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Abstract 

Polycomb group proteins are essential regulators of developmental processes across 

animals. Despite their importance, studies on Polycomb are often restricted to classical 

model systems and, as such, little is known about the evolution of these important 

chromatin regulators. Here we focus on Polycomb Repressive Complex 1 (PRC1) and 

trace the evolution of core components of canonical and non-canonical PRC1 

complexes in animals. Previous work suggested that a major expansion in the number 

of PRC1 complexes occurred in the vertebrate lineage. We show that the expansion 

of the Polycomb Group RING Finger (PCGF) protein family, an essential step for the 

establishment of the large diversity of PRC1 complexes found in vertebrates, predates 

the bilaterian-cnidarian ancestor. This means that the genetic repertoire necessary to 

form all major vertebrate PRC1 complexes emerged early in animal evolution, over 

550 million years ago. We further show that PCGF5, a gene conserved in cnidarians 

and vertebrates but lost in all other studied groups, is expressed in the nervous system 

in the sea anemone Nematostella vectensis, similar to its mammalian counterpart. 

Together this work provides a framework for understanding the evolution of PRC1 

complex diversity and it establishes Nematostella as a promising model system in 

which the functional ramifications of this diversification can be further explored.  

 

 

 

 

 



3 
 

Significance statement 

Animals, to maintain patterns of gene expression throughout life, utilize the Polycomb 

system to repress transcription. Vertebrates have a large number of Polycomb protein 

complexes, particularly belonging to the Polycomb Repressive Complex 1 (PRC1) 

family. Here we show that, contrary to current hypotheses, the large number of 

complexes found in vertebrates appeared early in animal evolution and was 

subsequently reduced in many lineages. Among the species studied here, only 

anthozoan cnidarians (corals and sea anemones) and vertebrates have the full set of 

possible PRC1 complexes and therefore it will be interesting to study their function in 

these animals. This study highlights the importance of non-standard model organisms 

when studying the evolution of processes such as gene silencing by Polycomb. 
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Introduction 

The acquisition and maintenance of cellular identity requires spatial and temporal 

control of gene expression programs and involves the function of activating and 

repressive transcriptional regulators. Among the repressive regulators, Polycomb 

Repressive Complexes (PRCs) play a central role in a broad spectrum of gene 

expression programs. Polycomb group proteins were first described in Drosophila 

melanogaster (hereafter Drosophila) as genes essential for patterning during 

embryogenesis and were subsequently shown to play crucial roles in cell differentiation 

and the maintenance of cell fate during development in many systems (1). Polycomb 

group proteins establish “facultative” heterochromatin and are required to maintain 

repression of key developmental genes such as Hox genes. As such, loss of Polycomb 

often results in homeotic transformations due to misexpression of Hox genes (1). In 

addition, Polycomb proteins can maintain genes in a poised state, which is 

characterized by the simultaneous presence of distinct histone modifications that are 

associated with transcriptional repression and activation (2).This poised state allows 

the rapid activation of transcriptional programs and accordingly, the Polycomb system 

is not only required for repression but also for the temporal control of transcriptional 

activation during development (2). In addition to this, Polycomb proteins are frequently 

found mutated in cancer patients and represent a popular therapeutic target (3).  

Polycomb proteins belong to one of two complexes: Polycomb Repressive Complex 1 

or 2 (PRC1 or PRC2, respectively). PRC2 complexes catalyze trimethylation of lysine 

27 on histone H3 (H3K27me3), a repressive histone modification (4). PRC1, on the 

other hand, ubiquitinates histone H2A and mediates chromatin compaction and gene 

silencing (5-13). The classical model of transcriptional silencing by Polycomb 

complexes entails first recruitment of PRC2, which deposits H3K27me3, followed by 
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PRC1 recruitment through its H3K27me3 binding subunit, leading to H2A ubiquitination 

and repression (14-16). In recent years, this model has been elaborated upon 

extensively, revealing a more complex interplay between PRC1 and PRC2 

components, histone modifications and other factors such as DNA methylation and 

CpG content that regulate the recruitment and activity of both complexes and 

subsequent transcriptional repression (17-31).  

Both PRC1 and PRC2 are large, multi-subunit protein complexes. In Drosophila, PRC2 

consists of a core of three proteins: Extra sex combs (Esc), Suppressor of Zeste 12 

(Su(z)12) and Enhancer of Zeste (E(z)) (4) (see SI Appendix, Table S1 for 

nomenclature of Polycomb proteins). PRC1 consists of four proteins: Sex combs extra 

(Sce or dRING), Posterior sex combs (Psc or its holomolg Su(z)2), Polyhomeotic (Ph) 

and Polycomb (Pc). Vertebrate PRC2 is highly similar to that of Drosophila, with EED, 

SUZ12 and EZH1/2 as the orthologs of Esc, Su(z)12 and E(z), respectively (4). PRC1, 

in contrast, is thought to have undergone an expansion in vertebrates, represented by 

a collection of related complexes each sharing a core consisting of RING1A or 

RING1B, vertebrate homologs of dRING, and one of the six vertebrate Polycomb 

Group RING Finger (PCGF) proteins, the homologs of Drosophila Psc (32). cPRC1.2 

and cPRC1.4, the canonical PRC1 complexes, consist of either PCGF2 or PCGF4, 

respectively, in a complex with RING1A/B, one Chromobox protein (CBX, the orthologs 

of Drosophila Pc) and one Polyhomeotic-like protein (PHC) (32) (Fig.1A). Further 

diversification within the vertebrate canonical complexes occurs due to the presence 

of five different potential CBX subunits (33-36), and three different PHC proteins (32). 

The non-canonical or variant PRC1 complexes, ncPRC1.1-1.6, consist of one PCGF 

protein, as well as RING1A/B, RYBP or its homolog YAF2 and other complex specific 

subunits (22, 32, 37-39) (Fig. 1A). The integration of either a CBX protein (in cPRC1) 



6 
 

or RYBP/YAF2 (in ncPRC1) is based on their mutually exclusive interaction with 

RING1A/B (32, 33, 40, 41). The majority of H2A ubiquitination is mediated by the non-

canonical complexes (42) while only the canonical complexes can be recruited by 

H3K27me3 through their CBX subunit (15, 16, 43) and have the ability to mediate both 

local compaction and long range interactions (6, 10-12, 44, 45). While complete loss 

of PRC1 via deletion of RING1A/B is lethal (46, 47), different PRC1 complexes can 

have distinct roles, owing to both the different subunits but also tissue specific 

expression of complex members (19, 22, 39, 48-56). In Drosophila, in addition to the 

canonical complex outlined above, two non-canonical PRC1 complexes have been 

described: dRAF, which contains KDM2, a lysine demethylase subunit (57), and a 

complex which contains an alternative Psc homolog (58).  

PRC1 complexes containing RING1/2 and PCGF proteins are present in plants, but 

many of the other components in these complexes are distinct to those in animals (59-

62). Similarly, RING1/2 and PCGF are encoded in the genomes of many unicellular 

eukaryotes like choanoflagellates, ichthyosporeans, and filastereans (1), but it is not 

known whether they form complexes with PRC1-like functions. Central to the current 

understanding of the evolution of PRC1 complexes, previous analyses have shown 

that compared with Drosophila, vertebrates have an expanded number of CBX, PHC, 

and PCGF proteins. This supported a scenario in which the diversity of PRC1 

complexes mainly arose in vertebrates (63, 64). 

Here we searched the genomes of a broad selection of animals and closely related 

unicellular eukaryotes for the presence of genes encoding the core proteins required 

to make all possible PRC1 complexes described above and performed a phylogenetic 

analysis on PCGF proteins to understand their evolution. While we find the expansion 

of CBX and PHC proteins in vertebrates is likely correct, we determined that, contrary 
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to current thinking, the diversity found in mammalian PCGF proteins emerged more 

than 550 million years ago, before the last common ancestor of bilaterians and 

cnidarians (65).  Thus, the genetic basis for PRC1 complex diversity appeared early in 

animal evolution but has been lost secondarily in different animal lineages. Using a 

transgenic reporter line in the anthozoan cnidarian Nematostella vectensis, we further 

show that PCGF5 genes may have ancient roles in the nervous system.  

Results 

We searched 28 genomes, representing diverse animal clades and the two closest 

unicellular outgroups to animals, choanoflagellates and filastereans, (See File S1 for a 

list of genomes and references) for the presence of homologs of the core components 

of canonical or non-canonical PRC1, i.e. RING1/2 (genes encoding RING1A/B), 

PCGF, CBX, PHC, and RYBP, using either Drosophila or human sequences as query 

(see Materials and Methods). The presence/absence as well as the number of genes 

per species are shown in Figure 1B (see also (1)). There are single copies of RING1/2 

in most species with the exception of some vertebrates where there are two copies, 

RING1A and RING1B, and in the platyhelminth Schmidtea mediterranea where there 

are also two RING1/2 genes. We found no CBX and PHC genes outside animals and 

both genes were lost in the lineage leading to the nematode Caenorhabditis elegans. 

We identified only one copy of PHC in most animals except vertebrates where we find 

three copies, the sponge Amphimedon queenslandica which has two genes, and 

Drosophila melanogaster which has two almost identical PHC genes, the result of a 

recent duplication event (66).  For the CBX genes, we found a relatively large diversity 

in gene number (ranging from one to eight) in different animals. RYBP, in contrast, is 

present as a single copy gene in most invertebrates, but is represented by two paralogs 

in vertebrates, named RYBP and YAF2. Some invertebrate species (the oyster 
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Crassostrea gigas, the priapulid worm Priapulus caudatus, and the sea urchin 

Strongylocentrotus purpuratus) lack an RYBP homolog, likely due to secondary loss 

as these species are only distantly related to each other, though we cannot rule out 

the possibility that these genes are missing from the genome assemblies. Interestingly, 

a putative homolog of RYBP, the unique component of non-canonical PRC1, can be 

found in the choanoflagellate Salpingoeca rosetta, but not in another choanoflagellate, 

Monosiga brevicollis, and also not in the filasterean Capsaspora owczarzaki as 

previously noted (1). The level of sequence similarity of the S. rosetta gene compared 

to animal RYBP genes is, however, very low and it does not contain the Yaf2/RYBP 

C-terminal binding motif which is present in all other RYBP genes. While it is possible 

that there was a RYBP gene present in the last common ancestor of choanoflagellates 

and animals that did not contain a Yaf2/RYBP C-terminal binding motif, we prefer to 

label this S. rosetta gene as a putative RYBP gene (shown in Fig. 1B as a question 

mark).  

Surprisingly, we found a wide range in the total number of PCGF genes per animal 

species (Fig. 1B). Previous work had shown that the PCGF family expanded only in 

vertebrates but we found 6-7 PCGF genes in anthozoan cnidarians and eight in the 

annelid Capitella teleta, more than found in humans. This diversity in the number of 

PCGF genes in each animal genome we searched suggests many lineage specific 

gains and/or losses.  

Thus, in contrast to RING1/2, PHC, and RYBP genes, the number of PCGF genes 

varies considerably among animals. This observation prompted us to use phylogenetic 

analyses to understand the evolution of the PCGF gene family in more detail. We 

performed a phylogenetic analysis on the full set of taxa in Fig. 1B using PCGF and 

RING1/2 proteins as an outgroup or PCGF proteins alone using both maximum 



9 
 

likelihood and Bayesian methods (SI Appendix, Fig. S2-S5). We also ran the analysis 

on the PCGF and RING1/2 proteins with a reduced set of sequences corresponding to 

cnidarian and selected bilaterian lineages (Fig. 2 and SI Appendix, Fig. S1). Genes 

with long branch lengths or low support in the full set trees were removed. Importantly, 

exclusion of these species had no effect on the overall topology of the tree. In all cases, 

the overall topology of the tree was similar. We found that the PCGF genes fall into 

five families, which we termed PCGF1, PCGF2/4, PCGF3, PCGF5, and PCGF6 based 

on the vertebrate homologs present in the groups. The “canonical” PCGF2/4 and the 

“non-canonical” PCGF1, 3, 5, 6 genes form sister groups, with additional subgrouping 

of the “non-canonical” genes into PCGF1, PCGF3, PCGF5, and PCGF6 subgroups 

(Fig. 2). Figure 3A summarizes the presence of genes within the different families in 

all bilaterian and cnidarian species studied with the exception of Ciona intestinalis as 

we could not confidently assign some genes from this species. All of the PCGF families 

contain sequences from bilaterian and cnidarian genomes indicating they originated 

before the split of these two major animal groups. All but the PCGF5 group also contain 

sequences from both protostomes (Ecdysozoa and Spiralia, see Fig. 1) and non-

vertebrate deuterostomes. Although many species have more than one gene within 

the PCGF2/4 clade, it is likely that these arose through lineage specific duplications. 

This is the case for vertebrate PCGF2 and PCGF4 (Bmi1) as well as for Drosophila 

PSc and Suz(2) and the two PCGF2/4 genes present in anthozoan cnidarians. There 

have also been extensive losses of many PCGF genes, most strikingly that of PCGF5, 

which has been lost at the base of the protostomes but also in the non-vertebrate 

deuterostomes studied here. Additional losses have occurred in specific lineages, for 

example loss of PCGF6 in Ecdysozoa and PCGF3 in hydrozoan cnidarians (Fig. 3A). 
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Among the analyzed taxa, anthozoan cnidarians (three species) and vertebrates (four 

species) are the only ones in which all five PCGF subgroups are present. 

The position of the genes from the unicellular groups (choanoflagellates and 

filastereans) as well as other non-bilaterian animal groups (ctenophores, sponges and 

placozoans) was ambiguous in the trees. The two choanoflagellate PCGF genes fall 

either within the PCGF5 clade or as sister to the PCGF5 clade depending on whether 

RING1/2 genes are included in the analysis (SI Appendix, Fig. S2-S5). This may be 

due to some ancestral characteristics of PCGF being retained in the PCGF5 genes or 

alternatively due to convergence. Similarly, the single PCGF gene in the filasterean C. 

owczarzaki  has a shifting position within the trees (SI Appendix, Fig. S2-S5). In neither 

case do these positions have a high level of support. A similar situation is seen for 

some or all of the genes from the ctenophore Mnemiopsis leidyi, the placozoan 

Trichoplax adhaerens, and the sponge Amphimedon queenslandica (SI Appendix, Fig. 

S2-S5). Thus, it is not possible from this analysis to confidently derive conclusions 

about PCGF gene evolution before the last common cnidarian-bilaterian ancestor.  

Among the sampled genomes, anthozoan cnidarians, an animal clade containing 

corals and sea anemones, are the earliest-diverging animals that have at least one 

member of each of the PCGF families and indeed are the only group outside 

vertebrates to have this. We therefore sought to investigate this group further. Although 

anthozoan cnidarians contained a member of all PCGF groups, hydrozoans, a distantly 

related group of cnidarians (67, 68), contained only PCGF1, PCGF2/4, and PCGF5 

genes. We therefore first sought to understand better the pattern of PCGF evolution 

within cnidarians. We searched two additional cnidarian genomes representing two 

other cnidarian clades which are more closely related to hydrozoans than anthozoans. 

The cubozoan Morbakka virulenta (a box jellyfish) and the scyphozoan Aurelia aurita 
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(moon jellyfish) have  homologs of PCGF1, 2/4, 3, and 5. PCGF6 was therefore lost 

early in the medusozoan clade (which includes hydrozoans, cubozoans and 

scyphozoans) with PCGF3 being lost later only in hydrozoans (Fig. 3A and SI 

Appendix, Fig. S6). 

We particularly focused on the anthozoan Nematostella vectensis (hereafter 

Nematostella), the starlet sea anemone, for further investigation due to the availability 

of experimental tools (69). While analyzing the PCGF complement in Nematostella we 

noted that four of the Nematostella genes are arranged in a genomic cluster: 

NvPCGF5a, NvPCGF5b, NvPCGF3 and NvPCGF1 (Fig. 3B). We then looked in other 

anthozoan genomes and found the genomic cluster to be conserved in both Aiptasia 

pallida, another sea anemone, and Acropora digitifera, a coral (Fig. 3B). Interestingly, 

the order of the genes along the cluster in anthozoans reflects their evolutionary 

relationships that we found in our phylogenetic analysis: the PCGF5 genes (there are 

two paralogs in Nematostella and A. digitifera) are located next to each other, the most 

closely related PCGF3 is located adjacent to the PCGF5 genes and the more distantly 

related PCGF1 is located on the other side of PCGF3. We then looked at bilaterian 

genomes to assess whether this cluster was retained there. We found that several 

protostome genomes have a cluster consisting of PCGF3, PCGF1, and the non-PCGF 

gene HPS1 which was also found in the anthozoan cluster. Within deuterostomes we 

did not find any evidence of a cluster. In the sea urchin, S. purpuratus, however, the 

three genes found in the protostome cluster, PCGF1, PCGF3, and HPS1 are found on 

the same scaffold although spread over approximately 20Mb. In several vertebrates 

(Homo sapiens, Mus musculus, Gallus gallus, and Xenopus tropicalis) we see that 

PCGF5, PCGF6, and HPS1 are located on the same chromosome and are within 

approximately 20Mb of each other. Together this suggests that a cluster containing all 
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non-canonical PCGFs as well as HPS1 was present in the last common ancestor of 

cnidarians and bilaterians and that some aspects of this cluster are maintained in 

several species. Among the animal genomes sampled here, the complete cluster was 

only found in anthozoan cnidarians. 

To investigate whether distinct PCGF genes in Nematostella may have distinct 

functions we sought to analyze their expression. We first interrogated a previously 

published developmental time course (70), which integrates RNAseq data from several 

studies (71-73). We saw that both “canonical” PCGF genes, NvPCGF2/4a and 

NvPCGF2/4b, had similar expression dynamics during development although with 

different levels (SI Appendix, Fig. S7). In the case of the “non-canonical” PCGF genes, 

we found that there is substantial variability in their expression (Fig. 4A). NvPCGF5a, 

for example, is not maternally expressed and its expression reaches maximum levels 

around planula stage (approximately 48hrs post fertilization) while NvPCGF5b is 

maternally expressed and reaches the same level at planula stage as NvPCGF5a but 

with higher expression during early embryonic stages. NvPCGF3 is also maternally 

expressed and its levels remain steady until blastula stages when its levels drastically 

increase before plateauing. Both NvPCGF1 and NvPCGF6 are highly expressed 

maternally and high levels of both genes are maintained during early embryogenesis 

before levelling out at a lower level after gastrulation.  

Some vertebrate PCGF genes display spatial expression patterns, with higher levels 

in specific tissues or cells (74-76). We performed RNA in-situ hybridization at different 

developmental stages to determine whether such spatial regulation also occurs for 

Nematostella PCGF genes. NvPCGF3 is expressed at blastula stage in two distinct 

domains on opposing sides of the embryo (Fig. 4B), presumably corresponding to the 

oral and aboral poles. At gastrula stage, this pattern continues with expression being 
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localized to oral and pharyngeal tissue and, less pronounced, to the aboral pole (Fig. 

4C, D). NvPCGF5a can first be detected by in-situ hybridization at early gastrula stage 

when it is expressed in scattered cells on the aboral side of the embryo (Fig. 4E). This 

expression pattern continues into later stages, although weaker, and spreads into the 

endoderm (Fig. 4F). Localized expression of NvPCGF5b is first detectable at planula 

stage when it is expressed in the apical tuft, albeit very weakly (Fig. 4G). We note that 

the RNAseq data (Fig. 4A) show that both NvPCGF5 paralogs are also expressed at 

stages at which we cannot detect them by in-situ hybridization, potentially due to low 

level and/or broad expression at those stages. We were unable to find distinct/localized 

expression patterns for the other PCGF genes. 

Given that the NvPCGF5a expression pattern is similar to that seen for neural genes 

at these stages (77-79) and that vertebrate PCGF5 is highly expressed in neural 

progenitors (56, 74) we wanted to investigate further these NvPCGF5a expressing 

cells. To do this we generated a transgenic reporter line expressing eGFP under the 

control of the NvPCGF5a regulatory elements. eGFP could be detected in these 

animals in scattered cells in the aboral half of the embryo from gastrula stage on (Fig. 

5A-C) and later additionally at lower levels throughout the aboral tissue (Fig. 5B-C). 

The morphology of the scattered cells matched that expected of neurons and/or 

sensory cells with many cells seen with an apical cilium and basally branching neurites. 

We went on to cross this line to other published neuronal reporter lines. This revealed 

that the NvPCGF5::eGFP+ cells represent a subpopulation of both the 

NvFoxQ2d::mOrange+ positive sensory cells (80) (Fig. 5D) and the 

NvElav1::mOrange+ positive neurons (81) (Fig. 5E). Together these data show that 

NvPCGF5a is expressed in a subset of neural cells in Nematostella. 

 



14 
 

 

Discussion 

Here we analyze the evolution of the core components of canonical and variant PRC1 

in animals. PRC1 complexes were thought to have experienced a diversification in 

vertebrates, mainly due to expanded repertoires of CBX and PCGF genes (56, 61). 

We show that although some expansion of PRC1 components did indeed occur in 

vertebrates, i.e. expansion of CBX and PHC genes, the expansion of the PCGF gene 

family occurred much earlier, before the last common ancestor of cnidarians and 

bilaterians. Our analysis indicates that there were likely five PCGF proteins in the last 

common ancestor of bilaterians and cnidarians and that there was only one 

subsequent duplication, within the PCGF2/4 family, in the lineage leading to 

vertebrates. This is an intriguing finding as PCGF proteins define the composition and 

identity of the main canonical and non-canonical PRC1 complexes (32). We show that 

the non-canonical PCGF genes (those encoding PCGF1, 3, 5 and 6) are more closely 

related to each other than to the canonical PCGF2/4 family and that the non-canonical 

genes arose from sequential duplications of an ancestral gene. This is evident in 

anthozoan cnidarians where NvPCGF5, NvPCGF3 and NvPCGF1 genes have been 

maintained in a genomic cluster. Some protostome genomes contain incomplete 

versions of this cluster lacking PCGF5, which has been lost in the clades analyzed 

here.  While the existence of this cluster is informative for the evolution of PCGF genes, 

it remains to be determined which genomic features favored its retention and whether 

the organization in a cluster has functional consequences. 

The previously assumed expansion of Polycomb complexes in vertebrates has been 

deduced primarily from comparisons to Drosophila and C. elegans. Drosophila has 
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only three PCGF genes, two belonging to the PCGF2/4 family and one to the PCGF3 

family. Despite the lack of a PCGF1 homolog, there is a PRC1 complex in Drosophila, 

dRAF, which resembles vertebrate ncPRC1.1 in that it contains the lysine demethylase 

KDM2, but differs from ncPRC1.1 by the presence of a PCGF2/4, rather than a PCGF1 

protein (57). This may suggest that non-canonical PRC1 complexes can switch PCGF 

components over evolutionary time or it may be a specific case caused by the loss of 

PCGF diversity in the lineage leading to Drosophila. A recent report has found that the 

Drosophila PCGF3 homolog, L(s)37Ah, interacts with dRING and is required for the 

majority of H2A118 ubiquitination (58). The single PCGF gene in C. elegans also falls 

into the PCGF3 family, albeit without high support. It is interesting to note that the 

PCGF3 family seems to be the group which has been lost less often that any of the 

other PCGF families, being retained in all genomes that we analyzed other than 

hydrozoan cnidarians. The reason for this and its relevance to our understanding of 

PRC1 evolution will only become clear upon further investigation of PCGF3 function in 

a more diverse set of organisms.  

Our finding that anthozoan cnidarians contain the same set of PCGF gene families as 

vertebrates does not support the hypothesis that the diversification of PRC1 complexes 

is related to the evolution of vertebrate-specific traits (56, 61). The presence of the 

different PCGF families in anthozoans provides the opportunity to obtain new insights 

into the evolution of PRC1 complexes both at the molecular and organismal level. For 

example, PSc, the Drosophila PCGF2/4, has the ability to compact chromatin due to 

the presence of a repressive C-terminal region. This property can be found in PCGF2/4 

proteins from many species, including several invertebrates (82). In vertebrates and 

plants, however, two unrelated PRC1 subunits, CBX2 and EMF1, respectively, have 

the same molecular function (11, 82). Thus, it remains ambiguous whether ancestral 
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PCGF proteins had this function or whether it evolved independently in different 

lineages. Understanding the biochemical activities of PRC1 members from early 

diverging animal lineages could potentially resolve this. At the organismal level, we see 

that the PCGF genes in Nematostella are dynamically and differentially expressed 

during development. This may indicate that these genes play distinct roles at different 

developmental stages and/or in different tissues or cell types. It will be interesting in 

the future to dissect these roles to understand whether the molecular and physiological 

roles of these genes are conserved in different species. Of the two PCGF5 paralogs in 

Nematostella, NvPCGF5a is highly expressed in the nervous system based on our 

analysis. In addition, both Nematostella NvPCGF5a and NvPCGF5b are found to be 

upregulated in NvElav1+ neurons at later developmental stages (83). This is striking 

as, in mice, PCGF5 is also highly expressed in neural progenitors (56, 74) and has 

been shown to play important roles both during neural differentiation and in the adult 

nervous system (55, 56). This could suggest an ancestral and conserved function of 

this gene in the nervous system. A comparably well-developed experimental tool set, 

including stable transgenics, genome editing, and transient knockdown approaches, is 

available for Nematostella (69, 84-87), allowing further investigations on the function 

and interaction partners of the Nematostella PCGF5 proteins that may help to unravel 

potential functional conservation. 

Our analysis failed to resolve the placement of PCGF family genes from other early-

branching non-bilaterian lineages (ctenophores, sponges, and placozoans), making 

their evolutionary history unclear. From our analysis, we can confidently say that there 

were at least five PCGF proteins in the last common ancestor of cnidarians and 

bilaterians. Whether canonical and non-canonical PRC1 complexes evolved at the 

same evolutionary stage, or whether one evolved earlier than the other, also remains 



17 
 

unclear. The presence of a putative RYBP and the absence of either CBX of PHC 

homologs in choanoflagellates would favor a hypothesis in which non-canonical PRC1 

evolved prior to canonical PRC1 (1). Given the divergent sequence and domain 

composition of the putative choanoflagellate S. rosetta RYBP, we consider it important 

to validate its potential function as a component of a PRC1 complex experimentally 

before confidently calling it an RYBP.  

In conclusion, we have shown that the PCGF family expanded early in animal 

evolution, before the split of bilaterians and cnidarians. This suggests that the diversity 

of PRC1 complexes seen in vertebrates may have arisen early in animal evolution. 

The extensive losses of PCGF genes in the major invertebrate model systems places 

anthozoan cnidarians, particularly Nematostella vectensis, as the technically most 

advanced model in which this complexity and its contribution to gene regulatory 

programs can be studied outside vertebrates.  

Materials and Methods 

Homology search 

To identify homologs of the genes studied here we used tBLASTn searches with the 

following as query: For PCGF genes we used Drosophila melanogaster PSc, for 

RING1/2 we used dRING, for CBX genes we used Drosophila melanogaster Pc, for 

PHC we used Drosophila melanogaster Ph, and for RYBP we used human RYBP. In 

any case where we could not find any homologs we also used sequences from more 

closely related groups as a query to confirm.  For the majority of species we used the 

NCBI database. For Mnemiopsis leidyi we used the NHGRI Mnemiopsis leidyi genome 

portal (http://research.nhgri.nih.gov/mnemiopsis), for Schmidtea mediterranea we 

used the Schmidtea mediterranea  genome database (http://smedgd.neuro.utah.edu/), 

http://research.nhgri.nih.gov/mnemiopsis
http://smedgd.neuro.utah.edu/
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for Capitella teleta we used the Joint Genome Institute 

(https://mycocosm.jgi.doe.gov/Capca1/Capca1.home.html), for Hydractinia echinata 

sequences were obtained by tBlastn into the transcriptome 

(https://research.nhgri.nih.gov/mnemiopsis/) and for Aurelia aurita and Morbakka 

virulenta we used the https://marinegenomics.oist.jp/ website. Genes were designated 

as orthologs using BLASTp searches with both human and Drosophila melanogaster 

sequences in the NCBI nr database as well as by analyzing domain composition using 

Pfam. In a few cases the gene models were obviously incomplete (i.e. very short or 

missing a domain) and in these cases we extracted the genomic region and performed 

a de novo annotation to extend the gene models using Augustus (http://bioinf.uni-

greifswald.de/augustus/submission). We used the nomenclature as follows: If a gene 

had already been assigned a name then this was used and the species identifier was 

added in front. If genes were not already named we named them with the protein name, 

i.e. PCGF, RING or CBX, preceded by the species identifier and followed by a unique 

letter (a,b etc.).  

Cloning of Nematostella PCGF genes 

Nematostella PCGF genes were identified as above using the JGI genome browser 

(http://genome.jgi.doe.gov/Nemve1/Nemve1.home.html) and cloned using standard 

procedure into pCR4 backbones. In the case of NvPCGF5a the sequence was 

obtained from the NvERTx database (70).  

Phylogenetic analysis  

A full list of genes used for phylogenetic analysis can be found in Supplementary File 

S1. For the PCGF phylogenies, the full-length protein-coding sequences were aligned 

automatically using MUSCLE v3.8.31 (88). All alignment files can be found as 

https://mycocosm.jgi.doe.gov/Capca1/Capca1.home.html
https://research.nhgri.nih.gov/mnemiopsis/
https://marinegenomics.oist.jp/
http://bioinf.uni-greifswald.de/augustus/submission
http://bioinf.uni-greifswald.de/augustus/submission
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Supplementary datasets File S2-S9. ProtTest3 (89), which calls PhyML for estimating 

model parameters (90), was used to select the best-fit model of protein evolution for 

each alignment. The best-fit model for the Cnidaria plus Bilateria PCGF and RING1/2 

alignment (SI Appendix, Fig. S2) was VT + I + Γ + F, where ‘VT’ indicates the 

substitution matrix, ‘I’ specifies a proportion of invariant sites, ‘Γ’ specifies gamma-

distributed rates across sites, and 'F' specifies the use of empirical amino acid 

frequencies in the dataset. The best model for the full taxon set PCGF and RING1/2 

alignment (SI Appendix, Fig. S3) was WAG + I + Γ + F, where ‘WAG’ indicates the 

substitution matrix. The best model for the full taxon set PCGF only alignment (SI 

Appendix, Fig. S5) was WAG + I + Γ. The best model for the cnidarian only alignment 

was WAG + Γ + F. Maximum likelihood analyses were performed with RAxML v8.2.9 

(91). For each phylogeny, we conducted two independent searches each with a total 

of 100 randomized maximum parsimony starting trees; we then compared the 

likelihood values among all result trees and chose the best tree from among these. 

One hundred bootstrapped trees were computed and applied to the best result tree for 

each analysis. Bayesian analyses were performed with MrBayes3.2.5 x 64 (92) and 

the same best fit model of protein evolution from ProtTest3 as described above for 

each set. Two independent five million generation runs of five chains each were run, 

with trees sampled every 100 generations. The final ‘average standard deviation of 

split frequencies’ between the two runs for each phylogeny was always less than 0.05. 

This diagnostic value should approach zero as the two runs converge and an average 

standard deviation value between 0.01 and 0.05 is considered acceptable for 

convergence. In each case, a majority rule consensus tree was produced, and 

posterior probabilities were calculated from this consensus. Trees were rooted in 

FigTree v1.3.1 [FigTree, a graphical viewer of phylogenetic trees. 
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http://tree.bio.ed.ac.uk/software/figtree/.]. Bayesian posterior probabilities are shown 

on the Bayesian trees (Fig. 2 and SI Appendix, S3, S5 and S7). 

Identification and annotation of PCGF cluster 

The scaffolds containing the PCGF cluster are as follows: Aiptaisa pallida, 

NW_018385238.1; Acropora digitifera, NW_015441081.1; Nematostella vectensis, 

NW_001834266. The genes upstream and downstream of the PCGF genes were 

identified based on the most similar human sequences retrieved by reciprocal BLASTp 

searches in the NCBI nr database. We then used a reciprocal blast approach between 

the species to confirm that in each case the genes in the cluster represent each other’s 

most similar gene in the other species. 

 

Nematostella maintenance 

Nematostella were maintained at 18-19°C in 1/3 filtered sea water (NM) and spawned 

as described previously (93). Fertilized eggs were removed from their jelly packages 

by incubating in 3% cysteine in NM for 20 minutes followed by extensive washing in 

NM. Embryos were reared at 21°C and were fixed at 16 hours (blastula), 20 hours 

(gastrula), 30 hours (late gastrula), 48 hours (early planula) and 72 hours (late planula). 

Generation of the NvPCGF5a::eGFP transgenic reporter 

We amplified ~ 5.3 kb  upstream of the NvPCGF5 coding sequence including the first 

two introns and 138bp of coding sequence using primers : 

CACCCCGCAACATGAAGACAAATTG; Rv, TCGGCAAACTAAAAAAAATATATATATATAAATAAG and 

cloned it in frame with a codon optimized eGFP followed by an SV40 terminator 

sequence in a pUC57 backbone as previously used (83) using NEB HiFi Mastermix 
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(NEB, EN2621s). Transgenic animals were generated using meganuclease mediated 

transgenesis as previously described (84). 

Fixation, in-situ hybridization and immunofluorescence 

Animals were fixed in ice cold 0.2% glutaraldehyde/3.7% formaldehyde in NM for 1.5 

minutes followed by 1 hour at 4°C in 3.7% formaldehyde in PBT (PBS + 0.1% tween). 

Animals were washed several times in PBT and those used for in-situ hybridization 

were dehydrated through a series of methanol washes and stored in 100% methanol 

at -20°C. In situ hybridization and immunofluorescence were performed as previously 

described (77) with the replacement of the DAPI incubation with a 1 hour incubation in 

Hoechst 33342 (Thermo Fisher Scientific, 62249) at 1:100 for >1 hour. Antibodies used 

were: anti-dsRed (Clontech, 632496) 1:200, mouse anti-mCherry (Clontech, 632543) 

1:200, mouse anti-GFP (Abcam, Ab1218) 1:100, rabbit anti-GFP (Abcam, Ab290) 

1:100, goat anti-rabbit Alexa 488 (Life Technologies, A11008), goat anti-rabbit Alexa 

568 (Life Technologies, A11011), goat anti-mouse Alexa 488 (Life Technologies, 

A11001) and goat anti-mouse Alexa 568 (Life Technologies, A11004) 1:200. Samples 

were imaged on either a Nikon Eclipse E800 compound microscope with a Nikon 

Digital Sight DSU3 camera or on a Leica SP5 confocal microscope. 

Data Availability 

All data are available in the main text, SI Appendix or as supplementary datasets. 
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Fig. 1. An animal-specific set of core PRC1 components. (A) Schematic showing the 

core components of all known PRC1 variants in vertebrates. (B) Table showing the 

presence or absence as well as the number of PCGF, CBX, PHC, RING1/2 and RYBP 

homologs in representative animal and single cell eukaryote species. Green indicates 

the presence of a homolog, red indicates absence and yellow indicates cases where 

there is ambiguity. The number of homologs in a particular species is indicated both 

by number but also by intensity of green colour. The full set of the PRC1 components 

is only found in animals. Phylogeny based on (94) and (68). 
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Fig. 2. Subgroups of PCGF genes emerged early in animal evolution. Phylogenetic 

analysis of cnidarian and bilaterian PCGF and RING1/2 genes according to Bayesian 

analysis using RING1/2 genes as outgroup. There are five major families of PCGF 

genes (PCGF1, 2/4, 3, 5, 6), which are highlighted by different colored boxes. Numbers 

above branches correspond to Bayesian posterior probabilities. Only values ≥ 0.7 are 

shown. Red bars and red font indicate the position of vertebrate genes, blue bars and 
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blue font indicates the position of cnidarian genes and green bars and green font 

indicates the position of Drosophila melanogaster genes. Species names are 

abbreviated as follows: Ad, Acropora digitifera; Ap, Aiptasia pallida; Am, Apis mellifera; 

Bl, Branchiostoma floridae; Cg, Crassostrea gigas; Ct, Capitella teleta; Dr, Danio rerio; 

Dm, Drosophila melanogaster; Gg, Gallus gallus; Ha, Hyalella azteca; Hs, Homo 

sapiens; He, Hydractinia echinata; Hv, Hydra vulgaris; La, Lingula anatina; Lg, Lottia 

gigantea; Nv, Nematostella vectensis; Pc, Priapulus caudatus; Sm, Schmidtea 

mediterranea; Sp, Strongylocentrotus purpuratus; Xt, Xenopus tropicalis. 
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Fig. 3. Anthozoan cnidarians have a complete complement of PCGF subgroups and a 

cluster of “non-canonical” PCGFs. (A) Table showing the presence or absence of 
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members of the various PCGF families identified in the genomes of all cnidarian and 

bilaterian species studied here except Ciona intestinalis which was excluded due to 

the fact we could not clearly place all its PCGF homologs unambiguously into one of 

these families. An X on the tree indicates predicted gene losses. (B) Schematic 

representation depicting the PCGF gene cluster and gene synteny between 

Nematostella vectensis, Aiptasia pallida, Acropora digitifera, Lottia gigantea, 

Crassostrea gigas and Priapulus caudatus. The PCGF genes were named based on 

their position in the phylogeny (Fig. 2). Other genes in the cluster were named based 

on the closest BLASTp hit in human. HPS1: Hermansky-Pudlak syndrome 1 protein, 

Mucin-22: Mucin-22 isoform-1 precursor, EMX: homeobox protein EMX1, S/T kinase: 

Leucine rich repeat serine/threonine-protein kinase 2, RNase: probable ribonuclease 

ZC3H12B. The RNase gene in Nematostella is located within an intron of NvPCGF5b. 

Phylogeny based on (94) and (68). 
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Fig. 4. Temporally and spatially dynamic expression of non-canonical PCGF genes in 

Nematostella vectensis. (A) Expression analysis of the Nematostella non-canonical 

PCGF genes throughout embryonic development taken from the NvERTx database 

(70). (B-G) RNA in situ hybridization of NvPCGF3 (B-D), NvPCGF5a (E-F) and 

NvPCGF5b (G) at indicated developmental time points. (C-G) show lateral views with 

aboral pole to the left. White bar in (F) indicates endoderm. 
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Fig. 5. An NvPCGF5a::eGFP reporter line marks a subset of neural cells in 

Nematostella. (A-C) Immunostaining for eGFP highlights neural cells in the aboral part 

of Nematostella embryos at gastrula (A), early planula (B) and late planula (C). Lateral 

views with aboral pole to the left. (D, E) Immunostaining on late planula of double 

transgenic animals bearing NvPCGF5a::eGFP and NvFoxQ2d::mOrange (D) or 

NvElav::mOrange (E) transgenes shows co-localization in a subset of cells in both 

cases. eGFP is shown in green, mOrange in magenta and DAPI in blue. Arrows point 

to examples of co-localisation. Scale bar: 20 μM (A-C), 10 μM (D, E). 
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