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Abstract: Successful geological sequestration of carbon depends strongly on reservoir seal
integrity and storage capacity, including CO2 injection efficiency. Formation of solid hydrates
in the near-wellbore area during CO2 injection can cause permeability impairment and, eventually,
injectivity loss. In this study, flow remediation in hydrate-plugged sandstone was assessed as
function of hydrate morphology and saturation. CO2 and CH4 hydrates formed consistently at
elevated pressures and low temperatures, reflecting gas-invaded zones containing residual brine near
the injection well. Flow remediation by methanol injection benefited from miscibility with water;
the methanol solution contacted and dissociated CO2 hydrates via liquid water channels. Injection
of N2 gas did not result in flow remediation of non-porous CO2 and CH4 hydrates, likely due to
insufficient gas permeability. In contrast, N2 as a thermodynamic inhibitor dissociated porous CH4

hydrates at lower hydrate saturations (<0.48 frac.). Core-scale thermal stimulation proved to be
the most efficient remediation method for near-zero permeability conditions. However, once thermal
stimulation ended and pure CO2 injection recommenced at hydrate-forming conditions, secondary
hydrate formation occurred aggressively due to the memory effect. Field-specific remediation
methods must be included in the well design to avoid key operational challenges during carbon
injection and storage.
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1. Introduction

Carbon capture and storage (CCS) can contribute as a catalysator in the energy transition toward
low-emission societies and reduced global warming. Captured CO2 is proposed injected into depleted
hydrocarbon reservoirs and saline aquifers for safe and permanent storage [1]. A high CO2 injection
rate is required to fully utilize the storage capacity and minimize project costs [2]. CO2 injectivity
can be compromised by salt and mineral precipitation [3–5], formation of biofilms [6], and formation
of gas hydrates under favorable thermodynamic conditions [7,8]. This study highlights unwanted
hydrate formation in sediments near the wellbore during subsurface CO2 injection. Determining under
which conditions the injectivity of a CO2 well is impaired due to hydrate formation can lower the cost
and risk barriers associated with carbon geo-sequestration.

Gas hydrates consist of hydrogen-bonded water molecules encaging guest molecules, such as
CO2 or CH4, and form at moderate pressures and low temperatures. Formation of gas hydrates in
porous media contributes to increased flow resistance and local blockage [9,10], which in turn leads
to loss of injectivity near injection wells [11,12]. The degree of permeability reduction depends on
the pore-level distribution of gas hydrates [13].
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There can be significant differences in temperatures between flowing CO2 in the injection well
and the local geothermal temperature [14], possibly up to 50 ◦C difference [15]. Sudden changes in
CO2 injection rates affect the pressure in the near-well area almost instantaneously [16], and can agitate
and accelerate hydrate nucleation under favorable thermodynamic conditions [17]. Large pressure
drops (e.g., across a choke) can cause critical temperature reductions of the expanding CO2 in terms of
hydrate nucleation or dry ice formation. Local hydrate stable conditions can thus derive from cooling
effects (e.g., Joule–Thomson) at depths normally outside the gas hydrate stability zone (GHSZ) [8,18–20].
CO2 injection and storage in cold regions (e.g., Barents Sea) underlines the importance of CO2 hydrate
formation and dissociation kinetics in sediments.

Anthropogenic CO2 injected into geological formations are likely to contain impurities, such as
CH4/N2/amine residues [5,16,21], depending on the carbon capture technology applied. Impurities can
alter thermodynamic properties and phase equilibria of the relevant fluids. Numerical simulations
showed an extension of the GHSZ by almost 2 ◦C at 70 bar pore pressure if the CO2 contained 5 mol%
CH4 [10]. CO2 conditioning, e.g., by removing CH4 residues from the CO2 before injection and storage,
can therefore lower the risk of subsurface hydrate formation. Also, dehydrating the CO2 (<50 ppm
H2O) in the interface between CO2 capture and transportation can eliminate the risk of hydrate
formation and corrosion in pipelines, ships, and temporary surface storage containers [22]. However,
in the subsurface near the injection well, flowing CO2 is likely to be contacted by capillary backflow
of formation water [3], facilitating availability of both guest and host (water) molecules required for
hydrate formation.

Injection of anthropogenic CO2 into existing gas hydrate reservoirs is a highly relevant method for
solid carbon storage [23]. Here, binary gas injection can be a feasible injection strategy for CH4–CO2

exchange [24] and associated natural gas production. This has been demonstrated in a field test in
Alaska, US, where unwanted reservoir fractures were avoided by mixing N2 in the CO2 injection
column to reduce fluid weight [25]. In addition, initial injectivity reduction due to near-well hydrate
formation was partially restored [26]. However, the high N2 fraction (77 mol%) in the injection stream
limited the overall volume of CO2 stored. Other potential hydrate remediation methods are controlling
the CO2 temperature by heating the CO2/wellbore [27]. Still, one major concern from localized heating
is generation of system over-pressurization [28].

Thermodynamic inhibitors, such as methanol (MeOH) or ethylene glycol [29–31] and N2 [28,32],
are commonly used to dissociate gas hydrates by altering the hydrate phase equilibrium
and destabilizing the hydrate structure at prevalent conditions. For example, N2 purge has been reported
to successfully dissociate porous CH4 hydrates via growing channels in flow lines [28]. However, most
hydrate dissociation studies have focused on CH4 hydrate, as a means to produce natural gas resources
stored as solid hydrates, or on hydrate avoidance in gas/oil pipelines, e.g., by adding low dosage
hydrate inhibitors (LDHIs) in the stream [33]. While thermodynamic inhibitors shift the equilibrium of
hydrate formation, LDHIs interfere and modify the hydrate crystal generation mechanisms. Unwanted
CO2 hydrate formation related to carbon geo-sequestration has not been thoroughly investigated,
specifically in the near-wellbore region, where injected CO2 interacts with surrounding sediments
containing formation water and possibly native hydrates.

The main objective of this paper is to provide experimental insight into restoring CO2 permeability
after significant hydrate plugging in high-permeable sediments, to be used for validation of numerical
flow models. Hydrate formation was assessed by parameters such as initial water saturation, solubility
of guest molecule (CO2 or CH4) in water, and final hydrate saturation. Three common hydrate
dissociation methods were investigated: N2 injection, MeOH injection, and thermal stimulation.
The limitation of using N2 as a flow remediation method was linked to microfluidic observations.
Finally, field implications of the observed data are discussed.
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2. Materials and Methods

The core material consisted of Bentheimer sandstone (95.5% quartz, 2.0% kaolinite, 1.7% K-feldspar,
0.8% other [34]) with average measured porosity and absolute permeability of 22% and 1.1 D, respectively.
The laboratory setup (Figure 1) facilitated logging of pressure drop (converted to normalized pressure
gradient [bar/m] by distance corresponding to sample length), resistivity across the core sample,
and upstream core surface temperature.
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Figure 1. CO2 core flow laboratory setup, including sandstone core sample (length ~15 cm), core holder,
cooling system, pressure and temperature measurements, back-pressure regulator, and high-pressure
pumps to regulate pore pressure and overburden. Modified from [10].

CO2 hydrate: The core samples were pre-saturated with synthetic brine (3.5 wt% NaCl in distilled
water) under vacuum. At 70 bar pore pressure, liquid CO2 (99.999% purity) was injected at constant
volumetric flow rate (0.5, 5.0, or 10.0 mL/min) into cooled (~4 ◦C), water-saturated sandstones. The low
temperature was controlled by a refrigerator bath and maintained by circulating antifreeze through
a cooling jacket that surrounded the core holder. Onset of hydrate formation within the pore space
was determined from increased resistivity and flow resistance (pressure difference). Conducting
three baseline experiments at corresponding flow rates outside the GHSZ ensured reference values of
resistivity and permeability measurement where only saline water and liquid CO2 occupied the pore
space. After massive growth of CO2 hydrates in the pore space, thermal stimulation or thermodynamic
inhibitors (N2, MeOH) were introduced to the system in an attempt to dissolve the hydrate plugs.
The typical shut-in period from the end of CO2 injection to the start of inhibitor injection was in
most cases 15 min. Nitrogen was injected as compressed gas with purity of 99.6% N2, whereas
the methanol solution was composed of 30 wt% MeOH in distilled water; similar to concentrations
used in previous dissociation studies [29–31]. The high-pressure pump delivering compressed N2

or MeOH was connected to the flow system near the inlet side of the setup (see Figure 1). Thermal
stimulation was conducted by increasing the set temperature of the refrigerator bath above the hydrate
formation temperature and inducing gradual heating (0.3 ◦C/min) of the porous system.
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CH4 hydrate: The water-saturated core plug (spontaneous imbibition) was mounted into a rubber
sleeve and placed inside a Hassler core holder. All flow lines leading into the core were purged under
vacuum (except from the core plug itself) and filled with CH4 gas. The CH4 gas (>99.5%) was allowed
to enter the core plug from both sides when the pressure in the flow lines reached atmospheric pressure,
and the core plug was subsequently pressurized to 83 bar by a high-pressure pump. The confinement
pressure was continuously kept at 30 bar above the pore pressure by applying pressurized oil around
the rubber sleeve. The initially trapped air inside the core plug was assumed to dissolve as the CH4

gas was pressurized to 83 bar. The core plug was pressurized at room temperature for approximately
24 h to allow CH4 to dissolve in the water and to quantify the leakage rate of the system. Hydrate
formation was initiated by decreasing the temperature of the core plug to ~0.5 ◦C. The pore pressure
was maintained constant at 83 bar throughout the hydrate formation process, and the hydrate saturation
was calculated by quantifying the amount of CH4 gas that was consumed during hydrate growth [35].
A hydration number of 5.99 [36] was used to quantify the amount of water that was converted to
CH4 hydrate.

3. Experimental Results

Solid flow barriers developed from hydrate formation at constant injection rates (0.5, 5,
and 10 mL/min) for CO2 hydrates and static flow conditions for CH4 hydrates. The induction
time for flow-induced CO2 hydrate formation ranged from approximately 0.5 PV to 2.5 PV (PV—pore
volumes) of CO2 injected under the same pressure and temperature conditions, demonstrating
the stochastic nature of hydrate nucleation. Some injections showed signs of early hydrate formation
followed by reduction in pressure gradient (re-opened gas channels) before final hydrate blockage
and fully established flow barriers were formed. Pressure gradients of liquid CO2 in the presence
of hydrates exceeded 100 bar/m, and the injection was stopped as the pore pressure approached
the confinement pressure. In contrast, CO2 baseline flow experiments (0.5, 5, and 10 mL/min) outside
the GHSZ measured a pressure gradient less than 1 bar/m on average.

N2 injection: After massive hydrate growth and complete blockage of fluid flow, several relevant
methods of remediation were tested. Figure 2 shows the pressure gradient development in Bentheimer
sandstone during stages of CO2 injection and subsequent N2 injection, separated by a 15 min shut-in
period. Cumulative volumes of CO2 (triangles) and N2 (circles) injected are displayed on the primary
axis, and pressure gradient (squares) on the secondary axis. Hydrate formation within the pore
space caused the pressure gradient to increase rapidly at around 30 min (2.2 PV) of CO2 injection.
Breakthrough of CO2 occurred at 0.57 PV injected, and production of water/CO2 was not observed
after hydrates formed in the core sample (0.37 frac. initial water saturation). CO2 injection was ended
when the pressure gradient reached 130 bar/m. The following decay of the pressure gradient was
directly linked to CO2 consumption during continuous hydrate growth while the system no longer had
pressure support. N2 injection was initiated at 55 min, first at constant volumetric flow rate (1 mL/min),
and later at constant pressure (90 bar), to keep the pressure gradient below 130 bar/m. A total of 40 mL
N2 was injected over a period of 175 min without any effect on the pressure gradient or observations of
produced fluids from the core sample. N2 injection failed to dissolve the CO2 hydrate plug and restore
injectivity within the given time frame.

N2 was also used to infer the effective permeability in a core (0.65 frac. initial water saturation)
sample after CH4 hydrate formation. The core was saturated with 0.55, 0.22, and 0.23 (frac.) of
CH4 hydrate, water, and CH4 gas, respectively, prior to N2 injection. Figure 3 displays responses
in pressure gradient (squares) and temperature (circles) of the sandstone sample with time. As N2

was injected with constant volumetric rate equal to 2 mL/h, the pressure gradient (squares) built up
rapidly to 55 bar/m (Figure 3), and maintained for 24 h after with no injection. The injection of N2

was recommenced with identical injection rate until the pressure gradient reached approximately
90 bar/m. The injection was again stopped, and the core was isolated while maintaining continuous
pressure readings at both inlet and outlet sides. No sign of hydrate dissociation was observed during
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600 h. In fact, the pressure gradient increased slightly in this period, but this was attributed to a
small leakage in the outlet flow line. Continued growth of CH4 hydrates may also have contributed
to the decreasing outlet pressure. Note that the average core temperature was only 0.5 ◦C during
this experiment (Figure 3). The temperature was therefore bumped to 2.0 and then 2.8 ◦C while
keeping the inlet pressure constant to 95 bar, to verify that the pore water was in liquid state and that
there was no solid ice obstructing the flow of N2. The pressure gradient dropped initially, due to
thermal expansion of CH4 gas at the outlet side, but the pressure gradient stabilized as the temperature
stabilized and the core was still blocked. In contrast, a Bentheimer core experiment (0.63 frac. initial
water saturation) with lower final CH4 hydrate saturation (0.48 frac.), experienced successful hydrate
dissociation by N2 injection (30 mL). This is shown in Figure 4 by an abrupt reduction in differential
pressure (squares) after approximately 500 h. On a later stage, binary gas injection was tested, first at
75/25 mol% ratio of N2/CO2 at constant rate of 1.2 mL/h (at 800 h), and finally at 50/50 mol% (at 900 h)
without indications of hydrate reformation (differential pressure remained low while volume of N2

injected increased steeply). A similar experiment conducted by this research group [24] demonstrated
restored flow by N2 injection in a CH4 hydrate-plugged Bentheimer sandstone (~0.5 frac. initial water
saturation). Here, final core saturation was 0.46, 0.29, and 0.25 (frac.) of CH4 hydrate, water, and CH4

gas, respectively, prior to N2 injection and successful dissociation of the hydrate plug.Energies 2020, 13, x FOR PEER REVIEW 5 of 13 
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Figure 2. Cumulative volumes of CO2 (triangles) and N2 (circles) injected, and pressure gradient
(squares) measured during flow-induced hydrate formation in sandstone (14.52 cm core length).
CO2 injection (5.0 mL/min) was followed by a 15 min shut-in period before the N2 injection started
(1.0 mL/min). Partial re-establishment of flow was observed at 67 min (sudden drop in inlet pressure),
followed by gradual increase in pressure gradient due to continued hydrate growth. The N2 injection
was set to constant pressure injection (90 bar) when the pressure gradient exceeded 130 bar/m.
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Bentheimer sandstone core (0.36 frac. initial water saturation). Volumes of CO2 (triangles) were 
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Figure 3. Pressure gradient (squares) profile during N2 injection (start pressure control indicated by
vertical broken line) into a sandstone core (14.94 cm length) saturated with 0.55 (frac.) of CH4 hydrate,
0.22 (frac.) of water, and 0.23 (frac.) of CH4 gas. The temperature (circles) was measured on the surface
of the core-end at the outlet side.
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Figure 4. Differential pressure (squares) during N2 injection into a sandstone core (14 cm length)
saturated with 0.48 (frac.) of CH4 hydrate, 0.24 (frac.) of water, and 0.28 (frac.) of CH4 gas. Volume of
N2 injected (triangles) is displayed on the secondary y-axis. Binary gas injection of N2/CO2 is indicated
with broken vertical lines at 800 h (75/25 mol%) and 900 h (50/50 mol%). Experimental conditions were
T = 4 ◦C, 3.5 wt% brine salinity, and pore pressure of 83 bar.

MeOH injection: Figure 5 shows CO2 hydrate plug remediation by MeOH injection into a
Bentheimer sandstone core (0.36 frac. initial water saturation). Volumes of CO2 (triangles) were
injected in four stages, accompanied by immediate response in the pressure gradient (squares) due to
hydrate formation. Pausing the CO2 injection caused the upstream pressure to decline because of liquid
CO2 being converted to solid hydrates, and restarting CO2 injection led to rapid increase in pressure
because of blocked flow paths. In order to restore injectivity in the core plug, a MeOH flush was
initiated approximately 15 min after the last CO2 restart. A total of 25 mL solution of 30 wt% MeOH
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was injected over a period of 136 min before the hydrate plug dissociated and the injectivity was fully
restored. During the CO2 hydrate dissociation, the pressure gradient was reduced by 100 bar/m within
45 s. In contrast, pressure decline during hydrate growth without pressure support (e.g., at timestep
25 min) required around 25 min to obtain the same pressure gradient reduction.
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Figure 5. Cumulative volumes of CO2 (triangles) and MeOH (circles) injected, and pressure gradient
(squares) measured during flow-induced hydrate formation and dissociation (14.76 cm core length).
Vertical broken lines indicate end of stages of CO2 injection (10 mL/min), and start of MeOH injection
(90 bar pressure control) after a shut-in period of approximately 15 min. A local pressure increase was
measured at timestep 110 min, caused by temporarily reduced outlet pressure (not believed to have
any effect on the outcome of the experiment).

Thermal stimulation: MeOH injection was combined with thermal stimulation in another
Bentheimer core experiment (0.64 frac. initial water saturation). Figure 6 displays the development of
pressure gradient (squares) and temperature (circles) through the stages of CO2 hydrate formation
and dissociation in the porous medium. The horizontal line indicates equilibrium temperature for
CO2 hydrate at initial pore pressure of 70 bar (PVTsim Nova 2). Above the line, the hydrate structure
will destabilize and dissociate into liquid water and CO2. A spike in temperature occurred after
68 min, accompanied by a steady increase in differential pressure, marking the exothermic onset of
sedimentary hydrate growth. The CO2 injection was ended after 190 min, reaching a pressure gradient
of 127 bar/m. Hydrates continued to grow without pressure support during the 45-min-long shut-in,
reducing the pressure gradient to approximately 15 bar/m. The following MeOH injection failed to
contact the hydrate plug (total of 4 mL MeOH injected over 63 min), due to near-zero permeability.
Consequently, thermal stimulation was used as a remediation method and the formation temperature
was increased by 0.3 ◦C/min after 310 min of total run time. The pressure gradient declined by
approximately 3 bar/m per minute while still in the predicted GHSZ (below 8.3 ◦C), due to initial lack
of pressure support during additional hydrate growth, followed by outlet pressure increase due to
thermal CO2 expansion. When the formation temperature exceeded the GHSZ, the pressure gradient
fell 70 bar/m in less than a minute, showing efficient decomposition of the CO2 hydrates. After a full
dissociation, the temperature was set to initial conditions (4 ◦C) at a cooling rate of 0.1 ◦C/min. Having
restored the connectivity of the formation, a second CO2 cycle was initiated at 383 min, inside the GHSZ
(7.1 ◦C). This resulted in an instant secondary hydrate formation enhanced by the memory effect.
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Figure 6. Temperature (circles) and pressure gradient (squares) measured during flow-induced
hydrate formation and dissociation by thermal stimulation in sandstone sample (14.81 cm length).
The temperature was regulated using the refrigerating fluid. The horizontal line indicates numerical
estimate of equilibrium temperature for CO2 hydrate at initial pore pressure of 70 bar. Vertical broken
lines indicate end of CO2 injection (0.5 mL/min), start and end of MeOH injection (85 bar pressure
control) after a shut-in period of 45 min, and start of secondary CO2 injection (0.5 mL/min).

N2 injection was also combined with thermal stimulation to obtain injectivity in a core (0.69 frac.
initial water saturation) of high final CH4 hydrate saturation. The core was saturated with 0.61,
0.21, and 0.18 (frac.) of CH4 hydrate, water, and CH4 gas, respectively, prior to N2 injection.
Figure 7 displays responses in pressure gradient (squares) and temperature (circles) as functions of
injection time. As N2 was injected with constant volumetric rate equal to 4 mL/h, the pressure gradient
built up rapidly to approximately 55 bar/m (Figure 7a). The injection was therefore halted for 24 h,
but this did not result in any change in the pressure gradient. The injection of N2 was restarted with
identical injection rate until the pressure gradient reached approximately 90 bar/m. The injection
scheme was then set to constant pressure delivery at 95 bar. The average temperature was initially low,
at T = 0.7 ◦C, but it was eventually increased to T = 3.5 ◦C, to ensure no solid ice in the pore space.
Consequently, the pressure gradient dropped to 60–70 bar/m because of thermal expansion of CH4

gas at the outlet side (Figure 7a). Still, there was no sign of improved injectivity during a period of
400 h. The fluctuations in the pressure gradient followed the temperature fluctuations, and the small
drop in the pressure gradient after 375 h was due to adjusting the constant pressure injection to 93 bar.
The failure of N2 injection to restore injectivity called for other flow remediation methods. The system
temperature was therefore increased to T = 8 ◦C and down again to T ~4.5 ◦C, over a timespan of
eight hours (Figure 7b). Within a few hours after the system temperature was stabilized at T ~4.5 ◦C,
the pressure gradient dropped rapidly to zero, meaning that the outlet and inlet pressure equilibrated
due to sedimentary hydrate dissociation. Because the theoretical equilibrium temperature was not
reached in the experiment (~9.7 ◦C for pure CH4 hydrate), the observed dissociation was a combination
of localized heating and N2 injection. A flow test was then initiated to probe whether the newly
obtained injectivity could be sustained. A mixture of 60 mol% N2 and 40 mol% CO2 was injected with
constant volumetric rate of 4 mL/h for 25 h, without any reduction in injectivity.
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Figure 7. (a) Pressure gradient (squares) during N2 injection into a sandstone core (14.96 cm length)
saturated with 0.61 (frac.) of CH4 hydrate, 0.21 (frac.) of water, and 0.18 (frac.) of CH4 gas.
The temperature (circles) was measured on the surface of the core-end at the inlet side. (b) Thermal
stimulation of a plugged core during constant pressure injection of N2 at 93 bar. After the injectivity
was resumed, a mixture of 60 mol% N2 and 40 mol% CO2 was successfully injected for 25 h.
Theoretical equilibrium temperature for CH4 hydrate is approximately 9.7 ◦C (at 83 bar pore pressure).
The temperature was measured on the surface of the core-end at the inlet side.

4. Discussion and Field Implications

The experimental results demonstrated that CO2 hydrates consistently formed solid flow barriers
in high-permeable sandstone core samples for a range of injection rates. The tortuous pore network
facilitated hydrate nucleation at CO2-water interfaces and from CO2 dissolved in water. Growth of
sedimentary CO2 hydrates in the near-well region and reduced injectivity may lead to technical
challenges and higher costs. We emphasize that the presented results are based on microfluidic
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and core-scale observations with confined fluid flow, and are not directly comparable to field scale,
e.g., in terms of fluid contact areas, cross-sectional flow, and rate of heat transfer. The experimental
data can, however, contribute to improved physical understanding and simulation validation of
thermodynamic and transient flow models.

From the presented experiments (Figures 2 and 5), N2 failed (40 mL injected), whereas MeOH
succeeded (25 mL injected), in contacting and dissociating the CO2 hydrates obstructing fluid flow
in the core samples. The destabilization mechanisms behind the inhibitors are not identical; MeOH
lowers the water activity and interacts with the water cages in the hydrate structure, whereas N2 dilutes
and interacts with the hydrate guest molecule (shielded by a water cage) and hydrate subsequently
dissociates toward the gas phase where the chemical potential is lower. Hydrate dissociation is an
endothermic process that can cause secondary hydrate and ice formation, depending on the rate of
heat transfer. Being a freezing-point depressant, MeOH can impede local ice formation associated with
hydrate dissociation. The inhibitor lowers the freezing point of ice by approximately the same amount
as it lowers the hydrate formation temperature [37]. Furthermore, MeOH is miscible with the residual
pore water, and can take advantage of the already existing water network in the sandstone to contact
the hydrate plug. In contrast, N2 introduces a three-phase flow scenario where immiscible N2 has
to establish its own flow channels in the pore space, displacing liquid CO2 and/or water. This latter
flow scenario can greatly affect the relative permeability of the fluid system. While the rock material
and total pore volume were similar, the location of the hydrate plug possibly shifted for the different
experiments. Thermal stimulation can effectively treat hydrate blockage zones if sufficient heat transfer
rates are present (Figures 6 and 7b). However, once thermal stimulation ended and the temperature
returned within the GHSZ, secondary hydrate formation occurred with a faster response than primary
formation, due to memory effects (Figure 6). Secondary hydrate formation after stimulation was
avoided by binary gas injection at a high nitrogen penalty (60 mol% N2), hampering overall CO2

storage capacity. At field scale, thermal stimulation is likely to be less effective than the presented
core-scale experiments, due to dimension upscaling and limited penetration range of localized heating.

We hypothesize (Figure 8—conceptual model), based on pore- and core-scale experimental
observations, that CH4 hydrate structures can be porous or non-porous depending on the initial water
saturation and final hydrate saturation of the system. We expect CO2 hydrate structures on the other
hand to be non-porous, independent of initial saturations, because of the higher solubility achieved
in the water phase. In Figure 8, a single pore (100 µm diameter) is initially filled with a gas bubble
surrounded by capillary-bound water. Hydrate formation follows the gas-water interface until the gas
phase is either encapsulated by porous hydrate (pathway A) or is consumed due to low initial gas
saturation or high solubility (pathway B), resulting in a non-porous hydrate structure. Porous hydrate
may be gas permeable, and therefore, a higher hydrate surface area is accessible for contact with injected
N2. A saturation threshold for CH4 hydrate morphology was identified in the range 0.48–0.58 (frac.)
hydrate saturation. For CH4 hydrates above this saturation value (excess water systems), and for
CO2 hydrates in general, the effect of N2 to destabilize hydrate plugs and restore flow in sandstone
was limited. A similar trend is found elsewhere [38,39], where pressure-induced dissociation rates of
CH4 hydrates decreased with increasing hydrate saturation (>0.5 frac.). Destabilization of non-porous
hydrate suffered from low mobility of the liberated gas during initial dissociation, and interactions
with neighboring pores were obstructed by the remaining hydrate. Therefore, treating non-porous
hydrate blockage in hydrophilic porous media (capillary-bound water preserved) by applying a
water-miscible inhibitor, e.g., MeOH, where the hydrate structure is destabilized through the water
phase is recommended.
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Figure 8. Comparison of porous CH4 (Type A—left) and non-porous CO2 (Type B—right) hydrate
structures obtained in a hydrophilic, high-pressure micromodel. The hydrate structure formed
depended on initial saturations, as well as type of guest molecule. Adapted from [9,38,40].

5. Conclusions

Solid, non-porous hydrate structures formed consistently during CO2 injection and effectively
blocked fluid flow within the pore space in the gas hydrate stability zone (GHSZ). Loss of injectivity
due to hydrate barriers in high-permeable sandstones occurred over a range of CO2 injection rates
(0.5–10 mL/min), implying that hydrate formation represents a risk not only during shut-ins and static
flow conditions, but also during steady-state fluid flow in sediments. Thermal stimulation and MeOH
injection successfully dissolved CO2 hydrate plugs and restored the formation connectivity, whereas N2

injection failed to contact and dissociate non-porous hydrate in these experiments. Limitations of using
N2 as a thermodynamic inhibitor were further investigated with CH4 as a guest molecule at varying
fluid saturations. Porous, gas permeable CH4 hydrates (<0.48 frac. saturation) were successfully
dissociated by N2, whereas non-porous CH4 hydrates (>0.58 frac. saturation) did not dissociate.
In water-wet sediments, MeOH benefited from being miscible with water, and can contact the hydrate
zone via preserved water channels. Thermal stimulation proved to be the most efficient remediation
method at core scale in near-zero permeability conditions. However, once thermal stimulation ended,
and the temperature returned within the GHSZ, secondary hydrate formation occurred with a faster
response than primary formation due to memory effects. Determining under which specific conditions
the injectivity of a CO2 source point can be impaired due to unwanted hydrate formation is important
to lower the cost and risk barriers associated with carbon geo-sequestration.
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