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Abstract 

Codium fragile subsp. fragile (hereafter C. fragile) is a widespread non-native chlorophyte. 

Experimental and observational approaches were used to examine the influence of 

temperature on its growth and local distribution in southwestern Norway, where it has been 

established for over 80 years. Growth was measured in laboratory experiments at current 

and predicted seasonal minimum and maximum seawater temperatures, and under natural 

conditions by recording length over one year in the field. The results indicated that if 

temperatures increase, C. fragile growth rate may increase in spring, but not in mid-

autumn/winter due to low light. Thallus fragmentation was common in autumn/winter in the 

field, but very rare in the winter-temperature laboratory experiment, indicating that low 

temperature is not the only driver. Growth occurred at temperatures which are reported as 

too low for growth in other locations, suggesting that C. fragile can acclimatise/adapt to local 

temperature regimes. Local distribution was examined by surveying abundance using 

categories based on number of thalli and their arrangement (scattered/patch/zone) at 46 

stations from 2011-2016. Codium fragile colonised the stations relatively often, but was 

frequently lost from sites with only bedrock compared to sites with stony substratum present 

(cobbles/boulders). It was more likely to be consistently present at sites with stones, and 

could form dominant patches of canopy in the upper sublittoral on this substratum. An 

increase in number of stations with C. fragile present was seen after two mild winters, 

suggesting that higher minimum temperatures may increase site occupancy of C. fragile in 

this region. 
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Introduction 

Coastal ocean temperatures are predicted to rise in the future (Wong et al. 2014), which may 

lead to changes in species distributions. Macroalgae are particularly likely to be affected 

because sea surface temperature is an important factor controlling their growth, survival and 

reproduction (van den Hoek 1982). In the Northern Hemisphere, declines and local 

disappearances are predicted to occur along the southern borders of macroalgal species 

distributions, while areas further north may become colonised as temperatures rise (Müller et 

al. 2009). Changes in ranges of seaweeds and the composition of macroalgal communities 

has already been documented in temperate zones; for example, increasing temperature has 

been associated with a change in the relative abundances of temperate and tropical 

seaweeds in Japan (Tanaka et al. 2012) and canopy-forming brown algae in the British Isles 

(Yesson et al. 2015). Changes in the ranges of canopy seaweeds have also been associated 

with temperature increases in southern Europe and Australia (Wernberg et al. 2011; Duarte 

et al. 2013; Smale and Wernberg 2013). Non-native species are likely to undergo range 

changes in response to temperature too, with their effects on native communities interacting 

with the effects of climate change (Occhipinti-Ambrogi 2007). As macroalgae are important 

habitat-forming organisms and primary producers (e.g. Norderhaug et al. 2003; Christie et al. 

2009; Migné et al. 2015), an increase in negative effects of non-native macroalgae on native 

macroalgae (Thomsen et al. 2016) could have a large impact on coastal ecosystems. How 

individual seaweed species will react to increased temperature, how this will affect 

communities, and how the impact of non-native seaweeds will interact with these effects, are 

pressing questions in this period of global change. 

Predictions suggest that southern-mid Norway will be one of the nine regions of the Atlantic 

Ocean where phytobenthos will be most affected by temperature changes (Müller et al. 

2009). Norway has approximately 100,000 km of coastline, spanning 13° latitude (SSB 

2016), which is a huge habitat area for seaweeds, and contains a macroalgal flora of just 

under 500 species. Under warmer conditions, new species may colonise the Norwegian 

coast by radiating naturally from southern populations, while species with a present 

distribution limit in southern Norway may expand their distribution or abundance in response 

to the rise in temperature. This has already contributed to changes in macroalgal 

communities in southwest Norway (Husa et al. 2008; Sjøtun et al. 2015). Simultaneously, 

conditions may become poorer for the dominant native kelps which are adapted to cooler 

waters (Fortes and Lüning 1980). Unusually hot summers in southern Norway have been 

associated with large declines and poorer condition of the kelp Saccharina latissima (Moy 

and Christie 2012, Armitage et al. in press), and kelps are expected to continue to decline 

towards the southern edge of their ranges as mean temperatures, the frequency of extreme 
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summer weather, and the impact of warm-adapted non-native species increases (Wong et al. 

2014).  

A common non-native alga in southwest Norway is the chlorophyte Codium fragile subsp. 

fragile (Suringar) Hariot, a high-profile invader which has spread and been studied globally 

(Trowbridge 1998; Davidson et al. 2015). It has been present in Norway since at least 1932 

(Armitage and Sjøtun 2016a) and is categorised as a high impact species according to the 

Norwegian blacklist (Gederaas et al. 2012). Although patchily distributed, it can form the 

dominant sublittoral canopy at some sites, and is mainly restricted to below mean low water 

in this region (Armitage et al. 2014). Codium fragile subsp. fragile is not associated with large 

negative impacts on abundances or diversity of macroalgae-associated invertebrates or 

epiphytic macroalgae, but can affect the community composition of these groups (Schmidt 

and Scheibling 2006; Jones and Thornber 2010; Armitage and Sjøtun 2016b), and influence 

detritus cycling (Krumhansl and Scheibling 2012). Once established, it may occupy space 

and prevent reestablishment of kelp (Levin et al. 2002, Scheibling and Gagnon 2006).  

The thallus of C. fragile consists of a mat-like holdfast and spongy, cylindrical, dichotomous 

branches to around 15-35 (-50) cm long (Brodie et al. 2007). Like other species in the genus 

Codium, it has a coenocytic structure where the thallus is formed from a few large cells, 

highly-branched into siphons. The siphons tangle tightly to form the medulla of the thallus, 

and have swollen tips (utricles) which face outwards to form the thallus surface (Electronic 

Supplementary Material 1). Codium species have a diplontic life cycle, and produce 

anisogametes in gametangia on the utricles. Most species produce male and female 

gametes and have dioecious thalli, although parthenogenesis and monoecious thalli are 

recorded in several species (Prince and Trowbridge 2004, Brodie et al. 2007). North Atlantic 

C. fragile subsp. fragile is thought to do this exclusively, with gamete formation in late 

summer/autumn producing only female gametes, which develop by parthenogenesis 

(Trowbridge 1998). Asexual reproduction in C. fragile subsp. fragile may also occur through 

thallus fragmentation. This is a process whereby the tangle of medullary siphons starts to 

unravel, which can lead to length reduction if at the tip of a branch or branch breakage if 

lower down (Fralick and Mathieson 1972) (see illustration in Electronic Supplementary 

Material 1). The branches or utricles which break off can survive, reattach to substratum and 

form new thalli (Yotsui and Migita 1989, Trowbridge 1998, Scheibling and Melady 2008). 

Branch fragments may drift long distances as they float in good light conditions (Gagnon et 

al. 2014), and can spread parthenogenetic gametes if reproductive as well as forming new 

thalli by regrowth. The rapid spread of C. fragile subsp. fragile (Trowbridge 1998) has likely 

been facilitated by these effective propagation methods. 
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Codium fragile subsp. fragile (hereafter C. fragile) is occasionally referred to as a warm-

temperate alga (Fralick and Mathieson 1973), but its distribution extends from the subtropics 

to the northern part of the cold temperate region in the NE Atlantic, and Newfoundland in the 

NW Atlantic (Stellander 1969; Trowbridge 1998; Matheson et al. 2014). Despite this, there 

are indications that low temperatures may limit its success. In the Gulf of Maine and 

Scotland, C. fragile was observed to be most abundant at sites with locally higher 

temperatures (Carlton and Scanlon 1985, Trowbridge and Todd 1999, Mathieson 2003, and 

references therein). In Norway, C. fragile is not present in the coldest areas, being absent or 

rare to the south on the Norwegian Skagerrak coast (Husa et al. 2013) where water 

temperature regularly reaches – 1 °C (IMR 2016), and rare in and around the mouths of large 

fjords (Fægri and Moss 1952) where surface water has low temperatures and salinities 

(Sjøtun et al. 2015). Low air temperatures may limit its colonisation of emergent substrata in 

the littoral zone (Trowbridge 1998), and low water temperatures have been proposed as a 

cause of fragmentation (Fralick and Mathieson 1972). Although it can survive at 0 °C (Lüning 

1984), its optimum growth occurs at much higher temperatures (24 °C) (Fralick and 

Mathieson 1973; Hanisak 1979a) and it requires temperatures of 12-15 °C for gametangia 

formation (Churchill and Moeller 1972). These observations suggest that if there is an 

increase in mean ocean temperature, or if the frequency of years with hot summers and mild 

winters increases in Norway, then C. fragile is a species that would benefit. These changes 

may lead to an increase in C. fragile abundance through faster growth rates, increased 

survival and a longer gamete-production period, which could result in increased colonisation 

rates and/or persistence at sites.  

Within its introduced range, the majority of work on C. fragile and temperature has been 

carried out in the NW Atlantic. However, temperature experiments have shown variable 

results depending on the source population of the C. fragile thalli (Malinowski 1974; 

Trowbridge 1998), with a possible explanation being local adaptation or acclimatisation to 

different temperature regimes. It is possible that C. fragile may therefore show different 

responses to warming in different regions. There is also relatively little published research on 

the distribution of C. fragile in the NE Atlantic outside the British Isles, where it is mostly 

littoral (Chapman 1999), leaving questions about its distribution and persistence in sublittoral 

NE Atlantic habitats.  

The present study has therefore investigated C. fragile abundances and growth rates in 

south-west Norway using three different approaches and time scales: (1) short-term 

laboratory experiments to test whether growth rates increase at predicted future summer and 

winter temperatures; (2) measurements of growth rate in the field over one year, to measure 

the seasonal cycle of growth, and examine how it relates to temperature and light; and (3) 
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semi-quantitative recordings of C. fragile abundance at 46 stations over 5 years, to record 

how local C. fragile abundance changes through time, how persistent it is once established, 

how often successful colonisation of stations occurs, and test if these are related to 

substratum or ambient temperature variation. 

Materials and Methods 

Study area 

The coast of southwestern Norway consists of an archipelago-type landscape interspersed 

with fjords. It is within the cold-temperate biogeographic zone (Lüning 1990), with a shoreline 

of mostly hard substratum (sloping bedrock interspersed with falls of loose boulders and 

cobbles). This provides a large habitat area for seaweeds, with dominant canopy species 

being kelps and fucoids. The work of the present study was carried out in a 30 km range 

among islands to the south of Bergen (between 60.073900 latitude, 5.217233 longitude and 

60.301217 latitude, 5.166733 longitude; Fig. 1). All genetically sequenced samples of C. 

fragile from this study area have been the invasive subspecies, subsp. fragile (Armitage and 

Sjøtun 2016a). 

Along this stretch of coast, the mean monthly sea surface temperature (SST; here referring 

to the temperature at 1 m depth) is highest in August and coldest in February/March. 

Between 1980 and 2009, mean SST was 5 °C in February (3.0 and 7.3 °C in the coldest and 

warmest Februarys, respectively) and 15.4 °C in August (12.8 and 18.4 °C in the coldest and 

warmest Augusts, respectively) (IMR 2016). Water temperature in the upper few metres is 

mainly determined by local meteorological conditions, while the temperature beneath is more 

constant and controlled by conditions in the Norwegian coastal current, which runs 

northwards from the Skagerrak and is joined by warmer Atlantic water to the north in Mid-

Norway (Bakketeig et al. 2016). This current has salinities of around 31-32 at the surface, but 

this may be reduced in the areas around the mouths of narrow large fjords (e.g. Sognefjord; 

IMR 2016). Water nutrients in the area are very low during the summer months, and follow a 

seasonal pattern of higher ambient nutrient content from September to March (Strömgren 

1986, Pedersen and Borum 1996, Armitage et al. in press).  

Abiotic data 

A temperature logger (Tinytag Aquatic 2, Gemini data loggers, Chichester, UK) recorded 

seawater temperature every 2 hours at 1 m depth between January 2014 and September 

2016 at Espegrend Marine Biological Station (Fig. 1). Additional SST information was 

collected from regional hydrographic stations (Indre Utsira and Sognesjøen, 1-3  
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Fig. 1 Maps of the study area. Map A shows southern Norway. Map B shows the locations of Bergen, 

Espegrend Marine Biological Station, the Institute of Marine Research fixed hydrographic stations 

(black diamonds), and the fjord where CTD data from the University of Bergen was recorded 

(Raunefjord, black square). Maps C, D and E display the locations of the 46 survey stations (circles, 

stations with stony substratum present; squares, bedrock stations). Map C also shows Espegrend, and 

the location of the continuous temperature logger (black diamond) 
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measurements per month) run by the Institute of Marine Research (IMR 2016), and a CTD 

dataset taken in Raunefjord by the University of Bergen (UiB; 1-5 measurements per month) 

(Fig. 1). The latter also recorded salinity. Information about light levels was extracted from a 

dataset of mean daily global solar irradiance at the surface in Bergen between 1965-2013, 

provided by the Geophysical Institute (GFI) at the University of Bergen.  

(1) Growth of Codium fragile under controlled conditions 

Laboratory experiments were run at temperatures based on predictions for the region in 

Müller at al. (2009). By the years 2080-2099, mean August SST is predicted be around 2 - 

2.5 °C higher than 1980-1999 levels (Müller et al. 2009), resulting in a mean of 16.3 – 18.0 

°C in this study area (mean August SST 1980-89 = 14.3 °C, 1990-1999 = 15.5 °C; IMR 

2016). February SSTs in 2080-2099 are expected to be 1.5 – 2 °C higher than 1980-1999 

levels (Müller et al. 2009), resulting in a mean of 5.7 - 7.5 °C (mean February SST 1980-89 = 

4.2 °C, 1990-1999 = 5.5 °C; IMR 2016). Thus the summer temperatures chosen for 

investigation were 15 °C and 18 °C, and the winter temperatures were 5 °C and 7 °C. Recent 

mean SSTs are similar to the low temperature used in the winter experiment, and slightly 

higher than the low temperature used in the summer experiment (2010-2016 mean February 

SST = 5.3 °C, mean August SST = 16.4 °C; IMR 2016).  

The winter experiment was carried out once, and the summer experiment twice. Codium 

fragile thalli for the winter experiment were collected during the coldest period of the year 

(February 2016), and those for summer experiment in the warmest period (September 2015, 

August 2016). For each experiment, 40 thalli were collected from around chart datum in the 

area surrounding Espegrend Marine Biological Station (Fig. 1), and stored in flowing 

seawater at ambient temperature.  

The experimental setup for the summer 2016 experiment and the winter experiment was as 

follows. One branch, showing no signs of fragmentation, was cut from each C. fragile thallus, 

until 36 branches were collected. Each branch was then cut in half at a dichotomous 

branching point, giving a ‘branch pair’; two similar branches, one for each of the two 

temperature treatments. These 72 branches were individually labelled to track which branch 

pair they belonged to. By using two branches from the same individual thallus to compare 

growth rates at different temperatures, it controls for the effect of individual differences in 

growth rate. Maximum length and wet weight (after lying on paper towels for 30 seconds) 

were recorded for each branch. The 36 C. fragile branch pairs were then distributed evenly 

between 6 experimental replicates. Each replicate consisted of 2 tanks, one at each 

temperature, and each holding around 50 litres (56x39x42 cm). The physical arrangement of 

the experiment was thus 12 tanks (6 at each temperature) arranged in pairs (a replicate). 
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Each tank contained 6 C. fragile branches, resulting in 36 branches in each temperature 

treatment. 

The summer 2015 experiment was set up in the same way but replication level was higher –

40 branch pairs were taken from 40 thalli (80 branches), and 8 replicates were set up (16 

tanks, each containing 5 branches, giving 40 branches at each temperature). Also, prior to 

the summer 2015 experiment the thalli were treated for 2 days in germanium dioxide to 

hinder the growth of benthic diatoms which grow rapidly in warm temperatures, but this was 

not done in the summer 2016 experiment in case it affected the C. fragile thalli. In all 

experiments, length and number of dichotomies were similar within branch pairs, and all 

branches used were between 63 and 167 mm in maximum length. 

Within each tank, the C. fragile samples were spaced evenly and attached at the base so 

they could stand upright, and an aquarium pump was added to create water circulation. The 

experiment was carried out in a climate-controlled room at the University of Bergen which 

has constant supplies of heated, ambient and cooled seawater. The tanks all had continuous 

water-exchange fed by this system, and desired temperatures were achieved by mixing the 

various supplies. The seawater from the system was UV-treated and sand-filtered before 

entering the tanks, and was pumped from around 100 m depth with a salinity of 35. Water 

from this depth contains a relatively high nutrient concentration year-round.  

The irradiance was constant within replicates as each light covered a tank-pair. Daylight 

fluorescent bulbs (5400K) were used (spectral range of 300-750 nm, with the vast majority 

emitted in the 400-700 nm visible light range; Osram 36W/954, Osram, Munich, Germany). 

Photoperiod was adjusted to mimic natural conditions, while intensity was kept similar. The 

winter experiment was kept on a 8:16 hour light:dark cycle at mean irradiance of 43 µmol m-2 

s-1 (ranging between 38-53 µmol m-2 s-1). The summer experiments were on a 16:8 light:dark 

cycle, with mean irradiances of 65 µmol m-2 s-1 (51-76 µmol m-2 s-1) and 50 µmol m-2 s-1 (40-55 

µmol m-2 s-1) in the summer 2015 and 2016 experiments respectively. This difference should 

not cause a large difference in growth rate according to Hanisak (1979a), where the fastest 

decreases in growth rate were observed when irradiance was less than 30 µmol m-2 s-1. 

Because the tanks had continuous flow, water temperatures fluctuated slightly throughout the 

experiment. Temperature loggers in 4 of the tanks showed that the mean temperatures in the 

winter experiment were 7.4 ± 0.3 °C (mean and standard deviation) in the high temperature 

treatment and 5.1 ± 0.4 °C in the low treatment; in the summer experiment, temperatures 

were 17.9 ± 0.6 °C (2016) and 18.0 ± 0.3 °C (2015) in the high temperature treatment, and 

15.2 ± 0.4 °C (2016) and 15.0 ± 0.3 °C (2015) in the low treatment. The experiments were 

run for 3 weeks, with the C. fragile samples measured once per week. Fragmentation was 
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defined by a weight loss equal or over 0.2 g, any loss in length, or by a noted observation of 

the thallus unravelling.  

(2) Growth of Codium fragile in the field 

In August 2014, 13 C. fragile thalli growing on loose stones (approximately 10 cm diameter) 

were collected haphazardly from a rocky shore near Espegrend Marine Biological Station 

(Fig. 1), at approximately 0.5 m below low tide. The thalli were measured for maximum 

length, tagged, and the stones they sat on attached in plastic mesh shallow baskets 

(approximately 10 cm high). Starting lengths of the thalli were between 105 and 303 mm 

(mean = 157 mm). The baskets were then lowered into the midst of a large natural sublittoral 

C. fragile patch at around 1 m below mean low water outside the field station, a relatively 

sheltered site. The baskets were raised every 2-6 weeks to record measurements of 

maximum length and comments on condition for each tagged individual for one year, until 

late August 2015. Maximum length was chosen as this measurement allows minimal 

handling and damage to the thalli; however, it means that growth could be underestimated 

(e.g. if the longest branch was lost). The baskets were revisited 1 year after this (August 

2016) to see whether the same C. fragile thalli were present and whether there had been 

additional settlement.  

(3) Local distribution of Codium fragile through time 

Surveys of C. fragile abundance took place during the summers of 2011, 2014, 2015 and 

2016 at 46 stations (Fig. 1). Abundance was recorded in semi-quantitative categories, by 

estimating the number of thalli at the station in categories (0, 1-20, 20-50, or > 50) and how 

they were growing (as scattered individuals amongst other algae, in patches, or in a zone 

>75 % of the station); this information was then combined to categorise the sites into 

‘absent’, ‘low’ or ‘high’ abundance of C. fragile. If C. fragile formed a clear zone and more 

than 20 individuals were counted, or if more than 50 individuals were counted occurring in 

patches, C. fragile was recorded as ‘high’ abundance. If C. fragile was present but not 

forming a zone, and there were also fewer than 50 individuals present, it was recorded as 

‘low’ abundance.  This is the same system as used in Armitage et al. (2014) when the 

original survey (2011) was carried out, and was done because the estimate of number of 

thalli could be susceptible to errors. By combining the growth pattern and abundance, a 

coarser but more reliable picture of C. fragile at the site is formed. Surveys were done by the 

same observers in all years, from a small boat around low tide in calm weather. As 

observations were from the surface, only C. fragile that was growing within visual range was 

included, approximately down to 3 m in the sublittoral zone. 
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The stations were defined as 15-20 m long sections of shoreline, and were originally selected 

to give a mix of C. fragile abundance categories. Therefore, they do not represent the 

distribution of C. fragile on the southwestern coast of Norway, but they may be used to 

examine temporal changes in C. fragile distribution in relation to environmental changes. The 

2011 data was used as the baseline for monitoring, and at this point the stations were 

reasonably even between the C. fragile abundance categories (absent, n=15; low, n=16; 

high, n=15), with the majority of C. fragile occurring in the infralittoral and sublittoral zones 

(Armitage et al. 2014).  

From the abundance data, “colonisation” and “loss” events were calculated. This was done 

by categorising the C. fragile abundance changes at a station which occurred between two 

surveys: changes from absence to presence at a station as “colonisation”, and from 

presence to absence as “loss”. “Persistence” is used to describe whether C. fragile was 

present at a station in all surveys. It should be noted that these changes were studied in a 

relatively small area (<30 km) which C. fragile originally colonised over 80 years ago; 

therefore “colonisation”, “loss” and “persistence” are here used to describe small scale 

patterns between and within habitat patches, rather than large-scale patterns in range 

change. 

Wave-exposure and substratum at the stations was originally recorded in the 2011 survey 

(Armitage et al. 2014). Wave-exposure at the stations ranged from sheltered to semi-

exposed, with none facing open sea. According to a relative measure of cartographic 

exposure, most of the sites were towards the sheltered end of the range (Armitage et al. 

2014). Salinity at the stations was expected to be similar to the coastal current and with few 

differences between stations, as the stations were located on islands towards the outer 

edges of the coast away from fjords with large freshwater outputs. The inclination at the 

stations was normally from around 20 - 70°, and there was little to no sedimentation at the 

depths surveyed, with the vast majority of visible substratum being rock. This was either 

bedrock or stony substratum (‘bedrock’ here being fairly smooth consolidated bedrock, and 

‘stony’ being heaps of loose cobbles or small boulders, most with diameters from 5 cm to 50 

cm). Station substratum and cartographic wave-exposure were unrelated (Armitage et al. 

2014). The results of Armitage et al. (2014) indicated that the stations with substratum 

dominated by stones and stations which had both bedrock and stony substratum present 

were similar with respect to C. fragile abundance when recorded using abundance 

categories, thus these stations were grouped into one category (“stony”) for the present 

study (bedrock, n=25; stony, n=21). Five stations were excluded from the original 51 used in 

Armitage et al. (2014) due to difficulty relocating the station precisely or it being used for 

other experiments. In addition, during the re-surveys it was observed that two of the stations 
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originally recorded as having bedrock substratum actually had some stones sublittorally, thus 

their substratum category was changed for the present analysis. Station data are available in 

Electronic Supplementary Material 2. 

Analysis 

Analysis was carried out in R (R Development Core Team 2016). In all cases, mixed models 

were used to allow the inclusion of random effects, which take into account when multiple 

observations are not fully independent (e.g. they are from the same thallus, or the same 

replicate tank). Linear mixed effects models were used for continuous response variables (R 

package nlme, Pinheiro et al. 2015) and binary logistic regression for binary response 

variables (generalised linear mixed effects models; r package lme4, Bates et al. 2015). 

Significance testing of predictors was done using likelihood ratio tests (Zuur et al. 2009). 

Post-hoc tests to find significant differences between variable levels were done by pairwise 

multiple comparisons of least squares means, adjusted with Tukey HSD (R package 

lsmeans, Lenth 2016). R2 values are provided as conditional (R2c) which shows the variance 

explained by the main effects, and marginal (R2m) which also includes the random effects (R 

package MuMIn, Barton 2016). Plots were created using R, the R package ggplot2 

(Wickham 2009), and Microsoft Excel. 

Differences in growth between high and low temperatures in the laboratory experiment were 

tested using the relative growth rates (RGR), calculated from length and weight separately. 

The formula used to calculate RGR was ((loge(size in week 3) – loge(size in week 0))/number 

of days) (Lüning 1990). Temperature (high or low) was a categorical predictor, and thallus 

and replicate were included as nested random effects. Branch pairs were removed from the 

dataset prior to analysis if they contained a branch which was classed as fragmenting. In the 

winter experiment, this left 70 branches (35 branch pairs) split over 6 replicates. There were 

high levels of fragmentation in the summer experiment, therefore the results from pairs of 

thalli which did not fragment from 2015 and 2016 were combined into one analysis of 38 

branches (19 branch pairs) split over 11 replicates. 

For the field growth data, length changes per week during each time period were calculated 

for each thallus. Negative length changes were excluded to create a non-negative second 

dataset, and whether the change in each thallus during each time period was positive or 

negative was recorded as a third dataset for analysis. Each of these was then tested against 

mean temperature and global irradiance to look for significant relationships, with thallus as a 

random effect. To improve the normality of residuals, length change was square root 

transformed, and 2 extreme observations were excluded – both were negative changes, with 

one from August, and one from December-January. As the thalli were measured repeatedly, 
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an autocorrelation function (R package nlme, Pinheiro et al. 2015) was used to see whether 

there was autocorrelation between the measurements, but was not significant. 

Long term distribution changes at the 46 sites were analysed using binary response 

variables (e.g. presence/absence, increase/no increase, stable/fluctuating). Here, substratum 

and time period were used as predictor variables, with a random effect of station within area, 

as the same station was sampled multiple times, and the stations were grouped into 3 areas 

(Fig. 1). When colonisation, loss, increases or decreases were examined, stations where that 

change was impossible were excluded (e.g. stations with absent C. fragile were not included 

in an analysis of decreases).  

Results 

(1) Growth of Codium fragile under controlled conditions 

In the winter experiment, the length and weight increase of C. fragile after 3 weeks in the 

high temperature treatment (7.4 °C) was almost twice as large as the increase in the low 

temperature treatment (5.1 °C) (Fig. 2). After 3 weeks, mean weight gain in the low 

temperature was 0.3 ± 0.13 g versus 0.58 ± 0.28 g in the high temperature, and mean length 

gain in the low temperature was 8 ± 3 mm versus 14 ± 6 mm in the high temperature (mean 

± SD, n = 35 branches in each treatment). The maximum observed individual growth over the 

experiment was 29 mm at 7.4 °C, and 16 mm at 5.1 °C (1.38 mm day-1 and 0.76 mm day-1 

respectively). At 5.1 °C the mean RGR as calculated from weight change was 0.009 

(maximum of 0.018), and at 7.4 °C it was 0.015 (maximum of 0.027). This was a statistically 

significant increase of around 60 % (Likelihood ratio test (LRT), L1 = 35.0, P <0.001, R2m = 

0.28, R2c = 0.67 for weight; L1 = 30.7, P <0.001, R2m = 0.30, R2c = 0.56 for length). There 

was only one sample which showed signs of fragmentation during the experiment (here 

defined as length loss, weight loss over 0.2 g, or a noted observation of the thallus 

unravelling), and fragmentation was similarly rare in a preliminary winter experiment (results 

not shown). Epiphytic diatoms grew during the three weeks, but relatively slowly and did not 

reach high cover. 

In the summer experiments, the effect of temperature on the growth was more unclear than 

in the winter experiment because heavy fragmentation of C. fragile took place. Among the 

thalli which did not fragment, growth tended to be higher in the high temperature treatment, 

but this was not as large a difference as during the winter experiment (Fig. 2). After 3 weeks, 

the mean weight gain in the low temperature (15-15.2 °C) was 0.75 ± 0.42 g, while it was 

0.84 ± 0.68 g in the high temperature (17.9-18 °C), and the mean length gain in the low 

temperature was 24 ± 6 mm, while it was 28 ± 6 mm in the high temperature (mean ± SD, n 



Postprint Publisher version: https://doi.org/10.1007/s00227-017-3170-5  

13 
 

=19 branches in each treatment). RGR as calculated from these measurements was much 

more similar between treatments than in the winter experiment (RGR at 15-15.2 °C was 

0.035 (maximum of 0.072) from length and 0.031 (maximum of 0.057) from weight, while at 

17.9-18 °C it was 0.037 (maximum of 0.067) from length and 0.035 (maximum of 0.065) from 

weight). This was a significant difference according to length (LRT, L1 = 8.3, P = 0.004, R2m 

= 0.11, R2c = 0.61) but not according to weight (LRT, L1 = 2.1, P = 0.15, R2m = 0.02, R2c = 

0.72). There was large variation in growth between individuals, and the maximum observed 

individual growth over the experiment was 37 mm at 17.9-18 °C, and 34 mm at 15-15.2 °C 

(1.85 mm day-1 and 1.7 mm day-1 respectively). Fragmentation occurred in both summer 

experiments and in a preliminary summer experiment (results not shown), and was quite 

evenly distributed between the temperature treatments. By the end of both experiments there 

was rapid growth of epiphytic diatoms. 

The thalli collected in February for the winter experiment were dark green and remained so 

throughout. In contrast, the thalli collected in summer were bright green and fairly pale 

towards the tips, with a covering of fine hairs. After one to two weeks in the experimental 

conditions the thalli darkened in colour, and newly grown tips did not possess hairs.  

 

Fig. 2 Mean length and weight changes of non-fragmenting Codium fragile subsp. fragile during laboratory 

experiments (low temperature treatment, dark grey; high temperature treatment, light grey), with error bars 

showing ±1 standard deviation. In the left column are the results of the winter experiment (5.1 vs. 7.4 °C; n = 35 

branches in each temperature, 6 replicates), in the right column are the results of the summer experiments 

(approximately 15 vs. 18 °C; n = 19 branches in each temperature, 11 replicates; 2015 as circles and 2016 as 

triangles). Note the different y-axis scales 
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(2) Growth of Codium fragile in the field 

On average, the thalli increased in length throughout spring and summer, and decreased in 

autumn and winter. Length change was positively related to both temperature and irradiance 

(temperature, LRT, L1 = 12.2, P <0.001; irradiance (quadratic), L1 = 4.9, P = 0.028; R2m = 

0.26, R2c = 0.26). However, a comparison of SST and mean global irradiance in Bergen 

showed that their minima and maxima do not occur at the same time, with temperatures 

lagging behind irradiance. The lowest irradiance usually occurs from late October to the end 

of February (<3 MJ m-2 day-1), while the lowest temperatures occurred from January to mid-

April (5 – 7 °C). Mean length change of C. fragile became negative during October, when 

irradiance drops to < 3 MJ m-2 day-1 in an average year, but temperatures were still around 

11 °C; conversely, mean length change became neutral or positive again in March-April, 

when irradiance reaches > 4 MJ m-2 day-1 in an average year but temperatures were still < 7 

°C (Figs. 3a and 3b).  

The fastest growth rates were observed from late June to mid-September at around 8-10 mm 

per week (Figs. 3c and 3d). When only non-negative length change was considered, it 

showed a significant positive association to SST (LRT, L1 = 45.9, P <0.001; R2m = 0.31, R2c 

= 0.37), with the thalli showing reduced growth rates at temperatures less than 12.5 °C (Fig. 

3c). Non-negative length change was not related to irradiance (LRT, L1 = 1.85, P > 0.05), 

remaining low from early March to mid-May, even though irradiances usually increase from 

around 4.6 to 13.7 MJ m-2 day-1 during this period (Fig. 3d).  

Every thallus showed length reduction at some point during the year, but this was most 

common between late October and late February, when irradiance is usually < 4 MJ m-2 day-1 

and temperatures varied from 5.8 to 11.3 °C (Figs. 3e and 3f). The proportion of thalli with 

negative changes decreased in March and April, and then was very low until an increase in 

August. The probability of a thallus showing a negative length change was negatively related 

to both mean temperature and irradiance (temperature, LRT, χ21 = 7.0, P = 0.008; irradiance, 

χ2
1 = 23.8, P < 0.001). Despite the frequency of negative length change in winter, many of 

the thalli maintained much of their length year-round, with a February mean length of 127 

mm. The largest length attained was 370 mm. 

Some observations on thallus appearance and length reduction were recorded during the 

monitoring period. In summer, the upper branches of the thalli were nearly always firm and 

growing. Lower down however the branches could develop small unravelling sections which 

could easily break, particularly in large thalli, resulting in the loss of an otherwise firm and 

growing branch. The branches from this “summer fragmentation” were often observed 

floating on the surface of the sea. In contrast, the tips of branches often (but not always)  



Postprint Publisher version: https://doi.org/10.1007/s00227-017-3170-5  

15 
 

 

Fig. 3 Mean length changes of Codium fragile subsp. fragile thalli in the field (shallow sublittoral, 

Espegrend Marine Biological station, Bergen, Norway). In all plot pairs, the left hand plot shows 

relation to temperature (1 m depth), and the right hand plot shows relation to mean global irradiance 

(Bergen, GFI, 1963-2013). Plots (a) and (b) show mean change per week (here, 2 extreme values 

were excluded: -86 mm in July-August; -51 mm in December-January). Plots (c) and (d) show mean 

non-negative change per week (where all negative changes were excluded). Plots (e) and (f) show the 

proportion of thalli at each measurement point which had negative length changes. Error bars are ±1 

standard deviation (n = 13 from August to December-January, subsequently n = 11 due to the loss of 

2 thalli and their basal rocks in an unusually large storm) 
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became flaccid and started to disintegrate in winter, resulting in length reduction by loss of 

volume and unravelling from the tip. Length reduction by breakage could also occur in winter 

- unravelling of the thallus could occur further down the branches on some thalli, and a 

powerful storm resulted in sections torn from several thalli, with one of the largest thalli being 

reduced to a holdfast. The upper branches of many thalli also changed appearance during 

the year, from dark green during winter to a very bright green by June-July, especially in the 

larger thalli, while basal parts stayed dark green. The thalli usually remained quite epiphyte-

free, despite heavy epiphytic growth on the baskets themselves during late spring and 

summer. There were only two relatively short periods of high epiphytic cover on C. fragile: 

diatoms in March and brown filamentous algae in April-May. Two years after placement 

(August 2016), most of the original C. fragile thalli were still present. There had also been 

extensive settlement of C. fragile on the plastic baskets and ropes, which was not there in 

August 2015. The size range of the new thalli was approximately 1 - 20 cm. 

(3) Local distribution of Codium fragile through time 

During the 5 years of the study (2011-2016), the average 1st quarter (Jan-Mar) and 3rd 

quarter (Jul-Sep) temperatures were 5.5 °C and 15.3 °C, respectively (mean of all 

datasets).There was one particularly cold, and one particularly hot period (Fig. 4). In 2013 

temperatures dropped to 2.7 °C in Raunefjord, with a mean of 3.3 °C from the end of January 

to mid-March (n=5, UiB CTD dataset). The subsequent winters were milder, with no daily 

mean temperatures below 4.7 °C. Winter/spring in 2012 and 2015 were warm, particularly 

the latter with a January-March mean of 6.2 °C. The summers were around average, with the 

exception of 2014, when the July-September mean was 17 °C, with maximum temperatures 

of 21.5 °C (Fig. 4). Salinity measurements to the north of the study area (CTD dataset, 

University of Bergen, Fig. 1) indicate that surface salinity may fluctuate slightly but not to 

extremes: from 2011-2016, the mean salinity at 1 m depth was 30.0 ±1.6 (SD, n=134), with 

the minimum recorded being 24.4 and the maximum being 32.6, with no large seasonal 

differences (Jan-Mar mean = 30.9 ±1.1, Apr-Jun mean = 30.4 ±1.3, Jul-Sep mean = 28.9 

±1.3, Oct-Dec mean = 28.8 ±1.7).  

The proportion of sites categorised as having high abundances of C. fragile remained higher 

among stony stations than bedrock stations (Fig. 5), with C. fragile significantly more likely to 

be present at stony stations across the whole time period (LRT, χ2
1 = 17.0, P < 0.001). There 

was also an effect of year on presence (LRT, χ2
3 = 9.0, P = 0.030), with a decrease in the 

number of stations with C. fragile present from 2011 to 2014, and an increase from 2014-

2016 (Fig. 5). The difference between 2011 and 2014 was not statistically significant, but  
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there were significantly more stations with C. fragile present in 2016 than 2014 (pairwise 

comparison (Tukey), z = -2.69, P = 0.036). 

The number of stations at which C. fragile decreased in abundance between surveys also 

showed this temporal trend (LRT, χ2
2 = 9.73, P = 0.008), with decreases more likely in the 

2011-2014 period than between 2014-15 (pairwise comparison (Tukey), z = 2.52, P = 0.031) 

or 2015-16 (z = 2.36 P = 0.047) (Fig. 6). However, there was no statistically significant trend 

in the increases in C. fragile abundance over the different time periods, and neither increases 

nor decreases were related to substratum type (Fig. 6).  

Colonisation was not analysed statistically as there were few stony stations which C. fragile 

had not already colonised, preventing detection of any increases in colonisation rate. 

However, the trend for bedrock stations in Figure 7 suggests that colonisation rates were 

relatively constant throughout the study period. Loss could be analysed (as there were plenty 

of stations of both substratum types where this could occur), and the results indicated that 

losses were more likely at bedrock than stony stations (LRT, χ2
1 = 5.73, P = 0.017) and that 

chance of loss was related to time period (LRT, χ2
2 = 9.83, P = 0.007). Losses were 

significantly more likely during 2011-2014 than during 2015-16 (pairwise comparison 

(Tukey), z = 2.36, P = 0.048), while comparison of 2011-2014 to 2014-2015 only showed a 

trend of fewer losses in the latter period (z = 2.19, P = 0.073) (Fig. 7).  

0 

 

Fig. 4 Mean monthly water temperatures in the study area from January 2010 – August 2016 at 

approximately 1 m depth. The means (±1 SD) are calculated from the monthly means of temperature 

at 4 stations: a continuous logger at Espegrend (Jan 2014 - Aug 2016), a CTD dataset from the 

University of Bergen, and two hydrographic stations run by the Institute of Marine Research (IMR 

2016) (see Fig. 1 for locations). Some of the data series had gaps present, see Electronic 

Supplementary Material 3. Horizontal dotted lines represent the 1980-2009 August and February 

means at the IMR hydrographic stations (IMR 2016)  
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◄ Fig. 5 Codium fragile subsp. fragile 

abundance at survey stations in southwestern 

Norway by substratum and year, with high 

abundance as dark grey, low abundance as 

medium grey, and absent as light grey (n = 25 

for stations with only rock substratum 

(‘bedrock’) and n = 21 for stations with stony 

substratum present (‘stony’)) 

 

 

 

 

◄ Fig. 6 Frequency of Codium fragile subsp. 

fragile abundance increase (dark grey), 

decrease (medium grey), and no change (light 

grey) at survey stations over time, shown as a 

percentage of the stations where the change 

could possibly occur. Results are split by 

substratum but no significant difference was 

found between substratum types (n = 25 for 

stations with only rock substratum (‘bedrock’) 

and n = 21 for stations with stony substratum 

present (‘stony’)) 

 

 

 

 

◄ Fig. 7 Frequency of Codium fragile subsp. 

fragile colonisation (dark grey) and loss (medium 

grey) at survey stations over time, shown as a 

percentage of the stations where these 

processes could possibly occur, split by 

substratum (n = 25 for stations with only rock 

substratum (‘bedrock’) and n = 21 for stations 

with stony substratum present (‘stony’)). 

“Colonisation” and “loss” were defined by 

categorising the C. fragile abundance changes 

which occurred between two surveys, with 

changes from absence to presence at a station 

as “colonisation”, and from presence to absence 

as “loss”. Many stony stations already had C. 

fragile present, leaving few where colonisation 

could occur. Therefore the proportion colonised 

in the lower plot actually represents only a few 

stations (2011-2014, 2 of 3 potential stations 

colonised; 2014-2015, 3 of 4; 2015-2016, 2 of 2) 
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The persistence of C. fragile (i.e. whether it was present at the station during every survey) 

was clearly related to substratum type, with stony stations significantly more likely than 

bedrock stations to have C. fragile consistently present (LRT, χ2
1 = 12.3, P < 0.001). The 

majority of bedrock stations were nonetheless inhabited by C. fragile at some point during 

the study. At the stony stations, 16 of 21 stations had C. fragile present in every survey (with 

the remaining 5 having it present in at least one of the surveys); for bedrock stations on the 

other hand, only 4 of 25 stations had C. fragile present in every survey, with another 4 never 

having C. fragile present, and the rest (17 stations) having it present in at least one survey. 

Stability of C. fragile abundance (i.e. whether a station fell into the same abundance category 

in every survey) was also more likely at stony stations (LRT, χ2
1 = 4.0, P = 0.045), but in 

general abundances fluctuated often, with only a 48 % predicted chance of C. fragile 

abundance remaining in the same abundance category for all years at stony stations (and 

just 20 % for bedrock stations).  

Some general observations were made when surveying the stations. On stony substratum C. 

fragile could grow in large patches, mostly within a vertical range from mean low spring water 

down to a few metres into the sublittoral. Fucus serratus, and Ascophyllum nodosum above 

that, were usually present in the littoral. Patches of C. fragile on stones could be dense or 

sparse, but normally had few other macroalgal species between (excepting Chorda filum in 

summer, and sometimes Saccharina latissima) (Fig. 8). At bedrock stations on the other 

hand, C. fragile mostly occurred around mean low water and only patchily or in a thin zone, 

vertically above kelp (Laminaria digitata or Saccharina latissima; Fig. 8). Here C. fragile was 

often growing on a “turf” formed of encrusting coralline algae colonised by various red 

filamentous algae (including, often, the non-native Bonnemaisonia hamifera; Fig. 8). Patches 

of this turf could be found in gaps between Fucus serratus, and at several sites a zone of 

open turf was present with absent or sparse fucoids (Fig. 8). These turf patches/zones were 

a common place for C. fragile to occupy on bedrock. At both types of sites it was relatively 

rare to see C. fragile in the littoral zone, exposed to the air at low tide. 
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Fig. 8 The growth habit of Codium fragile subsp. fragile at some monitoring stations in southwestern 

Norway. Photos (a), (b), and (c) show the habit of C. fragile on stony substratum, where it may form 

sparse or dense patches stretching into the sublittoral. The majority of thalli may be between stones 

(a), but there may also be recruitment onto the flat surface of stones (c). Photos (d), (e) and (f) show 

the habit of C. fragile on bedrock substratum, where it tends to grow close to mean low water above 

the kelp zone ((d), Laminaria spp. in a zone below C. fragile), alongside or instead of fucoids such as 

Fucus serratus ((e), F. serratus shown by white arrows). In cases where there is a turf zone around 

mean low water, C. fragile is often present either in patches or as scattered individuals (d, e). The non-

native seaweed Bonnemaisonia hamifera was often observed in these turf zones ((e), brown-orange 

tufts as indicated by black arrows). Photo (f) shows C. fragile (black arrows) on bedrock substratum, 

where it is occurring in the patches of coralline and turf algae 
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Discussion 

Growth rate 

Temperature affects the physiology and biochemistry of seaweeds (Eggert 2012), often 

setting the limits of their distribution range (van den Hoek 1982). Macroalgal species (and 

populations) genetically adapt to the temperature ranges they usually experience, but some 

also develop mechanisms which allow them to improve growth, photosynthesis or survival at 

non-optimal temperatures (acclimatisation). Ability to acclimatise is common in seaweeds, 

particularly among temperate species which tend to experience the largest environmental 

variations (Eggert 2012).  

This environmental variability certainly applies to southwest Norway, where macroalgae must 

grow under strong, asynchronous cycles of light, temperature and nutrients. The maximum 

and minimum temperatures (August and February) lag behind the maximum and minimum 

light levels (June and December), which change rapidly during March and September due to 

the high latitude. Meanwhile, nutrient levels are relatively high from September to the end of 

March but very low in summer when more light is available (Strömgren 1986, Pedersen and 

Borum 1996, Armitage et al. in press) (Fig. 9). Different factors may therefore limit C. fragile 

growth at different times of the year. In the laboratory experiment, where light and nutrient 

levels were relatively high, C. fragile thalli grew at all temperatures tested (5.1-18 °C) with a 

positive effect of temperature on growth. However, in the field, average length changes 

between late October and March were not positive, despite temperatures ranging from 5-11 

°C. This indicates that temperature is not the only constraint to C. fragile growth in nature.  

 

Fig. 9 Seasonal cycles of light, temperature and nutrients in southwest Norway. Temperature data 

from Indre Utsira hydrographic station (“Temp”, 1980-2016 monthly means; IMR 2016) and global 

daily irradiance at the surface data from Bergen (“Light” , 1963-2013 monthly means; GFI, University 

of Bergen). Relative nutrient levels are shown by grey shading, where the gradient of white to grey 

corresponds to low to high nutrient levels (Strömgren 1986, Pedersen and Borum 1996) 
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In spring, when irradiance is increasing and nutrient levels are relatively high, SST is low. At 

this time a small increase in SST could lead to an increase in growth rate of C. fragile, as 

indicated by increase in growth rate in the winter-temperatures laboratory experiment. 

Summer growth rates of C. fragile would also be expected to show an increase in response 

to higher temperatures based on existing temperature studies (Hanisak 1979a), but this is 

uncertain in the present study given the small and inconsistent differences between 15 and 

18 °C in the summer experiment, and the similar field growth rates in the summers of 2014 

and 2015 (despite SST being 2-3 °C higher in the former). It may be that low ambient 

nutrients in the summer prevent faster growth, or that local populations are acclimatised to 

the present local temperature regime.  

In autumn, length changes of C. fragile become more negative and growth slows 

substantially even though nutrient levels in the water are increasing and SST remains 

relatively high (Oct-Nov mean = 11.3 °C) (Fig. 9). At this time of year growth is probably 

limited by rapidly decreasing irradiance, as Strömgren (1986) has shown for several fucoids. 

Light saturation levels (the total daily irradiance above which there is no increase in growth 

with increasing light) for C. fragile occur at around 6 mol m-2 day-1 at 6 °C and 3 mol m-2 day-1 

at ≥12 °C (Hanisak 1979a). A conversion of our global daily irradiance values to PAR (Lüning 

1990) indicates values of 13.9 mol m-2 day-1 in October, 1.9-4.7 mol m-2 day-1 for November-

January, 11 mol m-2 day-1 in February, and 25 mol m-2 day-1 in March. This conversion is not 

exact and overestimates the PAR reaching C. fragile, because global daily irradiance 

includes infra-red wavelengths and because it was measured at the land surface. Taking this 

overestimation into account, the values suggest that growth is unlikely to be light-limited from 

late February onwards, but probably are light-limited in November-January. An increase in 

autumn temperatures is thus not expected to have a positive effect on C. fragile length 

increases.  

The growth rates observed at low temperatures in the present study differed somewhat from 

studies carried out in the NW Atlantic. Hanisak (1979a) found minimal growth after three 

weeks at 6 °C and no growth at <6 °C, compared to the present results of 8 mm growth at 5 

°C (under the same photoperiod and irradiance). While this may have been influenced by 

differences in the experimental conditions (artificial vs. real seawater; 2 cm branch tips vs. 

larger branches; salinity of 30 vs 35), the growth rates at 18 °C were reasonably similar when 

compared. In addition, the observation that SSTs of 10 - 13 °C are necessary for growth of 

C. fragile in the field (Malinowski and Ramus 1973; Hanisak 1979a) does not apply here, with 

growing tips observed in the present study in late March-early April (6.6 °C) and mean 

growth rates becoming clearly positive in April-May (8.6 °C). Experiments by Malinowski 

(1974) showed different temperature-growth relationships between populations of C. fragile 
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(Trowbridge 1998) and, although comparison between experiments is difficult due to 

differences in conditions, the results of present study and of Wilson et al. (2015) are 

consistent with this. As C. fragile in the NE and NW Atlantic reproduces asexually, and is 

thought to be from the same genetic lineage (Provan et al. 2005), these results support the 

theory that acclimatisation allows C. fragile to become more suited to local SST regimes. 

However, genetic adaptation in C. fragile cannot be ruled out. In the experiments by 

Malinowski (1974), one NW Atlantic population (Boothbay Harbour) and an English 

population grew more than the other NW Atlantic populations of C. fragile at low 

temperatures – these populations also showed some nuclear genetic variation compared to 

other NW Atlantic populations (Malinowski 1974, Kusakina et al. 2006; see Benton 2014 for a 

discussion). 

Despite a correlation between fragmentation (unravelling of the thallus, leading to length and 

weight reduction) and low temperatures in the field (present study, Fralick and Mathieson 

1972; Hanisak 1979a), the present results demonstrate that low water temperatures (5 °C) 

are not sufficient or necessary to cause fragmentation of C. fragile, although temperature 

may play a role. Lack of sufficiency is demonstrated by the lack of fragmentation in the low 

temperature treatment in the winter experiment, while lack of necessity is demonstrated by 

the fragmentation observed in the summer experiment and in the field in summer. There is 

also considerable variation in the seasonal timing of C. fragile fragmentation between regions 

(Trowbridge 1998 and references therein), which further suggests that there are multiple 

factors which can cause fragmentation. Low water motion and low light levels can prevent 

formation of upright branching thalli, and low water motion in particular promotes dissociation 

of C. fragile thalli into filaments under laboratory conditions (Ramus 1972; Nanba et al. 

2005). Light may be important in southwest Norway, as there was no negative length change 

in the field thalli in April-June when irradiance was high, but a high frequency of negative 

change in late October-November when irradiance was low (despite temperature being 

higher in the latter). Too much water motion could also play a role, as waves may cause 

fragmentation of C. fragile through breakage (Dromgoole 1975; Bégin and Scheibling 2003). 

Our results showed that fragmentation is not very extensive in sublittoral sheltered 

environments, with many of the thalli retaining much length, which was also observed by 

Jorde (1966) and Trowbridge and Todd (1999). If much of the thallus is maintained year-

round, this has implications for competition with winter-recruiting species. 

The low levels of nutrients in surface seawater in summer in southwestern Norway (< 0.6 

µmol l-1 nitrate, nitrite and phosphate; Armitage et al. in press) should theoretically be low 

enough to limit growth of C. fragile (Hanisak 1979b). The alga turns pale green and develops 

surface hairs when ambient nitrogen is low (Head and Carpenter 1975; Trowbridge 1998), 
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which matches our summer observations. However, the results of the present work do not 

support that strong limitation of growth occurs as a result. Growth rates in the summer 

experiment were similar to growth rates in the field, despite nutrient levels in the experiment 

being higher. An explanation for this which does not exclude nutrient limitation in the field is 

that growth in the experiment was also constrained, by epiphytic diatoms which grew in the 

absence of grazers. But this does not explain why the fastest field growth rates were 

observed in late June-August, after several months of very low ambient nutrients. How is this 

possible? There are indications that C. fragile can store some nitrogen in winter to use in 

spring, but this decreases rapidly, becoming relatively low in April (Hanisak 1977b). One 

possible explanation is that C. fragile has very efficient nitrogen uptake, allowing it to 

compete with phytoplankton for what little nitrogen is present (Hanisak and Harlin 1978). It 

may also acquire nitrogen through association with nitrogen-fixing bacteria (Head and 

Carpenter 1975). Our observations of fastest growth coinciding with low nutrient 

concentrations are not consistent with the experiments of Hanisak (1979a, 1979b) who found 

strong growth limitation of C. fragile at low ambient nitrogen. However, his experiments were 

carried out on branch tips where nitrogen-fixation rates are low (Head and Carpenter 1975) 

and under laboratory conditions where there is no competition for scant nitrogen.  

Colonisation 

Local colonisation, i.e. recruitment of C. fragile to stations where it was not present in the 

previous survey, happened relatively often, with nearly all stations colonised at least once 

during the 5 years. The alga has several types of propagule: vegetative large fragments, 

vegetative loose utricles, or swimming parthenogenetic gametes (Churchill and Moeller 1972; 

Scheibling and Melady 2008; Drouin et al. 2016), which may be produced at different times 

of year, and may be more or less effective on various substratum types. Vegetative 

fragments are produced whenever fragmentation takes place, but gametes are seasonal, 

with production and release restricted to late summer/autumn in the North Atlantic (Churchill 

and Moeller 1972; Hanisak 1979a). Theoretically, detached fragments of C. fragile could 

become trapped between stones, providing stability for attachment and regrowth (as may 

occur when fragments become trapped in littoral pools or between eelgrass rhizomes; 

Scheibling and Melady 2008; Gagnon et al. 2014). However, this would have little chance of 

occurring on sloping bedrock at tidal level with nothing to hold the fragment in place, thus 

smaller propagules such as gametes may be necessary for colonisation in these habitats.  

The unusually hot summer of 2014 (Fig. 4) was expected to be favourable for C. fragile as 

temperatures were closer to its optimal growth and germination temperatures (Hanisak 

1979a). However, there was no obvious effect on colonisation or abundance increases in the 
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present study. This may be because SST is already adequate for recruitment in an average 

year. Gamete production occurs at 12-15 °C  (Churchill and Moeller 1972), which occurs 

during an average summer in this region (Fig. 4). And although germlings and 

undifferentiated filaments (during the early vaucherioid growth stage) of C. fragile are more 

senstitive to temperature than the adult thallus, temperatures in the study area should remain 

suitable for growth through October (Hanisak 1979a). Settlement, growth and survival of 

small stages must be able to occur in average summer and winter temperatures because 

many recruits were observed on the baskets containing the field thalli in August 2016, which 

were likely recruited in summer 2015/2016 given their size range (Ramus 1972). This study 

therefore gives no indication that hot summers will have a direct positive effect on 

colonisation. However, a longer term study might detect any indirect positive effects of hot 

summers, for example due to a reduction in native competitor species (Levin et al. 2002). 

Observations of distribution patterns on bedrock substratum raised some questions for 

further study. Codium fragile was often growing where there were zones or patches of 

encrusting coralline and filamentous/turf algae. In the study area C. fragile can also be found 

growing on Corallina officinalis. Observations of C. fragile growing on Corallina officinalis and 

encrusting coralline algae have also been reported in SW Norway (Jorde 1966), S England 

(Chapman 1999), Nova Scotia (Chapman 1999, Schmidt and Scheibling 2005), and New 

Zealand (Trowbridge 1995). Scheibling and Melady (2008) also found that turfs of Corallina 

officinalis enhanced attachment of small lateral C. fragile branches in static water, although 

they did not see a difference in attachment strength. It is possible that the occurrence of C. 

fragile on bedrock may be related to where encrusting organisms have colonised the surface. 

The recruits on the plastic baskets containing the field thalli were consistent with this, as 

although mature gametes were observed on thalli at the site in August 2014, no recruits 

appeared on the baskets until August 2016, after the baskets were beginning to be covered 

in encrusting biota in summer 2015. The frequent occurrence of Bonnemaisonia hamifera 

with C. fragile in coralline patches on bedrock with sparse fucoid cover could also be 

interesting to investigate in the context of invader-synergy, given the allelopathic and anti-

grazing effects of B. hamifera (Enge et al. 2013; Svensson et al. 2013) and the fact that C. 

fragile tends to establish in spaces free of other canopy species (Levin et al. 2002; 

Scheibling and Gagnon 2006). 

Persistence 

Persistence of C. fragile was high at stony stations, while loss was more frequent at bedrock 

stations, particularly in the period with the cold winter when it was lost from around 50 % of 

rock stations. The periods with mild winters also had significantly fewer decreases in C. 
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fragile abundance than the period with a cold winter. The low temperatures during that period  

(2.7 °C) are not low enough to cause mortality of C. fragile according to experiments (Lüning 

1984) and a direct effect of temperature on survival would not explain the influence of 

substratum, since losses were more common on bedrock even in mild years. Instead, the 

results suggest that C. fragile is more prone to death or detachment at bedrock stations, and 

that low temperatures exacerbate the effect.  

One potential explanation for this is physical water forces. Piles of stones provide micro-

habitats with low water motion, protecting C. fragile holdfasts which lie between them. These 

remains or trapped fragments can then regrow even if extensive fragmentation occurs. A 

positive effect of this kind occurs when mussels grow around the base of C. fragile, 

improving its survival by protecting the holdfast from waves (Bulleri and Airoldi 2005). In 

contrast, water motion may pull C. fragile free on bedrock substratum (D'Amours and 

Scheibling 2007). In addition, C. fragile usually grows near tidal level on bedrock, and 

therefore is more exposed to wave impact. Waves may lead to cumulative damage to the 

attachment of C. fragile through twisting and pulling (D'Amours and Scheibling 2007), 

potentially making loss more likely in the event of strong waves. A cold winter could enhance 

this effect if it reduced attachment strength further.  

Other possible explanations include competition and grazing. Competitive interactions with 

kelp can reduce C. fragile growth (Scheibling and Gagnon 2007) and intact kelp canopies are 

thought to inhibit C. fragile recruitment (Levin et al. 2002). However, these effects could vary 

by substratum, as the lower stability of stony substratum compared to bedrock may influence 

the distribution of large canopy algae. Larger thalli are expected to experience higher drag 

forces, which may increase dislodgement chances of a stone they are attached to if it is 

loose (Sousa 1985). The effect of grazing may also vary by substratum, as gaps between 

stones can provide refuge from larger grazers (Lubchenco 1980; Scheibling et al. 2008), 

allowing fragments of the thallus to remain. Field experiments have suggested that littoral 

grazers such as Patella vulgata do not exert much control on C. fragile (Trowbridge 1995; 

Trowbridge et al. 2016), but grazing by Littorina littorea can reduce survival of small or 

damaged individuals (Scheibling et al. 2008). These would be the grazers closest to C. 

fragile on bedrock where it grew around mean low water, while in the sublittoral, where C. 

fragile often occurs on stony substratum, urchins may be present (Echinus esculentus and E. 

acutus). While the grazing habits of Echinus spp. on C. fragile are unknown, the urchin 

Strongylocentrotus droebachiensis prefers kelp (although also eats C. fragile), and at low 

densities will bypass C. fragile to graze on kelps nearby (Scheibling and Anthony 2001; 

Lyons and Scheibling 2008). Codium fragile produces dimethylsulfoniopropionate (DMSP) 

which can make it unpalatable to some grazers (Lyons et al. 2007). However, some 
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sacoglossan sea slugs prefer and actively feed on C. fragile (Trowbridge 2004). Establishing 

how grazers affect C. fragile distribution, and how this might interact with substratum and 

temperature, is therefore complex, with grazing effects varying by grazer species, by status 

of the C. fragile thalli, and by which other native seaweeds are available. 

 

Local and vertical distribution 

Different types of hard substratum are not often discussed in studies of C. fragile, but should 

be considered in future work. The present distribution of C. fragile in this area is strongly 

associated to this factor, with persistent, sometimes large and dominant, infralittoral and 

sublittoral populations on stones, and intermittent and fluctuating infralittoral populations on 

bedrock. The results suggest that these patterns occur because C. fragile populations on 

bedrock are vulnerable to loss, rather than due to a lack of colonisation, but it requires further 

experiments to establish whether this is the case. If so, it resembles a source-sink dynamic 

(Pulliam 1988), in which populations persist on stones and provide propagules to colonise 

rocky substratum, where populations may expand but are likely to be lost. Although some of 

the relationships presented in the present study are correlative, they suggest that minimum 

SST plays a role in this, and that higher SST during winter and spring would increase growth, 

abundances and occupancy of C. fragile. These future effects could apply to a large habitat 

area on this coastline – the outer fjords and islands provide huge areas of hard substratum 

protected from the open sea, with salinity values well within the tolerances of C. fragile 

(Hanisak 1977a).  

Although the focus of the distribution survey was on C. fragile abundances, it is possible that 

higher temperatures could also influence its vertical range. In the British Isles, C. fragile may 

be found on emergent substrata in the littoral zone (Burrows 1991; Chapman 1999; 

Trowbridge and Todd 1999), but this is not very common in southwestern Norway, even 

though C. fragile may grow in rock pools. Current air temperatures reach minus degrees 

Celsius in January and February nearly every year (Meteorologisk Institutt 2015), which may 

limit survival in the littoral (Trowbridge 1998), particularly if combined with low salinity from 

the high rainfall along this coast. Milder winters might therefore improve conditions for C. 

fragile in the littoral in northern areas of the Atlantic.  

While kelps and other large canopy species can negatively affect C. fragile by overgrowth or 

shading, C. fragile can inhibit their recruitment once it is established (Levin et al. 2002, 

Scheibling and Gagnon 2006). Competitive interactions may also occur between C. fragile 

and the low littoral canopy-alga Fucus serratus (Armitage et al. 2014). Temperature changes 

can alter competitive relationships between canopy-forming macroalgae (Armitage et al. in 
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press), and may affect species which grow in the same zones as C. fragile, potentially 

influencing these interactions. Fucus serratus is fairly resistant to hot summers in 

southwestern Norway (Armitage et al. in press), but they may cause increased blade erosion 

and reduced abundance of the kelp Saccharina latissima (Moy and Christie 2012; Armitage 

et al. in press) and maintain temperatures which damage and weaken Laminaria digitata 

blades (Simonson et al. 2015). Negative effects of temperature on these kelps will probably 

be strongest where water warms rapidly: in shallow water at non-exposed sites, places which 

are already favoured by C. fragile. It is therefore possible that the positive effects of a 

temperature increase on C. fragile may be enhanced by a negative effect on native canopy 

seaweeds which inhibit its establishment (Levin et al. 2002).  

Positive effects of temperature on C. fragile may also result in additional negative effects on 

native algae. Currently, the abundance of C. fragile within a site often fluctuates and can do 

so greatly (Jorde 1966, present study), therefore it may not be very effective in competitively 

excluding native species over long time scales (Watanabe et al. 2010). Maintenance of thalli 

throughout winter suggests that C. fragile can already occupy some space year-round at 

sheltered sites, but if higher temperatures allow populations to become more persistent then 

C. fragile may occupy space for longer, even on bedrock substratum. This could enhance 

inhibition of the reestablishment of native species by C. fragile (Levin et al. 2002; Scheibling 

and Gagnon 2006).  
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