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Abstract
We discuss some recent progress in the study of Principal Component Analysis (PCA) from the
perspective of Parameterized Complexity.
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1 Introduction

Worst-case running time analysis has been at the center of nearly all developments in
theoretical computer science since the inception of the field. Nevertheless, the worst-case
approach to measure algorithm efficiency has a serious drawback: For many fundamental
problems it does not provide a reasonable explanation why in real life situations these
problems are efficiently solvable. The dramatic gap between theory and practice calls for a
more nuanced approach, beyond the worst-case case algorithmic analysis. The forthcoming
book edited by Tim Roughgarden [23] provides a comprehensive introduction to this emerging
area of algorithms.

A particularly successful attempt of building a mathematical model improving over worst-
case analysis for NP-hard problems is the field of parameterized complexity. Originating in
the late 80s from the foundational work of Downey and Fellows [7], parameterized complexity
has experienced tremendous growth, and is now considered to be one of the central subfields
of theoretical computer science, with several textbooks [8, 9, 11, 21], including the most
recent book on parameterized algorithms [5] and kernelization [13].

However, so far the mainstream of parameterized complexity was devoted to the study
of with NP-hard optimization problems, mostly on graphs and networks. In this talk we
want to discuss the applicability of parameterized complexity to the problems involving data
point, vectors and matrices.
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2 Robust PCA

Classical principal component analysis (PCA) is one of the most popular and successful
techniques used for dimension reduction in data analysis and machine learning [22, 19, 10].
In PCA one seeks the best low-rank approximation of data matrix M by solving

minimize ‖M − L‖2
F

subject to rank(L) ≤ r.

Here ||A||2F =
∑

i,j a
2
ij is the square of the Frobenius norm of matrix A. By the Eckart-Young

theorem [10], PCA is efficiently solvable via Singular Value Decomposition (SVD). PCA
is used as a preprocessing step in a great variety of modern applications including face
recognition, data classification, and analysis of social networks. A well-documented drawback
of PCA is its vulnerability to noise. Even when a small number of observations is corrupted,
like a few elements or columns of matrix M are changed, PCA of M may not reveal any
reasonable information about non-corrupted observations.

There is a large class of extensively studied various robust PCA problems, see e.g.
[26, 28, 2]. In the robust PCA setting we observe a noisy version M of data matrix L whose
principal components we have to discover. In the case when M is a “slightly” disturbed
version of L, PCA performed on M provides a reasonable approximation for L. However,
whenM is very “noisy” version of L, like being corrupted by a few outliers, even one corrupted
outlier can arbitrarily alter the quality of the approximation. Unfortunately, almost every
natural mathematical model of robust PCA leads to an NP-hard computational problem, and
hence computationally intractable from the perspective of the classical worst-case analysis.

One of the popular approaches to robust PCA, is to model outliers as additive sparse
matrix. Thus we have a data d × n matrix M , which is the superposition of a low-rank
component L and a sparse component S. That is, M = L+S. This approach became popular
after the works of Candès et al. [3], Wright et al. [27], and Chandrasekaran et al. [4]. A
significant body of work on the robust PCA problem has been centered around proving that,
under some feasibility assumptions on M , L, and S, a solution to

minimize rank(L) + λ‖S‖0 (1)
subject to M = L+ S,

where ‖S‖0 denotes the number of non-zero entries in matrix S and λ is a regularizing
parameter, recovers matrix L uniquely. While optimization problem (1) is NP-hard [15], it
is possible to show that under certain assumptions on L and S, its convex relaxation can
recover these matrices efficiently.

The problem strongly related to (1) was studied in computational complexity under the
name Matrix Rigidity [16, 17, 25]. Here, for a given matrix M , and integers r and k, the
task is to decide whether at most k entries of M can be changes so that the rank of the
resulting matrix is at most r. Equivalently, this is the problem to decide whether a given
matrix M = L+ S, where rank(L) ≤ r and ‖S‖0 ≤ k. Thus we define the following problem.

Input: Data matrix M ∈ Rn×d, integer parameters r and k.
Task: Decide whether there are L, S ∈ Rn×d, rank(L) ≤ r and ‖S‖0 ≤ k, such

that M = L + S.

Robust PCA

We first look at Robust PCA from the perspective of parameterized complexity and
discuss when the problem is tractable and when it is not.
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I Theorem 1 ([12]). Robust PCA is solvable in time 2O(r·k·log(r·k)) · (nd)O(1).

The proof of the theorem requires ideas from kernelization, linear algebra and algebraic
geometry. Thus Robust PCA is fixed-parameter tractable when parameterized by k + d.
It is also worth to note that the theorem is tight in the following sense: The problem is
NP-hard for every r ≥ 1 [14, 6] and is W[1]-hard parameterized by k [12].

3 PCA with Outliers

Another popular variant of robust PCA is PCA with outliers. Suppose that we have n points
(observations) in d-dimensional space. We know that a part of the points are arbitrarily
located (say, produced by corrupted observations) while the remaining points are close to an
r-dimensional true subspace. We do not have any information about the true subspace and
about the corrupted observations. Our task is to learn the true subspace and to identify the
outliers. As a common practice, we collect the points into n× d matrix M , thus each of the
rows of M is a point and the columns of M are the coordinates.

Xu et al. [28] introduced the following idealization of this problem.

minimize rank(L) + λ‖S‖0,r (2)
subject to M = L+ S.

Here ‖S‖0,r denotes the number of non-zero raws in matrix S and λ is a regularizing
parameter. Xu et al. [28] approached this problem by building its convex surrogate and
applying efficient convex optimization-based algorithm for the surrogate. A huge body of
work exists on a variant of this problem, called Robust Subspace Recovery, see e.g. [20]
for a survey. In this problem for the set of given n points in r-dimensional space, the task is
to find an r-dimensional subspace containing the maximum number of points. Hardt and
Moitra [18] prove non-approximability of the optimization version of Robust Subspace
Recovery under Small Set Expansion conjecture.

An approximation variant of (2) and of Robust Subspace Recovery is the following
problem. Given n points in Rd, we seek for a set of k points whose removal leaves the
remaining n − k points as close as possible to some r-dimensional subspace. Here is the
reformulation of the problem in terms of matrices.

Input: Data matrix M ∈ Rn×d, integer parameters r and k.
Task:

minimize ‖M − L− S‖2
F

subject to L, S ∈ Rn×d,

rank(L) ≤ r, and
S has at most k non-zero rows.

PCA with Outliers

We will see how the tools from Real Algebraic Geometry [1] can be used to prove the
following theorem.

I Theorem 2 ([24]). Solving PCA with Outliers is reducible to solving nO(d2) instances
of PCA.

We also discuss some lower bounds for PCA with Outliers.

SWAT 2020
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