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Meltwater sediment transport as the dominating
process in mid-latitude trough mouth fan formation

Benjamin Bellwald® '™, Sverre Planke"?3, Lukas W. M. Becker® # & Reidun Myklebust®

Trough mouth fans comprise the largest sediment deposits along glaciated margins, and
record Pleistocene climate changes on a multi-decadal time scale. Here we present a model
for the formation of the North Sea Fan derived from detailed horizon and attribute inter-
pretations of high-resolution processed 3D seismic reflection data. The interpretation shows
that stacked channel-levee systems form up to 400 m thick sedimentary sequences. The
channels are elongated and can be traced from the shelf edge towards the deep basin for
distances of >150 km, and document long-distance sediment transport in completely disin-
tegrated water-rich turbidite flows. Downslope sediment transport was a continuous process
during shelf-edge glaciations, reaching accumulation rates of 100 m/kyr. Our data highlight
that exceptionally large volumes of meltwater may discharge to the slopes of trough mouth
fans and trigger erosive turbidite flows. We conclude that freshwater supply is likely an
underestimated factor for sedimentary processes during glacial cycles.
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rough mouth fans are products of repeated glacigenic

sediment delivery from former fast-flowing outlets of ice

sheets, and act as high-resolution paleoclimate and ice-
sheet monitors!~3. The fans have highest sedimentation rates and
maximum periods of growth during glacial maxima, whereas they
become ice-distal glacimarine environments with low sedi-
mentation rates during interglacials.

The large sediment volumes building these fans are dominated
by two sediment types accumulated during very short time per-
iods: The first type are fans characterized by rapidly deposited
glacigenic debris flows (GDFs), which indicate Pleistocene peri-
ods when eroding ice-streams reached the shelf edge and released
the eroded sediment to the upper slopes (Fig. 1a)!>-11. During
shelf-edge glaciations, rapidly deposited glacial sediments are
thought to be temporarily stored on the upper slopes, and
eventually become unstable and generate GDFs with maximum
runouts of >250 km>%1213, These GDFs have been studied using
2D seismic data, which led to the conclusion that they have a
lens-shaped geometry in profile view and a lobe-shaped expres-
sion in planar view!%1>. GDF deposits are further documented to
have transparent, generally incoherent acoustic facies with convex
tops and pinch-out edges!'3. A temporary sediment storage at the
upper slope with upcoming failure every 34-170 years during the
last glacial maximum, and wedges and scars yet to be identified,
was suggested for the Bear Island Trough Mouth Fan>!216,
Sediment remobilization in the form of GDFs was further sug-
gested as a relatively slow and non-disintegrating sediment
transport process in very low-viscosity debris flows®!3. The
deposits of these flows are poorly-sorted, matrix-supported dia-
micts with a sand content of up to 40% and higher shear strengths
than glacimarine sediments®»!7. Sediment cores showed that
GDFs along Arctic margins have a finer grain-size composition
than their Antarctic counterparts>.

The second type are meltwater-dominated fans, which pre-
viously have been documented on mid-latitude, glacier-
influenced margins (Fig. 1b). Large-volume meltwater delivery
forms hyperpycnal flows, which result in the deposition of tur-
biditic sequences>!8-21. Turbidites detected on glacial fans are
thus used as a proxy for meltwater delivery!3?2. The relative
importance of meltwater appears greater at lower than at higher
latitudes?3. Additional to the turbidite flows, deglacial plumites
are released as the increased meltwater generated during the ice-
sheet decay generates sediment plumes that also deposit with high
sedimentation rates on the upper slopes>%1424-30,

Due to glacial erosion and the lack of distinct imprints of ice
sheets on the paleo-shelves, trough mouth fan deposits are
especially important when reconstructing pre-Weichselian gla-
ciations and understanding glacial-interglacial cycles3!. Sedi-
mentological characterization of the uppermost meters of GDF
and turbidite deposits are well established for a large variety of
trough mouth fans>>1113, However, ice-stream-dominated

marine sedimentary systems are lacking extensive, high-
resolution data. Depositional processes are thus still relatively
poorly understood. The relevance of these marine depositional
systems is growing due to economic activities on the seabed and
its subsurface, especially in the Arctic region. Similarly, paleo-
environmental and paleo-climatic reconstructions are gaining
interest, specifically during past episodes of climatic transitions.
Three-dimensional (3D) seismic reflection data offer new insights
into the geometries, internal architecture and flow mechanisms of
sediment remobilization processes31:32, Here, we test if trough
mouth fan models derived from 2D seismic data are applicable in
a 3D framework. This study aims to understand the nature of
sediment delivery across the North Sea Fan during the last gla-
ciation in three dimensions, to relate the sediments to the glacial
history of the NE Atlantic margins (Fig. 2), and to discuss the
implications for the formation of trough mouth fans.

The southeast-northwest-oriented North Sea Fan covers an
area of c. 110,000 km? extending from water depths of 300 m at
the shelf break into depths of 3500 m in the Norwegian Sea
(Fig. 2a). Compared to other trough mouth fans, the North Sea
Fan is a clear outlier due to its large fan area’. Sediment transport
related to GDFs may have been operating on the North Sea Fan
for the last 1.1 Myr, i.e., since the first ice-stream evidence in the
Norwegian Channel33. The North Sea Fan received terrigenous
sediment from hinterland-to-deep-sea sediment-routing systems
with a catchment of c. 215,000 km?, and comprises a sediment
volume of c. 32,000 km3 3437, Vertical erosion has been estimated
to 164 m based on volume backstripping to the catchment34, and
has been modelled from 200 to 600 m for the route of the Nor-
wegian Channel Ice Stream3. With a total annual output of 1.1
Gt of sediment (equivalent to 8000 m3/yr per meter width of ice
stream front), the Norwegian Channel Ice Stream was an extre-
mely powerful sediment transport agent in the Late
Quaternary3637, Rapid sediment deposition associated with active
ice streams resulted in the initiation of GDFs along a gently-
dipping seabed (<1°)°, which are deposited within massive
clinoform packages consisting of low-amplitude seismic reflec-
tions (Fig. 2a). Nygard et al’ suggested six units of GDFs
deposited in the Late Quaternary, and some of these thick units
have been remobilized by megaslides38. Becker et al.3° docu-
mented several sedimentation pulses characterized by coarse-
grained sediment input to the Atlantic Margin during the last
glaciation (Fig. 2b). The grounding line of the Norwegian
Channel Ice Stream started to retreat from the continental shelf
edge by c. 19 ka with an average retreat rate of 450 m/a and the
channel was completely deglaciated by c. 17.5 ka0,

Results and discussion
Seismic stratigraphy. The sediment package related to the last gla-
ciation (Weichselian) is defined by a continuous positive-amplitude
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Fig. 1 Two types of sedimentary systems forming trough mouth fans. a Glacigenic debris flow dominated model implying temporarily stored sediment
(glacial wedge) and non-disintegrating sediment transport. b Meltwater dominated model implying continuous channelized sediment transport in water-
rich flows and surface plumites. Arrows indicating glacial meltwater are conceptual and not absolute values.
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Fig. 2 Oblique view of the bathymetry of the North Sea Fan. a The extent of the high-resolution processed 3D seismic data (red line) and the North Sea
Fan (white line) are outlined. Locations of the piston cores (red dots), Troll 8903 borehole (yellow dot), seismic profile of Fig. 3 (dashed line) and maps of
Figs. 4-6 (white boxes) are shown. Vertical exaggeration is 25x for offshore and 2.5x for onshore domains. Scale bar approximate for central part of figure.
b Piston cores used for age correlation (modified after3°). Peaks in sand content (grain size >63 um) indicate iceberg disintegration. IRD ice-rafted debris
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Fig. 3 Seismic stratigraphy of the deposits related to the last glaciation (Weichselian, MIS 2) of the North Sea Fan. Eight glacial sub-units are colored in
yellow to red, and are indicated by arrows. The top reflections of the sub-units can have a negative-amplitude reflection (54, 56-58), or a positive

amplitude reflection (52, 53, and 55). Deep, V-shaped depressions are recognized both at the top of the sub-units and along reflections within the sub-
units. Contourites (light grey), Tampen Slide MTD (dark grey), GDFs related to the Saalian glaciation (MIS 6, light yellow to light red), and paleo-shelf
break positions (black triangles) are shown. MIS marine isotope stage, MTD mass transport deposit. Profile located in Fig. 2a. V.E. vertical exaggeration.

For uninterpreted seismic profile see Supplementary Fig. 2.

reflection at the base (Horizon Base MIS 2) and a continuous
negative-amplitude reflection at the top (Horizon 51) (Fig. 3). The
up to 450 m thick sediment package outcrops at the seabed of the
deeper slopes, and is overlain by weakly layered deglacial and (glaci)
marine sediments, up to 70 m toward the shelf break and c. 20 m on
the shelf. For the 16,000 km? of this study, the sediment package

comprises a volume of c. 6400 km?3. The homogenous seismic facies
of the sediment package is interrupted by seven continuous high-
amplitude reflections, separating eight sub-units with thicknesses of
20-80m (Fig. 3). Four intercalating horizons have a negative-
amplitude reflection (54, 56-58), and three horizons (52, 53, 55) have
a positive-amplitude reflection (Supplementary Fig. 2). Horizons 51
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and 54 can be traced into the North Sea, where they are char-
acterized by lower seismic amplitudes.

The sediment packages related to pre-Weichselian glaciations
(e.g., GDF II, Saalian) have a lower seismic amplitude response
than the sediment sequence related to the last glaciation. GDFs of
marine isotope stage 6 (GDF II, Fig. 3) have failed during the
Tampen Slide”-38, whose mass transport deposits can still be
recognized as a package of deformed sediments onlapping a
striking headwall (Fig. 3). The sedimentation of the glacial
sediments is associated with a total paleo-shelf break migration of
5 km for the first five sub-units, and 16 km for the last three sub-
units. The slope gradients of the paleo-seabeds have been reduced
from 1.9° for the first five sub-units to 0.6° for the last three sub-
units. Channels crosscut both reflections defining the borders of
the sub-units and the reflections within the sub-units.

Seismic geomorphology. Three-dimensional seismic data have
given rise to the discipline of seismic geomorphology, which is
described by Posamentier et al.4! as “the application of analytical
techniques pertaining to the study of landforms and to the ana-
lysis of ancient, buried geomorphological surfaces as imaged by
3D seismic data”. The mapped horizons of this study reveal
multiple sharp, 5-50m deep and 100-1000 m wide landform
systems (Figs. 4 and 5), which locally truncate underlying
reflections (Fig. 4a, b). The southeast-northwest oriented land-
form systems of the North Sea Fan are characterized by the
highest seismic amplitudes, and can be traced from the shelf
break to the deeper slopes over distances >150 km (Fig. 6, Sup-
plementary Fig. 2). We interpret these landforms as channels, as
the morphologies can be traced over large distances along the
gently dipping seabed with typical channel geometries. The high-
amplitude seismic response of the channels is characteristic for
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channel infill (Fig. 6). The structure maps show flat terrains
between the channels and local wedge-shaped deposits on the
channel banks (Figs. 4 and 5a). Seismic attribute maps, however,
show well-developed low-amplitude bars between the channels
(Figs. 4c and 5). These bars have elongated geometries and a
homogenous seismic facies (Fig. 5b). There is no correlation
between seafloor relief (e.g., bathymetric lows) and channel
occurrence on the evenly dipping paleo-seabeds of the North Sea
Fan (Fig. 6). The channels on the North Sea Fan occur with a
lateral spacing of 1-20km, diverge and converge within short
distances, and are characterized by a rather low than pronounced
sinuosity (Fig. 4).

Channels with similar dimensions are identified along the
seabed and in the subsurface in trough mouth fans of both
hemispheres®#2. Glacial gullies, in contrast, are mainly expressed
on the upper slopes of fans and have a rather straight expression
and V-shaped incisions?. We interpret the reflections character-
izing the elongated bars neighboring the channels as submarine
levees of two types: a first type are asymmetric, wedge-shaped
levees flanking submarine channels, similar to what has been
described by Deptuck and Sylvester*? for river-fed submarine
fans (Fig. 5). The second, and more common type, are flat-topped
levees deposited as uniform blankets on the pre-existing
topography (Fig. 4). This levee geometry is different to levee
geometries from fluvially derived systems, and has been observed
on levees characterizing mud-rich turbidite systems2044. The
seismic character of the levee deposits is similar to the weakly
stratified and transparent channel-levees described from the
Northwest Atlantic Mid-Ocean Channel®°.

The high-amplitude reflections defining the channels (Fig. 4c)
represent a strong impedance contrast to the underlying
homogenous reflections. These contrasts in density and/or
velocity most likely indicate coarser-grained sediment in active
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Fig. 4 Examples showing the detailed morphology of channels, using zoomed seismic profiles, structure, and horizon attribute maps. a Deeply eroded,
wide channels on Horizon 54 (red line). Channel 1 crosscuts underling Horizons 55 and 56. b Channel-levee system on Horizon 55 (red line). The overlying
channel (Horizon 54) is eroding into Horizon 55. Channels have harder amplitudes than levees. ¢ Link between channels (infill) and levees on Horizon 57.
The channels have high negative amplitudes (very soft), whereas the elongated levees have low negative amplitudes (soft). The location of the maps is

shown in Fig. 2a and the stratigraphical position of the different horizons in Fi

see Supplementary Fig. 4. Seismic data courtesy of TGS.
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Fig. 5 Seismic geomorphology of the uppermost channel-levee system. a Minimum amplitude extraction of Horizon 51 showing seismic response of
channel-levee system. b Seismic profile across channel-levee system highlighting levee geometry and levee facies. Horizon 51 (red line) and Horizon 52

(yellow line) are shown. Seismic data courtesy of TGS.
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Fig. 6 North Sea Fan at the beginning of the last glaciation. 3D view of the Horizon Base MIS 2 (Fig. 2) draped by the minimum amplitude extraction in a
window of 30 ms. The very soft bands (blue) are interpreted as channels of seismically distinct turbidite flows at the initiation of the last shelf-edge
glaciation (t = 23 kyr). The Norwegian Channel Ice Stream, located at the shelf edge, forms two sediment sources at that time (indicated by A and B), from

where meltwater turbidites fill the escarpment shaped by the Tampen Slide.

channels overlying fine-grained sediments. Similar conclusions
were drawn on backscatter data on the Belgica Fan, where high
backscatter returns from channel beds suggest a hard, eroded
surface and/or a relatively coarse-grained component to the
downslope flows that cut them®. Levees are characterized by low-
amplitude reflections and lack the strong impedance contrast
(Fig. 4c). Thus, levees rather indicate fine-grained sediment
deposition originating from the suspensive load associated with
hyperpycnal flows. Coarse-grained sediment commonly accumu-
lates on the floors or at the mouths of submarine channels,
whereas finer-grained sediment preferentially accumulates on
channel banks and on adjacent aggradational levees*>44:46. Axial
channel deposits have been documented to produce high-
amplitude reflections in different fans globally*”. In the case
of the western Niger Delta slope?’, these reflections indicate

predominantly sandy channel infill of turbiditic origin, whereas
the levees consist of clay-grade sediment?3.

Based on detailed seismic interpretation, we conclude that the
several 100-m-thick sediment sequence related to the last
glaciation is dominated by channels and not, as previously
suggested, by debris lobes. Extensive 3D seismic data are thus
fundamental to correctly interpret glacial processes and its
deposits.

Implications on sedimentation and ice-stream activity. The
sediments of the last-glacial package of the North Sea Fan derive
from subglacially transported sediments, which were deposited
when the Norwegian Channel Ice Stream reached the shelf
edge®3637, The eight sub-units within the uppermost sediment
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package indicate that the ice stream oscillated eight times during
the last glaciation (Fig. 3). Sediment has meanwhile continuously
been transported downslope within commonly observed channel
systems (Fig. 4), and fills the slide escarpment formed by the
Tampen Slide (Fig. 6), resulting in a shelf-break migration of c. 5
km/kyr (Fig. 3). The data show that the ice stream delivered
sediment from multiple sources and that the northern part of the
fan was active first during the last glaciation (Fig. 6).

The growth and decay of the Norwegian Channel Ice Stream
resulted in highly variable rates of sediment delivery to the
continental margin3®. The geometry and occurrence of channels
identified at multiple levels within the sediment package related
to the last glaciation (Fig. 3) document that the sediment delivery
from the Norwegian Channel Ice Stream had a continuous
pattern. The orientation of the channels does not significantly
shift during the last glaciation (Fig. 6, Supplementary Fig. 3). Our
data show a rather uniform sedimentation pattern within the
same glaciation, while a shift of sediment depocenters has been
observed for different glaciations on the North Sea Fan*>°0, A
relatively continuous subglacial release of material has previously
been suggested as the origin for GDFs of this package!®. Although
straight or sinuous gullies related to the last glaciation have been
described using side-scan sonar of the North Sea Fan!’, the
seabed reflection of the 3D seismic data is rather mirroring
deglacial than glacial processes (Figs. 2a and 3).

The Norwegian Channel Ice Stream was located at or close to
the shelf break allowing dense sediment flows to develop from
meltwater. The ice-stream-fed channels have a minimum age of c.
17.5 ka, as by that point the Norwegian Channel was completely
deglaciated0. Most channels were formed before 18.7 + 0.2 kyr,
marking the retreat of the Norwegian Channel Ice Stream from
the shelf edge3”3°. The correlation of the five horizons with
sediment cores from the distal part of the North Sea Fan indicate
an age of 19-23 kyr for the sediment package related to the last
glaciation®® (Fig. 2b). Deposited within 4 kyrs, the up to 450 m
thick package correlates with an average sedimentation rate of c.
100 m/kyr and a sediment flux of 1500 km3/kyr for the study area.
Sedimentation rates in the most proximal core, just 2km
southwest of the sequence pinch-out, range from 0.5 to 1.5m/
kyr during the last glacial cycle3®. The sedimentation rates within
the North Sea Fan are thus 100 times higher compared to the
rates outside the areas affected by direct ice-stream sedimenta-
tion. In line with previous studies (e.g., ref. ©), the sediment
supply associated with the channels outshines simultaneous
glacimarine sedimentation. We further suggest higher deglacial
sedimentation rates directly on the North Sea Fan, where the
deglacial sediment package is up to 70m thick (18 m/kyr),
compared to cores from areas outside the fan (1 m/kyr). Similarly,
Lucchi et al.?7 calculated extreme sedimentation rates of 34 m/kyr
for the deglacial plumites from the upper-slope area of the
Storfjorden Trough Mouth Fan in a period of less than 150 years.

Meltwater turbidites. The low-sinuous channels, whose down-
slope terminations expand over the extent of our data, indicate
long-distance down-slope sediment bypassing. Long runout dis-
tances on low-gradient slopes were previously explained by excess
pore fluid pressures®! or the incorporation of a thin layer of
ambient water underneath a subaqueous debris flow>2. Muddy
turbidites with long runout distances and feeding deep-sea fans
have been documented in turbidite systems all over the world3-%6.
Based on the channel morphology and extent, we suggest sediment
disintegration in water-rich flows as the dominating flow
mechanism (Fig. 6). As channels and closely associated overbank
deposits dominate the stratigraphy of the North Sea Fan, we
suggest the fan to be maintained generally by glacial meltwater-

sourced flows. We conclude that meltwater is an underestimated
factor for the formation of trough mouth fans.

Sediment-carrying meltwater events can lead to the generation
of erosive hyperpycnal flows®®>7. Erosive sediment transport is
shown by deep channels crosscutting underlying reflections
(Fig. 4a, b). The flows have been more erosive at the uppermost
slopes, where the channels are deepest. A lower degree of erosion
observed by discontinuous channels in deeper waters of this study
area could be supported by subaqueous turbidites running over
antecedent turbidite deposits with no detectable remobilization,
as shown for debris flows in experiments by Mohrig et al.>2.

Meltwater can transport large quantities of lithogenic particles
derived from glacial erosion®, and large turbidity currents are
documented to have lost their freshwater after distances of up to
300 km>®. An increased meltwater input from the Norwegian
Channel Ice Stream could activate sediment-downslope transport
in turbidity currents, and thereby explaining the long runout
distances. The rapidly deposited sediment sequences along
glaciated margins originally consist of poorly sorted and unstable
glacial material (e.g.,>?3), but long-distance channelized sediment
transport in turbidites might favor grain-size fractionation of
these sediments?*. The submarine channel network controls
sediment distribution in the deep-water depositional system, and
depending on transport distance and channel proximity, grain
size might considerably vary along glacial reflections. Sediment
cores collected from turbidite channels on the Squamish Delta
contain multiple units of massive sands, with thicknesses of 1-2
m®. Such sand beds are resolvable by the seismic data used in
this study, and high-amplitude reflections characterizing the
channels can reflect sandy deposits. However, the acoustically
transparent character of the sediment package between the high-
amplitude reflections excludes the existence of thick sand beds,
and indicates mainly silty and clayey deposits. A transparent
seismic signature related to muddy material has been suggested
for glacial fans in the Norwegian Channel®!.

Model for the North Sea Fan during the last glaciation. The
presence of frequent well-defined stacked channel-levees in the
proximal part of the North Sea Fan demonstrates that sediment
has been transported downslope within commonly observed
channel systems throughout the last glaciation (Fig. 4). We pro-
pose that the Norwegian Channel Ice Stream rapidly delivered
eroded sediment (Fig. 6), resulting in multi-sourced turbidite
systems on the fan. Turbidity currents linked to downslope flow
of sediment-laden meltwater from the shelf edge could have
directly formed the channels, which then functioned as conduits
for focused turbidity current flow to the deep basin (Fig. 7)11:4°,
The bedload of such glacial turbidites can consist of medium sand
and coarser sediments*>. Additional to the turbidites, the sedi-
mentation on the North Sea Fan was influenced by suspension
settling from turbid-surface plumes released at the grounding
line, which accumulated sediment in a clayey grain-size fraction
(Fig. 7). Settling plume events are documented to trigger long-
runout turbidity currents themselves on the Squamish Fan®2,
Different studies show that the period around the last glacial
maximum was characterized by major input of meltwater
events?»26:63, and that trough mouth fans have highest growth
in these periods*. Based on the glaciation history of the
Norwegian Channel3%4%:64, we suggest that the high-density,
sand-rich turbidity currents originate from the Norwegian
Channel Ice Stream in the time period between 23 and 19 ka.
These turbidity currents occurred during major meltwater
discharges at the beginning of slope sedimentation. The last
glacial maximum period is thus characterized by major input of
meltwater events. As the turbidites are related to massive

6 | (2020)11:4645 | https://doi.org/10.1038/s41467-020-18337-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18337-4

ARTICLE

surface runoff

ice-rafted
debris

Fig. 7 Conceptual model for sedimentation during the last glaciation (MIS2). Meltwater turbidites and turbid-surface plumites are the dominating
processes, and result in channel-levee systems on the North Sea Fan. Continuous sediment transport in water-rich flows build an up to 450 m thick
sediment sequence in the time period of 23 to 19 ka. Dimensions are approximate, and given in km.

meltwater delivery, the turbidite intervals could correspond to
short warmer periods, and a Norwegian Channel Ice Stream
undergoing several smaller collapses within or after the last
glacial maximum. Freshwater could largely be provided by
seasonal meltwater discharge and iceberg calving, processes
previously suggested by sedimentary records in other glaciated
margins®.

The new model suggests turbid glacial meltwater driven
channelized sediment supply to be the dominating process
shaping the mid-latitude North Sea Fan, and the Norwegian
Channel to have acted as a major outlet for meltwater (Fig. 7).
We suggest that coarse-grained turbidites at the beginning of a
shelf-edge glaciation (Fig. 6), and delivery of coarser-grained
material during a glaciation (Fig. 3), are the causes for the
observed high-amplitude reflections. The data show that rapid
glacial sedimentation is a continuous process during glacia-
tions, with sediment accumulation two magnitudes higher in
areas affected by channels. Voluminous meltwater production
in periods with active ice streams at or close to the shelf break
could increase turbidity current activity on the fan. Long-
distance channelized sediment transport along gently dipping
seabeds could explain kilometer thick glacial sequences
hundreds of kilometers away from the shelf break.

Implications for trough mouth fans. The use of high-quality 3D
seismic data allowed new interpretations of the style and variation
of ice-proximal sedimentation on the North Sea Fan. Our study
shows that sedimentation related to glacial meltwater played a
fundamental role in the construction of the mid-latitude North
Sea Fan compared to previously suggested sediment deposition by
GDFs%7. The stratigraphy of the mid-latitude North Sea Fan
records a strong meltwater signal for the last glaciation, which
distinguishes the fan from high-latitude fans with predominating
low-water-content GDF deposition®. A strong meltwater delivery
has also been suggested for mid-latitude depocenters of the
Laurentian Fan and the Disko Fan®20, and for deglaciation in the
high-latitude Storfjorden Fan?’. The timing of the increased

meltwater discharge on the North Sea Fan correlates with turbi-
dite deposits observed in both the Notre Dame and the Hawke
Fans, which are associated to periods of major meltwater supply
from 29 to 17ka?2. The volume and abundance of subglacial
meltwater is largely controlled by strain heating and the geo-
thermal heat flux beneath an ice sheet®®%7. Freshwater fluxes are
challenging to quantify and not necessarily correlated with fluxes
of iceberg rafted debris®®. Sediment core analysis of Becker et al.3
proves that pulses of iceberg rafted debris not exclusively occur-
red between 23 and 19 ka, and we conclude that meltwater and
iceberg supply to the NW Atlantic are asynchronous processes. A
strong meltwater signal suggested by the glacial turbidite systems
indicates that the North Sea Fan was probably a warmer envir-
onment during full-glacial and deglacial conditions compared
with the more northerly glacial depocenters.

Gales et al.? suggested that ice-sheet drainage basin size
influences the abundance and volume of subglacial meltwater
released from beneath an ice sheet, and that turbidity current
activity would increase in areas of greater meltwater. Turbiditic
sedimentation is dominating the North Sea Fan, which is
characterized by a large drainage basin. Similar process could
dominate fan evolution of the Prydz Channel Fan and the Crary
Fan in Antarctica, which both have ice-stream drainage basin
areas of >1,000,000 km?2. High-resolution 2D seismic profiles
and sediment cores often only cover the very uppermost meters
on trough mouth fans?3. The 3D seismic data of the North Sea
Fan evidence that sedimentation of the complete last-glacial
package took place through an overbank relationship to the
channels. Glacial turbidites as a dominating trough mouth fan
process have been documented for thinner sediment packages
from other glaciated margins (e.g.,%), but never for a thickness
comparable to the late glacial sequence of the North Sea Fan. In
contrast to other settings>!1:08, we do not observe any
association between downslope process and slope gradient. A
strong meltwater contribution could further imply that the
Norwegian Channel Ice Stream had not to be positioned exactly
at the shelf break during the deposition of the thick sediment
package. The absence of shelf-edge glaciations is thus not
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excluding high sediment accumulation rates. Glacial sediment
could instead be delivered by subglacial meltwater from an ice
margin that was no longer at the shelf edge, as suggested for the
Donegal Barra Fan2469,

The detailed interpretation of the 3D seismic data shows that
high-energetic hyperpycnites deposit up to 450m of glacial
turbidites, whereas low-water content GDFs could not form.
Implied sedimentation rates of 100 m/ka outpace turbidite
sedimentation rates of 1-3 m/ka in other fans?2. Large volumes
of rhythmic turbidites along glaciated margins are partly related
to subglacial outbursts (e.g.?). Therefore, the North Sea Fan
might record multiple large outburst events during the last glacial
maximum. The data further indicate that rapid meltwater-driven
sedimentation dominate all of the last glacial sequence. Such a
sedimentation pattern is in contrast to observations from other
ice sheets, where sedimentation is changing from low-energy at
the beginning to increased discharges at a later stage of the glacial
cyclel’.

The extensive 3D seismic data set presented here allows better
assessments of the significance of meltwater pulses during
glaciations, and is thus relevant to more strongly constrain
glacial and deglacial ice-sheet evolution. Strong sediment-laden
turbidity current systems dominating glacial sedimentation are
applicable for glacial settings with potential of high meltwater
delivery and catchments with sediment available for erosion.
Differences in the mode of sediment delivery to the continental
slope and deep-sea basin strongly affected the evolution of the
North Sea Fan. These differences most likely result in a distinct
morphology of mid-latitude fans and their high-latitude
counterparts.

Methods

Seismic data. The study is based on seismic interpretation of 16,000 km? of high-
resolution, industry-standard processed 3D seismic reflection data collected in 2017
from the proximal North Sea Fan (Fig. 2a). The data were collected by TGS using a
triple-sourced airgun with a volume of 3000 in® and a shot point interval of 12.5 m.
The acquisition consisted of twelve 8100 m long streamers, which were separated
by 112.5 m. A high-resolution volume at 2 ms sample rate and 6.25 x 18.75m
binning was designed to increase the resolution of the shallow stratigraphy. The
data for this volume have been cut at minimum of twice seabed time and 5000 ms
two-way time before zero-phasing. The 3D seismic reflection data allow to image
the buried sediment packages in a resolution of 2 m vertically and in a bin size of
20 x 5m horizontally.

Seismic interpretation. Six seismic horizons within the last glacial sediment
package were picked with an in-line spacing of 150 m, followed by gridding,
horizon attribute extraction, sediment volume calculations, and seismic geomor-
phological interpretation. Seismic attributes, such as the minimum and maximum
amplitudes of prominent reflections, provide additional geological information that
cannot be extracted from structure maps and allow an improved geological process
interpretation. The interpreted surfaces are characterized by both hard and soft
reflections (Supplementary Fig. 1). P-wave velocities of 1500 and 1700 m/s were
used for time-to-depth conversion of the water column and the last glacial sedi-
ment package, respectively’. We merged interpretations of regional 2D and 3D
seismic data with bathymetric data from GEBCO 2014 to image the bathymetry of
the study area (Fig. 2a).

Chronostratigraphy. This study focuses on the uppermost 500 m below the sea-
bed, and follows the chronostratigraphy previously established for this sediment
package, which is dominated by GDFs related to the last glacial cycle’. Glacial
chronologies previously established by piston cores next to the North Sea Fan cover
the last glacial cycle?®, and core ties allow constraining the ages of the sediment
package of this study (Fig. 2b).

Data availability

The 3D multiclient seismic data are part of the Atlantic Margins multiyear program that
covered more than 50,000 km? from 2017 to 2019 and were acquired with triple source
and 12 streamers. This data was provided courtesy of TGS and is not publicly accessible.
Horizons and shapefiles are available upon reasonable request to the corresponding
author.
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