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Abstract 

The overarching goal of this project was to help elucidate how some of the molecular 
mechanisms behind memory and learning differ between healthy brains and those with 
neurodegenerative diseases, specifically by studying changes involving the immediate early 
gene Arc, believed to be an essential regulator of synaptic plasticity. Expression of Arc protein, 
BDNF, and PS1 in the frontal cortex of APP/PS1 and WT mice housed in standard or enriched 
environments was compared using Western blotting. The results indicated that Arc expression 
did not differ significantly between the groups, BDNF expression was higher in mice housed 
in enriched environments, and PS1 expression was higher in the APP/PS1 mice, likely as a 
result of expressing a mutant PS1 protein in addition to the endogenous. Further, the project 
was concentrated on optimization of a co-immunoprecipitation protocol with the objective to 
study differences in the interaction between Arc and PS1 in APP/PS1 and WT mice. 
Application of the protocol to frontal cortex tissue from the two strains of mice housed in 
standard or enriched environments indicated no statistically significant difference in amount 
of immunoprecipitated Arc and PS1 among the groups of mice, moreover, results suggested 
that robust co-immunoprecipitation of PS1 with Arc or vice versa requires a continued 
optimization process. 
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Summary 

The world’s population is ageing. With this comes an increase in age related diseases. Some 

threaten to send our bodies into rapid decline, such as cancer and heart disease; others, perhaps 

more terrifyingly, threaten to take away our mind, such as stroke or neurodegenerative 

diseases. The most common neurodegenerative disease is Alzheimer’s disease (AD), 

characterized by progressive cognitive decline. Researchers are continuously working on 

developing drugs treat the disease, but so far, no cure has been found, and existing drugs only 

slow the progression for a while (Cummings et al., 2016). 

One major reason treatments are so hard to develop is that the molecular mechanisms 

and drivers behind AD are still largely unknown. Traditionally, a short peptide called β-

amyloid (Aβ) has been the prime suspect. When amyloid precursor protein (APP) is cleaved 

at a particular site, Aβ is produced and released into the space around neurons, where it 

aggregates and forms amyloid plaques, one of the hallmark features seen in post-mortem 

analysis of the brains of AD patients (Zhang et al., 2012a). The amyloid cascade hypothesis 

argues that overproduction or lack of clearance of these peptides and the subsequent formation 

of plaques drives the progression of the disease (Selkoe, 2002). Consequently, efforts have 

been focused on developing treatments to remove Aβ and amyloid plaques. However, as one 

anti-amyloid drug after the other fail to work, the amyloid cascade hypothesis is facing 

increasing levels of critique. While it is clear that amyloid plaque development is an important 

histopathological feature of AD, researchers are debating its functional role. Is it a causative 

factor, or rather a defense mechanism or result of another – unknown – cause; is it sufficient 

to remove plaques or does the Aβ peptide do its damage long before major aggregates are 

formed; and what role does spatial and temporal distribution of both peptides and plaques, as 

well as other pathological features of AD, play? 

One of these other pathological features is synaptic failure (Selkoe, 2002; Serrano-

Pozo et al., 2011). Synapses are the connections between neurons, the sites at which 

information is transferred from one cell to the next in the incredibly intricate network making 

up the central nervous system (CNS). Synapses are plastic structures, strengthened, weakened, 

and maintained with strict demand for appropriate regulation (Kuipers and Bramham, 2006). 

This plasticity is the basis for our ability to learn, form memories, and forget, and any 

disruption of the process will thus have major adverse consequences for brain function 

(Kuipers and Bramham, 2006). Loss and dysfunction of synapses may be a consequence of 

external factors such as amyloid plaques blocking connections to other neurons, of internal 
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factors such as defective regulatory processes within the cell or tau protein aggregation and 

destabilization of the cytoskeleton, or (perhaps most likely) a combination. Although much is 

still unknown, research is moving forward on several fronts in an effort to increase our 

understanding of the molecular causes, mechanisms, and consequences of AD. Here, I focus 

on synaptic plasticity in AD; specifically, whether the expression levels and protein-protein 

interactions of the regulatory protein Arc is altered in an animal model of the disease. 

Chapter 1 gives the theoretical background for the project, starting with an introduction 

to AD and its pathology, followed by a general introduction to mechanisms of memory and 

learning, and synaptic plasticity in particular. I then introduce Arc, a protein thought to be 

responsible for regulation of synaptic plasticity, and discuss how Arc protein function may be 

related to formation of Aβ, thus raising the question of whether its function is disrupted in AD. 

From the theory, I deduce a set of testable hypotheses and discuss what methodological 

approach is best suited to test these. The concrete aims of the project are then summarized in 

chapter 2. 

Methods and materials are described in Chapter 3. The material was mainly 

homogenized cortex tissue from a transgenic mouse model of AD, the APP/PS1 mouse, and 

the wild type (WT) mouse upon which the APP/PS1 is based (C57BL/6J). SDS-PAGE and 

Western blot (WB) was used to compare Arc, PS1, and BDNF protein expression in mice 

housed in different environments, as described in the results. Protein-protein interactions were 

studied with co-immunoprecipitation (co-IP) and GST-pulldown assays. 

Chapter 4 contains the results, starting with the protein expression analyses. Next, the 

co-immunoprecipitation optimization process is described; a series of experiments were 

performed with variations in antibodies, lysis buffer, and the procedure, to achieve an effective 

protocol for mouse brain tissue. Results from co-immunoprecipitations carried out on 

APP/PS1 and WT mice are then presented, before the chapter is concluded with preliminary 

results from GST-pulldown assays performed on WT mice and rat tissue. 

In chapter 5, I interpret the results and discuss whether they lend support to or debunk 

the hypotheses presented in chapter 1, and whether the aims of the project were reached. I also 

look closer at some limitations associated with the choice of materials and methods and how 

these affect the generalizability of the results, as well as limitations stemming from the initial 

theoretical assumptions of the project. The chapter is wrapped up with some thoughts on what 

the study has contributed to the field and where research on the topic could go from here. 
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1 Introduction 

The last century has seen dramatic developments in medical science, and with that an increase 

in life expectancy, particularly in developed countries. However, though we are able to keep 

our bodies alive for longer, we are not yet able to stop them from declining. This poses a 

number of socio-economic as well as personal challenges, as people spend a smaller portion 

of their lives as tax payers and a larger portion in need of health care and economic support 

from their families and/or the government. Major efforts are thus being made in medical 

research to figure out how to efficiently treat – or better yet, prevent – age-related diseases. 

For many types of cancer, efficient treatments have been developed, and screening programs 

allow us to nip potential cases in the bud. Age-related neurodegenerative diseases, on the other 

hand, have proved particularly challenging, in large part due to the astonishing complexity of 

the human brain. Increasing our understanding of the brain, with its specialized actors and 

intricate networks, is thus critical in our effort to halt its decline. Neurodegeneration is a 

feature of several brain disorders, including Parkinson’s disease and Huntington’s disease, but 

most common, and arguably most infamous, is Alzheimer’s disease.  

1.1 Alzheimer’s disease 

1.1.1 Epidemiology and pathology 

Alzheimer’s disease (AD) is a neurodegenerative disease, characterized by cerebral atrophy 

and a progressive loss of cognitive function (Masters et al., 2015). It was first described in 

1907 by German psychiatrist Alois Alzheimer, when he discovered substantial atrophy and 

extracellular plaques in the brain of his deceased patient Auguste Deter (Alzheimer, 1987). 

AD is the most common cause of dementia; it is thought to account for about 2/3 of all cases, 

amounting to 46.8 million cases worldwide, with the number estimated to reach 131.5 million 

by 2050 if no successful therapy is developed (Prince et al., 2015). The disease can be divided 

into early- and late-onset, the latter (>65 years of age) being by far the most common (Masters 

et al., 2015). Early-onset AD is typically the familial type (FAD), caused by recognizeable 

genetic mutations, while late-onset is predominantly sporadic (SAD) (Dorszewska et al., 

2016). Both are, however, characterized by the same pathological manifestations in the brain. 

Patients typically develop atrophy of the hippocampus, entorhinal cortex, and cerebral cortex, 

areas crucial for memory formation and higher cognitive function (Figure 1.1) (Smith, 2002). 
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In addition to a loss of neurons, brains from AD patients exhibit a loss of synapses and synaptic 

dysfunction in the same areas (Davies et al., 1987; Selkoe, 2002, 2008; Serrano-Pozo et al., 

2011). Histologically, the disease is defined by two hallmark features: amyloid plaques 

composed of the short peptide β-amyloid (Aβ), and neurofibrillary tangles (NFTs) composed 

of tau protein (Figure 1.2) (De-Paula et al., 2012). 

The pathology appears to progress through the brain according to a general sequence, 

with clinical symptoms developing correspondingly (De-Paula et al., 2012; Pearson et al., 

1985; Smith, 2002). The rate of progression is variable and difficult to predict, but the disease 

can be divided into different phases. The first, and longest, is the preclinical stage, which may 

last for decades. In this phase, the patient does not present symptoms, although abnormal 

accumulation of Aβ can be detected with brain imaging (De-Paula et al., 2012; Masters et al., 

2015). In the second, pre-dementia phase, the patient starts to show cognitive symptoms, 

including disorientation, loss of the ability to form and retain long-term memories, and 

problems with language and mood regulation. Pathology is typically evident in the entorhinal 

cortex, the hippocampus, and parts of the cerebral cortex (Braak and Braak, 1991; Thal et al., 

2002). Later, it appears to spread through the cerebral cortex, corresponding to the loss of 

cognitive and physical function as the disease progresses (Smith, 2002). In the last, most 

severe stage, AD pathology reaches the cerebellum (Thal et al., 2002), which is responsible 

for motor control and coordination, and clinical symptoms include loss of bodily functions 

and ultimately death. 

There is still no consensus on how or why the disease develops and progresses, but it 

is generally accepted to be in some way related to the formation of amyloid plaques and 

neurofibrillary tangles. 

Figure 1.1 Progressive degeneration of the brain in Alzheimer’s disease. Brain structures important for 
memory and higher cognitive function shrink in the brains of persons with Alzheimer’s disease, notably the 
hippocampus and the cerebral cortex. Modified from Bob Morreale, BrightFocus Foundation. 
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1.1.2 Aβ and amyloid plaques 

Amyloid plaques are aggregates of Aβ, a peptide that has long been the prime suspect when it 

comes to AD pathogenesis. The amyloid cascade hypothesis argues that the main driver of AD 

is deposition of Aβ at one or more initial sites followed by spread and aggregation of Aβ 

oligomers, fibrils, and plaques throughout the brain, propagating synaptic failure and neuronal 

death as the cascade progresses, thus causing increasing loss of cognitive functions (Hardy 

and Higgins, 1992; Selkoe and Hardy, 2016). 

 Aβ is generated by proteolytic processing of the amyloid precursor protein (APP). 

APP is a type I transmembrane protein expressed in the brain, particularly at synapses, 

reported to play a role in promoting synaptic activity, dendritic spine formation, and neurite 

outgrowth (Hoe et al., 2012; Klevanski et al., 2015; Young-Pearse et al., 2008; Zheng and 

Koo, 2006). APP can function as a full-length protein, or it can enter into two main processing 

pathways, the non-amyloidogenic and the amyloidogenic (Figure 1.3) (Hoe et al., 2012). In 

the non-amyloidogenic pathway, APP is first cleaved extracellularly by the enzyme α-

secretase, shedding the large soluble ectodomain sAPPα, then by the 𝛾-secretase complex, 

yielding the small extracellular peptide p3 and the amyloid intracellular domain (AICD), 

shown to translocate to the nucleus and regulate gene transcription (Konietzko, 2012; Zhang 

et al., 2012a). In the amyloidogenic pathway, APP is cleaved by β-secretase (BACE1) instead 

of α-secretase, releasing sAPPβ. Subsequent cleavage by the 𝛾-secretase complex yields AICD 

and Aβ, a peptide slightly longer than p3. This extra length makes Aβ sticky, increasing its 

Figure 1.2 Protein aggregates in Alzheimer’s disease. In healthy neurons, microtubules are stabilized by tau 
protein. In Alzheimer’s disease, tau protein is hyperphosphorylated and dissociates from the microtubules, 
causing them to disintegrate and form neurofibrillary tangles inside the cell. In the extracellular space, Aβ peptides 
aggregate and form amyloid plaques. Modified from Bob Morreale, BrightFocus Foundation.  
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propensity to aggregate into oligomers which can clump together and form amyloid plaques 

(Zhang et al., 2012b).  

Aβ aggregations like those in AD would, however, require that there is a substantial 

amount of Aβ present, as could result from increased APP processing and/or lack of clearance 

of Aβ. The former might be a consequence of overexpression of APP, or overactive processing 

enzymes. FAD is, indeed, correlated with multiple copies of the APP gene, or mutations in 

PSEN1 or PSEN2, genes encoding subunits of the 𝛾-secretase complex (Dorszewska et al., 

2016). Increased risk of SAD is associated with a specific allele of the gene encoding 

apolipoprotein E, which is implicated in reduced Aβ clearance; persons carrying the e4 allele 

of the ApoE gene have a higher risk of getting the disease, while the e2 allele seems to be a 

somewhat protective factor (Kim et al., 2009). Increased APP processing might also be a result 

of enhanced association of APP with the secretases. Whereas non-amyloidogenic processing 

appears to mainly happen at the cell surface, reports are that amyloidogenic APP processing 

typically occurs in endosomes; this, then, requires that APP, BACE1 and 𝛾-secretase be 

Figure 1.3 APP processing in the non-amyloidogenic and amyloidogenic pathways. In the non-
amyloidogenic pathway, APP is cleaved sequentially by α-secretase and 𝛾-secretase at the cell surface, yielding 
sAPPα, AICD, and the peptide p3. In the amyloidogenic pathway, APP is typically internalized with BACE1 and 𝛾-
secretase cleaved sequentially, yielding sAPPβ, AICD, and the peptide Aβ. Aβ tends to aggregate, resulting in 
extracellular amyloid plaques. 
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internalized and sorted into the same endosome, and dysregulation of this process could lead 

to overproduction of Aβ (Haass et al., 2012; Wu et al., 2011). 

BACE1 processing is the first and rate limiting step in the amyloidogenic pathway 

(Haass et al., 2012). Its expression is elevated in AD patients, and drugs targeting BACE1 

have been shown to reduce amyloid load in animal models (Evin and Hince, 2013). However, 

BACE1 knock-out (KO) mice do display some phenotypic abnormalities, suggesting that it 

may be difficult to develop drugs targeting BACE1 without adverse side effects (Zhang et al., 

2012b). Moreover, as noted, the genes mutated in FAD encode subunits of the 𝛾-secretase 

complex, indicating that understanding this complex is key both for elucidating mechanisms 

of AD pathogenesis and for drug development. 

𝛾-secretase is a transmembrane protein 

complex composed of at least one presenilin 

(PS1/PS2), nicastrin, APH1, and PEN2 (Figure 1.4) 

(Bai et al., 2015; Fraering et al., 2004; Kimberly et al., 

2003; Wolfe, 2006). Association of PS1 with PEN2 

facilitates endoproteolytic cleavage of PS1 between 

transmembrane domains 6 and 7 (TM6 and TM7), 

yielding an N-terminal (NTF) and a C-terminal (CTF) 

fragment, which stay associated, forming an active 

heterodimer with two aspartate residues on TM6 and 

TM7 necessary for protease activity (Wolfe, 2006). A 

three-amino-acid motif on TM9 is thought to be 

involved in substrate recognition (Figure 1.5). In the 

case of the amyloidogenic pathway the substrate is 

APP, but 𝛾-secretase is also involved in other cellular 

functions, most notably Notch signaling (Wolfe, 

2006). 𝛾-secretase does not, however, process APP in 

a single step or at a single site, but follows one of two 

stepwise processing lines yielding Aβ peptides of 

slightly different lengths (Haass et al., 2012). The last 

cleaving can occur after amino acid 37 to 43 of the Aβ 

domain, Aβ40 and Aβ42 being the most common 

products (Haass et al., 2012).  

Figure 1.4 Structure of the 𝛾-secretase 
complex. Structure of the 𝛾-secretase 
complex consisting of presenilin 1, APH-
1, PEN-2, and nicastrin (NCT). PS1 
catalytic activity is dependent on two 
aspartate residues (red) on its 
transmembrane domains 6 and 7. 
Modified from Bai et al. (2015). 



Introduction 

 6 

Of these, Aβ40 is nine times more abundant in AD than Aβ42, yet amyloid plaques in 

vivo are mainly made up of the Aβ42 isoform, typically attributed to the extra Ile-Ala at its C-

terminus making it more aggregation prone (Iljina et al., 2016). In line with this, an increase 

in the Aβ42/Aβ40 ratio is associated with increased plaque formation and neurotoxicity (Iljina 

et al., 2016). Importantly, the toxic effects of Aβ are manifest before they form solid plaques; 

Haass and Selkoe (2007) propose a model where amyloid plaques are reservoirs of soluble 

oligomers, the oligomers being the bioactive element causing synaptic dysfunction by 

associating to the neuronal plasma membrane at synapses, thus disrupting normal signaling 

events. Evidence of impaired synaptic structure and function in mouse hippocampal slices 

treated with Aβ oligomers supports this (Shankar et al., 2008). The composition of different 

Aβ isoforms in oligomers is difficult to determine in vivo, but modelling and in vitro studies 

suggest that even though Aβ42 is inherently stickier, Aβ40 and Aβ42 can readily co-

oligomerize (Gu and Guo, 2013; Iljina et al., 2016). A preferential aggregation of Aβ42 with 

itself in vivo may therefore indicate that there are unknown in vivo mechanisms favoring this 

self-oligomerization (Gu and Guo, 2013). 

Aβ oligomers may also function as seeds that are transmitted synaptically and promote 

aggregation, effectively being responsible for the cascade of amyloid pathology (Morales et 

al., 2015). Synapses and synaptic activity, then, could be important in AD pathology not only 

as victims, but as perpetrators, working as active transmitters of Aβ.  

The question is posed, however, of whether Aβ generation is a causal factor in AD, or 

an effect following some other causal event. One intriguing proposition is that Aβ is not in 

fact a pathogen, but part of the immune system, protecting against infectious agents that have 

managed to cross the blood-brain barrier (BBB). In a recent study, Kumar et al. (2016) infected 

cell cultures, the nematode C. elegans, and mice with Salmonella Typhimurium, and found 

that elevated Aβ expression was indeed a protective factor, proposing a model where Aβ 

Figure 1.5 Presenilin 1 topology. Membrane topology diagram of presenilin 1, with its nine transmembrane 
domains. Aspartate residues necessary for catalytic activity in red, amino acids indicated in substrate recognition 
in orange. Figure from Bai et al. (2015). 
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inhibits the pathogens’ ability to bind to the host cell, and eventually imprisons the pathogen 

by forming aggregates around it. Whether enhancement of Aβ in AD would be a result of a 

real or imagined infection remains to be resolved. 

Another suggested physiological role for Aβ is that Aβ is part of a negative feedback 

mechanism normally functioning to mediate synaptic activity, that has somehow become too 

strong in AD (Kamenetz et al., 2003). Excess of one or more of the other products of 

amyloidogenic APP processing, sAPPβ and AICD, may also have harmful effects, as may a 

loss of function of products of the non-amyloidogenic pathway should APP be sequestered by 

β-secretase at the expense of α-secretase activity. 

Other critics of the amyloid cascade hypothesis argue that focusing so heavily on Aβ 

is a mistake altogether, as tau protein pathology precedes amyloid plaque formation and 

correlates better with the progression of clinical symptoms (Duyckaerts, 2011). 

1.1.3 Tau and neurofibrillary tangles 

Neurofibrillary tangles (NFTs) are the second main histopathological feature of AD. NFTs are 

aggregations containing the protein tau, which normally functions to stabilize microtubules 

(Figure 1.2) (Wang and Mandelkow, 2016). Not as widely studied as Aβ, much is still not 

determined about why and how it is involved in pathogenesis and progression (Wang and 

Mandelkow, 2016). However, a common theory is that hyperphosphorylation of tau causes it 

to detach from the microtubules and form intracellular aggregates (Wang and Mandelkow, 

2016). The aggregates appear to be toxic to the cell, and the lack of stabilizing tau protein 

causes microtubules to disintegrate, damaging the neuron and contributing to cell death (Wang 

and Mandelkow, 2016). Like Aβ pathology, propagation of tau pathology appears to occur 

through seeding, that is, a process where tau oligomers and protofibrils act as seeds that are 

transmitted synaptically and promote aggregation in a cascade-like manner (Walker et al., 

2013). Also like Aβ pathology, tau hyperphosphorylation is hypothesized to be a defense 

mechanism rather than a cause of AD, a compensatory response triggered by oxidative stress 

(Lee et al., 2005). 

In contrast to Aβ pathology, tau pathology development has been shown to correlate 

both spatially and temporally with the development of AD symptoms (Braak and Braak, 1991; 

Giannakopoulos et al., 2003). In fact, the different stages of tau pathology are used in AD 

diagnostics, referred to as Braak staging (Braak and Braak, 1991, 1997). Tau pathology is also 

a feature of other brain diseases, called tauopathies, including Huntington’s disease (HD) 

(Wang and Mandelkow, 2016). This suggests that it might be a general cellular response to 
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different types of threats or perceived threats in the brain, and the increasing efforts into 

understanding tau physiology and pathology could reveal promising treatment options not 

only for AD, but for numerous other diseases, too. 

1.1.4 More than tau and amyloid 

In addition to the classical Aβ and tau aggregates, a wide range of potentially pathological 

factors have been identified in AD. Contributing factors may be increased levels of α-

synuclein in cerebral spinal fluid (CSF) in AD (a peptide traditionally more associated with 

Parkinson’s disease (PD)) (Majbour et al., 2017); dysfunction of the cholinergic system (Craig 

et al., 2011); mitochondrial dysfunction resulting in energy failure and oxidative stress 

(Onyango et al., 2016); vascular dysfunction leading to e.g. insufficient waste removal and 

supply of nutrients (Di Marco et al., 2015); or lack of plaque clearance by the glymphatic 

system (Xie et al., 2013). Glial cells are also implicated in AD pathogenesis. The most 

abundant glia of the central nervous system (CNS), astrocytes, provide vital support to neurons 

and the blood-brain barrier (BBB), but if damaged, they may contribute to increased Aβ plaque 

deposition through a vicious circle involving the inflammatory response (Avila-Muñoz and 

Arias, 2014). Microglia, the macrophage cells making up the brain’s main immune response, 

appear to remove amyloid plaques by phagocytosis, but become activated and release 

inflammatory cytokines, resulting in a chronic inflammation state; a recent study found that 

knocking out a protein involved in recruiting microglia in an animal model of amyloidosis 

reduced damage to neurons, even though the plaque load was higher in the KO mice (Shi et 

al., 2017). In further support of the importance of the immune response in AD, certain genetic 

variants of the microglial surface receptor TREM2 are reportedly associated with a 2-4 fold 

increase in the risk of getting AD, almost as large as the effect of the ApoE e4 allele 

(De Strooper and Karran, 2016; Ulrich and Holtzman, 2016). 

 Given this range of involved factors in AD pathogeneses and progression, De Strooper 

and Karran (2016) argue that instead of focusing only on the two infamous proteins, a holistic 

approach is needed to understand the disease. They propose a three-stage model starting with 

a biochemical phase with unknown causes but characterized by Aβ and tau pathology, 

followed by a cellular phase where different types of brain cells respond to the stress of protein 

aggregation by developing compensatory mechanisms, and when these become irreversible, 

the disease transitions to a clinical phase of AD with manifest dementia. 

Whatever the cause or causes, dysfunction, reduction, and loss of synapses is 

indisputably a consequence of Alzheimer’s disease, particularly in the hippocampus and 
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neocortex (Scheff et al., 2006). Understanding why this leads to memory loss, and figuring 

out how it may be ameliorated, requires some understanding of normal memory function. 

1.2 Mechanisms of memory 

One of the most important functions of our brain is the ability to learn and form memories, 

allowing us to survive known dangers and adapt to new ones. Loss of this ability, e.g. by AD 

or traumatic injury, can be immensely debilitating. Not surprisingly, a central ambition in 

neuroscience is deciphering how the brain adapts in response to sensory inputs; how our 

experience of the world is translated into changes in the brain itself. 

1.2.1 Localizing memory 

Different brain regions are associated with different functions, and the regions most closely 

associated with the ability to form and retain long-term memories are the hippocampus and 

the neocortex (Squire et al., 2015). The neocortex is the outer layer of the vertebrate brain, and 

can be divided into the frontal, temporal, occipital, and parietal lobe; within these are different 

areas responsible for certain functions, such as speech, vision, olfaction, or executive function 

(Squire et al., 2013). The hippocampus is a subcortical brain structure located in the medial 

temporal lobe. It consists of the substructures Cornu Ammonis 1-3 (CA1-3) and the dentate 

gyrus (DG), and is functionally and anatomically connected to neocortical areas though the 

entorhinal cortex (Buzsáki, 1996; Neves et al., 2008; Rothschild et al., 2017). The 

hippocampus is essential to the process of memory consolidation, in which memories are 

transferred from short-term to long-term memory (Bartsch and Wulff, 2015). Sensory 

information is first received and processed in the neocortex, and then transferred to the 

hippocampus, which integrates the different inputs (e.g. relating the visual and olfactory inputs 

from a flower) (Squire et al., 2015). The hippocampus is then responsible for transferring the 

information back to the cortex for long-term storage through memory consolidation, resulting 

in a memory independent of the hippocampus (Eichenbaum, 2004). If the hippocampus is 

damaged and cannot perform its function in consolidating memories, a consequence will be 

loss of the ability to form new long-term memories such as can be seen in AD (Bartsch and 

Wulff, 2015). 

Memory consolidation can be divided into systems consolidation and synaptic 

consolidation. Systems consolidation refers to the process of making the memory independent 

of the hippocampus, and appears to be dependent on accurately timed delivery of the brain-
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derived neurotrophic factor BDNF to function properly (Bekinschtein et al., 2008). Synaptic 

consolidation refers to the protein synthesis dependent change in synaptic strength triggered 

by a pattern of repeated activation, and is part of what is called synaptic plasticity (Bramham, 

2007). 

1.2.2 Synaptic plasticity 

The human brain is reported to contain approximately 86 billion neurons, which interact in 

networks through synapses (Azevedo et al., 2009). Neurons typically consist of one axon and 

multiple dendrites springing from a cell body (Squire et al., 2013). The axon connects to 

another neuron at a synapse, usually on a dendritic spine, where it can transmit signals (usually 

chemical, less commonly electrical) across a tiny cleft to the connecting neuron (Squire et al., 

2013). Hebbian theory states that if one neuron signals, or fires, over a synapse and thus 

activates another neuron, the synapse will physically grow, strengthening the connection 

(Hebb, 1949). The current understanding of this mechanism is that specific firing patterns may 

induce strengthening, weakening, or stabilization of a connection. This dynamic and plastic 

nature of synapses is widely accepted to be the molecular basis for memory and learning, and 

is described using the concepts long-term potentiation (LTP), long-term depression (LTD), 

and homeostatic scaling (Squire et al., 2013). 

LTP leads to strengthened synapses. In early phase LTP (E-LTP), high-frequency 

stimulation (HFS) of an excitatory glutamatergic neuron causes the insertion of α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPAR), stored in endosomal 

compartments, into the post-synaptic membrane. It also causes post-translational modification 

of existing AMPAR leading to increased conductance. In the late phase (L-LTP), which is 

dependent on brain derived neurotrophic factor (BDNF) signaling, more AMPAR are 

produced and inserted into the membrane, and the dendritic spine grows through remodeling 

of the actin cytoskeleton. This requires de novo protein translation and transcription, and is the 

same as synaptic consolidation. (Bramham, 2007; Bramham et al., 2010) 

 Strengthening connections between neurons is important for properly functioning 

memory and learning, but so is weakening and maintenance of strength. LTD leads to 

weakened synapses and shrinkage of dendritic spines. Induced by a pattern of low-frequency 

stimulation, LTD entails the removal of AMPAR from the postsynaptic membrane by 

endocytosis, and shrinkage of the dendritic spine. In homeostatic scaling, synaptic strength is 

stably maintained. (Bartsch and Wulff, 2015) 
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For normal functioning of memory and learning it is crucial that these processes be 

regulated in a highly specific and precise manner, allowing us to keep the information we do 

need and not waste capacity on that which we do not. 

1.2.3 A regulator of synaptic plasticity 

A protein that increasingly emerges as a candidate for the role of master regulator of synaptic 

plasticity is the activity-regulated cytoskeleton-associated protein, Arc/Arg.3.1 (Bramham et 

al., 2010; Shepherd and Bear, 2011). It is one of a group of genes termed immediate early 

genes (IEG), the name alluding to their rapid transcription as the primary response to inner or 

outer stimuli (Bahrami and Drabløs, 2016). Arc protein is mainly expressed in excitatory 

glutamatergic neurons in the hippocampus and neocortex, where it localizes to dendrites and 

the cell nucleus (Shepherd and Bear, 2011). Upon appropriate activation of an excitatory 

synapse, Arc is rapidly transcribed and mRNA delivered to dendrites for local translation 

(Bramham et al., 2010).  The spatiotemporal precision of Arc protein synthesis and action  

relies on three features: 1) Docking of Arc mRNA to F-actin rich sites in dendritic spines, 2) 

rapid elimination of Arc mRNA via translation-dependent RNA decay, and 3) rapid 

degradation of Arc protein in ubiquitin proteasomal system  (Bramham and Wells, 2007). 

Arc protein is essential for memory consolidation (Plath et al., 2006), evidence 

supporting its involvement in regulation of both LTP, LTD, and homeostatic scaling 

(Bramham et al., 2008). It is hypothesized to distinguishing between these processes by 

operating as a multifunctional hub for other proteins, interacting with different sets of protein 

binding partners in the different processes (Bramham et al., 2010). In LTD, evidence indicates 

that Arc promotes internalization of AMPAR post-synaptically through interaction with 

proteins of the endocytic machinery dynamin 2 and endophilin 2 and 3 (Chowdhury et al., 

2006). Arc also localizes to the nucleus, where it is implicated in homeostatic scaling through 

involvement in the transcriptional regulation of GluA1, a subunit of AMPARs, seemingly 

through interaction with promyelocytic leukemia (PML) nuclear bodies (Korb et al., 2013). 

Induction and consolidation of LTP has been shown to be Arc dependent (Messaoudi et al., 

2007). A proposed model for this effector pathway is that HFS at a synapse triggers neuronal 

release of BDNF, which then binds to TrkB receptors at the post-synaptic membrane, thereby 

tagging the synapse for Arc mRNA as well as promoting transcription of Arc through the TrkB 

signaling pathway (Bramham and Messaoudi, 2005; Kuipers and Bramham, 2006; Soule et 

al., 2006). Enhanced Arc at the dendritic spine is then thought to regulate spine growth and 

remodeling of the actin cytoskeleton through direct binding to the actin-stabilizing protein 
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drebrin A and indirect binding to the actin filament severing protein cofilin (Nair et al., 2017). 

Arc also binds to the N-terminus of PS1, and given its known interaction with the endocytic 

machinery, it is proposed to be involved in endocytosis of APP and 𝛾-secretase and their 

sorting into the same early endosome, where the amyloidogenic pathway takes place (Wu et 

al., 2011). 

It is not yet established how the Arc response system is able to mediate and switch 

between these different effector pathways with very different outcomes. One possibility is that 

Arc associates with the particular sets of proteins as a result of post-translational 

modifications, conformational changes, or multimerization. Indeed, the protein appears to 

consist of two globular domains connected by a central unstructured hinge region, presumably 

allowing it to adopt different conformations, exemplified by an apparent change in structure 

upon binding PS1 (Myrum et al., 2015). Evidence also indicates that it is capable of self-

oligomerizing, supporting a role for multimerization in regulating Arc’s many functions 

(Myrum et al., 2015). 

Whatever the mechanisms guiding Arc regulation of synaptic plasticity may be, the 

contrast between possible outcomes of Arc activity means it is crucial they not be disrupted. 

1.3 Arc in Alzheimer’s disease 

Accumulating evidence for AD being a “synaptopathy”, with synaptic dysfunction being a 

fundamental feature of the disease, suggests that Arc regulatory functions may be altered in 

affected brains (Kerrigan and Randall, 2013). This is supported by both genetic and 

biochemical studies into the relationship between Arc and AD. 

One of these reports that soluble Aβ oligomers induces Arc expression in neurons 

(Lacor et al., 2004). Another demonstrates that Arc is necessary for the activity-dependent 

generation of Aβ (Wu et al., 2011). Taken together, this implies that there may be a positive 

feedback mechanism involved, which under pathological conditions could lead to propagation 

of Aβ production (Guntupalli et al., 2016). The mechanisms by which Arc influences AD 

pathology is likely to involve dysregulation of AMPAR trafficking, a theory that is supported 

by experimental evidence (Hsieh et al., 2006; Palop and Mucke, 2010; Wu et al., 2011). 

Increased AMPAR endocytosis resulting from increased Arc LTD activity would likely 

contribute to disruption of neural signaling networks, which could in turn play a part in 

propagation of pathology. 
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Genetic studies have also reported a connection between Arc and AD. A study on a 

Swedish cohort reports finding a variant of the ARC gene that reduces the risk of AD 

(Landgren et al., 2012); another has revealed variants of ARC associated with AD risk in Han 

Chinese, likely by either altering protein structure or increasing transcription of Arc mRNA 

(Bi et al., 2017). Mutations in the ARC gene is also implicated in schizophrenia, reinforcing 

the notion that disrupted Arc activity can severely interfere with normal brain function (Fromer 

et al., 2014; Huentelman et al., 2015; Purcell et al., 2014).  

Altered expression levels of Arc appears to influence AD pathology, as supported by 

findings that AD patients are reported to overexpress Arc (Kerrigan and Randall, 2013). 

However, this alteration in expression levels appears to not be uniform; Rudinskiy et al. (2012) 

studied Arc expression in response to a visual stimulus and found that fewer neurons close to 

amyloid plaques express Arc, but those that do, overexpress. This complex expression pattern 

may explain that some studies indicate increased Arc activity in AD while others indicate 

decreased (Kerrigan and Randall, 2013). A study on the amygdala and hippocampus of a 

transgenic mouse model of AD found that soluble Aβ was reduced with long-term exercise, 

likely as a result of increased activation of the BDNF-TrkB pathway and Aβ clearance (Lin et 

al., 2015). Part of the effect of activating the BDNF-TrkB pathway appears to come from 

activation of Arc (Bramham and Messaoudi, 2005), indicating that Arc expression may be a 

relevant factor in this increased clearance. In a study on a transgenic mouse model of 

amyloidosis, Arc mRNA was found to be present at lower levels than in wild type (WT) mice, 

and novelty exposure did not increase Arc mRNA as much in the transgenic mice as in the 

WT (Christensen et al., 2013), supporting the idea that the expression level of Arc protein is 

disrupted in AD. This expectation can be expressed as two concrete hypotheses: 

 

H1  Arc protein expression in the brain before external stimulus < Arc protein expression in the 

brain after external stimulus 

 

H2  Stimulus-induced change in Arc protein expression in healthy individuals > stimulus-

induced change in Arc expression in individuals with AD 

 

Disrupted Arc function may stem from a disrupted expression level, or from alterations in its 

ability to interact with the right proteins at the right time. As described, Arc is known to 

interact with several proteins of the endocytic machinery to internalize AMPAR, and is 

demonstrated to bind directly to PS1 of the 𝛾-secretase complex. A feasible model could thus 
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be that a physiological function of Arc is to regulate endocytosis of APP, BACE1, and/or 𝛾-

secretase through cooperation with dynamin 2 and endophilin 2/3, and to promote sorting of 

APP, BACE1, and 𝛾-secretase into the same early endosome through its direct binding to PS1, 

thereby facilitating the production of Aβ (Figure 1.6) (Wu et al., 2011). Dysregulation of such 

a process could lead to overproduction of Aβ. In accordance with this, Arc has been reported 

to be necessary for activity-dependent increase in Aβ by enhancing the association of APP 

with BACE1 and 𝛾-secretase in early endosomes, though basal levels of Aβ were apparently 

not influenced by knocking out Arc (Wu et al., 2011). In sum, interaction between Arc and the 

𝛾-secretase complex is expected to be a physiological function, but Arc activity in this pathway 

leading to Aβ generation is expected to be higher in AD brains. Changes in Arc function as 

regulator of this process can be studied, concretely, as changes in protein-protein interactions. 

We may thus deduce the experimentally testable claim: 

 
H3  Arc/PS1 interaction in healthy brains < Arc/PS1 interaction in AD brains 

 

Answering these hypotheses requires a set of materials and methods appropriate for the task. 

Figure 1.6 Proposed model of Arc regulating sorting of APP and 𝛾-secretase in early endosomes. Arc 
interacts with dynamin 2 and endophilin 2/3 in the endocytic machinery to regulate endocytosis (Chowdhury et al., 
2006), and enhances association of APP with gamma secretase in early endosomes through direct interaction with 
PS1 (Wu et al., 2011). Adapted from Wu et al. (2011) and Bali et al. (2010). 
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1.4 Methodology 

The present project was part of a collaboration with other labs across Europe investigating a 

proposed link between BDNF-TrkB signaling and neurodegenerative diseases (CircProt). This 

entailed some restrictions on the materials and methods available for this project, to allow its 

integration with other branches of the overarching project. 

1.4.1 Choice of materials 

The different work packages of the CircProt project are set to focus on different things, e.g. 

behavioral studies comparing the effect of different genes and environments on the behavioral 

phenotype. Later stages of the present project will introduce electrophysiology as a method to 

investigate the effect of AD pathology on LTP induction. These kind of studies favor the use 

of an animal model as material, as opposed to patient-derived material or cell cultures. The 

ambition to integrate this study in the overarching project made animal tissue the preferred 

choice of material for this part of the project, too. The animal model chosen was APP/PS1 

mice, a transgenic strain of mice expressing APP and PS1 with mutations associated with 

FAD. It is chiefly a model of amyloidosis and only to a lesser degree includes tau pathology. 

By definition, then, it does not capture all aspects of AD. This may be seen as a weakness, as 

it makes it less valid to infer that what occurs in the model occurs in human patients, but it 

also has strengths in that it reduces the number of variables and allows a targeted study of 

particular aspects of the disease. 

Answering H1 and H2 required the controlled introduction of a stimulus and subsequent 

analysis of Arc expression. This was done reliably in an animal model by introducing physical 

exercise in the form of a running wheel. However, the presence of a running wheel is 

enrichment of the mice’s environment and a stimulus in itself in the form of an introduced 

novelty, which may in itself have an effect on protein expression. To distinguish between these 

two potential effects, a test group housed with a “non-running”, or dummy, wheel was 

included.  

All hypotheses could be studied with biochemical analyses of the brains of the model 

mice. Homogenized tissue lysate from the frontal cortex was chosen as the material, as 

amyloidosis is reported to appear here early and reliably in AD (as described above). Lysed 

tissue from whole cortical regions is, however, material providing relatively low resolution.  

In addition to neurons, the lysate will include astrocytes, microglia, and blood cells, among 

other things. While H1 and H2 are best studied using an animal model, H3 might have been 
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studied using neuronal cell cultures or combined cultures, thereby lowering the number of 

variables. On the other hand, in vivo studies on animal models is arguably closer to the 

physiological reality in humans than in vitro studies, and the introduction of some variables 

(e.g. the vascular and glymphatic system) may be a strength rather than a weakness; tissue 

lysate was therefore chosen as the material for this section of the study, too. 

1.4.2 Choice of methods and proteins of interest 

For the studies of Arc expression levels (H1 and H2), Western blotting was judged an 

appropriate method. Arc, BDNF, and PS1 were chosen as proteins of interest; Arc because it 

is the central element of the hypotheses, BDNF because of its involvement in synaptic 

plasticity and activity-induced release (as described above), and PS1 because of its role as a 

link between Arc and AD pathology. 

Arc does not appear to have inherent catalytic activity; rather, as discussed, it can be 

seen as a multifunctional hub, or adapter protein, working through interactions with other 

proteins, coordinating their actions and localization. Arc function can thus be assessed with 

protein-protein interaction (PPI) methods. Co-immunoprecipitation allows study of 

interactions between proteins in their native form, and was therefore selected as the main 

method for studying Arc/PS1 interaction. To control for the possibility that findings were an 

artefact of the method, the ambition was to use GST-Arc pulldown assay, though this part of 

the project was not carried out to completion. In an effort to answer H3, co-

immunoprecipitation was carried out with Arc and PS1 as “bait” and “prey”, alternately. The 

methods needed optimization before being judged valid and reliable; other known and 

suspected Arc interaction partners (calnexin, dynamin 2, PSD-95, syntaxin 4) were used for 

that purpose. 
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2 Aims 

The present research project is part of the JPND supported collaboration CircProt, and the 

overarching aim was to carry out preliminary biochemical analyses of Arc protein expression 

and the Arc interactome in APP/PS1 mice. 

Specifically, the first aim was to compare Arc, BDNF, and PS1 expression in APP/PS1 

and WT mice, assess whether enrichment of the environment influences the expression of 

these proteins, and if so, whether it has a different effect in APP/PS1 mice than in their WT 

littermates. The second was to develop effective co-immunoprecipitation and GST-Arc 

pulldown protocols for elucidating differences in the Arc protein interactome in mice, and to 

utilize these to compare Arc protein interactions in APP/PS1 and WT mice, focusing on 

changes in Arc/PS1 interaction as an indication for changes in Arc regulated trafficking of the 

𝛾-secretase complex. 
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3 Materials and methods 

3.1 Animals 

The study was carried out in accordance with Norwegian regulations on the use of animals in 

experiments. For the experiments comparing WT, AD model mice, and different housing 

options, mouse tissue from AD model mice were received from the lab of Prof. Dr. rer. nat. 

Volkmar Lessmann, Otto-von-Guericke-University Magdeburg, Germany. Samples were 

frontal cortex tissue from male APP/PS1 mice and their WT littermates, kept in standard 

housing, with two groups having either a running wheel or dummy wheel (not spinning) 

introduced at 5th month after birth, then kept in the cages for 2 months before dissection. 

APP/PS1 is a transgenic mouse model of amyloidosis developed by the lab of Prof. Dr. 

Mathias Jucker (Radde et al., 2006), created on a C57BL/6J background. The strain expresses 

a chimeric mouse/human APP gene containing the “Swedish mutation” (Mullan et al., 1992) 

and PSEN1 containing an L166P mutation, both controlled by the Thy1 promoter, allowing 

the production of human Aβ, preferentially Aβ42. Amyloid plaques appear first in the 

neocortex at 6-8 weeks and in the hippocampus at 4 months; impaired LTP between 6 and 8 

months (Gengler et al., 2010). C57BL/6J mice used in the optimization process were handled 

by the Laboratory Animal Facility staff at the Faculty of Medicine and Dentistry at the 

University of Bergen, in accordance with The animal welfare act and The regulation on the 

use of animals in research. For this set of experiments, whole cortex was collected from 2-3 

months old animals. 

3.2 Antibodies  

The following antibodies were used for western blotting and immunoprecipitation, as 

described in the results section: mouse anti-Arc monoclonal (C7; Santa Cruz sc-17839); rabbit 

anti-Arc polyclonal (H300; Santa Cruz sc-15325); rabbit anti-Arc polyclonal (Synaptic 

Systems 156003); guinea pig anti-Arc polyclonal (Synaptic Systems 156005); rabbit anti-PS1 

monoclonal (Abcam E2000Y); mouse anti-PS1 monoclonal (Abcam ab-15456); rabbit anti-

PS1 polyclonal (Sigma P7854); rabbit anti-calnexin C-term polyclonal (Enzo Life Sciences 

ADI-SPA-865); goat anti-calnexin polyclonal (C-20; Santa Cruz); mouse anti-GAPDH 

monoclonal (6C5; Santa Cruz sc-32233) rabbit anti-BDNF polyclonal (N-20; Santa Cruz sc-

546); mouse anti-syntaxin 4 monoclonal (Abcam ab-77037); rabbit anti-syntaxin 4 



Materials and methods 

 20 

monoclonal (EPR15473; Abcam ab-184545); goat anti-dynamin 2 (C-18; Santa Cruz sc-

6400); rabbit anti-dynamin 2 polyclonal (Merck ABT49); normal mouse IgG (sc-2025), 

normal rabbit IgG (sc-2027), normal goat IgG (sc-2028) (all from Santa Cruz); goat anti-rabbit 

IgG horseradish peroxidase (HRP) conjugated H+L chain specific (401315); rabbit anti-goat 

IgG-HRP H+L (401515); goat anti-mouse IgG-HRP H+L (401253) (all from Calbiochem); 

goat anti-guinea pig IgG-HRP, H+L (Southern Blot Biotech 6090-05); goat anti-rabbit IgG-

HRP (sc-2030), goat anti-mouse IgG-HRP (sc-2055), rabbit anti-goat IgG-HRP (sc-2768) (all 

from Santa Cruz). Primary WB antibodies were prepared in 5% BSA in 1X Tris-buffered 

saline (TBS) with 0.1% Tween 20 (TBST), secondary antibodies in 1X TBST. 

3.3 Sample preparation 

Samples were homogenized in 400-500 µL lysis buffer (20 mM HEPES pH 7.4, 137 mM NaCl 

(unless otherwise stated), 0.5% Nonidet P-40, 1 mM EDTA, 5% glycerol, 1 mM NaF (unless 

otherwise stated), 1 mM Na3VO4, cOmplete Mini protease inhibitor cocktail tablet (Roche)) 

and centrifuged at 13,000 rpm, 4℃ for 10 minutes. The supernatant was collected and protein 

concentration determined by BCA assay (Pierce BCA Protein Assay Kit) using a VersaMax 

microplate reader and SoftMax Pro software (v. 4.7.1). 

3.4 Protein expression analysis 

Lysate containing 40 µg protein were incubated with 1:1 Laemmli sample buffer for 5 minutes 

at 95℃, then subjected to SDS-PAGE and Western blotting. 

3.5 Co-immunoprecipitation 

The following procedure was used in the protocol optimization experiments, with variations 

as noted in the results section. Protein G-sepharose 4 Fast Flow beads (GE Healthcare) were 

washed 3X in 1X PBS. 2 µg IgG antibody against the protein to be immunoprecipitated or 

purified IgG from the same species as the antibody was incubated with 20 µL washed beads 

and lysis buffer to 500 µL, rotating for 1 hour at room temperature (RT) (unless otherwise 

stated). After incubation with antibody, beads were washed 1X in 1X phosphate-buffered 

saline (PBS). Lysate containing 250 µg (hippocampus) or 300 µg (cortex) protein and lysis 

buffer to a total volume of 500 µL was added, and incubated rotating for 2 hours at 4℃ (unless 
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otherwise stated). Beads were then gently washed 3X in lysis buffer at 4℃. Proteins were 

eluted from beads and denatured by incubating for 5 minutes at 95℃ with 1:1 Laemmli sample 

buffer (Bio-Rad) (unless otherwise stated), before separation by SDS-PAGE. Lysate inputs 

containing 40 µg protein were denatured the same way. 

For the co-immunoprecipitations comparing APP/PS1 mice and their WT littermates, 

antibody was not pre-bound to beads; 20 µL beads, 2 µg antibody and lysate from frontal 

cortex (300 µg protein) were incubated with lysis buffer up to 500 µL overnight at 4℃. 

3.6 Bacterial transformation and protein purification 

80 µL of B21 competent cells were thawed on ice and incubated with 50-100 ng of PCR 

product (GST plasmids or GST-Arc plasmids) for 15 minutes on ice, then subjected to heat 

pulse at 42℃ for 90 seconds in a water bath. Tubes were put back on ice and 500 µL LB broth 

(200 µg LB in 100 mL water) was added to each, followed by 1 hour incubation at 37℃. Agar 

medium was prepared from 100 mL water, 2 g LB broth and 1.5 g agar, boiled in microwave 

and cooled to ~50C, then added 50 µL of 100mg/mL Ampicillin (1:1000), and distributed onto 

petri dishes (~25 mL/dish). Transformed bacteria were plated and incubated overnight at 37℃. 

Cultures were prepared from single bacterial colonies incubated in LB broth medium for 3 

hours at 30℃, shaking at 250 rpm, then cooled to 10-13℃ while still shaking, then added 1 

mM isopropylthiogalactoside (IPTG) and incubated overnight at 10℃, 250 rpm, to an OD of 

0.5-1.5 at 600 nm. The cultures were centrifuged at 8000 rpm for 7 minutes and the supernatant 

discarded. Pellets were resuspended in STE buffer (100 mM NaCl, 10 mM Tris-HCl pH 8.0, 

1 mM EDTA), then 10 mM DTT was added and the samples sonicated 3x30s with 30s 

intervals. 1% Triton X-100 was added before incubation for 30 minutes at 4℃. Lysate was 

centrifuged 13,000 rpm, 4℃ for 30 minutes and the supernatant incubated with washed 

glutathione sepharose beads (GE Healthcare) for 2 hours at 4℃. Bead mixture was passed 

through a filter column and the column washed 4x with STE buffer with 1% Triton X-100, 4x 

with 50 mM Tris-HCl pH 8.0, and the proteins eluted with 3x5 minutes incubation with 10 

mM L-Glutathione in 50 mM Tris-HCl pH 8.0. 
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3.7 GST pulldown 

20 µL glutathione sepharose beads (GE Healthcare) were incubated with 10 µg purified 

protein (GST or GST-Arc) for 2 hours at 4℃, then 1 mL 5% filtered BSA was added followed 

by overnight incubation at 4℃. The next day, the supernatant was removed and beads were 

washed once in 1X PBS and incubated with 300 µg lysate for 2 hours at 4℃. Beads were 

washed 3x with 1X PBS and the proteins eluted with 1:1 Laemmli sample buffer (Bio-Rad) 

with 5% β-mercaptoethanol, incubated for 5 minutes at 96℃, and separated by SDS-PAGE. 

3.8 SDS-PAGE 

5 µL PageRuler was used as the protein standard for all gels. Samples were loaded onto 8% 

or 10% SDS-PAGE gels (as described in results section) and run on 100V for ~1.5 hours in 

1X TGS buffer. 

3.9 Western blotting 

Proteins were transferred from polyacrylamide gels to nitrocellulose membranes using a Bio-

Rad Trans-Blot Turbo machine and the StandardSD program (25V, 1.0A, 30 min). Membranes 

were then blocked in 5% dry milk for 1 hour at RT, rinsed 1X in 1X TBST, and incubated 

with primary antibody (1:1000 in 1X TBST with 5% BSA) overnight at 4℃. The next day, 

membranes were washed 3X5 minutes in 1X TBST and incubated with secondary antibody 

for 1 hour (1:5000  in 1X TBST for antibodies from Santa Cruz; 1:10,000  in 1X TBST for 

antibodies from Calbiochem and Southern blot biotech), then washed 3X5 minutes in 1X 

TBST. Blots were visualized with enhanced chemiluminescence (Pierce ECL Western 

Blotting Substrate), using a BioRad ChemiDoc molecular imager and Quantity One 4.6.6 

software. 

 After imaging, membranes were stripped of antibodies by incubation with stripping 

buffer (62.5 mM Tris-HCl pH 6.8, 2% SDS, 0.8% β-mercaptoethanol) for 45 minutes at 50℃, 

then rinsed 3X in ddH2O, washed 3X5 minutes in 1X TBST, blocked in 5% dry milk for 1 

hour at RT, rinsed 1X in 1X TBST, and reprobed with a different antibody. 
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3.10  Blot quantification and statistics 

Western blots of Arc, BDNF, and PS1 in the APP/PS1 and WT lysate were quantified in 

ImageJ, and normalized to GAPDH. For each protein, values were normalized to WT mice in 

standard housing. Western blots from Arc and PS1 immunoprecipitation experiments 

comparing APP/PS1 and WT mice were quantified with the same method and normalized; 

when blotting for the same protein as immunoprecipitated, values were normalized to the value 

representing the WT mouse housed in standard cages (e.g. amount of Arc IP-ed from mice 

with a running wheel per amount of Arc IP-ed from mice in standard housing); when blotting 

for that of the two proteins not immunoprecipitated, values were normalized to the 

corresponding value for the immunoprecipitated protein (e.g. amount of PS1 in the Arc IP per 

amount of Arc in the Arc IP). Two-way ANOVA with Holm-Sidak’s multiple conparisons test 

were carried out in Prism 7.   
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4 Results 

Two main sets of experiments were performed to (1) study how expression of Arc, BDNF, 

and PS1 is influenced by different housing options in APP/PS1 and WT mice, and (2) compare 

the interaction between Arc and PS1 in APP/PS1 and WT mice. To carry out the latter, a 

methods optimization process was necessary. 

4.1 Changes in Arc, BDNF, and PS1 expression 

Western blots of Arc, BDNF, and PS1 were performed on frontal cortex tissue lysate from 7 

months old male APP/PS1 mice (AD model) and their WT littermates, housed in three 

different conditions: standard housing, with a running wheel introduced 5 months after birth, 

or with a “non-running”, or dummy, wheel introduced 5 months after birth (Arc: n=5; BDNF: 

n=4; PS1: n=5). Representative blots are shown in Figure 4.1. Probing with antibody against 

Arc gave bands at ~55 kDa, corresponding to Arc protein size. Across the 5 experiments, the 

variation in intensity of the bands in different lanes did not appear to follow a specific pattern. 

Probing with antibody against BDNF gave protein bands at ~25 kDa, corresponding to 

expected BDNF size, and the intensity of the bands appear to be lower in lanes loaded with 

samples from mice housed in standard conditions, than the other groups. Probing with anti-

PS1 gave one band at ~18-19 kDa in the lanes loaded with WT samples, corresponding to 

expected size for the C-terminal fraction of PS1, whereas in the lanes with APP/PS1 samples, 

an additional band of roughly the same intensity was detected just above the first.  

5 repetitions (4 in the case of BDNF) of Western blots were quantified and normalized 

to the housekeeping gene GAPDH to control for differences in protein concentration due to 

variation in the amount of sample loaded. In quantification of PS1, both bands detected at ~18-

19 kDa were included. For each protein, means of the normalized values from the six groups 

Figure 4.1 Representative Western blots 
from protein expression analyses. 
Western blotting of Arc, BDNF, and PS1 in 
frontal cortex of WT and APP/PS1 (AD) 
mice kept in standard housing, with running 
wheel, or with a dummy wheel. Blots were 
also probed with GAPDH for loading control 
(not shown). 
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of mice (two strains and three housing options) 

were normalized to the value for the given protein 

in WT mice housed in standard conditions, and 

plotted in histograms, error bars representing SEM 

(Figure 4.2). Two-way ANOVA with multiple 

comparisons (Holm-Sidak) was performed for 

each protein, with comparisons done (1) between 

different mouse strains housed together and (2) 

between groups of one mouse strain housed 

differently. No significant change in Arc 

expression was found with either varying mouse 

strain or housing. BDNF expression in the WT 

groups housed with a running or a dummy wheel 

was higher than in WT mice housed in standard 

conditions, both differences statistically 

significant and of similar magnitude. No 

significant difference in BDNF expression was 

detected between the two strains of mice. For the 

groups housed in standard cages and with a 

running wheel, PS1 expression was found to be 

significantly higher in APP/PS1 mice than in WT 

mice, with a larger and more statistically robust 

difference in the standard housing group. No 

statistically significant difference in PS1 

expression was detectable between the groups 
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Figure 4.3 Mean Arc, BDNF, and PS1 protein expression 
in WT and APP/PS1 mice housed in different conditions. 
Mean normalized (GAPDH) expression of Arc (n=5), BDNF 
(n=4), and PS1 (n=5), quantified from Western blots. In each 
plot, columns are normalized to the column representing WT 
standard housing mice. Both bands detected at ~18-19 kDa 
in PS1 blots were included in quantification. Two-way 
ANOVA with multiple comparisons was performed, 
comparisons done (1) between different mouse strains 
housed together and (2) between groups of one mouse 
strain housed differently. Error bars: standard error of the 
mean (SEM). * p < 0.0332, ** p < 0.0021 
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housed in different conditions or between the two strains in the group housed with a dummy 

wheel. 

4.2  Optimization of co-immunoprecipitation protocol 

Comparing the strength of interaction between Arc and PS1 in the two strains of mice using 

co-immunoprecipitation required development of an optimized protocol. An effective protocol 

demonstrated to co-immunoprecipitate Arc and several known binding partners from rat tissue 

was previously established by the lab (see appendix 1), but as the physiology of mice is not 

identical to that of rats, the protocol could not be expected to be directly transferrable to a 

different species without adjusting a number of reagents and parameters. The established rat 

protocol was used as the basis for co-immunoprecipitation in mouse tissue, then adjusted 

through a series of experiments varying antibodies, buffers, and procedure. Lysed WT mouse 

cortex was used for all experiments. 

4.2.1 Selecting antibodies for immunoprecipitation and immunoblotting 

Effective antibodies are fundamental to a functioning co-immunoprecipitation, thus the 

optimization process began with a set of experiments comparing the efficacy of different 

antibodies in both immunoprecipitation and immunoblotting. Co-immunoprecipitations were 

carried out using three different antibodies for Arc; monoclonal anti-Arc C7 and polyclonal 

anti-Arc H300 from Santa Cruz biotech, and polyclonal anti-Arc from Synaptic systems; to 

determine which was the most effective in immunoprecipitating Arc (Figure 4.3 A). Probing 

membranes for Arc yielded bands at ~55 kDa, the expected size for Arc, in all three lanes 

containing immunoprecipitation samples, but the strongest contrast to the IgG control was 

seen in the lane where anti-Arc C7 was used. 

For PS1 immunoprecipitation, it was decided that an antibody raised against an epitope 

on the N-terminus of the protein was the best option, as that is where Arc is shown to bind and 

PS1 undergoes endoproteolysis yielding C-terminal and N-terminal domains that might 

dissociate during the co-immunoprecipitation process. Because of a limited selection of 

commercially available antibodies, monoclonal anti-PS1 from Abcam was the only feasible 

choice.  

After selecting anti-Arc C7 for co-immunoprecipitation, a series of Arc 

immunoprecipitations were carried out and immunoblotted with a selection of anti-Arc 

primary antibodies (Figure 4.3 B). C7 is produced in mice, thus rabbit and guinea pig derived 
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antibodies were tested, but not mouse, to avoid non-specific binding of the primary antibody 

to the C7 IgGs. Both anti-Arc derived from guinea pig and rabbit from Synaptic systems (SS) 

gave strong signals at around ~55 kDa; anti-Arc from Santa Cruz biotech (SC) also yielded a 

signal at the expected size for Arc, but a weaker one. Probing with rabbit anti-Arc from 

Synaptic systems yielded a band at ~50 kDa which was not seen in the lysate, corresponding 

to the size of IgG heavy chains. 

Three different primary antibodies against PS1 were tested on lysate to assess their 

effectiveness and efficiency in recognizing PS1 (Figure 4.3 C). Mouse-derived monoclonal 

anti-PS1 was expected to yield a band at 28 kDa band, corresponding to the PS1 N-terminus, 

but no band was detected at that site. Probing with monoclonal rabbit anti-PS1, targeting the 

C-terminus, gave bands at both around 19 and 26 kDa, the first of which was expected, the 

second of which might corresponds to the size of the IgG light chain or the PS1 N-terminus. 

The third antibody tested, polyclonal rabbit anti-PS1, also gave signals at the expected 19 and 

the unexpected 26 kDa, but these were much weaker than those in the monoclonal rabbit anti-

Figure 4.3 Western blots from multiple antibody 
optimization steps. (A) Immunoprecipitation of Arc using 
three different antibodies (denoted C7, H300, and Arc SS), 
purified IgG (negative control), and lysate (positive control) 
also shown. (B) Three different antibodies for immunoblotting 
of Arc (SS: Synaptic systems; SC: Santa Cruz), and negative 
controls. Arc immunoprecipitation done with C7. (C) Three 
different antibodies for immunoblotting of PS1 in lysate. Bands 
expected at 28 kDa (left), 19 kDa (middle), and 19 kDa (right), 
corresponding to N- and C-termini, respectively. (D) 
Comparison of different secondary antibodies used with the 
same primary antibody on the same membrane. #1 from 
Calbiochem, #2 from Santa Cruz biotech. 
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PS1. Bands at around 53 kDa were detected in both the rabbit polyclonal and the mouse 

monoclonal, corresponding to the size of the PS1 holoprotein. It also corresponds roughly to 

the size of the IgG heavy chain, and neither signal appeared as strong as the signal at 19 kDa, 

leading to the conclusion that the monoclonal rabbit anti-PS1 was the better choice of primary 

antibody, even though it recognizes the C-terminus, not the N-terminus which binds Arc, and 

might therefore have trouble recognizing whether PS1 was co-immunoprecipitated with Arc 

should the C-terminus dissociate from the N-terminus in the co-immunoprecipitation process. 

The N- and C-termini were, however, expected to stay in a complex with each other as well 

as with Arc until elution, and it was concluded that the monoclonal rabbit anti-PS1 should be 

used as the primary antibody in subsequent experiments. 

Arc had acceptable candidates for primary antibody from rabbit and guinea pig; PS1 

from rabbit. It was  therefore decided to use the rabbit-derived antibody for Arc when both 

proteins were immunoprecipitated on the same gel, to allow use of the same secondary 

antibody. 

Two different anti-rabbit secondary antibodies were tested in combination with  

immunoprecipitation with C7 and immunoblotting with rabbit anti-Arc selected in the earlier 

steps of the antibody selection process (Figure 4.3 D). Both secondary antibodies yielded 

bands in the Arc IP lanes (at 55 kDa, corresponding to Arc size) and in the IgG negative control 

(at 50 kDa, corresponding to the size of the heavy chain of IgG), but secondary antibody #1 

(from Calbiochem) gave a much stronger signal in the IgG lane relative to the Arc IP lane, 

than did secondary antibody #2 (from Santa Cruz biotech); with the latter, a clear, strong band 

was seen in the Arc IP lane and only a relatively very weak one in the IgG lane. 

4.2.2 Co-immunoprecipitation protocol test in WT mouse reveals need for 
optimization 

With a set of antibodies selected, the protocol that had been used successfully on adult rat 

brain tissue was tested on mouse cortex to determine whether it was effective, and if so, 

efficient. Two sets of co-immunoprecipitation and reverse co-immunoprecipitation of Arc was 

attempted; one with Arc and calnexin (Cnx) as bait proteins, another with Arc and PSD-95  

(PSD-95 being a known binding partner for Arc; calnexin being a suspected one). Membranes 

were then probed for either Arc and calnexin (Figure 4.4 A) or Arc and PSD-95 (Figure 4.4 

B), to check for successful immunoprecipitation of the bait protein as well as co-

immunoprecipitation of the other protein. Probing the first set of IPs for calnexin yielded a 

strong band in the calnexin IP at the same size as the input (~95 kDa), as well as a weak band 
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corresponding to the same size in the Arc IP, and no signal in the negative control, indicating 

successful co-immunoprecipitation of calnexin with Arc (Figure 4.4 A, top). Probing the 

second set of IPs for PSD-95 gave a band in the PSD-95 IP corresponding to the band in the 

input (~95 kDa), but none in the Arc IP, indicating no co-immunoprecipitation of Arc with 

PSD-95 (Figure 4.4 B, top). Probing for Arc revealed a strong band just below 55 kDa in both 

Arc IP lanes, consistent with Arc size, no clear band at the same height in the calnexin IP, and 

a clear, but slightly lower than 55 kDa band in the PSD-95 IP, corresponding to the size of the 

heavy chain of IgG. Membranes were also probed for PS1, dynamin 2 and syntaxin 4 to check 

for successful co-immunoprecipitation with Arc, but results were negative. The lack of co-

immunoprecipitation of known or suspected binding partners with Arc indicated that 

optimization was needed before analyses of the APP/PS1 mice could be carried out reliably. 

4.2.3 Adjusting the lysis buffer 

The composition of the lysis buffer was varied in a set of experiments, with the objective to 

find a recipe that maximized the affinity of the target proteins toward each other and to 

minimize background signals in the visualization. 

In one experiment, Arc immunoprecipitation was performed using four concentrations 

of sodium chloride (NaCl): 100 mM, 120 mM, 137 mM, and 150 mM (Figure 4.5 A) 

Visualization by Western blot revealed bands at expected Arc size (55 kDa), i.e. at equal height 

with the lysate positive control, in all four lanes. No substantial difference in intensity was 

detected between the four, thus all were considered equally effective. Varying the 

concentration of sodium fluoride (NaF) in addition to varying NaCl resulted in a weaker signal 

in the lane with IP performed using lysis buffer with 150 mM NaCl and 1 mM NaF than in the 

lane where 100 mM NaCl and 50 mM NaF was used; in addition, the latter conditions gave 

weaker signal in the IgG control lane (Figure 4.5 B). To further investigate the effect of varying 

Figure 4.4 Testing co-immunoprecipitation protocol on WT mice. A co-immunoprecipitation protocol 
previously shown successful in adult rat brain (see appendix 1) was tested on WT mouse cortex. (A) 
Immunoprecipitation of Arc and calnexin, membrane probed for each one to check for immunoprecipitation and 
co-immunoprecipitation. (B) Immunoprecipitation of Arc and PSD-95, membrane probed for each one to check 
for immunoprecipitation and co-immunoprecipitation. 
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NaCl and NaF concentration simultaneously, the experiment was repeated with additional 

variations: 120 mM NaCl and 30 mM NaCl, and 137 mM NaCl and 13 mM NaF. The strongest 

band was found in the lane with the Arc IP carried out using lysis buffer with 100 mM NaCl 

and 50 mM. Some signal at around the size of the IgG heavy chain was detected in the 

corresponding IgG control, but considerably weaker than in the Arc IP. Immunoblotting the 

Arc IP for PS1, dynamin 2, and syntaxin 4 still yielded negative results, therefore, the 

optimization process was continued with experiments varying several parameters in the co-

immunoprecipitation procedure. 

4.2.4 Optimizing the co-immunoprecipitation procedure 

IgG controls were already included to control for non-specific protein binding to the IgG part 

of antibodies, but to investigate the extent of non-specific binding, a bead control was added 

to the mix; for this, protein G sepharose beads were only incubated with lysate, not antibody. 

Arc and calnexin co-IPs were performed with the bead control included (Figure 4.6). A band 

at 95 kDa in the Arc IP visible when blotting for calnexin suggested calnexin might have been 

Figure 4.6 Checking for binding to beads. Arc and 
calnexin co-immunoprecipitations, immunoblotted for 
calnexin and Arc. Lane marked Beads contained 
elute from protein G sepharose beads not incubated 
with antibody, only lysate. Images in each row are 
from the same blot and exposure. 
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Figure 4.5 Varying lysis buffer salt concentrations. (A) Immunoprecipitation of Arc was carried out using 
lysis buffer with either 100 mM, 120 mM, 137 mM, or 150 mM NaCl. (B) NaCl and NaF concentrations were 
varied simultaneously, one IP being performed using lysis buffer with 100 mM NaCl and 50 mM NaF, and one 
using lysis buffer with 150 mM NaCl and 1 mM NaF. (C) IP of Arc carried out in lysis buffers with a range of 
variations in NaCl and NaF concentration.  
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co-immunoprecipitated with Arc, but almost equally strong bands in both IgG and bead control 

lanes indicated that it might only result from non-specific binding of calnexin to the beads 

and/or IgG chains, not association with Arc. Bead binding appeared to not be a problem in 

Arc IP. It was nevertheless decided that pre-incubation of beads with a blocking solution 

would be appropriate when performing immunoprecipitation of calnexin. 

 Beads were incubated with 5% BSA in 1X TBST for 30 min to avoid non-specific 

binding, and Arc and calnexin co-immunoprecipitations were again attempted (Figure 4.7 A). 

The co-immunoprecipitations were carried out in duplicates and subjected to different washing 

protocols, to study whether changing the stringency of the buffer used for washing the beads 

after incubation with lysate could increase the consistency and success rate of the co-

immunoprecipitation protocol. Washing with lysis buffer yielded a considerably stronger 

immunoprecipitation signal than washing with 1X PBS. Interestingly, the band previously 

seen at 95 kDa in the Arc IP lane when blotting for calnexin was not seen in the Arc IP washed 

with 1X PBS, whereas it was present but not stronger than the bead control in the Arc IP 

washed with lysis buffer. IgG and bead controls were both washed with 1X PBS, and could 

consequently not be interpreted as accurate controls for the co-IPs washed with lysis buffer. 

However, given the increase in strength of signal in the lysis buffer-washed co-IPs relative to 

the 1X PBS-washed co-IPs, IgG and bead controls might also be expected to yield stronger 

bands at 95 kDa if washed with lysis buffer; potentially as strong as the one in the Arc IP lane. 

Arc protein weighs in at 55 kDa, and as a consequence, any binding to the heavy chain 

of IgG, which could result from increased elution of antibodies from the beads with the 

proteins, has potential to obscure the results and confuse the interpreter. Different elution 

protocols were therefore tested for Arc IPs and accompanying IgG controls (Figure 4.7 B). 

Elution by incubation for 5 minutes at 95℃ in sample buffer with beta mercaptoethanol 

Figure 4.7 Varying blocking, washing, and elution protocols. (A) Co-immunoprecipitation of Arc and 
calnexin and vice versa was attempted in duplicate samples subjected to washing with two different reagents; 
little was in favor of co-immunoprecipitation success, but immunoprecipitation appeared effective. (B) 
Different elution protocols were tested on Arc IP, varying time and temperature of incubation with sample 
buffer and presence of β-mercaptoethanol in sample buffer.  
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yielded a strong protein band at 55 kDa in the Arc IPs and little signal at 50 kDa in the IgG 

controls, and was the method used in subsequent experiments. 

Incubating the sample with the antibody-bound beads for too long might lead to non-

specific binding, but too little incubation time might decrease the yield to such a degree that 

neither non-specific nor specific interactions are strong enough to detect. Temperature also 

matters, as higher temperatures mean quicker movements at the molecular level and thus more 

chances of two proteins bumping into each other in a given time. The effect of these variables  

and the interplay between them was investigated with attempted co-immunoprecipitations of 

Arc and PS1, shown in Figure 4.8. The effectiveness of immunoprecipitation of Arc appeared 

to vary with time and temperature. When incubating the lysate with antibody-bound beads for 

either 30 minutes or 1 hour at room temperature (RT), the strongest signal at 55 kDa in the 

Arc IP blotted for Arc came from 1 hour incubation (A). A band of similar strength was found 

at 50 kDa in both Arc IPs and the paired PS1 IPs, as usual corresponding to the size of IgG’s 

heavy chain; note, however, that the corresponding band in the IgG control lane was much 

weaker. The same co-immunoprecipitations were carried out with binding of the lysate to the 

antibody-beads for 1 hour at 4℃ or 1 hour at RT (B), yielding the strongest bands at 55 kDa 

when blotting for Arc in the Arc IP performed with 1 hour incubation in 4℃ Signal was present 

in all samples at 50 kDa, though at lower intensities and not in a pattern consistent with the 

ones in (A). 

In addition to varying the length of incubation, one may also vary the sequence. All 

previous experiments were attempts at direct co-immunoprecipitation, where antibodies were 

first immobilized on the beads, then lysate was added. Indirect IP of Arc and PS1 were 

performed in duplicates with varying incubation times (Figure 4.9). They were expected to 

give more non-specific binding, but higher yield; the latter might compensate for the former 

in terms of utility of the information obtained. Antibodies incubated with lysate either 

Figure 4.8 Varying IP incubation times and temperature. (A) Duplicates Arc and PS1 IPs carried out with 
variable incubation times were probed for Arc. In PS1 IP this gives a band at the expected size of the heavy 
chain of IgG. (B) Duplicates of Arc and PS1 IPs were carried out with further variation in incubation times, as 
well as temperature, and subsequently probed for Arc. 
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overnight or one hour at 4℃ were washed once with 1X PBS and 2x with 1XPBST, then 

incubated with washed Protein G sepharose beads for 1 hour at 4℃ (A). A strong band was 

detected at ~50 kDa in the PS1 IP when blotting for Arc, similar to the bands at 50 kDa in 

other experiments earlier, but surprisingly strong; comparable in intensity to the band seen at 

55 kDa in the Arc IP. IgG controls show only a weak band, as does the input. Immunoblotting 

was also performed with antibody against PS1 (monoclonal rabbit; epitope on the C-terminus), 

but no band was detected in the PS1 IP. Interestingly, though, in a comparison of direct (pre-

binding of antibody to beads, then incubation with lysate for 2 hours at 4℃) and a variant of 

indirect immunoprecipitation (beads, antibody, and lysate incubated overnight at 4℃) and 

subsequent probing for PS1 with the monoclonal antibody against the C-terminus, the direct 

IP protocol yielded three similar bands in both Arc IP, PS1 IP, and IgG, whereas with the 

protocol where all reagents were added at the same time and incubated overnight, a single 

band corresponding to the size of the band seen in the lysate (the positive control) is 

recognizable in the lane loaded with the PS1 IP sample, but not, or if so only barely, in the 

Arc IP and IgG lanes. This supported the continued use of the protocol involving overnight 

incubation of beads, antibody, and lysate, and that it might be possible to achieve successful 

PS1 IP, if not Arc co-IP of PS1, in the samples from APP/PS1 mice, too. Immunoprecipitation 

of Arc appeared reliable with the present protocol, but given the similarity in size of Arc and 

the heavy chain of IgG, it was decided to switch to a secondary antibody in Western blotting 

that only recognized the light chain (25 kDa), thus hopefully minimizing the risk of confusion. 

Figure 4.9 Indirect and direct co-
immunoprecipitation. (A) Two sets of indirect 
co-immunoprecipitations with different duration 
of antibody and lysate incubation before 
addition of beads. When blotting for Arc, a 
strong band appears in the Arc IP and a 
similarly strong band slightly lower in the PS1 
IP. (B) Two sets of co-immunoprecipitations 
carried out by either pre-binding antibody to 
beads then adding lysate or incubating all three 
reagents overnight. Immunoblotted for PS1. 
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4.3 Co-immunoprecipitation of Arc and PS1 in WT and an AD 
model  

Co-immunoprecipitation of Arc and PS1 was performed with frontal cortex tissue lysate from 

7 months old male APP/PS1 mice and their WT littermates. All mice were housed in standard 

housing for 5 months, then one group had a running wheel introduced, another group a dummy 

wheel (non-functioning running wheel) introduced, while a third group remained in standard 

housing conditions. Mice were sacrificed and dissected at 7 months of age. Five sets of Arc 

and PS1 immunoprecipitations were carried out using the overnight immunoprecipitation 

protocol arrived at in the last section (as described in methods), proteins separated by SDS-

PAGE and transferred to nitrocellulose membranes, and membranes then probed with 

antibodies against Arc and PS1 to check for (1) amount of immunoprecipitated protein and (2) 

possible co-immunoprecipitation of the other protein. Negative controls were included in the 

form of beads bound to IgG instead of a specific antibody and incubated with lysate, and beads 

incubated with only lysate (no antibody). Lysate from both strains of mice as positive controls, 

and an antibody control to which no lysate was added was included due to the suspicion that 

Figure 4.10 Western blots of Arc and PS1 co-immunoprecipitation in WT and APP/PS1 mice frontal 
cortex. (A) Immunoprecipitation of Arc and subsequent Western blotting for Arc (top) or PS1 (bottom). (B) 
Immunoprecipitation of PS1 and subsequent Western blotting for Arc (top) or PS1 (bottom). Material was lysed 
frontal cortex tissue from WT and APP/PS1 mice kept in standard housing, with a running wheel, or with a 
dummy wheel. Beads bound to IgG, beads not bound to antibody, and beads incubated with antibody but not 
lysate included as negative controls; lysate from both mouse strains included as positive control. 
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IgG heavy chains of the antibody used for PS1 immunoprecipitation was recognized as a band 

at 50 kDa in Western blots; see Figure 4.9. Representative blots are shown in Figure 4.10.  

Lanes containing the Arc IPs consistently yielded bands at ~55 kDa when 

immunoblotted for Arc, and considerably weaker bands in IgG, bead, and antibody controls 

(Figure 4.10 A, top). Immunoblotting for PS1 in the Arc IPs yielded bands around the expected 

18-19 kDa in all samples, but also in the IgG and bead controls, and these were of 

approximately the same intensity as the bulk of the bands detected in the Arc IP lanes (Figure 
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Figure 4.11 Means of Arc and PS1 immunoprecipitation and co-immunoprecipitation experiments in WT 
and APP/PS1 mouse frontal cortex. Plots comparing amount of protein detected with Western blotting in 
immunoprecipitations of Arc or PS1 in WT and APP/PS1 mice housed in three different conditions. (A) Mean 
amount of IP-ed Arc, all groups normalized to the amount of Arc IP-ed from the WT mouse in standard housing 
(n=5). (B) Mean amount of PS1 in Arc IPs, normalized to the amount of IP-ed Arc (n=5). (C) Mean amount of PS1 
in PS1 IPs, normalized to the value for WT standard housing (n=5). (D) Mean amount of Arc in PS1 IPs, 
normalized to the amount of IP-ed PS1 (n=3). In quantification of PS1, both bands detected at ~18-19 kDa were 
included. Two-way ANOVA with multiple comparisons were performed, comparisons done (1) between different 
mouse strains housed together and (2) between groups of one mouse strain housed differently. All samples taken 
from frontal cortex. Error bars: SEM. 

 



Results 

 37 

4.10 A, bottom). Interestingly, like in the expression analyses, probing with antibody against 

PS1 consistently yielded a double band in the lanes containing lysate from APP/PS1 mice, but 

only one (height of band corresponding to the lower of the double bands) in the WT mouse 

lanes. From simple visual inspection, there appeared to be no stable difference in intensity 

between the two bands originating from the transgenic mice. 

Immunoblotting for Arc after immunoprecipitation of PS1 yielded bands of 

comparable intensity at around 50 kDa in all lanes, including in the IgG, the bead control, and 

the PS1 antibody control (though somewhat weaker in the IgG and bead control than in the 

rest) (Figure 4.10 B, top). As no lysate was incubated with the antibody control, the band 

cannot be a visualization of Arc; the bands in the other lanes must be interpreted in light of 

this. When probing for PS1 in the PS1 IPs, a similar pattern was seen to that of probing for 

PS1 in the Arc IPs; bands at the expected height for the PS1 C-terminus (18-19 kDa) were 

detected in all lanes, including the negative controls, except in the PS1 antibody control 

(Figure 4.10 B, bottom).. Again, the APP/PS1 mice consistently yielded double bands, the two 

bands in each lane being of roughly the same intensity. 

Quantification and statistical analyses were performed on the four sets of images 

obtained after Western blot of the Arc and PS1 immunoprecipitations and attempted co-

immunoprecipitations. Amount of Arc immunoprecipitated in each of five repetitions was 

estimated from quantification of Western blots. Values representing amount of 

immunoprecipitated Arc were normalized to the values for Arc in standard housing WT mice, 

and means plotted in Figure 4.11 (A). Amount of PS1 detected in five repetitions of Arc 

immunoprecipitations by probing with antibody against PS1 was quantified from Western 

blots. Values representing PS1 load were normalized to Arc load in the same lane, and mean 

values plotted in Figure 4.11 (B). The same experiments were carried out in reverse; PS1 

immunoprecipitated and probed for PS1 and Arc, five repetitions (three for immunoblotting 

of Arc in PS1 IP) quantified and normalized to PS1 in WT standard housing or PS1 for the 

same lane, respectively. Plots of normalized mean values are shown in Figure 4.11 (C and D). 

Two-way ANOVA with multiple comparisons (Holm-Sidak) was performed separately on all 

four datasets, comparing (1) different mouse strains housed together and (2) differently housed 

groups of the same mouse strain.  No statistically significant differences in amount of 

immunoprecipitated or potentially co-immunoprecipitated protein were found between the 

groups in either dataset. 
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4.4 GST pulldown 

GST pulldown assay was introduced as a complimentary method to the co-

immunoprecipitation, in an effort to increase the reliability of any obtained results by 

controlling for the possibility that they are an artifact of the method.  

4.4.1 Protein purification 

GST pulldown assays could not be performed without 

first producing purified GST and Arc conjugated to 

GST (GST-Arc). Bacteria were transformed with 

plasmids containing either the gene encoding GST or 

GST-Arc, grown, and the respective proteins were 

purified. Samples of GST or GST-Arc were collected 

at different stages in the purification process and 

separated on a polyacrylamide gel, then transferred to a 

membrane which was probed for GST (Figure 4.12). A 

strong band at the expected kDa for GST were detected 

in the samples from bacteria transformed with a 

plasmid containing the gene for GST, and a weak band 

at the expected kDa for GST-Arc in samples from 

bacteria transformed with a plasmid containing the 

gene for GST-Arc, suggesting successful purification, 

though with a higher yield of GST than GST-Arc. 

4.4.2 Protocol established in rat brain tested for pulldown of PS1 

As with the co-immunoprecipitation experiments, a GST pulldown assay demonstrated to be 

effective in rat brain tissue was established in the lab. The established protocol was selected 

as a basis for testing and potential optimization in mouse; first, however, it was tested in rat 

tissue in an attempt to replicate previous findings by other persons in the lab. GST pulldowns 

were performed with lysate form prefrontal cortex and naïve hippocampus from two adult rats 

(Figure 4.12). Ponceau staining of the membrane indicated similar loading of protein in GST 

and GST-Arc lanes (appendix 2). Immunoblotting for PS1 (N-terminal) revealed very weak 

bands close to the expected 28 kDa in the lanes where lysate was incubated with GST-Arc 

bound beads, but not in those where lysate was incubated with GST bound beads (negative 

Figure 4.12 GST/GST-Arc protein 
purification. Samples were collected 
at different stages of the GST-Arc and 
GST purification process: after lysis of 
the bacteria by sonication (left), after 
elution of the proteins from the filter 
column (middle), and after subsequent 
dialysis of the elute (right). Upon 
blotting with antibody against GST, 
GST-Arc and GST were expected to be 
detectable at the indicated heights. 
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control). The protocol appeared successful in pulling down PS1 with GST-Arc, allowing for 

advancement to mouse tissue.  

4.4.3 Applying the established protocol to mouse brain tissue 

To control that the protocol was effective in mouse tissue as well as rat tissue and thus a 

feasible method for studying differences in PPIs in APP/PS1 and WT mice, it was applied to 

WT mouse hippocampus followed by Western blotting probing for PS1 (Figure 4.14). The 

duration and temperature of incubation of GST bound or GST-Arc bound beads with lysate 

was varied to investigate whether it changed the effectiveness of the protocol. All signals were 

weak, but a band at approximately 26 kDa was visible in lanes corresponding to the GST 

control, and much weaker but detectable in the GST-Arc pulldowns. A somewhat higher band 

was only present in the GST-Arc lanes, at similar strength in the two variants of the protocol. 

The positive control, i.e. the lane loaded with lysate, revealed only a weak, obscured band at 

the expected 28 kDa, but nevertheless a discernable one. Indications from the limited 

investigations were that the protocol was effective, if perhaps not efficient, in pulling down 

PS1 with GST-Arc, and might be applied successfully to studies of APP/PS1 mice in a future 

part of the overarching project. 

  

Figure 4.13 GST pulldown in rat prefrontal 
cortex and hippocampus. Weak bands were 
detected at the expected size for PS1 in the 
hippocampus of animal 1 and both the 
hippocampus and prefrontal cortex of animal 2. 
Contrast enhanced for visualization purposes 
(identical level of enhancement for both animals, 
originally on the same blot and thus the same 
image). 

 

Figure 4.14 GST-Arc pulldown probed with PS1 
Ms from abcam (expected band size: 28 kDa). 
Bands in GST-Arc sample lanes are at ~28 kDa, 
whereas bands in GST sample lanes are a little 
lower, at the expected size of GST (~26 kDa). 
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5 Discussion 

5.1 Interpreting the results 

5.1.1 Arc expression did not differ significantly, but BDNF and PS1 did 

To investigate potential differences in Arc, BDNF, and PS1 expression levels in APP/PS1 and 

WT mice kept in standard or enriched housing, frontal cortex tissue samples from each of the 

six groups of mice were separated with SDS-PAGE and immunoblotted for the proteins of 

interest. Five samples were obtained from each group of mice, allowing for statistical analysis 

of the quantified immunoblots. The results from the statistical analyses were largely in 

accordance with what has been described in the literature. Arc expression was not reported by 

the ANOVA analysis to be significantly influenced by either mouse strain or housing type; 

BDNF expression, however, was significantly increased in the mice given enriched 

environments the two last months of their life; PS1 expression, on the other hand, did not 

appear to be significantly influenced by a change of environment, but the mice genetically 

altered to express a PS1 mutant in addition to its endogenous PS1 did in fact display 

significantly higher expression of proteins recognized by the PS1 antibody than their wild type 

littermates.  

The lack of changes in Arc expression was perhaps the least anticipated of the results 

three, as an increase in Arc has been reported in AD patients (Kerrigan and Randall, 2013). 

However, Arc expression is transient in nature because of the need for rapid, well timed, and 

specific regulation, thus a significant change in Arc dynamics in this particular AD model – 

should there be one – can be expected to be easier to capture if more precise and timed methods 

for stimulating activity were employed. The low n of the study might also well explain why 

no significant changes were detected; a higher “n” would effectively increase the sensitivity 

of the analysis and perhaps detect significant nuances that were not captured by this study. 

It is no surprise that BDNF levels were significantly higher in the mice that had been 

kept in enriched environments for two months before sacrifice. It was, however, somewhat 

surprising that the increase did not appear to be larger with the introduction of a functional 

running wheel, than with a stationary one. One might expect that the introduction of both a 

novelty and physical activity would increase BDNF more than introduction of only one of 

those things, but that appeared to not be the case. Still, as with Arc, the statistical power of the 

study is very limited; the BDNF analyses were only based on 4 n, and further studies would 



Discussion 

 42 

have to be carried out to be able to draw conclusions regarding the detailed implications of the 

results. 

According to the statistics, PS1 expression was significantly higher in the transgenic 

mouse model than in the wild type mice. According to eyeballing, too, this seemed the case; 

the presence of a double band, both included when quantification the blots, in the APP/PS1 

mice but not the WT, was a clear indication that there would be a detectable difference between 

the two groups statistically, too. The presence of this double band does, however, raise some 

concerns about validity. The proteins fragments from which the bands originated were not cut 

out of the gel and sequenced; it is therefore still unclear what they actually are. Still, given that 

the mouse strain contains genes for two variants of PS1, it is not unexpected that it could result 

in more than one variant of the C-terminus showing up in expression analyses, and other 

studies also report multiple bands representing C-terminal domain variants in Western blots 

of the same mutant (Cacquevel et al., 2012); it was therefore judged valid to include both 

bands in the quantification. Another question is what the use of such an analysis would be. It 

is not meaningless information, detecting alterations in PS1 expression in a mouse that has 

been genetically modified to have such alterations? Yes and no; the finding that it expresses 

more PS1 than its WT counterpart is perhaps a priori information and not very interesting, but 

alterations in expression with changing environment would have been. Additionally, the 

indication that it is in fact present in a higher amount has implications for the interpretation of 

data from protein-protein interaction studies involving PS1, making it relevant information 

indeed for later parts of this study. 

5.1.2 Further tweaking required for robust co-immunoprecipitation 

The optimization process for the co-immunoprecipitation protocol has a number of different 

steps, and part of the ambition of the process was to introduce variables in a sequence that 

would decrease the risk that changing one variable would render conclusions from the previous 

steps invalid. This had to be an ambition, because it was not feasible to test all possible 

combinations of all the different variables.  

The antibody optimization was the first step, as a functioning antibody was a 

requirement for the whole of the rest of the process. Anti-Arc C7 was shown to be effective, 

and kept as the main antibody for immunoprecipitating Arc throughout the process. Anti-Arc 

H300 was also shown to be effective, but as the manufacturer has stopped the production, C7 

was the preferred choice. For the Western blotting, both effective primary and secondary 

antibodies were needed, and the combinations of these with each other and with the 
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immunoprecipitation antibody had to both make sense theoretically and work practically. As 

for the primary antibodies against Arc, the results indicated that there were more than one 

efficient alternative, resulting in the pleasing situation of having options, practical should a 

subsequent step in the optimization process render one of the options unsuitable. This may be 

the case for rabbit anti-Arc (Synaptic systems). Using it as a primary antibody to blot for Arc 

in a reverse co-immunoprecipitation of arc carried out with mouse anti-PS1 (Abcam) has been 

demonstrated to result in a band at almost the same height as Arc would be expected to be 

found, even if it is not exposed to lysate (see Figures 4.9 and 4.10). In an experiment not 

documented here, immunoblotting with anti-Arc C7 did not do the same in combination with 

rabbit anti-PS1 (Abcam) used for IP. However, because the mouse anti-PS1 was the only PS1 

antibody specifically targeting the N-terminal domain (i.e. the part that binds Arc) the lab was 

able to track down commercially at the time the experiments were carried out, it was decided 

that it was the best option for maximizing chances of successful Arc co-immunoprecipitation. 

It has not proven particularly successful as of yet, and given the fact that the two domains of 

PS1 stay associated (Wolfe, 2006), future studies may have something to gain from reversing 

that decision. The propensity of the two domains of PS1 to stay associated after 

endoproteolysis means that they should both be possible to co-immunoprecipitate with Arc; 

perhaps an antibody targeting the C-terminus is indeed a better choice than that made in this 

project. Secondary antibodies were also a factor in the attempt to avoid unwanted background 

signals, particularly those corresponding the size of the IgG heavy chain and to a minor degree 

the light chain (because of the unfortunate similarity in size of Arc (55 kDa) with the heavy 

chain (50 kDa)). Measures were taken to avoid both background signals and non-specific 

binding of proteins to the beads (as opposed to specifically to the antibodies); e.g. changing 

the secondary antibody, blocking the beads with BSA; and these were demonstrated to be 

relatively successful.  

The preliminary tests of the co-immunoprecipitation protocol in mice were, however, 

not successful, leading to a process of tweaking lysis buffer composition and changing 

duration and temperature of the incubation steps, etc. An optimized lysis buffer is important 

for the success of the co-immunoprecipitation, as protein-protein interactions may be transient 

and hard to capture, and while performing the experiments under physiological conditions 

seems a logical starting point, conditions are variable even in cells (e.g. changes in pH, calcium 

concentration in a neuron as a consequence of signaling, etc.). Altering conditions a little to 

facilitate more interaction is therefore not inherently “wrong” in the sense of not valid, one 
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just has to be conscious of what it entails; e.g. in what calcium concentrations will these 

proteins interact; and how to interpret any results. 

Negative controls were added to control for non-specific binding, one of them being 

the bead control where no antibody was added, only lysate. It is debatable whether this is a 

valid control; the IgG with no epitope bound to the beads should be expected to be a more 

relevant control, mimicking the conditions of the immunoprecipitation samples, only 

specifically without the antigen binding properties. 

The optimization steps led to a protocol, the effectiveness of which was still debatable. 

Immunoprecipitation of Arc was, however, stable and consistent, and the project moved on to 

the studies of AD model mice. 

5.1.3 Co-immunoprecipitation of Arc and PS1 appeared unsuccessful in 
APP/PS1 and WT mice 

Bidirectional co-immunoprecipitations of Arc and PS1 were carried out in repeats of five, 

using the protocol arrived at through the optimization process. This yielded four categories of 

immunoblots: Arc immunoprecipitations blotted for Arc, Arc immunoprecipitations blotted 

for PS1, PS1 immunoprecipitations blotted for PS1, and PS1 immunoprecipitations blotted for 

Arc. Two aspects of the results were analyzed; first, whether the co-immunoprecipitations 

were successful or not, and second, whether there were statistically significant variations 

between the amount of protein detected in different groups of mice.  

Arc IP blotted for Arc looked successful, the signal in the IP lanes much stronger than 

any of the negative controls. Signal in the negative controls may be explained as Arc binding 

non-specifically to beads or the heavy or light chain of the antibodies, but specific binding to 

the Arc antibody appeared consistently stronger and were therefore interpreted as successful 

IP. If PS1 was successfully co-immunoprecipitated with Arc, probing for PS1 in the Arc IP 

would yield bands corresponding to PS1 size in the IP lanes, but not in the control lanes. This 

was not found to be the case. While the now-characteristic double band at 18-19 kDa was 

clearly discernable in the blots, bands of similar intensity were present in the controls, too, 

indicating that PS1 did associate with something in the bead-antibody complex during the co-

immunoprecipitation process, but not necessarily with Arc. It might associate with Arc, too, 

but a specific interaction was not detected in these experiments. 

 Immunoprecipitation of  PS1 and subsequent blotting with anti-PS1 produced similar 

results to those obtained when probing for PS1 in the Arc IP, indicating that PS1 was not 

successfully immunoprecipitated, and that bands detected in the ECL visualization were a 
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result of PS1 binding non-specifically to either beads and/or the IgG part of the antibodies. 

Given that the PS1 IP was not judged successful, Arc was not expected to have been co-

immunoprecipitated in this set of experiments. Nevertheless, membranes were probed with 

anti-Arc, only to confirm that the band visible at around 50-55 kDa could not be interpreted 

as Arc, as the band was present at equal strength in the antibody control. With evidence 

accumulating in favor of this, it was clear that a different antibody or combination of 

antibodies was needed to successfully investigate this proposed interaction before being able 

to draw conclusions of how Arc may have altered activity in the regulation of the 𝛾-secretase 

complex in APP/PS1 mice. 

5.1.4 Neither housing nor mouse strain explained variation in Arc and PS1 
immunoprecipitated from WT and APP/PS1 mice 

The signals corresponding to expected weight for Arc or PS1 in each one of the just described 

Arc or PS1 blots were measured and used for statistical analyses. Multiple comparisons 

performed on the data did not reveal any significant relationships between the mice with the 

same genetic makeup but with different housing, nor between the mice with different genetic 

makeup but the same housing conditions. As concluded above, only the Arc 

immunoprecipitation was believed to have achieved what it set out to do, therefore any 

statistically significant results from the other sets of blots would have not been theoretically 

meaningful. However, it is important to stress that the handling of the data pre-statistics could 

have a considerable influence on the conclusions drawn from them. Here, the values measured 

after blotting for PS1 in Arc IP, or vice versa, were normalized to the corresponding value for 

the immunoprecipitated protein. Originally, they were also normalized to the value for the 

wild type mouse kept in standard housing throughout its life. This yielded some surprisingly, 

and suspiciously, significant results because the SEM was very high for the mean value of Arc 

in PS1 IP, and as that was effectively defined as one, the SEM was lost. Like in the expression 

analyses (5.1.1), the n was relatively low here (n=3 for Arc in PS1 IP, n=5 for the rest. 

Although no statistically significant patterns were found, the plots (Figure 4.11) , particularly 

A and C, were suggestive of a general pattern where housing enrichment entailed an increasing 

amounts of protein being immunoprecipitated . This might be investigated further by repeating 

the experiments more times.  
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5.1.5 GST-Arc might successfully pull down PS1 

Perhaps the most successful part of the project was the smallest one; preliminary GST-Arc 

pulldown experiments in both rat and mouse suggested, though the signals were very weak, 

that PS1 preferentially associated with the sepharose bead-immobilized GST-Arc than with a 

GST control. Note, however, that more repetitions are needed to determine whether the 

positive results were coincidences. 

5.2 Answering the hypotheses 

At the end of the theoretical introduction to this project I deduced a set of concrete hypotheses 

that might be supported or not supported after analysis of the data obtained during the project. 

 
H1  Arc protein expression in the brain before external stimulus < Arc protein expression in the 

brain after external stimulus 

 

Analysis of the expression data indicated no statistically significant relationship between Arc 

protein expression and the two operationalizations of external stimulus; presence of a running 

wheel and presence of a dummy wheel; in other words, H1 is not supported. 

 
H2  Stimulus-induced change in Arc protein expression in healthy individuals > stimulus-

induced change in Arc expression in individuals with AD 

 

The form of stimulus (running wheel and dummy wheel (a novelty introduction)) presented to 

the mice in these experiments did not appear to have a significant effect on Arc protein 

expression, as measured in frontal cortex tissue lysate, in either mouse strain. Amount of Arc 

immunoprecipitated from the same tissue sample was also not significantly altered with the 

stimulus. H2 is thus not supported by the experimental data from this project. 

 
H3  Arc/PS1 interaction in healthy brains < Arc/PS1 interaction in AD brains 

 

No reliable data was obtained about an interaction between Arc and PS1 in this project, 

therefore, H3 is not supported. 
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5.3 Reliability and validity 

In the methodological discussion in the introduction, it was decided that an animal model was 

the appropriate choice for answering the hypotheses of this thesis, heavily influenced also by 

restrictions stemming from the ambition to integrate the thesis project with a larger 

collaboration. Arguments in favor of using an animal model is that they are generally useful 

in AD research because AD is a slow progressing disease, hence it is not always feasible to 

use patient material. Patient-derived material also entails the possibility of co-morbidities 

affecting the results; using a model system decreases the number of variables. However, using 

a model system should always raise the question of validity. The particular model used in the 

present project is a model of Aβ pathology, based on known FAD mutations directly involved 

in amyloidosis; other features of AD, such as tau pathology (limited in the model), are not 

necessarily represented as they appear in patients. Investigating PS1 in a model where it is one 

of the introduced mutations can also be argued to decrease the generalizability of the 

information obtained. 

In addition to validity, the reliability of model system may be a concern. Female mice 

might produce different results depending on their menstrual cycle; male mice were used in 

the experiments on APP/PS1 to avoid such issues, but other things may influence the reliability 

of the model and subsequent comparability of results, like variations in the local microbiota. 

Different labs and animal facilities have different microbiomes, potentially accounting for part 

of the conflicting results in biomedical research. However, that is also the case for the rest of 

the world, so any robust effects would hopefully still be replicable.  

One could also argue that any in vivo model system is too complex, and that it would 

have been more appropriate to do preliminary studies of the interaction between Arc and PS1 

in vitro, even though later work on e.g. LTP and behavior favor an animal model. It would 

also be possible to increase specificity and decrease variables within the available framework.  

To account for the local variability in Arc expression associated with Aβ pathology, 

synaptoneurosomes might have been a good choice. The methods used here do not have high 

enough resolution to account for the local differences presented by Rudinskiy et al. (2012). 

The methods also have technical limitations which can influence both reliability and 

validity. This study relied heavily on antibodies, and their ineffectiveness and/or 

inappropriateness was the cause of many a struggle, as described in earlier paragraphs.  Others 

who have reported successful immunoprecipitation of PS1 have used non-commercial 

antibodies, making replication near impossible. 
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GST pulldown was to be used as a supplementing method, controlling for potential 

artefacts grounded in the method. However, both the co-immunoprecipitation and the GST 

pulldown procedures relied on Western blotting for visualization, meaning that the strategy 

did not allow me to control for artifacts of the WB step. 

 Processing the data, i.e. quantification and statistical analysis, introduced another set 

of uncertainties. Quantification was done manually, demanding that the judgments of e.g. what 

is background noise and what is not, what is the protein of interest and what is not, were 

correct. It is safe to assume this was not always the case. As noted previously, the low n of the 

project is also an issue. 

5.4 Conclusions and thoughts on further research 

The aims of the project was partially completed. The intended expression analyses and 

immunoprecipitations were carried out, but the development of an optimized co-

immunoprecipitation protocol for the study of Arc/PS1 interaction in mice was not successful. 

Results of the analyses of expression of three proteins in the brain of a model system for 

Alzheimer’s disease demonstrated that BDNF levels increase in response to enrichment of the 

environment and physical activity, but did not support a significant role for Arc studied in this 

particular framework, nor did results from immunoprecipitation of Arc from the same mouse 

brains. However, extensive literature describes a role of Arc in AD, mainly as a propagator of 

the disease through promotion of LTD and involvement in regulating Aβ generation(Wu et 

al., 2011). The absence of results indicating Arc dysfunction in AD in this project may reflect 

reality, but may also be a consequence by limitations in the sensitivity and specificity of the 

methodological approach, and further investigations are therefore necessary before drawing 

conclusions of either kind. The resolution of the experimental set-up could be enhanced, e.g. 

by studying synaptoneurosomes instead of whole brain regions. Carrying out the same 

experiments in different brain regions important for different types of memory could also 

unveil nuances not captured here, like the hippocampus and amygdala. An important aspect 

of Arc relation to AD is the regulation of pathways leading to Aβ generation, and to understand 

the relationship between Arc and AD pathology, future research should include investigations 

into Aβ load, ideally to the resolution of soluble oligomers.  

 As the field of Alzheimer’s research is, like its subjects of study, growing older, it 

luckily does not show signs of cognitive decline; on the contrary. The neuronal network of 

AD research is growing and spreading, making connections to other fields. Tough nuts to 
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crack, Alzheimer’s disease and other neurodegenerative disorders are still a long way from 

being cured, but continued curiosity and relentless work will bring us ever closer. 
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Appendix 1 

Co-immunoprecipitation in rat 

Arc and several known binding partners were  

successfully co-immunoprecipitated using the 

initial protocol (as described in the materials and 

methods chapter), before optimization for 

mouse (experiments carried out by Sudarshan 

Patil) (Figure A1). Samples were hippocampus 

collected from adult rats, LTP induced in the 

ipsilateral with HFS. IP of Arc shows co-IP of 

Drebrin A (Dbn A), Dynamin 2 (Dnm2), and 

Syntaxin 4 (Stx4) (A). IP of Stx4 shows co-IP of 

Synaptotagmin 1 (Syt1), Arc, and Stx4 (B). IP 

of Dnm2 shows co-IP of Arc (C). 
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Figure A1 Co-immunoprecipitation of Arc, Stx4, and 
Dnm2 and respective known binding partners in rat 
hippocampus (ipsilateral stimulated with HFS) show co-
immunoprecipitation of Arc and known binding partners 
(electrophysiology and co-immunoprecipitations 
performed by Sudarshan Patil). (A) IP of Arc shows co-
IP of Drebrin A (Dbn A), Dynamin 2 (Dnm2), and Syntaxin 
4 (Stx4). (B) IP of Stx4 shows co-IP of Synaptotagmin 1 
(Syt1), Arc, and Stx4. (C) IP of Dnm2 shows co-IP of Arc. 
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Appendix 2 

Ponceau staining 
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Figure A2 Ponceau staining of membrane after GST-pulldown using lysate from 
two rats.  


