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Abstract: Sets of lower order and higher order kinetic and

macroscopic equations are developed for a plasma where collisions

are impoi cant but electrons and lons are allowed to have dlfferent

temperatures when transports, due to gradlents and fields, set in.

Solving the lower order kinetic equations and taking appropriate

velocity moments we show that usual classical transports emerge.

From the higher order kinetic equations special notice is taken

of some new correctlon terms to the classical transports. These

corrections are linear in gradlents and fields, some of which are

found in a two-temperature state only.
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1 Introduction

In kinøtic and transport thøories of collision-dominated,

fully-ionized plasmas expressions for electron- and ion transports

and transport coefficients have been derived using various methods

by Braginskii [l], for instance, for a two-temperature plasma and

by Robinson and Bernstein [2] for a one-temperature plasma. The

so-called classical transports of mass, momentum and energy which

are linear in gradlents and fields, and correspondlng derived tran

sport coefficients, emerge from kinetic equations on a level of

approximation correspondlng to that of Chapman and Enskog [3].

These theories may be extended to include corrections from the

next higher level of approximation correspondlng to that of

Burnett [4]. The effects on the transports due to derivatives

and products of gradients would then be taken into account.

However, especially for a two-temperature plasma proper correc

tions may be more subtle and revealed only after applying a reflned

perturbation procedure on kinetic and macroscoplc equations- In

this paper we apply the multiple time scale method to obtaln such

corrections for a two-component plasma model where e , which mea

sures the weakness of the gradients and fields as compared to a mean

free path, and a , the square root electron-to-ion mass ratlo, are

treated as of the same order of magnltude. In a previous paper by

Naze Tjøtta and Øien [sl>a study of the evolution from the n kinetlc M

to the "hydrodynamic" reglmes, Bogoliubov [6], of such a model was

made. The equations of that study were all within the frame of the

Chapman-Snskog approximation. Looking at the transport aspect of

the model m the present paper, and particularly at hov; corrections

to the classical transports may be done, we have to go to higher order
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kinetic and macroscoplc equations than dealt with in [s]. it turns

ouu that ox special interest in these equations and the derived

transports are not terms on the typical Burnett level of approxi

mation, but new terms, some of which are found in the two-tempe

rature only, that forrnally belong to the Chapman-Enskog level

of approximation, since they are linear in gradients and fields.

They represent new mechanisms in transport processes not found in

earlier theories.

Because of the different purpose of the present work as com

pared to [3] it is most convenient to make the presentation self

consistent and therefore we briefly outline in section II the under

lying assumptions of the model and deal with the kinetic and macro

scoplc equations used in the study. Section 111 takes up what we

call the lower order equations, l.e. we state properties of

the zeroth, first and second order equations that will put our re

oults into a right perspective. These lower order equations comprise

tne frame of equations used in classical transport theories and ex

tend also into the Burnett approximation. The properties of these -

equations are also essential for setting up the bulk of hlgher (thlrd)

order equations in section IV. The hlgher order kinetic equations

contain parts that extend from the Chapman-Enskog to beyond the

Burnett level of approximation. We extract terms that give rise

to new transports linear in gradients and fields in section v.

il. Assumptions and Basic Equations.

To begin with we briefly sketch the plasma model presented in

[o] and make some further notes relevant for the study we are taking
up in this paper.
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Partacles have masses and and charges e and e• 2

where subscnpt 1 refers to electrons and 2to ions. Denoting the

eifective mean free path and collision frequency for electrons by

'S ' and 1// t 311 e scale for (all) inhomogenities by L , the

plasma has a certain weakness of inhomogenities and fields charac

terized by

e i E^l
£ « 1L kT 1

tQ 1 « 1

wnere E and - denote the macroscopic electric field

en i d electron cyclotron irequency due to the magnetic field B

a Eoltzmann r s constant and T,, the electron temperature. These

assumptions may characterize a state not too far from equilibrium.

In accordance with this we also assume

i.e. the electron and ion temperatures are of the same order of mag

nitude. Then for the electron and ion mean speeds we have

utoxng the parameters e and a introduced above we are able to

parametrize the kinetic equations for the plasma: Let

velocities as seen from points rnoving with the mass velocity c

(see Eq. (s) below). We order velocities in the following manner:

1 2 o
2 m 1c l « i m 2c 2

C Q E, 1
~ (~ ) 2 = 1

c 1 m 2

Sl = % - °o ’ 1 = 1 > 2 >

denote the peculiar velocities of electrons and ions, the
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R C 1

C 2 ac

c s ac 1—o' l

The kinetic equations for dlstribution functions f f (c r» ti s ~—f u 1 f

[3} >i - 2 , assuming weak (two particle) collisions,, then may

be parametrized as follows:

(1)

(2)

Here t is a time variable on time scale t The collision

are given by

e i 1 / c)C oc \

+ £-1 sr“ + ea—o’5F~ +e mT “°\s? + eaVS?)' +

e i df, e 3f Sf. Sc

+ a x + £l x ~Ea 2, : aF^

= f 1 (C 1 .r J t)f I (C'.r,t) +

+ srr fer  >c 2 j (12, (c 1 - fc)

d f2 „ ° f2 , ~ , 5f2 e 2 fp 3os df
ea-2 dr T dr +&am2 - dCg ~ (dt £a-^o'§rfy‘ sc‘“ +

2 e ? p e p ar0 Bc
+ n C V R• —R 4- n —£ n V -p. 2 _ ~ f- n . “O

rn —r\ ' AP ' *’ m 2.Q J— -\ £Co -\ *o/ „ •
m 2 ° °R-2 ni 2 -kp oPp ~2

•°?fe 'M J '<fc - |ro)f2 (C 2,r,t)f2 (c. J r,t)2 c. d/

-“ 4 fe'/"21 J fl2)(-ra-2 , fe; -fe |c^)f i(C,,r,t)f2 (C2 ,r.t)

tensors -C .) , i = 1,2,
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~ dtp .
(1*1) -i - Cc ± -C )x I )o

(ij )
$ (C.-C . )

-i ~J

(3)

Ci-CjP

where cp ±j. are Coulorab interaction potentials with suitable cut

offs. Land au [7], giving the last equality in Eq. (3). y =

kT 1 Att g n 1 e and I L = e^c 2/kT I are the Debye and Landau lengths

j.n.i.s pax ameurization ox Eqs. (i ) and (2) permits the evolution of

various plasma models to be discussed., depending on how s and

cl are relaoed to one another when one solves Eqs. (1 ) and (?)

successxvely. Treating e as a small expansion parameter while

ix is taken as of oraer one we are dose to models in [3] , wherø

electrons and ions have equal temperatures. However, treating a

aloo as an expansion parameter will make a split up of collision

nerms in a successive approximation procedure that will allow for

a description of a two-temperature plasma. In fact_, we shall treat

£ and cl as small and of the same order of magnitude_, i.e.

2 2 .
e*a ~ a etc.e~a , e (i)

This coincides with the ordering of e and a used in [s]. How

ever, there the motlvation for this was qulte differert than the

pieoenu one: In [3] it primarily had to do with the different orde

ring of magnetic force tørms in the kinetic equations. That the

St,ady in [o] and this one are possible using Eq. (4) increases the

relevance of the corresponding model.

i|cre | 2-(c.-c )(c -c )
K ij *7^—TT3 L * I >i =1 > 2

k, . = 2nc 4e 2In
1J 1 J *L
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As in [s] we need various macroscoplc or moment equations

too: Taking appropriate velocity moments of Eqs.(l) and (2) we

get equations for the total density n and for the electron and

ion densities n, and (or corresponding mass densities p ,

p 2), electron- and ion diffusions and (J

and for the electron and ion temperatures T and T 01 2

The moment equations are parametrized according to the parametri

zation of Eqs.(l) and (2). We also need the equation for the mass

(5)

Note that f. here is a function of c. .i —i

c o as in Eq.(p) is the following condltion

A consequence of definlng

(6)

whlch we have parametized too, [p].

in the veloclty moment equations the heat flux vectors q

and q Q and kinetic pressure tensors P and P 0 show up

n. C ± =y'dCi C 1 f(CiJ r,t) , 1 = 1,2

Ini kTi = j' dd l HCl fl (^L>£'t) ' 1=1,2

velocitv c
~° 2

= p X Id~
i= 1

an^m.G, -f = 0

<H = /dC. kc^c; f [c ,r,t) ,1 = 1 ,2L . i -i- -L _L jl J_ X

l ± = /dC imi C i C i f 1 (C i ,r,t) , i - 1,2
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Together with , i ],2. , the evaluation of the quantities

Q_i j 2 j is the Principal aim with the present study.

This involves the kinetic and macroscopic equations mentionsd above.

To prepare these we shall uss the multiple-time-scale me

thod. This method was also applied in [s], In accordance with

Eq.(3) we make expansions such as

where uhe superScripts on the functions denote the order of aonroxi

mation. The macroscopic quantities are expanded accordingly. Also

the time derivati ve is expanded

where t øi i p etc. are time variables on longer and longer time

scales t q -t , t = T Q/e ~ r Q/a }T p " ~ 0/£*cc ~ t q/cl*~ etc

Besides these expansions. which are directly connected to the mul-

tiple-time-scale method,, we also expand the collision tensor
(12)/

J (C 1 - aC^) of Eqs.(l) and (2) in a Taylor series around ,

assuming the series is distributionally convergent. This will con

tribute in the splitting up of the collision terms of Eqs.(l) and

iv 2) necessary for a two-temperature description. Ali these expansions

are substituted into the kinetic- and moment equations which then split

up into sets of zeroth-, first-, second-order equations etc. These

sets are successively solved according to the prosedure of the mul-

tiple-time-scale method. in [s] the

tions to zeroth- and first orders in

t<j= 00 (for f? ,i = 1,2 , and f‘ )

tic equation in the same time limits

and the second order ion kine

(for f Q ) as well as moment

equations to zeroth-, first- and second orders were obtalned. Solving

fi= f® + ef’ + e 2ff + •• , i = 1,2

_C* d , å 2 d
dt bt o ' 6 e 2 +

electron and ion kinetic equa

the llmits t = co and
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1 1
the equatlons for and and then taking appropriate velo

city moments give (classical) transports corresponding to what one

obtains in [l] and [2]. These equatlons for f 1 and , and cor

responding equatlons in other theories (or expresslons for the tran

sports),, can be solved only approximatively by expansions in cer

tain polynomials. Refinements in this respect have been steadily

increasing. For our model with e~ a (i.e. fairly strong inho

mogenities and electric fields) one soon reaches the polnt where

refinements in the Solutions of fj and are smaller than the

corrections due to higher order distributions , , etc.

Thus to obtain a better description we ought to obtain the equatlons

of these higher order distribution functions and subsequently derive

the transport corrections. That new mechanisms in the transport

theory for a. two-temperature plasma thereby are revealed too, make

the efforts even more worthwhile.

111. Equatlons to Zeroth- First- and Second Orders.

Consider first the relaxations of f® and f°

From the zeroth order electron kinetic equation

it follows that

af? e. sf? r
§f: +it C, x B • §c7 = Fp ll l )f°(G> ) j + d [f°(c )Ol—i L J L

where and D 1 are collision operators given from

PP . =—— 2 .. j pjQ! - Pf) ‘ f - \ i 1 P
11 m 2 ac. J 2 -i ] Uc, dC! ) > 1 “ I'21 ' 2

i N -1-

D 1 = m 2 SC 1 ’(£ (12) (Ci) • sc;
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(7)

(8)

i.e., tends towards a local, isotropic Maxwellian on the t1 ' o

time scale. (The subscript "M" for* quantities means these quan

tities in the limit t =t» , and later on in the limit t =ooo ' i

also). The ion kinetic equation to zerofch onder neduces to

gf°
0

so that f° is stationary on the t time scale. However, theo

finst orden ion kinetic equation in the limit t = oo neduces to

which, togethen with the zenoth onder condition Sq.(6)

n o m =

We note that the nelaxation of f? and towards the (local)la

equilibra takes place on different time scales as well as in dif

ferert ways: While the electrons tend ro an isotropic Maxwellian

colliding among themselves (through PF' ) and with ions "at rest"t I

(through ) the ions go to a corresponding equilibrium colliding

only among themselves given that they have a zero mean drift rela

tive to c_° . This difference in collision operators in electron

and ion kinetic equations will be observed over and over again in

/ ni * v 1 f' / mC . \
f-> =n A f ) exp (- as t-> oo

1 1M ' WkT °) \ 2KP? ) 01 1

= FP 22 [4^ 2 ) f 2^)_

has the property to Maxwellize f^

f m o -5/2 X V

f 2 -> fOM- n o ( "“77 ) exp { - ------ ) as t„ 00
2 2M 2 V J ' V 2kT° / 1
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what follov/s. Thus the firsfc order electron kinetic equation can

be shown (cf. Appendix Bof [p] ) to have the property that f | on
the t time scale tende towards a solution ofo

(9)

whils the second order lon kinetic equation in the limits t

and t, = oo reduces to the following equation for f ,1. :i - 2M

00O

2 o
FP I" f 0 fc ) f 1 (C v> f ° f C oI -f°p . / iLJi. „ 5N\ 1

22l 2M •—2 '2M v —2 ' 1 2M l -2' 12M 1~2l~2 ~ 1 2M \mo 27 ~o sf~ +
2ki 2 T 2

, ii_.o M , IfK f ,' 12 ). , o A (10)
‘ , To Um —2—2 • (dr Tm k o„to J Q-i *

'- J- p a jl Ij. 2

whlch further reduces to

(11)

since the product between the t race less tensor C d = C~CU  - C2 I~2—2 —2—2 3 2 ~
f*p ) Q

and the tensor fdC, $' ~ 7 (Ch )f M • which is proportional to the unit“ I ~ i Iri

tensor X , vanishes identically. Eqs. (9) and (il) are fundamental

in a transport - kinetic theory: From them classical transports and

transport coefficients can be derived. For later reference we also

note sorne properties of Eqs. (9) and (1 1): The Solutions of the asso

ciated homogeneous equations to Eqs.(9) and (11) are respectlvely

A

t?p i f'° (r*, 's f ‘ fr s ) 4. f' (r \f ° (n i) j + n 1 r v-n 1M
111 1M —lyl 1M 1 ; ‘lM—l/xlM 1 ; I + D 1 1 1M m V - Xc~~ ~

l j _i 1 u—l

_ r/m C“ R\ e / kT° . Nn

=  2j ar " (E- +£ox B - ¥7" tl ln p l)]' £ l1 i i

Fp 22[f^(C2 + f.2M (C 2 )f°,(C' ) |

=f0 Vm2C 2 . s'\ . 1 5T° m 2 o„ ,
2 / ~~2 T° d ~ kT d ~~2~2





-la

da)

and

(13)

where a 1 , 7., a p , p P > y 2 are and d p ~ Independent, arbi

trary pararasters. Necessary conditions for exlstence of Solutions

of Eqs.(9) and (il) are that the source terms on the right hand

sides of Eqs. (9) and (1 1), which we for shorfchand denote by

and h p respectively, are orthogonal to the Solutions of the asso

ciated homogeneous equations, i.e.

(U)

(15)

That these requirements are fulfilled is quite easy to show. The

solution of Eq.(9) is then a sum of Sq.(l2) and the solution set up

by the source terms of Eq.(9), with a corresponding construction

for the solution of Eq. (11),[3]« It is convenlent in these Solutions

to choose the pararneters a , 7„ * a 0 and so that

A 1
yq vqli. i 1

l C,

(16)

Due to these choices and to similar choices to higher ordens, we

shall identify nj (p°), and T? , i = 1,2 by n. (p_. ) and T 1 ,

i - 1,2 , thus also simplifying the notation a bit. The parameter

has to be determined so that the condition Eq. (6) to first order

in the limits t = co and t . = » is fulfilled:o 1

£2M'a 2 P 2* ra 2—2 sm2^2^

JdC 1 (a, +7, ém I C^)h 1 = 0

r / p

J ''a 2 ° "Vp im ~

m I rp 1 -- n
1 1 x 2 u
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(17)

08)

(19)

(20)

(21 )

(22)

up.

For a further raathematical study of Sqs.(9) and (11) we refer to

Leversen and Naze Tjøtta, [B],

The densities, mass transport and temperatures showing up

in Eqs.(9) and (11) are all evaluated In the llmits t = » and

t and their flrst approxirnation variations on the T o ~time1 c.

scale are given from the macroscopic equations to second order in

the t =co and t =, co limlts:o 1

 x o >,O
/®-0 o \ dP o

o i o™ — + c u *t —-- = - e— + p c x B -f n e C,*„ x r> + p E
 'pdtg —o dr J dr K e—o i l—ira p e™

n 2 m 2-2 M = -

p 1 , a o ® (- n n
+ §f-ipiV T a? (p i~i j ~ 02 ~

O) =
ht 0 u 2~-o'

A rp Nrn
3 n \ Å ( 1 „° . 1\ _ 2.1 c'V •(n c) 1 +ne C 1 *S +

2 n l \at 2 T “O dr ) ~ 2“*l dr ln 1~1 } U n ri-1M -

+ n l e x ~ ' £>r * P IM ~ P I csr ‘

n,n /m. 0/2 T-T r f i ?'• , . / m i \

' ) '”572 j $" " ( V : J sxp 2kT~ j

3 ~y st 2 o 5t 2 \ a. .o +
2 n 2 k \ St 2 : -oar J p 2 3r -o

n n  m \)/2 T l -T f /, P \ /m C. v
+ - -W| /dC, * ( : X exp --U- )m p \2n-k / m 5/2 J -1 ~ ~i ~ V 2*vx J

±l

Here scalar pres sure s p =p. +P 2 * P 2 = n 9 1> 2 , show
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and p e -ne + 2 e 2 is the space charge density. The integral

terms of Eqs.(2l) and (22) take care of energy transfer between
(i o}

electrons and ions due to collision. Us Ing for $ v "' the Landau

expression Sq.(3) these terms take the familiar form as derived in

[7] for a homogeneous gas. We note that Eqs.(l9) and (22) have

been used already to derive the form Eq.(lO), and all equatlons

(18) —(22) will be used later when derlving higher order kinetic

equatlons.

We complete the equatlons to second order by including the

electron kinetic equation to this order in the limits t =oo ando

(23)

The operator on the left hand side of 5q.(23) is the same as

in Eq.(9) and it is straight forward to show that the ortho

gonality condition Eq.(l4) is fulfilled with the new source

terms of Eq. (23). Concerning these source terms we note

2
t =co . The equation (for ) can be transformed into

pj— _ 7 0 p

FP n[ f ? M (^) f + f iM ( -i ] I + 'ac- =J L -J 1 1

_ f o !!i_ r o r . f 0 / m i c i 5A 1 d / -i \
1M kT I -1-r dr 1 1M\2M? 1 2y n 3r ( v 1 -1M

m c 2

+ f IM 'vJEfT ' 1 ) p~ lj n i e i= + n i e !°o x 5 )’IIM ”5r ’ SiMJ

fO f m IUI1 U 1 _ \ 1 n i n 2 f "‘A 372 T 1 T 2 , „ Sf 1M
1M Vs®! ' 7 P } l>!y' “372 + +1

6 1 „ 01 1 M 0 1 o 1 m 6 1 o 1
+ mT - * 5c7“ + -o x - * §cT' " krT f IM ~oM x i ‘I —i I —1 1

-2-12 l£l2 / -X !!l._ O\ f o r.l ,'r Ifl ro. ',l
m 1 ( T 1 { v kT 1 Cj 1M 1P 1 11 L X Im'~l - IM'-1 y
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the appearence of the Dirac delta function 6 (Ch ) . We also no-
1

tice f^ fvl and derivations of it among the source terms. This will
2

give rise to typical Burnett approxirnation terms in f , but we

shall not pay speclal attention to these later. More important
2

are source terms that will gi ve contribution to f,,, on the Chap

man-Enskog level of approxirnation, for instance the first ons on

the right hand side of Eq. [27)). Of special interest in our context

is the observation of the source terms with the factor T. -- .l 2

Terms like that in Eq.(10) we showed vanlshed identically. Not so
o

in Eq.(23). However, though these terms will contribute to ,
2

they have no effect on the transports derivsd from f , as later

will be shown.

The equations up to second order discussed up to now, which

we may call the lower order equations, constitute a frame of a

classical kinetic-transport theory of a two-component, two-tempe

rature plasma. From Sqs.(9)j (1 1 ) and. (23) classical transports,

linear in gradients and fields, can be derlved. One raight think

that higher order equations would contribute nothing but com

plicated Burnett corrections to the classical transports,as Eq.(23}

may already indicate. However, the nature of the two-temperature

stats is such as to hide more simple corrections among these higher

order equations. They will subsequently be revsaled. Also, gene

rally speaking, the inclusion of the third order equations rnakes

the whole theory for this model more complete.

IV. Third order equations.

The first thing we need is the third order macroscopic equa-
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tions in the limits t = « and 1 1 =oo . They can be shown to
reduce to

(24)

(25)

å— .p 1 -fdr ~2M

(25)

(27)

(28)

Observe the derivativss on the scale: These equations are

correcting equations to the corresponding second order equations

(18) - (22 ), to which they eventually should be added. One striking

feature worth noticing is the absence of any electron - ion energy

transfer term in Eqs.(27) and (28). This was unforseen and streng

thens our confidence in the energy exchange terms of the second

order equations (21) and (22) as an accurate description of that

process.

at-, ' ‘ + ar' l/p 2^oM ; “ 0J ~

c)c° c lm 1 \f —oM , —o /*. +. \ , „ —oM . —o \

+ st^ ( W* ’ } + -o’sr + —oM * §F~ J

+ Pø—oM X X B

 z /  1 7 A _ O _ Q

2 n l \ St^ ( W ’' ' + -oW 5f7 = 2 kT i sr‘' n +n 1 e 1 — TM " +

+n l 6 l 1M ' x + n 1 0 1 1M" oM x 'Slim P 1 dr * -oM

f N
2 n 2 + §r" J :

_ _ å__ . Q 1 _ p å_. c 1 . d-0Br 22M p 2 Sr ~2M 'dr
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Turning now to the third order ion kinetic equation in the llmits

t =oo and t =co we are left with the following form after vao 1

rious transformations which include use of both the second and

third order sets of raacroscopic equations:

(29)

The operator on the left hand side is the same as in Eq.(11 ), and

the orthogonality condition Eq. (15) with the source term from

Eq.(29) can be seen to be fulfilled. When solving Eq.(29 ) we

have to get the condition Eq.(6) to second order fulfilled, i.e.

(30)

which is possible since we have a parameter p 2 as in Eq.(l 3)
p

at our disposal in the solution of  
4 . . .0 .j_

Nearly every source term contains f or derivaoions of it.

One could therefore be tempted to think that these source terms

would give rise to Burnett terms only in • However, there

are important exceptions, for instance the last two terms on the
1 o *1

right hand side, and also the combination + 2_ o •df 2y;/dr

111

™ [fO fr )r 2 fc ) +f 2 f- )r° I C 2 = +c° • + C • +
FP 22 x 2M—2 f 2M —2 ' 2M v ~2 ' 2M'-2 7 J dt 2 ‘-o br -2 dr

. 1 Sp 2 Sf 2M e 2 „ w 3. . i f M - !£k r • + r° \.-JU™A- 2) v
+ §F~ ‘ §CT “ 2 5 3 °2 - 2 ‘ 2M L 3P2V 21cT 2 2 /

Zd_ . 1 pl 1 d .pl .Q j r op .
x \sr -2M + ~2M 'dr J p 2 ~2M -2 4 kT 2 -2-2 *Br

- . ~j 4 k .qH /• m \2 *\ t —  ]

FP 22l_ f 2M ( -2^ f f 2M

n i / m i \ 3/2 s.r n f i i
Vaf kT I ) 2 l-2*2MJ

n i m 1—1M + R 2 m 2—lm = -
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contalns parts which we later shall study particularly

We end this section giving the third order electron kinetic

equation in the limits t =oo and t =oo , thereby complsting

the bulk of equations on the third level of approximation:

Hl C 2 , r
+— f —i—L _A f° 2. å__. Fn C L ' W n C" +c°xß ) +
+ P t V v 3kT 1 J 1M l 2 1 dr 1 1 1-1 M v - -o - '

d o
_ rn h r* ! A f

, n „ pl 1 vR \ a_ 2"‘j_ „o Op , d UM p 1M ,
' l e l-1M Um X -- ; år SLimJ + kT 1 'dr -1 'år f

2 1
1 • ct df h m p> p df. M

-f (E + c x B }• f? r „ c „ xB*C + c'x B • -7 +m . v —o ' dG, kT, \h —om 1 nu —oM dC,1 —ll 1 i

(31 )

We observe Eq.(3l) is of the same form as Eqs.(9) and (23) concerning

r p e

FP n[ f iM^,)^ M + )f° M (c-)] + =

= +c ° . c . __L .( n c 2 )f° +
dt p ~o hr 1 —1 hr n, hr n l~lM' 1M +

r~ — •\~ + n.e,c!„xß +p (S + c°x B) I
1M — 1 [ dr 1 i-1 i-i H e ~ —o — J \

t?p M fn ( r *'i • fr fr'- )I - 1 2 a 2 [ _l_ n
1 1}_ X IM*-r ; r 1M‘ V -1 IM—l • J m 1 m 2 [_ Q 3 -1

e. (c r t ..) + _L XL. C " + gwr Tg n l fO -L c -c 1 -
’ C^ C 1 -1J  m 2 kT 1 *lM c 3--I k lM 2 2 dC^C,1 1 ! c.

(1 p )
r dn> / C, U 1 c)?? \p ri kT„- fn \. fr r> * . . \-l - ~Xi 4_ __S é o .AP '_i < '“'os ) n AP il ‘ 9 AP

L °-1 1 V- 1 °l dC VJ 2mfm o d ~l1 2

po' 12 ' . / c c åa(n . d fq fp .. w . _n_X +
ac • ac ' c åa

i 2, ( 1 2 )
1 5 pl . ~ (n \ nf°

T 2ra I m 2 kT 1 dC \~2M ' dC ' -l ' '
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the operator on the left hand side. Also the orthogonality con

dition Eq.(l4) is fulfilled with h 1 denoting the right hand side

of Sa. (31). In these source terms the function appearing stems

from the solution of Eq.(9) which it is posslble to wrlte in the

symbolic form
r» 1 _ rv, fr* -n -f- N. n

x 1 m “ ; -i

when the parameters « 1 and 7 1 have been set equal to zero.

The 3/dC 1 - and - operators in the last terms on the

right hand side are operators in the distributional sence. As ex

pected the complexlty of the source terms has grown substantially,

however, there are exceptions also here: We mention the combination

of the two first terms on the right hand side that contains parts

similar to the ones we get from Eq.(29)- We also make a note here

concerning the last terms on the right hand side, all of which con

tain derivatives of : None of these are Burnett terms andNone of these are Burnett terms and

they contribute to f^ M with electron-ion collislonal effects.

Now this effect is taken account of also in the D 1 - operator on

the left hand side. In this term, however, the ions are consldered

at rest. This is not so for all the concerned terms on the right

hand side, for instance the last one. Terms like that describe

ion therraal effects in collision with electrons for the case

when the ions have a different temperature than the electrons.

V. Some Solutions.

The procedure for solving the electron and ion kinetic equa

tions, Eqs.(9), (11) and (23) and Eqs.(29) and (31) may be as fol

lows: Expressing the velocity variable in spherical coordinates, the
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unknown in each equation is expanded in a series of spherical har

monics Y?(ø,cp) with coeffisients that are functions of ths par

ticle speed and macroscoplc quantitles. The derived equations for

these coeffisients are subsequently solved by further expansions.

Since we here primarily are interested in pointing out "the

effects and mechanisms that are new v;e postpone exact numerical

calculations and substitute for the collision operators on the

left hand sides of the electron kinetic equations the operator

(32

and for the operators on the left hand sides of the ion kinetic

equations the operator - v o (i0 > where the collision frequency

v 2 (i) is given by

or

In Eq. (32) both the electron - electron and electron - ion collison

frequencies (with ions at rest) are included. b. .(f) > i,j = fl,a J

anisotropy (in terras of spherical harmonics). Though independent

of velocities each part of the collision frequencies have correct

v.(i) where v (i ) > a collisions frequency , is given by

K u h u (&) n 1 K l2 b n 2
V I U) i, r j 2 i, ,3/2^572

. K 22 b 22^ S) n 2
vpl £j - , x /o

mt(3k) ?/2 T 2

are numbers that may change with £ ( = 0.1,2,***) the order of

dependencies on densities and temperatures.
1

Qualitative expressions for the distribution functions f^ ¥

and thus are :
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(34-)

„1 o [ 1 / m 2 C 2 5\ 1 aT 2 . „ 1 m 2 „o r 2%
1 2M " 1 2M 1 v 2 (1 ) \ v 2kT p 2/S 2 år -2 gT2j kTg -2-2 d£

(35)

The similarity with more exact Solutions is striking. Thsy ful

fill Eq.(l6), and Eq.(35/ fulfills also the condition Eq. (17)*

b 29 (2) ,
Choosing the numbers b QO (l) and b 0 2(2) so that = k

and qv 0 (2) = . where p. is a first approximation to the

coefficient of viscosity ([q] for the case with the Boltzrnann

collision operator}, Eq. {3s} is indsed equal to a first appro

ximation to f’, T from Eq. (llj. Taking appropriate velocltyci

moments classical transports emerge. Of these we note for later

reference the ion heat transport and kinetic pressure tensor

1
(36)Qo^/f —din

(37 )

The superscript T denotes transpose.

Concerning the solution of Eq.(23) we only discuss the

effect of source terms with the factor TyT^ Since these source

terms are of zeroth order of anisotropy we simply get as their

1

,1 „o r i „ , f. n i r x3 Vi
X IM - - IMI_77rTT -lir o, o 'v~ll (1)3 -1 -)\I ' l

r/ rnG7 rs , oT, e. / _ kT M
! ( 1 1 _ 5\ J L ! f V + c° y B -L In n \

l\2kT 2/T dr kT V~ -o-- e dr P 1)

5 (3k) 3/2 k 2 ..... 5/2
2 i. 2 c)r

m 2 /c 22 b 22^ 1

P 1 = te*)'' km | m 5/2 ( Y 2/V . <A t l
~2M /c 22 b 2? {2) x 2 [_9r /dr y 3 l v dr -<Y ~J
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2
qualitative contribution to

(38)

Taking appropriate velocity moments of these terms no contribu
-2 2 2

tlons to C_ 1M , q IM or ? 1M are observed. This is physically

reasonable since the terms of Eq.(3B) contain no gradients or

forces that we consider necessary for transports to be set up. An

exact treatment of Eq.(23) would not change this: The concerned

terms would still be of zeroth order of anisotropy and obviously
2 2

contribute nothing to , and the of f-diagonal terms of
2 2

P . The diagonal terms of always vanish due to our choice
2 2

of the parameters and 7* so that = 0 and - 0 .

Thus the kinetic equations up to and including the second order

in our perturbation procedure only give rise to classical tran

sport 3 if we neglect the Barnett corrections introduced by

Eq.(23). In particular the electron-ion temperature difference

has no effect on the transports to this order of approximation.

In the third order kinetic equations, however, necessary dri

ving mechanisms for transports are present in connection with the

factor T. - : An interesting thing about these transports is

that they are linear in gradients and fields. We shall llmit the

further discussion mainly to Eq.(29) and extract all source terms

giving rise to linear transports which are not found in

earlier theoriss. Using from 5q.(35) in the source terms

of Eq.(29) we get an exact evaluation of all these to first order

2 1 „o , f / m 1 C 1 A 1 k / m 1 N,- 5 ' 7 " 2 n i n 2 T 1 T 2
1 1M ~ " MM W 5kT 1 7p, tn l ~ V'27Tk y m 2 T 3/2 ~
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(choosing b 22 (1) and b p p(2) as at)ove )- Of these terms we
1 o 1

single out the part of -f c a • dfpM/or where temperature

difference terms show up, and the two last terms on the right hand
2

side. We qualitatively evaluate their contrlbution to fp M and

add to this the solution of the associated homogeneous equatlon

to Eq.(29)* Thus we obtain

(39)

1 „o 12n I,k m l V,/2 1 I /m 2c 2 ?V,- m 2C 2\ , „"L 5T 2

v 2p) : 2M 3m 1 m 2 T 2g2kT2 2/2 kT 2 T 4J-2 ‘ar

1 .0 / ra l \5/2 m 2 fr. m2°2 Vo P .
v 2 2 -2M Stilig ' VSrrkT, )kl/ (g kE/ g-2-2 -ar

P
This expression for f“M consists of 8 main parts. The source

terms from which the last seven terms stem are simply these seven
2 , 2/

terms with the factors 1/Vp(l) and l/vp(2) replaced by

- l/v 2 0) and -1/vg (2 ). In spite of this simplif ication the

, 1_ f 0 4l< 1 2n 1 (m 1 >f /m 2 V/.. _ m gC 2 \ P oc f-o

Vg(2) 2'A 3m2 V kT 2/ V T 2 / “2-2 c)£

1
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exprsssion Eq. (39) contains the essential information concerning

the transports which we are going to evaluate by taking appropri

ate moments. Thls is so because the above mentioned source terms

can be shown to be orthogonal to C Q and C 2 and then, comparing

v/ith the method of [3] in connectlon with the "third" approximatlon

to derive transports directly from the kinetic equatlon* we find

we will end up with the same results to firsfc order using slther

method. Choosing the parameters a 2 and y 2 botn equal to zero
2 2

in Sq. (39) give n 2 ==o . To fulfil the condition Eq. (30)

we must choose

where is obtained from by taking the appropriate velo

city moment. Thus C 2M from Eq. (39) is given by

in accordance with Eq.(3o).

With a 2 >7 2 and _0 2 evaluated as above we turn to the

ion heat transports and pressure tensors that may be derlved from

Eq*(39)' To q 2M the flrst, second, third and seventh terms con

tribute, while the flfth, though of flrst order of anlsotropy, does

not. In this order we get

4
2

P2M
2

P 2 i

where

5 p lic 12 P 2 o„ -1Kcr
(40)

p 1 _ ]
2-2 = —lM

~2 m 1 —i
n 2-2M = ~ n 1

I=l

321 = i n 2^ kT 2 ) 2 P 2 =





25

(41)

(42)

(43)

and

(44)

where

In Eqs.(42) and (43) (dT 2 /dt 2 ) c denotes the change of T 2 per

unit time due to ion-electron collisionsj l.e.

(45)

o . ,2
q 2 is the ion heat flux corresponding to the diffusion

above. and q 2 may be of more interest: Originating from—22 _2p

the same group of source terms they can be added and written more

(46)

2 2
5.22 = K 22 §t

whsre

k 2 _ (5)2 (3k )\ S fe, = (5)2 8< ~>( 5 -Oj: jy||VpV _ T Vl
22 2 b 2 2 (i). 2 2 n 2VSt 2 ;c 2 3b| 2 (l) K | 2 2 /t3- /2

2 = 5(3k) 3 k 2 1 = 5 BK l2^ K^k “A-g d_f T 1 T 2l

-23 " 2 b| 2 (1)K 22 n 2 - 2 jb 2 2 (i )« 22 ra 2 n 2 *Å. 1 T^J

2 2
3:24 = K 24

2 5 4k I2^ J/ /V\ 3/ t 5/2

V 24 =2 b| (i)^ 2 n 2 w 2

/ 5T 2\ B *l2/ m A* T 1 - T 2

\ot 7 Jc ~ 3m 2 k \>nk) n 1 T 3/2~

compactly:

2 2 5 (3k)\ 2 ' r 2 / ' S_ r 5/2/ 5T 2\ 1 =

a 22  -23 - 2 b | ?(1 ),2 2 5r 2

s &j T Æf /2 (I . T j'i
" 2 3 b| 2 (i d a ’ 2 a,/' 1 2 J
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Thus a heat transport is set up in the direction of thegradient
r~ / o

of the product of and (6T O /6t Q ) . Depending on the sid CL C~ Ks Depending on the si-

tuation this temperature-difference-driven heat transport may

either act to weaken or strsngthen the classical transport Eq.(36)

by a certain amount. We may express this mechanism as follows: "A

temperature-difference-driven heat transport is set up opposlng

changes in the classical transport (Eq.(56))." Thus, for instance
>j

when (6Tp/6t 2 ) c is uniform and positive, say, q 2 y from Eq.(36)
will tend to increase aftsr a short time since the factor

q/o
increases because of electron to ion energy transfer. The

heat transport Eq. (46) is "induced" to oppose this change. Unlike
-00 2

q| p + q 2 - ;. , the heat transport q 24 is non-vanishing also for a
2

one temperature plasma. For a one temperature plasma q, 24 shows

the classical temperature dependency. However, it is always di
1

rected opposite to q OM and is a correction to this because of
2

the electrons. We note that q 24 comes from a part of the ion

electron collision term on the right hand side of Eq.(29)- In a

one-temperature plasma theory where the full ion-ion and ion-elec

tron collision terms appear on the left hand side of equations liks
o

Eq. {29), the quantity corresponding to qf, may be inherent in what
1 , .2

corrssponds to q o y , the classical transport. Thus q P4 may be

looked upon as an extension of a classical, one-temperature plasma

effect into the two-temperature regime.

Turning to the kinetic pressure tensor we get contributions

from the fourth and eigth terms of Eq. (39).* while the contribut ion

from the sixth term vanishes. In this order we have
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2

p 2
~2M p 2-21

(47)

where

and

(48)

where

Gommenting on Pjy we note that when >T I , i.e. (dT^/dt p ) c < 0

p 2 acts to enforce the classical pressure P^ M given by Eq. (37);

however, when T 0 <T, we have the opposlte effect. We rnay ex

press this mechanism also as an “induction" opposing changes In

the corrssponding classical expresslon given by Eq.(37) because
2

of electron-ion energy transfer. The pressure component P 2? ,on
2

the ot her hand, corrssponding to q^ 4 above. comes from a part ot the

ion-electron collision term on the right side of Eq.(29); it always

reduces the classical result given by Eq. (37.) and shows the classi

cal temperature dependency when Tn (

be looked upon as an extension into

an effect that may be inherent in a

sport theory.

= T, ;j . Like q , Pp ? may

the two-temperature regime of

one-temperature classical tran-

Concerning the solution of the third order electron kinetic

equation we note that the temperature differencs between electrons

and ions appears on the right hand side of Eq.(3l) only in the four

terms 3f‘ rv /3t 0 + • 3f] M /3r . C_ 1M ' c3f' IM /or . e (E + c^xß).

It is easily

L j
i= 1

's O >. O rn

p 2 -- v 2 . ( /3 io v_ 2 r^- c ° N « ii
~21 2l| ' \dr J 3 \dr ~o j~J

2 5 ® K l2^ f m IV n 1 q-, "2

V 2l =- 2 3b 2 2 ( 2k 2 2 V2-V n 2 r * 2 ; Tf 2

p 2 _ ,2 \K .EÉ f . £ A_, c o
~22 ‘ v 22[_dr V.S2I j 3 ~° y ~

2 8* 12 (3k) 5 f m lV | n,
V 22 = 3b2 2 (2)4V2W n 2 W 12

and -FP n j f^(C^f(C| ) + )fj H (C} )L J
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shown that all source terms where the temperature difference

appears are of odd order of anistropy, and therefore, they may

contribute to and , not to . The temperature

difference-driven heat transports whlch are due to the first of

one above-written source terms, we expect contain at least one

part corresponding to the temperature difference driven lon heat

transport studied in the foregoing secfcion. A closer examination

shows this to be true giving an electron heat transport of the same

form as Eq.(46). However, for the electrons various new tempera

ture difference driven terms show up to this order of approxima

tion. both for diffusion and heat transport.

A.s a final note it is interesting to re sume the relative

strengths of influence the temperature difference between elsc

trons and ions has on the various electron and ion transports.

Let

where Q shall represent electron and ion dlffusions, heat flux

vectors and kinetic pressure tensorsj and Q° the classical ex~

prsssion in each case. For electron diffusion the temperature

difference appears for the first time in Q 2 , and from the condl

t-on nq. (6) to fourth order lt follows that the corresponding ion

dii fusion shows up in Q for the first time. Note that a diffu-
r\d ,

sion q, tor ions is two orders oi magnitude smaller than a diffu-

heat transport, temperature difference terms for the first time
2

appear in 0. , while such terms for the ion heat transport already

o 1 2 2
Q, = Q -f e Q -f e Q" +

S-ion Q lor electrons in this theory. Turning to the elsctron





29

1 2 1
appear in Q . Here the electron n Q and the ion U Q "

are of the same order of magnitude. For the klnetic pressure

tensors temperature difference terms for the electrons emerge

from the fourth order klnetic equation and therefore appear for
2

the first time in Q . while for the ions they show up already
1 2

in Q . Here the electron !! Q is one order of magnitude

smal ler than the ion U Q 11 .
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