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ALADDIN: Docking Approach Augmented by Machine
Learning for Protein Structure Selection Yields Superior
Virtual Screening Performance
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Abstract: Protein flexibility and solvation pose major
challenges to docking algorithms and scoring functions.
One established strategy for addressing these challenges is
to use multiple protein conformations for docking (all-
against-all ensemble docking). Recent studies have shown
that the performance of ensemble docking can be
improved by selecting the most relevant protein structures
for docking. In search for a robust approach to protein
structure selection, we have come up with an integrated
mAchine Learning AnD DockINg approach (ALADDIN).
ALADDIN employs a battery of random forest classifiers to
select, individually for each compound of interest, from an

ensemble of protein structures, the single most suitable
protein structure for docking. ALADDIN outperformed the
best single-structure docking runs, ensemble docking and a
similarity-based docking approach on three out of four
investigated targets, with up to 0.15, 0.11 and 0.16 higher
area under the receiver operating characteristic curve (AUC)
values, respectively. Only in the case of cytochrome P450
3A4, ALADDIN, like any of the other tested approaches,
failed to obtain decent performance. ALADDIN can be
particularly useful for structure-based virtual screening of
malleable proteins, including kinases, some viral enzymes
and anti-targets.
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1 Introduction

Ligand docking is one of the most widely applied computa-
tional approaches in drug discovery.[1–3] Modern docking
algorithms and scoring functions are powerful tools for
predicting the likely binding pose of small molecules.[4]

They also have a strong track record in virtual screening.[5]

The largest docking study reported to date includes the
virtual screening of a total of 170 million make-on-demand
compounds against AmpC β-lactamase and the D4 dop-
amine receptor, as a result of which several novel and, in
part, highly potent inhibitors of these proteins were
identified.[6] Despite these successes, the ability of scoring
functions to estimate in particular absolute ligand binding
affinities remains clearly limited,[7,8] which is related to the
inadequate consideration of protein flexibility,[9,10] solvation
effects,[10,11] and entropy.[12] The computational costs in-
volved in sampling the relevant conformational states of
biomacromolecules are often prohibitive to the consider-
ation of protein flexibility and solvation in docking, in
particular in the context of virtual screening. One of the
most widely applied strategies to mitigate this problem is
to generate ensembles of representative (and generally
static) target structures for docking.[13,14] In this so-called (all-
against-all) ensemble docking approach, ligands of interest
are individually docked against each of the ensemble
structures, and the predictions assessed according to user-
defined scoring schemes.[15,16]

Ensembles are commonly compiled from sets of X-ray
structures,[17,18] homology models,[19] frames extracted from
molecular dynamics (MD) trajectories,[13,20] or combinations
thereof. Several studies have demonstrated the potential of
ensemble docking to improve early enrichment, pose
prediction, and coverage of the bioactive chemical
space.[18,21–23] The benefit of ensemble docking over single-
structure docking can further be improved by methods
allowing the identification of the most suitable ensembles
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for docking. For instance, Rao et al.[24] found, by the
example of p38 MAP kinase, that small ensembles of
protein structures yielding high docking scores for the top-
ranked ligands are likely to also yield high early enrichment.
Korb et al.[22] showed that the performance of ensemble
docking is determined, among other factors, by the
structural similarity between the compound(s) of interest
and the co-crystallized ligands: structures of proteins based
on co-crystals with structurally related ligands promise
higher docking success rates. Such findings have also been
made in earlier studies.[25,26] Another study found that
reduced ensembles of just three to five protein structures
could be generated by taking into account the virtual
screening performance on small data sets of known active
and inactive compounds. This approach was found to
improve both the efficiency and performance of ensemble
docking.[27] Swift et al.[23] explored three knowledge-based
strategies to generate ensembles of protein structures
yielding maximum virtual screening performance. More
recently, an approach for the pre-selection of protein
structures for docking (“ProSelection”) was introduced,
which identifies protein structures as “strong selectors” or

“weak selectors” based on the distribution of docking scores
among the inactive and active compounds.[28]

In this work, we develop and test a new docking
strategy that integrates machine learning to select, individ-
ually for each compound of interest, from an ensemble of
protein structures, the single most suitable protein structure
for docking. We refer to this method as the integrated
approach for mAchine Learning AnD DockINg (ALADDIN).
ALADDIN has the potential to not only yield higher docking
performance than established (ensemble) docking protocols
but also to boost computational efficiency.

2 Methods

2.1 ALADDIN

The training phase of ALADDIN consists of the following
steps that are executed in sequence (Figure 1):
1. A set of known ligands and inactive compounds (or

decoys) is docked against a set of protein structures (this
part corresponds to the classic all-against-all ensemble
docking approach).

Figure 1. Overview of the training phase of ALADDIN.
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2. Individually for all (rank-ordered) hit lists obtained in
step 1, compounds are assigned a binary label, indicat-
ing whether or not they were correctly predicted by the
docking approach. The value “correctly predicted” is
assigned to any actives that obtained “high ranks”
during docking (i. e., low GlideScore values, since Glide-
Score approximates binding free energies) and to any
decoys that obtained “low ranks”. Likewise, the value
“incorrectly predicted” is assigned to any actives with
“low ranks” assigned, and to any decoys with “high
ranks” assigned. Thereby, “high ranks” are defined as any
ranks better or equal to n, where n is the number of
active compounds in the data set, and all others were
defined as “low ranks”.

3. Individually for all hit lists obtained in step 1 (and hence,
individually for all protein structures), a binary random
forest classifier is trained that aims to learn which
compounds, based on the binary class labels assigned in
step 2, are correctly predicted by docking as active or
inactive and which ones are not.
After completion of the training phase, the battery of

binary random forest classifiers (one for each protein
structure) is used for identifying the single most suitable
protein structure for docking (Figure 2):
1. A compound of interest is presented to each of the

classifiers to obtain probability values.
2. The compound of interest is docked against the protein

structure for which the highest probability value was
obtained from any of the classifiers.
The docking pose and score resulting from this single

docking process is the outcome of ALADDIN.

2.2 Data Preparation

Protein Structural Data. For each protein studied in this
work (i. e. human vascular endothelial growth factor
receptor 2, VEGFR2; human MAP kinase p38 alpha, p38α
MAPK; human glucocorticoid receptor, GCR; human cyto-
chrome P450 3A4, CYP3A4), all holo X-ray structures
(identified by UniProtKB accession numbers) with resolution
better than 2.5 Å were downloaded from the Protein Data
Bank (PDB; Table 1). For oligomers, all chains with at least
one co-crystallized ligand present were treated as individual
structures. In the case of p38α MAPK, because of the large
number of available protein structures, an ensemble of
representative protein structures was generated with
SIENA[29] (all settings default). All selected structures were
prepared using the Protein Preparation Wizard[30] within
Maestro.[31] After preprocessing with default settings, miss-
ing atoms of amino acid side chains were added with
Prime.[32] All water molecules were removed from the
protein structure. Next, restrained minimization of the
protein structures was performed with the OPLS3e force
field[33] and a default convergence RMSD tolerance of 0.3 Å
compared to the input structures.

Small-Molecule Data. For each of the four proteins, the
complete set of active compounds and decoys was
retrieved from the Directory of Useful Decoys, Enhanced
(DUD-E)[34] in SMILES format (Table 2). The structures were
prepared using LigPrep[35] within Maestro.[31] For each
molecule, a single representation of the most likely
ionization and tautomeric state at pH 7.0 was calculated
with Epik.[36] Subsequently, the energy of the generated

Figure 2. Overview of the application of ALADDIN to compounds of interest.
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conformer was minimized with the OPLS3e force field with
default parameters.

Docking. In preparation for docking, Glide receptor
grids, centered on the co-crystallized ligand of the individ-
ual protein structures, were generated. The option “dock
ligands similar in size to the workspace ligand” was selected
to define the size of the receptor box. In the case of the
presence of alternative ligand conformations, the first
conformation recorded in the PDB file was selected to
define the grid.

Docking was conducted with the Glide Standard Precision
(Glide SP) algorithm[37] with default settings (i.e. enabled
sampling of nitrogen inversions; enabled sampling of ring
conformations with an energy window of 2.5 kcal/mol;
enabled bias sampling of amides only with penalization of
nonplanar conformations). For ligands represented by more
than one molecular structure (e.g. in the case of tautomers or
protomers), the highest GlideScore obtained with any
representation of a molecule was considered.

Machine Learning. Prior to the training of random forest
classifiers, each of the DUD-E actives and decoys sets was
split into a training and a test set with a ratio of 80 :20
(Table 2). For each individual protein structure, a random
forest classifier was trained with scikit-learn[38] on all
compounds of the respective training set. The class labels,
assigned according to the method described above
(“correctly predicted”, “incorrectly predicted”), served as the

dependent variable. The class_weight parameter for the
random forest classifier was set to “balanced” (i. e. weights
adjusted to be inversely proportional to the class frequen-
cies in the training data). The optimum setup for training
random forest classifiers was determined by a grid search
within a 10-fold cross-validation framework, as part of
which a variety of combinations of hyperparameters and
molecular descriptors were explored (Table 3). Thereby, the
Matthews correlation coefficient (MCC), averaged across all
folds, served as performance measure.

Table 1. Overview of Structures Compiled from the PDB.

Target Protein
accession ID

No. of PDB entries No. of target structures
selected for dockingb

Retrieval date
retrieved valida

VEGFR2 P35968 35 32 38 June 12, 2019
p38α MAPK Q16539 199 161 30 Nov 15, 2018
GCR P04150 37 20 30 June 12, 2019
CYP3A4 P08684 28 21 25 June 12, 2019
a Valid structures are any structures with a ligand observed in the binding site occupied by the representative structure deposited in the
DUD-E and with a resolution better than 2.5 Å. b Number of structures of individual protein chains selected for docking. One PDB entry may
be represented by more than one structure. In the case of p38α MAPK, because of the high number of valid protein structures, SIENA was
employed to generate a representative ensemble of protein structures.

Table 2. Sizes of the Small-Molecule Data Sets and Subsets Prior and After Preprocessing.

Target No. of compounds
Prior to pre-
processinga

After pre-
processingb

Training set Test setc Test subset 1d Test subset 2e

Actives Decoys Actives Decoys Actives Decoys Actives Decoys Actives Decoys Actives Decoys

VEGFR2 2320 24950 2320 24937 1853 19953 467 4984 225 3925 68 3269
p38α MAPK 2218 35850 2218 35833 1804 28637 414 7196 229 5822 75 4761
GCR 992 15000 992 14994 800 11989 192 3005 77 2573 21 2196
CYP3A4 303 11800 303 11797 240 9440 63 2357 35 2114 19 1888
a Complete data sets downloaded from the DUD-E database in SMILES format. b For a small number of compounds, no 3D conformation
could be generated with LigPrep. c Consisting of 20% of the respective DUD-E subset This is the complete test set (i. e., 20% of the respective
DUD-E dataset). d Subset of the test set, consisting only of molecules having a maximum Tanimoto coefficient (Morgan2 fingerprints with
1024 bits) of 0.8 with any of the compounds present in the training data. e Subset of the test set, consisting only of molecules having a
maximum Tanimoto coefficient (Morgan2 fingerprints with 1024 bits) of 0.7 with any of the compounds present in the training data.

Table 3. Descriptors, Labeling Schemes and Random Forest Hyper-
parameters Explored in this Work.

Components Values

Descriptors MACCS keysa, Morgan fingerprintsa,
MOE 2D descriptorsb

Number of estimatorsc 50, 100, 500
Maximum number of featuresd “sqrt”, 0.2, 0.4, 0.6, 0.8, “None”
a Implemented in RDKit.[39] b (All) 206 2D descriptors implemented
in MOE.[40] c Number of trees in the forest. d Maximum Number of
features considered for identifying the best split.
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3 Results

ALADDIN was tested on four representative human proteins
of pharmaceutical relevance for which we retrieved sets of
known ligands and decoys from the DUD-E:
* VEGFR2, a principle responder to vascular endothelial
growth factor signal and the major signal transducer for
angiogenesis.[41,42]

* p38α MAPK, which mediates cellular responses to
injurious stress and immune signaling and regulates
tumorigenesis.[43,44]

* GCR, a nuclear receptor controlling the transcription
within networks comprising thousands of genes and
dominating in various fields of development, metabolism,
stress response, inflammation and other organismal
processes.[45]

* CYP3A4, a member of cytochrome P450 family which
metabolizes a large variety of xenobiotics and endoge-
nous compounds.[46]

VEGFR2 and p38α MAPK were selected as representative
protein kinases with differing amounts of X-ray structural
data available. For VEGFR2, we identified 32 valid PDB
structures, corresponding to 38 protein chains (“target
structures”) that were selected for the docking experiments
(Table 1; see Methods). In the case of p38α MAPK, a much
higher number of structures are available from the PDB
(199 structures). For this reason, we employed SIENA, an
automated approach for the generation of representative
protein structure ensembles, for the reduction of target
conformations used for docking. Specifically, we used a
structure of a heterobicyclic inhibitor bound to p38α MAPK
(PDB ID: 2QD9; serving as the reference structure for DUD-
E) as query for the generation of an ensemble of 30
representative structures of the human p38α MAPK.

GCR is known as a challenging target for structure-based
virtual screening because its ligand binding pocket is
flexible and highly hydrophobic. The AUC obtained by a
docking approach on GCR was the second lowest across all
targets included in the DUD-E.[34] CYP3A4 is a further target
known to pose significant challenges to structure-based
virtual screening. The enzyme is highly malleable and has a
large, hydrophobic binding pocket that lacks clear pharma-
cophoric requirements for ligand binding. For GCR and
CYP3A4, the protein structure selection procedure resulted
in 30 and 25 target structures, respectively. Detailed
information on the structures selected for the individual
targets is provided in Tables S1 to S4.

3.1 Performance of Single-Structure Docking

In order to set reference points for comparing the perform-
ance of different docking strategies, we explored the range
of AUC values obtained by single-structure docking for the
identical sets of protein structures that will also be used for
evaluating ensemble docking and ALADDIN. Unless stated

otherwise, all values presented in this work refer to the
performance on the test set. Single-structure docking
obtained mean AUC values of 0.76, 0.68, 0.54 and 0.65 for
VEGFR2, p38α MAPK, GCR and CYP3A4, respectively (Fig-
ure 3). For the individual targets some substantial differ-
ences in AUC values and early enrichment were observed
between the best and the worst docking run (Figure 4 and
5). For example, for p38α MAPK the best ROC curve (AUC
0.79) indicates decent performance of the docking algo-
rithm whereas the worst ROC curve (AUC 0.54) indicates a
performance that is close to random selection (Figures 4).

In several structures used in this work, the side chains of
some amino acids are missing. We modeled these with
Prime. However, some structures have larger parts unre-
solved, in particular flexible loops (such as the DFG loop in
the case of VEGFR2). We tried to model also these parts
with Prime. However, in several virtual screening experi-
ments with GLIDE we found the structures of modeled
loops to be inaccurate, for which reason we decided to
refrain from modeling larger unresolved protein parts and
go ahead with the original, preprocessed structures.

3.2 Performance of Ensemble Docking

For three out of the four targets investigated in this work,
(all-against-all) ensemble docking outperformed single-
structure docking on the test set. AUC values were between
0.12 (VEGFR2) and 0.17 (GCR) higher than the average AUC
values obtained by single-structure docking (Figure 3), and
also between 0.03 (GCR) and 0.06 (VEGFR2) higher than for
the best single-structure docking runs (Figure 4). For
CYP3A4, no gain in performance of ensemble docking over
single-structure docking was observed. As shown in Fig-
ure 5, early enrichment follows the trends observed for AUC
values. Compared by their EF5% values, ensemble docking
matches the performance of the best single-structure run.

3.3 Performance of ALADDIN

Prior to discussing the performance of the integrated
(ALADDIN) approach, we briefly report on the performance
of the individual machine learning models (i. e. their ability
to predict which compounds will be correctly docked).

Performance of the Machine Learning Models. The
best classifiers, optimized during a grid search within the
framework of 10-fold cross-validation (see Methods for
details), obtained MCC values (averaged over all folds and
models) between 0.51 (CYP3A4) and 0.62 (GCR), with low
standard deviations (Table 4). The selected components and
parameters were consistent across the four targets (Table 4).
Morgan fingerprints performed best among the three sets
of descriptors investigated. Different radii (2, 3, 4) and bit
lengths (1024, 2048) for Morgan fingerprints were explored
at the example of VEGFR2. Since no substantial changes in
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performance were observed (Table S5), a radius of 2 and a
bit length of 1024 were selected for all subsequent experi-
ments (Tables S6–S8). Chance correlation was excluded by a
Y-scrambling test (the averaged MCC values were 0.00 for
all targets). The final models were trained on the full
training sets, this time balanced with the Synthetic Minority
Over-sampling Technique, SMOTE,[47] with the optimum
modeling setup identified during the grid search.

Performance of the Integrated Approach. ALADDIN
reached superior virtual screening performance over the
single-structure and ensemble docking approaches for
VEGFR2, p38α MAPK, and GCR. One of the strongest
increases in performance on the test set was observed for

GCR, for which ALADDIN reached an AUC of 0.82 whereas
ensemble docking and the best single-structure docking
run yielded AUC values of only 0.71 and 0.68, respectively
(Figure 4). In the case of VEGFR2, ALADDIN obtained an
AUC of 0.93, which is 0.05 higher than the AUC obtained by
the ensemble approach and 0.11 higher than the AUC
obtained by the best single-structure docking run. Similar
results were obtained for p38α MAPK, where ALADDIN
yielded an AUC of 0.94, ensemble docking an AUC of 0.84,
and the best single-structure run an AUC of 0.79. These
observations hold true also for enrichment factors, where
ALADDIN obtained higher EF5% and EF10% values for VEGFR2,
p38α MAPK, and GCR than any of the other docking
approaches (Figure 5 and Tables S9 to S11). For example, in
the case of p38α MAPK, the EF5% and EF10% were 12.51 and
8.14 for ALADDIN, whereas they were only 8.02 and 4.93 for
ensemble docking, respectively. Only in the case of CYP3A4,
ALADDIN failed, like any of the tested established docking
approaches, to reach decent performance (AUC 0.65). The
AUC values obtained by any of the investigated docking
approaches were between 0.53 and 0.68.

In order to test the robustness of ALADDIN, the method
was also tested on subsets of the test sets that are
composed of molecules that are less closely related to the
structures represented by the training data. More specifi-

Figure 3. Spread of AUC values for single-structure docking on the test set. The mean AUC values for VEGFR2, p38α MAPK, GCR and CYP3A4
were 0.76 (σ=0.05), 0.68 (σ=0.07), 0.54 (σ=0.06) and 0.65 (σ=0.04), respectively. The outlier observed among the CYP3A4 structures is
6MA6, a co-crystal with metyrapone bound. Metyrapone is a small inhibitor of CYP3A4; its molecular weight is just 226.27 g/mol.

Table 4. Overview of the Selected Modeling Setup and the
Performance of the Best Models on the Training Set.

Components VEGFR2 p38α MAPK GCR CYP3A4

Descriptors Morgan2 fingerprints with 1024 bits
Number of estimators 500
Maximum number of
features

sqrt

MCC averaged over
all folds and models

0.58 0.60 0.62 0.51

Standard deviation (σ) 0.02 0.03 0.02 0.02
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cally, (for each target) subset 1 is composed of molecules
with a maximum Tanimoto coefficient (Morgan2 finger-
prints with 1024 bits) of 0.8 calculated for any pair of
training and test set compounds; subset 2 was compiled in
the same fashion but with a cutoff of 0.7. Also on these
subsets, ALADDIN outperformed all other investigated
docking approaches. For subset 1, the gain in AUC of
ALADDIN over ensemble docking was between 0.04
(VEGFR2) and 0.13 (GCR); for subset 2 it was between 0.02
(VEGFR2) and 0.17 (GCR). The same trends were observed
for the enrichment factors (Tables S9–S11).

3.4 Performance of Similarity-based Docking

We have shown that ALADDIN outperforms other docking
approaches on three out of four targets, the exception
being CYP3A4, where all tested approaches fail to obtain
decent early enrichment. What is yet to be tested is
whether the random forest-based ALADDIN brings added
value over a simple similarity-based docking approach akin
to that of Korb et al.,[22] which can be considered a baseline

experiment. In this approach, compounds of interest are
individually docked against the target structure that is
derived from the complex with the most similar bound
ligand (similarity defined as Tanimoto coefficient calculated
on Morgan2 fingerprints with a length of 1024 bits). As
apparent from Figure 4, ALADDIN performs substantially
better on the test sets than the similarity-based docking
approach, with AUC values 0.10, 0.15 and 0.16 higher for
VEGFR2, p38α MAPK, and GCR, respectively. Again, these
observations are consistent with those made for the early
enrichment rates (Tables S9 to S11). Unsurprisingly, also the
similarity-based docking approach fails to yield decent
screening performance for CYP3A4.

As a final note on the comparative method assessment,
we hold that the training set (Figure S1) and test set
performances are consistent throughout for all approaches
in both AUC and enrichment factor metrics.

Figure 4. ROC curves and AUC values obtained on the test sets of the four targets: (A) VEGFR2, (B) p38� MAPK, (C) GCR, (D) CYP3A4. “best
single-structure” and “worst single-structure” denote the protein structures for which the best and worst performances were obtained on
the full data set, respectively (Tables S1 to S4).
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3.5 In-Depth Analysis of the ALADDIN Model Behavior

In order to obtain a better understanding of ALADDIN, we
investigated its behavior with respect to the selection of
protein structures for docking. From Figure 6 it is apparent
that ALADDIN has a clear preference for a single protein
structure, and this is consistent across all four targets. The
ensemble docking and similarity-based docking approaches
also show preferences for individual protein structures but
overall their selection of structures is more balanced.

The fact that the structure selection profile of ALADDIN
differs from that of the similarity-based docking approach
can be interpreted as an indication that ALADDIN’s
selection is not driven by molecular similarity between the
co-crystallized ligand and the compounds to be docked.
Rather, structural characteristics of the individual protein
structures are the decisive factor in structure selection

(Figure 7). In the case of VEGFR2, the structure clearly
preferred by ALADDIN is 1YWN. This structure is charac-
terized by a large ligand binding pocket, which is a result of
two factors: the (like in some other structures) partly
unresolved DFG loop region and the co-crystallized ligand.
The co-crystallized ligand is characterized by a distinct,
bulky and rigid 5,6-diphenylfuro[2,3-d]pyrimidine scaffold,
which contributes to a widening of the ligand binding site
in particular in the region of the glycine-rich loop). The fact
that this structure obtains high early enrichment (EF1%=

11.42; the highest value across all structures of this target)
indicates that for the docking algorithm it is important to
work with a widened binding pocket that allows the
accommodation of the active compounds, and that the
docking algorithm is able to discriminate active and inactive
compounds based on protein-ligand interaction patterns
(that are only fulfilled by binders). Also the structure

Figure 5. Enrichment factors obtained for the test set. The dashed lines are merely a guide to the eye. Note that enrichment factors are
dependent on the composition of data sets. Enrichment factors obtained for the individual targets should therefore not be used for direct
comparison.
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favored by the similarity-based docking approach (3C7Q)
has a partly unresolved DFG loop region but the observed
conformation of the glycine-rich loop leaves less space for
the ligand than in 1YWN.

In the case of p38α MAPK, ALADDIN shows a preference
for 3GC7, a structure bound with one of the largest co-
crystallized ligands. The ligand binding site of 3GC7 is
widened compared to most other structures of p38α MAPK
(including those preferred by the similarity-based docking
approach). In particular the region of the glycine-rich loop
contributes to a more open conformation of the ligand
binding pocket in 3GC7 as compared to those observed in
other crystal structures. Hence the conclusion that can be
drawn from these observations is similar as for VEGFR2:
widened binding pockets appear to be preferable for
docking because they enable the algorithm to better
accommodate active compounds while maintaining the
ability to correctly classify inactive compounds due to a lack
of compatible protein-ligand interactions. A similar finding
was obtained by Rueda et al., who noted that optimum

results could be expected for protein structures with large
co-crystallized compounds (and therefore widened binding
pockets).[48]

Whereas in the case of the two kinases substantial
conformational changes of the protein backbone are
observed, structural variations are more subtle for GCR. For
GCR, important conformational changes of individual amino
acids are observed, in particular for Arg611, Gln642 and
Thr739. In the structures preferred by ALADDIN (and
ensemble docking; 4CSJ), the orientations of the side chains
of these residues allow the formation of hydrogen bonds
with small molecules such as steroids. In contrast, in many
of the less frequently selected structures rotamers are
observed that do not allow the formation of such
interactions. Also, the bulky 2,4,6-trimethyl-benzenesulfona-
mide moiety of the co-crystallized ligand leads to a
widened binding pocket.

In the case of CYP3A4, substantial conformational
variability is observed across large parts of the ligand
binding pocket. What distinguishes the protein structure

Figure 6. Plot reporting the number of molecules of the test sets for which a specific structure was selected for docking: (A) VEGFR2, (B)
p38α MAPK, (C) GCR and (D) CYP3A4.
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selected by ALADDIN (4D6Z) from most other protein
structures is the orientation of the side chain of Arg212,
away from the ligand binding pocket. Hence, also for this
protein we observe that the structure preferred by
ALADDIN is one with a widened ligand binding pocket.

Importantly, the proportion of active compounds and
decoys selected by ALADDIN is generally well-balanced
across the individual protein structures (Figure 8). Likewise,
the proportion of compounds predicted by ALADDIN as
active or inactive is well-balanced (Figure S2). These results
confirm that ALADDIN does not bias structure selection in a
way that, for example, active compounds are docked
against “good” protein structures and decoys against “bad”
ones. The classifiers do not learn to distinguish active
compounds from decoys but to distinguish, as intended,
compounds for which it is likely that the docking protocol

will produce correct results from those for which this is less
likely.

4 Conclusion

In this work we present ALADDIN, a new approach that
integrates machine learning and docking to yield virtual
screening performance superior to established docking
approaches, including in particular also (all-against-all)
ensemble docking. ALADDIN employs a battery of machine
learning models to select, individually for each compound
of interest, from an ensemble of protein structures, the
single most suitable protein structure for docking. This
makes ALADDIN not only more accurate but also faster
than the established all-against-all ensemble docking
approach as it requires any compound of interest to be

Figure 7. Comparison of the structure preferred by ALADDIN (green) with other selected structures (grey): (A) VEGFR2 (1YWN in green with
glycine-rich loop in blue, preferred by ALADDIN; 3C7Q in grey, preferred by the similarity-based docking approach), (B) p38� MAPK (3GC7 in
green with glycine-rich loop in blue, preferred by ALADDIN; 4KIQ_A, preferred by the similarity-based docking approach), (C) GCR (4CSJ in
green, preferred by ALADDIN; 3E7C_A in grey, preferred by the similarity-based docking approach) and (D) CYP3A4 (4D6Z in green,
preferred by ALADDIN; all others in grey).
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docked only against a single protein structure. A further
advantage of ALADDIN over existing ensemble docking
approaches is that it implicitly accounts for aspects that are
of major relevance to docking and scoring: protein
flexibility, solvation, and the specifics of the docking
algorithm and scoring function used.

ALADDIN was tested on four challenging targets. For
VEGFR2, p38α MAPK, and GCR, gains in AUC over the best
existing approach tested in this work were 0.05, 0.10, and
0.11, respectively. Only for CYP3A4, ALADDIN, like any of
the other tested approach, did not yield decent perform-
ance. Interestingly, for kinases and GCR alike, ALADDIN
preferably selected structures with a widened binding
pocket, which apparently enables the docking algorithm to
better accommodate active compounds while maintaining
the ability to correctly identify inactive compounds.

The application of ALADDIN is limited to targets for
which, as a minimum requirement, several target structures
(either determined by experiment or derived by homology
modeling) and a substantial number of known active
compounds are available. The number of known inactive

compounds may be less critical because approaches such
as the DUD-E decoys generator[34] may be used to produce
sets of putative inactive compounds.

Whereas the need for substantial amounts of biological
data limits the applicability of ALADDIN, the approach can
be highly useful for established, challenging targets for
which there is a continued interest. These include, for
example, kinases and viral proteins such as human
immunodeficiency virus (HIV) type 1 protease and influenza
neuraminidase. ALADDIN may also open new avenues for
the development of structure-based profilers of kinase
selectivity. Importantly, ALADDIN could be highly useful for
structure-based screening of small molecules against anti-
targets.

Abbreviations

ALADDIN mAchine Learning AnD DockINg
AUC area under the ROC curve
CYP3A4 Cytochrome P450 3A4

Figure 8. Proportion of active compounds and decoys selected by ALADDIN for docking against the individual protein structures: (A)
VEGFR2, (B) p38α MAPK, (C) GCR and (D) CYP3A4.
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DUD-E directory of useful decoys, enhanced
GCR Glucocorticoid receptor
p38α MAPK MAP kinase p38 alpha
ROC receiver operating characteristic
SMOTE Synthetic Minority Over-sampling Technique
VEGFR2 Vascular endothelial growth factor receptor 2
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