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Abstract

The stellarator configuration and tokamak configuration with helical fields
are studied both from an equilibrium and stability point of view. The
model is resricted to a surface current model wiht a sharp boundary be
tween plasma and vacuum. A general derivation of equilibrium and stability
based on the Energy Principle is given. Physically the unstable modes are
identifyed as external global modes. Detailed numerical results in differ
ent parameter regimes are presented and discussed. Critical /?- limits for
equilibrium and stability are obtained and in particular wc show that in
ceartain parameter ranges there exist a high-/3 as well as a low (3- region of
stability.
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Chåpter 1

Analytic Derivation

1.1 Introduction

This work is primarily motivated by the promising aspects of the stellarator
configuration. Recent results suggest that a toroidal device with helical
fields may have some advantages compared to axisymmetric devices, i.e.,
tokamaks, with regard to controlling disruptions. In this context one could
think of two classes of systems: (a) pure stellarators (no ohmic heating
current) or (b) a tokamak with superimposed helical windings. The present
work is generalization of previous work W which was restricted to one type
of helical field (one t being the poloidal multipolarity) and no
vertical field. Wc have now been able to generalize this to include any
combination of helical fields and also an arbitrary vertical field (which is
essential for håving an average magnetic well). This applies both to the
equilibrium and the stability analysis.

The study is restricted to the surface current model, where wc assume
all the current to be flowing in a thin sheath forming the boundary between
plasma and vacuum. Previous experience suggest that such a model gives
a reasonable description of the equilibrium and the stability properties of
the global modes in such systems.

The main part of this work is analytic, and wc resort to numerical
solutions only at the final step both in the equilibrium and the stability
analyses.

The equilibrium is established by the Princeton stellarator expansion in
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the inverse aspect ratio (e) . Wc can solve for the critical /? for any net
current, including the pure stellarator case with zero net current.

The stability part is based upon the MHD-energy principle. Wc are
able to write this in a concise form suitable for numerical evaluation.

Wc discuss critical /?-limits from equilibrium and stability for systems
with different combinations of helical fields.

A brief preliminary account of this work was presented elsewhere^.

1.2 Equilibrium
Wc consider the equilibrium and stability of a toroidal stellarator/tokamak
hybrid system as described by the sharp boundary surface current model.
Although the analytic as well as the numerical work permits the study
of hybrid systems, wc shall here consider the case of a pure stellarator
configuration (no net current). The geometry is illustrated in flg. 1. The
cylindrical coordinates (i?, 0. z) are related to toroidal coordinates by R =
Rq -f r cos 9, Z = r sin 6, <j> = —z/Rq.

As stated earlier this class of configurations are characterized by håving
arbitrary helical fields, i.e. combinations of several helisities simultaneously
as well as a vertical field. The fields are written as

(i.i)

where h is the helical wavenumber and ?/> and x represents the helical and
vertical fields respectively. The inverse aspect ratio is a/RQ =e where a is
the average plasma radius. Our expansion parameter is 6, the measure of
the amplitudes of the helical fields, and the following ordering is assumed,

(1.3)

where fl = p/^Bj (p is plasma pressure) and iV = Jißq, the number of
helical periods.

Bp/asma = Bib , Bvacuum = £?o(b + b) ,

bs^ + ivtø + x), (1.2)

e/*^ A ***** —_ *-*j R
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Wc introduce new variables by x = hr, s = hz, and take the plasma
surface to be given by x = x(o,s). By solving the problem order by order
in 8 wc obtain

Wc define the following important quantity

where * means complex conjugate (c.c). From now on V = Vo = +
e«— å- The solution to the problem can be written asv 10 Off  

(1.13)

x(0,8)=Xo(6) + Xi(9,3) + ...

Br/B^^ +xM + + CK^),ØKo OXq OXq

aeltsi ~xodø + x 0 dodxo + x 0 dø x% dø + l J '

os os osoxq hRo

b = \V{</>2 (*, 6) + «, 3)} + O(64 ) .h
For convenience wc write

1 -  i

</>i = 2^ie' 5 + cc" 'Xl = 9 iie" + C<C< '

= Vi^3eta + cc- ' X2= 2^2e' fl + C ' C ' '

d d x 0 d d d d dx0
fa = ~dx~o~~xlo~do' ~dé = 'dé^ XQ ~dx~Q ' Xo = ~do

F= i {V& xV&• e, + 2(x2 - «)} = *o)  (1.12)

dF
—r = 0, (determines Xo(0)) ,du
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Xl ~ <fn ' dn (1.14)

(1.15)

(1.16)
where

(1.17)

(1.18)

(1.19)

(1.20)

From eg.(1.16) wc notice that b is determined by a quadratic equation
and this equation has two branches of solutions. However, the stellarator
case with no net current, is obtained only from one of these branches, which
wc shall discuss here. Wc also notice that unless Ø/e is below a certain
value there is no solution, this condition for solution determines the critical
equilibrium /?-limit. The problem is solved numerically by first integrating
eg.(1.13) to find the surface, and then determine Å and the critical 0 for
a given net current. Some typical crossections for different configurations
are given in figs. 2a and 2b. More details about the equilibrium derivation
is provided in appendix A. In the following figures case C and case D refer
to table 1 on page 13.

-—(V>3 ets + c.c. = — —(-i^ ,

b2 + 2lh b -(0/e)(w +A)= 0,

h 1 ty* n . i, *o

h-frr.
h = \ih\ sgn(^x0 ) = ~7~QoFxo (helical transform) ,

1 " 2xn
w= — I V^i | 2 H cos 0 (magnetic well) ,Zc 3Cav

xav =ha and Å is a constant related to net current.
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Fig. 1

HORIZONATAL DIRECTION

(a)
Fig. 2

HORJZONATAL DIRECTION

(b)

xO-surface case C: Bv=o and 0.3
xO-surface case D: Bv=o and 0.3
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1.3 Stability Analysis

Wc investigate the stability of this configuration by means of the Energy
Principle ®. From previous experience the surface current model provides a
reasonable description of long wavelength (low toroidal mode number, low
poloidal mode number) instabilities. A simplifying feature of the analysis
follows from the fact that in minimizing SW the most unstable modes comes
out to be incompressible to leading order i.e. V-£o = 0 with £0 the leading
order plasma displacement. Wc notice that in general SW can be reduced to
a form which only depend on a single scaler quantity, £± = n'£ evaluated
on the plasma surface.

For the surface current model, the potential energy SW is conveniently
written as a plasma-, surface- and vacuum-contribution

(1.21)
where

(1.22)
The simplified expression for SWP , reflects the fact that the most unstable
modes are almost incompressible, and Bi and Bi are the perturbations
in the magnetic field in the plasma and vacuum regions respectively, £ =
£(#, z) =n • £| rp is the normal component of plasma displacement evaluated
on the plasma surface (r = rp). The notation [A] denotes the jump in A
across the sharp boundary from vacuum to plasma.

1.3.1 The Perturbation

The first step in the stability analysis is the specification of the perturbation
£. The most general form of £ can be quite complicated in an arbitrary
three- dimensional geometry. However, if wc restrict the attention to long
wavelength modes and make use of the stellarator expansion, then the most
general form of £ can be written as

(1.23)

8W = SWP + 8Wa + 6WV ,

6Wp = \J\Bi\ 2dT> 6Ws = yjZ\2 n-Vll(p + 82/2)]]ds,B 2 /2)]]ds, 6WV = i Jjßtfdr

W,*) = {&(*) + Ht+e" + £-e-''} + 62M9,s)}e""
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here, k = n/hRo = n/N , n is the toroidal wavenumber of the perturbation
and "the long wavelength assumption" implies k«en » S 2. The quantities
£o , f+ , £_ and £2 are each of order unity, and it is these functions which
must be varied to minimize SW. (Note that a slightly different definition
of f is used in eq.(C3). Eventually, by analytically minimizing BW , f 2
is eliminated and £+ and £_ are expressed in terms of £0 - Therefore the
final minimization requires the variation of only one single scaler quantity
of one variable £o(#)-

Physically £0 represents the basic "flute like" contribution to the per
turbation and £+ and £_ represents helical sideband distortions induced by
the helical field.

1.3.2 Surface Energy
The second step in the analysis is the evaluation of SWS , which is the only
term that can give rise to an instability. A straight forward calculation
shows that the surface element ndS can be expressed as

(1.24)

(1.25)

This formula is valid fo an arbitrary, (unexpanded) three-dimensional sur
face, r = rp(o, z). Wc note that Vx B =0 in both the plasma
and vacuum region and that n • B| rp =0. Consequently wc may write
n • V(p -f = —B• (B • V)n. After a lengthy calculation, this term can
be evaluated and substituted into SW3 . The result is

w. .I/™,..<,.g{M{1 _ r,|(±&)>

-Mé^)-^-)]}-^)

ndS = n3 (rpR/hßo)dods, 0< $ < 2?r, 0 < s < 2nN ,
where

/i i 1 drp Rodrp
n = n./|n.|, n^e,--^, - --£ez
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Eg.(1.26) is valid for an arbitrary surface given by r = rp (o, z).
Wc now substitute the expanded form of the equilibrium and the per

turbation into the expression for 6WS . After a considerable amount of
algebra the first non-vanishing terms are of order 64 and can be written
as

where

A - 1 c.2pl 2 r, ; 1 ryn d Id
2 4e dn Qo dn

(1.28)

and C is the circumference of the plasma boundary.

(helical transform) , (1.29)

(magnetic well) , (1.30)

(1.31)

the last equation determines b for a given current (A ) and

(1.32)

Notice that in order to arrive at this form + and £_ has to be determined
from the plasma and vacuum energies, which is discussed in the following
section, and arclenth variable v is replacing 6, where

(1.33)

Details of this derivation are given in appendix B.

i^. =Af |6| 2 ibV  lh - + 245] - f£U, (1.27)ZTTito •/ o ( æoQo 2e dn J y

h = \lh\ sgnFXo = — QqFX 0,

1 ._« 0 2^o
w = — |V^!| 2 + — cosØ

b2 + 2lh b - (0/e)(w +A)= 0 ,

de c
— = -— , o<w<l.
av xqQo
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1.3.3 Plasma and Vacuum Energies

The perturbations which minimize 8WP and 6WV , subject to the con
straints V• B x =0, V• Bi = 0 has Vx Bx = 0 and Vx Bj =0.
Therefore the magnetic fields that minimizes 6WP and 8WV have all the
currents flowing on the plasma surface. As a result we can write

(1.34)

We require V regular at the origin and V regular at infinity (no con
ducting walls which gives a pessimistic estimate on stability). Under these
conditions, the plasma and vacuum terms can be converted to surface in
tegrals in the usual way

The problem now is to express V, V and ns •VV, ns •VV in terms
of £ = £(6,z). This is accomplished in two steps. First we observe that
na •VV, and ns •VV" are related to by using the boundary conditions
n-Bi = n-B = 0 at the plasma- surface. Secondly, after some algebra
and analytic minimization using the freedom to choose £2 we obtain

(1.36)

(1.37)

Details are given in appendix C.
Here k? is the toroidal mode number. We are now left with the

problem of determining V* and V* at the boundary (V* is the complex
conjugate of V). We use a Greens function technique as described in^
for doing this. We also use truncated Fourier expansion in v to represent
all physical quantities. The perturbation £(v) is represented as a vector
in Fourier space and 8W can be convehiently written in matrix form

Bx =W, B1= VVr , with V2 V = 0 and V2 Vr =0.

SWp = I [T^V*na -VVdeds, 8WV = -\ f s S7Vd6ds . (1.35)2 J niio * J hfto

s  g/:{£««H"-w"'
S = -é/.{éwfc +»>]+**}*»*•
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SW » £* W £• (1.38)
Let Åmtn be the smallest eigenvalue of W. Wc then have that

> 0 is a necessary and sufficient condition for SW > 0, i.e. stability
is determined by the sign of Amtn . A numerical procedure is used to
determine Åmtn and a scan in /? is used to determine where Åmtn
changes sign, which correspond to the critical value of stable f}. The
critical stability fi curves in figs. 3 - 7, 11 - 14 are determined by this
procedure.

The details of the derivat ion of the W- matrix is given in appendix D,
where W is given by eg.(D.45).
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Chapter 2

Numerical Procedure

The final steps in both the equilibrium and stability analysis must be done
numerically. The numerical code has two main elements, the equilibrium
part and the stability part. The equilibrium code has the following input
parameters: The helical field amplitudes, the average radius of plasma
crossection, and the vertical field. (One can also have a non zero net
toroidal current as input parameter.) The helical field amplitudes are nor
malized so that each amplitude given, corresponds to the transform of
the actual helical field, provided there is only one helical field component
present and with the vertical field set to zero. Notice that the net trans
form produced, when there are several helical fields of different helisities
as well as a vertical field, has a rather complicated dependency on the field
amplitudes. This total transform can, however, easily be determined nu
merically. The equilibrium code provides the necessary information for the
stability analysis. The following quantities as functions of 9 are provided:
xo(6) xo (0), ih {0), V-lh (6), W(0), dW(0)/dn as well as related quanti
ties. In figs. 8, 9 and 10, wc have plotted "shear", "well" and "transform"
versus vertical field. These quantities are in the general case a function
of 0. Wc have made the following simplification when these quantities are
plotted. As representative of "shear" wc have tåken the maximum value of
V -ih and for "well" wc have tåken the minimum value of dW(0)/dn with
respect to 6. For the transform ih wc have plotted the total average value.
The equilibrium code also compute a maximum value of (3 for obtaining
equilibrium for a given net toroidal current, f3ccTit . One can at this point
also give a value of /? < (3ccr i t and compute the corresponding equilibrium.
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The stability code uses this part of the equilibrium code when iteråting to
find the critical 0 for stability. The stability code uses the information
from the equilibrium code to test for stability, based on matrix manipu
lations leading to the <$W-matrix. First the Greens function problem is
solved numerically to account for the plasma and vacuum contributions to
SW. Then the plasma-surface contribution is computed. These three
contributions add up to give the full SW- matrix. The next step is to
minimize SW numerically. The £W-matrix is symmetric, and the lowest
eigenvalue corresponds to the minimum value of SW. Since wc are not
concerned with growth rates, wc need not normalize the eigenfunctions.
Stability changeover occurs when the lowest eigenvalue of the SW-makrix
changes sign. A negative eigenvalue corresponds to an unstable system.
When all eigenvalues are positive it means that the system is stable. The
normal procedure is as follows: First compute the equilibrium and check
whether this equilibrium is stable or unstable for the actual value of Øecrit-
If it is unstable, then decrease 0 to find the critical 0 for stability. If it
is stable, it could still be unstable for lower 0- values, and then become
stable again for even lower 0- values, as is shown in fig. 5 and fig. 6. To run
a typical case, i.e., compute the equilibrium and test for stability requires
approximately 3 sec. of cpu time on a Cray X-MP computer.

2.1 Results and Discussion

When presenting these results one should keep in mmd that there is a diffi
cult problem of optimization as far as finding the best regime of operation
in parameter space. Basically wc have a six parameter problem: four
helisities, a vertical field, and the plasma crossection. If a net current is
included this adds one more parameter. The plasma crossection is scaled
with the helical wavelength. Concerning 0 and e the critical parameter
is the ratio Ø/e. The results will be given in terms of this parameter, and
will apply to any value of e within the limits of validity of the expansion.
Given the six basic parameters the ratio Ø/e is determined as a critical
value for obtaining equilibrium and stability.

Thus, notice that in the following figures the BETA-axis is scaled as
BETA = Ø/e and the B - vertical axis is scaled as B — vertical = By /eB0 .
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2.1.1 Stellarator

Wc first consider the following cases according to table 1.

Cases with Different Parameters

Table 1

In case A wc see from fig. 3 that wc have a stable plasma all the way
to the equilibrium /?- limit for a vertical field By > .052 x sB0 . The
equilibrium and stability /?-limit is rather low in this case amounting to
approximately 0.085 in the parameter Ø/e. This is in contrast to case B
fig. 4, where the equilibrium /?-limit is more than three times larger, but
in this case there is virtually no stable /3-region. This demonstrates that
a high equilibrium /?-limit does not necessarily mean anything in terms of
confinement, because the configuration may be unstable as this case clearly
shows.

From fig. 8 and 9 wc see that the main difference between case A and
case B is that there is a pronounced difference in the "well"-effect for the
two cases, whereas "shear" is not so different. Wc therefore conclude that
the main reason for the improved stability for case A as compared to case
B is due to an average magnetic "well"-effect.
Turning now to cases C and D, figs. 5 and 6, wc notice that the stability
boundary turns around giving a range in the vertical field where there is a
low as well as a high /3 - region of stability. This effect is most pronounced
in case D. Referring to the magnetic "well"-effect these cases are similar,
see fig. 9. There is, however, somewhat higher shear in case C than in case
D, which is the likely explanation fore the overall better stability character
istics for case C. Case D has, however, a larger "second region" of stability,
for moderate values of the vertical field. Wc notice that for higher values of

Case h h *3 t4 x0

.01 .4 .8
.9 1.4

-.05 .8 .03 1.1
-.05 .7 .02 1.2

.9 .1 1.5
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the vertical field Bv/sßq > .45 case C has the highest equilibrium /3-limit
as well as stability limit with (3/e~ .33. Wc also notice that in agreement
with most cases the equilibrium /?-limit decreases as the vertical field is ap
plied in a direction so that it pushes the plasma outward. If the plasma is
pushed inward one can theoretically obtain very high equilibrium /?-limits
as shown in figs. 4 and 7, but this is at the expense of a very low critical
/3-limit for stability. This appears to be in agreement with the conclusion
reached by Mikhailov and Shafranov^. Wc notice also that figs. 5 and
6 show that as the plasma is pushed outward the equilibrium fi passes
through a minimum and then start increasing again. This effect can be
explained by fig. 10 which shows a increase in the net helical transform
induced by the increasing vertical field for these cases. Most of the cases
discussed so far has relevance to the ATF- stellarator ® being constructed
at ORNL. ATF is basically an I — 2 system with high shear, and with
t2~ -35 on axis and t2~ -9 at the edge. The aspect ratio is 1/7 and xq
at the plasma edge is 1.7. The Wendelstein VII-A stellarator operates in
a different regime as it is a low shear system with helical transform th ~ -45
and large aspect ratio, x Q ~ .25. Results relevant to this configuration
are presented in figs. 11 - 14. The figures reveal the same general behavior
as for the ATF-regime of parameters Wc notice, however, that there is in
general a lower critical /3-limit in this regime of parameters.
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Fig. 13 Fig. 14
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2.2 Summary and Conclusions
Wc have, largely by analytic means, established a sharp boundary toroidal
equilibrium with an arbitrary harmonic content of helical fields, as well as
a vertical field. The helical fields are ordered to be small as y/e and the
vertical field is small of order e (e is the inverse aspect ratio, a/Ro). This
class of equilibria is tested for stability for parameter regimes relevant to the
ATF-experiment at ORNL U.S.A. and the W-VII A experiment at Garch
ing, F.R.G. It is found that there exists stable equilibria in both regimes.
The critical parameter is (3 which is relatively low for stable confinement.
The critical f3for stable confinement appears to be lower for the W-VII A
regime of parameters than for the ATF-regime. This is in agreement with
other independent investigations on this subject. For the ATF-parameter
regime the highest /?-limit found is about 5%. (the sharp boundary model
has some uncertainty concerning the interpretation of the /Mimit).

In a previous paper^ a similar problem with a single harmonic field and
no vertical field was studied. The present investigation clearly shows the
efFectiveness of a vertical field in terms of creating an effective magnetic
well which permits stable confinement for the pure stellarator case (no net
current). The vertical field also has a positive influence on the equilibrium
/?-limit in some cases. Wc believe this is due to an increase in the effective
transform as demonstrated in fig. 10.

Another interesting feature is the presence of a second region of stability
around the equilibrium /3-limit for some parameter regimes relevant to the
ATF. Wc want to point out that usually the second region of stability is
associated with ballooning mode theory with n — oo (n being the toroidal
wavenumber). In our case, however, this stability regime is associated with
the n — 1 mode. Note that this analysis is based on a low n-mode expan
sion, or equivalently weak z-dependency, where z is the toroidal coordinate.
It then turns out that in this regime there are strong indications that n = 1
is the most unstable mode.

When wc compute critical /3-limits for equilibrium and stability it be
comes clear that one can easily find parameter- regions where there is a
very high critical equilibrium /3-limit. However, it also turns out that all
these regions have a very low stability /9-limit. One therefore has to make
a tradeoff in equilibrium (3 in order to gain in stability-/?. As already men
tioned, in some parameter-regions it is possible to push up the equilibrium
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P in a good stability region by increasing the vertical field, an efFect which
is due to the influence of a vertical field on the total transform.

Finally wc conclude that stable /?-limits exists for current free stellara
tors, and by carefully optimizing in parameter space, these /3-limits may be
sufficiently high to provide the basis for a steady-state fusion reactor.

There is another regime of parameters which could easily be explored
by the present code, and that is the hybrid systems. This could be in
parameter-regimes ranging from a pure tokamak to a pure stellarator. One
way of determining the current would be to look at flux conserving equi
libria, in which case there is no equilibrium /?- limit. However, since the
most attractive feature of stellarators is associated with current free oper
ation wc do not include any results from this regime of operation in this
present ation.

In summary wc have found:

The magnetic well efFect produced by the vertical field is apparent.

The stable are sensitive to the harmonic content of the
helical fields.

Shear has a positive influence on stability.

In cases where a second region of stability exists, this region can be
accessed from low f) by operating at higher vertical fields.

There is a noticeable difFerence in the maximum /?-values for ATF
like parameter values and Wendelstein- like parameter values. The
difFerence being that the latter regime has lower maximum /3-values.

It has also been shown that it is easy to find parameter values giving
high equilibrium /?-limits, but always at the expense of very low stable
/?-limits.

A systematic optimization in parameter space is difficult due to the
large dimension of this space. Therefor the specific results presented
constitute examples and not optimal values, even though some efFort
was spent in searching parameter space for good values.
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Appendix A

Equilibrium

A.l Plasma Vacuum Interface

The plasma-vacuum interface is given by

(A.l)

A surface normal is given by

(The prime on n' indicates that |n' | 1) .

A.2 The Interface is a Flux Surface

The boundary condition n• B = 0 is trivially satisfied to leading order
To first order one obtains

x — x(B,s) .

n' = n0+n!+ n 2 -f ••• ,

1 dxQ
n 0 = er —cc ,Xq au

{xi dx0 Id d

n 2 = {}er + {}eø- —e, ,
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dxi d%j)\
(A.2)

After some algebra the second order condition yields

(A.3)
or

(A.4)

where wc define F(d, xq) as the real quantity

(A.5)

Noticethat -^-£ = n-V and =t-V, where n and t are the unit
normal and tangent vectors to the plasma vacuum- interface, to leading
order respectively. The tangent vector is tåken in a plane s=constant.
Similarly for the vacuum field wc obtain to second order

(A.6)

and to third order

(A.7)

This is all the information wc need from the condition n• B = 0 at the
interface. Wc then proceed to look at the pressure balance condition at
the interface.

A,3 Pressure Balance

Wc expand the relation

(A.B)

ds dn

j-e {V# xV&• e, + 2(x3 - xj)} -0 .

fem*o) =o,

F(0, x 0) s i {V# xV&• e, + 2(X2 - xj)} •

7T = 0 'an

IA-j, > + c c = 11 (ZL<ttl\
2idn 3 ' ' xo do \x0 dO )

2/> + £t 2&2 = £o2 {&2 + 2b.b + 62 }
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and obtain an equation to each order. Wc define

(A.9)

The significant information wc shall need is contained in the third and
fourth order equations. To third order a straight forward calculation gives

To fourth order a more elaborate calculation results in the following equa
tion

Now wc have

(A.ll)

Wc may now write the fourth order equation as

(A.12)

where

p ~ W'

[ aa;0 xl 39 dØ ) x\ dd 86 v y

- /?{a + + |v^.V^}

+4 [i {V^VÅ - v^ J>v^} ~ iv^ x v^ • e-
il* .to *11^2 -u Ql(^A 2 n

a^ I JJ a^ xft \o9 )

do de +Xo dxo ~~~~ { xi) de " y° de

(Notice that = 0, see eg.(A.6)).
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- h {v^év^* - v#lv*} + i^. * ** • e* + i& + «)A

B

(A.13)

After some algebra wc can rewrite the expression for
A as

(A.14)

Finally this can be east into the form given by eg.(1.16). Here wc have
used the relation

(A.15)

where a is the average plasma radius defined so that xav —ha and

A
(A.16)

7T

where A is the cross-sectional area enclosed by the curve x = xo (0).

A.4 Helical Transform

The equations of the magnetic field lines are given as

dr rdO dz

Br Bø Bz

dx xd9 ds

Br Bq Bz
(A.17)or

Thus

/?{A + + i|V,M2 }

By multiplying eq.(A.l2) by x\ +x% = xlQl wc obtain

(£)'^£ + *K* = o-

A = l-fQl£-o {Vti xW, e2 + 2(x2 - «)}

i_ _L i_A £
N hRo ha Rq x av
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ds xB2 (A.18)

By averaging this equation over z or s = hz, over one helical period and
keeping terms to second order wc obtain after some algebra

(A.19)

Here S9h is the transform over one helical period. Assuming this to be
small wc can write

(A.20)

Let the length a field line must travel to obtain a transform 2?r be L.
Then by integrating along a field line wc obtain

(A.21)

The transform for the vacuum field is now given by

(A.22)

Thus wc have

(A.23)

Introducing the arclength variable v, wc have

(A.24)

2-nR/N

d&h = / —dz = = -—FXoJ dz Axo oxq Axq

d6_^ 89h
dz ~ 2ttß/N

0 0 0 '

2ttß n A tH 2ttß
lh =—— - 2tt or tH =— = — -

2ttß 2ttNi [r —— ....- i. - ~ZZZ  - -  - -

2f(R/N)do 7 de
J x 1? J ! 1P0 1 Fxo o — Fxo

4x0 Axq

dø c 2f
—= —— and C= / xoQod9 ,dv x 0Q0 J
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where C is the circumference of the plasma- vacuum boundary x = xo(8)
(to leading order) and ve [o,l]. Since = 0 and VF = er |£+e^|£ . . i__ -.. v * ao Cro xo off
wc obtain |VF| sgnFXo = Q 0FXQ , and wc may write

(A.25)

where

(A.26)

Wc notice that the scale factor av takes the value one if x = xo(0)
is a circle, in which case x 0 = const,and Qo = 1.

A.5 Total Transform

The total transform includes the effect of the current flowing in the plasma
vacuum interface. This can be evaluated by computing the transform just
outside the interface which means that the poloidal field produced by the
plasma current must be included. The result is formula (A.25) with lh
replaced by th + b where b is given by eg.(1.16).

A.6 Magnetic Well

Wc take the magnetic well quantity to be U and given by

(A.27)

Computing the contribution to the magnetic well over one helical period
wc obtain

(A.28)

2tt x av 1
iH ~ r i

?» = 0FI(1 = IO ).

U - f - J?±. 7—
" 2ttß J B " 2irß J Bzo

|v^ |2+^H-
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As wc integrate along a field line, the corresponding change in angle is 60^
given by eq.(A.l9). Again assuming these quantities SUh and S9h to be
small wc replace them by the continuous function

dU
le (A.29)

With this approximation wc have

dU_
dØ

Thus

(A.30)

and ti; is given by eg.(1.20) and Ih by eg.(1.19).
COMMENTS
By the relations presented here the quantities t^, and w are given a
physical interpretation in terms of helical transform ifj, current-transform,
total transform and magnetic well. It should, however, be pointed out
that in the stability analysis it is only the local quantities of the transform
and well that appear explicitly. That is local with respect to the variable
0.

SUh
seh '

i [^iv*n2 +^cosfl]

4x0 *xo

2iTXav 1 ei
4exQ

cC f wdv
U — - / —— ,znxav J ih
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Appendix B

Surface Contribution to 6W

(B 1)

We may now write

(B 2)

SW. = s |n-£|2 n • [[v(P + ±B')]ps

--irrv«r{M(« + »3-?)

1 1 7?
+— rø sin 0 \—dsdz.

{{b*}} =Bl {pbe\ + 2bei be3 + 2be 2(b91 + 6,2 + i6,2 )} + 0(<S5 ) ,

[BtfßJ -Bl {(3bei + 6,3 + SM (1 -f 6zl ) + 601 6,2 } + O(^) ,

[[£']] = B*{(l + 2bzl ) + 2bz3} + 0(64 ).

6Ws = -7tR0 f (Wo + Wifédv,J avo
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where wc have performed the z-integration, and where 9 has been replaced
by the arclength variable v, (dO/dv — C/(x0Q0)). Here Wo are the terms
that do not contain fl explicitly and W\ are the terms proportional to fl.
Wc first consider the /^-dependent terms

8.l /?- dependent Terms

Collecting all the /^-dependent terms wc find

Here wc have written

(8.4)

where the last term in each expression is proportional to fl, the first term
does not include fl explicitly. Wc proceed to derive expressions for these
terms. Starting from the equation for &#3 wc have

(8.5)

From the third order n • B =0, and pressure balance conditions wc have

1 d Jxi d*p 2 \
~x^~(W{x^~dd'r (8.6)

- 1 dipi d*p2

x^ dO dO
n>3 (8.7)

+ {/»(!+ 24,,) + 2ig>}{-(^) a rrtt

+§ cos <l+2(fr<) 2) + irin *}J-

6,3 S 6g> + &J» , bz3 = Sg> +jW

2 I oxq \xq dO J xq 39 )

1 d 7 ia—.-r^e+c.c.li an
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respectively.
Notice that eqs.(B.4) and (8.5) are valid at the plasma surface only and
that in order to evaluate be 3given by eg.(8.3). Wc need to know at
the surface. This can be obtained from the formula

(B.8)

Notice that d/dØ is a derivative along the surface and difi3 /d0 can be
obtained by t aking the derivative of eg.(8.7). After some algebra where
wc also use the fact that *

(8.9)

wc obtain

(B.10)

(B.ll)

Turning to bz3 wc have

(B.12)

and by using eg.(8.7)

(B.13)

(B.14)

I dxp2/dn = 0 along the surface, therefore its derivative along the surface is also zero.

5V>3 1/ d . d \

DØ dn

?(o) J_?ålA^Élj _J (d f l d^\
63 2xi de de de + 2xQQi\dß\xi de )

x 0 df 1 dfa \ g(x0 ) drj)i \ d^2
x 0 dO \x0 dn ) x 0 dn JO9

UP) ~P <tyi ,

1 . .
t>z3 = 2^3 e%S + C ' C - »

1 d\j)i dip 2
2x20 d 9dø

1(0)
Oz3

Oz3 -yj» .
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Now wc write

where «Q » means averaging Q over 2.

(B.16)

(B.17)

Collecting these terms wc obtain

lia «I n*|2 Bl {rø, + 2iw ig>}{l + 2^)' - »

T, , «2|n,M^,+^KS)}»

2QI oP \d9\ Ql) Ql dxQ ld9 Uo dn ) '

T 3 = «|n.^|2 Bo2/?{l + 262l + 26i?}[l^(a:osin^)

-(zo + zO—J»

~ Qi Bali\i dn l + Ndd (xoSm6) r4^Qi-de l^Tø Uol

2QI oP I dn dØ Uo 06 )* Ql dn dØ \x0 dn ) + °' C

+ 2 4ij -^f+«4

Wx = T1+T2+ T 3

+ f<*k(i_±.\ iodj>i\d (\ dfo\
Xd9\ Ql) Ql dxoScie Uo dn ) + C'°'
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#i ,2 ,2 d dxl>{ d (\ 90, \

xo d%l?\ d / 1 c?V?i\
Qo °^n Vxo dn )

After some algebra this expression can be written in the compact form

(B.18)

8.2 /3-independent Terms

Wc first consider the terms T 4 containing ofj and 6^3 which wc write
as

(B.19)

2
Q;

After some algebra wc fmd

od^|2 . „ ,/, dfo l n2 d f 1 tøi 1 dti\ j
an dn 2 dØ\Q£ oO x 0 an J

+ term integrating to zero .

= w^*oi{i |VÅ|2+f- co 4

T4= a\U +t2 + <3 )

u = 2a?{i + 2(^) 2 -^},

*.-«©H#)i "-.+i«^+<^.)l + 5-'}'
t 12 r>2

2Qo æo
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i 9(xo)dipU dfl d\j>x \ xp df 1 dsj\
1 *gja«UUo dØ ) xq d$ \x0 dn )

The remaining terms wc call T 5 and they are given by

where

and I£n |j is obtained form eq.(C3) and (C.6). For convenience wc write

g(x0 ) dfa \ dij>2 ,
H T~ \~xfi + cc- 'x 0 an J ac/

t -  [ £p d/ 1 dtj>i\ xog(xo) cfyM d/ 1 d^l\d^2
2 Z lQg <rø Ug ) Ql dn )dØ \x0 dn Jdß

.døi d f 1 dj>\\ d dil>2
~ l ~dé"d9 \Vo~~fa jlélio + cc' '

. 2 2 1 d</>! dxl?{ dip2 ,«3 -

T 5 = I +^2 + i^2 )(l + 2(^)2 -^)Un|2z r r

+ 26M(1 + iw)^(^ - r,,) 16, | J»
= R\ 4- R24- •• • + -^7 j

£» \ 2 =\ £() I' + \£n \l (B.20)

*, = 2B0U92 «Uj; {9(,0 )691 -^(i^)}»,
Ro = 4x 20a 2 bB2 « be2» g(x0 ) ,

dd \xq os )
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(X(\ X 2 \
R 4 = 4xl a 2 be2« beixx » ( -5 - 4-§ ) ,\Xq Xq/

ile = 4xl a 2 b62 «(— - rfl, ] »V r / 2

Substituting for | <^n |, by eqs.(C3) and (C.6) and for x\ by eqs.(l.9)
and (1.14), wc find after some algebra

Rx

_ 9 9 ? f . . 4i0 , .. 1 )
R 5 = Ax lQ a 2 be2 { « bøixx » —=— « bei xi »— >,

L x^ x 0)

R 7 = 2a2 b]2 g(x0 )

iBl dfodjx d /I dj>{\ d 2
2xlQl 39 dØ de Uo dn )de l^° l

+ ia \< Zx o——0 —— 1 Iz —-r. 1— )
LI dnoxo x 0 V Qs oO J dØ\x0 dn )

.2 r i d^dr, d2^ dii>i\dii>2 .
VxQ oxQ dO dØdxo dn ) 00

+ 4a -de-dB 9{xoh

. 2 2 7 d f 1 d^;\dip2
aé^ \x0 an ) du

. 2 ( 2x%\ i d^d^d^R 4 = ia £ (g{x0 ) - H =- — HF^^ +CX-'V x^ Jx0 oxq o 9øv

. 2 (4x 20 d^ 4x Q d (1 dtj>;\/i5 — ia < ——: I ( — I
I Xq an Xq d6\x0 an J

x 0 dd2 \dn)} dO 00 CC' '
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JXq — IQL Kn I -X- f C
dn dOKxo dn )dd + '

After some more algebra these terms can be collected to give

where the last step also takes a fair amount of algebra. In order to arrive
at our final form wc need one more step. The following identity can be
proven to be true

* = *..(£) ,(,„).

Wo = T4+T =s T4+ JRI + ... + JR7

f ff^fo) f , _ 2*l_  x 1 80, 30.

+ aix J-J-Mf^ , o 9^ d dti
9(0) UiQi de de> +I d9d^dx~0

dSdxo dn ]\ d9+CX>

+ -»<»){2tf  (£)'}

yK °'\\de ) dx0 d$ /'

V f = zV^— —4- 2iX2 + c.c. }

— «v < — — —->+c.c.
IxQ oxq DO J
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~ li \xo dxa de + J^\To~de)\0 ~de)\ i~drt~ i1' )j + c- c -<
where

(B 21)

From this identity it follows that

Using this result wc obtain the final form of Wo .

(B 22)

Notice that

o 2 id id2

" dx\ x 0 dx0 xl d62 '

Xxo dxo dø + a^o Uo de ) v dx% VY / + c' c<

-IVF.

w. - -I.^v^ + 2^O) {(^) 2 + |^^}

h--l— d^2 n - i l*o
eæ o Qo «^ \ xl

h-frr,

h = \lh\ sgn(^x0 ) = -jtQqFxq (helical transform) ,

d Id
ai* = gI^2
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8.3 The Surface Contribution to SW
Wc add the two terms from eqs.(B.lB) and (8.22) to obtain

.«/'lifjW-i^K»)-^)*, (8.23)2 Jo I xoQo \ ) 2e dn J
where

(8.24)

S~éjT<*+"»S*

— = -—-— and w= — W>i r +—^cosØ.
an Qo dn 2e x av
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Appendix C

Plasma and Vacuum 6W

The boundary-condition (n  B \ r= rp = 0) to first order can be written

Since the contribution to 8W from both plasma and vacuum are positive
definite, and since the destabilizing surface terms are small of order <5 4 ,
this requires that we carefully taylor our perturbation in the plasma- and
vacuum-region such that 8WV and 8WP also are small of order 8 4 . From
the boundary-condition eq.(C.l) we see that n• W \ T-Tp is at most of
order 8. Consistent with this fact we assume that V is also at most of
order 8. From eq5. (1.35) we see that this måkes 8Wp small of order 82 ,
but since the largest contribution from 8WP for any unstable mode can at
most be of order <S 4 , this requires that we choose the perturbation such
that the R.H. side of eq.(C.l) becomes small of order 8 2 . It then follows
that the first order part of this expression must be zero i.e.

(C.2)

Let

(C.3)

11 • w !'="= {fe iRQB^ + *•£(•>«*«}  (ei)

[fe {RQZBe ) + Roj-z {rpQZBz )\ i= 0 .

Qi= [£o + £+ e JS + + 6]et7cs
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X Xq
(C.4)

and

(C.5)

(C.6)

where

(C.7)

By expanding y and n• VF in Fourier series in the variable 5, one can
prove that the different Fourier modes decompose. And by choosing £2
properly SWP can be minimized by making all contributions coming from
terms håving the z-dependency vanish. By writing

(C.B)

and

(C.9)

wc obtain

(CIO)

After some algebra cto(^) can be determined from eg.(C.l)

x o do\xo j

After some algebra this determines f+ and f_ as

e+ = iG(6,,w, e. = -|G(&,ø,*),

G((ø, øi ) =— < — oF ) + (-j øi U •x 0 lav \x0 of) / \an J J

(n • Wds)2 = BQ R0 {a0(9) + £ an(#) eina \eika dOdz ,n=-2 '
(n*o)

V={Vo(6)+ £ Vn (B) ein')eika ,n=-2 J
(n#o)

0
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ao(0) =e— ( -2-ih ) -I- ikxoto . (C.ll)

Then taking f= & , Fo(^) = Boe V(v) , fe' = 7 and using the arclength
variable t; wc obtain

(C.12)

where

and wc have omitted the subscript 0 on a(y).
The contribution from vacuum can be derived in the same way, the only
difference now is that the "transform term" is modified by the current
flowing in the surface (i^ — l^ -f b)

(C.14)

6WV SEI } .
0

(C.15)

SW, e*Bl ti

«W = + »*'É, (C.13)

å(v) = + 6)} +
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Appendix D

Matrix Representation

D.l Perturbation in Plasma and Vacuum
In order to determine the perturbation in the vacuum-magnetic field we
need to know V, eq5.(1.35) - (1.37). In order to determL V at Z
surfece we shall use a Greens-function technique similar to that usedt Mirom Greens formulae we have '

(D.l)

f V itl V°'U"le )outsVde (mside for theplasma region) the surface
S. V is the potential_ such that B x = Vt> and V is the Green's
fimction. We assume V goes to zero sufficiently rapidlv so the volume
mtegral «etat.. Which means that we do not have any boundaryTn the
vacuum- reg,on. This måkes our perturbation slightly pessimistic, since a
conduefng boundary would limit the motion somewhat. (HoweCer on a
ong tlme scale the real effect of a conducting boundary would bTI\ZA
to the res.stlve time-scale of that boundary). We then have

Since we do not take into account an outer boundary and since the in
tegrafon the long way around the torus can be done analytically Z>Z

J{vV*U - UV*v}dr =/hn.VU-Un. Vvlds .V S *

V2 U = 6(r-r'), V2 V =0 .
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significant order, wc need only to consider the two dimensional problem
with

and

(D.3)

where a prime(') refers to the coordinates r', 6' and V = F(r', 0') etc.
Notice that n' is the unit normal vector pointing outward from the surface.
Wc change to arclength variable and obtain

(D.4)

When the observation point (x, 9) moves on to the surface wc have x =
x(0) or in arclength variable x = x(v). The integral from the deltafunction
is then reduced by a factor 1/2. Therefore when wc evaluate V at the
surface wc obtain

(D.5)

The two dimensional Green's function for the Laplaces equation is given by

(D.6)

where

U = U{r,r',e,O')

V2 U = 6(r-r',6-6') (deltalunet ion) ,

V(r, 6) = J {V'ti • VU - Un'  VY'} x'o Q'o åff ,c

1

V(x, 6) = -cJ {V'ti - V'U - Uh'  Vt} dv'o

1

V(x(v), v) = -2C J {V'n' - VU - Uh'  VY'} dv'o

U = — lnr,2tt

x' = r' cos 0' , y' —r' sin 6'

x = r cos 9 , y= r sin 0 .
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Wc introduce

(D.7)

and obtain

(D.B)

It is convenient to introduce the function

(D.9)

and wc can write

(D.10)

Wc then evaluate n' •VG at the surface and obtain

(D.12)

It is also convenient to resolve the singularity of G at v — v'. After sorae
algebra wc find the dominant term in this limit, which can be written as

—In — sin {ir(v — v')}7T Ltt J (D.13)

For the numerical evaluation it is convenient to write

hr — Jx'l -f Xq — 2xox'o cos(0 - 9') ,

V(x(v), v) = — j{v'ti • V \n(hr) - \n(hr)n' • VV'\dv .o

G = G(v, v') = In {x'o + x 2Q - 2xox'o cos(^ - 6')} 1 ,7j- v. J

V(v) = Jlv(v')ti VG-Gh- W(V)Wo

n' VC - ° X'° ~X° COS(^ ~ 6>) + Ix'q)x° sin(^ ~ 9>) (Dll)
kQo x'l + x20 - 2xox'o cos(^ - 0')

In the limit v—> v' wc find

v-+v' 2tT XoQfi
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G = G(v,v') + G,(v,v'), (D.14)
where

(D.15)

(D.16)

Summarizing these result wc have:

G=G + Gs given by eqs.(D.U) - (D.16), lim G= 0 , G s is singularv'—*v
at v = v', n- VG and lim^ li •VG are given by eqs.(D.ll) and (D.12),

n' • VY' is given by eg.(C.l) or in elaborated form by eq.(Cl4). Wc can
therefore regard eq.(D.l7) as an integral equation for determining V(v) at
the surface. Wc shall solve this equation by Fourier expansion in v. Let

p (D.18)

notice that the summation omits the n= 0 terms. This follows from the
fact that wc have already by analytic minimization determined the displace
ment vector £ to have V•£ = 0 to leading order. Since the variation in
z (or s) is zero to leading order this "incompressibility" condition implies
that in the fourier series for f(u), £0 =0. Notice that a£0 0 would
correspond to a uniform contraction or expansion of the surface, inconsis
tent with the leading order perturbation being incompressible. Wc now
write

Gtv v') = C la i *i + 4-2xqx'qCos(o - P)}
* \ f I sin ir{v' -v)\ J '

C ( C 1
Gs (v, v') = In \— I sin n(v' -v) | >7T L 7T J

1

V(v) = ~ I{g{v, v')n' • VY(vf ) - V(v')ti • VG(v, v')\dv' , (D.17)
o l J

t Jlrinv

n— — oo
(n#o)
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V(v) = ieBo e iks
t> 2-Ktnv
v nt- •> (D.19)

(D.20)

b (D.21)

(D.22)i/l

(D.23)

(D.24)

(D.25)

(m,mVO)

Notice that the Fourier transform of G s , g smmi can be calculated analyti
cally, (which was the purpose of extracting the singular part of G in that
special form). After some calculation wc obtain

n=— oo
(n#o)

n • VV(v) = ieBo eiks £ an e 2*mv ,
n=— oo
(n*o)

t 2irinv

n= — oo
(n^O)

CJLitinvn e i
n— — oo

(n,ÉO)

G(v,v') V^ cl 2wimv -2-nim'v'

m,m'= — oc
(m,mVO)

G,(v,v') E-s 2-Kxmv — 2nim'v'9mm' e e >

m,m'= — oo
(m,m'#O)

n' • VG E 2nimv -2nim'v'Jmm' c c

m,m'= —

1 1

9 Sm,m> =jJ G.(v,v')e-2itimv eWv' dvdv'0 0
r 1 1

/ / l cos 2tt(toi; — m'v') + i sin 27r(mt> — m'f') >
o o
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r c i
x In \ — I sin n(v — v') | \ dvdv'K 7T )

(D.26)

Continning wc have

mm/ has to be evaluated numerically and since G{v, v') is regular in the
limit v—> v', this is a straight forward matter. By utilizing the symmetry
properties of G(v, v') wc can show that

(D.28)

In a similar way wc find

When evaluating gmm > and gmm > it is convenient to expand the cosine
term

then gmm > and mm / can readily be evaluated by using fast Fourier
transform routines in real space. The Fourier transform of G(v, v') is now
given as

(D.30)

Notice that will not appear in the problem because of the incompress
ibility condition discussed after eq.(D.lB).

\ -?ln£$w m = O.

1 1

9mm' = I I G(v, v')l cos 27r(mv - mV) + i sin 27r(mv - m'v')\dvdv' ,
oo

(D.27)

1 1

gmm' = G(v,v')cos 2n(mv — mv')dvdv'
o o

1 1

7mm' =//»'• V'£ cos 27r(mu - m'v')dvdv' . (D.29)
0 0

cos 2n(mv - mV) = cos 2-xmv cos 2?rmV -f sin 27rmv sin lixrnv ,

c l x
9mm' — Qmm 1 ~r ~Z "j "mm'

Z7T I m
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Wc now substitute by eqs.(D.ll) - (D.16), (D.18) - (D.29) in eq.(D.l7) to
obtain

y 2-Kxnv

(D.31)
eq.(D.3l) can be rearranged and written as a matrix equation

(D.32)

where I is the unit matrix and the matrices F and G have the elements
ym( and gmi respectively. Vis a vector with components Vn and åis
a vector with components ån . By solving eg.(D.32) wc obtain

(D.33)

The next step is to find an expression for å. From eq.(C.l3) wc have

(D.34)

Substituting the Fourier expansion given by eqs.(D.lB), (D.21) and (D.22)
wc obtain

2ninv
an e

dv\

In matrix notation wc then have

\9mm' e at d(m > — jmm i e Vi dem >\ ,
n=— oo
(n/0)

to,m'=— oo
(m.m^O)

{i-r}-v = -G-å,

V = -{I-T)-I 'G'å.

a(v) = -!j-![aih + b)} + ik'z.

n= — oo
(n^O)

OO OO x OO

m = — oo — oo rn= — oo
(m^O) (^0) (m#o)

m=—oo n = — oo
(m^O) (n/0)
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å= iÅ £ , (D.35)

where

(D.36)

and £ is now a vector in Fourier space håving components given by eq.(D.lB)
From eg.(D.23) wc obtain

(D.37)

D.2 6W Matrix

Wc now return to the expression for 6WV , eq.(Cl5). By substituting the
Fourier expansion into this equation wc obtain

£2 B2SWV
an V:2

and in matrix notation

(D.38)

The plasma contribution can now be determined in exactly the same way.
The only difference is a change in sign on F, (the other sign-changes cancel)
and a different a,

(D.39)

(D.40)

Å-mn = 27m(Cn_ m + 6n_m ) + k'Smn ,

v = -(i-r)-I .G.Å.S.

2tt.Ro n= — oo
(n*o)

f 2b 2 . F 2n 2

S-«f*--(.-^-*-«.

a=iA • £ , Amn = 2irn Cn_ m + k'6mn ,

g-«r-A»-(.«r-0.*.«
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The surface term matrix can easily be obtained from eg.(8.23). Let

(D.41)

it then follows

(D.42)

where the elements of the S matrix are given by

(D.43)

Finally wc obtain the complete W-matrix formulation as

(D.44)

where

xoQl \ J 2edn
(n#O)

SW. e*Bl

— s n-m •

2irßo~ 2 * *'

W = ÅT* •(I - r)" 1 •G• Å + AT* •(I + r)" 1 •G•A + S . (D.45)








