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Abstract

Programmers typically have knowledge about properties of their programs that aren’t explicitly
expressed in the code – properties that may be very useful for, e.g., compiler optimisation and
automated testing. Although such information is sometimes written down in a formal or informal
specification, it is generally not accessible to compilers and other tools. However, using the idea of
concepts and axioms in the upcoming C++ standard, we may embed axioms with program code.
In this paper, we sketch how such axioms can be interpreted as rewrite rules and test oracles.
Rewrite rules together with user-defined transformation strategies allow us to implement program
or library-specific optimisations.
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1 Introduction

In the coming C++0x standard 3 [10], it is proposed that axioms be part
of the new concept construct. The idea of concepts is to let programmers
place restrictions on template parameters. For instance, a generic sorting
function may specify that its argument should be an Indexable object with
LessThanComparable elements. Without concepts, one would have to just go
ahead and use the indexing and less-than operators, and then the compiler

1 http://www.ii.uib.no/~anya/
2 http://www.ii.uib.no/~magne/
3 When we refer to ‘C++’ in this paper, we refer to the concept-enabled proposed standard.
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would give an incomprehensible error message if someone tried to use the
sorting function with an unsuitable data structure.

Concepts can also be organised in a hierarchy – allowing well known alge-
braic concepts to be mapped to C++ concepts [8] in a structured way.

Using a concept map, one can specify that a class or group of classes satis-
fies a given concept, and possibly also map between the names and signatures
of the concept and those of the class. For example, “my class is LessThanCom-
parable, with ‘!(x >= y)’ as the less than operator”. The idea of axioms in
the proposed standard is in the early stages. There is a defined syntax for it,
and a few examples, but the specification of behaviour is fairly limited.

The compiler is allowed, but not required, to replace expressions with
equivalent expressions according to axioms – for optimisation purposes, for
example. Earlier, the compiler had little opportunity to make assumptions
about user code, for instance, it could not apply the many simplifications avail-
able for built-in operators to expressions with user-defined operators. Such
rules may now be stated as concepts, but there is still no way to give hints to
the compiler as to which axioms may be useful, which side of the equality is
preferable, how rewrite rules should be applied, etc.

Axioms may serve many purposes in a software system:

(i) Recording knowledge about template arguments for generic classes and
methods.

(ii) Proving that one set of axioms implies another set of axioms – for exam-
ple, that a class belonging to a concept C1 may be used where a concept
C2 (with the same or a smaller signature) is required – and also program
verification – proving that a class satisfies its stated properties.

(iii) Semantics-preserving rewrites of the code, e.g., for optimisation purposes.

(iv) Testing that a class satisfies its stated properties.

Item (i) is more or less where the proposed standard stands today; with
axioms as a form of structured documentation of the requirements on concepts.
Item (ii) may not be applicable to C++, partly because C++ syntax and
semantics is very difficult to analyse, partly because many requirements cannot
be expressed as axioms. We will focus on items (iii) and (iv) in this paper,
based on our previous experience with user-defined rewrite rules for C++ [1]
and axiom-based testing [12].

The rest of this paper is organised as follows. We start by introducing
axioms, then discuss the use of axioms for rewriting (Sect. 3) and testing
(Sect. 4). We will then sketch some implementation issues (Sect. 5), and
finish with a discussion and conclusion (Sect. 6).
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RequiresClause? "axiom" Identifier "(" ParamDecls ")" AxiomBody

-> AxiomDef

"{" Axiom* "}" -> AxiomBody

ExpressionStmt -> Axiom

"if" "(" Condition ")" ExpressionStmt -> Axiom

Fig. 1. Proposed C++0x Standard Syntax for Axioms (in SDF2 notation). The RequiresClause
allows for additional concept constraints on axiom parameters – we will ignore it in this paper.

RequiresClause? "axiom" Identifier "(" ParamDecls ")"

GroupClause? AxiomBody -> Declaration

":" {GroupName ","}+ -> GroupClause

"{" (Axiom|Statement)* "}" -> AxiomBody

"assert" "(" Expression ")" ";" -> Axiom

Fig. 2. Our syntax for Axioms (in SDF2 notation).

2 Concepts and Axioms

The proposed C++ standard syntax for axioms is shown in Fig. 1. Each
axiom definition can contain multiple axioms, and the axioms themselves are
expression statements with the ‘==’ operator. For example, here’s a concept
Monoid with an Identity axiom (taken from [10]):

concept Monoid<typename Op, typename T> : Semigroup<Op, T> {

T identity_element(Op);

axiom Identity(Op op, T x) {

op(x, identity_element(op)) == x;

op(identity_element(op), x) == x;

} }

We may then specify that a class Vector satisies the Monoid concept, with
Vector::plus 4 as the operation and Vector::zero as the identity element:

concept_map Monoid<Vector::plus, Vector>{

Vector identity_element(Vector::plus) {

return Vector::zero;

} }

For our work, we have chosen a slightly different syntax (see Fig. 2). Our
syntax extends the original syntax by allowing axiom groups (see Sect. 2.1),

4 Vector::plus is a class wrapper around the plus operation, necessary to use it conveniently
as a template argument. Vector::plus() is an object of this class, usable as a function as it
has an overloaded ()-operator. This is a usual way of doing things in C++, and we shall
refrain from commenting on the intuitiveness of it...
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GroupDef -> Declaration

"axiom_group" GroupName (GroupBody | ";") -> GroupDef

"{" GroupDecl* "}" -> GroupBody

"using" Name ";" -> GroupDecl

AxiomDef -> GroupDecl

TemplateSpec GroupDecl -> GroupDecl

Fig. 3. Syntax for Axiom Groups. A GroupDef defines or extends a named axiom group. The
GroupName is an identifier or a qualified (nested) name. The GroupBody lists the axioms or axiom
groups that form the group. Name should be the name of an axiom, group or concept.

by allowing any statement to be used within the axiom body (used in testing,
see Sect. 4), and by marking the actual axiom with the keyword assert. Also,
we allow axioms to be declared outside of concepts, so that one may attach
simple axioms directly to a class, instead of having to declare concepts and
concept maps for it.

A standard C++ concept map is only ‘active’ when the mapped class is
used as a template argument that has been constrained to a concept. E.g.,
Vector will only be considered a Monoid when it is used as a Monoid in generic
code. This restricts the use of axioms, and we will instead assume that the
existence of a concept map means we can use concept axioms for the classes
and operations in the map.

Using the assert keyword makes it easier to allow a wider variety of state-
ments in the axiom body, and to allow for other kinds of axioms than just
equality. It also simplifies making the axioms executable as test code (Sect. 4).

In our syntax, the above monoid concept becomes:

concept Monoid<typename Op, typename T> : Semigroup<Op, T> {

T identity_element(Op);

axiom Identity(Op op, T x) : simplify {

assert(op(x, identity_element(op)) == x);

assert(op(identity_element(op), x) == x);

} }

The axiom group ‘simplify ’ identifies the Identity axiom as usable for a simpli-
fication rule, where the right-hand side is assumed to be simpler (less resource-
intensive) than the left-hand side.

2.1 Axiom Groups

Axiom groups are used to identify which axioms are useful as rewrite rules,
and to distinguish between different types of rules – e.g., simplification rules,
reordering rules like associativity/commutativity, or rules that should be ap-
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plied early or late in the transformation process 5

Axiom groups are defined using the axiom group construct (Fig. 3), or
by listing the group name in the group clause of an axiom definition. The
axiom group definition is open-ended and can be extended later on. Here’s a
sample axiom group simplify, containing the Identity axiom from the Monoid
concept (having the same effect as in the example above):

axiom_group simplify {

template<typename Op, typename T>

using Monoid<Op,T>::Identity;

}

The template declaration has the effect of universally quantifying the operator
and type for the monoid, adding the identity axioms from all monoids. 6

The using directive allows us to add a single axiom, all axioms from a given
concept (e.g., using Monoid), or all axioms from another axiom group (using
my simplify;). Axioms may also be defined directly in the axiom group.

Listing an axiom in a group definition is equivalent to listing the group
name in the axiom definition. We allow both possibilities to cut down on the
amount of code that needs to be written for a simple axiom. We recommend
using the axiom definition for fairly standard groupings that follow straight-
forwardly from the axioms – commutativity for example – and using separate
axiom group definitions for transformation system-related grouping – ordering
rewrites in stages, for example. A few suggested axiom groups are:

ac — associative-commutative – a (possibly non-terminating) reordering of
an expression

simplify — right-hand side is preferred over left-hand side; repeated applica-
tion should terminate

propagate — introduction and propagation of properties across expressions

3 Rewriting with Axioms

The jump from having axioms to using them for optimisations isn’t far. The
proposed C++ standard already suggests that compilers may use axioms for
simplifying code, and there already exists a proof-of-concept for axiom-based
optimisation [18], based on ConceptGCC. Similar ideas have been used suc-
cessfully in systems like TAMPR [3] and CodeBoost [1].

5 Such tagging is also important in specification and proof systems like CASL [16].
6 This plays nicely with C++, but leads to extra verbosity. It may be reasonable to allow
Monoid::Identity as a shortcut.
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3.1 Basic Rewriting

Let’s start with a brief explanation of how rewriting works, for those unfamiliar
with the concept. A conditional rewrite rule consists of a match pattern, a
replacement pattern and a condition. If the condition is always true, it can be
omitted. The patterns may have variables (sometimes called meta variables,
to distinguish them from C++ variables). For example, consider the following
rewrite rule:

g(f(x)) → h(x)

g(f(x)) is the match pattern, h(x) is the replacement pattern, and x is a
variable. If the rule is applied to the expression g(f(42)), the result will be
h(42). Variables in the replacement pattern should be a subset of the variables
in the match pattern and condition.

We may derive a rewrite rule from any axiom formed from a conditional
equation, simply by choosing one side of the equation as the match pattern,
and the other as the replacement pattern. If we choose the other way around,
we get the inverse rule. In case of a simplification rule, going one way is
preferred, but in the case of a commutativity rule, either rewrite direction can
be useful. The axiom’s parameter list defines the variables of the rule.

Rules are applied to expressions. If we wish to apply a rule to a whole
program (i.e., all expressions in the program), we must use a rewriting strategy
(discussed below). A rule may either succeed, if it matches and its condition is
true, or it may fail. If it succeeds, the rewrite is performed and we are done.
If it fails, we may try other rules if we are applying a group of rules, until we
find one which succeeds. A typical rewrite strategy would visit all expressions
in a program, and repeatedly apply rules until no rules succeed.

It is important to note that rewriting is not merely syntactic, it also takes
into account the types and signatures of the expressions. For example, a rule
derived from this axiom

axiom Commute(int a, int b) : ac {

assert(a + b == b + a);

}

will apply to an expression 5+4, but not to 4.2+6.9, which uses the floating-
point plus operator.

Rewrite rules are typically given names, in our system the name follows
from the axiom name. Rule names share the same name space as axiom group
names. Rules are allowed to have the same name – in that case they form a
group and will be applied together (i.e., tried in an arbitrary order until one
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succeeds or all have failed).

We can expect a rewrite system based on C++ axiom to be both non-
confluent (i.e., applying rules in a different order gives a different result) and
non-terminating. Rewrite strategies together with axiom groups provide a
pragmatic solution to this, and allow us to carefully control the application of
rules.

3.2 Rewrite Strategies

We can get pretty far basing an optimisation tool on just one or a few fixed
rewriting strategies, and linking each strategy to a particular axiom group. For
example, a possible default optimisation strategy would be to do a bottom-up
simplification (using the simplify group) of the program tree, modulo ac rules.
Axiom-based optimisation could then be turned on by a compiler option like
-frewrite-rules.

We can do better, of course. User-defined strategies allow detailed control
over when and how various rewrites are applied. Boyle showed in the TAMPR
system [3] that such control was needed to obtain many of the goals of program
optimisation from rewrite rules.

Basing ourselves upon an existing program transformation language like
Stratego [4], we can make its strategy-building constructs available within
C++-like syntax (see Fig. 4), and then either compile our rewrite rules and
strategies to Stratego code, or execute them using a Stratego interpreter. The
above default strategy may be encoded like this:

strategy simple_opt() {

bottomup(repeat(simplify || (ac && simplify)));

}

where bottomup does a bottom-up traversal of the program tree, and repeat
applies is argument until it fails. The choice combinator || tries its left argu-
ment, then its right argument if the left fails (corresponds to <+ in Stratego),
and the sequence combinator && applies its arguments in sequence and suc-
ceeds only if both succeed (corresponds to ; in Stratego). The two group
applications simplify and ac will apply the actual rewrite rules at the current
position in the program tree. See Fig. 5 for an overview of strategy combina-
tors.

Strategies like simple opt may then be made available to the user as a
compiler or transformation tool option, e.g. -frewrite-using=simple opt.
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"strategy" Identifier "(" ParamDecls ")" ";" -> StrategyDecl

"strategy" Identifier "(" ParamDecls ")" StrategyBody

-> StrategyDef

"{" Statement* "}" -> StrategyBody

Fig. 4. Syntax for strategy definitions – this may be parsed as a definition of a function returning
a value of type ‘strategy’. A limited set of statements and operators (detailed in Fig. 5) for the
strategy language usable in the StrategyBody.

true do nothing – always succeeds
false do nothing – always fails
all(s ) apply s to all children of the current node.
s1 || s2 apply either s1 or s2 , trying s1 first
s1 && s2 apply s1 then s2

a apply rewrite rules name a

G apply any rule from axiom group G

G [a ] apply any rule named a from axiom group G

repeat(s ) apply s repeatedly until it fails.

Fig. 5. Some suggested strategy combinators and builtin strategies.

3.3 Integrating With Other Optimisations

Often an optimisation rule may only be applied at a particular level of ab-
straction. Inlining, for example, will commonly expose some opportunities for
rule application, while hiding others. For example, in an expression a + f(b)
we may be able to inline or do partial evaluation of f and figure out that
it returns a zero – thus allowing us to eliminate the + (using a rule derived
from Monoid::Identity). But if we inline the plus (e.g., in the case of vector
addition), our rule would no longer match.

Exposing an inliner interface to the strategy language would be quite use-
ful. In our earlier work on user-defined rules [1] in C++, we added inlining
rules for simple functions to open up optimisation opportunities that may
otherwise have been lost. For example, we might have a rule

axiom GetElement(T a, T::index_type i) : inline {

assert(a[i] == a.data[int(i)]);

}

inlining the code of the user-defined []-operator. Since this is just a simple
duplication of the implementation of [], getting the compiler’s inliner to do
the job would be more general and preferable.

Substitution of expression assignments may also be helpful. For example,
consider the rule a ∗ x + y == axpy(a, x, y) that combines a multiply and an
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addition into a single operation. We may not be able to tell that the rule can
be applied if the operations occur in different statements (possibly far apart
in the code):

Vector a, b;

a = 5 * a;

b = a + b;

But if the expression assigned to a is substituted in the last statement,

b = 5 * a + b;

we may be able to transform to a more efficient

b = axpy(5, a, b);

Combined operations like axpy are common in numerical libraries like BLAS,
when working on large data structures like vectors and matrices. Supply-
ing such rules together with a library saves the programmer from having to
remember all the optimised special-case forms – and also means that new
optimisations can be added later without having to rewrite existing code.

3.4 Properties and Propagation

Certain axioms may depend on certain properties being fulfilled. For example,

axiom SortSort(T a) : simplify {

if(sorted(a))

assert(sort(a) == a);

}

This axiom can be used to eliminate unnecessary sorting of an already sorted
data structure. It is perhaps not very likely that a programmer will ask for
an array to be sorted again just after it was sorted, but by using data-flow
analysis, we may track this kind of information throughout the program.

To do this, we need to figure out when an array is sorted (we’ll simply call
it an ‘array’, even though it might as well be any ordered data structure). A
just-sorted array is sorted:

axiom Sorted(T a) : propagate {

assert(sorted(sort(a)));

}

Furthermore, removing an element from an array results in an array that is
still sorted (well, at least it does for our kind of array):

axiom SortedRemove(T a, T::index_type i) : propagate {

if(sorted(a))
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assert(sorted(a.remove(i)));

}

The propagate group is used to identify axioms that may be suitable for data-
flow propagation of properties. Any boolean predicate like sorted above is
usable as a propagated property. Note that without propagation axioms we
are unable to assume that any modification (e.g, call to a non-const function)
of an object preserves its properties.

Properties may be used as a basis for choosing a more efficient algorithm.
For example, the axiom

axiom SortedSearch(T a, T::value_type e) : speedup {

if(sorted(a))

assert(linsearch(a, e) == binsearch(a, e));

}

allows us to choose binary search over linear search of a sorted array. We
have chosen the axiom group speedup for this axiom, as it’s a slightly different
concept from expression simplification. Conceivably, our optimisation strategy
may put more work into proving that a speedup rule can be applied, than it
needs for a simplification rule.

Tracing properties of objects is often useful in numerical programming,
where certain operations can be drastically faster if it is know that the operands
have special properties, like symmetry in matrices, for example.

4 Axioms for Testing

Once we have axioms and rewrite rules based on them, we’ll want to check
that our implementation satisfies the axioms. In particular, before we apply
optimisation rules to a program, it is a good idea to check that the rules won’t
change the meaning of the program. While axioms may be used for formal
program verification, this is difficult to achieve in a general-purpose language.
We can however take a more pragmatic approach, and use the axioms as a
basis for testing.

Using axioms as test oracles 7 is straight-forward – fill in test data for the
free variables, and see if the axiom evaluates to true [13,12,7]. It is a pity this
kind of specification-based testing isn’t made more apparent in the upcoming
standard, as it would be a good motivation for actually writing axioms in
programs.

Providing basic support for testing is quite simple – we only need to make

7 A test oracle is something that tells you the correct result for an operation you want to
test.
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the instantiated (after concept mapping) axiom code available as callable func-
tions. The testing code may then be called from a test program, or from a
testing framework (like JUnit [15] for Java).

For example, referring to the Identity axiom for Monoid, we may test that
it holds for integers, by calling it with a few different integer values:

for(int i = -2; i <= 2; i++) {

Monoid::Identity(std::multiplies<int>(), i);

Monoid::Identity(std::plus<int>(), i);

}

Here, std::multiplies and std::plus refers to predefined class wrappers for built-
in operators. They are necessary because of how the monoid concept is defined
(with the operation as a template parameter) – the operator parameter is not
really a free variable in the axiom.

4.1 Axioms With Complex Testing Code

Axioms used for testing can be written in any (computable) logic. For testing
purposes, it therefore makes sense to allow arbitrary C++ code inside an
axiom definition – though this is not allowed in the proposed C++ standard.
For instance, we may state that two arrays are equal if they have the same
number of elements, and that the elements are equal

axiom ArrayEqual(Array a, Array b) {

bool eq = a.size() == b.size();

if(eq)

for(int i=0; i<a.size; ++i)

eq &= a[i] == b[i];

assert(eq == (a==b));

}

The first lines are needed to iterate through the data set and accumulate
information about its components. The assert keyword helps to identify which
part of this statement sequence is actually the test which defines the axiom.
It could be given its C library meaning – abort the program if the test fails
– or we could make a more elaborate implementation that counts the number
of failures and successes and records the axioms that fail. It may even be
useful to allow assert to have additional parameters, e.g., for adding extra
information about the test.

Although just allowing simple expressions in axioms is nice, being able to
write support code for an axiom provides us with more expressive power. It is
also possible to live without “helper” code – then we would need to encapsulate
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the helper code as a boolean function, possibly making simple axioms more
complicated.

Note that while the above axiom may seem trivial, properly testing the
implementation of equality is important in order to be sure that other axiom
tests relying on it work correctly.

4.2 Testing Exception Behaviour

It is also useful to state as an axiom that a method should throw an exception
under specific conditions:

axiom DivZeroThrows(T x, T y) {

if(y.iszero())

try { div(x, y); assert(false);}

catch(DivisionByZero) {assert(true);}

}

The first assertion tests the lack of an exception being thrown. The second
confirms the expected catching of an exception. If helper statements are not
allowed, this axiom also needs to be encapsulated.

4.3 Limitations on Testing

The tests derived in this fashion are clearly only as good as the axioms they
are based on. If the axioms are wrong, the tests will also be wrong (though
one is likely to discover this if the implementation one is testing is correct).

Tests based on the equalities and other comparisons rely on the comparison
being correctly implemented. Also, if the two sides of an equality are faulty,
but give equal results, this will go unnoticed. In practice, though, compre-
hensive testing with varied test data and multiple axioms is likely to uncover
that something is wrong, even if circumstances conspire against some of the
axiom tests.

Effective testing requires good test data. This is something we haven’t
considered here – we have relied on the programmer supplying appropriate test
data. The danger here is that a programmer’s assumption of what constitutes
good test data is often wrong – the bugs are hiding where one least expects
them to be. We will revisit this subject later (Sect. 6).

5 Implementation Issues

The biggest hurdle facing any implementation of a C++ extension is imple-
menting support for the base language. Existing C++ frontends are either
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far away from supporting the full C++, or are difficult to extend, making the
cost of prototyping new language features high.

Support for concepts and axioms has been implemented in the experimen-
tal ConceptGCC compiler [9]. At least one attempt to implement axiom-
based rewriting (based on ConceptGCC and the C++0x proposal) has been
made [18] (and they note that rule application and pattern-matching on the
internal GCC representation is indeed quite challenging).

We have not implemented the features described in this paper, but we
do have previous experience implementing axiom-based rewriting for C++ [1]
and deriving C++ tests from axioms [13]. In this section we will briefly sketch
how a prototype may be implemented for C++.

5.1 Translating Axioms to Rules

The syntax used in axioms differs from actual C++ code – people write a + 0,
not op(a, identity element(op)). This means that to apply rules to user code,
we must first translate the rules according to concept map mappings, inlining
any concept map functions (like identity element). For example, the Identity
axiom

op(x, identity_element(op)) == x;

instantiated for Vector::plus and Vector becomes,

Vector::plus()(x, identity_element(Vector::plus())) == x;

then if we inline Vector::plus() and identity element(), we get

x + Vector::zero == x;

which is what we would expect to see in user code.

Overload resolution from the C++ frontend can be used to figure out the
signature of operations in the rule (e.g., integer addition as opposed to floating-
point addition) – this information is then used in building the match pattern
for the rule. Axiom parameters become variables in the match pattern. We
used this idea in our previous implementation of user-defined rules.

Note that rewrite rules can be applied to generic template code when the
template parameters are constrained by concepts. Without concepts, you’d
have to instantiate the template to see which classes are used before you could
apply rewriting. Template code making use of concepts will already be written
in the same terms as the axioms (e.g., using op and identity element), so less
work has to be done to adapt the rules.
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5.2 Overall Transformation Process

The overall processing of axioms as rules may proceed as follows. First, we
need to parse and perform semantic analysis on the program, giving an ab-
stract syntax tree (AST) annotated with type and signature information. The
frontend’s overload resolution should also be applied to axioms (either now,
or after concept mapping) so that the full signature of functions etc. in calls
are available for matching in rules.

The axioms and strategy definitions are then picked out from the program
tree. Axioms may then be compiled to rules that apply at the concept level,
and after applying concept maps, to rules at the class/user level. Testing code
is generated after applying concept maps.

Once the rules are available, we apply them according to our built-in or
user-defined optimisation strategy. Rule application should be combined with
inlining and data-flow analysis for maximum benefit.

6 Discussion

Embedding optimisation rules in programs is not a new idea. User-defined
rules in CodeBoost [1] were inspired by the rewrite rules in the Glasgow Haskell
Compiler [14]. The CodeBoost implementation was more advanced, however,
and supported both conditions and multiple strategies (through a simpler
version of the axiom groups introduced in this paper). Conditional rewrite
rules is well known from transformation languages such as Stratego [4] and
ELAN [2], both of which also support strategies, and from term rewriting in
general.

The CodeBoost user-defined rules were limited to rewriting, and although
we derived optimisation rules from a formal algebraic specification, the actual
coding of the rules was done by hand and related directly to C++ classes.
Concepts in C++ let us bridge the gap between the specification (written in
terms of algebraic ideas like monoids, fields, rings etc.) and the concrete im-
plementation as C++ classes. Writing the relevant parts of our specifications
in concept syntax, with axioms, will make the axioms automatically available
for use by tools. There is still a piece missing in the puzzle, though – tying the
information from concepts and axioms together with some form of structured
documentation. No doubt someone is already working on this problem.

Support for axiom-based rewriting for ConceptGCC [18] follows the C++
standard proposal more closely than we do here. Rule application in [18] is
for now restricted to contexts explicitly constrained by concepts (see Sect. 2),
and transformation is restricted to a single strategy (leftmost-outermost re-
duction). The goal is to have a framework for concept based optimisation that
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may eventually replace type-specific built-in simplifications in the compiler.
We do not aim to compete with this implementation, though we hope that
some of our ideas will be useful for their work.

Axiom-based rules as described here is limited to operating on expressions,
and will not be fully effective if the transformation system isn’t able to com-
bine expressions from multiple statements (e.g., nesting expressions as much
as possible). There is a trade off here between rule-based optimisations, and
optimisations like common subexpression elimination – duplicating some com-
mon subexpressions may open up for rule applications but can also lead to
duplicated work.

Our initial experiments with rules had quite promising results. A small
number of rules from the specification of the Sophus numerical library was
used (together with general simplification rules) to optimise the C++ imple-
mentation of Sophus, giving 5–10 times speedup (the latter after the source
code was simplified to take advantage of the rules) as well as reduced memory
use. Some of the speedup was due to other optimisations in the system –
running without rule-based optimisations gave up to 2 times speedup.

Applying axiom-based rules to existing program code may not give quite
as good results, since programmers often have done many of the same opti-
misations by hand already. We expect the full benefit to be more apparent
with previously unoptimised programs written in a high-level style, and when
delivered together with a performance sensitive library, such as for numerical
software – an idea also known as active libraries [6].

Using axioms as a basis for testing is known from systems like DAISTS [7].
Compared to unit-testing frameworks like JUnit [15] – and the xUnit family of
frameworks for other languages – the advantage of axioms is the separation of
test code from test data. This means that one may easily test one axiom with
many different data values, and use the same values to test many different
axioms. Comprehensive testing can be done by building libraries of axioms
and test data, and testing all axioms against all suitable data. Theories,
available in JUnit 4.4 allow universal quantification [17], and may be called
from testing code like axioms in this paper. JUnit 4.4 also allows automatic
application of available test data to tests.

QuickCheck [5] is a testing system for Haskell where a programmer can
state laws (like C++ axioms) as Haskell functions. The quickcheck testing
function generates random test values, and tests that a law holds. Conditional
laws are also allowed – in that case more test values will be generated as
necessary to test the law sufficiently. The algebraic data types in Haskell
makes generating random data structures fairly simple, and the programmer
can supply generator functions to fine-tune the data generation. There is no
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link between QuickCheck and rewrite rules in the Glasgow Haskell Compiler
(mentioned above).

Partition testing is another testing approach where one attempts to divide
the input domain into regions and test only one value from each region (and
some boundary values). This does not necessarily give better results than
random testing, though [11]. Both partitioning and random data generation
will likely require some help from the C++ programmer. This is an area that
should be explored further in order to make full use of axiom-based testing.

6.1 Conclusion

Concepts and axioms, which are being introduced in the upcoming C++0x
standard, are language features that may prove quite useful for both documen-
tation, automated testing and program optimisation. To reap the full benefit
of axioms, we have introduced a few additional language features:

• Axiom groups for classifying axioms according to how they may be used

• Strategies for specifying how and when axiom-based rules should be used

• Callable axioms / axiom groups to make axioms usable for testing

• Properties which may be propagated according to axioms, and used in axiom
conditions

Allowing a wider range of statements in axiom bodies, and allowing axioms
to occur outside concepts, gives us some added usability benefits over the
proposed standard.

Our main contribution over our own and others’ previous work in this area,
is setting it in the context of the upcoming C++ standard, and tying together
the ideas of specification-based optimisation and specification-based testing.
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