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Abstract
In this thesis we develop a mathematical model for describing three-dimensional
natural convection in porous media filling a vertical annular cylinder. We
apply a linear stability analysis to determine the onset of convection and
the preferred convective mode when the annular cylinder is subject to two
different types of boundary conditions: heat insulated sidewalls and heat
conducting sidewalls. The case of an annular cylinder with insulated side-
walls has been investigated earlier, but our results reveal more details than
previously found. We also investigate the case of the radius of the inner
cylinder approaching zero and the results are compared with previous work
for non-annular cylinders.

Using pseudospectral methods we have built a high-order numerical simula-
tor to uncover the nonlinear regime of the convection cells. We study onset
and geometry of convection modes, and look at the stability of the modes
with respect to different types of perturbations. Also, we examine how varia-
tions in the Rayleigh number affects the convection modes and their stability
regimes. We uncover an increased complexity regarding which modes that
are obtained and we are able to identify stable secondary and mixed modes.
We find the different convective modes to have overlapping stability regions
depending on the Rayleigh number.

The motivation for studying natural convection in porous media is related
to geothermal energy extraction and we attempt to determine the effect of
convection cells in a geothermal heat reservoir. However, limitations in the
simulator do not allow us to make any conclusions on this matter.
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Outline and Motivation

A growing world population and an overall increase of wealth and welfare
demands a large increase in the energy supply. Stable, long term solutions
are needed in order to ensure the world’s needs, and increased extraction
of geothermal energy is a natural alternative. Geothermal energy is consid-
ered as a renewable energy resource, and is stable as it does not depend on
weather conditions and is capable of producing energy with same effect all
year long [28].

Several approaches for extracting geothermal energy exist, but the general
idea is to pump cold water down a vertical well and receive hot water back.
The obtained temperature difference generates an energy profit used for heat-
ing applications or to create electricity through a turbine. Understanding the
heat transfer mechanisms in a geothermal system is essential in order to op-
timize the heat extraction and produce commercialy competitive electricity.

Natural convection represents an important process in geothermal systems.
This thesis will present new insights in this phenomenon based on analytical
and numerical studies of an idealized physical setting.

In Chapter 1 we present the concept of geothermal energy and further mo-
tivate why geothermal energy extraction should be a part of satisfying the
world’s energy demands. We explain the different processes of heat transfer
in porous media, with special focus on natural convection and the occurence
of convection cells. In the end we explain why convection cells are of impor-
tance in geothermal energy extraction.

In Chapter 2 we introduce basic definitions and concepts from reservoir en-
gineering and fluid mechanics that are needed to develop a model for natural
convection. Based on the governing physical laws concerning flow in porous
media, we present the equations necessary in building a mathematical frame-
work for describing the convection cells.
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Flow and heat transfer in porous media is affected by various physical pro-
cesses. Describing these processes to full detail for a real-world application,
would be a task too comprehensive for the scope of this thesis. In order to
obtain an increased understanding of the processes of natural convection, we
consider a particular idealized, but relevant physical setting.

In Chapter 3 we nondimensionalize the governing equations and also in-
troduce suitable (nondimensional) boundary conditions. The dimensionless
equations together with the boundary conditions constitute the mathemati-
cal model concerning the rest of the thesis.

In Chapter 4 we apply a linear stability analysis to the mathematical model
and obtain an analytical solution of the linearized equations through separa-
tion of variables. The analytical solution enables us to find critical Rayleigh
numbers, which act like criterions for onset of natural convection. We also in-
troduce the concept of convection modes, explain their geometrical structure
and present a strategy of how to determine the preferred convective modes
using the analytical solution.

In Chapter 5 the results from the linear stability analysis are presented.
Using the analytic framework developed in Chapter 4, we provide contour
plots of the critical Rayleigh number and mode maps giving the convective
mode as a function of the horizontal extent of the annular cylinder. We dis-
cuss the results and compare with previous papers on the subject.

In Chapter 6 we introduce spectral methods, which are used to solve the
governing nonlinear equations. Spectral methods are divided into Galerkin
spectral methods and pseudospectral methods, and we present both classes
of methods before we argue for the choice of pseudospectral methods. We ex-
plain how the choice of collocation points affects the pseudospectral methods
and describe the structure of a pseudospectral discretization for our choices of
collocations points. We also give a short presentation of the time discretiza-
tion and sketch the convergence properties of the pseudospectral methods.

In Chapter 7 we present the results from the nonlinear regime obtained
using the pseudospectral code designed in Chapter 6. We compare simulated
results with results from the linear regime with respect to critical Rayleigh
number and preferred convective mode. The stability of the convection cells
when subject to different types of perturbations is also presented. At last
we present some preliminary experiments concerning the effect of convection

2



cells on a geothermal reservoir with respect to heat extraction.

In Chapter 8 a summary is given together with conclusions and remarks
on further work.

The analysis made in Chapter 4 and the results presented in Chapter 5 and
Sections 7.1 and 7.2 are based on a co-authored unpublished paper:
C. Bringedal, I. Berre, J. M. Nordbotten and D. A. S. Rees. Linear and
nonlinear convection in porous media between coaxial cylinders. Submitted
to Physics of Fluids, 2011.

My contribution to this paper was performing the linear analysis, developing
and implementing the code for the nonlinear regime and carry out all simula-
tions, as well as being the main contributor in the writing of the manuscript.
Berre, Nordbotten and Rees provided ideas, suggestions and guidance along
the way and helped me interpret the results.
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Chapter 1

Geothermal Energy

Geothermal energy is the thermal energy stored in the Earth’s crust. In this
chapter we give a short introduction to geothermal energy extraction, explain
what convection cells are, and why they can be important for extraction of
geothermal energy.

1.1 Geothermal Energy Extraction

The following presentation is mainly based upon the 2006 MIT report about
the future of geothermal energy [28] and the book about geothermal energy
and the environment [16].

The temperature of the Earth’s crust increases with depth, with a maxi-
mum at the Earth’s centre. This heat is partly excess temperature after the
creation of the Earth, and partly due to heat created through the decay of
radioactive particles. Using the heat for either direct heating purposes or for
electricity generation is today exploited to some extent, but the potential is
far from reached.

There is a large variety in anthropogenic systems for extracting geothermal
energy; including several injecting and producing wells, open or closed sys-
tems and fracturing of the ground. The obtainable effect from extracting
geothermal energy at a specific location depends on several factors as the
ground’s permeability, porosity, heat conductivity, availability of ground wa-
ter and local heat production, to mention some. But one of the most impor-
tant factors is the vertical temperature gradient, also called the geothermal
gradient. A large geothermal gradient means that the ground reaches higher
temperatures at lower depths, which is an obvious advantage for the extrac-

5



6 Geothermal Energy

tion of geothermal energy.

Today, most of the geothermal energy extraction takes place near edges of
tectonic plates. At these locations, the geothermal gradient is significantly
larger. Nevertheless, since the areas with large geothermal gradients are very
limited, the main potential for geothermal energy extraction lies in the sum
of all land area having significantly lower geothermal gradients. Being able
to extract geothermal energy at economically feasible rates at these locations
is therefore essential for the future of geothermal energy extraction.

The main advantage of geothermal energy extraction compared to other re-
newable energy resources, is the energy security: Geothermal energy can be
produced continuously. Geothermal energy also has several environmental
advantages, making it preferable over fossil energy resources.

Running a geothermal power plant will include some environmental impact
mainly in terms of emission of greenhouse gases, use of fresh water and influ-
ence on the nearby land. The most common emissions of greenhouse gases
from a geothermal installations are carbon dioxide (CO2) and hydrogen sul-
fide (H2S). The emissions are due to the gases being naturally present in
the ground and hence released during drilling, and also during production
in open systems. However, the geothermal plants emit much less greenhouse
gases per produced megawatt-hour than fossil-fueled power plants. See the
MIT-report [28], Chapter 8.1, for details.

Geothermal projects need fresh water in both the drilling and the production
process. However, water is always recirculated after cooling, hence the need
of supplying more fresh water is normally small. Closed systems will in prac-
tice have no water loss during production. For comparison, a geothermal
plant uses on average 19 liters per megawatt hour of produced electricity,
while a natural gas plants needs approximately 1 350 liters per megawatt
hour.

A geothermal power plant needs far less land area for producing electricity
compared to other energy resources. However, drilling geothermal wells may
induce seismicity. During drilling in Basel, Switzerland, between Desember
2006 and March 2007, 10 500 seismic events, the largest up to 3.4 at the
Richter Magnitude scale, were measured and linked to the geothermal project
[10].
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1.2 Heat Transfer in Porous Media
Heat transfer is the transition of thermal energy from warmer regions to
cooler regions and occurs via conduction, convection, phase change and radi-
ation [5]. In porous media heat transfer is primarily in the form of conduction
and convection.

Conduction is the transfer of thermal energy between neighbouring molecules
in a substance due to molecular vibrations and collisions. The energy is al-
ways transferred from regions with higher temperature towards regions with
lower temperature at a rate proportional to the temperature gradient. Con-
sequently heat conduction has a smoothening effect on the temperature field.

When the motion of the fluid assists heat transfer from a surface, the situ-
ation is called convection. The motion of molecules in fluids can be in the
form of random diffusion or advection. Both diffusion and advection lead to
mass transfer and heat transfer, but the term "convection" in the context of
mass or heat transfer, refers to the sum of diffusive and advective transfer.
Convective heat transfer is divided into forced and natural convection.
• Forced convection is a type of heat transfer in which external sources,

such as a pump or a fan, generate fluid motion.

• Natural convection is a type of heat transfer in which expansion and
buoyancy forces generate fluid motion. Density differences in the fluid,
which are due to temperature gradients, causes these forces. Fluids
that receive heat become less dense and rise. Cooler fluids that move
to replace the heated fluids are then heated themselves and the process
continues. The heat is transferred from bottom to top because of this
motion in the fluid.

Mixed convection is when both forced and natural convection is present. Nor-
mally both conductive and convective heat transfer will occur in a medium,
but often one will dominate the other. The relative size of conductive and
convective heat transfer is important for characterizing the medium.

1.3 Convection Cells in Geothermal Energy Ex-
traction

Convection cells is a phenomenom in fluid dynamics that occurs in situations
where there are density differences in the fluid. If we initially have a station-
ary fluid where the density in some layer is greater than in an underlying one,
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a small disturbance may cause the fluid to start flowing. This fluid flow is
called convection currents, and the convection currents may form convection
cells [3]. The process is similar to the one described for natural convection;
the light, warmer fluids rise, while the heavy, cooler fluids sink. However,
when talking about convection cells it is implied that the streamlines are
closed, hence the fluid particles are following closed trajectories circulating
in the (porous) medium. Natural convection can cause convection cells to
occur, but convection cells may also be caused by forced and mixed convec-
tion.

The process in a convection cell is as following: we assume an initial state
of a stationary fluid where the lower fluid is lighter than the above fluid,
normally due to the density being dependent on temperature. Many fluids,
such as water, are denser when cold. A porous medium with heating from
below and cooling from above, will therefore posess this initial state. Then,
due to a perturbation or disturbance, some of the warm, lighter fluid starts
to rise. Under the right circumstances, the fluid will continue to rise and the
rising fluid particles will be cooled by the colder surroundings and become
denser. At some point the fluid becomes denser than the fluid underneath it,
which is also rising, and moves to the side instead. After some time, the fluid
particle’s downward force overcomes the rising force beneath, and the fluid
descends. As it descends, the fluid receives heat from the warmer surround-
ings, becoming lighter again. Once down where the fluid started out before
the perturbation, the cycle repeats itself. Schematically, the convection cells
may behave as sketched in Figure 1.1.

As mentioned earlier, when determining the location of a new geothermal
plant, subsurface heat properties are highly important. A large geothermal
gradient and large vertical heat flow are desirable. Convection cells initially
present in the subsurface will locally increase (or decrease) the geothermal
gradient: In the upflow part of a convection cell, hot fluid is brought closer
to the surface, hence the geothermal gradient will be larger for the upper
part of the cell. Similarly convection cells locally increase (or decrease) the
vertical heat flow. Knowing the location of the initial convection cells is es-
sential for the geothermal industry, and several surveys regarding mapping
the geothermal gradients and vertical heat flow have been made: For exam-
ple, Chapman and Rybach [8] points out that the high temperature gradients
in Roosevelt Hot Springs and in Monroe are caused by natural convection,
while several papers concerning the Rhine-Graben reveals convection cells
affecting the geothermal gradients and the vertical heat flow [1, 9, 17].
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Figure 1.1: Convection currents in a porous medium which is heated from
below and cooled from above.

Another possible advantage of convection cells in the context of geothermal
energy extraction, is the cells’ ability to retrieve heat far away from the
geothermal well. If no convection is present in the system, all heat transfer
occurs owing to conduction. In a convection dominated system, conduction
will still contribute to the heat flow, but in addition the convective flow is able
to retrieve heat far away from the well. The importance of this extra heat
transfer depends on the horizontal extent and the velocity of the convection
cells.





Chapter 2

Theory from Reservoir and Fluid
Mechanics

We introduce basic definitions and concepts concerning flow in a porous
medium in order to understand and describe the physics governing convec-
tion in porous media. Important definitions are given and basic equations
used in reservoir engineering and fluid mechanics are presented. This will
result in a framework making it possible to create a complete model of the
convection cells in the next chapter. The following presentation is mainly
based upon the books of Bear [3] and Nield and Bejan [21].

2.1 Porous Media

There are numerous examples of porous media: soil, porous rock, ceramics
and bread are just a few. They all have in common that they may be de-
scribed as “solids with holes”. However, defining a porous medium as a solid
with holes would not be a good definition since this would include a solid
containing an isolated hole, which is normally not considered as a porous
medium. We therefore demand the holes to be interconnected, allowing fluid
transport through continuous paths from one side of the medium to another.

The pores form a complex structure within the medium, and in order to
describe the pores mathematically, we consider the pore network as ran-
dom variations having a well defined average. Therefore, quantities within a
porous medium are considered as averages over a representative elementary
volume (REV) [3]. An REV consists of the solid, which is normally a form of
rock, and the void space in between the solid. This void space is randomly
distributed, but is assumed to form an interconnected pore network allowing
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← Isolated pore

← Dead-end

← Connected pore-network

Solid

Figure 2.1: A porous medium with connected pores, isolated pores and dead-
ends.

fluid flow as well as dead-ends and isolated pores, see Figure 2.1. We define
the porosity φ of an REV as the ratio between the pore volume VP and the
total volume VT within the REV, that is

φ =
VP
VT
.

Since the dead-ends and isolated pores do not contribute to the fluid flow,
only interconnected pores are of interest from the standpoint of flow through
the porous medium. Hence we introduce the concept of effetive porosity φE,
defined as the ratio of the interconnected (or effective) pore volume VEP to
the total volume of the REV;

φE =
VEP
VT

.

As only the effetive porosity is used, we drop the word “effective” and the
subscript E when referring to effective porosity.

The porosity is a scalar quantity that may vary with position in the porous
medium. A varying porosity will affect the flow in a porous medium, see for
instance the paper of Vafai [30] which consideres the effect of varying porosity
for convective flow and heat transfer. In this thesis only homogeneous porous
media will be considered; we are not interested in the effect of a varying
porosity, only in the convection cells themselves. Hence, the porosity will be
assumed to be constant throughout the medium.
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2.2 Fluid Properties

2.2.1 Density

Fluid density ρ is defined as the mass of the fluid per unit volume and has
SI-unit kg/m3. In general density can vary with both pressure P and the
temperature T , and the relation between these three quantities is called an
equation of state:

ρ = ρ(P, T ).

We will assume the density to not depend on pressure, and vary linearly with
temperature, that is

ρ = ρ0[1− β(T − T0)], (2.1)

where ρ = ρ0 at some reference temperature T0. The constant β is called the
thermal expansion coefficient. Since we will consider water, which becomes
less dense for increasing temperatures, β is a positive number.

We also apply the Boussinesq approximation, which states that small density
differences can be neglected, except when they appear in terms multiplied
by the gravity acceleration g. Together with the equation of state (2.1) this
means that β is a small number which is set to zero unless multiplied with
g.

2.2.2 Viscosity

Fluids, unlike solids, will deform continuously when shear stress is applied.
We refer to this continuous deformation as the fluid flow. Viscosity µ is a
measure of the fluid’s ability to resist deformation when in motion and has
SI-unit kg/ms. A fluid with high viscosity may be thought of as being “thick”,
for example honey or heavy oil, while a fluid having low viscosity, such as
water, is a “thin” fluid. Normally the viscosity of a fluid will depend on both
temperature and pressure.

Both viscosity and the termal expansion coefficient may vary with tempera-
ture and pressure, but for simplicity we assume both to be constant. For an
analysis of the effects when considering temperature dependent viscosity and
thermal expansion coefficient, see the paper of Horne and O’Sullivan [14].
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2.3 Permeability and Darcy’s Law
For fluid flowing through a porous medium, Darcy’s law is a phenomeno-
logical equation describing the flow. Henry Darcy experimented with water
streaming through a horizontal layer of sand having length L, and by using
different types of sand he discovered the relation

Q = K̂A
∆P

L
,

where Q is the volume of flow per unit time, K̂ is a proportionality constant,
A is the cross-sectional area of the layer and ∆P is the pressure drop over
the sand sample.

The constant of proportionality, K̂, is called the hydraulic conductivity and
may be expressed as

K̂ = K
γ

µ

[3], where K is the permeability of the porous matrix, and γ/µ represents the
influence of the fluid’s properties where γ = ρg is the specific weight of the
fluid and µ is the viscosity of the fluid. The permeability of a porous medium
is a measure of the medium’s ability to transmit fluid, and a high permeability
means that fluid easily can flow through the medium. The unit of perme-
ability is Darcy, which converted to SI-units yields 1 Darcy ≈ 0.987·10−12 m2.

In general, the permeability can depend on both spatial location and the
direction of flow. When the permeability depends on location, we write
K = K(x, y, z) and the medium is heterogeneous. If the permeability de-
pends on the direction of flow, K can be expressed as a tensor K, and we call
the medium anisotropic. A lot of work has been done related to heat transfer
in heterogeneous and anisotropic porous medium, see for instance Chapter
6.12 and 6.13 in [21] for an overall discussion around this matter. However,
these concerns will not be a subject in this thesis. We will only consider a
porous medium that is homogeneous and isotropic, hence the permeability
is a constant scalar.

Allowing the fluid to flow in all directions, and writing the equation in dif-
ferential form, yields the modern version of Darcy’s law:

v = −K
µ

(∇P + ρgk). (2.2)

Gravity acceleration is denoted by g, and k is a vertical unit vector, point-
ing upwards. Furthermore, ρ is the density of the fluid and v is the Darcy
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velocity. Note that the Darcy velocity is not the actual velocity of the fluid
particles inside the pores. If we average the fluid velocity over an REV, we
get the intrinsic average velocity V, which is related to the Darcy velocity
through the Dupuit-Forchheimer relationship v = φV [21].

Darcy’s law is only valid for describing the fluid flow in a porous medium
when the Darcy velocity is so small that friction between the flowing fluid
and the pore walls are dominating the system. If the velocity is too large or
the fluid too thin (that is, low viscosity) such that friction is no longer dom-
inating, turbulence will arise causing Darcy’s law to fail. Typical velocities
for most cases concerning flow in porous medium is in the order of cm/hour
or lower [22], which is in the scope of Darcy’s law. Bächler, Kohl and Rybach
[1] reported that the flow velocity for natural convection in Rhine-Graben is
approximately 10−9 m/s ≈ 0.1 mm/day, hence it is reasonable to assume
that our velocities will be in the same order of magnitude and Darcy’s law
is applicable. Darcy’s law also requires only one fluid phase present in the
porous medium: In this thesis we assume only water is saturating the porous
medium1. The last requirements of Darcy’s law are that the saturating fluid
should not react physically or chemically with the medium, and are satisfied
by assumption.

2.4 Mass Conservation

Conservation laws describes how an extensive property is conserved within
a closed system. An extensive quantity depends on the size of the system or
the amount of material in the closed system. For example is mass and energy
extensive variables, while pressure and temperature are intensive variables.
Both mass and energy are conserved within a closed system and we express
this through conservation laws. To derive the mass conservation equation,
we must account for the processes that influence mass.

We encounter a fixed geometric volume Ω having boundary ∂Ω and outward
unit normal n, see Figure 2.2. The volume consists of a solid with pores in
which fluid may flow in, and we conserve the mass of the fluid. Fluid may
leave or enter the volume Ω through the boundary, or it may be produced or

1Using supercritical CO2 in stead of water as working fluid in geothermal energy extrac-
tion was suggested by Brown [7]. His conclusion is that supercritical CO2 has favourable
properties compared to water when used in a Hot Dry Rock (HDR) system. This has later
been confirmed by theoretical and numerical studies [23, 24], but field experiments are not
yet performed.
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n

Ω

∂Ω

Figure 2.2: Fixed geometric volume Ω with boundary ∂Ω and outward normal
unit n.

annihilated in a source or sink. The accumulation of mass inside the volume
has to equal the produced mass through sources minus the mass lost through
sinks and minus the net rate of mass flowing out of the volume. This can be
written

{Accumulation}+ {Net Rate Flowing Out} = {Sources} − {Sinks}. (2.3)

We assume there are no sources or sinks inside the volume. The accumulation
of mass is given as the time derivative of the total mass, that is

d

dt

∫
Ω

φρdV,

where φ is the porosity of the porous medium filling the volume and ρ is the
density of the saturating fluid. The integral expresses the total mass of fluid
inside the pores of the volume. The net volume of fluid flowing out through
the boundary of the volume is given as∫

∂Ω

ρv · ndS,

where v is the Darcy velocity and n is the outward unit normal as observed
in Figure 2.2. We insert these expressions into the conservation law (2.3) and
obtain

d

dt

∫
Ω

φρdV +

∫
∂Ω

ρv · ndS = 0.
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We apply Leibniz integral rule,

d

dt

∫
Ω

f(x, t)dV =

∫
Ω

∂f

∂t
dV,

to the first term, and Gauss theorem,∫
∂Ω

F · ndS =

∫
Ω

∇ · FdV,

to the second term. Since our volume Ω is arbitrarily chosen and the inte-
grand continuous, we obtain the pointwise mass conservation equation for
flow in a porous medium,

φ
∂ρ

∂t
+∇ · (ρv) = 0.

Recall that the Boussinesq approximation introduced earlier allows us to
neglect all density differences unless they appear in terms multiplied with
the gravity acceleration. Owing to this approximation we can remove the
time derivative of the density, and the mass conservation equation becomes

∇ · v = 0. (2.4)

2.5 Energy Conservation
The first law of thermodynamics states that energy can be transformed, but
cannot be created or destroyed. Therefore, the energy in the system must
be conserved and the rate of energy accumulation must equal the sum of
net rate of energy transfer and the rate of internal heat generation inside
a unit volume of the medium. This principle applies to both the fluid and
the solid, thus energy will be conserved for both the fluid and the solid phase.

Energy transfer in a porous medium is mainly due to conduction and con-
vection. Phase change do not occur in our system, and radiation effects are
neglected. Heat conduction is caused by a temperature gradient, hence the
conductive heat flux through a medium is −κ∇T and the net rate of conduc-
tion into a unit volume of the medium is ∇ · (κ∇T ). Here, κ is the thermal
conductivity and T is the temperature of either the fluid or the solid. Con-
vection occured when heat transfer was assisted by the motion of the fluid,
so the rate of energy transfer due to convection is (ρcp)fv · ∇Tf , where cp is
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the specific heat at constant pressure of the fluid. The subscript f refers to
the fluid phase. Adding these terms, we obtain the following equations for
the conservation of energy in the fluid and the solid phase:

φ(ρcp)f
∂Tf
∂t

+ (ρcp)fv · ∇Tf = φ∇ · (κf∇Tf ) + φq
′′′

f , (2.5)

(1− φ)(ρc)s
∂Ts
∂t

= (1− φ)∇ · (κs∇Ts) + (1− φ)q
′′′

s , (2.6)

[21]. The subscripts s refers to the solid phase, c is the specific heat of the
solid and q′′′ is heat production per unit volume of the medium.

We now assume local thermal equilibrium; that is, Ts = Tf = T , and set
the production terms to zero. Setting the production terms to zero is not
necessarily the same as assuming no heat production in the system, since heat
production may be invoked in the boundary conditions. Adding Equations
(2.5) and (2.6) yields

(ρc)m
∂T

∂t
+ (ρc)fv · ∇T = ∇ · (κm∇T ), (2.7)

where
(ρc)m = (1− φ)(ρc)s + φ(ρcp)f

κm = (1− φ)κs + φκf .

These are, respectively, the overall heat capacity per unit volume and overall
thermal conductivity of the fluid and the solid.



Chapter 3

Model for Convection Cells

In the former chapter we ended up with three model equations: Darcy’s law,

v = −K
µ

(∇P + ρgk), (3.1)

the mass conservation equation,

∇ · v = 0, (3.2)

and the energy conservation equation

(ρc)m
∂T

∂t
+ (ρc)fv · ∇T = ∇ · (κm∇T ). (3.3)

These three, along with the equation of state for the fluid density, forms a
closed system of equations. Our domain is the porous medium between two
vertical, coaxial cylinders with height h; the inner cylinder having radius Rw

and the outer has radius R, see Figure 3.1.

We are using cylindrical coordinates, hence the velocity vector v is on the
form

v = vrer + vθeθ + vzk

where er and eθ are unit vectors in the radial and azimuthal direction, re-
spectively. The gradient operator is defined by

∇T =
∂T

∂r
er +

1

r

∂T

∂θ
eθ +

∂T

∂z
k,

and the divergence operator is given by

∇ · v =
1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

+
∂vz
∂z

.
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Rw R

r

θ

Figure 3.1: Sketch of annular cylinder.

3.1 Coordinate Transform
When we solve the system of equations, we are interested in how the solution
changes when the parameters are perturbed. Often a perturbation of one pa-
rameter affects the system in the same way as another parameter, hence no
new information is obtained by changing both parameters. To avoid situa-
tions such as this, we nondimensionalize our equations. Making the equations
nondimensional helps us note how ratios of parameters affect the solution.
In stead of having a large set of parameters, we get a few nondimensional
ratios of parameters to vary.

To nondimensionalize the equations, we use a coordinate transform based on
the coordinate transform by Lewis and Seetharamau in [19]:

r∗ =
r

h
; z∗ =

z

h
; v∗r =

vrh

αf
; v∗θ =

vθh

αf
; v∗z =

vzh

αf
;

t∗ =
tαf
σh2

; T ∗ =
T − Tc
Tw − Tc

; P ∗ =
PK

µαf
;

Here, h is the height of the cylinder, αf = κm/(ρcp)f is thermal diffusivity,
and σ = (ρc)m/(ρcp)f is the ratio of the volumetric heat capacities of medium
and fluid. The two temperatures Tw and Tc are reference temperatures and
represent a typical temperature difference in the system. Since we are con-
sidering a cylinder that is heated from below and cooled from above, Tw and
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Tc will be the temperatures of the bottom and the top of the cylinder, re-
spectively. Using the star, ∗, as a superscript, means that the variable has
no dimension.

3.2 The Rayleigh Number
Substituting the above nondimensional variables into the equations, will in-
troduce the dimensionless Rayleigh number and Darcy number given by

Ra =
βgh3(Tw − Tc)

ναf
,

and
Da =

K

h2
,

where ν = µ/ρf is the kinematic viscosity of the fluid. The Rayleigh number
indicates whether conduction or natural convection is dominating the system,
while the Darcy number characterizes the flow properties of the medium.

The Rayleigh number and Darcy number will in our equations only appear
in product with each other, hence we introduce the Rayleigh-Darcy number

RaDa = Ra ∗Da =
βghK(Tw − Tc)

ναf
. (3.4)

For short, we will refer to the Rayleigh-Darcy number as the Rayleigh num-
ber and use the notation Ra. Since we never use the actual Rayleigh number,
this shouldn’t lead to any ambiguity.

We distinguish between the Rayleigh number Ra and the critical Rayleigh
number Rac. The Rayleigh number depends on flow related properties of
the fluid and the porous medium, while the critical Rayleigh number is a
constant determined only by the geometry of the domain and the boundary
conditions related to the system. When the Rayleigh number is below the
critical value, heat transfer is primarily in the form of conduction. When it
exceeds the critical value, heat transfer is primarily in the form of convection
and convection cells may form.

The critical Rayleigh number can be interpreted as a criterion for onset of
convection, and determining the value of the critical Rayleigh number for
different geometries and boundary conditions, is important when studying
the onset of convection cells.
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3.3 The Nondimensional Model Equations
Substituting the dimensionsless variables into our model equations yields a
new system of equations. Darcy’s law (3.1) is transformed into

v∗ = −∇P ∗ + RaT ∗k, (3.5)

the mass conservation equation (3.2) becomes

∇ · v∗ = 0, (3.6)

and the energy conservation equation (3.3) becomes

∂T ∗

∂t∗
+ v∗ · ∇T ∗ = ∇2T ∗. (3.7)

We have inserted the equation of state for the density into the equations
when necessery, so we only have five (scalar) equations, and only the five
unknowns v∗, P ∗ and T ∗. Using nondimensional length scales, the cylinder
has height 1, inner radius R∗w = Rw/h and outer radius R∗ = R/h.

In the following chapters, only nondimensional variables will be used, so we
drop the superscript ∗ to ease the notation. If dimensional quantities are
used, this will be specified in the text.

If we wish to solve the above system of equations, boundary conditions are
required. We need boundary conditions on the top and bottom and on both
the vertical sidewalls of the cylinder. It is not necessary to use explicit bound-
ary conditions in θ-direction since 2π-periodicity is implicitly assumed for all
variables.

We assume the top and bottom of the cylinder to be impermeable and per-
fectly heat conducting. Impermeable means that no fluid can flow through,
or, written mathematically,

vz = 0 at z ∈ {0, 1}. (3.8)

Perfectly heat conducting means that the top and bottom are held at constant
temperatures the whole time. As already mentioned, we assume heating from
below and cooling from above, hence,

T = 1 at z = 0 (3.9)

and
T = 0 at z = 1. (3.10)
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We further assume the sidewalls of the cylinder to be impermeable:

vr = 0 at r ∈ {Rw, R}. (3.11)

For the temperature on the sidewalls, we will in the following chapter con-
sider two cases: we either let the sidewalls be perfectly heat conducting, or
we choose them to be insulated. When the sidewalls are heat conducting, we
assume a linear temperature distribution connecting the temperature differ-
ence between the top and bottom of the cylinder. Insulated sidewalls means
that there are no heat flow over the vertical boundaries, hence the temper-
ature gradient over the sidewalls has to be zero. These two cases can be
written mathematically as

T = 1− z at r ∈ {Rw, R} (3.12)

when the sidewalls are heat conducting, or

∂T

∂r
= 0 at r ∈ {Rw, R} (3.13)

when the sidewalls are insulated.





Chapter 4

Linear Stability Analysis

The onset of natural convection in saturated porous media is determined by
the value of the critical Rayleigh number. The critical Rayleigh number will
depend on the geometry of the domain and the boundary conditions of the
system.

Various aspects of natural convection in porous media have been investigated
in the last half century. The critical Rayleigh number for the onset of nat-
ural convection in a uniform horizontal porous layer of infinite extent which
is heated from below was determined to be 4π2 by Horton and Rogers [15]
and later Lapwood [18]. Horton, Rogers and Lapwood confined their interest
to cases where the upper and lower surfaces are impermeable and perfectly
heat conducting, while later work, such as the paper by Nield [20], also inves-
tigated permeable upper and lower surfaces subject to constant heat fluxes.
A table showing how the critical Rayleigh number and the corresponding
wavenumber depends on the type of boundary condition which have been
applied may be found in Nield and Bejan [21].

Later works have included enquiries concerning geometries other than hori-
zontally infinite cavities: Beck [4] investigated the case of a finite cuboidal
box with insulated and impermeable lateral walls together with perfectly
conducting horizontal surfaces. A very similar paper by Wang [31] studies a
lower surface subject to a constant heat flux, whilst the upper surface remains
perfectly conducting. A circular cylinder with impermeable walls and insu-
lated sidewalls was considered by Zebib [33], and Wang [32] solved the same
problem as Zebib but subjected the upper surface to constant temperature
and pressure boundary conditions while the lower surface was impermeable
but could be held either at a constant temperature or at a constant heat flux.
These last two authors presented mode maps in the style of Beck [4]. The case

25
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of a circular cylinder with perfectly conducting boundaries was considered
by Haugen and Tyvand [13], who also compared their findings with Zebib’s
results. In the papers concerning convection in cylinders, the criterion for
the onset of convection is given as a function of the radius of the vertical
outer boundary. An annular cylindrical cavity with insulated sidewalls was
investigated by Bau and Torrance [2]. They allowed the upper surface to be
either permeable or impermeable and found criteria for the onset of convec-
tion and the preferred mode shapes as functions of the inner and outer radii
of the cavity.

To find critical Rayleigh numbers for our annular cylinder with either con-
ducting or insulated sidewalls, we will use linear stability analysis on the
three nondimensional model equations (3.5)-(3.7) and apply the boundary
conditions (3.8)-(3.13). We will also develop a method for determining the
preferred convective modes in order to obtain a mode map.

4.1 Linearization Around a Stationary Solution

The equations (3.5)-(3.7) together with the the boundary conditions (3.8)-
(3.13) have the steady-state solution

Ts = 1− z, vs = 0, Ps = P0 + Ra(z − z2

2
).

This stationary solution represents conduction. Owing to the heating from
below and cooling from the top we have a linear temperature gradient and
there are no fluid flow. For convection to occur, we need a small perturbation
of the system, that is,

T = Ts + T̂ , v = v̂, P = Ps + P̂ , (4.1)

where T̂ , v̂ and P̂ are all small quantities. We insert these into the model
equations (3.5)-(3.7), obtaining equations for T̂ , v̂ and P̂ . Since we are
dealing with small quantities, we can neglect all nonlinear terms. Darcy’s
law for the perturbed velocity is

v̂ = −∇P̂ + RaT̂k. (4.2)

The mass conservation equation now reads

∇ · v̂ = 0, (4.3)
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while the linear version of the energy equation for the perturbed quantities
is

∂T̂

∂t
− v̂z = ∇2T̂ . (4.4)

We seek an equation in T̂ only. To eliminate v̂z from (4.4), we apply the curl
operator on Darcy’s law (4.2) twice. The z-component of Darcy’s law then
becomes

∇2v̂z = Ra∇2
1T̂ , (4.5)

where ∇2
1 = ∇2− ∂2

∂z2
. Since we are only interested in the onset of convection,

we can neglect the time dependence in the energy equation (4.4). Combining
this with Equation (4.5) yields

∇4T̂ + Ra∇2
1T̂ = 0. (4.6)

If we insert the perturbed solution (4.1) into the boundary conditions (3.8)-
(3.13), we obtain boundary conditions for the perturbed temperatures and
velocity. The perturbed vertical velocity must still be zero at the top and
bottom of the cylinder;

v̂z = 0 at z ∈ {0, 1}, (4.7)

while the temperature perturbation must be zero at the top and bottom since
the stationary Ts = 1− z already fulfills the boundary conditions here;

T̂ = 0 at z ∈ {0, 1}. (4.8)

For the impermeable vertical sidewalls, the perturbed radial velocity must
be zero,

v̂r = 0 at r ∈ {Rw, R}. (4.9)

When the sidewalls are heat conducting, the temperature perturbation must
be zero

T̂ = 0 at r ∈ {Rw, R}. (4.10)

For insulated sidewalls, the radial temperature gradient of the temperature
perturbation must be zero,

∂T̂

∂r
= 0 at r ∈ {Rw, R}. (4.11)

Since we obtain an equation in T̂ only, that is, Equation (4.6), we need to
rewrite the two boundary conditions (4.7) and (4.9). Rewriting (4.7) is easy,
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since we can use the linearized energy equation (4.4) with time dependence
neglected to obtain

∇2T̂ = 0 at z ∈ {0, 1}. (4.12)

Using the curl of Darcy’s law (4.2) and the radial derivative of the linearized
energy equation (4.4) with time dependence neglected, we can rewrite (4.9)
into

∂

∂r
(∇2T̂ + RaT̂ ) = 0 at r ∈ {Rw, R}. (4.13)

4.1.1 Solution of the Fourth Order Equation

To summarize, we have the fourth order equation (4.6) and the boundary
conditions (4.8), (4.12) and (4.13), and one of (4.10) or (4.11). This system
is possible to solve using separation of variables. For the details on how to
do this, we refer to Appendix A. Applying the boundary conditions in z,
(4.8) and (4.12), the solution to (4.6) becomes a sum of T̂1 and T̂2, which are
given by

T̂1 =
[
AmJm(kr) +BmYm(kr)

]
cos(mθ) sin(πz), (4.14)

T̂2 =
[
CmJm

(π2

k
r
)

+DmYm

(π2

k
r
)]

cos(mθ) sin(πz). (4.15)

Here, m is a positive integer, Jm and Ym are Bessel functions of order m and
of the first and second kind, respectively, and k is a wavenumber which is
related to the Rayleigh number through

Ra =
(k2 + π2)2

k2
. (4.16)

The constants Am, Bm, Cm and Dm depend on m and can be found by ap-
plying the boundary conditions on the sidewalls, that is, the condition of
impermeable sidewalls and the condition of either conducting or insulated
sidewalls.

We note that Equation (4.16) is the same relation obtained for the critical
Rayleigh number for rolls in an infinitely large porous layer. The smallest
value of Ra will be 4π2 when k = π.

4.2 The Critical Rayleigh Number
If we were to apply the boundary conditions (4.13) and one of (4.10) or (4.11)
directly on the perturbed solution T̂ , we would only get the zero-solution
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since the four boundary conditions result in four homogenous, linear equa-
tions. To obtain non-zero solutions we demand the determinant of this linear
system of equations to be zero. Using this approach we get an eigenvalue
problem for the wavenumber k. For the conducting sidewalls case, we use
the boundary conditions (4.10) and (4.13) and demand

∣∣∣∣∣∣∣∣∣
Jm(kRw) Ym(kRw) Jm(π

2

k
Rw) Ym(π

2

k
Rw)

dJm
dr

(kRw) dYm
dr

(kRw) dJm
dr

(π
2

k
Rw) dYm

dr
(π

2

k
Rw)

Jm(kR) Ym(kR) Jm(π
2

k
R) Ym(π

2

k
R)

dJm
dr

(kR) dYm
dr

(kR) dJm
dr

(π
2

k
R) dYm

dr
(π

2

k
R)

∣∣∣∣∣∣∣∣∣ = 0. (4.17)

For each value of Rw and R, and for each m, there will be an infinite number
of solutions k, denoted km,n. We seek the value of km,n that minimizes the
Rayleigh number, hence also providing the critical Rayleigh number using
Equation (4.16):

Rac = min
m,n

[(k2
m,n + π2)2

k2
m,n

]
. (4.18)

The n-enumeration is a manner of separating the different solutions of Equa-
tion (4.17) and has no apparent physical meaning. Since the minimum of
the Rayleigh number will occur for the km,n closest to π, we can arrange the
km,n’s such that the one closest to π is number 1, the second closest number
2 and so on. When minimizing Equation (4.18), we always end up choosing
one of the km,1, and consequently we need only search over the m’s when
searching for the critial Rayleigh number.

For the insulated sidewalls we apply the boundary conditions (4.11) and
(4.13) and the resulting eigenvalue problem for k may be simplified into

dJm
dr

(kRw)
dYm
dr

(kR)− dJm
dr

(kR)
dYm
dr

(kRw) = 0. (4.19)

As for the conducting case, we search for the km,1 that minimizes the Rayleigh
number.

For both the conducting and insulated sidewalls case, and for each value of
Rw and R, we are able to find the critical Rayleigh number by minimizing
Equation (4.18) over the eigenvalues km,1. Hence we can plot the critical
Rayleigh number as a function of Rw and R.
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4.3 Convection Modes
Different convective patterns may occur when convection is present in a
porous medium. For our two coaxial cylinders, there may be flow vortices
stretching around the inner radius in azimuthal direction, vortices orthogonal
to the vertical sidewalls in radial direction, or combinations of these. The
specific convection patterns are called convective modes. Given a domain
along with boundary conditions and with a Rayleigh number slightly above
the critical, a certain convective mode will appear. Using the results from
the linear stability analysis, it is possible to predict which convective mode
will occur. We will now outline a strategy on how to find these convective
modes and we explain in more detail how these convective modes behave.

4.3.1 Vortices in Azimuthal or Radial Direction

When we searched for the critical Rayleigh number, a wavenumber km,1 was
found. This wavenumber can help us determine the preferred convective
mode at the onset of convection, since the value of m in the km,1 that mini-
mizes the Rayleigh number, is the same m occuring in the Equations (4.14)
and (4.15) for the perturbed temperature. The value of m decides the num-
ber of vortices in the azimuthal direction because of the cos(mθ) term. For
example, if m = 1 turns out to give the critical Rayleigh number, the tem-
perature distribution in the azimuthal direction will be shaped like a cos(θ).
When investigating the streamlines, this temperature profile corresponds to
two adjacent vortices, see Figure 4.1. In general there will be 2m vortices in
the azimuthal direction.

To find the number of vortices in the radial direction, we can calculate the
radial component of vz using the linearized energy equation (4.4) with time
dependence neglected. With T̂ being known, finding the radial component of
v̂z is only a matter of differentiating T̂ and neglecting contributions from z
and θ. Since the steady state solution of the velocity vector is zero, the total
velocity profile will equal the perturbed velocity field, that is, vz = v̂z. By
investigating the number of sign changes in vz between r = Rw and r = R,
the number of radial vortices can be found; every zero of vz corresponds to
the top and bottom of a convection cell, see Figure 4.2. Therefore, if there
are p sign changes in the radial component of vz, then p vortices in radial
direction is present1.

1The author would like to acknowledge Professor D. Andrew S. Rees for suggesting this
approach of determining p.
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T vz

0 π 2π

Figure 4.1: Increasing temperature means the warm lower fluid is flowing up-
wards. Lower temperature means the cool upper fluid is flowing downwards.

vz

Rw R
r

Figure 4.2: Negative vz corresponds to declining stream lines while positive
vz corresponds to upward stream lines. A sign change in the vertical velocity
profile marks the top and bottom of a convection cell.

Since we only have convection cells in radial and azimuthal direction, we can
associate a convective pattern with the numbers (m, p). For each value of
the inner radius Rw and the outer radius R, there will be a unique stable
mode (m, p) when the Rayleigh number is slightly above the critical. We can
make a mode map over which convective mode corresponds to each Rw and
R using the method sketched above.
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When the Rayleigh number is just slightly larger than the critical Rayleigh
number, the system will prefer the mode (m, p). But, it is possible to in-
clude several critical Rayleigh numbers and hence several possibly stable
modes. The idea is as following: when we minimized over the km to find
Rac, we found the smallest Rayleigh number and the corresponding mode
(m, p). But if we also found the second smallest Rayleigh number, denoted
Rac,2, and corresponding mode (m2, p2), then this mode too should be pos-
sible when the Rayleigh number is larger than Rac,2. We may continue the
process finding Rac,3 with corresponding (m3, p3) and so on. In theory, when
the Rayleigh number is larger than Rac,n for some positive integer n, then
all modes (m, p), (m2, p2), (m3, p3), ..., (mn, pn) are possible. In practice,
we don’t know whether the different modes are stable and which will be
preferred, but this can be established through simulations.

4.3.2 The Convective Structure and Mode Maps

To better understand how a mode (m, p) will look like, some simple plots
of the flow patterns can be used to illustrate. The mode (1, 0), which has
two adjacent convection cells in azimuthal direction and no convection cells
in radial direction, will behave as illustrated in Figure 4.3. The mode (0, 1)
is axisymmetric since m = 0, and will look like as in Figure 4.4. If more
convection cells are present in the radial direction, these will be adjacent as
illustrated in Figure 4.2 above. More complex modes will be combinations
of these two basic convection patterns, as in Figure 4.5 which illustrates the
convective mode (1, 1) and Figure 4.6 illustrating (2, 1). In the following fig-
ures, the colours describe the vertical velocity; lighter colours indicate larger,
positive velocities, while dark colours indicate larger (in magnitude), nega-
tive velocities. The arrows are the horizontal velocities seen from above.
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Figure 4.3: The mode (1, 0).

Figure 4.4: The mode (0, 1).
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Figure 4.5: The mode (1, 1).

Figure 4.6: The mode (2, 1).



Chapter 5

Results and Discussion - Linear
Stability Analysis

Using the theory and methods described in Chapter 4, we search for the
critical Rayleigh numbers and corresponding mode maps for the cases of
sidewalls being heat conducting and insulated. We also find the higher order
Rayleigh numbers and corresponding modes, and investigate the case of the
inner radius approaching zero. In the following, we have restricted ourselves
to only consider values of the inner radius between 0 and 2, and values of the
outer radius between 0 and 4.

5.1 Critical Rayleigh Number

We have found the critical Rayleigh numbers for both the conducting and in-
sulated sidewalls. The results are presented using contour plots. We also try
to explaine the results and compare them with previous results by Haugen
and Tyvand [13] (conducting cylinder without annulus), Zebib [33] (insu-
lated cylinder without annulus) and Bau and Torrance [2] (insulated annular
cylinder).

5.1.1 Conducting Sidewalls

For the conducting sidewalls, the critical Rayleigh number decreases mono-
tonically as the outer radius R increases, while it increases as the inner radius
Rw increases with R held fixed, see Figure 5.1 for contour plot. For fixed val-
ues of Rw, the critical Rayleigh number reduces towards 4π2 as R increases.
The small bumps in the contour plot corresponds to transitions from one
convective mode to another.

35
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Figure 5.1: Critical Rayleigh number for conducting sidewalls.

Haugen and Tyvand [13], who considered a circular cylinder of porous medium
with a perfectly heat conducting sidewall, showed that the critical Rayleigh
number is a monotonically decreasing function of R and it decreases towards
4π2 when R → ∞. For fixed nonzero values of Rw our results are in quali-
tative agreement. Both [13] and [25] showed that a conducting sidewall does
not correspond to a natural cell boundary, and that cells near such a bound-
ary are wider than their insulating sidewall counterparts. Thus a larger value
of R means that an increasing amount of the porous cavity is unaffected by
the presence of the boundary. The presence of the inner cylinder does not
change this fact and provides a further restriction to convective flow. When
the outer radius, R, is held fixed and the inner radius, Rw, is increased,
the critical Rayleigh number increases since the two conducting sidewalls are
now closer together, restraining the convection even more. Therefore it is
no surprise that the critical Rayleigh numbers found here for chosen values
of the outer radius are always larger than those given by Haugen and Tyvand.

Letting Rw approach zero provides the same values of the critical Rayleigh
number as the ones found by Haugen and Tyvand. See Section 5.4 for more
details on this subject.
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5.1.2 Insulated Sidewalls

For the insulated sidewalls, the function describing the critical Rayleigh num-
ber has several local maxima and minima, see Figure 5.2. The maxima occur
when the system goes from one preferred convection mode to another, while
the minima, all giving a critical Rayleigh number of 4π2, occur in between
the mode transitions. For increasing values of R, with Rw fixed, the critical
Rayleigh number will converge towards 4π2 in the sense that all the local
maxima decay towards 4π2. The convergence rate is faster than for the con-
ducting sidewalls.

R

Rw

Figure 5.2: Contour plot of the critical Rayleigh number as a function of Rw

and R when the sidewalls are insulated. The black lines are contours slightly
over 4π2, the red lines indicate Rayleigh value 40, while the lighter colours
represent values in the range from 41 to 55.

As we will observe in the next section, all local maxima of the critical Rayleigh
number surface occur when a shift from one preferred mode to another is
made, while the local minima happens in the middle of a mode’s part of the
domain. The physical explanation behind this phenomenon, is the idea of fit-
ting convection cells inside a given porous annular cylinder. The “boundary”
between two convection cells is virtually a heat insulated and impermeable in-
ternal boundary since there will be no heat or fluid flow between two separate
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convection cells. Hence, the inner and outer sidewalls can be interpreted as
the boundary of other convection cells. The convection cells distribute inside
the porous medium made available for them - the vertical internal bound-
aries between different convection cells do not remove buoyancy as in the
heat conducting sidewalls case. A convection cell can be interpreted as a
geometric object having (in our case) height 1, and some horizontal extent
and will have an ideal horizontal extent in an infinite porous layer. Certain
values of inner and outer radii will correspond to some number of convec-
tion cells of ideal size managing to distribute inside the porous medium and
these values of inner and outer radii will give a critical Rayleigh number of
4π2. Changing the inner and outer radius just slightly - either increasing
or decreasing - causes the convection cells to rescale themselves, hence the
ideal size is no longer obtained and the critical Rayleigh number increases.
The critical Rayleigh number will continue to increase until another distribu-
tion of convection cells is more appropriate, whereupon the critical Rayleigh
number will decrease. When the outer radius increases, the available porous
media is so large that many convection modes can obtain an ideal cell dis-
tribution. Hence the critical Rayleigh number converges towards 4π2.

Both Zebib [33] (cylinder) and Bau and Torrance [2] (annular cylinder) found
the critical Rayleigh number to have several maxima and minima when the
sidewalls are insulated. The critical Rayleigh numbers found here are in
general the same as in the paper of Bau and Torrance, but substantially
more values of Rw and R are being considered in this thesis. Using a very
small inner cylinder, we obtain the same critical Rayleigh numbers as found
by Zebib, and we return to this subject in Section 5.4.

5.1.3 Comparison Between the Conducting and the In-
sulated Sidewalls

For any choice of values Rw and R, the critical Rayleigh number will be larger
for the conducting sidewalls than for the insulated sidewalls. Haugen and
Tyvand [13] observed the same for their non-annular cylinder and explained
this by heat conduction being stabilizing as it takes away buoyancy. The
presence of an inner cylinder does not change this fact, but in stead we see
that a large value of the inner radius increase the critical Rayleigh number
even further in the conducting sidewalls case, as more buoyancy is taken
away. In the insulated sidewalls case, the effect of an inner cylinder on the
critical Rayleigh number is not that large. As for the non-annular sylinder
in Zebib’s case, we observe several maxima and minima related to jumps
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between different convection mode, but we do not observe a large increase
on the critical Rayleigh number when R is fixed and Rw increases.

5.2 Mode Maps

5.2.1 Conducting Sidewalls

The preferred convective mode have been found for both the conducting and
insulated sidewalls. For the conducting sidewalls, the value of m increases
when the inner radius Rw increases and the outer radius R is held fixed; see
Figure 5.3. Although not visible in the Figure, m will become zero when Rw

approaches zero. The value of p is zero when the outer radius is not much
larger than the inner radius, while for larger values of R, we get larger values
of p.

An increasing value of m for increasing inner radius when the outer radius
is held fixed, means that we get more convection cells in the azimuthal di-
rection for a larger inner radius. This is reasonable since, for R held fixed,
an increasing Rw means that the porous media is getting more narrow and
it is more convenient for the water to flow in the azimuthal direction than
in the radial since the closeness of the inner and outer sidewalls takes away
buoyancy. Also, it is hard for the convection cells to stretch around the inner
cylinder, hence we get many small convection cells in stead of a few large.
The increase of p can be explained in a similar manner. When the outer
radius is only slightly larger than the inner radius, the narrowness of the
porous media makes it difficult for convection cells in the radial direction
to appear. A wider porous media encourages convection cells in the radial
direction to appear and p increases.

5.2.2 Insulated Sidewalls

For insulated sidewalls, we find a complex pattern that delineates the regions
where different modes are preferred; see Figure 5.4. The pattern is impossible
to describe except in general terms. It is clear that the overall pattern in
terms of m has a banded structure where narrow bands exist at certain
discrete values of R − Rw, which is the width of the annular cavity. When
this width is sufficiently small the number of cells in the azimuthal direction
increases as Rw increases, and they also correspond to p = 0 implying that
the cells have little radial dependence.
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R

Rw

(a) The values of m.

R

Rw

(b) The values of p.

Figure 5.3: Mode map for the conducting sidewalls case. The bifurcation
trajectories are highlighted with black lines.
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R

Rw

(a) The values of m

R

Rw

(b) The values of p

Figure 5.4: Mode map for the insulated sidewalls case.
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These values of m and p have also been found by Bau and Torrance [2], and
they made a similar mode map with the inner radius on the x-axis and the
quotient between the outer and the inner radius on the y-axis. Converting
our plot in the same manner enables us to compare our mode map with the
one made by Bau and Torrance, see Figure 5.5. Note that the notation of
Bau and Torrance is slightly different from ours; their mode (m, p) corre-
spond to (m, p− 1) in our notation.

(a) Mode map made by Bau and Torrance.
This figure is a copy of Figure 3 in [2].

R/Rw

Rw

(b) Our version of the Bau and Torrance
mode map

Figure 5.5: Corresponding mode maps for the insulated sidewalls case.

We have in general found the same modes as Bau and Torrance, hence we have
not named our modes in the figure. We find more details in the mode map
than obtained by Bau and Torrance, and simulations confirm these results.
Bau and Torrance do not explain in detail how they obtained their mode
map, but we can conclude that their method was not adequate. Bau and
Torrance concluded that the preferred convection modes are predominantly
asymmetric, that is, m is nonzero. In this study, we also find m to be
nonzero in general, but several axisymmetric convection modes are found.
Hence, we cannot support Bau and Torrance’s conclusion of preferred modes
being predominantly asymmetric.

5.3 Higher Order Modes
This far we have concentrated only on primary modes, i.e. those which min-
imize the Rayleigh number, but higher modes also exist and these have to
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be computed as part of the minimization procedure for Ra. For any positive
integer n, we denote the nth order Rayleigh numbers by Rac,n, where Rac,1 is
the overall critical Rayleigh number. We note that, for both conducting and
insulated sidewalls, these higher order Rayleigh numbers which are larger
than the critical Rayleigh number, also vary with R and Rw, but they con-
verge towards 4π2 at the same rate as in the same speed as for the primary
mode.

Rac,n will be equal to Rac,n+1 at the bifurcation trajectories in the mode map
for (mn, pn). For increasing R, this occur more frequently, meaning that
higher order modes are clustered. See Figure 5.6 for the difference between
the second and first order critical Rayleigh numbers.

5.4 The Limiting Case when Rw Goes to Zero

Zebib [33] and Haugen and Tyvand [13] undertook linear stability analy-
ses similar to ours for a circular (rather than an annular) cylinder. Their
cylinders had insulated and heat conducting sidewalls, respectively. In our
eigenvalue problems the dispersion relations given by Equations (4.17) and
(4.19) may be studied in the limit as the inner radius approaches zero in order
to determine if our case reduces to those of Zebib and of Haugen and Tyvand.

Letting the inner radius approach zero in (4.17) and (4.19) is not straight-
forward since the Bessel functions of second kind, Ym, are singular at zero.
The function Ym(x) behaves as O(x−m) as x→ 0, except for Y0(x) which be-
haves as O(ln(x)). The derivatives Y ′m(x) behave as O(x−m−1). On the other
hand Bessel functions of the first kind are nonsingular and have nonsingular
derivatives at zero.

The determinant in (4.17) includes a term which involves the factor [Y ′m(kRw)Ym(π
2

k
Rw)−

Ym(kRw)Y ′m(π
2

k
Rw)]. This term will dominate all the others when Rw ap-

proaches zero. Hence this term must be set to zero, thereby yielding the
condition,

Jm(kR)J ′m

(π2

k
R
)
− J ′m(kR)Jm

(π2

k
R
)

= 0, (5.1)

which is the same as that obtained by Haugen and Tyvand in their analysis.
Haugen and Tyvand found m = 0 to be the preferred convective mode for
all R. Applying a Taylor series expansion of the determinant (4.17) with
m = 0 yields terms of O(ln(Rw)/Rw), O(1/Rw), O(Rw) and higher order
terms. The O(ln(Rw)/Rw)-term is the one corresponding to Equation (5.1).
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Rw R

(a) Conducting sidewalls.

Rw R

(b) Insulated sidewalls.

Figure 5.6: Difference between Rac and Rac,2.

We now let k0 be the wavenumbers obtained by Haugen and Tyvand, and k
be the wavenumber obtained by us using a small value of Rw and apply a
first order Taylor series around k0 in Equation (4.17) in order to balance the
O(1/Rw)-term. Using this approach, we conclude k = k0 + O(1/ ln(Rw)) as
Rw approaches zero and this choice of k implies that

Rac = Ra0
c +O(1/ ln(Rw)), (5.2)

where Ra0
c are the critical Rayleigh numbers found by Haugen and Tyvand.

Hence, our critical Rayleigh numbers will approach the Rayleigh numbers
found by Haugen and Tyvand as O(1/ ln(Rw)) when Rw goes to zero and we
may consider the cylinder studied by Haugen and Tyvand as a special case
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of the annular cylinder case when the inner radius approaches zero.

LettingRw approach zero in (4.19) will cause the second term, J ′m(kR)Y ′m(kRw),
to dominate the equation, hence we need

J ′m(kR) = 0, (5.3)

which is the same equation obtained by Zebib. We apply a first order Taylor
series expansion to Equation (4.19) around k = k0 + O(R2m

w ) when m 6= 0
and around k = k0 +O(R2

w) when m = 0 as Rw approaches zero. Here k0 are
the corresponding wavenumbers found by Zebib and k are the wavenumbers
found by us using a small value of Rw. This approach will balance all terms
in Equation (4.19), hence implying that

Rac = Ra0
c +O(R2m

w ) (5.4)

when m 6= 0 and
Rac = Ra0

c +O(R2
w) (5.5)

when m = 01. Here Ra0
c are the critical Rayleigh numbers found by Zebib

for a non-annular cylinder. Using Rw = 10−4, our critical Rayleigh numbers
was approximately the same as the ones found by Zebib, see Figure 5.7, and
we found the same preferred convective modes. Hence, a very small inner
radius does not affect the results in a significant manner and we regard the
problem studied by Zebib as a special case of our analysis.

Figure 5.7 shows the difference between the critical Rayleigh number for
circular cylindrical configuration of [13] and the present annular cylinder
with Rw = 10−4. Despite the inner radius being very small, there remains a
strong effect in terms of the critical Rayleigh number. However, the above
analysis shows that this difference tends to zero as the inner radius shrinks
further.

1The author would like to acknowledge Professor D. Andrew S. Rees for performing
the analysis resulting in the three relations (5.2), (5.4) and (5.5).
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Rac

R

Figure 5.7: Variation of Rac with R for (i) circular cylinder with an insulated
sidewall ([33], lowest curve), (ii) circular cylinder with a perfectly conducting
sidewall ([13], middle curve), (iii) annular cylinder with perfectly conducting
sidewalls and with Rw = 10−4. (The figure is adapted from Figure 1 in [13]).



Chapter 6

Numerical Model - Spectral
Methods

Up to now we have only considered the linear regime of the convection cells.
Investigating the time-dependent nonlinear equations would provide informa-
tion concerning how the nonlinear regime differs from that of the linearized
system. The linear theory provides information about the onset mode, but
solving the original partial differential equations (3.5)-(3.7) allows us to de-
termine how far into the nonlinear regime this onset mode persists as the
favoured mode. Solving the original equations can also provide information
about the stability of existing convection cells.

When solving partial differential equations, it is rarely possible to obtain an
analytical solution. In stead, a numerical method must be used to find an
approximate solution. The main idea behind numerical methods is to dis-
cretize the equations and use a computer to solve the discrete version of the
system. Several numerical methods exist, and which to choose depends on
the properties of the equations you wish to solve, and the sought properties
for the approximate solution. The most common numerical methods are the
finite difference methods (FDM), the finite element method (FEM) and spec-
tral methods. The FDM replace derivatives in a differential equation with
differences, hence leading to a difference equation which is easily solved for
one-dimensional domains. However, the accuracy is in general not good. The
finite element method’s approach is to rewrite the differential equation using
variational formulation and then search for a solution in a finite dimensional
space which normally consists of piecewise linear functions having local sup-
port. The FEM is suitable for complex and multidimensional domains, but
the convergence is not always sufficient.

47
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Spectral methods is a class of methods whose main purpose is to approxi-
mate the solution using linear combinations of continuous functions existing
on the whole domain. When applicable, spectral methods have excellent er-
ror properties in the form of an exponential convergence rate. In order to
describe the convection cells in three spatial dimensions, good accuracy and
fast convergence is essential, hence spectral methods are preferred. The fol-
lowing presentation of spectral methods is based on the books of Trefethen
[29] and Boyd [6].

6.1 Introduction to Spectral Methods
Spectral methods can be divided into two groups: Galerkin spectral methods
and pseudospectral/collocation methods. Similar for both methods is the
assumption that the unknown solution u(x) may be approximated by a sum
of (N +1) basis functions φi(x) which span the space where the approximate
solution exists:

u(x) ≈ uN(x) =
N∑
i=0

aiφi(x). (6.1)

This series is then substituted into the differential equation

Lu = f(x),

where L is the differential operator. The goal of the spectral methods is to
choose the coefficients {ai} such that the residual defined by

R(x; a0, a1, . . . , aN) = LuN − f (6.2)

is minimized. The essential difference between Galerkin spectral and pseu-
dospectral methods lie in their minimization strategies.

6.1.1 Outline of Galerkin Spectral Methods

For the Galerkin spectral method, basis functions that are ortonormal with
respect to some inner product is chosen. Any function g(x) lying in the space
spanned by (N + 1) basis functions may then be expanded as a series,

g(x) =
N∑
i=0

ciφi(x),

where the coefficients {ci} are given by

ci = (φi, g) =

∫ b

a

φi(x)g(x)ω(x)dx. (6.3)
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This is the inner product of φi(x) and g(x) with respect to the weight function
ω(x) on the interval [a, b]. The residual function (6.2) may also be expanded
as a series of the basis function; hence,

R(x; a0, a1, . . . , aN) =
∞∑
i=0

ri(a0, a1, . . . , aN)φi(x) (6.4)

where the coefficients {ri} are given by the inner product (6.3). The Galerkin
method demands the first (N+1) terms of the series (6.4) to be zero. Having a
good choice of basis functions, the remaining terms in the series will be small,
and an optimum choice of basis functions will lead to the residual converging
to zero exponentially fast as N goes to infinity [12]. For a linear differential
operator L, demanding the {ri}Ni=0 to be zero, written in matrix notation,
corresponds to

Ax = b,

where A is the (N + 1)× (N + 1) matrix with entries given by

Aij = (φi, Lφj),

the (N + 1) vector b has the entries

bi = (φi, f) (6.5)

and the vector x consists of the unknown coefficients {ai} which approximate
the solution using (6.1). If the problem also has boundary conditions, these
are applied by removing the last lines in the matrix, hence loosing some of
the accuracy, and substitute the boundary conditions explicitly. For example,
the Dirichlet boundary condition u(xD) = uD at the boundary point x = xD,
leads to the substitution

u(xD) ≈ uN(xD) =
N∑
i=0

aiφi(xD) = uD.

Neumann boundary conditions are handled by differentiating the basis func-
tions.

6.1.2 Outline of Pseudospectral Methods

For the pseudospectral/collocation methods, we demand the residual to be
zero in (N + 1) collocation points {xi}; that is,

R(xi; a0, a1, . . . , aN) = 0, i = 0, . . . , N.
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Recalling how the residual was defined, this leads to the linear system of
equations

Ax = b,

when L is linear. Here, A is the (N + 1)× (N + 1) matrix with entries given
by

Aij = LCj(xi),

where the cardinal functions Cj1 are interpolating functions having value 1
in one collocation point, and 0 in the others, that is;

Cj(xi) = δij. (6.6)

The (N + 1) vector b has entries

bi = f(xi).

Basing the matrix equation on the cardinal functions in stead of the usual
basis functions means that the unknown vector x consists of the function
values of the approximated solution uN in the nodes {xi}. Each line in the
matrix equation represents an equation for the function value in a specific
node. Boundary conditions are handled by finding the nodes correspond-
ing to where the different boundary conditions are applied, and substitute
the matrix lines with the boundary condtions in these points. More details
on how to deal with boundary conditions and how you should choose the
collocation points will be explained later.

6.1.3 Pros and Cons for Galerkin Spectral and Pseu-
dospectral Methods

Both the Galerkin spectral and pseudospectral methods have their pros and
cons. They both have the advantage that low values of N give high accuracy
in the resulting approximation compared to the finite elements and the finite
difference, but there are differences between the two methods.

The Galerkin spectral methods has its strong point in the use of ortonormal
basis functions as there usually will be reccurence formulas for the deriva-
tives of the basis functions, which then leads to the resulting matrix A being

1Note that in the literature, there are “two” types of pseudospectral methods: One
where the resulting matrix system solves for the unknown series coefficients {ai} as in the
Galerkin spectral method, and the method sketched here which uses Cardinal functions
in stead of the normal basis functions and solves for the unknown function values in the
collocations points.
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banded. Banded matrices are a lot cheaper to solve, which is important when
large values of N is used. On the other hand, the need of evaluating the in-
tegrals (f, φi) on the right-hand side (6.5) slows the method. Normally one
relies on numerical integration to approximate these integrals, but numerical
integration procedures are expensive; especially since you need very good
estimates on the integrals to maintain high accuracy in the method.

For pseudospectral methods, no numerical integration is needed. The right
hand side is just function evalutions of f(x), which in general will be cheap
to evaluate. Because of the structure of the linear system, pseudospectral
methods are known for being easier to implement. Boundary conditions will
also be easier to implement, which is important when more advanced types of
boundary conditions are applied. The main disadvantage with pseudospec-
tral is that the resulting matrix will be full. Full matrices are costly to invert,
but this is not regarded as a large problem since one normally solves relatively
small matrices. Another disadvantage with the pseudospectral methods is the
accuracy being slightly smaller compared to the Galerkin spectral methods.
The Galerkin spectral methods with a trunkation of N is equal in accuracy
the corresponding pseudospectral method with a trunkation of (N + 1) or
(N + 2) [6].

When solving the equations modeling the convection cells, high accuracy is
important, and both the Galerkin spectral and the pseudospectral methods
provide good accuracy for moderately low values of N . A concern with the
pseudospectral methods is that the resulting matrix is full, which gives higher
computation time. However, in test runs on a two-dimensional inhomoge-
neous heat equation, the Galerkin spectral methods turned out to be slower
than the pseudospectral methods owing to the numerical integration. Since
the pseudospectral methods still have the advantage of easy implementation
of complex boundary conditions, pseudospectral methods is preferred in our
case.

6.2 Pseudospectral Methods

Pseudospectral methods are closely related to finite differences, and show-
ing this relationship can illustrate why pseudospectral methods have such
good convergence properties. The two methods are based on grid points;
while the Galerkin spectral methods find a linear combination of functions
that approximates the solution in the whole domain, both the pseudospectral
methods and the FDM base on finding approximate values in some specific
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points and afterwards interpolation between these points are needed to find
the complete solution. This similarity allows us to compare the data struc-
ture of FDM and the pseudospectral methods.

The FDM finds a difference expression between some of the grid points in
order to mimic the behaviour of derivatives. For example, on an evenly
spaced grid with node distance h, the derivative in an interior point may be
approximated by the three-point formula

df

dx
(xi) =

f(xi+1)− f(xi−1)

2h
+O(h2).

This formula is a second order formula since the error acts as h2 when h→ 0.
Higher order methods are achieved if information from several points are
used. For a first order one-dimensional ODE, a FDM approach using the
above difference expression, yields a linear system consisting of a tridiagonal
matrix. Since the pseudospectral methods are built in a similar manner as the
FDM, and the resulting matrix A is full, it follows that the pseudospectral
differentiation expressions can be interpreted as (N + 1)-point formulas. If
the solution is smooth enough, we expect the error to be O(hN) as h → 0.
Since the node distance h is of order 1/N , this gives an expected convergence
rate of O(1/NN) as N → ∞. A more thorough convergence analysis of the
pseudospectral methods will be given in Section 6.4.

6.2.1 Choice of Basis Functions and Collocation Nodes

When working with spectral methods, the choice of basis functions is very im-
portant since the wrong choice of basis functions may give poor convergence
properties or, in a worst case scenario, create a discretization that will not
converge to the correct solution at all. Obvisously, the basis functions need
some basic properties. We need them to be easy to compute, rapidly converg-
ing and complete. In this context, “complete” means that any solution can
be represented to arbitrarily high accuracy by making N sufficiently large [6].

Boyd introduces a “moral principle” on how to choose the basis functions,
see Figure 6.1.

We need one choice of basis functions for each of the three dimensions r, θ
and z. For the radial and vertical directions, we will use Chebyshev poly-
nomials as basis, while in azimuthal direction we have 2π-periodicity and
choose Fourier series.
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Figure 6.1: Borrowed from page 10 in [6].

After choosing the appropriate basis functions, we need to choose the actual
collocation nodes and corresponding cardinal functions. In radial and vertical
direction we will use a (N+1) Gauss-Lobatto-Chebyshev2 (GLC) grid, which
consists of the critical points of the Nth order Chebyshev polynomial TN(x),
and the endpoints −1 and 1, as seen in Figure 6.2. These points are easily
shifted and scaled to fit into the two intervals [Rw, R] and [0, 1].

Figure 6.2: GLC grid for N = 8. The blue line is the Chebyshev polynomial
T8, while the red dots are the endpoints and the critical points of T8.

2Another possible grid when using Chebyshev basis, is the Gauss-Radau-Chebyshev
grid. It is rarely used as grid in pseudospectral methods and will not be considered in this
thesis.
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The (N + 1) GLC points are given by

xi = cos
(πi
N

)
for i = 0, . . . , N, (6.7)

while the cardinal functions satisfying the kronecker-delta property (6.6) will
be given by

Ci(x) =
(−1)i+1

ciN2

(1− x2)

(x− xi)
dTN(x)

dx
(6.8)

where ci is 2 when i is 0 or N (corresponding to the endpoints) and otherwise
1. An example of a cardinal function can be seen in Figure 6.3.

Figure 6.3: Chebyshev cardinal function corresponding to x = −1 when
N = 8.

In the azimuthal direction, we use the standard grid associated with Fourier
series; that is, the critical points of cos(Nx/2),

xi =
2πi

N
for i = 1, . . . , N. (6.9)

Note that we only need N points in stead of (N + 1) points. This is due to
the periodicity in the solution. The point corresponding to i = 0 is the same
point as the one corresponding to i = N . Hence, i = 0 is neglected. The
cardinal functions associated with these points are

Ci(x) =
1

2N
sin
[
N(x− xi)

]
cot
[1

2
(x− xi)

]
, (6.10)
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An example of a cardinal function can be seen in Figure 6.4.

Figure 6.4: Fourier cardinal function corresponding to x = 2π
N

when N = 8.

Using Chebyshev nodes in radial and vertical direction, and Fourier nodes in
azimuthal direction, our resulting grid will be as seen in Figure 6.5.

y

x
(a) Grid seen from above

z

(b) Grid seen from the side

Figure 6.5: Example grid with 9 points in radial and vertical direction, and
16 points in azimuthal direction.
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6.2.2 Differentiation Matrices

As mentioned in the outline of pseudospectral methods, the resulting linear
system will have a matrix with entries

Aij = LCj(xi) (6.11)

where L is the differential operator. Our differential equations found in chap-
ter 3, (3.5)-(3.7), involves both first and second order derivatives, hence we
need to find matrices corresponding to first and second order derivatives to
build the resulting matrix system with.

If our differential equation consisted of only a first order derivative, du
dx

= f ,
then the resulting matrix will have entries Cj,x(xi), where the subscript x
means differentiation with respect to x. If the differential equation was d2u

dx2
,

the resulting matrix would have entries given by Cj,xx(xi). In other words,
we need to find the two first derivatives of our cardinal functions (6.8) and
(6.10), and evaluate them in the collocation nodes. The formulas presented
in the following was found by Gottlieb, Hussaini and Orszag and given in [11].

The first derivative of the Chebyshev cardinal function (6.8) evaluated in the
collocation nodes results in the differentiation matrix

(A1)ij =


(1 + 2N2)/6 if i = j = 0

−(1 + 2N2)/6 if i = j = N

−xj/[2(1− x2
j)] if i = j; 0 < j < N

(−1)i+jci/[cj(xi − xj)] if i 6= j.

(6.12)

All higher order derivatives of the Chebyshev cardinal functions evaluated
in the same points, hence, all higher order differentiation matrices, will be
given as

Ak = (A1)k. (6.13)

That is, the kth derivative of a function expanded with Chebyshev cardinal
functions as basis, will be the same as applying the first derivative k times.

The first derivative of the Fourier cardinal functions (6.10) evaluated in the
collocation nodes results in the differentiation matrix

(A1)ij =

{
0 if i = j

0.5(−1)i−j cot[0.5(xi − xj)] if i 6= j,
(6.14)
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while the second derivative is given by

(A2)ij =

{
−(1 + 2N2)/6 if i = j

0.5(−1)i−j+1 csc2[0.5(xi − xj)] if i 6= j.
(6.15)

The differentiation matrices for the three-dimensional equations are now built
by creating them first for the 1D-case using the formulas (6.12)-(6.15), and
then applying Kronecker tensor products to extend the matrices to three spa-
tial dimensions. The Laplace operator is created by summing the extended
second order differentiation matrices for each spatial dimension.

6.2.3 Boundary Conditions

The method sketched above for making the differentiation matrices does not
take account of the boundary conditions (3.8)-(3.13). We will encounter two
types of boundary conditions: Dirichlet conditions which assign a specific
value to the unknown solution on the boundary, and Neumann conditions
which specify the value of the solution’s derivative on the boundary. Both
Dirichlet and Neumann conditions are easily handled through the differenti-
ation matrices.

Dirichlet Conditions

A representative example of a Dirichlet condition we will be using, is of the
form u = fR(θ, z) on r = R, which means that we assign the values fR(θ, z)
to our unknown u at the outer radius R. To apply the boundary condition,
we localize the lines corresponding to the outer radius in the matrix equation,
and replace the matrix lines with zeros everywhere except at the diagonal
element which is set to 1. The right-hand side of the matrix equation is
assigned the corresponding value of fR. The process is similar when applying
Dirichlet conditions to the other boundaries.

Neumann Conditions

We will only encounter the homogeneous Neumann condition ∂T
∂r

= 0 at
r = Rw and r = R, but the process is similar for inhomogeneous conditions.
When applying a Neumann condition, the only difference from the Dirichlet
case is what you replace in the corresponding matrix lines. After localizing a
line corresponding to the outer radius (as an example), the matrix elements
on that line representing the other radial points of same z- and θ-coordinate,
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must be found. These elements should be replaced with the corresponding
matrix elements from the discretization of ∂

∂r
found earlier, while all other

elements on the line are set to zero. Owing to the homogeneity, the cor-
responding element of the right-hand of the matrix equation is set to zero.
The process is repeated for all lines in the matrix equation representing the
outer radius. The process is similar for the Neumann condition on the inner
radius.

6.3 Time Discretization
When the spatial dimensions are readily discretized we have a resulting ODE-
system, which may be solved using one of MATLAB’s own ODE-solvers.
However, since we don’t have a time derivative in the matrix lines where
we applied boundary conditions, we have a system of differential-algebraic
equations (DAE-system), and not a pure ODE-system. We therefore use the
MATLAB solver ODE15s, which can handle DAE-systems.

ODE15s is an adaptive solver using quasi-constant step sizes based on the
backward differentiation formulas up to a maximum order five. The time-
stepper handles non-linearities in the input function through a simplified
Newton iteration by approximating and reusing the Jacobian of the system
of equations. ODE15s behaves very well with nonstiff problems, but is also
suitable for stiff problems. However, the accuracy of ODE15s is only low to
medium [26].

Technical details on the implementation of the pseudospectral methods and
connecting the spatial discretization with ODE15s is given in Appendix B.

6.4 Convergence of Pseudospectral Methods
As stated earlier, we expect the convergence rate of pseudospectral methods
to be O(1/NN). The rapid convergence rate of spectral methods owe to the
convergence properties of series expansions of orthogonal functions.

When solving a PDE using pseudospectral methods, there are several sources
of error. Boyd [6] separates between

• Truncation error: the truncation error is defined to be the error made
by neglecting all spectral coefficients aj with j > N of the solution’s
series expansion (or translated to pseudospectral’s terminology: the



6.4 Convergence of Pseudospectral Methods 59

error made by only using (N + 1) collocation points and not infinitely
many3).

• Discretization error: the discretization error is the difference between
the first (N +1) terms of the series expansion of the exact solution and
the corresponding terms computed by pseudospectral methods.

• Interpolation error: the interpolation error is the error made by approx-
imating a function by a (N+1)-term series whose coefficients are chosen
to make the approximation agree with the target function exactly at
(N + 1) interpolation/collocation points.

It is generally impossible to determine these various errors precisely. As the
exact solution is unknown, we do not have control over any of the errors.
However, the truncation error may be estimated by computing the expan-
sion of a known function that is believed to act in a similar manner as the
exact solution. Furthermore, Boyd argue that through many years of numer-
ical experience one can justify the assumption that the discretization and
interpolation errors are the same order of magnitude as the truncation error.
Therefore, one can roughly estimate the accuracy of pseudospectral methods
by inspecting the (estimated) truncation error alone.

In order to estimate the truncation error, we take a closer look upon conver-
gence properties of Fourier and Chebyshev series. The teory presented here
is based on the book of Gottlieb and Orszag [12].

6.4.1 Fourier Series

The complex Fourier series of a known function f(x) defined on the interval
[0, 2π] is the periodic function

g(x) =
∞∑

j=−∞

aje
ijx,

where i now refers to the complex number
√
−1 and where the series co-

effiecient aj are given by

aj =
1

2π

∫ 2π

0

f(x)e−ijxdx.

3It may not be obvious why these two “definitions” of the truncation error is the same,
but as Boyd shows, the Galerkin approach through a series expansion is equivalent with the
pseudospectral approach through collocation points if the collocation points are quadrature
points in a Gaussian quadrature rule. For more details, see chapter 4.4 in [6].
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If we define gN(x) as the truncated series

gN(x) =
N∑

j=−N

aje
ijx,

we wish to estimate the convergence rate of |f(x) − gN(x)| as N → ∞. If
f(x) is periodic, and has continuous derivatives up to order (k− 1) for some
positive integer k, and if f (k)(x) is integrable, then integration by parts yields

aj =
1

2π(ij)k

∫ 2π

0

f (k)(x)e−ijxdx.

Since f (k) is integrable, the Riemann-Lebesgue lemma implies that aj � 1/jk

when j → ±∞. It is possible to show that if aj goes to zero like 1/jk and no
faster, then the error is

gN(x)− f(x) = O
( 1

Nk

)
as N →∞,

which is called algebraic convergence of order k. In particular, if f(x) is
infinitely differentiable and periodic, then

gN(x)− f(x) = O
( 1

Nk

)
∀k ≥ 0 as N →∞, (6.16)

which means that gN(x) converges to f(x) more rapidly than any finite power
of 1/N as N →∞. This order of convergence is called exponential or spectral
convergence.

6.4.2 Chebyshev Series

The convergence theory for Chebyshev series is similar to that of Fourier
cosine series since the Chebyshev series is just a disguised Fourier cosine
series: When a function f(x) defined on the interval [−1, 1] has a Chebyshev
series given by

g(x) =
∞∑
j=0

ajTj(x),

then G(θ) = g(cos θ) is the Fourier cosine series of F (θ) = f(cos θ) for
θ ∈ [0, π]. This follows directly from the cosinus-property of Chebyshev
polynomials; that is, Tj(cos θ) = cos(jθ), and using the mapping x = cos θ.
The series coefficients aj in the Chebyshev series will be given by

aj =
2

πdj

∫ π

0

f(cos θ) cos(jθ)dθ =
2

πdj

∫ 1

−1

f(x)Tj(x)(1− x2)−1/2dx,
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where d0 = 2 and otherwise 1. Since a Fourier cosine series has the same
convergence properties as a normal Fourier series when applicable, the Cheby-
shev series will also have the same convergence properties. Hence, if f(x) is
infinitely differentiable4, the truncated series expansion gN(x) =

∑N
j=0 ajTj(x)

converges to f(x) at exponential/spectral rate as N →∞.

However, it is important to note that for both Fourier and Chebyshev dis-
cretizations, spectral convergence is only obtained when the unknown solu-
tion has infinitely many continuous derivatives. This assumption is usually
too optimistic.

4Periodicity in the function f(x) is not necessery when using Chebyshev series since
the coordinate transform x = cos θ assures 2π-periodicity independently of f .





Chapter 7

Results and Discussion -
Simulations

The unsteady simulator built using pseudospectral methods and ODE15s,
solve the governing nonlinear equations (3.5)-(3.7). The simulator’s input is
the dimensions of the cylinder, the Rayleigh number and vertical boundary
conditions, and the output is the temperature distribution and velocity field
after a certain amount of time. From the temperature distribution and ve-
locity field, we are enabled to determine the convection pattern, hence we
can investigate how the nonlinear regime differs from that of the linearized
system. The solver may also be used to examine the stability of existing con-
vection cells: Through simulations we may investigate the effect of variations
in the Rayleigh number and find out how a specific convective mode responds
when the domain changes or when a numerical perturbation is added during
a simulation. At last we attempt to investigate the effect of convection cells
on heat fluxes into a heat producing well.

7.1 Comparison with Linear Results

In Chapter 5, we found critical Rayleigh numbers and corresponding mode
maps using a linear stability analysis. However, linearizing the equations
raises the question if we made severe errors through the linearization. There
is a possibility that our assumption of small temperature variations is not
valid in the original nonlinear equations, hence making our estimates for the
critical Rayleigh numbers and mode maps useless for real-world applications.
Using the unsteady simulator to solve the governing, nonlinear equations and
compare the appearing mode with the one found using linear analysis, en-
ables us to determine the validity of the linear analysis.

63



64 Results and Discussion - Simulations

Furthermore, the linear analysis is not able to say anything about stability
and appearence of the (higher order) modes, nor how the Rayleigh num-
ber affects the convection. These questions can also be answered through
simulations.

7.1.1 Critical Rayleigh Numbers

For both the conducting and insulated sidewalls, simulations provided ap-
proximately the same estimates for the critical Rayleigh number as the lin-
ear analysis. Steady solutions involving convection cells were obtained for
different values of Ra above the critical value given by linear theory. Weakly
nonlinear theory for systems in which supercritical bifurcations occur indicate
that the amplitude of convection is proportional to (Ra − Rac)

1/2, meaning
that the square of the amplitude will be proportional to (Ra − Rac). Thus
we may extrapolate backwards to determine the critical value of Ra from the
point of view of the nonlinear code. In our context, the amplitude is given
by

A =

√[∫
V

T sin(mθ)dV
]2

+
[∫

V

T cos(mθ)dV
]2

,

where the integrals are taken over the volume of the annular cylinder. Values
of Rac obtained in this way were compared with the analytical solutions and
were found to compare well, thereby lending confidence to the accuracy of
the numerical coding and the quality of the numerical results.

Starting out with the Rayleigh number being larger than the critical, hence
obtaining a stable convection pattern, and then gradually lowering the Rayleigh
number below the critical, always resulted in the convection pattern decreas-
ing in magnitude before disappearing completely when the critical Rayleigh
number predicted from the linear stability analysis was reached.

7.1.2 Mode Maps

Simulations with Rayleigh number slightly larger than the critical in or-
der to test which convective mode appeared, generally provided the convec-
tion mode predicted from the above analysis. The linear regime is therefore
adequate for describing the convection pattern in the nonlinear regime for
Rayleigh number slightly above the critical. However, for the conducting
sidewalls, simulations provided the correct value of m, but when the linear
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analysis predicted p to be 4 or larger in the heat conducting sidewalls case,
simulations always provided a smaller value of p. The reason for this is either
that our solver is not able to reproduce convective modes with large values
of p when the sidewalls are heat conducting, or that the linear analysis is not
suitable for describing the nonlinear regime in these cases.

As mentioned in Section 5.2.2, our mode map is not entirely equal to the
one obtained by Bau and Torrance [2]. Simulations with the inner and outer
radius chosen corresponding to the positions in the mode maps where devi-
ations were present, resulted in the mode predicted from our mode map.

7.1.3 Higher Order Modes

Simulations with Rayleigh numbers slightly larger than Rac,n, for some pos-
itive integer n, could both produce the basic mode (m, p), but also higher
order modes up to (mn, pn) appeared. A detailed comparison would have to
be made with a weakly nonlinear analysis of the respective modes and their
interaction, rather than with the linearized theory, and this aspect is outside
of the scope of this master thesis. However, Riley and Winters [27] made a
very thorough study of the modal exchange mechanisms for convection in a
two dimensional porous cavity using a stationary finite element solver cou-
pled with bifurcation tracking software. In that paper they showed that the
second mode that appears is generally unstable but eventually gains stability
as Ra increases.

The scenario of Riley andWinters also applies in the present three-dimensional
context, as may be seen in Figure 7.1. Here we show a case with insulated
sidewalls where Rw = 0.1 and R = 0.7. The critical Rayleigh numbers for
the first two modes, (1, 0) and (2, 0), are 41.41 and 43.82. The (1, 0) remains
stable with respect to numerical perturbations within the range of values of
Ra we consider, but the (2, 0) mode is only stable above Ra = 50. The sec-
ondary mode becomes unstable for lower Rayleigh numbers since this mode
should disappear for a Rayleigh number larger than the (basic) critical, hence
the basic mode will take over when the secondary is in the process of dis-
apperaing since convection is still possible. Since the different modes have
overlapping stability regions; hence, several modes are possible for a given
Rayleigh number. We cannot speak of a preferred mode since which mode
to appear depends on the initial conditions.
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Ra

A

•

Figure 7.1: The variation of the amplitude of convection with Rayleigh num-
ber for modes (1, 0) and (2, 0) for Rw = 0.1 and R = 0.7 and with insulated
sidewalls. The dashed/dotted line is the amplitude of the basic mode (1, 0).
The continuous line is the amplitude of the stable part of the secondary mode
(2, 0) branch, while the dashed line is the unstable part. Our solver was not
able to extend the dashed line any further owing to numerical instabilities.

7.1.4 The Appearence of Mixed Modes

In the insulated sidewalls case, stable modes not present in the linear anal-
ysis was found. For values of the outer radius larger than 1, convective
modes being intermediate of two other modes, so-called mixed modes, could
be found. For example, for Rw = 0.7 and R = 2.1, the first and secondary
modes are (5, 0) and (2, 1). The critical Rayleigh numbers corresponding to
these patterns are 39.51 and 39.58. When Ra = 39.75 the stable solution
shown in Figure 7.2 arises. It is clear from the Figure that an m = 2 pattern
dominates near the inner radius and an m = 5 pattern dominates near the
outer radius.

The amplitude and stability regions for the mode (5, 0) and the mixed mode
are sketched for low Rayleigh numbers in Figure 7.3. This Figure suggests
that the mixed mode bifurcates away from the pure mode, rendering the
latter unstable. The secondary mode (2, 1) is unstable for all low Rayleigh
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Figure 7.2: The convection mode has m = 2 near the inner radius, while
m = 5 near the outer radius. The value of p is either 0 or 1 depending on
which radial ray you look at.

numbers, hence this mode is not present in the Figure.

These mixed modes would be impossible to detect by the linear stability
analysis, since the solution of the linearized equations only allow one value
of m and p describing the convection in the whole domain. Hence, these
intermediate modes develop owing to nonlinear effects. The mixed modes
were only observed for outer radius larger than 1, possibly because of the
severe clustering of modes present for larger outer radius. We also observed
that for even larger outer radius, the mixed modes became more dominating
over the basic mode; that is, the basic mode had a smaller stability region.
It is likely to believe this effect to be even more important when the outer
radius increase further, hence the classical approach of assigning one value
of m and p to describe the convection patterns will not be sufficient.
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Ra

A

Figure 7.3: The variation in amplitude of convection with Ra for the case
Rw = 0.7 and R = 2.1, with insulated sidewalls. The continuous line cor-
responds to the stable part of the basic mode (5, 0) having critical Rayleigh
number 39.51, while the dashed line is the unstable region of this mode. The
dashed-dotted line is the stable mixed mode branch.

7.2 Stability of Convection Cells

As already mentioned above, we have considered the stability with respect
to numerical perturbations. Also, stability with respect to perturbations in
the domain was investigated.

7.2.1 Stability with Respect to Numerical Perturbations

In order to investigate the convection cells’ stability with respect to perturba-
tions, numerical perturbations of different magnitudes was added to a stable
convection mode and then timestepped until stability again was reached.
Adding random perturbations of magnitudes from 10−6 to 10−1 resulted in
the perturbations dying out quickly if in a stability region, but would give
a different mode if outside the mode’s stability region (cf Figures 7.1 and 7.3).

Two different convective modes can have overlapping stability regions un-
til the point where the recessive mode becomes unstable. We observed two
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different cases of this phenomena: In the first case, as captured in Figure
7.1, the basic mode is stable for all (observable) Rayleigh numbers larger
than the critical, while the second order mode becomes unstable when the
Rayleigh number approach Rac,2. The second order mode is recessive for
smaller Rayleigh numbers: In the case investigated in the figure, Rac,2 was
43.82, hence the solid line should in theory approach zero for this Rayleigh
number. However, convection is possible for all Rayleigh numbers larger than
the first critical Rayleigh number, so when the second order mode is in the
process of disappearing, the basic mode will take over, hence making the
second order mode unstable.

The other appearence of modes becoming recessive, is in the appearence of
mixed modes and is observed in Figure 7.3. Here, the basic mode is unstable
for larger Rayleigh numbers because of the dominance of the mixed mode.

7.2.2 Stability with Respect to the Domain - Sharpness
of Bifurcation Trajectories

Simulations can reveal if bifurcation trajectories from the mode maps are
equally sharp and present in the nonlinear case by choosing values of Rw and
R close to each other and at each side of a bifurcation trajectory, and with
Rayleigh number slightly over the critical. In both the insulated and the
conducting sidewalls case, the bifurcation trajectories from the mode maps
were found to be present at the positions given by the linear analysis (with
the exceptions for bifurcation trajectories concerning p larger than 4 for the
conducting sidewalls). Choosing values of the inner and outer radius less
than 0.005 nondimensional length units away from a bifurcation trajectory,
provided a mixed mode at onset, but the mode stabilized at the mode pre-
dicted from the linear analysis when using low Rayleigh numbers.

However, given a convection mode near a bifurcation trajectory, and perturb-
ing the domain such that another convection mode should be the preferred
according to the analysis, produced this other mode. Hence the convection
modes are not stable with respect to domain perturbations near the bifurca-
tion trajectories. We may also conclude that the bifurcation trajectories are
sharp; there are no transition zones. The mode at the other side of the tra-
jectory will, however, appear as a secondary mode, with stability properties
as described above.

Even though mixed modes could appear at onset this does not contradict
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the conclusion that the bifurcation trajectories are sharp since these mixed
modes were not stable.

7.3 Experiment: Heat Fluxes into a Heat Pro-
ducing Well

To investigate the effect of convection cells on heat fluxes in a porous medium,
we have designed some preliminary experiments. We apply our simulator to
an experiment involving three cases, and compare heat fluxes into the heat
producing well. The experiment concerns the annular cylinder with heat
conducting sidewalls where the inner cylinder represents a closed and heat
producing well, and the outer cylinder having a radius of 4 represents the end
of a large heat reservoir which were assumed to be kept at the linear tem-
perature used earlier. The inner cylinder has a radius of 10−6 and is cooled
to various linear temperature distributions in order to observe the effect of a
cooled well. Schematically, the experiment setup is as illustrated in Figure
7.4.

T = 1

T = 0

r

z

Tmax→

Tmin→

Rw R

Figure 7.4: The inner radius is kept at a linear temperature distribution
where T = Tmax at z = 0 and T = Tmin at z = 1. We still apply T = 1− z at
the outer radius, and the top and bottom of the cylinder are as always kept
at T = 0 and T = 1, respectively.

The well is kept at the linear temperature distribution given by

T = Tmax − (Tmax − Tmin)z, (7.1)
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where Tmax is allowed to vary between 0 and 1, and Tmin may vary between
(−1) and 0. Note that a negative temperature in our nondimensional vari-
ables only means that the temperature is lower than the temperature of the
cylinder’s top.

We consider three different cases:

Case I Rayleigh number 45 (that is, larger than the critical if no cooling of
the well),

Case II Rayleigh number 35 (that is, smaller than the critical if no cooling
of the well),

Case III No convection allowed; all velocities are set to zero.1

Case II will still provide convection due to the cooling of the well. Hence
convection cells are expected to be present in Case I and II, but the convec-
tion should be stronger in Case I.

For each of the three different cases, we timestep the simulator until stability
is reached and then calculate the total (nondimensional) heat flux Qw into
the well, which is given by

Qw = −
∫
δRw

∇T · ndS.

The integral is taken over the vertical boundary of the well, and n is the
outward unit vector of the well. Since n = er, that is, the radial unit vector,
then

∇T · n =
∂T

∂r
.

7.3.1 Results for the Three Different Cases

Varying Tmax and Tmin and calculating the corresponding heat fluxes into the
well, produces the heat fluxes given in Table 7.1. Note that even though we
observe equal values of the heat fluxes for different degrees of cooling in Ta-
ble 7.1(c), the temperature distributions in the porous medium are not equal.

From Table 7.1 we see the expected tendency that a cooler well provides a
larger heat flux into the well. However, the convection cells have a negative

1This case corresponds to only solving the heat equation since the convective term in
the energy equation (3.7) disappears.
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(a) Case I

Tmin\Tmax 0 0.25 0.5 0.75 1
-1 73.72 61.45 49.43 37.74 26.39

-0.75 62.59 50.53 38.79 27.53 16.99
-0.5 51.72 39.43 28.79 18.19 9.02
-0.25 41.29 30.24 19.38 10.38 2.34
0 30.53 19.76 10.52 2.48 0

(b) Case II

Tmin\Tmax 0 0.25 0.5 0.75 1
-1 79.43 67.81 56.50 45.56 35.07

-0.75 68.85 57.48 46.47 35.90 25.86
-0.5 58.47 47.39 36.73 26.57 17.64
-0.25 48.30 37.55 27.27 17.57 8.50
0 38.31 27.96 18.09 8.80 0

(c) Case III

Tmin\Tmax 0 0.25 0.5 0.75 1
-1 96.54 84.47 72.41 60.34 48.27

-0.75 84.47 72.41 60.34 48.27 36.20
-0.5 72.41 60.34 48.27 36.20 24.14
-0.25 60.34 48.27 36.20 24.14 12.07
0 48.27 36.20 24.14 12.07 0

Table 7.1: Heat fluxes into cooled well.

effect on the heat fluxes; equal degree of cooling provides a smaller heat flux
into the well when convection is present. This negative effect is caused by the
distribution of the convection cells near the well; the cooled well triggers a
toroidal convection cell stretching around the well and has the flow direction
observed in Figure 7.5(a). This flow direction causes cold fluid flowing down
along the well and hot fluid flowing upwards away from the well. Hence the
radial temperature gradient near the well is smaller, giving a smaller heat
flux into the well in Case I and Case II, see Figure 7.5.

7.3.2 Alternative Approaches to Determine the Effect
of Convection Cells

The above experiment has its main limitation in the unrealistic boundary
conditions at the top and bottom of the annular cylinder. Keeping the top
and bottom at constant temperatures corresponds to assuming there beeing
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(a) Case II

(b) Case III

Figure 7.5: Temperature distribution near the well when the inner radius is
cooled such that Tmin = −0.5 and Tmax = 0.5. The red, yellow, green and
blue surfaces represents temperatures of 0.8, 0.6, 0.4 and 0.2, respectively.

an infinite heat reservoir below the porous medium and an infinite heat re-
ceiver above it. More realistic would be to model the rock below and above
the porous medium. A possible approach would be to model the three-layered
domain sketched in Figure 7.6.

Further investigation of the effect of convection cells could be to allow the well
to be permeable in the porous layer of Figure 7.6; representing injection and
production of fluid. Injecting and producing fluid in different heights of the
layer could trigger the convection cells to distribute in a manner resulting
in a larger heat production. Also, modelling the well explicitly in stead
of only as a boundary condition for the annular cylinder, would enable us
to provide more realistic boundary conditions on the well. Other possible
additions would be to model the temperature in the solid and in the fluid
separately to get a more realistic temperature distribution. However, all the
above mentioned modifications of the model would require making significant
changes to the simulator, which is beyond the scope of this master thesis.
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T = 1

T = 0
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Tmin→
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Layer 1

Layer 2

Layer 3

Figure 7.6: Layers 1 and 3 are assumed impermeable, but are able to conduct
heat. Layer 2 is the porous medium. The inner radius is assumed insulated
in layers 1 and 3.



Chapter 8

Summary and Conclusions

In this thesis we have developed a model for convection cells in a porous
cavity between two vertical coaxial cylinders that are heated from below and
cooled from above. The model equations needed to describe the convection
cells under our assumptions were presented in Chapter 2 and transformed
to nondimensional form in Chapter 3. We applied a linear stability analy-
sis to the resulting model in Chapter 4 and were able to find an analytical
solution to the linear equations through separation of variables. The ana-
lytical solution enabled us to develop a strategy for determining the critical
Rayleigh number for onset of convection and finding the corresponding pre-
ferred modes as well as higher order modes.

In accordance with previous studies, we find the critical Rayleigh numbers
to converge to 4π2, and always be larger for heat conducting sidewalls. Our
results show that the effect of an inner radius is more severe for heat con-
ducting sidewalls. The presence of an inner cylinder increase the critical
Rayleigh number significantly compared to the non-annular cylinder studied
by Haugen and Tyvand [13]. For the insulated sidewalls, the inner radius
does not have a similar effect. Letting the inner radius approach zero, our
results show that the problem with insulated sidewalls degenerates into the
one studied by Zebib [33], while a small heat conducting inner radius would
still affect the critical Rayleigh number. Letting the inner radius approach
zero, the case of Haugen and Tyvand appears as a special case in our analysis.

Our linear analysis provides maps over preferred convective modes for the
two cases, and in general our results show the appearance of more convec-
tion cells in radial direction for increasing outer radius, and more convection
cells in azimuthal direction for increasing inner radius. For the insulated
sidewalls case, we sometimes find other modes than Bau and Torrance [2]
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found in their paper. High-resolution simulations confirms our analysis.

To investigate the nonlinear regime we designed a numerical solver using
pseudospectral methods in Chapter 6. The aim of the numerical solver was
both to determine the applicability of the linear analysis for the nonlinear
regime with respect to onset of convection and preferred convective modes
at onset, but also to consider the stability of the convection cells and how
the nonlinear regime would behave at different Rayleigh numbers. We also
planned to use the simulator with boundary conditions that would be more
realistic with respect to geothermal energy extraction.

Simulations with various inner and outer radii, and with Rayleigh num-
bers slightly above critical, conform in most cases to the convection modes
and critical Rayleigh numbers predicted from the linear analysis. Our re-
sults show that the various modes have Rayleigh number dependent stability
regimes, which is an important factor in predicting the convective mode oc-
curing in practice. The nonlinear regime also reveals the appearance of mixed
modes that are not represented in the basis of the linear analysis. As such,
the numerical simulations both verify the linear stability analysis, as well as
give bounds on its validity.

Our experiment in Section 7.3 seemingly reveals that convection cells may
have a significant effect on the heat extraction. As the horizontal boundaries
were perfectly heat conducting, our findings are not realistic. Modifications
to the simulator will be made to enable modelling of boundary conditions
mimicking extraction of energy from a geothermal reservoir.



Appendix A

Separation of Variables

We wish to solve the linear equation

∇4T̂ + Ra∇2
1T̂ = 0, (A.1)

using separation of variables when the top and bottom walls of the cylinder
are impermeable and conducting:

∇2T̂ = 0 at z ∈ {0, 1}, (A.2)

and
T̂ = 0 at z ∈ {0, 1}. (A.3)

Haugen and Tyvand [13] solve the same equation with the same two bound-
ary conditions in z. They argue that at the onset of convection between
horizontal planes that are impermeable and perfectly heat conducting, the
relation

∇2
1T̂ = ∇2T̂ + π2T̂ (A.4)

is satisfied. This implicitly means that

∂2T̂

∂z2
= −π2T̂ , (A.5)

since ∇2
1 = ∇2 − ∂2

∂z2
.

We are using separation of variables, which means that we assume the solu-
tion T̂ to be of the form

T̂ (r, θ, z) = R(r)Θ(θ)Z(z). (A.6)

77



Inserting (A.6) into the relationship (A.5) yields

d2Z
dz2

= −π2Z,

which, together with the boundary conditions (A.3), gives

Z(z) = sin(πz). (A.7)

This solution for Z(z) also satifies the other boundary condition (A.2). We
need Θ(θ) to be 2π-periodic, hence any function

Θ(θ) = cos(mθ), (A.8)

where m is some positive integer, is possible.

To find R(r), we insert the relationship (A.4) into the original Equation
(A.1):

∇4T̂ + Ra∇2T̂ + Raπ2T̂ = 0.

This can be written
(∇2 + a)(∇2 + b)T̂ = 0, (A.9)

where a and b must satisfy

a+ b = Ra and a ∗ b = Raπ2. (A.10)

The constants a and b are solutions of the same quadratic equation, hence
they will given by

a =
Ra +

√
Ra2 − 4π2Ra

2

b =
Ra−

√
Ra2 − 4π2Ra

2

We see that we only have real solutions when the Rayleigh number is larger
than 4π2, which is reasonable since the critical Rayleigh number for an in-
finite porous layer with impermeable and conducting top and bottom will
always be greater than or equal to 4π2. Restricting the porous medium in-
side an annular cylinder will only increase the critical Rayleigh number. We
also observe that a and b will always be greater than π2 in this case.

Using Equation (A.9), we can in stead solve the Helmholtz Equation

∇2T̂ + c2T̂ = 0,
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where c2 is either a or b. We use separation of variables and insert the sep-
aration assumption (A.6) using the already found solutions for Z(z), (A.7),
and for Θ(θ), (A.8), resulting in

1

r

d

dr

(
r
dR
dr

)
cos(mθ) sin(πz) +

1

r2
R(−m2) cos(mθ) sin(πz)

+R cos(mθ)(−π2) sin(πz) + c2R cos(mθ) sin(πz) = 0

Dividing by cos(mθ) sin(πz) yields

d2R
dr2

+
1

r

dR
dr

+ (c2 − π2 − m2

r2
)R = 0 (A.11)

which is only a modified version of Bessel’s differential equation,

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0,

which has solution given by Bessel functions. Our equation (A.11) therefore
has the two solutions

R(r) = Jm(r
√
c2 − π2 ) and R(r) = Ym(r

√
c2 − π2 ),

where Jm and Ym are the Bessel functions of order m and of first and second
kind, respectively.

Summing up, we end up with the two solutions

T̂1 =
[
AmJm(kr) +BmYm(kr)

]
cos(mθ) sin(πz), (A.12)

T̂2 =
[
CmJm(qr) +DmYm(qr)

]
cos(mθ) sin(πz). (A.13)

where the wavenumbers k and q are defined by

k =
√
a− π2 and q =

√
b− π2 .

The two relations (A.10) are rewritten into two relations for k and q:

k ∗ q = π2, (A.14)

Ra = k2 + q2 + 2π2. (A.15)

Using the first of these two relations, (A.14), we can eliminate the wavenum-
ber q from both the solution (A.13), and also from the Rayleigh relation
(A.15). We then obtain the three equations given in Section 4.1.1.
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Appendix B

Technical Details of the Solver

We here present some technical details concerning the implementation of the
numerical solver. The code is divided into three main parts: first, creation
of the data structure by initializing the grid and creating the differentia-
tion matrices needed for the timestepping, followed by the initializing of the
timestepping routine and the timestepping itself, and eventually, user output.
A flow chart of the simulator is given at the end of the appendix.

B.1 Initializing Grid and Matrices

The first part of the solver includes initialization of grid and matrices; an
ordered grid must be made and differentiation matrices must be created.

B.1.1 Make 3D-Grid

An ordering or enumeration of the points is needed in order to combine the
three spatial dimensions. We use the Matlab command meshgrid(th, r, z),
where th, r and z are vectors of length Nθ, (Nr+1) and (Nz+1), respectively,
containing the different nodes in each dimension. The meshgrid-command
creates an ordering of the points corresponding to

v = [r1θ1z1, r2θ1z1, . . . , rNr+1θ1z1, r1θ2z1, . . . ,

. . . , rNr+1θNθz1, r1θ1z2, . . . , rNr+1θNθzNz+1]T , (B.1)

where the notation riθjzk here refers to the value of the vector v in the
collocation node (r(i), th(j), z(k)).
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B.1.2 Create Differentiation Matrices

In discretizing the equations (3.5)-(3.7) we need differentiation matrices for
the three single derivatives ∂

∂r
, 1
r
∂
∂θ

and ∂
∂z
. The differentiation matrices cor-

responding to each 1D-case is easily found using the formulas (6.12) and
(6.14), while the expansion to three spatial dimensions are made using the
matlab command kron(X, Y) which takes the Kronecker tensor product be-
tween the matrices X and Y. According to the data structure made through
meshgrid, the differentiation matrices will be given by

Dr1_3D = kron(eye(N_th ∗ (N_z + 1)),Dr1_1D)

Dth1_3D = kron(eye(N_z + 1), kron(Dth1_1D, diag(1./r)))

Dz1_3D = kron(Dz1_1D, eye(N_th ∗ (N_r + 1)))

The second order differentiation matrices for 1
r
∂
∂r

(r ∂
∂r

), 1
r2

∂2

∂θ2
and ∂2

∂z2
are

made in a smililar manner.

B.1.3 Apply Boundary Conditions

Applying the boundary conditions is done by first localizing the nodes cor-
responding to the vertical and horizontal boundaries. These nodes are easily
found using Matlab’s find function. After localizing, all matrix lines corre-
sponding to the boundary nodes (cf the ordering of nodes given by (B.1))
are set to zero and then replaced by a discrete version of the boundary con-
dition. For example, in the case of the insulated sidewalls, all matrix lines
corresponding to the inner and outer radius is replaced with the correspond-
ing line in Dr1_3D.

B.2 Timestepping

Step two of the solver is the main step; here the matrix equations made in
the previous step is timestepped using ODE15s.

B.2.1 Initializing

ODE15s always need an inital condition for the temperature to start. The
default choice of initial condition is the linear temperature distribution T =
(1− z), but alternative intitial conditions can be given as input.
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B.2.2 Create Function for ODE15s to Solve

The timestepper ODE15s is only used to solve the energy equation (3.7), this
being the only equation with a time derivative. ODE15s needs a (vector)
function in the form M dT

dt
= f(T, t) to solve, where T is now a vector in the

form (B.1) and M is the mass matrix. Using the differentiation matrices, we
define f to be a discrete version of

M
dT

dT
= ∇2T − v · ∇T,

where ∇2 and ∇ are represented through differentiation matrices, and v is
found using discrete versions of the Darcy equation (3.5) and the mass con-
servation equations (3.6) in each time step.

The mass matrixM would normally be defined to be the identity matrix, but
since we wish to remove the time derivatives in the matrix lines corresponding
to boundary nodes,M is the identity matrix with zeros on these lines. Hence,
M is singular and we therefore have a DAE-system. ODE15s and ODE23t
are the only two of Matlab’s ODE solvers capable of solving DAE-systems.

B.2.3 Timestepping with ODE15s

Using the options() command in Matlab enables us to control the time
stepping of ODE15s. We have used the MaxStep which controls the maximum
step size, and MaxOrder which restricts the order of the adaptivity. The step
size was restricted in order to prevent ODE15s to take too long time steps
when the linear temperature T = (1 − z) was used as initial condition; this
was because this temperature distribution also represents a possibly stable
solution. In some cases we had to reduce the order of the solver to achieve
better stability properties.

B.3 Output
Even though ODE15s calculated the pressure and velocities in every time
step, its only output is the temperature distribution. However, the pressures
and velocities may be recalculated afterwards at required time steps using
the now known temperature distribution. This way, the user may choose
which output is wanted. In most simulations, we chose the temperature and
velocity distribution for all time steps as output.
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Initializing grid and matrices
Make 3D-grid

Create 1D first and second order differentiation matrices

Expand matrices to 3D

Localize matrix lines corresponding to boundary nodes

Modify differentiation matrices for boundary conditions

Timestepping
Initialize temperature

Create function for ODE15s to solve

Set properties for ODE15s

Timestepping with ODE15s

Output: temperature and velocity
field for all time steps

Figure B.1: Flow chart of simulator.
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