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ARTICLE INFO ABSTRACT

Keywords: The tumor microenvironment (TME) is a complex meshwork of extracellular matrix (ECM) macromolecules
Tumor microenvironment filled with a collection of cells including cancer-associated fibroblasts (CAFs), blood vessel associated smooth
C_ancer-associated fibroblast muscle cells, pericytes, endothelial cells, mesenchymal stem cells and a variety of immune cells. In tumors the
Fibrosis homeostasis governing ECM synthesis and turnover is disturbed resulting in abnormal blood vessel formation
and excessive fibrillar collagen accumulations of varying stiffness and organization. The disturbed ECM
homeostasis opens up for new types of paracrine, cell-cell and cell-ECM interactions with large consequences for
tumor growth, angiogenesis, metastasis, immune suppression and resistance to treatments. As a main producer
of ECM and paracrine signals the CAF is a central cell type in these events. Whereas the paracrine signaling has
been extensively studied in the context of tumor-stroma interactions, the nature of the numerous integrin-
mediated cell-ECM interactions occurring in the TME remains understudied. In this review we will discuss and
dissect the role of known and potential CAF interactions in the TME, during both tumorigenesis and chemore-
sistance-induced events, with a special focus on the “interaction landscape” in desmoplastic breast, lung and
pancreatic cancers. As an example of the multifaceted mode of action of the stromal collagen receptor integrin
allf1, we will summarize our current understanding on the role of this CAF-expressed integrin in these three
tumor types.

TME-Mediated chemoresistance
Integrin

Abbreviations: ABCG2, ATP binding cassette subfamily G member 2; ADAM12, A disintegrin and metalloproteinase domain-containing protein 12; aSMA, alpha-
smooth muscle actin; CAFs, cancer-associated fibroblasts; CAF-S, cancer-associated fibroblast subset type; cCAFs, cell cycle cancer-associated fibroblasts; CAV1,
caveolin-1; CD10, cluster of differentiation 10, membrane metallo-endopeptidase (MME); CD29, cluster of differentiation 29, integrin31; CD49c, cluster of differ-
entiation 49c¢, integrina3 subunit; CD49e, cluster of differentiation 49e, integrina5 subunit; CD51, cluster of differentiation 51, integrinav subunit; CD105, cluster of
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1. Introduction

The fibroblast is a cell type of paramount importance for extra-
cellular matrix (ECM) production and remodeling in interstitial tissues
[1]. Fibroblasts are central in wound healing, tissue fibrosis and tumor
fibrosis and studies of molecular mechanisms have demonstrated that
fibroblasts use similar “toolkits” to remodel the ECM in these different
conditions [2-4]. In tumor biology the activated fibroblasts, often
called cancer-associated fibroblasts (CAFs), act in the realms of the
tumor microenvironment (TME) with consequences for tumor growth,
formation of stem cell niches, immunosuppression, metastasis and
chemoresistance [5,6]. In the current review we will focus on this im-
portant compartment of the tumor and discuss how fibrosis contributes
to TME-mediated effects on tumor progression and chemoresistance.

Box 1

In medicine, desmoplasia is the growth of fibrous or connective
tissue. It is also called desmoplastic reaction to emphasize that it is
secondary to an insult. Desmoplasia may occur around a neoplasm,
causing dense fibrosis around the tumor, or scar tissue (adhesions)
within tissues.

B

The complexity of tumor microenvironment in different tumor types
is overwhelming and therefore we have decided to limit ourselves and
try to give an overview of the role played by CAFs in cell-ECM and
paracrine interactions in the TME of three desmoplastic tumor types:
breast, lung and pancreatic cancer. We will summarize some interesting
new developments (without any claims to cover all new interesting
findings), including data suggesting that integrin a11p1 is a major CAF
integrin in desmoplastic tumors [7-10].

2. Fibrosis

Box 2a

Fibroblast- A poorly defined cell type of mesenchymal origin,
which is non-vascular, non-inflammatory and non-epithelial.
Fibroblasts play a major role to produce fibrillar collagens and other
interstitial ECM components and to take active part in matrix re-
modeling via integrins and release of matrix metalloproteinases during
tissue regeneration events[1,5]. The transcriptional profile of fibro-
blasts varies with the anatomical location[11]. Cell lineage tracing in
mouse has clarified distinct origins of fibroblasts in the heart and skin.
Mouse cardiac fibroblasts are derived from epicardium or endocardium
[12] and a common multipotent progenitor of reticular and papillary
skin fibroblasts has been identified in mouse skin where neonatal fi-
broblast subtypes are characterized by a dynamic biomarker expression
pattern [13,14]. Further heterogeneity in skin fibroblasts is introduced
by presence of hair follicles, different embryonic origins of dermal fi-
broblasts in face (neural crest), anterior part (lateral plate mesoderm)
and the posterior part of body (dermomyotome). Closer examination of
dermal fibroblasts comparing human and mouse skin confirms the dy-
namic expression of biomarkers in human dermal fibroblasts and
identifies differences in biomarker expression between mouse and
human dermal fibroblasts[15]. Several groups have defined multiple
subtypes of human skin fibroblasts[15-17] and a protocol to isolate
reticular and papillary fibroblasts based on FAP and CD90 expression
exists[18]. In lung, transcriptional profiling has identified six subtypes
of fibroblasts [19] and in years to come additional tissue-specific fi-
broblast populations are likely to be described.

;1

Box 2b

Myofibroblast- An activated fibroblast considered to be contractile
due to expression of the contractile isoform of actin, alpha smooth
muscle actin (a¢SMA)[20,21]. In some tissues known to express avf1
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integrin with a central role in TGF-P activation in fibrotic conditions
[22]. After completed wound healing myofibroblasts are usually de-
pleted via apoptosis[21,23]. Mouse cardiac myofibroblasts have been
observed to turn off aSMA expression in the heart and form a cell type
called matrifibrocyte with different properties than the undifferentiated
pre-myofibroblasts[24]. Current data thus suggests that myofibroblasts
display more plasticity than previously thought. The finding that sub-
sets of mouse skin myofibroblasts under certain conditions can differ-
entiate into adipocytes further stresses the plasticity of myofibroblasts
[25].

Cancer-associated fibroblasts (CAFs)- Fibroblast-like cells, of
different origins, present in the TME. Sometimes used as abbreviation
for carcinoma-associated fibroblasts, to specifically denote cells asso-
ciated with epithelial-derived tumors. Demonstrated to be surprisingly
heterogeneous. A number of CAF subtypes have been defined within
tumor stroma. Pioneer work has defined two major types of fibroblasts
in pancreatic cancer, inflammatory CAF (iCAFs) and myofibroblastic
CAFs (myCAFs)[26], and four major subclasses of CAFs in breast cancer
(CAF-S1-S4), distinguished by different levels of aSMA and fibroblasts
activation protein (FAP) expression [27,28]. Due to plasticity and dy-
namic nature it has been suggested that the CAF subtypes do not re-
present fixed cell types, but rather represent fibroblast “states”[29].
Epigenetic changes do however result in more stable phenotypes
[30,31]. Indirect evidence suggests that some subpopulations of CAFs
are tumor-supportive whereas others are tumor-suppressive[32,33].
Demonstrated to act in a paracrine manner to affect different aspects of
tumorigenesis, and via matrix synthesis and matrix remodeling to in-
duce stiffness and hypoxia, which in turn also affect tumor growth.

31

Major challenges in all forms of fibrosis include characterizing the
degree of fibroblast heterogeneity, defining the origin of pro-fibrotic
cells (also the potential targets of anti-fibrosis therapy), and char-
acterizing the dynamics of different biomarkers, which can be used to
follow the fibrotic process as well as serve as potential therapeutic
targets.

Gene technology developments have helped to clarify some of the
issues related to the origin of fibroblasts in animal fibrosis models. In
several experimental systems, cell lineage tracing has thus clarified
“muddy waters” where epithelial to mesenchymal transition (EMT) and
fibrocyte invasion were suggested to contribute significantly to fibrotic
processes. The genetic-method based cell lineage tracing, often con-
tested earlier immunohistochemistry-based studies (typically relying on
antibodies with unclear specificity or reactivity) and instead showed
major roles played by tissue myofibroblasts derived either from en-
dogenous resident fibroblasts [12,13,34], pericytes [35,36] or Gli-po-
sitive mesenchymal stem cells (MSC) [37]. Pericytes exist as a major
cell type in pancreas and in liver in the form of stellate cells [38,39],
which in fibrosis models become activated to myofibroblasts and in
tumors into CAFs. The relative contribution of pericytes to fibrotic
stroma in tissues like kidney, lung and breast is complex [40] and will
need careful cell lineage tracing in different mouse models. Heart and
skin are two examples where resident endogenous fibroblasts are major
sources of the fibrotic stroma [12,15], but where also Gli* MSC ex-
pansion has been shown to play a major role in tissue fibrosis [37]. In
the developing mouse heart EMT and endothelial mesenchymal tran-
sition (EndoMT) do play a role, but not in fibrotic conditions [12].

As just mentioned, cell lineage analysis has thus clarified the origin
of fibroblasts in skin and heart [12,13]. During scarring in the skin after
injury or in heart after an infarction, endogenous fibroblasts migrate in
and fill up the damaged area. The dynamics of the in-migration of two
major types of fibroblasts in the wounded mouse skin occurs in two
waves [41]. In a careful separate study these fibroblasts were further
characterized into a “PDGFRa™®" subset” and a “PDGFRa'®" subset”,
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which could be further subdivided into a several clusters [14]. As
wounding is complete, wound fibroblasts disappear via apoptosis. In
mouse skeletal muscle and skin ADAM12*/PDGFRa*- perivascular
cells appear to play an important role in tissue repair [36]. Recent data
also demonstrate a role of Gli* MSCs in dermal wound healing [37].
In the heart the interstitial fibroblasts fill up the damaged area and
during the repair phase express alpha smooth muscle actin (a¢SMA) and
are contractile. Interestingly, these fibroblasts then loose aSMA ex-
pression and become quiescent [24]. Similar to the wound response in
skin, Gli* MSCs have been shown to contribute to cardiac fibrosis [37].

2.1. Tumor fibrosis

Major factors that drive tumor desmoplasia include: autocrine and
paracrine signaling of growth factors, cytokines and chemokines. These
factors affect cell proliferation and migration as well as CAF-mediated
ECM protein secretion and crosslinking of fibrillar collagen matrices
that eventually lead to increased tissue stiffness and hypoxia [4]. Fur-
thermore, ECM reorganization and ECM remodeling are determinant
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factors that affect the properties of the TME.

Just as the origin of myofibroblasts in fibrosis varies, so does the
origin of CAFs. Major sources of CAFs are the endogenous tissue fi-
broblasts, pericytes and ADAM12" perivascular cells [4,36,42]. Ap-
plying cell lineage tracing methods in the polyoma middle T (PyMT)
mouse model have demonstrated the contribution of mesenchymal,
non-hematopoietic bone marrow cells to a PDGFRa-, clusterin* - breast
cancer CAF subpopulation (see 4.1 below) [43]. EMT contribution to
CAF generation appears to be limited and EMT in the TME seems to be
more involved in forming an invasive mesenchymal tumor cell type and
in creating a niche for cancer stem cell formation [44]. However, active
EMT processes in the tumor have indirect consequences for the stroma.
In a recent study, EMT was studied in some detail in a genetic model
Kras 511260/ p53 flf] /Lgr5CreER of squamous cell carcinoma (SCC)
where tumors undergo spontaneous EMT [45]. These studies convin-
cingly demonstrated that EMT occurs in stepwise manner leading to the
generation of subpopulations of tumor cells in different intermediate
states between epithelial and mesenchymal. Interestingly, as cells pro-
gressed towards EMT [45], the stroma changed in parallel, with regard
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Fig. 1. Schematic illustration of CAF integrin interactions in three different forms of cancer.

Integrins are transmembrane receptors that mediate cell interaction with the extracellular matrix (ECM). The Integrin family is composed of 18 a and 8 { subunits,
which dimerize to form 24 distinct integrins with differential ligand specificity. The integrins described in this review have been highlighted. CAF integrins in lung
tumor microenvironment (TME): Expression of integrin al1f1 on cancer-associated fibroblasts (CAFs) regulates ECM stiffness and remodeling and IGF-2 secretion,
leading to metastasis and tumor growth of non-small cell lung cancer (NSCLC), respectively. In addition, integrin a11B1 regulates the lysyl oxidase-like 1 (LOXL1),
which is an ECM cross-linking enzyme involved in tumor growth and invasion. CAF integrins in breast TME: Breast tumor cells releases PDGF-BB that activates
PDGFRp on CAFs. PDGFRp interacts with integrin al11 to mediate metastasis. Integrin a531 collaborates with PDGFRa on CAFs to align fibronectin matrices,
which in turn support breast tumor cell invasion. This mechanism involves the myosin light chain 2 (MLC2). CAF integrins in pancreas TME: Release of TGF-f in
pancreatic ductal adenocarcinoma (PDAC) induces the formation of a desmoplastic ECM by CAFs, which results in up-regulation of integrin o581 and avf5 at the
CAF cell surface. Integrin avB5 mediates endocytosis of active integrin a531 that signals to activate myofibroblastic CAFs. Integrin a331 binds to laminin-332 to
mediate CAF activation and maintenance and to support PDAC invasion. Integrin all1 regulates ECM remodeling to support PDAC invasion. Fibronectin is
deposited on CAF protrusions, probably via integrin a531, on which PDAC cells migrate.
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to composition, presence of immune cells and localization. Most likely =
these changes are in part due to changes in the paracrine signaling of E
tumor cells undergoing EMT. A recent study also suggests that great 2
care has to be taken when analyzing cells in invasive breast cancer [46]. § =
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cells actually undergoing EMT. The invasive cells leading the way in g 7 = ; g B € &
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2.2. Cell surface markers/biomarkers for fibroblasts, myofibroblasts and E" § § E E é ‘E TE % E E

CAFs: expression and biological function

Multiple reviews have focused on the different biomarkers, which
are useful when studying the TME. For simplicity we think it is con-
venient to categorize the biomarkers into membrane proteins, cytos-
keletal proteins, intracellular proteins and nuclear proteins. For ex-
cellent reviews of the different biomarkers we refer to [5,47,48]. We
would just like to add a few facts as reminders of uses and pitfalls for
some of the relevant CAF markers.

2.2.1. Membrane proteins

Integrins: We will divide the discussion into different subfamilies,
the major ones involved on tumor stroma belonging to $1- or av-in-
tegrin subfamilies (Fig.1, Table 1).

PB1 integrin subfamily: The integrin heterodimers, which have
emerged as candidates on CAFs to execute (31 integrin functions include
a3p1, o581, allpl and avPl. avB1 will be discussed under av integrin
subfamily.

f1 integrin subunit (CD29): The integrin 1 subunit is shared by
12 different integrin heterodimers and is present on all nucleated cells
[49]. The 1 subunit is expressed in excess compared to integrina
chains in an intracellular pool. Cell surface expression of integrin of3
heterodimers containing CD29 is determined by integrin a chain ex-
pression. Due to the ubiquitous expression extreme care has to be taken
when using CD29 as a CAF biomarker. Down-stream targets of 1 in-
tegrin signaling include the soluble tyrosine kinase FAK and the au-
tophosphorylated FAK tyrosine residue Y397, as a general marker of
active B1 integrin signaling [50]. In addition to this role of FAK in in-
tegrin outside -in signaling it has also been demonstrated to take part in
adhesion strengthening and affect myofibroblast differentiation in an
unforeseen manner [51,52]. [53].

a3 integrin subunit (CD49c): Integrin with wide expression on
cells in contact with basement membranes [49]. a3fB1 binds different
laminin isoforms [49]. In CAFs, first reported to be involved in facil-
itating tumor cell migration in a mixed artificial matrix composed of
laminin-111 and collagen I [54]. a3PB1 has later been shown to bind
laminin-332 in pancreatic ductal adenocarcinoma (PDAC) CAFs and
facilitate cell migration of PDAC cancer cells [55].

o5 integrin subunit (CD49e): Stromal integrin expressed on
variety of cell types such as fibroblasts, endothelial cells, immune cells
[56] and CAFs [57]. CAF integrin a5p1 is involved in assembly of fi-
bronectin [58] and in enabling av33-mediated directional prostate and
pancreas tumor cell migration [59]. In colon cancer a5B1 on CAFs
cooperates with av33 to assemble fibronectin [60]. In a separate study
it is shown that fibronectin-bound a5f31 integrin promotes tension-de-
pendent malignant transformation through engagement of the synergy
site that enhances integrin adhesion force. Ligation of the synergy site
of fibronectin permits tumor cells to engage a zyxin-stabilized, vinculin-

?, In tumor stroma avf38 expressed on T-cells and tumor cells. Activated TGF-f3 can affect

fibronectin matrix, supporting directed cell migration of PDAC cancer cells, and cancer stem
CAF synthesis of collagen 1.

+ + 4+, NSCLC CAFs, HNSCC CAFs, breast cancer CAFs, CAFs in multiple tumor types (in
cell formation in PDAC cells.

vivo), PDAC CAFS in vitro: collagen remodeling, CAF migration, paracrine signaling;

+ + +, Vulval CAFs, SCC CAFs: facilitate cancer cell migration, assembly of fibronectin
synergize with PDGFRf

+ +, breast cancer, PDAC: TGF-f activation?, cooperate with a5B1 in organizing CAF
+ +, human PDAC CAFs : CAF activation, TGF-( activation?, cross-talk with a5p1

+ +, Vulval CAFs, PDAC CAFs: facilitate cancer cell migration, CAF maintenance
regulating endocytosis of a5B1 in PDAC CAFs.

Cancer-associated fibroblasts (CAFs): roles
?

+ +, lung, kidney, liver (in vivo):

activate TGF-3
+ +, human dermal fibroblasts

+, human dermal fibroblasts
+ +, lung: TGF-P activation

Myofibroblasts

Fibroblasts
+, lung

subfamily
a3p1 (CD49c)

(CD49e)

subfamily

B1 integrin (CD29)
a5p1
allpl

av integrin (CD51)

Integrin
avpl
avB3
avps
avf8

Overview of some integrins implicated in CAF function in desmoplastic tumor stroma. +; low to moderate expression, + +; fair expression, + + +; high expression.? ;ND. Note that estimations of expression levels are

Summary of selected integrins with relevance for CAF function.
subjective estimations.

Table 1
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linked scaffold that facilitates nucleation of phosphatidylinositol
(3,4,5)-triphosphate at the plasma membrane to enhance phosphoino-
sitide 3-kinase (PI3K)-dependent tumor cell invasion [61]. The effect of
fibronectin synergy site ligation by CAF a5f1 is unknown. In a careful
study of PDAC CAFs in 3D environment a531 subcellular localization
(and hence also activity) was controlled by avp5 in a complex manner
[571.

all integrin subunit: Integrinall is expressed on subsets of fi-
broblasts and mesenchymal stem cells [62-66]. Expression on subsets
of stromal cells needs to be better characterized and is ongoing. Data
obtained so far, based on studies of PDAC and head and neck squamous
cell carcinoma (HNSCC), have failed to demonstrate co-expression of
NG2 in all-positive CAFs [67]. In an all-positive subset of non-he-
matopoietic bone marrow-derived mesenchymal stem cells, all ex-
pression correlates with osteogenic potential of these cells [62]. Recent
screening of tumor tissue array reveal expression of all in CAFs in
multiple solid tumors [67]. Studies using animals deficient in all ex-
pression in the tumor stroma reveal major attenuation of tumor growth
and metastasis in non-small cell lung cancer and breast cancer in the
absence of al1 [8,10,68].

av (CD51) integrin subfamily: The integrin av chain dimerizes
with different 3 integrin chains. av[36 is an epithelial integrin and is in
tissues like lung and kidney involved in activating TGF- (via binding of
RGD in LAP-TGF-f complex) in fibrosis [69]. Overall, whereas the
understanding of the role of av integrins in tissue fibrosis is increasing
relatively little is currently known about the role of av integrins on
CAFs in terms of tumor-stroma interactions. In the tumor context it is
possible that the avf6 on tumor cells could take over the activating
role, resulting in TGF-B-dependent CAF activation [70]. avf31 in myo-
fibroblastic cells is involved in TGF-f3 activation in the context of fi-
brosis [22]. It is likely that avBl has similar orchestrating role for
tumor fibrosis in different types of CAFs [70]. No antibody specific to
the avf1 dimer exists, and expression of this integrin needs to be ver-
ified biochemically in immunoprecipitation studies [22]. In vitro stu-
dies suggest similar roles for avp3 and av5 in TGF-f activation on
myofibroblasts, but in fibrosis models av1 seems to play a major role.
avf38 is an interesting integrin, which uses MMP-14 as the mechanism
to activate TGF-B [71,72]. av[38 is expressed on different cells in the
tumor. When expressed on tumor cells it helps tumor cells evade host
immunity by regulating TGF- activation in immune cells [71,72]. As
mentioned above av33 has recently been demonstrated to assist a5p1
in fibronectin fibrillogenesis in CAFs to support directed cell migration
[59]. a5B1 is the major receptor in mesenchymal cells for fibronectin
assembly, but in early work on B17 cells, avp3 (in the absence of
a5B1), was demonstrated to be relatively inefficient in assembling
small and thick fibronectin fibrils in vitro [58]. It remains to be de-
termined if the contribution of avp3 to fibronectin assembly is a gen-
eral feature of CAFs or a special feature of tissue-specific subsets of
CAFs supporting metastasis.

Fibroblast activating protein (FAP): FAP is a serine protease with
post proline exopeptidase activity as well as gelatinase activity [73].
Initial studies of FAP expression suggested expression during develop-
ment but only rarely in adult tissues. However, FAP is highly upregu-
lated at sites of active tissue remodeling, including wound healing, fi-
brosis and cancer. More recent studies have shown that FAP expression
in healthy tissues might not be as restricted as previously thought,
which paradoxically becomes a major concern when targeting FAP
(reviewed in [73]). Global deletion of FAP leads to impaired hemato-
poiesis and cachexia [74]. In the tumor context, in vitro studies suggest
that FAP affects an inflammatory secretome including IL-6 and factors
stimulating angiogenesis [73]. Together with other biomarkers it is a
useful biomarker to identify CAF subsets, but FAP may be not the ideal
target in therapeutic strategies.

Cadherin-11: Classical cadherin expressed on multiple stromal cell
types, including fibroblasts, macrophages and vascular smooth muscle
cells. Increased expression on myofibroblasts (cadherin switch from
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expression of CDH2 to CDH11) [75]. One study has presented some
evidence for an interaction between syndecan-4 and cadherin-11 and
suggested that cadherin-11 regulates cell-matrix adhesion by binding
syndecan-4 [76]. This remains to be demonstrated in further studies but
is certainly an interesting possibility. The role of cadherin-11 in skin
and lung fibrosis has been suggested to be due to activation of TGF-3
signaling pathway [76-78]. Further support of a profibrotic role of
cadherin-11 has been reported in studies of a homotypic cadherin-11-
mediated interaction of macrophages and myofibroblasts suggesting
this interaction as being important for TGF-f activation and the stabi-
lity of the pro-fibrotic niche [79]. Cadherin-11 might be a useful marker
for fibroblast subsets.

PDGFRf3: PDGFRp expression extends to multiple mesenchymal cell
types. In addition to being expressed on pericytes it is also expressed on
subsets of fibroblasts [80,81]. In a PyMT model of breast cancer
PDGFRS is expressed on bone marrow derived CAFs [43]. Careful stu-
dies have demonstrated prognostic significance of PDGFRP in breast
cancer [82-84]. The collaboration of PDGFRP with al11f1 will be dis-
cussed in 4.2.

PDGFRa: A biomarker for fibroblasts that should probably not be
used as a marker to isolate all subsets of fibroblasts in a tissue. In careful
studies of cell heterogeneity in breast cancer and wound healing
PDGFRa is expressed on distinct subsets of CAFs and fibroblasts, re-
spectively [43] Prognostic value of PDGFRa expression has been stu-
died in breast cancer [82,83]. Interestingly, bone marrow derived me-
senchymal stem cells differentiated into CAFs in breast tumors of PyMT
mice were distinguished from other CAFs by lacking PDGFRa expres-
sion [43].

2.2.2. Cytoskeletal proteins and cytosolic proteins

aSMA (ACTA2): With increased awareness about CAF hetero-
geneity and the varying expression levels of aSMA in different subsets
of CAFs great care is needed when using aSMA as CAF marker for ac-
tivated collagen-producing stromal cells [85].

Vimentin: The cytoskeletal protein vimentin is often regarded as a
general stromal marker, but in TME it is not only expressed in CAFs, it is
also a major intermediate filament protein in endothelial cells in blood
vessels. Curiously, resident MSCs have been reported to be character-
ized by low expression of vimentin [47].

FSP-1: Fibroblast specific protein (FSP1; S100A4) is present in
subsets of fibroblasts, but the expression in immune cells is a major
concern when analyzing fibroblasts and CAFs [86-88]. With this in
mind, studies using FSP1-Cre to delete CAFs probably has to be re-in-
terpreted as it is becoming clear that it involves depletion of a subset of
CAFs in addition to immune cells and other cell types [89].

2.2.3. Secreted proteins

Tenascins: Tenascins constitutes a small family of related proteins.
Tenascin-C in addition to being synthesized by CAFs is also secreted by
tumor cells and it has been reported to be important for stability of
tumor stroma niche [90,91]. Less is known about tenascin-W and te-
nascin-X in cancer, but in one study tenascin-X was shown to restrict
melanoma invasion in a mouse model [92].

Osteopontin: Osteopontin can be secreted by multiple cell types,
including tumor cells themselves. Osteopontin has been shown to sti-
mulate MSCs to assume a CAF phenotype via a TGF-3-dependent me-
chanism [93]. The characteristic secretion with a peritumoral locali-
zation is observed in multiple studies and suggests a special role for
osteopontin in creating a cancer stem cell (CSC) niche [93,94].

Periostin: Periostin is secreted by CAFs in different tumor types and
suggested to concentrate Wnt ligands in stem cell niches [95].

Clusterin: Clusterin (CLU) is an ubiquitously expressed heat shock
protein and the secreted isoform is highly expressed in mammalian
tissues and fluids [96]. The protein is a heterodimer composed by an a-
chain and a B-chain. CLU may prevent uncontrolled membrane attack
complex activity and thus play an important role to control terminal
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complement-mediated damage. Might have an important role on CAFs
[43], but due to its wide expression predicted to be of limited use as a
biomarker or as therapeutic target.

2.2.4. Role of CAFs in desmoplastic TME

In the tumor stroma, CAFs interact with other cells and with the
ECM to mediate CAF activation, tumor cell proliferation, directed cell
migration and metastasis, to support stem cell niche generation, to
regulate immunosuppression and to influence chemoresistance. Many
of these aspects have been reviewed before (see [47,97,98]) and in this
review we have chosen to place a special focus on the role of CAF
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interactions in desmoplastic tumors.

As mentioned earlier cell-ECM interactions in the TME are under-
studied and we predict that this situation will change in the years to
come. In future studies the role of integrins has to be understood in light
of current knowledge of paracrine mechanisms in these tumor types.
We have selected some recent publications that we think will be im-
portant to consider when elucidating integrin function in these tumor
microenvironments. The importance of taking this approach is illu-
strated by work in the PyMT breast cancer model where recent data
have demonstrated a physical interaction of al1f1 integrin in a subset
of CAFs with PDGFRp resulting in signaling regulating tumor growth
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Fig. 2. Schematic illustration of tumor-stroma interactions involving CAFs in three different forms of cancer. CAF in lung tumor microenvironment (TME):
Glutamin-fructose-6-phosphate transaminase 2 (GFPT2) in CAFs is responsible for increased glucose uptake and metabolic reprogramming in the TME of non-small
cell lung cancer (NSCLC) adenocarcinoma (ADC) to support tumor progression. IGF-2 secretion also induces Nanog expression in NSCLC cells contributing to cancer
stem cell (CSC) induction. CAF produces CLCF1 that increases NSCLC tumor growth. CAF in breast TME: CAF secretes SDF-1 that activates CXCR4 on breast tumor
cells increasing tumor growth. CAF produces also CXCL16, recruiting monocytes that in turn activates CAFs. LOXL2 secreted by breast tumor cells regulates CAF
activation and ECM stiffness and remodeling, leading to metastasis. DPP4 expressed on CAF dimerizes with FAP and interacts with the lymphocyte T regulators
(Tregs) to suppress immune response. CAF in pancreas TME: Myofibroblastic CAFs (myCAFs) adjacent to pancreatic ductal adenocarcinoma (PDAC) may secrete
osteopontin, which interacts with integrin av33 on PDAC to support cancer stem cell induction. Inflammatory CAFs (iCAFs) at a further distance to PDAC secrete 11-6
to recruit Tregs and myeloid-derived suppressor cells (MDSCs), suppressing the immune response. CAFs secrete I1-33 to recruit tumor-associated macrophages
(TAMs) that in turn synthesize MMP-9 to mediate PDAC metastasis. Inhibition of smoothened (Smo) and PTEN in CAF leads to TGF-a secretion to support PDAC

tumor growth. Please see text for more details.
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and metastasis [10]. We think that similar approaches will be fruitful
when analyzing the role of integrins on CAFs in TME-mediated che-
moresistance where published work on cancer cells has demonstrated
that integrins take an important part in chemoresistance mechanisms in
response to tyrosine kinase inhibitors [99].

Due to the complexity of collagen matrix in vivo and the tight
packing into protein coated fibrils the actual availability of integrin
binding sites in collagen fibril has come under question [100,101]. An
emerging picture suggests that remodeling of the collagen fibril surface
and proline-mediated flexibility maintains the integrity of the integrin
binding sites [102,103]. However, the availability of integrin binding
sites in fibrillar collagen in a remodeling actively synthesized matrix
would be less of an issue. In this scenario, CAFs in an immature ECM
where remodeling is still occurring would depend on direct binding to
the collagen matrix via collagen-binding integrins, whereas in a more
mature matrix, a switch would occur to indirect linkages to proteins like
fibronectin via non-collagen binding integrins like a531.

The role of the ECM in tumor growth (restraining or supportive) is
still unclear but multiple studies suggest that a stiff linearized collagen
matrix supports tumor cell metastasis (see [104]). Landmark work by
Sahai et al. has demonstrated that CAFs can pave the way for invading
cancer cells, by drilling holes and reorganizing the matrix [54]. In the
original studies a3f1 and a531 were demonstrated to play this role in
vulval CAFs migrating through an artificial mixed collagen I/laminin-
111-containing matrix in vitro. A recent publication in more detail
analyzes a3p1 on CAFs in PDAC, demonstrating that it interacts with
laminin-332, mediates CAF differentiation and maintenance and sup-
ports PDAC cancer cell invasion [55].

We will below summarize some interesting studies that are related
to CAF-function in pancreatic-, lung-, and breast cancers and for each
tumor type include examples of TME-mediated chemoresistance. The
role of cell-ECM interactions mediated by integrins in TME is largely
understudied and constitutes an important area for future research.
Wherever appropriate we have tried to highlight the potential im-
portance of integrin mediated cell-ECM interactions in the TME, in-
cluding potential roles in chemoresistance, which as mentioned above
represents another aspect of TME biology where the role of integrins is
severely underexplored.

3. Pancreas
3.1. CAF heterogeneity

An increasing number of studies indicate the importance of the
endogenous stroma in giving rise to CAFs. The complexity of the de-
velopmental origin of the endogenous stroma varies depending on the
tissue. In pancreas two major potential stromal sources of CAFs are
pancreatic fibroblasts and stellate cells. Stellate cells in the liver have
been found to be of mesothelial origin and it has been suggested that
pancreatic stellate cells are of neuroectodermal origin [105,106]. It is
widely assumed that the pancreatic stellate cells are the major source of
CAFs in PDAGC, but this is clearly an area where our understanding is
currently limited.

In most models of tumor stroma interactions, a majority of pub-
lished data suggests that the tumor stroma is tumor supportive
[107,108]. This includes studies of pancreatic cancer, where stroma has
been suggested to support tumor growth, tumor metastasis and to be
involved in tumor chemoresistance [109]. With the increased aware-
ness about CAF heterogeneity within TME many published studies
might have to be revisited and the effects of TME re-examined in more
detail, keeping in mind the CAF heterogeneity. This includes a widely
cited paper from Ozdemir et al suggesting that conditional deletion of
aSMA-expressing fibroblasts in experimental PDAC worsened tumor
outcome [110]. Experimentally aSMA-thymidine kinase transgenic
mice were crossed with two different models of PDAC, Ptfla®* ;
Kras®®?™* TGFbr2 f1°/fl* (PKT) mice and LSLS-KrasG12b/+
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;Trp53R"172H/+ -pdx /* (KPC) mice, and cell depletion of aSMA ex-
pressing cells was induced with ganciclovir. These rather drastic cell
depletion protocols with reduced number of myofibroblasts resulted in
more invasive, undifferentiated, and necrotic tumors. Notably, the use
of ganciclovir for cell depletion also restricts the depletion to a not well-
defined proliferating subset of aSMA-positive cells. Interestingly, al-
though reduced stiffness was observed in fibroblasts depleted tumors,
LOX levels were unchanged. Furthermore, in the hands of Ozdemir
et al., FAP and aSMA did not co-localize in CAFs. In summary, this is a
seminal study, which has received a lot of attention and raised the
awareness about CAF heterogeneity. However, with more data accu-
mulating from different experimental systems, especially with regard to
CAF heterogeneity and aSMA expression levels in different CAF sub-
populations, some of the data might have to be re-evaluated and re-
interpreted.

Solid data is now accumulating on the heterogeneity of CAFs in
different tumor types, including pancreatic cancer. In a careful study
from Ohlund et al. [26], two major types of CAFs were identified both
in the mouse KPC model and in human pancreatic cancer tissue. The
CAFs identified peritumorally and expressing FAP and high levels of
aSMA, were denoted myofibroblastic CAFs (myCAFs). The myCAFs
were found to need cell-cell contact to be induced to differentiate into
this state. CAFs located at further distance from tumor cells and which
expressed lower levels of FAP and aSMA but secreting cytokines, like
IL-6, were named inflammatory CAFs, iCAFs (Fig.2). The study also
convincingly showed that CAFs can change from one state to the other
(myCAFs to iCAFs and vice versa) in a dynamic manner. An interesting
observation made in this study was that CAFs isolated from metastatic
sites, unlike CAFs isolated from the primary tumor site, secreted a
different cytokine repertoire (not including LIF and IL-11). It is possible
that the different TMEs in the primary tumor and the metastatic tumor
site contribute to the separate paracrine patterns. This agrees well with
recent findings that CAFs in different tumors are distinct due to un-
related origins and deleting them results in discrete phenotypes due to
different tissue contexts [5]. The findings in the study from Ohlund
et al. have implications for the interpretation of the previously men-
tioned widely cited studies by Ozdemir et al. involving deletion of
aSMA expressing cells, which suggested that CAFs have a restraining
role in pancreatic cancer [110]. It is for example possible that ablation
of all cells expressing aSMA, in addition to deleting CAFs also delete
smooth muscle cells, interfering with blood vessel function. This could
potentially cause structural defects unrelated to depletion of aSMA-
expressing CAFs. The study from Ohlund et al. also raises the possibility
that preferential deletion of myCAFs (high a-SMA expressing) could
have an effect different from deletion of the low aSMA expressing
iCAFs. Further studies using new, more selective Cre-deleter strains will
be useful to sort out this issue. With the availability of new tools, it will
also be important to categorize CAFs in pancreatic cancer further with
additional biomarkers. Along these lines, a recent study has extended
the use of markers and also divided the pancreatic tumor stroma into
four domains [111]. The stroma in this study was divided into lobular
stroma, septal stroma, peripheral stroma, juxtatumoral stroma. Re-
garding the biomarker expression patterns it is difficult to make cor-
relations from this study to the study from Ohlund et al., since the
authors find high aSMA expression in all CAF subtypes. The authors
however find increased levels of CD10 (a zinc-dependent cell surface
associated metalloprotease), tenascin-C and mir-21 in the juxtatumoral
stromal CAFs. CD10 is a new potentially interesting biomarker for
CAFs. For now, the question is thus still open as to the specific role of
the stroma in pancreatic cancer: tumor-supportive or tumor-suppres-
sive?

3.2. CAF integrins in pancreatic cancer TME

In the context of PDAC, the importance of integrins is indicated in
experiments where administration of FAK inhibitors left tumor
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angiogenesis, apoptosis and necrosis unaffected but reduced tumor size
and the number of CAFs and tumor-associated macrophages (TAMs)
within tumors [112]. To further determine the relative importance of
TME integrins it would require conditional deletion of FAK or specific
integrin chains in CAFs. The widely expressed integrin av33 has been
implied in PDAC in a mechanism where CAF-produced osteopontin
interacts with av33 on PDAC cells to stimulate EMT and cancer stem
cell-like properties by modulating FOXM1 expression at the tumor
stroma interface (Fig. 2) [113]. These osteopontin producing CAFs most
likely correspond to the myCAFs mentioned above. Separate studies of
human colon cancer have similarly demonstrated crucial interactions
between a distinct subset of CAFs at tumor stroma interface interacting
with osteopontin, which act by contributing to the formation of mi-
croenvironmentally defined cancer stem cells [114]. These data de-
monstrating intense signaling activity at stroma-tumor interface fit well
with the findings that CAFs at tumor stroma interface in breast cancer
and pancreatic cancer are distinct from CAFs elsewhere in the tumor
[26,27].

In support of a role of direct interactions of CAFs with collagen, a
novel function-blocking antibody to integrin all can block PDAC CAF
adhesion to collagen, collagen remodeling and spheroid invasion in a
manner dependent on the total repertoire of integrin collagen receptors
[67]. Based on immunohistochemical data with a commercial antibody
to integrin all combined with in vitro data involving PDAC CAFs, it is
suggested that a11f1 indeed is a major integrin, which can stimulate
PDAC cell invasion in an heterospheroid system [7]. Using a novel
mono-specific monoclonal antibody to integrin all, we can confirm
that a1l is expressed on CAFs in PDAC tumor stroma in vivo, but in
NG2-negative CAFs. It will be important to further study the role of
al1p1 in PDAC to determine the origin of all-expressing CAFs using
cell lineage tracing. In separate studies the role of fibronectin in the
PDAC TME has been studied. Interestingly, it has been demonstrated
that PDAC cells in a 3D collagen matrix migrate on elongated fibro-
blasts protrusions via cancer cell integrin a5B1 adhering to fibronectin
deposited on the fibroblast cell surface [115]. In a separate study av33
integrin is suggested to be a colon cancer CAF integrin, which together
with a5p1 is involved in FN fibrillogenesis depositing fibronectin on
cell surface and directing tumor cell invasion [60]. It will be interesting
to determine whether av33 has this function in different types of CAFs.

As already mentioned, in a detailed study of PDAC CAF interactions
with the 3D ECM it is elegantly demonstrated that avp5 regulates en-
docytosis of a531 integrin and thereby also influencing myofibroblastic
activation of these cells (Fig. 1) [57].

The potential role of PDAC CAFs has been examined in relation to
physiological laminin ligands where it is established that laminin-332
interacts with CAF a3p1 to support PDAC cell migration [55].

To summarize the role of integrins on PDAC CAFs, current data
suggest that al1B1 and a5p1 are major integrins in matrix assembly
and matrix reorganization involved in tumor cell growth and cell mi-
gration. avf3 and avf5 have both been found to assist or regulate the
activity of a5B1 whereas little is known about cross-talk of al1131 with
other integrins in the PDAC context. In tissue fibrosis avf1 integrin
plays an orchestrating role by activating TGF-B on myofibroblasts; it
will be important to determine if it has a similar role on (a) particular
PDAC CAF subtype(s).

3.3. Paracrine signaling in pancreatic cancer TME

Separate studies of genetic or pharmacological inhibition of Sonic
hedgehog (Shh) in pancreatic CAFs revealed similar effects as Ozdemir
et al. with undifferentiated tumors and decreased survival in mice as a
results of the disturbed Hedgehog (Hh) signaling [116,117]. In a study
by Pitaressi et al. the reason for this somewhat unexpected finding is
clarified [118]. Hh signaling molecule Smoothened (Smo) in stromal
cells lead to increased proliferation of PDAC cells, which could be
linked to a REN5 E3 ubiquitin ligase- mediated degradation of PTEN in
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Smo-null fibroblasts [118]. PTEN- deficient fibroblasts in turn were
found to activate TGF-a synthesis, which stimulated PDAC growth.
Further studies of the mechanism suggested that hyaluronan synthesis
is increased in PTEN”" CAFs via increased activity of hyaluronan syn-
thase 3 leading to decreased hydraulic permeability of the ECM. In
support of this mechanism being relevant in PDAC disease, low stromal
PTEN levels in PDAC patients correlated with poor overall survival. In
conclusion, although data had suggested a role for Hh signaling as a
target pathway in PDAC therapeutics, experimental data now paint a
picture of complex tumor-stroma cross talk in pancreatic cancer in-
volving Hh. Another recent example of the importance of stroma CAFs
involves a pancreatic cancer model and Panc02 cells. In this model
PDGFRf-positive CAFs were found to produce IL-33, recruit TAMs and
promote their differentiation into M2 macrophages [119] (Fig.2,
Table 2). IL-33 in turn stimulated the synthesis of MMP-9 by TAMs,
which has been suggested to be a major factor promoting metastasis
from microvessels. This is an interesting experimental model and it
would be interesting to trace these CAFs and analyze the dynamics of
the changing integrin repertoire during tumorigenesis. During metas-
tasis CAFs have been described to accompany the tumor cells [120], but
so far no similar association between tumor cells and TAMs has been
described; this is a possible scenario worthy of further investigation. In
an interesting study, single-cell RNA sequencing of PDAC cells co-cul-
tured with CAFs identified PDAC subpopulations with proliferative
(PRO) or EMT hallmarks, which were confirmed in patient PDAC tu-
mors [121]. In absence of CAFs, PDAC cells were mostly double-nega-
tive for these hallmarks, whereas PDAC with high CAF content were
predominantly double-positive (DP), the latest being associated with
poor patient survival. Mechanistically, the authors showed that CAF-
secreted TGF-B1 drove the DP phenotype by activating the MAPK and
STAT3 signaling pathways in PDAC cells.

A central question in future studies will be to try and determine
which are the tumor-supportive and which are the tumor-suppressive
types of CAFs in PDAC. Further studies of the paracrine signaling in
myCAFs and iCAFs should also focus on integrin expression repertoire
and the relative contribution of specific integrins to tumor-promoting
and tumor-suppressive CAF functions. It will also be important to de-
termine whether different CAF subpopulations hold prognostic value
and have different functional properties.

3.4. TME-mediated chemoresistance in pancreatic cancer

Using orthotopic genetic animal models such as KPC models as well
as biopsy material from pancreatic cancer patients, production of in-
sulin-like growth factors (IGFs) by TAMs and CAFs has been demon-
strated to contribute to TME-mediated chemoresistance [32,122]. IGF
receptors on tumor cell responded to IGFs by promoting proliferation
and survival. Treatment with IGF-blocking antibody in combination
with gemcitabine reduced tumor growth. Since integrins have been
shown to crosstalk and associate with IGF receptors [123,124], it will
be interesting to determine if they also contribute to IGF1R-mediated
chemoresistance. Some pancreatic cancer tumors are characterized by
increased activation of IL-1 receptor associated kinase 4 (IRAK-4) in the
stroma. In these tumors CAFs and PDAC cells both contribute to IL1-
B production and IRAK4 phosphorylation in a feedforward circuitry,
resulting in fibrosis and chemoresistance [125]. When IRAK4 is silenced
in such experimental tumors the ability of CAFs and PDAC to promote
fibrosis is reduced and the combined administration of IL1-3 antibody
and gemcitabine increases the effect of chemotherapy. The extensive
desmoplasia in pancreatic cancer is generally recognized as being a
barrier for successful immunotherapy. Following the new data in-
dicating an ever-increasing heterogeneity of CAFs, dynamic changes
from one state to another, it is clear that we are beginning to appreciate
the true complexity of the pancreatic tumor stroma. As we learn more,
the chances also increase that we will reach a better understanding of
the diverse roles of the pancreatic TME in chemoresistance.
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salt-and-pepper expression pattern in all four CAF subpopulations.
These discrepancies are presumably related to breast cancer subtypes
and stages, species differences and detection methodologies.

As already mentioned, applying cell lineage tracing methods in the
PyMT mouse model demonstrated the contribution of mesenchymal,
non-hematopoietic bone marrow cells to a PDGFRa.-, clusterin* -breast
cancer CAF subpopulation [43]. In vitro, bi-directional paracrine sig-
naling between tumor cells and this subpopulation of CAFs had effects
on both tumor cells and the CAFs. In this model clusterin, which has
pleiotropic effects including stimulating endothelial cell proliferation,
was suggested to promote tumor growth mainly via enhancing angio-
genesis. This further highlights the complexity of fibroblast hetero-
geneity in breast cancer and suggests that this challenging issue re-
quires additional investigation with regards to biomarker expression,
spatial localization and functionality of these CAFs in all the subtypes
and stages of breast cancer disease.

4.2. Matrix receptors and desmoplasia in breast cancer; integrin all on
CAFs

One of the most notable features of tumor-stroma interactions in
breast cancer is the desmoplastic reaction. Extensive desmoplastic re-
action detected in normal breast tissue in form of mammographic
density is strongly correlated to an increased risk of breast cancer de-
velopment and has been proposed as a diagnostic and prognostic
marker. Indeed, invasive ductal carcinomas often appear as a scirrhous
mass of a stellate morphology caused by the high desmoplastic reaction
observed in these tumors. The ECM composition and architecture as-
sociated to this fibrotic reaction emerge from an intimate crosstalk
between fibroblasts and epithelial cells in breast tissues. Desmoplasia
has also been linked to increased activation of integrins in breast
cancer. In a breast cancer model, tumor secreted lysyl oxidase-like 2
(LOXL2) activates fibroblasts and promotes the expression of aSMA in a
FAK-dependent manner [128]. A previous landmark paper has de-
monstrated that increased tumor stroma stiffness promotes tumor pro-
gression by 1 integrin signaling in a FAK and Rho-signaling dependent
manner [50]. Likewise, in a mouse model of breast cancer, FAK in-
hibition decreases tumor growth and reduces infiltration of leukocytes
and macrophages [129,130]. Together, these studies support the notion
that B1 integrin and FAK sustains the pro-tumor functions of CAFs.

From the perspective of CAF heterogeneity, the use of CD29 as a
biomarker of CAFs in the study by Costa et al. [27] is interesting, since
CD29 (integrin 1), is a common integrin B subunit of 12 different in-
tegrin af3 heterodimers, and is thus widely expressed on all cells of the
body [49]. Keeping this in mind, CD29 has limited use as a biomarker
on its own, and even in combination with other markers, extreme care
has to be taken when using high or low CD29 expression as criteria to
identify a certain CAF subtype.

The cooperation between integrins and receptor tyrosine kinase
(RTKs) in tumor and stromal cells regulates cell invasion during me-
tastatic dissemination in breast cancer. In this context, we have recently
shown that stromal integrin all displays a pro-tumorigenic and pro-
metastatic activity in breast cancer and strongly associates with a
PDGFRJ} + CAF subset (Fig.1) [10]. Integrin all expression is strongly
upregulated in the stromal compartment during mammary tumor pro-
gression. Histological analyses revealed a strong association between
integrin a1l and PDGFR, both in clinical breast cancer samples and in
the pre-clinical transgenic mouse MMTV-PyMT model. Among several
tested stromal markers (PDGFRa, PDGFRf, aSMA, FAP, FSP1 and
NG2), this collagen-binding integrin was mostly associated with a
PDGFRB™ CAF subpopulation at late stages of invasive tumors. As both
integrin all and PDGFRp are well-known regulators of ECM, it is
plausible that the identified CAF subset overlaps with CAF subpopula-
tion described in the previously aforementioned study [127]. Indeed,
genetic ablation of integrin all in the PyMT model drastically reduced
not only tumor growth and metastasis, but also the desmoplastic
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reaction in these tumors, further highlighting the contribution of this
specificall™ CAF subset to tumor progression through ECM regula-
tion. This is further supported by the fact that mCAFs are thought to
derive from resident fibroblasts, as well as integrin a11l/PDGFRB*
CAFs. Mechanistically, this study revealed that integrin al1l/PDGFRf}
crosstalk in CAFs endows breast cancer tumor cells with pro-invasive
features through the deposition of tenascin-C (Fig.1, Table 2). Tenascin-
C was strongly expressed by the same subset of CAFs expressing integrin
all and PDGFR in the late stage PyMT tumors, as well as in clinical
samples of invasive breast cancer. Overall, this study discloses an ex-
ample of a collaborative crosstalk between an integrin and a growth
factor receptor in CAFs, which acts as a driver of tumor invasiveness in
breast cancer. Similar molecular partnerships have been previously
reported, although not on CAFs. Indeed, microenvironment-induced c-
Met/p1 integrin complex formation was shown to sustain breast cancer
metastasis via the promotion of c-Met phosphorylation, as well as an
increase of integrin affinity for fibronectin on the tumor cells [131].
Further examples of cooperation between integrins and growth factors
receptors in the context of cancer are thoroughly discussed in previous
reviews [132,133]. It is worth noting that a2 integrin subunit, which
heterodimerizes with B1 integrin subunit to form another fibrillar col-
lagen-binding integrin, exerts opposite functions to a11f1 in a related
mouse breast cancer model. In contrast to all integrin chain, integrin
a2 chain is expressed not only by CAFs, but also by tumor cells and
other stromal cells. Furthermore, unlike integrin all, the a2 subunit is
downregulated in human breast cancer and acts as a metastasis sup-
pressor in a murine model [134]. Indeed, a2-deficient MMTV-neu mice
display increased metastasis, which is suggested to result from the in-
creased capacity of tumor cells to intravasate into the bloodstream.
These studies suggest opposite effects of two of the (1 integrin family
members with affinity for collagen (@231 and a11f1) in breast cancer.

Discoidin domain receptor 2 (DDR2) is a cell surface tyrosine kinase
activated by collagens [5]. The function of DDR2 in both tumor cells
and CAFs in a breast cancer model has been studied by performing
global and tumor cell specific deletion of DDR2 [135]. Global deletion
of DDR2 does not affect primary tumor growth but results in reduced
metastasis. Closer examination reveals that DDR27" stroma contains
reduced amounts of fibrillar collagen, with reduced diameter and re-
duced organization (DDR2 CAF dependent function). DDR2 expression
in tumor cells in turn appears to contribute to collective tumor invasion,
suggested to occur by DDR2-dependent stabilization of EMT factor
SNAIL1. Since there is a certain amount of crosstalk between p1 in-
tegrins and DDR receptors it is possible that integrins, together with
DDRs, in this model also are involved in tumor cell invasion and me-
tastasis [136]. In support of a role of DDR2 in metastasis, small mole-
cule allosteric inhibitor WRG-28 inhibits tumor-microenvironment in-
teraction and tumor invasion [137]. It will be interesting to sort out a
possible cooperation of DDR2 and integrins in tumor metastasis and
whether such a link exists, identify the specific integrin(s) involved.

In summary, an important cooperation between integrin and RTKSs is
detected in breast cancer CAFs, raising a number of interesting ques-
tions. Future studies will for example determine if one and the same
integrin can cooperate with different RTKs in different tumor stroma
contexts or if the cooperation is integrin-specific and limited to some
kinases. This also extends to mechanism of TME-mediated chemore-
sistance where data is emerging on the role of integrins in mediating
chemosresistance to drugs targeting RTKs [99]. These mechanisms have
mainly been described in cancer cells, but similar mechanisms are likely
to operate in CAFs. Finally, the role of av integrins (TGF-f activating
mechanisms), o531 integrin and fibronectin matrix assembly, in rela-
tion to the collagen remodeling al1f1 integrin will be important to
study more in detail in breast cancer, just as in other desmoplastic
tumor types.
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4.3. Paracrine mechanisms in breast cancer TME

In a now seminal paper, an important role of stromal cell-derived
factor 1 (SDF1; released from CAFs) and the corresponding receptor
CXCR4 (on breast cancer cells), in tumor growth, was demonstrated
[138,139] (Fig.2). In a more recent study, using a mouse model for
triple negative breast cancer (TNBC), monocytes and myeloid-derived
suppressor cells (MDSC) were found to negatively affect survival, which
was ascribed to their immunosuppressive role and effect on invasion
and angiogenesis [140]. When analyzing the effect MDSCs on stroma
formation it was found that these cells stimulated stroma formation by
activating CAFs and by recruiting immunosuppressive myeloid cells.
Curiously, this effect was specific for TNBC cells and not seen with other
breast cancer types and found to be related to their synthesis and se-
cretion of CXCL16.

PDGF-BB-PDGFRp signaling is one of the main pathways, which
promotes the fibrotic reaction in cancer. In a paracrine manner, tumor
and stroma-derived PDGFs activate PDGFR[ on CAFs and pericytes and
promote ECM deposition and remodeling, increase the interstitial fluid
pressure, sustain the angiogenic process and restrain the immune sur-
veillance [141]. Stromal PDGFRs have been proposed for long-time as
biomarkers for prognosis and response to RTK inhibitors (RTKIs) in
cancer disease [83]. Previous works established that high PDGFRf ex-
pression in CAFs and pericytes is associated with aggressiveness and
poor prognosis in breast cancer [83]. Multivariate analyses revealed a
positive correlation between high stromal and perivascular PDGFR[
expression and poor prognosis markers such as high histopathological
grade, high proliferation, estrogen receptor negativity and HER2 am-
plification [82,142]. Furthermore, increased serum PDGF level in breast
cancer patients was positively correlated with disease prognosis and
recurrence in breast cancer [143]. Elevated PDGFR[ stromal levels
have been also related to impaired therapeutic response. A previous
study revealed that breast cancer patients with low stromal and peri-
vascular PDGFR[} expression benefit more from chemotherapeutic
agents such as tamoxifen and epirubicin than patients with high
PDGFRJ expression [84].

Similarly, PDGF-CC-PDGFRa paracrine signaling has also been re-
ported to contribute CAF-cancer cell crosstalk in breast cancer. In a
recent study, by using clinical specimens and a genetically MMTV-
PyMT modified mouse model for PDGF-CC, the authors demonstrated
that tumor epithelium-derived PDGF-CC induces a basal-like ER-nega-
tive phenotype, rather than a luminal ER-positive molecular phenotype
of BC through the activation of CAFs [144]. These PDGF-CC-activated
CAFs secrete pro-tumorigenic growth factors such as hepatocyte growth
factor (HGF), insulin-like growth factor binding protein 3 (IGFBP3) and
the secreted glycoprotein Stanniocalcin-1 (STC1) to promote fibrotic
and angiogenic responses in the TME of PyMT tumors. Furthermore,
genetic ablation and pharmacological inhibition of PDGF-CC resulted in
a conversion of basal-like phenotype of breast cancer into a ER-positive
state, which conferred sensitivity to tamoxifen therapy. This study
highlights CAFs as functional mediators of the molecular subtype of
breast cancer and as TME regulators of the therapeutic response to
endocrine therapy.

4.4. TME-mediated chemoresistance in breast cancer

Hedgehog ligand activity is detected in one third of TNBC. In an
animal model of TNBC with increased Hh levels, an increased produc-
tion of fibroblast growth factor 5 (FGF5) and an increased collagen
remodeling activity was observed in CAFs [145]. The increased con-
centration of remodeled collagen at tumor stroma interface correlated
with increased pFAK levels as well as increased number of CSCs at the
tumor-stroma interface. In this breast cancer model, treatment with the
smoothened inhibitor (SMOi) sensitized mice to chemotherapy. It will
be interesting to determine what specific integrins are present at the
tumor stroma interface to mediate the increased pFAK .
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Studies in breast and pancreas cell lines offer additional detail as to
how CSC formation via EMT may occur. Snaill, which is a central
transcription factor in EMT is an unstable protein that is ubiquinated. In
experiments performed by Lambies et al., deubiquitination by a specific
ubiquitinase (USP27X) contributes to Snaill stability in turn con-
tributing to increased EMT, increased amounts of CSCs and increased
chemoresistance [146]. In addition, Snaill stabilization in CAFs con-
tributes to increased CAF activation. It will be interesting to see whe-
ther CAF Snaill in this context integrates with integrin-dependent
mechanoregulated signaling. Such mechanoregulation in myofibro-
blasts involving Snaill has recently been shown to contribute to fibrosis
and depend on both YAP/TAZ and MRTF transcription factors [147].

In an impressive study of breast cancer chemoresistant patients, CAF
subsets were identified [6]. These CAFs expressed the usual markers,
aSMA, PDGFRS, FAP, FSP1, but were distinguished by the expression of
two additional cell surface markers CD10 (zinc metalloprotease) and
GPR77 (anaphylatoxin receptor). In this careful study the activation of
GPR77 by autocrine production of C5a leads to: 1) production of IL-6
which in turn increased the abundance of CSCs (by providing a survival
niche for CSCs) as well as, 2) increased expression of the multidrug
transporter ABCG2, largely responsible for the observed chemoresis-
tance. The CD10* GPR77* CAF subset thus sustained cancer stemness
and promoted tumor resistance. Targeting this subset of CAFs further-
more restored chemosensitivity. The authors suggest that targeting the
CD10*GPR77" CAF subset could be an effective strategy against CSC-
driven solid tumors. It will be interesting to relate this subset of CAFs
with the different breast cancer CAF subsets identified by Costa et al., as
well as with CAF subsets in other cancer forms [27]. It will also be
important to characterize the role of integrins in TME-mediated che-
moresistance in breast cancer.

5. Lung
5.1. Fibroblast heterogeneity

The lung is also a complex organ where fibroblasts have a number of
functions associated with normal lung function. Cell lineage tracing has
been performed to identify and characterize the origin of fibroblast
subsets [148], but in mouse lung, single-cell transcriptional analysis has
been even more instrumental and has resulted in the identification of
five subsets of fibroblasts in healthy lung and six subsets in fibrotic
lung, in addition to a mesothelial subtype [19]. In normal lung these
were grouped as myofibroblasts (Acta2+), col3al matrix fibroblasts
(Col3al +;Itga8+), Col4al matrix fibroblasts (Col4al +;dcn+), lipo-
fibroblasts (Lp1 + ) and mesenchymal progenitors (CD52 +) [19]. In the
fibrotic lung a distinct fibroblast cell type with high PDGFRp expres-
sion, distinct from pericytes, was identified [19]. In non-small cell lung
carcinoma (NSCLC) stroma, high expression of PDGFRa is associated
with better outcome in two independent patient datasets, while
PDGFRJ expression differently affects patient's prognosis in the two
cohorts [149]. In light of these findings, great care is needed when
considering PDGFRs as NSCLC therapeutic targets. Whereas studies of
pancreatic and breast cancer tumors have started to unravel different
subsets of CAFs, less detailed information is published on CAF hetero-
geneity in NSCLC. In one interesting recent study the influence of
vascular adventitial fibroblasts on A549 lung cancer cells in a xenograft
model indicated a higher tumor-promoting activity of the adventitial
fibroblasts compared to non-vessel associated lung fibroblasts [150].
Microarray analysis further demonstrated a high level of podoplanin
expression in these adventitial fibroblasts, which in combination with
other studies suggest a role for podoplanin in tumorigenesis and lymph
node metastasis. The study by Hoshini et al. in addition to demon-
strating CAF heterogeneity in the lung tumor stroma, suggests that a
perivascular environment in lung constitutes a specific niche for tumor
progression in the lung. Podoplanin expression has recently been shown
to regulate 1 integrin levels in keratinocytes [151], whether this
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activity also applies to NSCLC CAFs remains to be determined. Studies
using FAP antibodies as a biomarker has also provided information,
which clearly indicates the existence of CAF subsets in the lung [152].
Immunostaining of human NSCLC tumor sections in studies by Kilvaer
et al. typically showed aSMA and FAP expression on different CAFs,
suggesting that in the lung FAP is not highly expressed on myofibro-
blastic CAFs. The study also points out a major weakness with FAP
antibodies in the context of the TME; namely, FAP antibodies also im-
munostain macrophages. In tumors from NSCLC patients with high le-
vels CD3* and CD8™-T cells, high FAP levels on CAFs was associated
with better prognosis. The latter finding indicates that FAP-directed
therapy as a general anti-stroma therapy needs to be performed with
great caution, and as already mentioned might not be suitable as a
general anti-stroma therapy, but rather be suitable for a subset of tu-
mors. That the general expression pattern of CAF markers needs great
attention in therapy situations is also illustrated by experiments with
FAP-directed immunotherapy where a side effect of the tumor directed
treated therapy was cachexia, due to expression of FAP in muscle [74].
Finally, as yet another example of the complex events that take place in
the TME, a recent study of a cohort of NSCLC patients identified glu-
tamin-fructose-6-phosphate transaminase 2 (GFPT2) in CAFs as being
responsible for increased glucose uptake and metabolic reprogramming
in the TME [153].

5.2. Integrins in lung cancer TME; the role of integrin all

In 2002 the Tsao laboratory published a list of 6 novel candidate
genes for lung adenocarcinoma (obtained by comparing pooled RNA
from tumors with normal lung RNA), which included Lc-19, HABP2,
CRYM, CP, COL11A1 and ITGA11 [154]. In 2011 Navab et al. published
a molecular signature for the NSCLC stroma [155]. Paired matched lung
normal fibroblasts and lung CAFs were isolated from 15 patients and
their transcription profiles established. This effort resulted in identifi-
cation of 46 differentially expressed genes in CAFs that formed a
prognostic gene expression signature. Interestingly, six of the identified
genes could be induced by TGF-f in normal fibroblasts, including the
collagen receptor al1f1, identified in the original gene set from 2002.
Comparison of these CAF genes with tumor stroma genes indicated a
shared upregulation of 4 genes; ITGA11, THB2, COLI11A1 and
CRTHRCI. In the same study analyses of epigenetic changes identified
limited methylation changes in tested genes. Following the identifica-
tion of all as one of a limited set of genes being upregulated in the
stroma of experimental NSCLC tumors, the role of all in lung cancer
was explored further. In xenograft models co-implantation of NSCLC
tumor cells with mouse embryonic fibroblasts lacking all greatly re-
duced NSCLC tumor growth [68], which in this xenograft model was
correlated to all- dependent secretion of IGF-2. To functionally further
test the potential contribution of all to CAF function in NSCLC the
integrin a11”~ mouse strain has been very helpful [65]. Analysis of
NSCLC tumor growth in the a11”” mice demonstrated that absence of
all in the stroma impeded NSCLC tumor growth [8] and metastasis.
Analysis of tumor stroma demonstrated reduced organization of the
collagen stroma and reduced tumor stiffness. Analysis of signaling
status demonstrated reduced FAK and ERK phosphorylation in the
tumor stroma from all " mice and reduced expression of aSMA in the
tumor stroma. Interestingly, integrin all has recently been shown to
regulate the lysyl oxidase-like 1 expression in lung CAF to mediate
NSCLC cell invasion and tumor growth [9] (Fig.1). Protein-protein in-
teraction network analysis in addition identified a number of interac-
tions affected in the al1”” stroma and previously identified in CAF
differentiation and tumorigenesis, including latent transforming growth
factor Beta binding proteins 3 and 4 (LTBP3 and 4), WNT1- inducible
signaling pathway protein2 (WISP2), insulin-like growth factor binding
protein 2 and 4 (IGFBP2 and 4) and syndecan-4. It will be interesting to
determine whether, and how, these proteins take part in all-mediated
effects in CAFs and other types of stromal cells CC.
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5.3. Paracrine signaling in lung TME

Separate gene expression studies in mouse lung CAFs compared
with normal mouse lung fibroblasts identified a gene signature of up-
regulated genes in CAF, which could be used to predict survival in
patients with NSCLC [156]. In this study 164 genes were identified,
with little overlap with the Navab studies [155]. Functional studies
furthermore identified a member of the IL-6 family, CLCF1, secreted
from CAFs, as being pro-tumorigenic (Fig.2). IL-11, which has been
found to work in a paracrine mode in tumor-stroma interactions in
other models of lung cancer, was inactive in this model system [157].
The authors suggest that tissue specific factors determine interleukin
isoforms and interleukin receptor subtype as determinants of paracrine
signaling specificity in different tumor and tissue contexts. Most likely
this pairing and switching of receptor subtypes introduced a molecular
specificity is a strategy that might also apply to receptor-ligand pairs
involved in cellular interactions with the ECM.

That CAFs can regulate plasticity of lung cancer stemness via
paracrine signaling was shown in experiments, which identified IGF-2
producing CAFs as inducers of Nanog expression in cancer cells and
thus established that these lung CAFs constitute a supporting niche for
cancer stemness [158]. With regards to IGF-2 it is interesting to note
that the integrin a11f1- expressing fibroblasts in the xenograft model
of lung cancer produce IGF-2 [68], and part of the pro-tumorigenic
action of al1f1 might thus be related to a stemness-stimulating ac-
tivity.

5.4. TME -mediated chemoresistance in the lung

Regarding studies of TME-induced chemoresistance in the lung,
CAFs have been reported to produce IGF-2 as an inducer of the ABC
transporter P-GP in A549 cells and to mediate drug resistance [159].
The proteoglycan serglycin (produced both by cancer cells and CAFs)
and acting via CD44 on cancer cells has been reported to induce Nanog
expression and to confer chemoresistance [160]. Lung adenocarcinoma
CAFs treated with Cisplatin upregulate IL-11 and confer chemoresis-
tance to lung cancer cells by activating STAT3 anti-apoptotic pathway
[157]. In agreement with these in vitro findings, patients with high
levels IL-11R display poor response to Cisplatin. It will be important to
relate these studies of chemoresistance to changes in cell-ECM inter-
actions. As the paracrine signaling changes in response to che-
motherapy it will thus be important to identify changes in integrin
expression and function in the TME.

6. Conclusions

It is likely that next decade, new biomarkers, better antibody re-
agents, combined with new technical achievements, will lead to the
identification of multiple subsets of CAFs in the context of breast-, lung-
and pancreatic cancer. It will be important to characterize the role of
integrins in these different subtypes of CAFs. Emerging data suggest an
ever-increasing heterogeneity of CAFs, which most likely will be re-
flected in tissue- and subtype-specific modes of integrin actions in these
different CAFs. Function-blocking integrin antibodies and conjugation
of these into antibody-drug conjugates is likely to generate new treat-
ment options, including alternatives that increase the efficacy of im-
munotherapy. One can thus still be optimistic that continued studies
will ultimately present yet unknown biomarker and drug target op-
portunities in the integrin CAF landscape in the desmoplastic tumor
stroma. We look forward to re-visit the tumor microenvironment re-
search field in a decade and be amazed about the progress.
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