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Do you bend or break? System dynamics in
resilience planning for food security
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Abstract

This paper discusses our experience in using system dynamics to facilitate resilience planning for
food security in rural communities that are exposed to ever-increasing climatic pressures in Guate-
mala. The social-ecological systems literature is rich in examples where policies to enhance resil-
ience are deduced from factors generally accepted to be present in resilient systems
(e.g. redundancy, connectivity and polycentrism). This deductive approach risks being overly sim-
plistic. As an alternative, this paper explores how insights from analysing the structure-behaviour
relationship of complex dynamic systems can be used to generate tailored policies. The results
show that stability in food systems is mainly driven by key strategic resources that moderate the
effects of environmental changes on food availability and affordability. Moreover, our experience
highlights the importance of analysing mechanisms that determine a system’s behaviour while
and after the system is affected by a disturbance to formulate effective resilience policies.
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Introduction

Food systems are a particular type of social-ecological system (SES) man-
aged with the primary purpose of producing food and, more specifically, of
providing food security to their stakeholders (Ericksen, 2008a). FAO (2002,
p. 50) defines food security as follows: “all people, at all times, have physical
and economic access to sufficient, safe and nutritious food to meet their die-
tary needs and food preferences for an active and healthy life”.

Social, economic and technical developments have evolved during the last
century, improving food systems’ productivity, reliability and quality. The
productivity of food systems has increased to such an extent that food pro-
duction has not only kept pace with population growth but has also
improved food security in many regions (Vermeulen et al., 2012). For exam-
ple, the International Food Policy Research Institute (2016) reported a dra-
matic drop in malnutrition among children between 1990 and 2014. On a
global scale, there has been considerable progress in reducing undernutri-
tion. These gains, however, have not been equal across the globe, and in
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many countries food insecurity and undernutrition conditions are still
alarming.

Despite these overall improvements, progress made towards eliminating
hunger is now at risk. Climate change and other factors are threatening pro-
gress towards increased food security (Richardson et al., 2018; Campbell
et al., 2016; Ericksen, 2008b; Schmidhuber and Tubiello, 2007; Vermeulen
et al., 2012; Wheeler and von Braun, 2013). This threat is higher among
those already food-insecure countries with high dependency on local pro-
duction and rudimentary production systems (Schmidhuber and Tubiello,
2007; Schipanski et al., 2016). In their 2018 report, the Food and Agriculture
Organization of the United Nations (FAO, 2018, p. 1) reported, for example,
that “70-80 percent of severely food insecure people worldwide rely on
agriculture-based livelihoods”. All these households are on the verge of
disaster as climate becomes unpredictable and extreme events such as floods
and droughts are more common.

This study focuses on the effects of climate change on food security, particu-
larly among subsistence farmers in Guatemala. An increase in temperatures
and changes in climate patterns have been consistently observed since the
1950s (Pielke et al., 2007; Wheeler and von Braun, 2013). Climate change, pri-
marily attributed to anthropogenic causes, has significant, long-lasting and
complex effects on local ecosystems (Pielke et al., 2007). Guatemala, like other
developing countries, faces food security challenges that will only increase as
climate change affects small-scale farmers’ capabilities to produce food.
Guatemala’s chronic malnutrition, an accepted measure of food insecurity, is
the fourth worst in the world (WFP, 2016), reaching 55% in rural areas
(Guardiola et al., 2006). Climate change effects such as severe droughts and
increase in average temperatures already compromise food production in Gua-
temala today, especially among small-scale farmers (Bouroncle et al., 2015).

Resilience, at a basic level, can be understood as the ability of a system to
cope with, and adapt to, changes (Holling, 1996; Folke, 2006; Marshall and
Marshall, 2007). Resilience is used in both theoretical and practical settings
as a means to characterise systems but also as a framework to improve its
adaptive capacity (Folke et al., 2004; Walker et al., 2006). In this paper we
focus on the latter, and particularly on the way resilience is applied as a
framework to study how systems can withstand bigger and/or more frequent
changes. We look at resilience as an outcome of the planning and risk man-
agement processes (Berkes and Folke, 1998; Chapin et al., 2009) and empha-
sise those attributes that can help a system to live with, learn from and adapt
to change (Berkes and Jolly, 2001; Adger et al., 2005; Davoudi et al., 2013;
Brown, 2014; Crowe et al., 2016).

In the past, case study research has been used to identify system attributes
and characteristics that contribute to resilience. By studying systems that
have been identified as resilient, researchers have proposed that attributes
such as redundancy, connectivity or polycentrism contribute to enhance
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systems’ resilience. For instance, McConney et al. (2015) found that social
networks, self-organisation and adaptive capacity were fundamental to fos-
tering resilience of fisheries in the Caribbean. Their results highlight the
importance of strengthening cooperation among fisheries in order to enhance
collective responses to unexpected events.

However, transferring these attributes and operationalising them into spe-
cific policies to enhance resilience is not straightforward, and approaches
using resilience are often criticised for their crude approach to complex sys-
tems (Pizzo, 2015). Operationalising resilience in complex systems is partic-
ularly challenging because their behaviour is dynamic and shifts as their
configuration adapts and responds to exogenous disturbances. Complex sys-
tems often behave in counterintuitive ways when impacted by change. This
complex behaviour makes it difficult to assess the effects of policies aimed
at enhancing resilience (Chu et al., 2003).

In this paper we take a different approach to resilience planning and uti-
lise system dynamics (SD) for exploring the complex mechanisms that influ-
ence resilience in complex systems. There are many examples showing that,
at the right level of abstraction, a careful analysis of complex systems’ struc-
tures yields valuable insights about the systems’ behaviour. For instance, SD
has been successfully applied to water management problems (Wei et al.,
2012), challenges of reducing CO, emissions (Sterman et al.,, 2012) and
stakeholder involvement in environmental decisions (Stave, 2002; Videira
et al., 2017). This focus on how stocks, flows and feedback structures drive
behaviour makes SD a great candidate for exploring how systems react and
adapt to change (Hawes and Reed, 2006).

By using SD in our work with rural communities in Guatemala, we man-
aged to identify particular adaptive mechanisms that improve food security
resilience in the area. For example, the lessons learned from our experience
highlight the importance of food reserves and diversity of food sources and
revenues as key factors for food security resilience. While broadly fitting
within the general resilience attributes described in the literature, our study
also shows that recommendations for improving resilience are context spe-
cific and that the effectiveness of policies varies from case to case.

Operationalising resilience

While there is no agreement about how to measure resilience (Davoudi
et al., 2012; Duit, 2015; Pizzo, 2015; Tendall et al., 2015), it is often assessed
through the behaviour of system outcomes (e.g. food security, energy supply
or quality of drinking water) during and after the system has been shocked
by a change in the environment (Biggs et al., 2012). In mathematical terms
these outcomes can be conceptualised using an outcome function F(x)
(Henry and Ramirez-Marquez, 2012; Barker et al., 2013).
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Fig. 1. Generic system
responses to a
disturbance affecting one
of its outcomes

Resilience studies about how a disturbance affects F(x) focus on the mag-
nitude of a disturbance that could be tolerated by the system before seeing
changes in its outcomes (Carpenter et al., 2001). Walker et al. (2004, p. 5)
describe three general changes that F(x) might exhibit after the system has
been affected by a disturbance:

Stability (no change)

The system does not exhibit changes in its behaviour. Note that stability in
this context is not a synonym of a constant or a linear behaviour (see
Figure 1). Stability is F(x) showing the same behaviour that it would show
otherwise, despite the system being affected by a disturbance. For instance,
the amount of available crops might remain stable despite the presence of
moderate droughts if sufficient crops are maintained in storage facilities.

Adaptation

The behaviour of the system “bends” when affected by a disturbance and
eventually bounces back while retaining its current nature. Walker et al.
(2004) emphasise that this return to normal behaviour is not given but driven
by factors (e.g. resources, decisions, actions) within the system. For instance,
food systems might adapt to changing weather conditions if farmers introduce
different seed varieties or different crops that require less water.
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Transformation

The system as it currently exists “breaks” and changes into a new system
with a fundamentally new structure, relationships and identity (Ludwig
et al., 1997; Walker et al., 2004). The new system might or might not pro-
duce the same outcomes or just might not produce them at the same rate.
While certain transformations might be positive, risk management is con-
cerned with those transformations that are not positive and the cases in
which the system might collapse (see Figure 1). For example, food systems
might become economically unfeasible if they are not able to recover from
severe weather disasters.

The changes described by Walker et al. (2004) can be observed and quanti-
fied by simulating F(x) when the system is exposed to change. Herrera
(2017) proposes several measures for assessing resilience (see Table 1). The
proposed approach starts by defining o (see Eq. 4) in terms of magnitude of
the disturbance (M) over a given period (d = duration):

oc=M*d (1)

In this paper, ¢ is the drought (a disturbance), M is the magnitude of the
drought as a percent reduction below average rainfall expected for that
period and d is duration of the drought in months.

It is then required to estimate the probability P(s) that a discrete distur-
bance will happen. Additionally, the magnitude and duration of the distur-
bance can also be set as stochastic parameters to test the effect of different
disturbances on the system outcomes. Such effects can be simulated running
Monte Carlo simulations in an SD model (see, for example, Herrera, 2017;
Walrave, 2016; Moxnes, 2005).

The characteristics presented in Table 1 can be used to identify the thresh-
olds between the three behaviours described by Walker et al. (2004) as illus-
trated in Figure 2. “Hardness” indicates the threshold between stability and
adaptation, i.e. the degree of disturbance needed to perturb the outcome’s
stability (see Figure 2). Similarly, the measure “elasticity” indicates the
threshold between adaptation and transformation, and the “index of resil-
ience” indicates the probability of reaching this threshold (see Figure 2).

Resilience planning for food security in subsistence food systems
in Guatemala

The experiences presented in this paper are part of an independent study
aiming at exploring the policies for enhancing resilience of food systems in
Guatemala. The results are based on model-based discussions held with
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Table 1. Measures for

assessing resilience Measure

Description

Calculation

(adapted from Herrera,

2017) Hardness (op)

Elasticity (o)

Index of resilience
(Ir)

The ability of the system to
withstand a disturbance without
presenting a change in the
performance of the outcome
function F(x). The higher the
hardness, the higher is the system
resilience

The ability of the system to
withstand a disturbance without
changing to a different steady state
(Holling, 1996; Holling and
Gunderson, 2002). The higher the
elasticity, the higher is the system
resilience

The probability of keeping the
current steady state or regime
(Holling, 1996; Holling and
Gunderson, 2002; Martin et al.,
2011). The higher the index of
resilience, the higher is the system
resilience

Hardness is calculated as the
smallest disturbance ¢ that
produces a different outcome
function F(x). This disturbance is
denoted by oy and can be
calculated as

ocg=Mpgx dH#(Z)

Elasticity is calculated as the
smallest disturbance ¢ that moves
F(x) to a different state. This
disturbance is denoted by ¢ and
can be calculated as

UE=MEX dE#(3)

The index of resilience is
calculated as the probability of
experiencing o and can be
calculated from the area
underneath the probability
distribution function of the
simulated outcome:

(IR) =P(6S6E)#(4)

stakeholders in the districts of Huehuetenango and Jutiapa, Guatemala. The
model was developed using group model building (GMB), as summarised in
Figure 3. In short, for each case we engaged with farmers and representatives
from the central and local governments to develop causal loop diagrams
explaining the main relationships in the respective food systems and the var-
iables affecting the resilience of food security to climate change. This under-
standing was then translated into quantitative SD models used to facilitate a
discussion about potential policies. For more details on the GMB process,
see Herrera (2018).

The two original models jointly produced with the stakeholders of each
community were combined into a general model. The purpose of the model
was to develop realistic assessments of the behaviour and underlying pro-
cesses of maize-dominated subsistence agriculture systems. This purpose fits
within the definition of Costanza et al. (1993, p. 547) of “high-realism
impact-analysis models”. Within this definition, some degree of numerical
precision is sacrificed to increase model applicability to different contexts.
The models can be used to assess specific case studies by adjusting initial
conditions and other parameters in the model (as we did in the two dis-
tricts). Within this definition, the purpose of the modelling exercise is to
learn about general principles that could be applied to different contexts
rather than predict future outcomes.
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Fig. 2. Thresholds
between system
responses. “Hardness”
marks the threshold
between stability and
adaptation; “Elasticity”
and “Resilience Index”
mark the threshold
between adaptation and
transformation
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During the formulation of the model, we continuously engaged with stake-
holder representatives to validate the variables and the relations represented
in the model (see Figure 3). A careful process was followed ensuring that
proper documentation was created in parallel with the modelling activities.
Most of the data needed for the model was found in publicly available statis-
tics or provided by the central government from their database. When infor-
mation was not available, we made assumptions about values or
relationships represented by each variable. These assumptions were regis-
tered in the model documentation and discussed with stakeholders in one-
to-one interviews.

Model description

Figure 4 summarises the key feedback loops driving the resilience of food
security to climate change. A detailed description and documentation of the
model is available in the supplementary material as supporting information.
Next, we explain the main feedback loops that impact the system in its cur-
rent state.

Commercial agriculture

Revenues from maize increase households’ cash, increasing households’
ability to spend on farming (see Figure 5). Higher expenditures on fer-
tilisers and irrigation systems result in better soils and higher water
uptakes. Water and nitrogen availability are directly related to maize
yields and consequently to a further increase in the households’
available cash.
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The intervention started with a series of one-
to-one semi structured interviews. The
purpose of the interviews was to familiarise the
stakeholders with the modelling method and to
gain a high level understanding of the system.

A first modelling workshop was held with the
stakeholders to discuss the structures driving
system’s behaviour and elicit causal loop
diagrams (CLDs)

SD model was developed and validated
behind the scene using the inputs from the
modelling workshop and information in the
literature.

The second modelling workshop was held to
discuss the scenarios simulated in the model
and elicit potential policies.

The policies proposed by the participants were
simulated in the model and discussed in a
third workshop.

Fig. 3. Summary of the modelling process. Adapted from Herrera (2018)

A fraction of the maize production is allocated to self-consumption. The
higher the proportion of the maize production dedicated to self-consump-
tion, the less maize is available for the market. Figure 6 shows how lower
sales than otherwise will likely lead to lower revenues, less cash available
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Fig. 4. Causal loop
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and, subsequently, less investment in farming. Low investment in farming

leads to low yields, reducing further the amount of maize that can
be sold.
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Fig. 6. Reinforcing loop
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Higher production rates mean more maize is available for self-consumption
and less money is used for purchasing food. If households spend less on
food they have more cash available for farming. Higher expenditures on
farming lead to higher yields and production rates (see Figure 7).

Market’s invisible hand

Figure 8 illustrates the role of local markets in the system. Higher production
rates mean more maize might be used for self-consumption, reducing the
local demand for maize. Low demand and high supply eventually result in
lower prices and hence lower revenues. Conversly, if production is low,
reserves are likely to decrease and local prices are likely to increase.

Historical behaviour

We used the model to represent and understand the behaviour exhibited by
the system in the recent past (between years 2000 and 2014). While the con-
ditions in each district are different, the underlying structures of the system
are similar. The similarities between the two cases enabled us to qualita-
tively reproduce, with some degree of accuracy, the behaviour of the two
districts using the same model (see Figure 9). The difference in the simulated
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behaviour is only a result of the parameters used to initialise the simulation.
This fact has two implications: (i) the two cases can be represented as the
same system but operating under different conditions; and (ii) while the
model can yield case-specific insights, it also illustrates generic principles
that are transferable to other small-scale food systems.

Resilience to what?
As previously discussed, the main focus of our analysis was to understand the
magnitude of disturbance that changes the behaviour of food consumption in

© 2020 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Societ
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Fig. 9. Reference
behaviour modes for
(a) Huehuetenango and
(b) Jutiapa.
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Table 2. Parameters used
to characterise the
disturbance affecting the
system

each district. Resilience is assessed specifically for a particular disturbance. In
these two districts, we focused on the resilience of food consumption to the
intensification of droughts (¢). We characterised droughts in terms of the per-
centage of rainfall reduction (magnitude) over a given period (duration)
(see Eq. (1)).

We assumed that the probability of having a drought at any given year fol-
lows a Poisson distribution with a frequency A:

k
4

P(k)=e'

(5)

where k is the number of droughts per year and A is average number of
droughts per year.

To account for uncertainty about how weather will develop in the upcom-
ing years we explored how the system reacted to a range of conditions and
used triangular distributions in a Monte Carlo simulation to estimate its
effect on the calories consumed per capita per day. The intervals used for
the parameters characterising the droughts affecting the district are pres-
ented in Table 2.

Analysis

The simulated behaviour for representative droughts (minimum, maximum
and expected) is presented in Figure 10. In both cases it was observed that
under minimum and expected conditions the system is only likely to show
minor variations from the otherwise expected behaviour. However, major
increases in the droughts (close to the maximum conditions considered) are
likely to change the system behaviour considerably. For example, in the case
of Huehuetenango severe droughts might reduce calorie consumption to
~1000 kcal per day per capita for long periods of time (see Figure 10a).

Parameters of the droughts Range considered for
affecting the district Average in previous years upcoming years
M (% of normal rainfall) 10% Minimum: 10%

Expected: 20%
Maximum: 50%

d (months) 3 Minimum: 3 months
Expected: 3 months
Maximum: 3 months

A (droughts per year) 0.25 Minimum: 0.25
Expected: 0.33
Maximum: 0.5

© 2020 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Societ
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Fig. 10. Simulated
behaviour for the variable
“average calorie
consumption per capita”
in (a) Huehuetenango and
(b) Jutiapa for a range of
potential weather
conditions, where MIN is
the minimum droughts
anticipated and MAX is
the maximum
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Severe droughts might provide opportunities for some farmers, as shown
in Figure 10b. Severe droughts increase prices of maize, reduce farmers’
maize reserves and reduce farmers’ revenues, making food less affordable.
However, if farmers have alternative sources of revenue (e.g. livestock) or
sufficient cash reserves, they can keep farming and take advantage of higher
prices in the market. Once the disturbance is removed farmers not only
bounce back but do better than otherwise.

As described before, we used the measures proposed by Herrera (2017)
(i) to identify the changes in the systems’ responses and the thresholds
between them and (ii) to link systems’ responses to the feedback loop mech-
anisms driving them. The quantitative assessment of each case is presented
in Figure 11.
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Fig. 11. Illustrative
assessment of resilience
using resilience measures
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As shown in Figure 11, the magnitude of a drought that produces visible
changes in the number of calories consumed in Huehuetenango (28%) is
higher than the magnitude needed to produce similar changes in Jutiapa
(23%). Hence food security is more likely to remain stable in Huehuetenango
than in Jutiapa when affected by moderate droughts.

The elasticity index indicates the other important threshold of the system.
This threshold marks the change between adaptation and transformation. As
seen in Figure 11, the magnitude needed to transform the system towards a
new state is lower for Huehuetenango (34%) than for Jutiapa (58%). Simi-
larly, the index of resilience indicates how likely the system is to remain
within the current configuration. In this case, the food system in Jutiapa is
more likely to remain within its current configuration (index of resil-
ience = 0.81) and the one in Huehuetenango is more likely to transform
(index of resilience = 0.63). In practice, this indicates that Jutiapa is better at
adapting to reductions in rainfall than Huehuetenango.

The differences between the two systems’ behaviours is driven by a core
part of the systems’ structure, illustrated in Figure 3. Since the system is
dominated by subsistence farms, the primary goal of farmers is to produce
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maize for their own families. The more maize they produce for their own
consumption, the less they depend on the markets and the less they need to
spend on food, leaving more money available for farming (see R3 in
Figure 7).

In normal conditions, once the amount needed for subsistence has been
met, the remaining maize can be sold at the market price. The more maize is
sold, the more revenue farmers have. Famers can, and often do, use these
resources to buy seeds, fertilisers and irrigation systems that improve their
productivity (see R1 commercial agriculture in Figure 5).

However, when droughts unexpectedly reduce maize production, farmers
need to allocate higher percentages of their production to self-subsistence
(illustrated by R2 poverty trap in Figure 6). This adjustment in the allocation
of maize production results in less maize available for the market and lower
revenues for the farmers. Lower revenues result in lower production than
otherwise, increasing once more the percentage of production that needs to
be used for subsistence. This is a vicious circle, exacerbated by market
dynamics and scarcity of local production driving local prices up.

The stability of food security depends on the two stocks “maize reserves”
and “households’ cash”. If the magnitude and frequency of the disturbance
are not too great, these two stocks act as buffers, diminishing the effects of
production shortages on food consumption without affecting food consump-
tion. Farmers could temporarily reduce their reserves to maintain their con-
sumption while only making slow adjustments to the percentage of the
production allocated for self-consumption. In a similar way, if there is suffi-
cient cash in the stock, households might cut other expenses for a short
period of time to continue the investment in agriculture at normal levels and
to maintain production rates.

However, if the droughts are too intense or too frequent, stocks are not suf-
ficient to maintain the normal behaviour, and the property trap loop (R2 in
Figure 6) is triggered. The amount of maize sold declines quickly, reducing
farmers’ revenues and their ability to invest in agriculture. As a conse-
quence, maize production declines even more, putting even more stress on
maize reserves and reducing the amount of maize available for sale even
further.

The opportunities for adaptation depend on the strength at which the
“vicious” feedback loops act and the time farmers must adapt to the new
conditions. In our cases the strength of such loops was determined (i) by
farmers’ dependency on agriculture as revenue source and (ii) on the depen-
dency of maize production on the money spent on farming.

In Jutiapa, farmers combine subsistence maize production with poultry
farming, which offers an alternative source of revenue and food during
drought periods. Farmers in Huehuetenango, on the other hand, mainly
depend on revenues coming from agriculture. Since the farmers in
Huehuetenango consider poultry farming a “feminine” activity, alternative
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revenues come from working seasonally on large commercial farms. How-
ever, droughts affecting small-scale production affect large commercial farms
at the same time. During severe droughts the farmers in Huehuetenango see
both sources of revenue diminish, and the cash in their stock reduces
rapidly.

The resilience literature has highlighted the importance of redundancy to
enhance resilience. In this case, redundant sources of revenues, like reve-
nues coming from poultry, can reduce the strength of the poverty trap loop
(R2 in Figure 6) by reducing the depletion rate (outflow minus inflow) of the
“households’ cash” stock.

Another factor strengthening the vicious circle is the condition of the soil
used for agriculture. Huehuetenango is characterised by poor soils that
require special seeds and investment in fertilisers to reach minimum produc-
tion levels. When farmers cut their expenditure on farming the yields
decline significantly. The areas studied in Jutiapa, on the other hand, have
better soils and even with minimum investment farmers can realise accept-
able returns.

The additional sources of revenue, together with a soil that is less sensitive
to annual expenditure on fertilisers, are factors that give the farmers in
Jutiapa the time and flexibility needed to cope with more severe and fre-
quent droughts.

Planning for food security resilience

Using the model and its results, we facilitated a discussion about potential
policies to enhance the resilience of food security to droughts. The insights
described in the previous section were presented to local and government
stakeholders as part of the group model-building exercise that led to the for-
mulation of four potential policies (see Table 3).

The policies were tested in the model and we quantitatively assessed their
benefits using the same metrics that we used before to characterise the his-
toric behaviour (hardness, flexibility and index of resilience). The results are
graphically presented in Figure 12. The results show that Policy 2 (increasing
poultry farming) is the most effective policy to increase system elasticity.
Since the farmers in Jutiapa are already involved in poultry farming, the ben-
efits of this policy are likely to be higher in Huehuetenango than in Jutiapa.

The benefits of Policies 1 and 3 on food security resilience were more
modest (see Figure 12). Further model analysis revealed that this is because
subsidies were not high enough to offset the loss of purchasing power
resulting from the droughts. However, government representatives consid-
ered higher subsidies to be unaffordable. While policies 1 and 3 might be
attractive in theory, in practice they turned out to be too costly.
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Table 3. Potential
policies for enhancing
resilience of food systems
to climate change

Policy name

Policy description

Dynamic principle

Policy 1: Increasing subsidies
to fertilisers

Policy 2: Increasing poultry
farming

Policy 3: Subsidies for
irrigation systems

Policy 4: Emergency food
bank

The central government
currently subsidises fertilisers
by 15%. The policy proposes
to increase this subsidy to
35% among vulnerable
farmers after a crisis

The policy proposes to offer
subsidies, credits and
training to farmers to help
them to increase their
livestock. Considering the
households’ size, the policy
focuses only on increasing
poultry

The policy proposes to offer
subsidies to build irrigation
systems including pumps,
wheels, reservoirs and
irrigation lines. The policy
will offer constant support to
farmers under the poverty
threshold for up to 5 years
The policy proposes to create
a food bank where farmers
could store their food. For
each kilogram deposited by
farmers, the government will
contribute with 10% on top
in kilograms of maize.

Reduces the strength of R2 by
reducing the sensitivity of
yield to households’ cash

Reduces the strength of R2 by
reducing the sensitivity of
households’ cash to maize
production

Reduces the strength of R2 by
reducing the sensitivity of
yields to households’ cash

Increases the system stability
by virtually increasing the
maize reserves stock

Finally, Policy 4 offers a promising alternative for increasing stability of

the system (see Figure 12), particularly in Jutiapa, where farmers had lower
maize reserves than the farmers in Huehuetenango. Increasing maize
reserves by having an emergency food bank also reduced the strength of the
“poverty trap”, increasing the elasticity in both cases.

Conclusions

Climate change poses a severe threat to families relying on subsistence agri-
culture around the world. In this challenging context, it is urgent to identify
how food systems can be more resilient and to formulate policies that help
farmers to adapt to the challenging conditions.

Analysis of empirically based SD models revealed that stability in food
systems is mainly driven by key strategic resources that moderate the effects
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Fig. 12. Graphic
representation of the
impact of proposed
policies on food security
resilience

(A) (B)
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Emergency Emergency
food bank food bank
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of environmental changes on food production and prices. We also discussed
how adaptive capacity is shaped by the strength of feedback mechanisms
within the system structure. If we can identify the feedback loops that move
the system to a new state, it is possible to design policies that reduce their
strengths and give farmers time and opportunity to adapt. For instance, in
our case studies, redundancy of revenues and mixing crop farming with
poultry farming could help farmers deal with more severe and frequent
droughts.

While the above recommendations might be applicable to other cases, our
experience also shows that resilience is context specific and it is unlikely to
result in a “one size fits all” policy. Hence it is important to consider the
entire dynamic complexity of the systems under study. As shown in this
paper, the insights gained from identifying the key stocks and feedback
loops dominating system behaviour help in understanding how policy rec-
ommendations might differ from case to case.
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