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Abstract. The Cycle Packing problem asks whether a given undirected graph G = (V,E) con-
tains k vertex-disjoint cycles. Since the publication of the classic Erdős–Pósa theorem in 1965, this
problem received significant attention in the fields of graph theory and algorithm design. In particu-
lar, this problem is one of the first problems studied in the framework of parameterized complexity.
The nonuniform fixed-parameter tractability of Cycle Packing follows from the Robertson–Seymour
theorem, a fact already observed by Fellows and Langston in the 1980s. In 1994, Bodlaender showed

that Cycle Packing can be solved in time 2O(k2) · |V | using exponential space. In the case a solu-
tion exists, Bodlaender’s algorithm also outputs a solution (in the same time). It has later become

common knowledge that Cycle Packing admits a 2O(k log2 k) · |V |-time (deterministic) algorithm
using exponential space, which is a consequence of the Erdős–Pósa theorem. Nowadays, the design
of this algorithm is given as an exercise in textbooks on parameterized complexity. Yet, no algorithm

that runs in time 2o(k log2 k) · |V |O(1), beating the bound 2O(k log2 k) · |V |O(1), has been found. In

light of this, it seems natural to ask whether the 2O(k log2 k) · |V |O(1) bound is essentially optimal. In

this paper, we answer this question negatively by developing a 2
O( k log2 k

log log k
) · |V |-time (deterministic)

algorithm for Cycle Packing. In the case a solution exists, our algorithm also outputs a solution

(in the same time). Moreover, apart from beating the bound 2O(k log2 k) · |V |O(1), our algorithm
runs in time linear in |V |, and its space complexity is polynomial in the input size.
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1. Introduction. The Cycle Packing problem asks whether a given undi-
rected graph G = (V,E) contains k vertex-disjoint cycles. Since the publication of
the classic Erdős–Pósa theorem in 1965 [16], this problem received significant attention
in the fields of graph theory and algorithm design. The problem is known to be NP-
complete as it contains partition into triangles as a special case (take k = |V |/3) [21].
Furthermore, Cycle Packing is one of the first problems studied in the framework
of parameterized complexity. In this framework, each problem instance is associ-
ated with a parameter k that is a nonnegative integer, and a problem is said to be
fixed-parameter tractable (FPT) if the combinatorial explosion in the time complexity
can be confined to the parameter k. More precisely, a problem is FPT if it can be
solved in time f(k) · |I|O(1) for some function f , where |I| is the input size. For more
information, we refer the reader to recent monographs such as [15, 11, 19].
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PACKING CYCLES FASTER THAN ERDOS–POSA 1195

In this paper, we study the Cycle Packing problem from the perspective of
parameterized complexity. In the standard parameterization of Cycle Packing, the
parameter is the number k of vertex-disjoint cycles. The nonuniform fixed-parameter
tractability of Cycle Packing follows from the Robertson–Seymour theorem [41],1

a fact already observed by Fellows and Langston in the 1980s. In 1994, Bodlaender
showed that Cycle Packing can be solved in time 2O(k2) · |V | using exponential
space [3]. Notably, in the case a solution exists, Bodlaender’s algorithm also outputs

a solution in time 2O(k2) · |V |.
The Erdős–Pósa theorem states that there exists a function f(k) = O(k log k)

such that for each nonnegative integer k, every undirected graph either contains k
vertex-disjoint cycles or it has a feedback vertex set consisting of f(k) vertices [16]. It
is well known that the treewidth (tw) of a graph is not larger than its feedback vertex
set number (fvs) and that a naive dynamic programming (DP) scheme solves Cycle
Packing in time 2O(tw log tw) · |V | and exponential space (see, e.g., [11]). Thus, the

existence of a 2O(k log2 k) · |V |-time (deterministic) algorithm that uses exponential
space can be viewed as a direct consequence of the Erdős–Pósa theorem. Nowadays,
the design of this algorithm is given as an exercise in textbooks on parameterized
complexity such as [15] and [11]. In the case a solution exists, this algorithm does
not output a solution (though we remark that with a certain amount of somewhat
nontrivial work, it is possible to modify this algorithm to also output a solution).

Prior to our work, no algorithm that runs in time 2o(k log2 k) · |V |O(1), beating the

bound 2O(k log2 k) · |V |O(1), has been found. In light of this, it seemed tempting to

ask whether the 2O(k log2 k) · |V |O(1) bound is essentially optimal. In particular, two
natural directions to explore in order to obtain a faster algorithm necessarily lead to a
dead end. First, Erdős and Pósa [16] proved that the bound f(k) = O(k log k) in their
theorem is essentially tight as there exist infinitely many graphs and a constant c such
that these graphs do not contain k vertex-disjoint cycles and yet their feedback vertex
set number is larger than ck log k. Second, Cygan et al. [12] proved that the bound
2O(tw log tw) · |V |O(1) is also likely to be essentially tight in the sense that unless the
exponential time hypothesis (ETH) [23] is false, Cycle Packing cannot be solved
in time 2o(tw log tw) · |V |O(1). (However, it might still be true that Cycle Packing is
solvable in time 2o(fvs log fvs) · |V |O(1).) With respect to the parameter k, one can show
that Cycle Packing does not admit an algorithm with running time 2o(k) · |V |O(1),
unless ETH fails. This follows from the fact that the problem of partitioning into
triangles does not admit an algorithm with running time 2o(|V |) · |V |O(1), unless ETH
fails, even when input graph is of degree at most 4 [44].

1.1. Related work. The Cycle Packing problem admits a factor O(log |V |)
approximation algorithm [33], and it is quasi-NP-hard to approximate within a factor

of O(log
1
2−ε |V |) for any ε > 0 [20]. In the context of kernelization with respect to

the parameter k (a polynomial time algorithm that given an instance of the problem
returns an equivalent instance of the problem, with the size and the parameter of
the output instance being bounded by a function of the input parameter), Cycle
Packing does not admit a polynomial kernel unless NP ⊆ coNP/Poly [6]. We refer
to [11] for the notion of kernelization and for the theory of lower bounds on kerneliza-
tion. Recently, Lokshtanov et al. [34] defined a notion of “approximate kernelization”
and obtained a 6-approximate kernel with O((k log k)2) vertices along with a (1 + ε)-
approximate kernel with kO(f(ε)) vertices for some function f . We would like to

1The paper [41] was already available as a manuscript in 1986 (see, e.g., [3]).
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1196 LOKSHTANOV, MOUAWAD, SAURABH, AND ZEHAVI

mention that in the case one seeks k edge-disjoint cycles rather than k vertex-disjoint
cycles, the problem becomes significantly simpler in the sense that it admits a kernel
with O(k log k) vertices [6].

Focusing on structural parameters, Bodlaender, Jansen, and Kratsch [4] obtained
polynomial kernels with respect to the vertex cover number, vertex-deletion distance
to a cluster graph, and max leaf number. In planar graphs, Bodlaender, Penninkx, and

Tan [5] solved Cycle Packing in subexponential time 2O(
√
k) · |V |O(1) and showed

that this problem admits a linear kernel. In the more general class of H-minor-free
graphs, Dorn, Fomin, and Thilikos [14] also solved Cycle Packing in subexponential

time 2O(
√
k) · |V |O(1). Moreover, for apex-minor-free graphs, Fomin et al. [18] showed

that Cycle Packing admits a linear kernel, and Fomin et al. [17] showed that it
also admits an EPTAS. When the input graph is a directed graph, Cycle Packing
is W[1]-hard [42], but it admits an FPT approximation scheme [22]. In fact, Cycle
Packing in directed graphs was the first W[1]-hard problem shown to admit such a

scheme. Krivelevich et al. [33] obtained a factor O(|V | 12 ) approximation algorithm for
Cycle Packing in directed graphs and showed that this problem is quasi-NP-hard
to approximate within a factor of O(log1−ε |V |) for any ε > 0.

Several variants of Cycle Packing have also received significant attention. For
example, the variant of Cycle Packing where one seeks k odd vertex-disjoint cycles
has been widely studied [39, 43, 38, 32, 30, 31]. Another well-known variant, where
the cycles need to contain a prescribed set of vertices, has also been extensively
investigated [27, 36, 28, 26, 29]. Furthermore, a combination of these two variants has
been considered in [26, 25].

Finally, we briefly mention that inspired by the Erdős–Pósa theorem, a class of
graphs H is said to have the Erdős–Pósa property if there is a function f(k) for which
given a graph G, it either contains k vertex-disjoint subgraphs such that each of these
subgraphs is isomorphic to a graph in H, or it contains a set of f(k) vertices that hits
each of its subgraphs that is isomorphic to a graph in H. A fundamental result in
graph theory by Robertson and Seymour [40] states the the class of all graphs that
can be contracted to a fixed planar graph H has the Erdős–Pósa property. Recently,
Chekuri and Chuzhoy [7] presented a framework that leads to substantially improved
functions f(k) in the context of results in the spirit of the Erdős–Pósa theorem.
Among other results, these two works are also related to the recent breakthrough
result by Chekuri and Chuzhoy [8], which states that every graph of treewidth at
least f(k) = O(k98 · polylog(k)) contains the k × k grid as a minor. (The constant
98 has been improved to 36 in [9] and to 19 in [10].) Following the seminal work by
Robertson and Seymour [40], numerous papers (whose survey is beyond the scope of
this paper) investigated which other classes of graphs have the Erdős–Pósa property,
which are the “correct” functions f associated with them, and which generalizations
of this property lead to interesting discoveries.

1.2. Our contribution. In this paper, we show that the running time of the
algorithm that is a consequence of the Erdős–Pósa theorem is not essentially tight. For

this purpose, we develop a 2O( k log2 k
log log k ) · |V |-time (deterministic) algorithm for Cycle

Packing. In the case a solution exists, our algorithm also outputs a solution (in time

2O( k log2 k
log log k ) · |V |). Moreover, apart from beating the bound 2O(k log2 k) · |V |O(1), our

algorithm runs in time linear in |V |, and its space complexity is polynomial in the

input size. Thus, we also improve upon the classical 2O(k2) · |V |-time algorithm by
Bodlaender [3]. Our result is summarized in the following theorem.
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Theorem 1.1. There exists a (deterministic) polynomial-space algorithm that

solves Cycle Packing in time 2O( k log2 k
log log k ) · |V |. In case a solution exists, it also

outputs a solution.

On a high level, to obtain the dependency on k specified in Theorem 1.1, our
approach revisits the classic algorithm based on the Erdős–Pósa property, and to
perform some trade-off between the size of the modulator and the structure of the
graph obtained by removing it. Specifically, the idea is to compute a “relaxed feedback
vertex set”: a set S of size O(k log k/ log log k) so that G − S is not necessarily a
forest, but it has no short cycles (of length O(log k/ log log k)) after contracting long
detached paths to single edges. This creates a “relaxed” modulator that is smaller
by a O(log log k) multiplicative factor than if we required S to be a feedback vertex
set. After the application of reductions that further simplify G − S, and by using
the relaxed modulator, one can roughly guess the interaction between S and G − S
in the solution; this step amounts to guessing one of around |S|! options, which costs

O(2k log2 k/ log log k). Having fixed the interaction, we can contract any remaining long

paths so that the whole remaining graph has O(k log3/2 k) vertices; it is important
here that this step goes through even when we work with the “relaxed” modulator S
as explained above, instead of a normal feedback vertex set as in the classic algorithm.
As the size of the graph is already bounded, a simple dynamic programming on subsets
suffices to finish the proof.

More broadly, our technique relies on several combinatorial arguments that might
be of independent interest, and whose underlying ideas might be relevant to the design
of other parameterized algorithms. Let us now outline the structure of our proof,
specifying the main ingredients that we develop along the way.

• First, we show that in time linear in |V |, it is easy to bound |E| by O(k log k ·
|V |) (Assumption 1).

• Second, we give an algorithmic version of the Erdős–Pósa theorem that runs
in time linear in |V | and which outputs either a solution or a small feedback
vertex set (Theorem 3.2).

• Then, we show that given a graph G = (V,E) and a feedback vertex set F , a
shortest cycle in G can be found in time O(|F | · (|V |+ |E|)) (Lemma 3.5).

• We proceed by interleaving an application of a simple set of reduction rules
(Reduction Rules A1, A2, and A3) with a computation of a “short” cycle.
Given some g > 6, we obtain a set S of size smaller than gk such that the
girth of the “irreducible component” of G− S is larger than g (Lemma 4.2).
Here, the irreducible component of G− S is the graph obtained from G− S
by applying our reduction rules.

• Next, we show that the number of vertices in the above-mentioned irreducible
component is actually “small”—for some fixed constant c, it can be bounded

by (2ck log k)1+
6

g−6 + 3ck log k (Lemma 4.3). The choice of g = 48 log k
log log k + 6

results in the bound 3ck log k + 2ck log1.5 k (Corollary 4.4).2

• Now, we return to examine the graph G− S rather than only its irreducible
component. The necessity of this examination stems from the fact that our
reduction rules, when applied to G− S rather than G, do not preserve solu-
tions. We first give a procedure which given any set X modifies the graph

2We found these constants as the most natural ones to obtain a clean proof of any bound of

the form O( k log2 k
log log k

) (that is, the constants were not optimized to obtain the bound 3ck log k +

2ck log1.5 k).
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1198 LOKSHTANOV, MOUAWAD, SAURABH, AND ZEHAVI

G − X in a way that both preserves solutions and gets rid of many leaves
(Lemma 5.1). We then use this procedure to bound the number of leaves, as
well as other “objects,” in the reducible component of G− S (Lemma 5.2).

• At this point, the graph G may still contain many vertices: the reducible
component of G − S may contain “long” induced paths (which are not in-
duced paths in G). We show that the length of these paths can be shortened
by “guessing” permutations that provide enough information describing the
relations between these paths and the vertices in S. Overall, we are thus able

to bound the entire vertex-set of G by O(k log1.5 k) in time 2O( k log2 k
log log k ) · |V |

and polynomial space (Lemma 6.1).
• Finally, we apply a DP scheme (Lemma 7.1). Here, to ensure that the

space complexity is polynomial in the input size, we rely on the principle
of inclusion-exclusion.

2. Preliminaries. We use standard terminology from the book of Diestel [13]
for those graph-related terms that are not explicitly defined here. We only consider fi-
nite graphs possibly having self-loops and multiedges. Moreover, using an appropriate
reduction rule we restrict the maximum multiplicity of an edge to be 2. For a graph
G, we use V and E to denote the vertex and edge sets of the graph G, respectively.
For a vertex v ∈ V , we use degG(v) to denote the degree of v, i.e., the number of edges
incident on v, in the (multi) graph G. We also use the convention that a self-loop at a
vertex v contributes 2 to its degree. For a vertex subset S ⊆ V , we let G[S] and G−S
denote the graphs induced on S and V \ S, respectively. For a vertex subset S ⊆ V ,
we use NG(S) and NG[S] to denote the open and closed neighborhoods of S in G,
respectively. That is, NG(S) = {v | {u, v} ∈ E, u ∈ S} \ S and NG[S] = NG(S) ∪ S.
In the case S = {v}, we simply let N(v) = N(S) and N [v] = N [S]. For a graph
G = (V,E) and an edge e ∈ E, we let G/e denote the graph obtained by contracting
e in G. For E′ ⊆

(
V
2

)
, i.e., a subset of edges, we let G+ E′ denote the (multi) graph

obtained after adding the edges in E′ to G, and we let G/E′ denote the (multi) graph
obtained after contracting the edges of E′ in G. The girth of a graph is denoted by
girth(G), its minimum degree by δ(G), and its maximum degree by ∆(G). A graph
with no cycles has infinite girth.

A path in a graph is a sequence of distinct vertices v0, v1, . . . , v` such that {vi, vi+1}
is an edge for all 0 ≤ i < `. A cycle in a graph is a sequence of distinct vertices
v0, v1, . . . , v` such that {vi, v(i+1) mod `+1} is an edge for all 0 ≤ i ≤ `. Both a double
edge and a self-loop are cycles. If P is a path from a vertex u to a vertex v in the graph
G, then we say that u and v are the end vertices of the path P and P is a (u, v)-path.
For a path P , we use V (P ) and E(P ) to denote the sets of vertices and edges in the
path P , respectively, and a length of P is denoted by |P | (i.e, |P | = |V (P )|). For a
cycle C, we use V (C) and E(C) to denote the sets of vertices and edges in the cycle C,
respectively, and the length of C, denoted by |C|, is |V (C)|. For a path or a cycle Q
we use NG(Q) and NG[Q] to denote the sets NG(V (Q)) and NG[V (Q)], respectively.
For a collection of paths/cycles Q, we use |Q| to denote the number of paths/cycles in
Q and V (Q) to denote the set

⋃
Q∈Q V (Q). We say a path P in G is a degree-two path

if all vertices in V (P ), including the end vertices of P , have degree exactly 2 in G. We
say P is a maximal degree-two path if no proper superset of P also forms a degree-two
path. We note that the notions of walks and closed walks are defined exactly as paths
and cycles, respectively, except that their vertices need not be distinct. Finally, a
feedback vertex set is a subset F of vertices such that G− F is a forest.
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3. Basic resullts. Below we formally state and prove some of the key results
that will be used throughout the paper, starting with the classic Erdős–Pósa theorem
[16]. In particular, we give an algorithmic version of the Erdős–Pósa theorem that
runs in time linear in |V | and which outputs either a solution or a small feedback
vertex set (Theorem 3.2).

Proposition 3.1 (see [16]). There exists a constant c′ such that every (multi)
graph either contains k vertex-disjoint cycles or has a feedback vertex set of size at
most c′k log k.

Observe that any (multi) graph G = (V,E) whose feedback vertex set number is
bounded by c′k log k has less than 5c′k log k · |V | edges. (Recall that we restrict the
multiplicity of an edge to be 2.) Indeed, letting F denote a feedback vertex set of
minimum size, the worst case (in terms of |E|) is obtained when G−F is a tree, which
contains |V |−|F |−1 edges, and between every pair of vertices v ∈ F and u ∈ V , there
exists an edge of multiplicity 2, and between every pair of (not necessarily distinct)
vertices in F , there also exists an edge of multiplcity 2. Thus, by Proposition 3.1, in
the case |E| > |V | − |F | − 1 + 2|F ||V | + 2|F |2 ≥ 5c′k log k · |V |, the input instance,
(G, k) of Cycle Packing, is a yes-instance, and after we discard an arbitrary set of
|E|−5c′k log k ·|V | edges, it remains a yes-instance. A simple operation which discards
at least |E| − 5c′k log k · |V | edges and can be performed in time O(k log k · |V |) is
described after the assumption below.

Assumption 1. We assume that |E| = O(k log k · |V |).
Before we proceed, given a graph G = (V,E), let us formally argue how to discard

at least |E| − 5c′k log k · |V | edges in time O(k log k · |V |). We examine the vertices in
V in some arbitrary order {v1, v2, . . . , v|V |} and initialize a counter x to 0. For each
vertex vi, if x < 5c′k log k · |V |, then we iterate over the set of edges incident to vi,
and for each edge whose other endpoint is vj for j ≥ i, we increase x by 1. Let `
be the largest index for which we iterated over the set of edges incident to v`. We
copy V and initialize the adjacency lists to be empty. Then, we copy the adjacency
lists of the vertices v1, v2, . . . , v`, where for each adjacency involving vertices vi and
vj , where i ≤ ` < j, we update the adjacency list of vj to include vi. This completes
the description of the procedure.

Now, we state our algorithmic version of Proposition 3.1. The proof partially
builds upon the proof of the Erdő–Pósa theorem in the book [13].

Theorem 3.2. There exists a constant c and a polynomial-space algorithm such
that given a (multi) graph G and a nonnegative integer k, in time kO(1) · |V | it either
outputs k vertex-disjoint cycles or a feedback vertex set of size at most ck log k = r.

Proof. We fix c as the smallest integer such that c ≥ 150(log2 c). Let G = (V,E)
be a (multi) graph, and let k be a nonnegative integer. The objective is to show that
in time kO(1) · |V | we can either output k vertex-disjoint cycles or a feedback vertex
set of size at most ck log k = r. We remark that the first part of this proof, which
ends at the statement of Lemma 3.3, follows the proof of the Erdős–Pósa theorem
[16] given in the book [13].

We may assume that G contains at least one cycle, since this fact can clearly
be checked in time O(|V | + |E|), and if it is not true, we output an empty set as a
feedback vertex set. Now, we construct a maximal subgraph H of G such each vertex
in H is of degree 2 or 3 (in H). This construction can be done in time O(|V |+ |E|)
(see [2]). Let V2 and V3 be the degree-2 and degree-3 vertices in H, respectively. We
also compute (in time O(|V |+ |E|)) the set S of connected components of G−V (H).
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Observe that for each connected component S ∈ S, there is at most one vertex
vS ∈ V2 such that there is at least one vertex in S adjacent to vS , else we obtain
a contradiction to the maximality of H as it could have been extended by adding
a path from S. We compute (in time O(|V | + |E|)) the vertices vS , where for each
component for which vS is undefined (since it does not exist), we set vS = nil. Let
V ?2 ⊆ V2 be the set of vertices vS 6= nil such that vS has at least two neighbors in S,
which is easily found in time O(|V | + |E|). Observe that if |V ?2 | ≥ k, we can output
k vertex-disjoint cycles in time O(|V | + |E|). Thus, we next assume that |V ?2 | < k.
Moreover, observe that V ?2 ∪V3 is a feedback vertex set. Thus, if |V ?2 ∪V3| ≤ ck log k,
we are done. We next assume that |V ?2 ∪ V3| > ck log k. In particular, it holds that
|V3| > ck log k − k ≥ (c− 1)k log k.

Let H∗ be the graph obtained from H by contracting, for each vertex in V2, an
edge incident to it. We remark that here we permit the multiplicity of edges to be 3.
Then, H∗ is a cubic graph whose vertex-set is V3. To find k vertex-disjoint cycles in G
in time kO(1) ·|V |, it is sufficient to find k vertex-disjoint cycles in H∗ in time kO(1) ·|V |,
since the cycles in H∗ can be translated into cycles in G in time O(|V | + |E|). We
need to rely on the following claim, whose proof is given in the book [13]. We remark
that the original claim refers to graphs, but it also holds for multigraphs.

Proposition 3.3 (see [13, Theorem 2.3.2, p. 13]). If a cubic (multi) graph con-
tains at least q = 4k(log k + log log k + 4) vertices, then it contains k vertex-disjoint
cycles.

Thus, we know that H∗ contains k vertex-disjoint cycles, and it remains to find
them in time kO(1) · |V |. We now modify H∗ to obtain a cubic graph H ′ on at least
q vertices but at most O(k · log k) vertices, such that given k vertex-disjoint cycles in
H ′, we can translate them into k vertex-disjoint cycles in H∗ in time O(|V |), which
will complete the proof. To this end, we initially let H ′ be a copy of H∗. Now, as
long as |V (H ′)| > (c− 1)k log k + 2, we perform the following procedure:

1. Choose arbitrarily a vertex v ∈ V (H ′).
2. If v has exactly one neighbor u—that is, {v, u} is an edge of multiplicity

3—remove v and u from the graph.
3. Else if v has a neighbor u such that u, in turn, has a neighbor w (which might

be v) such that the edge {u,w} is of multiplicity 2, then remove u and w from
H ′ and connect the remaining neighbor of u to the remaining neighbor of w
by a new edge (which might be a self-loop).

4. Else, let x, y, z be the three distinct neighbors of v. Then, remove v and add
an edge between x and y. Now, each vertex is of degree 3, except for z, which
is of degree 2, and has two distinct neighbors. Remove z, and connect its two
neighbors by an edge.

Since this procedure runs in time O(1) and each call decreases the number of ver-
tices in the graph, the entire process runs in timeO(|V |). It is also clear that the proce-
dure outputs a cubic graph, and at its end, (c−1)k log k ≤ |V (H ′)| ≤ (c−1)k log k+2.
Thus, to prove the correctness of the process, it is now sufficient to consider graphs H1

and H2, where H2 is obtained from H1 by applying the procedure once, and show that
given a set C2 of k vertex-disjoint cycles in H2, we can modify them to obtain a set C1 of
k vertex-disjoint cycles in H1. Let v be the vertex chosen in the first step. If the condi-
tion in the second step was true, we simply let C1 = C2. In the second case, we examine
whether the newly added edge belongs to a cycle in the solution in time O(1) (as we as-
sume that each element in the graph, if it belongs to the solution, has a pointer to its lo-
cation in the solution), and if it is true, we replace it by the path between its endpoints
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whose only internal vertices are u and w. Finally, suppose the procedure reached the
last case. Then, if the first newly added edge is used, replace it by the path between its
endpoints, x and y, whose only internal vertex is v, and if the second newly added edge
is used, replace it by the path between its endpoints whose only internal vertex is z.

We are now left with the task of finding k vertex-disjoint cycles in H ′. We ini-
tialize a set C of vertex-disjoint cycles to be empty. As long as |C| < k, we find a
shortest cycle in H ′ in time O(|V (H ′)| · |E(H ′)|) = kO(1) (see [24]), insert it into C,
and remove all of the edges incident to its vertices from H ′. Thus, to conclude the
proof, it remains to show that for each i ∈ {0, 1, . . . , k−1}, after we remove the edges
incident to the ith cycle from H ′, it still contains a cycle.

By using induction on i, we show that after removing the edges incident to the
ith cycle from H ′, the number of edges in H ′ is at least p(i) = 3

2 (c − 1)k log2 k −
12 · i · log2(ck log2 k). This would imply that the average degree of a vertex of H ′

is at least 2p(i)
|V (H′)| ≥

2p(i)
(c−1)k log2 k+2 ≥ 2 (we later also explicitly show that 2p(i) ≥

(
√

2+1)ck log2 k), and therefore it contains a cycle (since the average degree of a forest
is smaller than 2). Initially, H ′ is a cubic graph, and therefore |E(H ′)| = 3

2 |V (H ′)| ≥
3
2 (c − 1)k log2 k, and the claim is true. Now, suppose that it is true for some
i ∈ {0, 1, . . . , k−2}, and let us prove that it is true for i+1. By Proposition 3.4, a short-
est cycle in H ′ is of length at most 2 logd−1 |V (H ′)|+2 ≤ 3 logd−1(ck log2 k), where d =

2p(i)
(c−1)k log2 k+2 ≥

2p(i)
ck log2 k

. Such a cycle is incident to at most 6 logd−1(ck log2 k) edges.

Therefore, after removing from H ′ the edges incident to a shortest cycle in it, it con-

tains at least p(i)− 6 logd−1(ck log2 k) ≥ p(i)− 6 log2(ck log2 k)
log2(d−1)

= p(i)− 6 log2(ck log2 k)

log2(
2p(i)

ck log2 k−1)

edges. Thus, by the induction hypothesis, it remains to prove that log2( 2p(i)
ck log2 k

−1) ≥
1/2, to which end we need to show that 2p(i)

ck log2 k
− 1 ≥

√
2, that is, 2p(i) ≥ (

√
2 +

1)ck log2 k. For this purpose, it is sufficient to show that 4p(i) ≥ 5ck log2 k. By the
induction hypothesis and since i ≤ k−1, 4p(i) ≥ 6(c−1)k log2 k−48k log2(ck log2 k) =
5ck log2 k+(ck log2 k−6k log2 k−48k log2 k−48k log2 c−48k log2 log2 k) ≥ 5ck log2 k+
(ck log2 k − 150(log2 c)k log2 k). Thus, we need to show that c ≥ 150(log2 c), which
holds by our choice of c. This concludes the proof.

Next, we state two results relating to cycles of average and short lengths.

Proposition 3.4 (see [1]). Any (multi) graph G = (V,E) on n vertices with
average degree d contains a cycle of length at most 2 logd−1 n+ 2.

Itai and Rodeh [24] showed that given a (multi) graph G = (V,E), an “almost”
shortest cycle (if there is any) in G can be found in time O(|V |2). To obtain a linear
dependency on |V | (given a small feedback vertex set), we prove the following result.

Lemma 3.5. Given a (multi) graph G = (V,E) and a feedback vertex set F of G,
a shortest cycle (if there is any) in G can be found in time O(|F | · (|V |+ |E|)).

Proof. We can clearly detect self-loops and edges of multiplicity 2 in time O(|V |+
|E|), and return a cycle of length 1 or 2 accordingly, and therefore we next assume
that G is a simple graph. Since F is a feedback vertex set, to prove the lemma it is
sufficient to present a procedure that given a vertex v ∈ F , finds in time O(|V |+ |E|)
a cycle that is at least as short as the shortest cycle in G that contains v. Indeed,
then we can iterate over F and invoke this procedure, returning the shortest cycle
among those returned by the procedure. Thus, we next fix some vertex v ∈ F . Let
H be the connected component of G containing v.
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From the vertex v, we run a breadth first search (BFS). Thus, we obtain a BFS
tree T rooted at v, and each vertex in V gets a level i, indicating the distance between
this vertex and v (the level of v is 0). By iterating over the neighborhood of each
vertex, we identify the smallest index i1 such that there exists an edge with both
endpoints, u1 and v1, at level i1 (if such an index exists), and the smallest index i2
such that there exists a vertex w2 at level i2 adjacent to two vertices, u2 and v2, at
level i2 − 1 (if such an index exists). For i1, the edge {u1, v1} and the paths between
v1 and u1 and their lowest common ancestor result in a cycle of length at most 2i1+1.
For i2, the edges {w2, u2} and {w2, v2} and the paths between u2 and v2 and their
lowest common ancestor result in a cycle of length at most 2i2. We return the shorter
cycle among the two (if such a cycle exists).

Suppose that there exists a cycle containing v, and let C be a shortest such cycle.
We need to show that the above procedure returns a cycle at least as short as C.
Every edge of H either connects two vertices of the same level, or a vertex of level
i− 1 with a vertex of level i. Thus, if there does not exist an index i′1 such that there
exists an edge in E(C) with both endpoints, u′1 and v′1, at level i′1, there must exist
an index i′2 such that there exists a vertex w′2 at level i′2 adjacent to two vertices, u′2
and v′2, at level i′2 − 1, and the edges {w′2, u′2} and {w′2, v′2} belong to E(C). First,
suppose that the first case is true. Then, the procedure returns a cycle of length at
most 2i′1+1. The length of C cannot be shorter than 2i′1+1, since it consists of a path
from v to u′1 (whose length is at least i′1 since u′1 belongs to level i′1), a path from v
to v′1 whose only common vertex with the previous path is v (whose length is at least
i′1 since v′1 belongs to level i′1), and the edge {u′1, v′1}. Now, suppose that the second
case is true. Then, the procedure returns a cycle of length at most 2i′2. The length of
C cannot be shorter than 2i′2, since it consists of two internally vertex-disjoint paths
from v to w′2 (each of length at least i′2 since w′2 belongs to level i′2).

Finally, we state a result that will be used (in Lemma 4.3) to bound the size of a
graph we obtain after performing simple preprocessing operations as well as repetitive
removal of short cycles.

Proposition 3.6 (see [37, Lemma 9]). Let T = (V,E) be a forest on N vertices.
Let M ′ = {{i, j} ∈ E | degT (i) = degT (j) = 2} and L = {a ∈ V | degT (a) ≤ 1}. Then
there exists M ⊆M ′ such that M is a matching and |W | ≥ N

4 , where W = L ∪M .

4. Removing leaves, induced paths, and short cycles. In this section we
give a structural decomposition of the graph, which is “essentially” obtained by re-
peatedly removing vertices of a short cycle from the graph. As is usually the case
when dealing with cycles in a graph, we start by defining three rules which help in
getting rid of vertices of degree at most 2 as well as edges of multiplicity larger than
2.3 It is not hard to see that all three Reduction Rules A1, A2, and A3 are safe, i.e.,
they preserve solutions in the reduced graph.

Reduction Rule A1. Delete vertices of degree at most 1.

Reduction Rule A2. If there is a vertex v of degree exactly 2 that is not inci-
dent to a self-loop, then delete v and connect its two (not necessarily distinct) neighbors
by a new edge.

Reduction Rule A3. If there is a pair of vertices u and v in V such that {u, v}
is an edge of multiplicity larger than 2, then reduce the multiplicity of the edge to 2.

3Recall that we have used the bound 2 of the mutiplicity of any edge to bound |E|.
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Observe that the entire process that applies these rules exhaustively can be done
in time O(|V | + |E|) = O(k log k · |V |). Indeed, in time O(|V |) we first remove
the vertex-set of each maximal path between a leaf and a degree-two vertex. No
subsequent application of Reduction Rule A2 or A3 creates vertices of degree at most
one. Now, we iterate over the set of degree-two vertices. For each degree-two vertex
that is not incident to a self-loop, we apply Reduction Rule A2. Next, we iterate over
E, and for each edge of multiplicity larger than two, we apply Reduction Rule A3. At
this point, the only new degree-two vertices that can be created are vertices incident
to exactly one edge, whose multiplicity is two. Therefore, during one additional phase
where we exhaustively apply Reduction Rule A2, the only edges of multiplicity larger
than two that can be created are self-loops. Thus, after one additional iteration over
E, we can ensure that no rule among Reduction Rules A1, A2, and A3 is applicable.

Since these rules will be applied iteratively, we define an operator, denoted by
reduce(G), that takes as input a graph G and returns the (new) graph G′ that results
from exhaustive applications of Reduction Rules A1, A2, and A3.

Definition 4.1. For a (multi) graph G, we let G′ = reduce(G) denote the graph
obtained after exhaustive applications of Reduction Rules A1, A2, and A3. | reduce(G)|
denotes the number of vertices in reduce(G). Every vertex v in G is either deleted
or belongs to reduce(G)—for the sake of clarity, we treat the vertex v in reduce(G)
as if it has its own identity and refer to it as the image of v. Accordingly, we let
img(reduce(G)) denote the preimage of the vertex set of reduce(G), i.e., img(reduce(G))
is the set of vertices in G which are not deleted in reduce(G).4

Observation 1. For a graph G = (V,E) and a set E′ ⊆
(
V
2

)
it holds that

| reduce(G+ E′)| ≤ | reduce(G)|+ 2|E′|.
The first step of our algorithm consists of finding, in time linear in |V |, a set S

satisfying the conditions specified in Lemmas 4.2 and 4.3. Intuitively, S will contain
vertices of “short” cycles in the input graph, where short will be defined later.

Lemma 4.2. Given a (multi) graph G = (V,E) and two integers k > 0 and g > 6,
there exists a kO(1) · |V |-time algorithm that either finds k vertex-disjoint cycles in G
or finds a (possibly empty) set S ⊆ V such that girth(reduce(G−S)) > g and |S| < gk.

Proof. We proceed by constructing such an algorithm. First, we apply the al-
gorithm of Theorem 3.2, which outputs either k vertex-disjoint cycles or a feedback
vertex set F of size at most ck log k = r. In the former case we are done. In the latter
case, i.e., the case where a feedback vertex set F is obtained, we apply the following
procedure iteratively (initially, we set S = ∅):

(1) Apply Lemma 3.5 to find a shortest cycle C in reduce(G).
(2) If no cycle was found or |C| > g, then return S.
(3) Otherwise, i.e., if |C| ≤ g, then add the vertices of C to S, delete those

vertices from G to obtain G′, set G = G′, and repeat from step (1).
Note that if step (3) is applied k times, then we can terminate and return the cor-
responding k vertex-disjoint cycles in G. Hence, when the condition of step (2) is
satisfied, i.e., when the described procedure terminates, the size of S is at most
g(k − 1) < gk and girth(reduce(G − S)) > g. Since the algorithm of Theorem 3.2
runs in time kO(1) · |V |, and each iteration of steps (1)–(3) is performed in time
O((k log k)2 · |V |), we obtain the desired time complexity.

4For example, if G is defined by V (G) = {a, b, c, d, e} and E(G) =
{{a, b}, {a, b}, {b, c}, {c, d}, {c, d}, {d, e}, then reduce(G) is defined by the vertex set {b, c} and
edge set {{b}, {b, c}, {c}}, and img(reduce(G)) = {b, c} ⊆ V (G).
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Lemma 4.3. Given a (multi) graph G = (V,E) and two integers k > 0 and g > 6,
let S denote the set obtained after applying the algorithm of Lemma 4.2 (assuming no

k vertex-disjoint cycles obtained). Then | reduce(G−S)| ≤ (2ck log k)1+
6

g−6 +3ck log k.

Proof. Let G′ = (V ′, E′) = reduce(G − S) and |V ′| = n′. First, recall that G
admits a feedback vertex set of size at most ck log k = r. Since Reduction Rules
A1, A2, and A3 do not increase the feedback vertex set of the graph (see, e.g., [37,
Lemma 1]), G′ also admits a feedback vertex set F of size at most r. Let T denote the
induced forest on the remaining N = n′−r vertices in G′. Moreover, from Lemma 4.2,
we know that girth(G′) > g > 6.

Next, we apply Proposition 3.6 to T to get W . Now with every element a ∈ W
we associate an unordered pair of vertices of F as follows. Assume a ∈ L, i.e., a is a
vertex of degree 0 or 1. Since the degree of a is at least 3 in G′, a has at least two
neighbors in F . We pick two of these neighbors arbitrarily and associate them with
a. We use {xa, ya} to denote this pair. If a = {u, v} is an edge from M , then each
of u and v has degree at least 3 in G′ and each has at least one neighbor in F . We
pick one neighbor for each and associate the pair {xu, xv} with a. Note that since
girth(G′) > 6, xu 6= xv and xa 6= ya.

We now construct a new multigraph G? = (V ?, E?) with vertex set V ? = F as
follows. For every vertex a ∈ W we include an edge in E? between xa and ya, and
for every edge a = {u, v} ∈ W we include an edge in E? between xu and xv. By
Proposition 3.6, we know that W is of size at least N

4 . It follows that G? has at least
N
4 edges and hence its average degree is at least N

2r as |V ?| = ck log k = r. Note
that if G? has a cycle of length at most `, then G′ has a cycle of length at most 3`,
as any edge of the cycle in G? can be replaced by a path of length at most 3 in G′.
Combining this with the fact that girth(G′) > g > 6, we conclude that G? contains
no self-loops or parallel edges. Hence G? is a simple graph with average degree at
least N

2r . By Proposition 3.4, G? must have a cycle of length at most

2 log N
2r−1

r + 2 =
2 log r

log(N2r − 1)
+ 2,

which implies that G′ must have a cycle of length at most

6 log r

log(N2r − 1)
+ 6.

Finally, by using the fact that girth(G′) > g and substituting N and r, we get

6 log r

log(N2r − 1)
+ 6 > g ⇐⇒ log r >

(g − 6)

6
log

(
N − 2r

2r

)
⇐⇒ log r >

(g − 6)

6
log(N − 2r)− (g − 6)

6
log(2r)

⇐⇒
log r + (g−6)

6 log(2r)
(g−6)

6

> log(N − 2r)

=⇒
log(2r) + (g−6)

6 log(2r)
(g−6)

6

> log(N − 2r)

⇐⇒
(

1 +
6

g − 6

)
log(2r) > log(N − 2r)
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⇐⇒
(

1 +
6

g − 6

)
log(2ck log k) > log(n′ − 3ck log k)

⇐⇒ (2ck log k)1+
6

(g−6) + 3ck log k > n′.

This completes the proof.

The usefulness of Lemma 4.3 comes from the fact that by setting g = 48 log k
log log k + 6,

we can guarantee that | reduce(G−S)| < 3ck log k+ 2ck log1.5 k, and therefore we can
beat the O(k log2 k) bound. That is, we have the following consequence.

Corollary 4.4. Given a (multi) graph G = (V,E) and an integer k > 0, let S
denote the set obtained after applying the algorithm of Lemma 4.2 with g = 48 log k

log log k +6

(assuming no k vertex-disjoint cycles obtained). Then | reduce(G− S)| ≤ 3ck log k +
2ck log1.5 k.

Proof. By Lemma 4.3, | reduce(G−S)| ≤ (2ck log k)1+
log log k
8 log k +3ck log k. Assuming

k > log k > c > 2, we have (2ck log k)1+
log log k
8 log k = (2ck log k)(2ck log k)

log log k
8 log k ≤

(2ck log k)k
4 log log k

8 log k . Now note that k
4 log log k

8 log k ≤ log0.5 k. Hence, (2ck log k)1+
log log k
8 log k ≤

2ck log k log
1
2 k ≤ 2ck log1.5 k. This completes the proof.

5. Bounding the core of the remaining graph. At this point, we assume,
without loss of generality, that we are given a graph G = (V,E), a positive integer k,
g = 48 log k

log log k + 6, and a set S ⊆ V such that girth(reduce(G − S)) > g, |S| < gk, and

| reduce(G− S)| ≤ 3ck log k + 2ck log1.5 k.
Even though the number of vertices in reduce(G− S) is bounded, the number of

vertices in G− S is unbounded. In what follows, we show how to bound the number
of “objects” in G − S, where an object is either a vertex in G − S or a degree-two
path in G− S. The next lemma is an extension of a lemma by Lokshtanov et al. [34,
Lemma 5.2]. Specifically, the lemma by Lokshtanov et al. [34] does not output the
sets VX and EX but only one vertex or one edge,5 and furthermore, the running time
is only analyzed to have polynomial dependency on the input size. We need to have
a linear dependency on |V |, and furthermore that the entire algorithm will eventually
have linear dependency on |V |. In particular, the latter requirement is the reason why
we need to output sets VX and EX rather than only one vertex or one edge, else the
usage of the lemma will entail a quadratic dependency on |V |.

Lemma 5.1. Let G = (V,E) be a (multi) graph and let X ⊆ V be any subset
of the vertices of G. Suppose there are more than |X|2(2|X| + 1) vertices in G −X
whose degree in G −X is at most one. Then, there is either an isolated vertex w in
G − X or an edge e ∈ E such that (G, k) is a yes-instance of Cycle Packing if
and only if either (G − {w}, k) or (G/e, k) is a yes-instance. Moreover, there is an
O(|X|2 · k log k · |V |)-time algorithm that given G and X, outputs sets VX ⊆ V \ X
and EX ⊆ E(G−X) such that, for the graph G′ = (G/EX)−VX , it holds that (G, k)
is a yes-instance of Cycle Packing if and only if (G′, k) is a yes-instance of Cycle
Packing, and G′−X contains at most |X|2(2|X|+1) vertices whose degree in G′−X
is at most one.

Proof. In G − X each x ∈ L(u, v) is adjacent to both u and v (if u = v, then
L(u, u) is the set of vertices which have degree at most one in G−X and an edge of
multiplicity two to u). For each pair (u, v) ∈ X × X, we arbitrarily mark 2|X| + 1

5Additionally, the lemma by Lokshtanov et al. [34] assumes that X is a feedback vertex set.
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1206 LOKSHTANOV, MOUAWAD, SAURABH, AND ZEHAVI

vertices from L(u, v) if |L(u, v)| > 2|X| + 1, and we mark all vertices in L(u, v) if
|L(u, v)| ≤ 2|X|+1. We can execute this process as follows. First, in time O(|X|·|V |),
for each vertex in X we compute the set of its neighbors of degree at most one in
G−X. Then, in time O(|X|3), for each pair (u, v) ∈ X×X we mark at most 2|X|+1
vertices as required.

Since we mark at most 2|X|+ 1 vertices for each pair (u, v) ∈ X ×X, there can
be at most |X|2(2|X| + 1) marked vertices in G −X. Let w be an unmarked vertex
of degree at most one in G−X. We only consider the case where degG−X(w) = 1, as
the other case can be proved analogously. Let e be the unique edge in G−X which is
incident to w and let z be the other endpoint of this edge. Let C be a set of maximum
size of vertex-disjoint cycles in G. Observe that if C does not contain a pair of cycles
such that each of them intersects a different endpoint of e, then contracting e keeps
the resulting cycles vertex disjoint in G/e. Therefore, we may assume that C contains
two cycles Cw and Cz, where Cw contains w and Cz contains z. The neighbor(s) of
w in Cw must lie in X. Let these neighbors be x and y. (Again, x and y are not
necessarily distinct.) Since w ∈ L(x, y) and it is unmarked, there are 2|X| + 1 other
vertices in L(x, y) which were marked by the marking procedure. Moreover, each
degree-1 vertex in G−X that belongs to a cycle in C is either the predecessor or the
successor of a vertex in X in such a cycle. Therefore, at most 2|X| of the marked
vertices can participate in cycles in C. Hence, there exists a vertex in L(x, y), call
it w′, which is unused by C. Consequently, we can route the cycle Cw through w′

instead of w, which gives us a set of |C| vertex disjoint cycles in G/e.
The first phase of the claimed O(|X|2 · k log k · |V |)-time algorithm performs

the above marking procedure, and then proceeds as follows. First it deletes every
unmarked isolated vertex in G−X. Then, it contracts every edge in G−X incident
to at least one unmarked vertex of degree one in G−X. After these operations, new
vertices in G − X of degree at most one in G − X might have been created. These
vertices were either the unique neighbors in G − X of deleted vertices or vertices
incident to contracted edges. Thus, in the case new vertices in G − X of degree at
most one in G −X have been created, the algorithm performs another phase. Here,
the algorithm iterates over the set of new vertices in G−X of degree at most one in
G−X, and for each such vertex, if it is a neighbor of two vertices in X for which we
have not yet marked 2|X| + 1 vertices, the algorithm marks it. Then, the algorithm
deletes vertices and contracts edges as it did in the first phase. The running time of
such a phase is bounded by O(|X|2 ·ρ), where ρ is the total number of vertices deleted
and edges contracted in the previous phase. As long as new degree-one vertices are
created, the execution of the algorithm continues. Since each vertex can be deleted
only once, and each edge can be contracted only once, the overall running time is
bounded by O(|X|(|X|2 + |V |) + |X|2 · (|V | + |E|)) = O(|X|2 · k log k · |V |) (since
|E| = O(k log k · |V |)). It also holds that when the algorithm terminates, G − X
contains at most |X|2(2|X|+ 1) vertices whose degree in G−X is at most one. This
completes the proof of the lemma.

Armed with Lemma 5.1, we are now ready to prove the following result. For a
forest T , we let T≤1, T2, and T≥3 denote the sets of vertices in T having degree at
most one in T , degree exactly two in T , and degree larger than two in T , respectively.
Moreover, we let P denote the set of all maximal degree-two paths in T .

Lemma 5.2. Let G = (V,E), S, k, and g be as defined above. Let R =
img(reduce(G− S)) ⊆ (V \ S) denote the preimage of reduce(G− S) in G− S. Then,
T = G−S−R is a forest and for every maximal degree-2 path in P there are at most
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Fig. 1. A graph G (not all edges shown), the set S (in black), the set R (in gray), and the set
T = G−R− S (in white).

two vertices on the path having neighbors in R (in the graph G − S). Moreover, in
time kO(1) · |V |, we can guarantee that |T≤1|, |P|, and |T≥3| are bounded by kO(1).

Proof. To see why T = G−S−R must be a forest it is sufficient to note that for any
cycle in G−S at least one vertex from that cycle must be in R = img(reduce(G−S))
(see Figure 1). Recall that, since girth(reduce(G − S)) > 6, every vertex in R has
degree at least 3 in G−S. Now assume there exists some path P ∈ P having exactly
three (the same argument holds for any number) distinct vertices u, v, and w (in
that order) each having at least one neighbor in R (possibly the same neighbor).
We show that the middle vertex v must have been in R, contradicting the fact that
T = G−S−R. Consider the graph G−S and apply Reduction Rules A1, A2, and A3
exhaustively (in G − S) on all vertices in the tree containing P except for u, v, and
w. Regardless of the order in which we apply the reduction rules, the path P will
eventually reduce to a path on three vertices, namely, u, v, and w. To see why v must
be in R observe that even if the other two vertices have degree two in the resulting
graph, after reducing them, v will have degree at least three (into R) and is therefore
nonreducible.

Next, we bound the size of T≤1, which implies a bound on the sizes of T≥3 and
P. To do so, we simply invoke Lemma 5.1 by setting X = S ∪ R. Since |S| < gk,
g = 48 log k

log log k + 6 and |R| ≤ 3ck log k + 2ck log1.5 k, we get that |T≤1| ≤ |S ∪R|2(2|S ∪
R| + 1) = kO(1). Since in a forest, it holds that |T≥3| < |T≤1|, the bound on |T≥3|
follows. Moreover, in a forest, it also holds that |P| < |T≤1|+ |T≥3|—if we arbitrarily
root each tree in the forest at a leaf, one end vertex of a path in P will be a parent
of a different vertex from T≤1 ∪ T≥3—and the bound on |P| follows as well.

6. Guessing permutations. In this section, given an instance (G, k) of Cycle

Packing, we obtain 2O( k log2 k
log log k ) instances of Cycle Packing of the form (G′, k), such

that the size of G′ is small and (G, k) is a yes-instance if and only if one of the output
instances (G′, k) is.

This section is devoted to proving the following lemma. Note that assuming the
statement of the lemma, the only remaining task (to prove Theorem 1.1) is to develop
an algorithm running in time O(2|V | · poly(|V |)) and using polynomial space, which
we present in section 7.

Lemma 6.1. Given an instance (G, k) of Cycle Packing, we can compute

2O( k log2 k
log log k ) instances of Cycle Packing of the form (G′, k), where the number of
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1208 LOKSHTANOV, MOUAWAD, SAURABH, AND ZEHAVI

Fig. 2. (Left) a graph G (not all edges shown), the set S (in black), the set R (in gray), and
the set T = G−R−S (in white). (Center) the graph obtained after guessing vertices in S and their
neighbors in a solution. (Right) example of a reduced instance.

vertices in G′ is bounded by O(k log1.5 k), such that (i) (G, k) is a yes-instance if and
only if at least one of the instances (G′, k) is a yes-instance and (ii) the instances are
outputted one-by-one, so that the space complexity is polynomial and the total running

time is 2O( k log2 k
log log k ) · |V |.

Proof. We fix g = 48 log k
log log k + 6. Using Lemma 4.2, we first compute in time

kO(1) · |V | a subset S′ ⊆ V such that girth(reduce(G − S′)) > g and |S′| < gk =
O( k log k

log log k ). Then, we guess which vertices to delete from S′ — that is, which vertices

do not participate in a solution—in time O(2|S
′|) = 2O( k log k

log log k ). Here, guesses refer
to different choices which lead to the construction of different instances of Cycle
Packing that are returned at the end—recall that we are allowed to return up to

2O( k log2 k
log log k ) different instances. Concretely, here we simply have a loop that iterates

over all subsets of S′, where each subset is a “guess” of which vertices of S′ to delete.
We now have a set S ⊆ S′ (of the vertices in S′ that should not be deleted) such that
|S| = O( k log k

log log k ). By Corollary 4.4, we also know that | reduce(G−S)| = O(k log1.5 k).

Applying Lemma 5.2 with R = img(reduce(G − S)) ⊆ (V \ S), we get a forest
T = G− (S ∪R) such that for every maximal degree-two path in P there are at most
two vertices on the path having neighbors in R (in the graph G−S). In addition, the
size of R is equal to | reduce(G− S)| which is bounded by O(k log1.5 k), and the sizes
|T≤1|, |P| and |T≥3| are bounded by kO(1) (see Figure 1).

For every vertex in S (which is assumed to participate in a solution), we now
guess its two neighbors in a solution (see Figure 2). Note, however, that we only
have a (polynomial in k) bound for |S|, |R|, |T≤1|, |P|, and |T≥3|, but not for the
length of paths in P and therefore not for the entire graph G. We let ZP denote
the set of vertices in V (P) having neighbors in R. The size of ZP is at most 2|P|.
Moreover, we let P? denote the set of paths obtained after deleting ZP from P. Note
that the size of P? is upper bounded by |P|+ |ZP | ≤ 3|P| and that vertices in V (P?)
are adjacent only to vertices in V (P?) ∪ ZP ∪ S. Now, we create a set of “objects,”

O = S ∪R ∪ T≤1 ∪ T≥3 ∪ ZP ∪ P?. We also let Õ = O \ P?. We then guess, for each
vertex v in S, which two objects in O constitute its neighbors, denoted by `(v) and
r(v), in a solution. Concretely, we have a loop that iterates over every mapping of
each vertex in S to two objects in O. It is possible that `(v) = r(v). Since |O| = kO(1),

we can perform these guesses in kO( k log k
log log k ), or equivalently 2O( k log2 k

log log k ), time. We next
assume that, for every vertex v ∈ S, if `(v) ∈ Õ, then `(v) is a neighbor of v in a
solution, and otherwise (i.e., `(v) ∈ P) v has a neighbor on the path `(v). Indeed,
if this assumption does not hold, then the current guess is not correct for a solution
and hence we need not argue that in the current guess we find a solution subject
to it—we only need to argue that for a correct guess (which we do make if there is
a solution). The same claim holds for r(v). Furthermore, we similarly assume that
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if `(v) = r(v) ∈ Õ, then {v, `(v)} is an edge of multiplicity two, and otherwise if
`(v) = r(v), then v has (at least) two edges incident to vertices on the path `(v).

Next, we fix some arbitrary order on P?, and for each path in P?, we fix some
arbitrary orientation from one endpoint to the other. We let S? denote the multiset
containing two occurrences of every vertex v ∈ S, denoted by v` and vr. We guess an
order of the vertices in S?. The time spent for guessing such an ordering is bounded by

(2|S|)!, which in turn is bounded by 2O( k log2 k
log log k ). The ordering, assuming it is guessed

correctly, satisfies the following conditions. For each path P ∈ P?, we let `(P ) and
r(P ) denote the sets of vertices v ∈ S such that `(v) ∈ V (P ) and r(v) ∈ V (P ),
respectively. Now, for any two vertices u, v ∈ `(P ), if u` < v` according to the order
that we guessed, then the neighbor `(u) of u appears before the neighbor `(v) of v on
P . Similarly, for any two vertices u, v ∈ r(P ), if ur < vr, then r(u) appears before
r(v) on P . Finally, for any two vertices u ∈ `(P ) and v ∈ r(P ), if u` < vr, then `(u)
appears before r(v) on P , and otherwise r(v) appears before `(u) on P .

Given a correct guess of `(v) and r(v) for each v in S, as well as a correct guess of
a permutation of S? for each path in P?, we proceed as follows. We compute the set
{xv, yv} of two neighbors (now being vertices rather than objects) of each vertex v ∈ S
in a solution subject to our guesses. First, for each v ∈ S, if `(v) (r(v)) is in Õ, then
xv = `(v) (yv = r(v)). The remaining neighbors are assigned by a greedy procedure
which agrees with the guessed permutation on S?; that is, for every path P ∈ P?, we
iterate over {v` | v ∈ `(P )} ∪ {vr | v ∈ r(P )} according to the guessed order, and to
each vertex v� in this set (where � ∈ {`, r}), assign to v (as xv or yv depending on
whether � is ` or r) the first neighbor of v on P that is after the last vertex on P
that has already been assigned. (If such a vertex does not exist, we determine that
the current guess is incorrect and proceed to the next one.) We let ES be the set of
edges incident on a vertex in S, and we let E′ = {{v, xv} | v ∈ S} ∪ {{v, yv} | v ∈ S}
denote the set of all guesses. In order to avoid introducing additional double edges,
it is important to note that we do not add duplicates to E′. In other words, we only
add a double edge between u and v when we have guessed that xv = yv = u and
xu = yu = v. Finally, to obtain an instance (G′, k), we delete the edge set ES from
G, we add instead the set of edges E′, and finally we apply the reduce operator, i.e.,
G′ = reduce((G− ES) + E′).

Claim 1. Let (G′, k) be one of the instances generated by the above procedure.
Then, the number of vertices in G′ is bounded by O(k log1.5 k).

Proof. Recalling that by Corollary 4.4, we know that | reduce(G−S)|=O(k log1.5 k).
Moreover, we have |E′| = O(|S|) = O( k log k

log log k ). Combining Observation 1 with

the fact that G′ = reduce((G − ES) + E′), we get | reduce((G − ES) + E′)| ≤
| reduce(G − ES)| + 2|E′|. Since in G − ES all vertices of S have degree zero,
| reduce(G−ES)| ≤ | reduce(G−S)|. Hence, we conclude that | reduce((G−ES)+E′)| =
O(k log1.5 k), as needed.

Claim 2. Let G = (V,E), let k be a positive integer, let g = 48 log k
log log k + 6, and let

S be a subset of V such that girth(reduce(G − S)) > g, and |S| < gk. Then, (G, k)
is a yes-instance if and only if at least one of the generated instances (G′, k) is a
yes-instance.

Proof. First, given the safeness of our reduction rules, we assume that G′ =
(G−ES) +E′ (and not G′ = reduce((G−ES) +E′)). This assumption is justified by
the fact that any cycle packing in (G−ES)+E′ can be easily recovered in reduce((G−
ES) + E′), and vice versa. We assume that (G, k) is a yes-instance and we let C =
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{C1, C2, . . . , Ck} be a packing of k cycles, i.e., a set of k vertex-disjoint cycles in G.
We let Ecross denote the set of edges connecting a vertex in S to a vertex in P?. We
call such edges cross edges. Recall that E′ denotes the set of guessed edges during
the construction of G′.

To prove the forward direction, we proceed by contradiction. Given (G, k) (as-
sumed to be a yes-instance), we choose a solution C and a generated instance (G′, k)
as follows:

1. G′ and C are in agreement with respect to our guessed permutation of S?.
2. All edges in C which are in E′ but not in Ecross (chosen via brute-force) are

retained in G′. Equivalently, |(E′ \ Ecross) ∩ E(C)| = |(E′ \ Ecross)|.
3. The number of edges (chosen greedily) in E′ which are also contained in C is

maximized. Equivalently, |E′ ∩ E(C)| is maximized.
The fact that such a pair (C, (G′, k)) exists follows from the fact that for edges that
are not in Ecross (possibly chosen greedily) we try all possibilities in a brute-force
manner (no greedy choices are made). If |E′ ∩ E(C)| = |E′|, then we are done, as all
the remaining edges in C are also contained in G′; therefore (G′, k) is a yes-instance.
If |E′ ∩ E(C)| = q < |E′|, then there exists at least one edge e ∈ E′ \ E(C). As
previously noted, e ∈ Ecross. We let e = {u, v}, where u ∈ S, v ∈ P , P ∈ P?,
and there exists no edge e′ = {u′, v′} ∈ E′ \ E(C) satisfying all the aforementioned
properties with v′ occurring before v on P with respect to our fixed orientation. To
complete the forward direction, we show how to modify C to obtain C′ such that
|E′ ∩ E(C′)| = q + 1, contradicting our initial assumption.

Since u ∈ S, it follows that u ∈ V (C) (by assumption). Therefore, there must
exist an edge {u,w} ∈ E(C), where w 6= v and w appears either before or after
v on P . Assume that w appears after v on P . Let {v, z0, z1, . . . , w} denote the
subpath of P connecting v to w. Then, as all vertices in P have degree two in G−S,
{z0, z1, . . .}∩V (C) = ∅, and assuming our guessed permutation is consistent with C, if
we replace {u,w} by {u, v} and {v, z0, z1, . . . , w}, we obtain a packing of k cycles C′ in
G′, as needed. The case where w appears before v on P can be handled analogously.

For the other direction, let (G′, k) be a yes-instance and let C′ = {C ′1, C ′2, . . . , C ′k}
be a cycle packing in G′. We again assume, without loss of generality, that C′ is a
cycle packing in (G − ES) + E′, as one can trace back all reduction rules to obtain
the graph (G−ES) +E′. Since (G−ES) +E′ is a subgraph of G, it follows that C′
is also a packing of k cycles in G, completing the proof.

Combining Claims 1 and 2 concludes the proof of the theorem.

7. Dynamic programming and inclusion-exclusion. Finally, we give an
exact exponential-time algorithm for Cycle Packing. For this purpose, we use DP
and the principle of inclusion-exclusion, inspired by the work of Nederlof [35].6

Lemma 7.1. There exists a (deterministic) polynomial-space algorithm that in
time O(2|V | · poly(|V |)) solves Cycle Packing. In the case a solution exists, it also
outputs a solution.

Proof. First, we recall the principle of inclusion-exclusion.

Proposition 7.2 (folklore, [35]). Let U and R be sets, and for every v ∈ R let
Pv be a subset of U . Use P̄v to denote U \Pv. With the convention

⋂
v∈∅ P̄v = U , the

6We remark that this result can also be proved by using the algorithm for the Cover Polynomial
problem given in [35]; for the sake of being self-contained, we present the full details.
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following holds: ∣∣∣∣∣ ⋂
v∈R

Pv

∣∣∣∣∣ =
∑
F⊆R

(−1)|F |

∣∣∣∣∣ ⋂
v∈F

P̄v

∣∣∣∣∣.
We now proceed with the proof of Lemma 7.1. In the context of Proposition 7.2,

define the universe U as the set of all tuples (C1, . . . , Ck, w
1
1, . . . , w

1
k, w

2
1, . . . , w

2
k, L)

such that each Ci is a closed walk in G of length at least three, w1
i and w2

i are

consecutive occurrences of vertices in Ci, L ⊆ V , and (
∑k
i=1 |V (Ci)|) + |L| = |V |.

Here, by |V (Ci)| we refer to a multiset—that is, if Ci contains x occurrences of
some vertex v, then V (Ci) contains x occurrences of v as well. We define the re-
quirement space R = V , and for each v ∈ V , we let Pv be the set of all tuples
(C1, . . . , Ck, w

1
1, . . . , w

1
k, w

2
1, . . . , w

2
k, L) ∈ U such that v ∈ (

⋃k
i=1 V (Ci)) ∪ L. On the

one hand, if G contains k vertex-disjoint cycles C1, . . . , Ck, then for any choice of
edges {w1

1, w
2
1} ∈ E(C1), . . . , {w1

k, w
2
k} ∈ E(Ck), we have(

C1, . . . , Ck, w
1
1, . . . , w

1
k, w

2
1, . . . , w

2
k, V \

(
k⋃
i=1

V (Ci)

))
∈
⋂
v∈V

Pv.

On the other hand, if there exists (C1, . . . , Ck, w
1
1, . . . , w

1
k , w

2
1, . . . , w

2
k, L) ∈

⋂
v∈V Pv,

then since (
∑k
i=1 |V (Ci)|)+ |L| = |V |, each vertex v ∈ V occurs exactly once in either

exactly one of the closed walks Ci or in the set L. In this case, we conclude that
C1, . . . , Ck are vertex-disjoint cycles. Therefore, we need to accept the input instance
if and only if |

⋂
v∈V Pv| > 0.

By Proposition 7.2, to decide whether |
⋂
v∈V Pv| > 0 in time O(2|V | · poly(|V |))

and polynomial space, it is sufficient to show that for each subset F ⊆ V , |
⋂
v∈F P̄v|

can be computed in polynomial time. To this end, we fix a subset F ⊆ V . Note that⋂
v∈F P̄v is the set of all tuples (C1, . . . , Ck, w

1
1, . . . , w

1
k, w

2
1, . . . , w

2
k, L) ∈ U such that

(
⋃k
i=1 V (Ci))∪L ⊆ V \F . Now, given an integer ` ∈ {2k, . . . , |V |},7 let Q` denote the

set of all tuples (C1, . . . , Ck, w
1
1, . . . , w

1
k, w

2
1, . . . , w

2
k) such that each Ci is a closed walk

in G − F of length at least three, w1
i and w2

i are consecutive occurrences of vertices

in Ci, and (
∑k
i=1 |V (Ci)|) = `. Then, |

⋂
v∈F P̄v| =

∑|V |
`=2k(|Q`| ·

(|V \F |
|V |−`

)
), where if

|V | − ` < |V \ F |, we let
(|V \F |
|V |−`

)
= 0. Thus, it remains to show that each |Q`| can be

computed in polynomial time. To this end, fix an integer ` ∈ {2k, . . . , |V |}.
Next, we will compute |Q`| by simply employing the method of dynamic pro-

gramming. We use a matrix M that has an entry [i, j, v, u] for all i ∈ {1, . . . , k},
j ∈ {1, . . . , `}, and v, u ∈ V \F . Given i ∈ {1, . . . , k}, j ∈ {1, . . . , `}, and v, u ∈ V \F ,
let S(i, j, v, u) be the set of all tuples (C1, . . . , Ci, w

1
1, . . . , w

1
i , w

2
1, . . . , w

2
i ) such that

for all t ∈ {1, . . . , i−1}, Ct is a closed walk of length at least three and w1
t and w2

t are
consecutive occurrences of vertices in this walk, Ci is a walk from v to u, w1

i = v, and∑i
t=1 |V (Ct)| = j. The entry M[i, j, v, u] will be used to store |S(i, j, v, u)|. Observe

that

|Q`| =
∑

v∈V \F

∑
u∈N(v)\F

∑
w∈N(u)\F

|S(k, `− 1, v, w)|.

Thus, it remains to show that the entries of M can be calculated in polynomial time.

7We do not consider the case where ` < 2k since k closed walks must overall contain at least 2k
vertices.
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In the basis, we have the following calculations, relating to the case where j = 1:
• If j = 1 and (i ≥ 2 or v 6= u): M[i, j, v, u] = 0.
• Else if j = 1: M[i, j, v, u] = 1.

Now, consider only entries where j ≥ 2, which have not already been calculated
in the basis. Then, we have the following calculations:

• If i ≥ 2, j ≥ 3 and v = u:

M[i, j, v, u] =
∑

w∈N(u)\F

M[i, j − 1, v, w]

+
∑

p∈V \F

∑
q∈N(p)\F

∑
w∈N(q)\F

M[i− 1, j − 2, p, w].

• Else: M[i, j, v, u] =
∑

w∈N(u)\F

M[i, j − 1, v, w].

It is straightforward to verify that the calculations are correct. The order of the
computation is an ascending order with respect to j, which ensures that when an
entry is calculated, the entries on which it relies have already been calculated. To
output a solution, we apply a simple self-reduction from the decision to the search
variant of the problem. In particular, we repeatedly remove edges until no more edges
can be removed from the graph while preserving a yes-instance.

We would like to mention that if one does not care about polynomial space,
then Lemma 7.1 can be obtained by straightforward dynamic programming on sub-
sets.

8. Conclusion. In this paper we have beaten the best known 2O(k log2 k)·|V |-time
algorithm for Cycle Packing that is a consequence of the Erdős–Pósa theorem. For
this purpose, we developed a deterministic algorithm that solves Cycle Packing in

time 2O( k log2 k
log log k )·|V |. Two additional advantageous properties of our algorithm are that

its space complexity is polynomial in the input size and that in case a solution exists,

it outputs a solution (in time 2O( k log2 k
log log k ) · |V |). Our technique relies on combinatorial

arguments that may be of independent interest. These arguments allow us to translate

any input instance of Cycle Packing into 2O( k log2 k
log log k ) instances of Cycle Packing

whose sizes are small and can therefore be solved efficiently.
It remains an intriguing open question to discover the “true” running time, under

reasonable complexity-theoretic assumptions, in which one can solve Cycle Packing
on general graphs. In particular, we would like to pose the following question: Does
there exist a 2O(k log k) · |V |O(1)-time algorithm for Cycle Packing? This is true for
graphs of bounded maximum degree as one can easily bound the number of vertices by
O(k log k) and then apply Lemma 7.1. Moreover, Bodlaender, Thomassé, and Yeo [6]
proved that this is also true in case one seeks k edge-disjoint cycles rather than
k vertex-disjoint cycles. On the negative side, recall that (for general graphs) the
bound f(k) = O(k log k) in the Erdős–Pósa theorem is essentially tight, and that it
is unlikely that Cycle Packing is solvable in time 2o(tw log tw) · |V |O(1) [12], unless
ETH fails. However, we do not rule out the existence of an algorithm solving Cycle
Packing in time 2O(fvs) · |V |O(1). Thus, the two most natural attempts to obtain
a 2O(k log k) · |V |O(1)-time algorithm—either replacing the bound O(k log k) in the
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Erdős–Pósa theorem by O(k) or speeding-up the computation based on DP to run in
time 2O(tw) · |V |O(1)—lead to a dead end.

Acknowledgments. We would like to thank the reviewers for several suggestions
and insightful remarks that have improved the presentation of the paper.
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