°N), NH and NS, as well as the northernmost popula-
tion of continental Norway (70°N) FV, were very differ-
ent genetically from the other populations and showed 
high degree of isolation from all other populations. This 
was indicated both by population differentiation estimates 
(DEST, RST) and by the clear indication of two distinct 
clusters in Structure. Punctual presence of high diversity 
patches in the midst of genetically homogenous popula-
tions of a species covering large geographical areas is not 
uncommon, especially among marine invertebrates (Lar-
son and Julian 1999). This phenomenon, chaotic genetic 
patchiness, has also been described for sea urchin popula-
tions which have experienced collapse caused by disease 
outbreaks (Addison and Hart 2004). The apparent paradox 
of such a pattern showing high genetic diversity among 
collapsing populations may be associated with introgres-
sion (Harper et al. 2007). The COI sequences we obtained 
showed unequivocally that the NS and NH individuals had 
a S. droebachiensis maternal origin, whereas hybridization 

Fig. 4   Genetic versus geo-
graphical distance. Scaled 
differentiation (FST/(1 − FST)) 
for each population compared 
with the southernmost Belt 
Sea (DV) population. Based on 
the Structure results shown in 
Fig. 3, NH and FV are both split 
in two, NH1, NH2, FV1 and 
FV2. Statistics are based on the 
linear regression between the 
two variables, with the intercept 
forced to 0 (Danish population, 
DV)
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with males from the closely related species S. pallidus 
could not be eliminated. Indeed, it is known that ova of S. 
droebachiensis can be fertilized by sperm of S. pallidus giv-
ing viable hybrids with pigmentation resembling S. droe-
bachiensis in the adult stage (Strathmann 1981), and asym-
metric introgression from S. pallidus into S. droebachiensis 

was further demonstrated (Addison and Pogson 2009). 
Hybridization between S. droebachiensis and S. pallidus 
was also suggested as early as 1952 in three specimens 
from the Trondheims fjord by (Vasseur 1952). Hence, the 
most likely explanation for this high diversity observed in 
areas where S. droebachiensis populations are collapsing 
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Fig. 5   UPGMA (unweighted pair group means analysis) tree for the 
COI sequences using Kimura 2-parameter substitution model. The 
percentage of replicate trees in which the associated taxa clustered 
together in the bootstrap test (10,000 replicates) is shown next to the 
branches. The tree is drawn to scale, with branch lengths in the same 
units as those of the evolutionary distances used to infer the phylo-

genetic tree. In addition to the 12 S. strongylocentrotus individuals 
sequenced for this study shown by full blue circles, 12 sequences 
were obtained from GenBank: 4 S. strongylocentrotus, 4 S. pallidus 
and 4 S. purpuratus sequences. All access numbers are indicated in 
the figure

Table 7   Comparison of 
migration models between the 
composite populations ‘North’ 
and ‘South’ (see text for details 
of groupings)

MCMC long chains were 40,000 recorded steps. Three log probability scores are calculated by Migrate 
(raw thermodynamic, Bezier approximation, and Harmonic mean), while the final column gives the Bayes 
factors based on the Bezier approximation scores

Migration model Raw thermodynamic Bezier approximation Harmonic mean BF (Bezier)

North ↔ South −4140.47 −1280.5 −332.94 2.7501E−78

North → South −3091.46 −1101.91 −303.67 1

South → North −6237.74 −1591.44 −294.11 2.5109E−213



Mar Biol (2016) 163:36	

1 3

Page 11 of 13  36

is that a high selection pressure has paved the way for 
asymmetric introgression from S. pallidus into S. droe-
bachiensis. These sea urchin populations in mid-Norway 
are currently collapsing and retreating northwards. Fagerli 
et al. (2013) found low urchin settlement around NS Skog-
sholmen compared to Hammerfest (near the North Cape 
at 71°N). The retreat is probably caused by ocean warm-
ing (Fagerli et  al. 2013) and increasing predation on sea 
urchin recruits from northwards expanding Cancer pagu-
rus and Carcinus maenas crabs as a result from warming 
(Fagerli et al. 2014). From the opposite side, invasive crabs 
from Russian waters, Paralithodes camtschaticus, invade 
the East Finnmark coast. This species was introduced to 
Kola (Russia) from the Pacific for marine cultivation pur-
poses during the 1960s and has since the 1990s extended 
its range westwards into East Finnmark waters (Oug et al. 
2011). Dense king crab populations in shallow water, col-
lapse in sea urchin populations and recovery of kelp have 
been observed locally on the Russian coast during the last 
decade (Gudimov et al. 2003) and recently on the Norwe-
gian coast (Christie and Gundersen 2014). While it is not 
known what have caused urchin collapse in this area, S. 
droebachiensis is a major prey for king crabs during spring 
when sea urchin recruits are settling (Pavlova 2009). If 
introgression is an early warning sign of urchin populations 
progressing towards collapse, larger areas shifting from sea 
urchin to kelp domination may be expected in the future.

The observed genetic differentiation in the NH and NS 
populations could also possibly be explained by hydro-
graphical features: gyres south of Lofoten (i.e. the archipel-
ago west of station VI in Fig. 1) may increase the retention 
time and trap pelagic larvae. South of Lofoten the cur-
rent turns away from the coast and around Lofoten. South 
of Lofoten and inside the coastal current large gyres are 
formed (Aas 1994; Sætre 2007) that may isolate or delay 
larvae to such a degree that settlement only occurs locally. 
Isolation may be further increased because this is a very 
shallow area (locally referred to as ‘boot sea’ to illustrate 
that it is almost possible to take on boots and wade off-
shore). Larvae could also be brought to this part of the coast 
by ocean currents from Scotland, regularly or occasionally 
(Fig. 1). The Lofoten gyre or transport from Scottish water, 

however, cannot explain why the FV populations shared 
a similar differentiation and we find them thus less likely. 
Isolation would also be expected to lower diversity (as indi-
cated for LY Lysefjorden) and not the observed increase in 
diversity.

The HWE disequilibrium we observe on the 321 sam-
ples with all 8 loci (Table 2) is very similar to that observed 
with the 96 samples used to establish the microsatellite 
method (Anglès d’Auriac et  al. 2014), showing consist-
ency in the observed disequilibrium. Such HWE disequilib-
rium has been previously observed in S. droebachiensis as 
for example with 3 of the 4 microsatellites used in a prior 
study (Addison and Hart 2004), hence suggesting that S. 
droebachiensis may naturally deviate from HWE as it has 
been reported to be the case for many other marine inverte-
brates (Brownlow et al. 2008).Our findings have important 
implications for the risk of future grazing events. Widely 
spread larvae from Danish Skagerrak and fjords in southern 
Norway imply a high risk of new grazing events which can 
be expected to occur rapidly in the future under favourable 
conditions for the green sea urchin. While climate variation 
cannot be managed, kelp forest resilience can. Therefore, 
emphasis should be focused on strengthening kelp forest 
state resilience to withstand future sea urchin blooms. Our 
findings can also be used for developing monitoring indi-
cators. Regime shifts between sea urchin-dominated and 
kelp forest states which are being observed along the Nor-
way coast occur typically suddenly and come as a surprise. 
Therefore, early warning signals for these types of events 
are difficult to identify (Möllmann et  al. 2015). Our find-
ings may provide an opportunity to develop tools for pre-
dicting and monitor sea urchin population collapse before 
and as they occur.
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