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Abstract

In this thesis we propose a stable method for image segmentation with shape
priors. The original Chan-Vese intensity based segmentation model with reg-
ularisation term is extended to include shape prior information. We study
shape priors which are pose invariant under the group of similarity transfor-
mations, that is under rotation, scaling and translation. In order to solve
this problem robustly and effectively, an algorithm based on the theory of
max-flow and min-cut is used in addition to a gradient descent procedure for
updating the pose parameters. Comprehensive experiments are provided to
demonstrate the behaviour of the proposed method on different images.
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Chapter 1

Introduction

The area of image processing deals with generating and processing digital
images in a way suitable for the relevant application, often with the purpose
of making it easier to extract information from the images. This is a field
that has grown immensely along with the development of the computer, and
is still growing. Today, image processing is used in a broad range of appli-
cations in defence, meteorology, medicine, industry, archaeology, astronomy,
law enforcement, and many other areas. Some examples include mineral and
oil exploration, analysis of satellite images for weather prediction, automated
license plate reading, restoration of images of unrecoverable objects, contrast
enhancement for easier interpretation of x-ray images, and automated in-
spection for missing parts of products in a factory.

Segmentation is the first task in the process of solving many image anal-
ysis problems, and the quality of the segmentation will therefore often deter-
mine the result of the rest of the process as well. Consequently, segmentation
is an important image processing task, and research on segmentation has in-
creased significantly during the last decade. Segmentation is the process of
dividing an image into different regions, for example separating an object of
interest from its background, thus making it easier to analyse. This is espe-
cially useful in areas where a computer is supposed to automatically identify
or recognise objects in an image. For example, in order to automatically read
a licence number plate, the computer first has to isolate the licence number
plate and then extract the individual characters before it is possible to try
and recognise them. Other examples include counting the number of fish in
an underwater picture, locating tumours in medical images, object tracking
in videos, locating objects in satellite images, and face recognition.

Autonomous segmentation is generally a very difficult task, and if we
have any knowledge about the shape of the object to be segmented, this can
significantly improve the segmentation result. A segmentation procedure
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2 Introduction

with inclusion of shape information is called shape prior segmentation. Such
procedures allow us to successfully segment images that are too difficult
to segment without shape prior information. This can be images with a
background containing colours or patterns too similar to the object, images
with too weak edges, very noisy images or images where the object is occluded
by other objects.

Such an approach is naturally only possible if we actually have some
information about the shape of the object to be segmented. This information
can be very general, such as a star shaped prior [19] or even more general
like the regularisation term in the Chan-Vese segmentation model [4], which
incorporates the information that the shape of the object to be segmented
is likely to have a relatively short boundary. In the present thesis however,
we study more object specific priors, which can be relevant in applications
where one has to segment several similar images. It is then possible to use a
more time consuming method or a method requiring more manual interaction
for successful segmentation of some of the images, and then use the results
as shape priors when segmenting the rest of the images. An example is
in the segmentation of a video, where the images are quite similar from
one frame to another if the frame rate is high enough. There one can use
the segmentation result from the previous frame as a shape prior for the
segmentation of the next frame. Another possibility is if one has access to a
database of example shapes of the same type of objects, and can incorporate
statistical information about these shapes into a shape prior (see for example
[5] and [13]).

The purpose of this work is to test a new fast and robust method for
shape prior image segmentation. We use several of the ideas in the paper
by Overgaard et al. [16], where the Chan-Vese model for segmentation is
extended to include shape prior information. For the numerical minimisation
we include some of the ideas in [21] in order to make the method more robust.
Accordingly, a sub-problem is formulated as a continuous min-cut problem,
and the theory of max-flow and min-cut is used to solve it with a fast and
convex max-flow based algorithm as presented in that paper.

The remainder of this thesis is organised as follows: In chapter 2 some pre-
liminary theory about optimisation and image processing is reviewed. Also,
the Chan-Vese segmentation model and the max-flow and min-cut approach
are explained. Then, we detail the proposed model in chapter 3. A short
discussion on the implementation is the subject of chapter 4, followed by a
variety of results in chapter 5. Here, we show the advantages and disadvan-
tages of the proposed method, we discuss the use of different colour models
and the number of iterations.



Chapter 2

Preliminaries

In this chapter we recall some theory that lays the foundation for the dis-
cussions in the rest of the thesis. First we review some general optimisation
theory and methods, then we go on to define a digital image and describe
some image processing tools that are used, before defining the segmentation
task. In chapters 2.3 and 2.4 two methods that are used in the present work
are described.

2.1 Optimisation theory

Optimisation is minimisation or maximisation of a function, often subject
to some constraints on its variables. Many practical problems can be for-
mulated as optimisation problems; in business and industry for instance,
people want to maximise the efficiency, minimise the costs and maximise the
profit. Specifically, many problems in image processing can be modelled as
energy minimisation or maximisation problems, which is why optimisation
is of interest for this study. Recall that any minimisation problem can be
formulated as a maximisation problem and vice versa:

max f(x) = min−f(x).

Therefore, we will in the following only recall definitions and theorems for
either minimisation problems or maximisation problems, not both.

2.1.1 Convexity

Convexity is a fundamental concept in optimisation, because problems that
possess this property are easier to solve than problems that do not. Convex-
ity is defined as follows:

3



4 Preliminaries

Definition: A subset C of a vector space is called convex if for all x, y ∈ C
and for all α ∈ [0, 1] we have αx+ (1− α)y ∈ C.

This means that the straight line connecting two points in a convex set also
lies in the set.

Definition: A functional f : C → R is called convex if its domain is a con-
vex set and if for all x, y ∈ C and for all α ∈ [0, 1] we have f(αx+(1−α)y) ≤
αf(x) + (1− α)f(y).

If C ⊂ Rn this means that the straight line connecting two points on the
graph of f lies over or on the graph. Recall that a functional is a special case
of a function, f : C → V , where V ⊂ R. Therefore, a functional will often be
referred to as a function, especially if C ⊂ Rn. The following theorem from
[15] explains the advantages of a convex functional:

Theorem: When f is convex, any local minimiser x∗ is a global minimiser
of f . If in addition f is differentiable, then any stationary point x∗ is a global
minimiser of f .

Therefore, if our optimisation problem consists of minimising a convex func-
tional f , it is enough to find a point x∗ where f ′(x∗) = 0. If the functional is
not convex however, we have to search among all local minimisers in order
to find the global minimiser. Obviously, this is a much more difficult and
time-consuming task.

2.1.2 Gateaux differential

In elementary calculus, we only learn about functionals where C ⊂ Rn. How-
ever, C could also be a set from some general function space, and then the
functional is a function of a function rather than a function of real numbers.
When we differentiate such a functional, we differentiate it with respect to a
function, and the definition of the derivative that we learn in elementary cal-
culus cannot be used. For this purpose, we can use the Gateaux derivative [7]:

Definition: We say that f ′(x) is the Gateaux differential of f(x) if for
all d ∈ C the directional derivative of f at x in the direction d is

f ′(x; d) = lim
h→0

f(x+ hd)− f(x)

h
= 〈f ′(x), d〉, (2.1)

where 〈· , · 〉 is a proper inner product on the function space.

In this thesis we will use the L2 inner product 〈u, v〉 =
∫
u · v dx.



2.1 Optimisation theory 5

2.1.3 Gradient descent method

Based on the theorem in section 2.1.1, a natural approach for finding the min-
imum point of a convex functional is to search for points where f ′(x) = 0.
However, this equation might be impossible to solve analytically. An al-
ternative can be gradient descent method [17], also called steepest descent
method, which we explain in the case of a functional f : Rn → R. The aim
is to solve the optimisation problem

x∗ = arg min
x∈Rn

f(x). (2.2)

The gradient descent method is an iterative method where a sequence {x(k)}
which converges to x∗ is constructed. We start with an initial guess x(0) and
construct the sequence according to

x(k+1) = x(k) − ε(k)∇f(x(k)), (2.3)

where ε(k) is the step length. The reason why this iteration leads us towards
the minimum point is that f(x(k+1)) = f

(
x(k) − ε(k)∇f(x(k)

)
< f(x(k)) as

shown below:
The Taylor expansion gives us that (taking away the iteration number for
readability)

f(x− ε∇f(x)) = f(x)− ε∇f(ξ)T∇f(x)

for some ξ ∈ (x, x − ε∇f(x)) provided that f is continuously differentiable.
If we write ξ = x− aε∇f(x) for some a ∈ (0, 1) we get that

f(x− ε∇f(x))− f(x) = −ε∇f(x)T∇f(x) +O(ε2) = −ε‖∇f(x)‖+O(ε2)

The right hand side becomes negative if ε is small enough and hence
f(x− ε∇f(x)) < f(x).

This method can also be used for the more general optimisation problem

x∗ = arg min
x∈C

f(x) (2.4)

where f : C → R. If C is a subset of a function space, we need to perturb
the function x so that the functional f gets a lower value. Then we have
to use the Gateaux differential. A function (x) cannot be perturbed with a
number (f ′(x; d)), but it can be perturbed with another function (f ′(x)). So
similarly as above we have that

f(x− εf ′(x)) < f(x) when f ′(x; d) = 〈f ′(x), d〉 ∀ d ∈ C,

and the minimising sequence is thus constructed according to

x(k+1) = x(k) − ε(k)f ′(x(k)). (2.5)
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2.1.4 Method of Lagrange multipliers

The gradient descent method can be used to solve unconstrained optimisation
problems such as (2.4). However, optimisation problems that arise in natural
applications often come with a set of constraints that have to be fulfilled.
The constraints can be equality constraints, inequality constraints or a mix
of these, but in this work we only consider equality constrained optimisation
problems:

Find x∗ = arg max
x∈C

f(x) s.t. g(x∗) = 0. (2.6)

A well-known technique for solving such problems is the method of La-
grange multipliers. We will describe this technique for the real case:

Find x∗ = arg max
x∈Rn

f(x) s.t. gi(x
∗) = 0 for i = 1, . . . ,m. (2.7)

The method is based on the following theorem [1][15]:

Theorem: If x∗ is the solution of (2.7), if f and gi are continuously dif-
ferentiable and the set {∇gi(x∗), i = 1, . . . ,m} is linearly independent, then
there exists λ∗ ∈ Rm such that ∇L(x∗, λ∗) = 0 where

L(x, λ) = f(x) +
m∑
i=1

λigi(x). (2.8)

The reasoning behind this is that when∇L(x∗, λ∗) = 0, then gi(x
∗) = 0 ∀ i

and ∇f(x∗) is a linear combination of ∇gi(x∗). It is clear why gi(x
∗) must

be zero when x∗ is the solution of (2.7). Moreover, if ∇f(x∗) is not a lin-
ear combination of ∇gi(x∗) then there exists a nonzero projection of ∇f(x∗)
along the tangent line of the curve which is the intersection of gi(x) = 0.
Hence, f has a positive directional derivative along this tangent line and can
be increased without violating any of the constraints gi(x) = 0. Because x∗

is the solution of (2.7) this cannot be true, and so ∇f(x∗) must be a linear
combination of ∇gi(x∗).

The method of Lagrange multipliers consists thus of looking for critical
points of (2.8) in order to find candidates for the solution of (2.7). The
method can be extended to the more general maximisation problem (2.6),
see for example [6]. The general Lagrange function is of the form

L(x, λ) = f(x) + 〈λ, g(x)〉,

where 〈· , · 〉 is an inner product on the vector space. We see that (2.8) is of
this form when 〈· , · 〉 is the Euclidean inner product and g(x) : Rn → Rm is
given by g(x) = [g1(x), g2(x), . . . , gm(x)]. Thus, this is just a special case of
the general Lagrange function.
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2.1.5 Augmented Lagrangian method

Another way to solve (2.7) is by combining the objective function and the
constraints into a penalty function, and thus solving a sequence of uncon-
strained optimisation problems instead of the original constrained optimisa-
tion problem. One common penalty function is the quadratic one:

f(x)− γ

2

∑
i

g2
i (x),

where γ > 0 is the penalty parameter. This method generally requires
γ → ∞ to ensure that gi is sufficiently close to zero, and there is also a
possibility of ill-conditioning. Therefore, the augmented Lagrangian func-
tion [15] combines the properties of the quadratic penalty function and the
Lagrangian function:

La(x, λ, γ) = f(x) +
∑
i

λigi(x)− γ

2

∑
i

g2
i (x). (2.9)

Here, λ is an approximation of the optimal Lagrange multiplier λ∗. In the
augmented Lagrangian method we start with an initial λ0 and γ0, and in
every step we find xk as the approximate maximiser of La(x, λ

k, γk). γ could
be increased in every iteration, and λk is updated based on the observation
that

∇xLa(x
k, λk, γk) = ∇f(xk) +

∑
i

(λki − γkgi(xk))∇gi(xk) ≈ 0

and

∇xL(x∗, λ∗) = ∇f(x∗) +
∑
i

λ∗i∇gi(x∗) = 0,

which suggests that

λk+1 = λk − γkg(xk). (2.10)

This method can also easily be extended to the more general case (2.6).
Then, the augmented Lagrangian function has the form

La(x, λ, γ) = f(x) + 〈λ, g(x)〉 − γ

2
‖g(x)‖2. (2.11)
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2.2 Image processing basics

2.2.1 Digital images

An image can be defined as a two-dimensional continuous function I(x) de-
fined on Ω ⊂ R2, where x = [x1, x2] are spatial coordinates and the function
value I(x) has some physical meaning determined by the source of the image
[12]. A digital image is the discretised version of an image, where the spatial
coordinates and the function values are finite, discrete quantities. Although
the images we work with in digital image processing are discrete, it is com-
mon and useful to think of them as continuous when constructing methods
and developing theory.

Images like the ones you take with your camera are generated in almost
the same way as we see the world around us: There is some kind of a sensor
sensing the amount of light reflected by the objects being imaged—little light
reflected gives a dark colour whereas much light reflected gives a light colour,
and so in this case I(x) represents the light intensity reflected by the point
x. However, an image can also be generated by reflection or absorption of
other sources of energy than normal visible light; for example infrared light,
X-rays or ultrasound, and can thus show information that is normally not
visible to the naked human eye. In the case of an X-ray image for example,
I(x) represents the amount of X-ray energy that has at the point x passed
through the object being imaged.

Regardless of how the image has been acquired, it is necessary to digitise
the continuous sensed data to create a digital image. The digitising of the co-
ordinate values, sampling, is often determined by the number of sensors used
in the image acquisition and their placement. Digitising the function values,
quantisation, is done by picking equally spaced values along the intensity
scale and assigning one of these to each point depending on which discrete
quantity is closest to the sensed value. Normally, the number of discrete
intensity levels is 2k, where k is an integer. An image with 2k intensity levels
is called a k-bit image. 8-bit images are most common, and such an image
has intensity levels that are integers in the interval [0, 255]. However, the
intensity is often normalised to the interval [0, 1], where 0 represents black
and 1 represents white.

Now, the digital image consists of a finite number of picture elements,
pixels, having a specific location and value. Theycan beplaced in a 2-Darray
and showed in a coordinate system with the origin being in the top left corner
of the image, the x1-axis pointing downwards and the x2-axis to the right.
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For example,

I(x) =



0 0 0 0 0 0 0 0
1 0 0 0.5 0.5 0.5 0 0
0 0 0 0.5 0.5 0.5 0 0
0 0 1 1 1 1 1 0
0 0 1 1 1 1 1 0
1 1 1 1 0.5 0.5 0.5 0
1 1 1 0.5 0.5 0.5 0.5 0

0.5 0.5 0.5 0.5 0.5 0 0 0


is shown in figure 2.1.

Figure 2.1: The image I shown in a coordinate system.

Neighbours of a pixel

A pixel p with coordinates (x1, x2) has four horizontal and vertical neighbours
with coordinates (x1+1, x2), (x1−1, x2), (x1, x2+1) and (x1, x2−1). The set of
these pixels is called the 4-neighbours of p, denoted N4(p). The four diagonal
neighbours with coordinates (x1 + 1, x2 + 1), (x1 + 1, x2 − 1), (x1 − 1, x2 + 1)
and (x1 − 1, x2 − 1) make out the set ND(p). The union of these two sets is
the 8-neighbours of p, N8(p).



10 Preliminaries

2.2.2 Different types of images

Binary images

A binary image is a function I : Ω → {0, 1}, that is, the intensity values
can only be 0 (black) or 1 (white). Binary images are often used as masks
or similarly as characteristic functions for a region. If I is a characteristic
function for the region Σ, then

I(x) =

{
1 if x ∈ Σ,

0 elsewhere.

Grey scale images

A grey scale image is a function I : Ω → S where S is a finite subset of R
containing the allowed intensity values.

Colour images

A colour image is a function I : Ω → S ⊂ Rn. There exist several different
colour models, for example RGB, CMY, CMYK and HSI [12]. In our experi-
ments we will mostly use the RGB colour model, but the HSI model can also
be very useful and we will therefore describe these two models:

(a) Shown from (1, 1, 1) (b) Shown from origo

Figure 2.2: The RGB colour cube.

RGB is the abbreviation for the three primary colours red, green and blue,
and the RGB colour model adds different intensities of red, green and blue
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light together to create almost all visible colours. Equal intensities of two
primary colours added together give the secondary colours: red and green
yield yellow, red and blue yield magenta, and green and blue yield cyan. This
model can be shown as a cube in a coordinate system where the amount of
red, green and blue increases along the x, y and z axis (see figure 2.2). Then,
black is at the origin, white is at (1, 1, 1) (if the intensities are normalised
as they often are) and the primary and secondary colours are at different
corners. Points with equal intensities of both red, green and blue make out
the grey scale. When an image is represented in the RGB space, it consists
of three grey scale images which each show the amount of one of the primary
colours in the image, as shown in figure 2.3.

(a) Full colour image. (b) Red channel.

(c) Green channel. (d) Blue channel.

Figure 2.3: RGB decomposition of an image.

HSI is the abbreviation for hue, saturation and intensity. It is a colour
model which is closer to the way humans describe colours than the RGB
model. We do not describe a colour as a composite of red, green and blue
colours, but rather refer to which colour it is, how pure it is and how bright
it is. The hue component of an HSI image holds the colour information,
the saturation component tells us how pure the colour is, i.e. how much it
is mixed with white light, and the intensity component holds information
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about the intensity or brightness of the colour. If we rotate the RGB colour
cube so that the grey scale is vertical and the cube stands on the black corner
with the white corner at the top, the HSI colour model can be obtained. If
we look at the cube from above, we see that the rest of the corners form a
hexagon where the primary colours are separated by 120◦ and the secondary
colours are 60◦ from these (this can be seen in figure 2.2a). This hexagon
can be simplified to a circle, where the hue is defined by an angle from some
reference point which usually is red at 0◦. The intensity scale goes along the
vertical axis, and since the saturation increases as we move away from the
grey scale, it is described by the distance from the vertical axis. This model
can be shown as in figure 2.4.

Figure 2.4: The HSI colour model based on circular colour planes.

In figure 2.5 the hue, saturation and intensity components of an image are
shown as grey scale images. The image is also shown with hue information
only, with saturation information in addition and finally with all information.
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(a) Hue component shown as grey scale
image.

(b) Hue component with saturation 1
and intensity 0.5 shown as colour image.

(c) Saturation component shown as
grey scale image.

(d) Hue and saturation components
with intensity 0.5 shown as colour
image.

(e) Intensity component shown as grey
scale image.

(f) All components shown as colour
image.

Figure 2.5: Image in HSI space.
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2.2.3 Mathematical operations used on images

Arithmetic operations

It is important to note that even though the mathematical representation of
an image looks like a matrix, most arithmetic operations performed on im-
ages are not matrix operations but array operations, that is, they are done
element-wise. For example if I = f · g, then both I, f and g are images of
the same size and I(x) = f(x)· g(x) ∀x ∈ Ω. Arithmetic operations play an
important role in digital image processing, for example in noise reduction
(averaging images) and shading correction. A common use of image multi-
plication is in masking operations, where a binary mask image is multiplied
with the image to extract regions of interest. The mask image consists of
ones in the regions we are interested in and zeros in the remaining parts of
the image. This is an important tool in image segmentation.

Affine transformations

We can use affine transformations to rotate, scale, translate and shear an
image. We transform the coordinates using

[x1, x2, 1] = [y1, y2, 1]T, (2.12)

where (x1, x2) are the pixel coordinates in the transformed image and (y1, y2)
are the coordinates in the original image. T is a 3 by 3 matrix with elements
depending on which operation we want to use:

Rotation: T =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 , scaling: T =

 ς1 0 0
0 ς2 0
0 0 1

 ,
translation: T =

 1 0 0
0 1 0
a1 a2 1

 , shear: T =

 1 0 0
ζ1 1 0
0 0 1

 or

 1 ζ2 0
0 1 0
0 0 1

 .
It is easy to combine several operations: let T be the product of the matrices
corresponding to the operations that are to be performed.

One possibility is to use (2.12) directly to find the new location (x1, x2)
of each pixel, a technique called forward mapping. However, this can cause
some trouble since several pixels can be transformed to the same location
and some locations might not be given any pixels. Therefore, it is better
to use inverse mapping, where we for every pixel coordinate in the trans-
formed image find the corresponding coordinate in the original image using
[y1, y2, 1] = [x1, x2, 1]T−1. This coordinate might not be a pixel location, and
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we thus have to use interpolation to assign an intensity value to the pixel
in the transformed image. There are several interpolation techniques that
can be used, but in this study we only use nearest neighbour interpolation,
where the intensity value of (x1, x2) will be equal to the intensity value of
the nearest neighbouring pixel of (y1, y2) in the original image. If (y1, y2) is
outside the image domain Ω and hence does not have any neighbours, we use
the convention that the intensity value will be zero.

Linear spatial filtering and convolution

Spatial filtering can be used for many tasks in image processing. This pro-
cess consists of moving the centre of a neighbourhood from pixel to pixel in
the original image and doing some operation on the pixels enclosed in the
neighbourhood to create the output value at the centre location. Specifically,
linear spatial filtering creates the output as the sum of products of the filter
coefficients and the image pixels. Linear spatial filtering of an image I with
a filter w of size (2a+ 1)× (2b+ 1) yields the output O given by:

O(x1, x2) =
a∑

t1=−a

b∑
t2=−b

w(t1, t2)I(x1 + t1, x2 + t2).

It is common to use convolution to perform spatial filtering. The convo-
lution of w(x1, x2) and I(x1, x2), denoted by w(x1, x2) ? I(x1, x2), is defined
as

w(x1, x2) ? I(x1, x2) =
a∑

t1=−a

b∑
t2=−b

w(t1, t2)I(x1 − t1, x2 − t2).

As we can see, linear spatial filtering of an image with a filter is the same as
convolution of the image with the filter rotated by 180◦.

One common application of linear spatial filtering is to smooth images,
which for example can be done in order to reduce noise in an image, or in
order to blur an image to reduce irrelevant detail and make the detection of
larger objects easier. A smoothing linear spatial filter is also called an aver-
aging filter, since it computes the average of the pixels in its neighbourhood.
The filter coefficients of a filter of size m × n which computes the standard
average is 1

mn
. It is also possible to construct filters that compute weighted

averages, for example giving more importance to the middle pixel than to
the rest in order to reduce blurring.
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2.2.4 Segmentation

In this thesis we work with one of the many tasks that the huge area digital
image processing consists of; namely segmentation. This is one of the most
difficult tasks in digital image processing, and it is an important basis for
identifying and recognising objects in an image. To segment an image is to
partition it into different parts based on some sort of region descriptors. If
Ω represents the whole image domain (as before), segmentation is a process
that divides Ω into n subregions Ωi, such that

(i)
⋃n
i=1 Ωi = Ω,

(ii) Ωi is a connected set for i = 1, 2, . . . , n,

(iii) Ωi ∩ Ωj = ∅ ∀ i, j : i 6= j,

(iv) Q(Ωi) = TRUE for i = 1, 2, . . . , n,

(v) Q(Ωi ∪ Ωj) = FALSE for any adjacent regions Ωi and Ωj,

where Q(Ωk) is a logical predicate defined over the points in the set Ωk [12].
There are many different ways to define this logical predicate, but the most
common are based on either discontinuity or similarity of intensity values.
Methods based on discontinuity of intensity values assume that the intensity
values in the different regions are so different from each other that it is possi-
ble to detect edges between regions based on local discontinuities in intensity.
Methods based on similarity of intensity values use some sort of measure to
partition the image into regions where the measure is similar within each
region. In this case one can for instance use the average intensity value as
a measure to find regions with similar colour, the standard deviation to find
regions with similar texture or more generally histograms to find regions
with similar intensity distributions. In the next section we will describe one
method where segmentation is based on average intensity values.

2.3 Chan-Vese segmentation model

One very popular and well-known model for segmentation is the Chan-Vese
model [4]. We will as in [16] formulate this model for segmentation of a grey
scale image I : Ω→ R+ into two regions; background and foreground, where
the foreground contains the object(s) we want to segment from the image.
This model can easily be extended to colour images, but for simplicity of
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notation we will only formulate it for grey scale images. The Chan-Vese
segmentation model consists of minimising the functional

ECV (u, c) = J(u) +
λ

2

{
〈1− u, (I − c0)2〉+ 〈u, (I − c1)2〉

}
(2.13)

with respect to u and c. The variable u is the characteristic function of a
region Σ which represents the foreground. c = [c0, c1] where c0 is the average
grey value outside Σ and c1 the average grey value inside Σ. The constant
λ > 0 is a fixed weight, and J(u) =

∫
Ω
|∇u| dx is the total variation of u.

The idea of this model can easily be explained by using a simple example
where the image I consists of two approximately constant regions Ω0 and
Ω1 with distinct grey values. The two last terms in the energy functional
will in this case ensure that the minimiser gives us a region Σ which equals
the region Ω1, which represents the object of interest. These terms (the two
terms inside the curly brackets) can also be written as

T1 + T2 =

∫
Ω\Σ

(I − c0)2dx+

∫
Σ

(I − c1)2 dx, (2.14)

since u(x) = 1 for x ∈ Σ and u(x) = 0 for x ∈ Ω \ Σ.
Then, if Σ ∈ Ω1, c0 will be somewhere between the grey value inside Ω0

and the grey value inside Ω1 (in figure 2.6a you see that Ω \Σ contains both
the light and the dark colour), so T1 > 0. c1 will accordingly be equal to the
grey value inside Ω1 (Σ contains only the dark colour), so T2 ≈ 0. If on the
other hand Ω1 ∈ Σ as in figure 2.6b, then c1 will have a value in between the
grey value in Ω0 and in Ω1, so T2 > 0, while c0 will be approximately equal
to the grey value in Ω0, resulting in T1 ≈ 0. Furthermore, if some of Σ is
inside Ω0 and some is inside Ω1, then both c1 and c0 will be in between the
grey value inside Ω0 and the grey value inside Ω1, so both terms will be > 0
(see figure 2.6c). Finally, if Σ = Ω1 as in figure 2.6d, then c1 will be equal to
the grey value in Ω1 and c0 will be equal to the grey value in Ω0, in which
case both terms will be ≈ 0 and the minimum is attained as wanted.

2.3.1 Total variation

The total variation of u ∈ L1(Ω), where Ω ⊆ Rn is a bounded open domain,
is in [3] and [11] defined as

J(u) = sup

{∫
Ω

u div(ξ) dx | ξ ∈ C1
c (Ω,Rn), ‖ξ‖∞ ≤ 1

}
. (2.15)

u ∈ L1(Ω) means that u : Ω→ R is absolutely integrable and ξ ∈ C1
c (Ω,Rn)

means that ξ is one time continuously differentiable and has compact support.
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(a) T1 > 0, T2 ≈ 0 (b) T1 ≈ 0, T2 > 0

(c) T1 > 0, T2 > 0 (d) T1 ≈ 0, T2 ≈ 0

Figure 2.6: Chan-Vese fitting terms

A function u is said to be of bounded variation if J(u) < ∞, and the space
BV (Ω) consists of all functions in L1(Ω) with bounded variation.

If u is continuously differentiable, then J(u) =
∫

Ω
|∇u| dx. This is shown

below using the divergence theorem [8]:∫
Ω

div(F ) dx =

∫
∂Ω

F · ν dS,

where ν is the outward unit normal vector along ∂Ω. We let F = ξu and
get from the product rule for differentiation that div(ξu) = div(ξ)u+ ξ· ∇u.
The divergence theorem then gives us∫

Ω

ξ· ∇u dx =

∫
Ω

div(ξu) dx−
∫

Ω

div(ξ)u dx

=

∫
∂Ω

(ξu)· ν dS −
∫

Ω

div(ξ)u dx.

Since ξ has compact support, the first term on the right hand side vanishes
and we have∫

Ω

u div(ξ) dx = −
∫

Ω

ξ· ∇u dx ≤
∫

Ω

|ξ· ∇u| dx ≤
∫

Ω

|ξ||∇u| dx ≤
∫

Ω

|∇u| dx,
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where the last step comes from the fact that ‖ξ‖∞ ≤ 1 and the previous step
comes from the Cauchy-Schwarz inequality. When ξ → −∇u

|∇u| the supremum

is attained and thus J(u) =
∫

Ω
|∇u| dx.

If u is the characteristic function of Σ ⊂ Ω and ∂Σ is C1 then∫
Ω

u div(ξ) dx =

∫
Σ

div(ξ) dx =

∫
∂Σ

ξ· ν dS ≤
∫
∂Σ

|ξ· ν| dS ≤
∫
∂Σ

|ξ||ν| dS ≤ |∂Σ|.

If we choose ξ = ν on ∂Σ then
∫
∂Σ
ξ· ν dS =

∫
∂Σ
|ν|2 dS =

∫
∂Σ
dS = |∂Σ| and

thus J(u) = |∂Σ|. Therefore, minimising J(u) is the same as minimising the
length of the border of Σ. This is the reason why we need this term in (2.13);
while the last terms give us a region Σ which best matches the image I in
terms of mean intensity inside and outside the region, the first term controls
the length of the border of this region.

2.3.2 The truncation lemma

There is, however, a problem with (2.13); namely that u is required to be a
binary function. This leads to a non-convex optimisation problem which is
hard to solve. Nevertheless, Chan, Esedoglu and Nikolova [2] discovered that
for any fixed c this problem can be solved globally by relaxing the constraint
on u to allow u ∈ K where

K = {u ∈ BV (Ω) | 0 ≤ u(x) ≤ 1 ∀x ∈ Ω}. (2.16)

We then get a convex problem which is easy to solve. If u∗ ∈ K gives the
minimum of (2.13) then the global minimiser ut∗ for the original problem with
minimisation over binary u can be found simply by thresholding u∗ with a
threshold t ∈ [0, 1]:

ut∗(x) =

{
1 if u∗(x) > t,

0 otherwise,
∀x ∈ Ω.

In order to see that this is indeed the global minimiser, we must first notice
that ECV can be rewritten as

J(u) +
λ

2
〈1, (I − c0)2〉+

λ

2
{〈−u, (I − c0)2〉+ 〈u, (I − c1)2〉}.

Noticing that the second term does not depend on u, we see that the min-
imisation over u ∈ K of ECV , when c is fixed, is equivalent to minimisation
of the functional

ÊCV (u) = J(u) +
λ

2
〈(I − c1)2 − (I − c0)2, u〉 = J(u) + 〈g, u〉,
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where g = (I − c1)2− (I − c0)2. Now we can state the lemma and prove it as
done in [16]:

The Truncation Lemma: If u∗ = arg inf
u∈K

ÊCV (u) then ut∗ = arg inf
u∈{0,1}

ÊCV (u)

for almost all t ∈ [0, 1].

Proof. Because of the coarea formula, J(u∗) =
∫ 1

0
J(ut∗) dt, and the layer cake

representation, 〈g, u∗〉 =
∫ 1

0
〈g, ut∗〉 dt, we can write ÊCV (u∗) =

∫ 1

0
ÊCV (ut∗) dt.

Since u∗ is the minimum value ÊCV (ut∗) ≥ ÊCV (u∗). It is logical and
well known that whenever

∫
f(t) dt = 0 and f(t) ≥ 0 then f(t) = 0 for

almost all t. This is exactly what we have here:
∫ 1

0
(ÊCV (ut∗)−ÊCV (u∗)) dt = 0

and ÊCV (ut∗)−ÊCV (u∗) ≥ 0 so ÊCV (ut∗) = ÊCV (u∗) for almost all t, i.e. ut∗ =
arg inf
u∈K

ÊCV (u) also and since ut∗ ∈ {0, 1} it therefore solves arg inf
u∈{0,1}

ÊCV (u).

2.4 Max-flow and min-cut

An increasingly popular method for solving energy minimisation problems
is to search for the minimal cut over an appropriately constructed graph.
The classical theorem of min-cut and max-flow gives us an efficient way to
compute this minimal cut: We maximise the corresponding flows instead. In
the following sections we explain the min-cut and the max-flow problem and
their connection.

2.4.1 Min-cut

A graph is a pair (V , E) composed of a set of vertices V and a set of edges
E . In connection with image processing the vertex set consists of all the
image pixels together with two terminal vertices: the source s and the sink t.
Every pixel is connected to its 4-neighbours by spatial edges en, as well as to
both terminal vertices by the two terminal edges es and et (see figure 2.7a).
Now the segmentation task is to partition all the pixels in Ω into two disjoint
groups; background and foreground. If we associate the terminal node s with
foreground and t with background then this can be thought of as cutting off
one of the terminal edges from each pixel so that it either has an edge to
s or an edge to t, and also cutting off all the spatial edges between pixels
belonging to different groups (see figure 2.7b).

We have now divided the set V into one subset Vs containing the terminal
vertex s and all the pixels connected to it, and another subset Vt containing
the terminal vertex t and all the pixels connected to it. This two-partition
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(a) (b)

Figure 2.7: Figure showing a graph consisting of 9 pixels, two terminal ver-
tices and spatial and terminal edges. In 2.7b some of the edges are cut off;
the pixels are partitioned into two groups. The cut consists of the edges that
are shown in 2.7a but not in 2.7b.

cut we now have made is called an s-t cut. To find out where this cut should
be made, we assign a non-negative cost C(e) ≥ 0 to each edge e ∈ E . The
cut energy is defined as the sum of the costs of the edges that are cut, and
we want to find the cut that minimises this energy:

min
Est⊂E

∑
e∈Est

C(e) , where Est = {e ∈ E | e = (v1, v2), v1 ∈ Vs, v2 ∈ Vt}. (2.17)

2.4.2 Max-flow

Another closely related way to look at this graph, which also can be called a
network, is to think of each edge as a pipe. We want to find the maximum
amount of water that can flow through these pipes from the source s to the
sink t (and now these terms make much more sense than for the min-cut prob-
lem). The cost of an edge is now the capacity of this pipe, and for this pipe
network we have some constraints that need to be satisfied: Naturally the
flow p through a pipe cannot exceed the pipe’s capacity, and also the amount
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of water flowing out of a vertex should be the same as the amount of water
flowing into the vertex. This can be formulated mathematically as follows:

• Capacity of source flows:

0 ≤ ps(v) ≤ Cs(v), (2.18)

where ps(v) is shorthand for p(es(v)) and Cs(v) is shorthand for C(es(v)).

• Capacity of sink flows:

0 ≤ pt(v) ≤ Ct(v), (2.19)

where pt(v) is shorthand for p(et(v)) and Ct(v) is shorthand for C(et(v)).

• Capacity of spatial flows:

|p(en)| ≤ C(en). (2.20)

For the spatial edges en linking two vertices from V \{s, t}, the flow can
have two directions. The flow through an edge en = (v1, v2) is positive
if it goes from v1 to v2 and negative if it goes from v2 to v1—this is the
reason for the absolute value in the inequality above.

• Conservation of flows:∑
w∈N4(v)

p((v, w))− ps(v) + pt(v) = 0, (2.21)

where N4(v) is a 4-connectivity neighbourhood of pixel v.

Thus the maximum flow problem amounts to maximising the amount of
water flowing out from s subject to the above constraints:

max
ps,pt,p

∑
v∈V\{s,t}

ps(v), subject to (2.18), (2.19), (2.20) and (2.21). (2.22)

2.4.3 Max-flow min-cut theorem

It can be shown that

Theorem 5.1 in [9]: For any network the maximal flow value from s to t
is equal to the minimal cut capacity of all cuts separating s and t.

Here, the capacity of a cut is the sum of the capacities/costs of the arcs in the
cut. That is, the theorem says that (2.17)=(2.22). This theorem connects
max-flow problems with min-cut problems, so that when we want to find the
minimum of an energy function by searching for the minimal cut over some
graph, we can instead find it by maximising the corresponding flow, which
gives us a much easier and faster algorithm.
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2.4.4 Continuous max-flow and min-cut

The max-flow and min-cut problems can also be formulated in the continuous
setting [21]. We now have a continuous set of points in a domain Ω in addition
to the source s and the sink t. The constraints on flows are then:

ps(x) ≤ Cs(x), ∀x ∈ Ω; (2.23)

pt(x) ≤ Ct(x), ∀x ∈ Ω; (2.24)

|p(x)| ≤ C(x), ∀x ∈ Ω; (2.25)

divp(x)− ps(x) + pt(x) = 0, a.e. x ∈ Ω; (2.26)

p(x)· ν = 0 on ∂Ω, (2.27)

where a.e. is short for “for almost every” and ν is the outward normal to the
boundary ∂Ω. The continuous max-flow model can be formulated as:

sup
ps,pt,p

∫
Ω

ps(x) dx, subject to constraints (2.23) through (2.27). (2.28)

The constraint (2.26) is an equality constraint and we can thus use the
method of Lagrangian multipliers to reduce the number of constraints. The
problem is to find r∗ = (p∗s, p

∗
t , p
∗) which satisfies (2.23), (2.24) and (2.25)

such that

r∗ = arg max
r

f(r) s.t. gx(r∗) = 0 ∀x ∈ Ω,

where f(r) =
∫

Ω
ps(x) dx and gx(r) = div p(x) − ps(x) + pt(x). Since Ω is

a continuous domain, we have infinitely many constraints. Thus, the La-
grange multiplier u is now a function, and we use the L2 inner product in
the Lagrangian function:

L(r, u) = f(r) +

∫
Ω

u(x)gx(r) dx

=

∫
Ω

ps(x) dx+

∫
Ω

u(x)(div p(x)− ps(x) + pt(x)) dx

=

∫
Ω

[(1− u(x))ps(x) + u(x)pt(x) + u(x)div p(x)] dx.

We must find a saddle point of L subject to (2.23), (2.24) and (2.25) in
order to solve (2.28). L is linear in both r and u and hence concave u.s.c.
for fixed u and convex l.s.c. for fixed p, ps and pt. Since in addition the
constraints on flows are convex, the conditions of the minimax theorem [7]
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are satisfied. We know therefore that at least one saddle point exists, which
can be found by solving

min
u

sup
ps,pt,p

{∫
Ω

[(1− u(x))ps(x) + u(x)pt(x) + u(x)div p(x)] dx

}
(2.29)

s.t. ps(x) ≤ Cs(x), pt(x) ≤ Ct(x), |p(x)| ≤ C(x) ∀x ∈ Ω.

This is called the primal-dual model [21] and is equivalent to the continuous
maximal flow model (2.28) which also is called the primal model.

In order to optimise (2.29) over the flow variables ps, pt and p we first
look at the generalised maximisation problem

f(q) = sup
p≤C

p q. (2.30)

If q < 0 then p q is maximised if p = −∞ which gives f(q) =∞. If q = 0, it
does not matter what p is chosen to be; f(q) = 0 anyhow. If q > 0, then p q
is maximised if p = C which gives f(q) = C q. That is,

f(q) =

{
Cq if q ≥ 0,

∞ if q < 0.
(2.31)

Now, we can rearrange the primal-dual model (2.29) as

min
u


∫

Ω

[ sup
ps(x)
≤Cs(x)

ps(x)(1− u(x)) + sup
pt(x)
≤Ct(x)

pt(x)u(x)] dx+ sup
|p(x)|
≤C(x)

∫
Ω

u(x)div p(x) dx

 .

(2.32)
Similar to the discussion in section 2.3.1 and due to (2.27), notice that

sup
|p(x)|≤C(x)

∫
Ω

u(x)div p(x) dx =

∫
Ω

C(x)|∇u(x)| dx. (2.33)

If we now restrict u ∈ K, then both 1 − u(x) and u(x) is non-negative
(remember the definition of K in (2.16)). By comparing the two first terms
in (2.32) to (2.30) we thus see that by (2.31) and (2.33), the primal-dual
model (2.32) can be written as the equivalent dual model

min
u∈K

{∫
Ω

[(1− u(x))Cs(x) + u(x)Ct(x) + C(x)|∇u(x)|] dx
}
. (2.34)

If u /∈ K then the energy would be infinite, but since we know that a saddle
point exists, this cannot be the case. So the primal model (2.28), the primal-
dual model (2.29) and the dual model (2.34) are all equivalent to each other
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[21]. The dual model can also be called the continuous min-cut model, and
hence we have just showed that the max-flow min-cut theorem is also valid
for the continuous case. We see that if u is the characteristic function for
Vs \ {s}, then (2.34) is

min
Vs

{∫
Vt\{t}

Cs(x) dx+

∫
Vs\{s}

Ct(x) dx+

∫
∂(Vs\{s})

C(x) dx

}
,

and so it is easy to see the connection with (2.17) if Cs(x) are the costs on
terminal edges from the terminal s, Ct(x) are the costs on terminal edges
to the terminal t and C(x) are the costs on spatial edges. The pixels that
belong to Vt \ {t} have the edges from s cut off so they contribute to the
cut energy with Cs(x), whereas the pixels that belong to Vs \ {s} contribute
with Ct(x). Along the edge of Vs \ {s} the spatial edges are cut off, and here
C(x) contributes to the energy.
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Chapter 3

The proposed method

In this chapter we continue by describing the method we propose for shape
prior segmentation. We largely follow the discussion in [16], and combine
the results here with the max-flow based algorithm proposed in [21]. For the
sake of simplicity we describe the method only for grey scale images, but it is
easily extended to colour images and this is in fact how we have implemented
the method.

3.1 Reformulating the Chan-Vese functional

The starting point for our method is the Chan-Vese segmentation model
described in chapter 2.3, where we want to include a priori shape information
into the segmentation process. The natural choice for representation of the
prior shape Σ′ is a characteristic function f , since this is how the segmented
region Σ is represented in the Chan-Vese model. The shape prior can be
obtained from an already segmented image of an object similar to the object
we are going to segment, or from a database of shapes from the relevant
object class. In the latter case, the mean of these shapes can be used as
the shape prior. There are also several other possible ways to utilise such a
database, for example by incorporating more of the statistical information
available. Nevertheless, this will not be done in this work, where we will use
a very simple shape prior term; namely the squared norm of the difference
between the prior shape and the segmented shape. Thus the functional to
be minimised is

E(u, c, f) = ECV (u, c) +
η

2
‖u− f‖2 (3.1)

for some η > 0. Because of the quadratic term, this problem cannot be
solved simply by relaxing the constraint on u from u(x) ∈ {0, 1} to u ∈ K

27
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and using the truncation lemma as we can do with (2.13). Therefore it is
necessary to reformulate the problem.

For binary u the CV-functional (2.13) may be rewritten as

ECV (u, c) = J(u) +
λ

2
‖I − Imodel‖2, (3.2)

where Imodel = c0(1 − u) + c1u (see figure 3.1). This is easy to see because
u(x) = 1 for x ∈ Σ and u(x) = 0 for x ∈ Ω \ Σ, so∫

Ω

[(1− u)(I − c0)2 + u(I − c1)2] dx =

∫
Σ

(I − c1)2 dx+

∫
Ω\Σ

(I − c0)2 dx

and∫
Ω

(I−Imodel)
2 dx =

∫
Ω

(I−c0(1−u)−c1u)2 dx =

∫
Σ

(I−c1)2 dx+

∫
Ω\Σ

(I−c0)2 dx.

(a) u. (b) The contour of Σ
shown on the image I.

(c) Imodel.

(d) Another u. (e) The contour of the
corresponding Σ shown
on the image I.

(f) Imodel.

Figure 3.1: Illustration of Imodel corresponding to two different u. It is easy
to see that the last Imodel (figure 3.1f) is much more similar to the image I
than the first Imodel (figure 3.1c), which means that the last u (figure 3.1d)
gives the minimum energy (3.2) of these two and therefore gives the best
segmentation.
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If we also define a shape prior image model Iprior = b0(1 − f) + b1f for
grey values b0 and b1, then shape prior segmentation can be formulated as
the minimisation over all characteristic functions u of the functional

E(u, c, f, b) = ECV +Eprior = J(u)+
λ

2
‖I−Imodel‖2+

µ

2
‖Imodel−Iprior‖2. (3.3)

The connection with (3.1) is easily seen when we notice that close to conver-
gence b0 ≈ c0 and b1 ≈ c1. If these equalities are exact, we have

µ

2
‖Imodel − Iprior‖2 =

µ

2
‖c0(1− u) + c1u− c0(1− f)− c1f‖2

=
µ

2
‖ − c0u+ c1u+ c0f − c1f‖2 =

µ

2
(c1 − c0)2‖u− f‖2.

(3.4)

With this functional we do not only consider the difference between the two
shapes as in (3.1), but also the differences in average intensity values inside
and outside the regions represented by u and f .

We want to minimise (3.3), and we minimise with respect to one variable
at a time while keeping the others fixed.

3.2 Minimising w.r.t. u and c

Now, prior data b and f are kept fixed at iteration k, and u and c are to be
updated. E(u, c, f, b) can be reformulated by completing the squares:

λ

2
(I − Imodel)

2 +
µ

2
(Imodel − Iprior)

2

=
λ

2
I2 − λIImodel +

λ

2
I2

model +
µ

2
I2

model − µImodelIprior +
µ

2
I2

prior

=
λ+ µ

2
I2

model − (λI + µIprior)Imodel + (
λ

2
I2 +

µ

2
I2

prior)

=
λ+ µ

2

[
I2

model − 2
λI + µIprior

λ+ µ
Imodel +

λI2 + µI2
prior

λ+ µ

]
=
λ+ µ

2

[
I2

model − 2
λI + µIprior

λ+ µ
Imodel +

(λI + µIprior)
2

(λ+ µ)2

+
λI2 + µI2

prior

λ+ µ
− (λI + µIprior)

2

(λ+ µ)2

]
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=
λ+ µ

2

[(
Imodel −

λI + µIprior

λ+ µ

)2

+
λ2I2 + µλI2

prior + µλI2 + µ2I2
prior − λ2I2 − 2λµIIprior − µ2I2

prior

(λ+ µ)2

]

=
λ+ µ

2

[(
Imodel −

λI + µIprior

λ+ µ

)2

+
λµ

(λ+ µ)2
(I − Iprior)

2

]
,

and so we get

E(u, c, f, b) = J(u) +
λ+ µ

2
‖Imodel − Ieff‖2 +

λµ

2(λ+ µ)
‖I − Iprior‖2,

where Ieff = λ
λ+µ

I + µ
λ+µ

Iprior (see figure 3.2).
The last square does not depend on u and c and can hence be disregarded.

Then, we update u and c by minimising the CV-functional

ECVe(u, c) = J(u) +
λ+ µ

2

{
〈1− u, (Ikeff − c0)2〉+ 〈u, (Ikeff − c1)2〉

}
, (3.5)

following the same reasoning as in the reformulation from (2.13) to (3.2)
above, only backwards.

Now, the quadratic term which gave us problems in (3.1) is gone. Com-
paring (3.5) with (2.13), we see that the only difference is λ + µ instead of
just λ and Ikeff instead of I, and so following the discussion in section 2.3.2,
this problem can be solved by relaxing the constraint on u from u(x) ∈ {0, 1}
to u ∈ K and truncating the solution.

It can be shown that this functional is bi-convex, i.e. convex in u when
c is kept fixed and convex in c when u is kept fixed. Therefore, we first
minimise with respect to u and then with respect to c:

uk+1 = arg min
u∈K

ECVe(u, c
k), (3.6)

ck+1 = arg min
c∈R2

ECVe(u
k+1, c) (3.7)

3.2.1 Minimising w.r.t. u

For the sub-problem (3.6) we depart from the discussion in [16], and use
instead a continuous max-flow and min-cut approach to find the minimum.
We see that if we put Cs(x) = (Ikeff(x) − ck0)2, Ct(x) = (Ikeff(x) − ck1)2 and
C(x) = 2

λ+µ
, then minimising (3.5) over u ∈ K is equivalent to solving

(2.34), so our problem is in fact a min-cut problem. The reasoning behind
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Figure 3.2: Illustration of Ieff where f is equal to the u in figure 3.1a in the
first column and to the u in figure 3.1d in the second column. The first row
is with λ = 0 and µ = 4, the second with λ = 1 and µ = 3, the third with
λ = 2 and µ = 2, the fourth with λ = 3 and µ = 1 and the fifth with λ = 4
and µ = 0.
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these cost expressions is as follows: Cs is the cost of cutting off es, that is the
cost of labelling a pixel as t; as background. Since c0 is the average intensity
value in the background it makes sense that Cs is the difference between the
intensity value and c0: If they are close, it is natural to label the pixel as
background so the cost is small, but if they are very different the cost is high
because there should be a good reason to label the pixel as background if the
intensity value is closer to the foreground intensity value. Here, where we
look at the intensity value of Ieff instead of I in the cost expressions, we also
take the shape prior information into account. The constant C(x), which we
from now on call α, is a measure of how important it is that the segmented
region has a short boundary.

Now, since (2.34) is equivalent to (2.28), we use an algorithm for (2.28)
to minimise w.r.t. u. The algorithm for continuous max-flow is based upon
the augmented Lagrangian method. In addition to adding the Lagrangian
term for the equality constraint divp(x)− ps(x) + pt(x) = 0 as in the primal-
dual model (2.29), we also add a penalty term and arrive at the augmented
Lagrangian function

La(ps, pt, p, u) =

∫
Ω

ps dx+

∫
Ω

u(divp−ps+pt) dx−
γ

2
‖divp−ps+pt‖2, (3.8)

where γ > 0. In order to update ps, pt and p, this function should be
maximised subject to the constraints (2.23), (2.24) and (2.25). If now
divp(x)− ps(x) + pt(x) is far from 0, the negative penalty term will be large
in absolute value, which is something we need to avoid when maximising
La. We optimise (3.8) with respect to one variable at a time while fixing
the others (so-called alternating directions method of multipliers [21]), and
repeat the steps until convergence:

1. Optimising p by fixing other variables:

pk+1 = arg max
‖p‖∞≤α

La(p
k
s , p

k
t , p, u

k).

The first term is independent of p and can hence be disregarded. We
can complete the square in the two last terms:

uk(divp− pks + pkt )−
γ

2
(divp− pks + pkt )

2

= −γ
2

(
(divp− pks + pkt )

2 − 2uk

γ
(divp− pks + pkt )

)
.

We want this to be equal to −γ
2
(a2−2ab) so we choose a = div p−pks+pkt

and b = uk

γ
. Since −γ

2
b2 is independent of p it can be added to the
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expression, so we get −γ
2
(a2 − 2ab+ b2) = −γ

2
(a− b)2 and

pk+1 = arg max
‖p‖∞≤α

− γ

2
‖divp−Mk‖2,

where Mk = pks − pkt + uk

γ
. Because of the divergence term, we cannot

find an exact solution to this maximisation problem, and we therefore
use the gradient descent method. Then we have to find the Gateaux
derivative of G(p) =

∫
Ω
γ
2
(divp−Mk)2 dx:

G′(p; d) = lim
h→0

G(p+ hd)−G(p)

h

= lim
h→0

γ

2h

∫
Ω

[(divp+ hdivd−Mk)2 − (divp−Mk)2] dx

= lim
h→0

γ

2h

∫
Ω

hdivd(2divp+ hdivd− 2Mk) dx

= lim
h→0

γ

2

∫
Ω

divd(2divp+ hdivd− 2Mk) dx

= γ

∫
Ω

divd(divp−Mk) dx,

where the third equality follows from the fact that a2−b2 = (a−b)(a+
b). To get rid of the divergence of d we use the divergence theorem:∫

Ω
divF dx =

∫
∂Ω
F · ν dS with F = d(divp−Mk):

div(d(divp−Mk)) = div(d)(divp−Mk) + d· ∇(divp−Mk), hence

γ

∫
Ω

divd(divp−Mk) dx

= γ

∫
Ω

div(d(divp−Mk)) dx− γ
∫

Ω

d· ∇(divp−Mk) dx

= γ

∫
∂Ω

d(divp−Mk)· ν dS − γ
∫

Ω

d· ∇(divp−Mk) dx.

We impose (divp−Mk)· ν = 0 on ∂Ω and getG′(p; d) = 〈G′(p), d〉 where
G′(p) = −γ∇(divp −Mk). One gradient descent step with step size
ε and a projection to enforce ‖p‖∞ ≤ α then gives us an approximate
solution to the maximisation problem:

pk+1 = projα
(
pk − εG′(pk)

)
= projα

(
pk + γ̃∇(divpk −Mk)

)
, (3.9)

where γ̃ = εγ and projα is the projection onto the convex set
Sα = {q | ‖q‖∞ ≤ α}.
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2. Optimising ps by fixing other variables:

pk+1
s = arg max

ps(x)≤Cs(x)

La(ps, p
k
t , p

k+1, uk).

We complete the square as above and get

pk+1
s = arg max

ps(x)≤Cs(x)

∫
Ω

ps dx−
γ

2
‖ps −Nk‖2,

where Nk = divpk+1 + pkt − uk

γ
. Here, we can maximise at each point

to maximise the integral since the points are independent of each other
(we do not have any divergence or gradient term or suchlike). The
integrand is concave with respect to ps(x), so we can find the maximum
point simply by setting the derivative of the integrand w.r.t ps(x) equal
to zero:

p∗s(x) = arg max
ps(x)

ps(x)− γ

2
(ps(x)−Nk(x))2

⇔ 1− γ(p∗s(x)−Nk(x)) = 0⇔ p∗s(x) =
1

γ
+Nk(x).

Since we also need ps(x) ≤ Cs(x) we take the minimum of these values:

pk+1
s = min{1

γ
+Nk, Cs}. (3.10)

3. Optimising pt by fixing other variables:

pk+1
t = arg max

pt(x)≤Ct(x)

La(p
k+1
s , pt, p

k+1, uk) = arg max
pt(x)≤Ct(x)

− γ

2
‖pt −Ok‖2,

where Ok = −divpk+1 + pk+1
s + uk

γ
. As above, the integrand is concave

and we maximise at each point:

p∗t (x) = arg max
pt(x)

− γ

2
(pt(x)−Ok(x))2

⇔ −γ(p∗t (x)−Ok(x)) = 0⇔ p∗t (x) = Ok(x).

Since we also need pt(x) ≤ Ct(x) we again take the minimum of these
values:

pk+1
t = min{Ok, Ct}. (3.11)

4. The Lagrange multiplier u is updated by one step of gradient descent,
with γ as time step according to the augmented Lagrangian method:

uk+1 = uk − γ(divpk+1 − pk+1
s + pk+1

t ). (3.12)

Even though γ could also be updated (increased), we have chosen to keep it
fixed.
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3.2.2 Minimising w.r.t. c

The subproblem (3.7) is a simple quadratic optimisation problem, and we
can easily find the solution by setting the gradient equal to zero and solving
the equation:

ck+1
0 = arg min

c0

ECVe(u
k+1, c0, c

k
1)⇐⇒ ∂ECVe

∂c0

(uk+1, ck+1
0 , ck1) = 0

∂ECVe
∂c0

(uk+1, ck+1
0 , ck1) =

λ+ µ

2
〈1− uk+1,−2(Ikeff − ck+1

0 )〉

= −(λ+ µ)〈1− uk+1, Ikeff〉+ ck+1
0 (λ+ µ)〈1− uk+1, 1〉 = 0

⇐⇒ ck+1
0 〈1−uk+1, 1〉 = 〈1− uk+1, Ikeff〉 ⇐⇒ ck+1

0 =
〈1− uk+1, Ikeff〉
〈1− uk+1, 1〉

.

(3.13)

Similarly we get

∂ECVe
∂c1

(uk+1, ck+1
0 , ck+1

1 ) =
λ+ µ

2
〈uk+1,−2(Ikeff − ck+1

1 )〉

= (λ+ µ)[−〈uk+1, Ikeff〉+ ck+1
1 〈uk+1, 1〉] = 0,

hence

ck+1
1 =

〈uk+1, Ikeff〉
〈uk+1, 1〉

. (3.14)

3.3 Minimising w.r.t. b

Suppose that c and u have been updated and are now held fixed. f is also
fixed, and we minimise (3.3) w.r.t. b. The calculation is similar to the
calculation for c and gives

bk+1
0 =

〈1− fk, Ik+1
model〉

‖1− fk‖2
and bk+1

1 =
〈fk, Ik+1

model〉
‖fk‖2

. (3.15)

3.4 Updating f

In this thesis as in [16], we consider pose invariant priors, i.e. f = f0◦T where
f0 is a shape template and T is a similarity transformation. However, unlike
Overgaard et al., we use a transformation with rotation about a specified
centre, which is the centre of the region represented by the characteristic



36 The proposed method

function f0. The reason for this is that with rotation about the origin (i.e.
the upper left corner of the image) as in [16], it is easier to get stuck in local
minima. Indeed, if f represents the same object as u with the same size and
at the same place only a bit rotated, we would with this method be at a local
minimum. Rotation of f about the origin would give a displacement of f
from u and result in a larger difference between f and u, although rotation
about the centre of the object would result in f = u (see figure 3.3).

Figure 3.3: The red line is the contour of f and the green line is the contour of
u. f is rotated π

20
radians clockwise about the centre of the region represented

by u. The dashed red line shows f after rotation π
20

radians counterclockwise
about the origin.

Therefore, f(x) = T ∗f0(x) = (f0 ◦ T )(x) = f0(T (x)) where the transfor-
mation is a mapping of the form

y = T (x) = ς−1R−1(x− a− s) + s,

where s ∈ R2 is the centre of rotation, ς > 0 denotes scaling, R rotation and
a translation. The natural parameterisation used is

a ∈ R2, ς = eσ(σ ∈ R), R(φ) =

[
cosφ − sinφ
sinφ cosφ

]
(φ ∈ R),
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so y = e−σR(−φ)(x− a− s) + s and

f(x1, x2) = f0(y1, y2)

= f0(e−σ((x1 − a1 − s1) cosφ+ (x2 − a2 − s2) sinφ) + s1,

e−σ(−(x1 − a1 − s1) sinφ+ (x2 − a2 − s2) cosφ) + s2).
(3.16)

Now, we simplify our model (3.3) a little. ECV is independent of f and
so we only need to consider Eprior. If we use the simplification in (3.4), we
have

Eprior = inf
T

{
µ

2
(c1 − c0)2

∫
Ω

(u(x)− f0(T (x)))2 dx

}
. (3.17)

In order to update f we need to find the mapping T which gives the infi-
mum above. That is, we need to update the pose parameters ρ = (ρ1, ρ2, ρ3, ρ4)
= (a1, a2, σ, φ). We can denote the mapping by T (ρ), so the shape prior
f(x) = T (ρ)∗f0(x). We ignore the constants µ(c1 − c0)2 and use gradient
descent on the function E(ρ) = 1

2

∫
Ω

(u(x) − T (ρ)∗f0(x))2 dx. The pose pa-
rameters are updated as

ak+1 = ak − εa
∂E

∂a
, σk+1 = σk − εσ

∂E

∂σ
, φk+1 = φk − εφ

∂E

∂φ
,

where ∂E
∂a

= ( ∂E
∂a1
, ∂E
∂a2

). The partial derivatives of E are given by

∂E

∂ρi
=

∫
Ω

(T (ρ)∗f0(x)−u(x))
∂

∂ρi
(T (ρ)∗f0(x)) dx = 〈f −u, ∂(T ∗f0)

∂ρi
〉. (3.18)

Before we calculate the partial derivatives ∂
∂ρi

(T ∗f0) we notice that

∇xf = ∇x(T
∗f0) = e−σ

[
f0y1 cosφ− f0y2 sinφ
f0y1 sinφ+ f0y2 cosφ

]
,

where ∇xf is the gradient of f with respect to the spatial coordinates x1 and
x2. Now we calculate the partial derivatives:

∂(T ∗f0(x))

∂a1

= f0y1(x)(−e−σ cosφ) + f0y2(x)e−σ sinφ

∂(T ∗f0(x))

∂a2

= f0y1(x)(−e−σ sinφ) + f0y2(x)(−e−σ cosφ)

⇒ ∂(T ∗f0)(x)

∂a
= e−σ

[
−f0y1(x) cosφ+ f0y2(x) sinφ
−f0y1(x) sinφ− f0y2(x) cosφ

]
= −∇xf(x). (3.19)
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∂(T ∗f0(x))

∂σ
= −e−σ[f0y1(x)((x1 − a1 − s1) cosφ+ (x2 − a2 − s2) sinφ)

+ f0y2(x)(−(x1 − a1 − s1) sinφ+ (x2 − a2 − s2) cosφ)]

= −e−σ
[
f0y1(x) cosφ− f0y2(x) sinφ
f0y1(x) sinφ+ f0y2(x) cosφ

]
·
[
x1 − a1 − s1

x2 − a2 − s2

]
= −∇xf(x)T (x− a− s). (3.20)

∂(T ∗f0(x))

∂φ
= e−σ[f0y1(x)(−(x1 − a1 − s1) sinφ+ (x2 − a2 − s2) cosφ)

+ f0y2(x)(−(x1 − a1 − s1) cosφ− (x2 − a2 − s2) sinφ)]

= e−σ
[
f0y1(x) cosφ− f0y2(x) sinφ
f0y1(x) sinφ+ f0y2(x) cosφ

]
·
[

x2 − a2 − s2

−(x1 − a1 − s1)

]
= ∇xf(x)TΛ(x− a− s), (3.21)

where Λ =

[
0 1
−1 0

]
is clockwise rotation by 90 degrees.

By putting (3.18) together with (3.19), (3.20) and (3.21), we see that the
partial derivatives to be used in the gradient descent step are

∂E

∂a
= −〈f − u,∇xf〉,

∂E

∂σ
= −〈f − u,∇xf

T (x− a− s)〉,

∂E

∂φ
= 〈f − u,∇xf

TΛ(x− a− s)〉.

However, there is a problem with using these partial derivatives since
the time steps have to be chosen differently and with great care. Therefore,
Overgaard et al. derived a new expression for the gradient of E in [16], which
involves a scaling of the partials and makes it possible to use the same time
step for all parameters. This gradient has the following components:

∂E

∂a
=
−〈f − u,∇xf〉
‖∇xf‖2

,
∂E

∂σ
=
−〈f − u,∇xf

T (x− a)〉
‖|x− a− s|∇xf‖2

,

∂E

∂φ
=
〈f − u,∇xf

TΛ(x− a)〉
‖|x− a− s|∇xf‖2

. (3.22)

Now, the pose parameters can be updated according to

ρk+1 = ρk − ε∇E. (3.23)

The proposed method is summarised in algorithm 1. See the end of section
5 for an explanation of the number of iterations in the for-loop.
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Algorithm 1 The proposed method

Set the starting values c1
0, c1

1, b1
0 and b1

1.
Let a1 = 0, φ1 = 0, σ1 = 0.
Let α = 2

λ+µ
.

Let f 1 = f0.
I1

eff = λ
λ+µ

I + µ
λ+µ

(b1
0(1− f 1) + b1

1f
1)

C1
s = (I1

eff − c1
0)2 and C1

t = (I1
eff − c1

1)2

u1(x) =

{
1 if C1

s (x) ≥ C1
t (x),

0 otherwise.

p1(x) = 0, p1
s(x) = min{C1

s (x), C1
t (x)} and p1

t (x) = p1
s(x).

Let k = 1.
while u not converged do
pk+1 = pk, pk+1

s = pks , p
k+1
t = pkt and uk+1 = uk.

for j = 1 to 3 do

pk+1 = projα

(
pk+1 + γ̃∇(divpk+1 − pk+1

s + pk+1
t − uk+1

γ
)
)

pk+1
s = min{ 1

γ
+ divpk+1 + pk+1

t − uk+1

γ
, Cs}

pk+1
t = min{−divpk+1 + pk+1

s + uk+1

γ
, Ct}

uk+1 = uk+1 − γ(divpk+1 − pk+1
s + pk+1

t )
end for

ck+1
0 =

〈1− uk+1, Ikeff〉
〈1− uk+1, 1〉

ck+1
1 =

〈uk+1, Ikeff〉
〈uk+1, 1〉

Ik+1
model = ck+1

0 (1− uk+1) + ck+1
1 uk+1

bk+1
0 =

〈1− fk, Ik+1
model〉

‖1− fk‖2

bk+1
1 =

〈fk, Ik+1
model〉

‖fk‖2

ak+1 = ak + ε
〈fk − uk+1,∇xf

k〉
‖∇xfk‖2

φk+1 = φk − ε〈f
k − uk+1,∇xf

kTΛ(x− ak − s)〉
‖|x− ak − s|∇xfk‖2

σk+1 = σk + ε
〈fk − uk+1,∇xf

kT (x− ak − s)〉
‖|x− ak − s|∇xfk‖2

fk+1 = f0(e−σ
k+1
R(−φk+1)(x− ak+1 − s) + s)

Ik+1
eff = λ

λ+µ
I + µ

λ+µ
(bk+1

0 (1− fk+1) + bk+1
1 fk+1)

Ck+1
s = (Ik+1

eff − ck+1
0 )2 and Ck+1

t = (Ik+1
eff − ck+1

1 )2

Let k = k + 1.
end while
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Chapter 4

Implementation issues

The code for the method was written from scratch in MATLAB. We im-
plement the method for colour images, so I is a three-dimensional array.
This has some minor practical consequences; c0, c1, b0 and b1 are now vec-
tors with three components rather than scalars and must together with u
and f be of the same size as I when doing some of the calculations. Also,
Cs(/t)(x)=‖Ieff(x) − c0(/1)‖2

2. Otherwise, everything is the same as for grey
scale images.

When implementing the method in MATLAB, it has to be discretised. The
digital images are already discrete, so I(x1, x2) is I(i, j) where
i = 1, . . . ,m and j = 1, . . . , n. The number of rows in the image is m, and
n is the number of columns. The discretisation techniques used to update
p, ps and pt have benefited from the ideas described in [21]. We must also
discretise the operators used in the rest of the algorithm. Addition, subtrac-
tion, multiplication and division do not constitute any problems, since these
operations are done element-wise. The derivative and the integral however,
have to be carefully discretised so that the discrete case will be consistent
with the continuous:

4.1 Approximating the derivative

When discretising the derivative it is natural to look at the formal definition
of the derivative in order to find a good approximation:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

This definition leads us to the forward-difference approximation [10]

f ′(xk) ≈ f ′+(xk) =
f(xk+1)− f(xk)

xk+1 − xk
.

41
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Another possibility is to use negative h to get the backward-difference ap-
proximation

f ′(xk) ≈ f ′−(xk) =
f(xk)− f(xk−1)

xk − xk−1

.

There are of course several other possibilities, e.g. central differences, but in
the present work only these two were used. In our case, the nodes xk are
the image pixels so xk+1 − xk = 1 for all k. Then, denoting the direction
of the derivatives as upper indices x1 and x2, the partial derivatives will be
approximated by

Ix1+ (i, j) = I(i+ 1, j)− I(i, j) or Ix1− (i, j) = I(i, j)− I(i− 1, j)

and

Ix2+ (i, j) = I(i, j + 1)− I(i, j) or Ix2− (i, j) = I(i, j)− I(i, j − 1).

Observe that, when calculating the derivative for all image pixels, the defi-
nition above uses pixels outside the image domain for the derivative on the
first or last row and column depending on which approximation is used.
For forward differences some of the choices for defining those pixels are
I(m + 1, j) = I(m, j), I(m + 1, j) = 0 or I(m + 1, j) = I(1, j) and simi-
lar for I(i, n+ 1). For backward differences we can define I(0, j) = I(1, j), 0
or I(m, j) and similar for I(i, 0).

4.2 Approximating the integral

Our approximation of the integral is based on the trapezoidal rule [10] where
the interval [a, b] is divided into n subintervals of equal length h:∫ b

a

f(x) dx ≈
n−1∑
k=0

h

2
(fk + fk+1) = h(f0/2 + f1 + f2 + · · ·+ fn−1 + fn/2),

where fk is short for f(xk). As above, since the nodes xk are the image pixels,
h = 1. Also, seeing that images often are quite large matrices with a large
number of pixels, the approximation of the integral will not be much more
inaccurate if f0 and fn are not divided by 2. This simplifies matters, and the
two-dimensional integral will hence be approximated as∫

Ω

I(x1, x2) dx ≈
m∑
i=1

n∑
j=1

I(i, j).
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4.3 Smoothing prior to differentiation

When implementing the formulas for updating the pose parameters for f , we
had some trouble making the discrete case consistent with the continuous.
This trouble arose from the approximation of the derivative. When calculat-
ing the gradient descent direction for the updating of a, 〈f − u,∇xf〉 must
be calculated. When the supports of u and f do not overlap, the result is
the same as if u = 0 because ∇xf = 0 in all points where u 6= 0. Conse-
quently, 〈f − u,∇xf〉 =

∫
Ω
f∇xf dx. Looking at this in one dimension, we

know that (1
2
f 2)′ = ff ′ so

∫ b
a
ff ′ dx = [1

2
f 2]ba = 0 as f has compact support.

That is, 〈f, f ′〉 = 0. The same should hold in the discrete case, but as this
one-dimensional example shows, it is not straightforward to get this:

f : 0 0 1 1 1 0 0
f ′+ : 0 1 0 0 −1 0 0
ff ′+ : 0 0 0 0 −1 0 0
f ′− : 0 0 1 0 0 −1 0
ff ′− : 0 0 1 0 0 0 0

It appears that when using forward differences 〈f, f ′〉 ≈
∑
ff ′+ < 0 and when

using backward differences 〈f, f ′〉 ≈
∑
ff ′− > 0, so this is not consistent with

the continuous case. Furthermore, if the support of u overlaps on the right
side of the support of f , then

∑
(f − u)f ′+ = 0 and

∑
(f − u)f ′− > 0. If it

covers the left side
∑

(f − u)f ′+ < 0 and
∑

(f − u)f ′− = 0. Hence, both the
forward and the backward difference approximation “favour” one side, which
is an unwanted behaviour.

The solution to this problem is to smooth the function prior to the dif-
ference approximation. Observe that, for example looking at backward dif-
ferences, the problem in the example above is the −1 to the right of the
support of f ; the backward difference approximation “stretches” the support
to the right. Therefore we want to smooth the function in such a way that
the support is “stretched” to the left in order to counteract this behaviour
of the difference approximation. If we let f̃(i) = 1

2
(f(i + 1) + f(i)) where f̃

denotes the smoothed f , we have

f : 0 0 1 1 1 0 0

f̃ : 0 0.5 1 1 0.5 0 0

f̃ ′− : 0 0.5 0.5 0 −0.5 −0.5 0

Notice that the support of the derivative f̃ ′− is symmetric around the support

of f and
∑
ff̃ ′− = 0 as wanted. Moreover, if the support of u overlaps the

support of f on the right side
∑

(f − u)f̃ ′− > 0 which is what we want since
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f should approach u which means that a must increase. The opposite is true
if the support of u overlaps the support of f on the left side.

Naturally, the same symmetric derivative can be obtained if we instead
smooth f in such a way that the support is stretched to the right and use
forward differences. However, using an averaging filter of even size (2d× 2d)
and convolving f with this filter in MATLAB yields an f̃ with support
stretched to the left just as described above. Therefore, backward differ-
ences is used when calculating the gradient of f .
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Experimental results

We have tested our method on several natural colour images and will show
some of the results in this section. The shape priors were obtained by painting
with white over the desired shape and black over the background, or in some
cases downloaded from [14]. The same shape prior was often used for several
different images of similar objects. The parameters used in all experiments
are γ = 0.3, γ̃ = 0.16 and ε = 1, while λ and µ must be chosen differently
for each image. As can be seen from (3.3) and (3.5), the value of λ controls
the influence of the intensity values in the segmentation process, whereas the
value of µ controls the influence of the shape prior. Moreover, the sum of λ
and µ regulates the importance of the length of the boundary of Σ; if λ+µ is
large, J(u) will not contribute much to the energy and can thus be allowed
to be relatively large.

This is illustrated in figures 5.1 and 5.2. The shape prior used in figure
5.1 is obtained from an image of a different butterfly. It does not have the
exact same shape as the butterfly which is to be segmented from this image,
and so the segmentation result will not be very good when µ is large relative
to λ as in the second row, where the result is too similar to the shape prior.
As λ is increased and µ decreased the result improves; observe that in the
third row the result differs from the prior in several places, and is closer to
the actual outline of the butterfly. In the fourth row the segmentation result
is quite close to the butterfly; notice in particular that the whole head of
the butterfly is contained in the output, in contrast to in the two previous
results. However, since λ is so large relative to µ, two unwanted dark spots
with a colour more similar to the colours of the butterfly than to the colours
of the background are also included.

Figure 5.2 illustrates how the allowed length of the boundary can affect
the segmentation result. Notice in the second row that the contour is allowed
to be too long, resulting in some small white flowers also being enclosed by
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u. In the third row λ and µ are decreased, and the result is consequently
almost perfect, whereas the contour in the fourth row is a bit too short and
so some of the background between the petals is included in the result.

Figure 5.1: First row: Initial image with the initial position of the shape
prior shown as a red contour. Second row: Segmentation result with
λ = 1.5, µ = 3.5. Third row: Segmentation result with λ = 2, µ = 2. Fourth
row: Segmentation result with λ = 3, µ = 1.5.
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Figure 5.2: First row: Initial image with the initial position of the shape
prior shown as a red contour. Row 2-4: Segmentation result with λ = 10
and µ = 7.5, λ = 3 and µ = 2.25, and λ = 0.5 and µ = 0.375.
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Figure 5.3 shows an image of two apples and one banana shaped as a
face lying in the grass, and the segmentation result when using the method
with λ = 4 and µ = 0, i.e. with no shape prior information. We want to
segment out the banana, and observe that since the apples and the banana
have approximately the same colour, this is impossible to do without a shape
prior.

Figure 5.3: An image and the segmentation result without shape prior infor-
mation

The shape prior used in this experiment is a black-and-white image of a
banana which is not exactly of the same shape as the banana in the image,
yet very close. Figure 5.4 shows the segmentation results for different initial
poses of the prior. In these experiments λ = 1 and µ = 3 are used. The
reason for this choice is that if λ is increased or µ decreased, the segmentation
result will in addition to the banana include the unwanted apples. Observe
that the method works very well for several different initial poses, but if the
prior covers more of the apples than of the banana, the pose updating will
obviously lead the prior towards the apples, as we see in the fourth row. Also,
if the prior neither covers the apples nor the banana as in the fifth row, the
shape prior is already at a local minimum. The reason for this is that the
initial Σ with the characteristic function u will consist of the apples and the
banana, while Σ′ with the characteristic function f is the banana prior. If we
make a small change in the pose parameters, Σ and Σ′ will still not overlap
and

∫
Ω

(u(x)−f(x))2 dx will accordingly not change. Thus, the segmentation
result will be the same as the result without a shape prior.
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Figure 5.4: First column: Initial image with the initial position of the shape
prior shown as a red contour. Second column: Segmentation result shown
as a green contour, with the final position of the shape prior. Third column:
Segmentation result.
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In our next experiment, the object of interest is a paracanthurus hepatus,
also called blue surgeonfish or blue tang, shown in figure 5.5a. These fish
are difficult to segment, since they both consist of light colours like the blue
body and the yellow tail, and dark colours like the stripe along the body.
Segmentation without shape prior information often yields an unsatisfactory
result without the stripe, as shown in figure 5.5b.

(a) Paracanthurus hepatus (b) Segmentation result without
shape prior information

Figure 5.5

In figure 5.6, the segmentation results using a shape prior downloaded
from [14] are presented. Notice that the tail of the prior is shorter than the
tail of this fish, hence it is not segmented perfectly. The parameters for this
experiment were λ = 1.5 and µ = 2.5. λ is larger and µ smaller than in
the previous experiment, as there are not so many background objects that
could easily be labelled as foreground if λ was chosen too large.

The first and second row show successful segmentation results, while the
third and fourth row show incidents where the prior gets stuck in a local
minimum. The local minimum in the fourth row is due to the fact that
when the initial pose of the prior only covers the blue part of the fish, the
initial segmentation result u also only contains the blue parts (as in figure
5.5b without the tail), and then the final prior position shown is clearly a
minimum for

∫
Ω

(u − f)2 dx. The local minimum in the third row is not
as easy to understand because the initial prior position is not far from the
initial prior position in the first row, which yielded a successful result. What
happens here is that since the initial prior position does not cover the yellow
tail, initial u consists of the blue parts and some of the dark parts of the fish,
and this is what the prior tries to cover. However, in the first experiment, the
initial prior position is so close to the tail that during the process of enlarging
the prior, the prior encloses a part of the tail resulting in u including some
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of it and the prior changing its course. This does not happen in the third
experiment. Still, when µ is increased to 3 (not shown), the same happens
here resulting in an improved segmentation result, although the tail becomes
a bit broader than in row one and two in an effort to resemble the prior shape
more closely.

Figure 5.6: First column: Initial image with the initial position of the shape
prior shown as a red contour. Second column: Segmentation result shown
as a green contour, with the final position of the shape prior. Third column:
Segmentation result.

Figure 5.7 displays segmentation results for the image of a blue flower
shown in figure 5.2, with a “perfect” shape prior. The results for two different
initial poses of the shape prior are shown, in order to illustrate the fact that
it sometimes can be a problem if the prior is rotated too much relative to the
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object we want to segment. In the first column, the result becomes perfect
even though the prior is both scaled down, translated and rotated π

8
radians

counterclockwise. In the second column, the prior is neither scaled down
nor translated, only rotated by π

4
. Apparently, this was too much; the prior

continues to move counterclockwise and gets stuck in a local minimum. In
the first column λ = µ = 2 is used, and in the second column λ = 1.5 and
µ = 2.5.

Figure 5.7: First row: Segmentation result with no shape prior information.
Second row: Initial image with the initial position of the shape prior shown
as a red contour. Third row: Segmentation result shown as a green contour,
with the final position of the shape prior. Fourth row: Segmentation result.
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Figure 5.8: An image and the segmentation result without shape prior infor-
mation.

Figure 5.8 shows a leaf lying on a messy table, and the just as messy
segmentation result obtained with no prior shape information. In figure 5.9
the much better results that are obtained when including the shape prior
which was used in [16] are presented. Two initial positions that lead to
successful segmentation results are shown, but in the third row we have the
same problem as in figure 5.7: The prior gets stuck in a local minimum
because it is too much rotated in relation to the leaf in the image.

Figure 5.9: First column: Initial image with the initial position of the shape
prior shown as a red contour. Second column: Segmentation result shown
as a green contour, with the final position of the shape prior. Third column:
Segmentation result. Parameters: λ = 0.5, µ = 2.
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If the prior is very similar to the object of interest, it is often easy to
choose the right parameters and get a perfect segmentation result. On the
other hand, if the prior is rather different, it can be difficult to choose the
right parameters. As we saw in figure 5.1, if µ is too large relative to λ, the
result will be too close to the prior. If µ is too small however, the result
may besides the object of interest contain areas from the background with a
similar colour. We want to improve the result in the last row of figure 5.1 by
trying to remove the two spots. We decrease λ and µ while keeping the same
ratio (i.e. decrease the allowed length of the boundary), and get the perfect
result in figure 5.10 with λ = 1 and µ = 0.5. Here, another initial pose than
in figure 5.1 is shown, but the result is the same with both initial poses.

Figures 5.11 and 5.12 show segmentation results both with priors from
other images of a similar object and with priors obtained from the image,
and illustrate the obvious fact that a better prior gives a better segmentation
result.

(a) Segmentation result with no
shape prior information.

(b) Initial image with the initial
position of the shape prior shown
as a red contour.

(c) Segmentation result shown as
a green contour, with the final
position of the shape prior.

(d) Segmentation result.

Figure 5.10
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Figure 5.11: First row: Segmentation result with no shape prior information.
Second row: Initial image with the initial position of the shape prior shown
as a red contour. Third row: Segmentation result shown as a green contour,
with the final position of the shape prior. Fourth row: Segmentation result.
Left column: Prior obtained from the image, λ = 1, µ = 2.5. Right column:
Prior from [14], λ = 1.2, µ = 1.5.
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Figure 5.12: Top: Segmentation result with no shape prior information. First
column: Initial image with the initial position of the shape prior shown as a
red contour. Second column: Segmentation result shown as a green contour,
with the final position of the shape prior. Third column: Segmentation result.
Second row: Prior obtained from another image of a seahorse, λ = 1.9, µ = 3.
Third row: Prior from this image, λ = 1, µ = 3.
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Figures 5.13 and 5.14 show six more successful experiments. Only one
initial pose is shown for each experiment, although several other initial poses
that produced satisfying results have been tried as well.

Figure 5.13: First row: Segmentation result with no shape prior information.
Second row: Initial image with the initial position of the shape prior shown
as a red contour. Third row: Segmentation result shown as a green contour,
with the final position of the shape prior. Fourth row: Segmentation result.
Parameters left to right column: λ=1 and µ=5, λ=µ=2, λ=1 and µ=3.
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Figure 5.14: First row: Segmentation result with no shape prior information.
Second row: Initial image with the initial position of the shape prior shown
as a red contour. Third row: Segmentation result shown as a green contour,
with the final position of the shape prior. Fourth row: Segmentation result.
Parameters left and middle column: λ = 1 and µ = 3. Right column: λ = 3
and µ = 1.

Images of penguins on snow are generally very difficult to segment, be-
cause a large part of their body has the same colour as the snow. There-
fore, the priors have to be quite perfect and µ large relative to λ in order
to get a good result in these experiments. A shape prior obtained from
the image is used in three of the penguin images; only in the second col-
umn of figure 5.13 is another prior used—the same prior as in the first
column—and the result is still reasonably good. This is possible because
in this image even the white parts of the penguin are a little bit darker
than the snow, and so µ does not have to be that large in order to cause
the output to include the white parts of the body. In the other images
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however, the background has an intensity value in between the intensity
of the dark and the light parts of the penguin, which complicates matters.

For the image of the blue surgeonfish in the middle column of figure 5.14,
a prior obtained from another image of the same type of fish is used. A but-
terfly prior from [14] is used in the experiment in the right column, and even
though this shape prior is quite different from the butterfly in the image, this
gives really good results.

Figure 5.15: First row: Segmentation result (first column) or u (second col-
umn) with no shape prior information. Second row: Initial image with the
initial position of the shape prior shown as a red contour. Third row: Seg-
mentation result shown as a green contour, with the final position of the
shape prior. Fourth row: Segmentation result / u. Parameters left column:
λ = 1 and µ = 3, right column: λ = 2 and µ = 2.5.
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Figure 5.15 illustrates an application of shape prior image segmentation
where the aim is to recover objects that are occluded by other objects or
have missing parts. In the left column the segmentation of an image of an
orange on its bush is shown. The orange is occluded by leaves and a flower,
and the segmentation with a circle as shape prior recovers the shape of the
orange. The right column shows the segmentation of an image constructed
especially for this example; a piece of the butterfly is erased and a word is
scribbled across it. Segmentation with a shape prior downloaded from [14]
gives a fairly good representation of the original butterfly.

The next example is provided to show that the proposed method is stable
with respect to initialisations of c0, c1, b0 and b1. In all experiments the
initialisations b0 = c0 and b1 = c1 are used. We performed segmentation on
an image of a seahorse with the shape prior showed in the top row of figure
5.16, which is the same as in the first row of figure 5.12. Initial c0 and c1 were
varied, and we observed that for most initialisations the result was as in the
second row of the figure. This is not a perfect result; because of the seaweed
in the background µ must be relatively large, and so the segmentation result
is too close to the shape prior, which is quite different from the seahorse in
the image. However, the result is much better than without a shape prior,
and we get this result with a lot of different initialisations—12 are shown in
the figure, and many more were tried. Naturally, the initialisation where c0

is approximately the mean colour of the background and c1 the mean colour
of the seahorse (shown as the upper left image) works fine. The second
initial colours image (upper right) also shows a natural initialisation, but
surprisingly, the third one also functions. Furthermore, c0 as black and c1 as
white gives a good result, since the foreground is light and the background
is dark. Even though the opposite, i.e. c0 as white and c1 as black, does not
work, the very similar initialisation with c0 as light yellow and c1 as dark blue
does! Also, c0 as green and c1 as black worked, and c0 as white and c1 as any
primary or secondary colour. In addition, we found that all combinations of
primary and secondary colours also give the same result.

Even though c1 as black performs well with c0 as green, the result with
any other primary or secondary colour as c0 is as shown in the third row,
where the prior has grown too much. If we use an initialisation with c0 as the
approximate mean colour of the foreground and c1 as the approximate mean
colour of the background, we get a result opposite of what we want, that is,
the seahorse is labelled as background (shown in the fourth row). This also
happens with c0 as white and c1 as black and for the initial colours shown in
the bottom initial colours image.

It is reasonable to conclude that any sensible initialisation will give a
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good result (if the initial position of the shape prior and the parameters are
good); the result does not depend to a large extent on the initialisations of
c0, c1, b0 and b1.

Figure 5.16: First column: Some initial colours shown as images with c0

to the left of the image and c1 to the right. Second and third column:
Corresponding segmentation result. Parameters: λ = 1.5 and µ = 2.5.
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Colour models

In all the examples above, we have used the RGB colour model, because most
images are stored in this format. However, in some cases, the HSI colour
model can give an advantage over the RGB model. As an example, we look
at the image shown in RGB and HSI space in figures 2.3 and 2.5, respectively.
The segmentation result obtained with no shape prior information is shown
in figure 5.17, and we can see that the segmentation in HSI space is better
than in RGB space, even without a shape prior.

(a) RGB space (b) HSI space

Figure 5.17: Segmentation result without shape prior.

Figure 5.18 shows the segmentation results with the same shape prior as
in the middle column of figure 5.14. In RGB space, µ has to be large relative
to λ in order to force the result to include the tail and the dark stripe along
the body. Then the segmentation result is too similar to the prior shape,
but if λ is increased in order to make the contour adapt more to the object,
the result will be very similar to the result without a shape prior, as we
see in the second row of the figure. In HSI space (row 3), however, we get
a satisfactory result even with an initial pose of the prior which is further
away from the object. Looking at the decompositions in figures 2.3 and 2.5,
this is not surprising. Observe that the dark stripe along the body has a
very different value from the rest of the body in both the green and the blue
channel, and the tail is different in both the red and the blue channel. On the
other hand, in HSI space, the stripe is only significantly different in intensity
and the tail only in hue. Therefore, the segmentation result can, when using
HSI, be allowed to depend more on the values of the image and less on the
shape prior, and the final contour can thus adapt more to the object.

Here, we use both hue, saturation and intensity information in the seg-
mentation process. However, it is possible to utilise the advantages of HSI
space even more. Depending on the nature of the image, using only one or
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two of the channels can sometimes be a good idea. For colour based segmen-
tation, the hue and saturation images are most frequently used [12]. Another
idea is to extract the most relevant information from each channel, for exam-
ple representing a colour by its hue value if the saturation is so high that this
is meaningful, and else representing it by its intensity value, as done in [18].
We have not experimented with these possibilities in this work, we merely
note that it may further improve the results.

Figure 5.18: Segmentation with RGB colour model in the first and second row
and HSI colour model in the third. First column: Initial position of the shape
prior. Second column: Segmentation result shown as a green contour, with
the final position of the shape prior in red. Third column: Segmentation
result. Parameters rows 1-3: λ = 1.7 and µ = 3, λ = 2 and µ = 3, and
λ = µ = 2.
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Number of max-flow iterations

Experiments on several different images showed that there is no point in
actually minimising w.r.t. u, as [16] suggests. In fact, just a few iterations
of the steps for minimising w.r.t. u is enough—the result will in most cases
be almost the same regardless of the maximum number of iterations used to
update u, and in some cases the result will be worse for a larger number of
iterations. We found through experiments that between 2 and 4 iterations
yield the best results and shortest computation time, and in a majority of
the experiments 3 iterations gave the shortest computation time. Therefore,
a maximum number of 3 iterations is used in the algorithm.

One of the experiments was done on the butterfly in figure 5.10. The
parameters were as in the experiment discussed in relation to this figure, but
the maximum number of iterations in the for-loop on j in algorithm 1 was
changed and a stopping criteria in the case of convergence of u was added.
The results are shown in table 5.1. We see that a maximum number of 3
iterations gave the shortest computation time, and the segmentation result
is actually a little bit better too. This can be seen in figure 5.19. It is not
a great difference, but we see that with 100 iterations there are more parts
outside the butterfly in the final result than with 3 iterations.

Max it on u Time Outer it
100 8.20 41
50 6.18 41
25 4.64 36
10 3.91 37
5 3.09 40
4 2.80 40
3 2.61 43
2 2.98 60
1 4.59 120

Table 5.1: Computation time in seconds and number of iterations on k needed
for different number of maximum iterations on continuous max-flow.

The actual number of iterations needed to minimise w.r.t. u can also show
us why choosing 3 as maximum number of iterations is a good choice. The
bar chart in figure 5.20 shows the number of iterations in the for-loop until
convergence of u in every step when we used 100 as the maximum number
of iterations. We see that it is only in the beginning that a large number of
iterations are needed to minimise w.r.t. u, but at this point it is not possible



Experimental results 65

Figure 5.19: The difference in segmentation result with 100 and 3 as max-
imum number of iterations. The red dots show parts that are included in
the result with 100 but not with 3, and the green dots show parts that are
included in the result with 3 but not with 100.

to get a good segmentation anyhow, since the position of the shape prior
in most cases is entirely wrong. Therefore, using a lot of computation time
to make u converge is pointless in the beginning. Further on, only a few
iterations are needed to minimise w.r.t. u, and so we do not loose accuracy
by choosing 3 for the maximum number of iterations. However, if we only
do one iteration, an unnecessary number of outer iterations (on k) will be
needed, and it is unnecessary much work to also update the position of the
prior when it is really only u that needs to be updated. This can also be seen
in the table as only one iteration leads to a tripled number of outer iterations
and an increased computation time.
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Figure 5.20: Number of iterations until convergence of u for every outer
iteration, plotted on a logarithmic scale.
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Summary and conclusion

In this work we proposed a method for image segmentation with shape priors.
We used a shape prior in the form of a characteristic function for the shape,
and included the possibility of rotation, scaling and translation of this shape
to make it match more closely with the object which was to be segmented.
The starting point for the model was the Chan-Vese functional, which was
extended with a term measuring the area of the difference between the two
sets representing the foreground (segmented object) and the prior shape.

This energy functional was reformulated as a Chan-Vese model in order to
be able to obtain a convex problem. Then, the functional was minimised with
respect to one variable at a time. Minimisation with respect to the shape
prior was achieved by updating the pose parameters with an efficient gradient
descent procedure which eliminated problems with step size selection. For
minimisation with respect to the characteristic function of the foreground
region, u, the problem was reformulated and a fast and efficient max-flow
based algorithm was explained and used. This approach is so efficient that
on average only three iterations were needed for convergence of u in every
step.

We tested our algorithm on several images and showed that shape prior
segmentation gives better results than segmentation without shape informa-
tion. The method proved to be stable and works well for several different
initialisations of the pose of the shape prior and of the mean intensity values
for foreground and background.

However, some initial poses will still result in the prior getting stuck
in a local minimum, but this problem cannot be avoided since the energy
functional is not convex with respect to the pose parameters. Specifically,
the shape prior must, at its initial position, cover more of the object of interest
than of other regions with similar colours, in order for the segmentation to be
successful. Also, the result depends on the similarity between the shape prior
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and the object of interest. For images with very similar colours in foreground
and background one must use a very good shape prior and a large µ to get
satisfactory segmentation results. For images with more distinct colours
however, µ does not have to be as large, and so the method can give very
good results even with a prior that is very different from the object. All in
all, the proposed method works very well on a large variety of natural colour
images.
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