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Abstract 
Final outcome after allogeneic peripheral blood stem cell transplantation (PBSCT) 

is influenced by the high degrees of variation in disease and comorbidities among 

recipients, as well as the pre-and post-transplant handling of patients. Recent studies 

suggest that outcome is also influenced by donor heterogeneity, and the impact of G-

CSF–induced immunomodulation on graft composition and post-transplant outcome 

is still not fully understood. 

In this exploratory study, we characterized  healthy HLA-matched related donors 

with respect to 27 distinct circulating lymphoid subsets, and systemic levels of 39 

soluble mediators and 641 metabolites during hematopoietic stem cell mobilization 

and collection. A high degree of variation among donors was detected. This 

heterogeneity was further increased during G-CSF treatment and apheresis through 

preferential enrichment of certain immune cell subsets, soluble mediators and 

metabolites both in the donors and the stem cell grafts. Bioinformatics analyses were 

used to identify donor G-CSF–induced systemic changes and revealed a distinct 

dichotomy in G-CSF immune cell mobilization response, with potential impacts on 

recipient outcome. Our findings show that the systemic G-CSF–induced mediator 

profile predicted stem cell yield, and graft mediator profile was dependent on 

apheresis device and correlated to graft leukocyte and platelet levels. 

Our overall results show that healthy stem cell donors are heterogeneous with regard 

to immunoregulation, and this heterogeneity is increased by G-CSF treatment and 

stem cell harvesting. Future clinical studies should further investigate how 

immunological donor characteristics influence outcome after allotransplantation and 

the possible implications for hematopoietic stem cell mobilization and collection.  
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 1 

 Introduction 
Hematopoietic stem cell transplantation–a brief historical outline 

In the wake of World War II, after radiation from atomic bomb explosions caused 

lethal bone marrow (BM) injuries, BM infusion was shown to heal radiation-induced 

murine BM injury, and this discovery paved the way for initial attempts to treat 

human leukemia with allogeneic BM rescue after sub-lethal radiation therapy and 

chemotherapy.1 Until increased knowledge about the human leukocyte antigen (HLA) 

system allowed the first HLA-matched allogeneic hematopoietic stem cell 

transplantation (HSCT) in 1968, immune incompatibility between donor and recipient 

inevitably led to graft rejection or graft versus host disease (GVHD), except after 

transplantations with syngeneic (from identical twin) and autologous cryopreserved 

BM.1 The development of more intensive chemotherapy and discovery of novel 

immunosuppressive agents allowed significant expansion and diversification of 

HSCT with respect to indications, conditioning, immunosuppression, donor type and 

graft source and preparation 1,2 (see Figure 1).  

Confirmation of the up to 100-fold increase in circulating hematopoietic progenitor 

cells (HPC) in response to recombinant human granulocyte-colony stimulating factor 

(rhG-CSF) allowed the reliable and safe collection of peripheral blood stem cells 

(PBSC) for sufficient hematopoietic and immunological reconstitution both in the 

autologous and allogeneic setting.3,4 Replacement of BM with G-CSF mobilized 

PBSC as the primary stem cell source led to a less invasive collection procedure, 

avoided the need for general anesthesia and resulted in shorter time to engraftment 

and reduction in incidence, severity and duration of donor complications.5,6 

To date, more than 400,000 allogeneic HSCT have been performed in 75 countries 

worldwide.2 The number of annual allotransplantations in Europe currently exceeds 

15,000, more than 75% of which are performed with PBSC.7 In  2017, unrelated 

donors were used for approximately 60 % of matched PBSCT, and haploidentical 

transplantations outnumbered umbilical cord (UC) transplants.7 
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Selection of donors for allogeneic HSCT 
HLA compatibility between donor and recipient is the major selection criterion for 

allogeneic HSC donation.15-17 The most relevant HLA genes for donor selection are 

presented in Table 1 together with the most common secondary donor selection 

criteria. A matched related donor (MRD) is preferred, but such donors are available 

for only 30% of patients,18 whereas the availability of the second choice, a matched 

unrelated donor (MUD), depends on ethnicity (>60% for Europeans and <20% for 

Africans).19 Due to improved treatment protocols, clinical outcomes for MUD 

transplants are approaching those of MRD transplants,20 and outcome for 

transplantation using haploidentical donors has similarly improved.21 Comparative 

randomized studies of the clinical outcomes with “last options” haploidentical grafts, 

mismatched unrelated grafts and umbilical cord blood (UCB) are yet to be 

published,18 though haploidentical transplants are now even discussed as 

commensurable  alternatives to MUD and MRD transplants.22,23 As reduced time to 

transplant may help avoid relapse and improve overall survival (OS) in high-risk 

leukaemia,22 the most readily available donor may be preferable to the most 

immunocompatible graft. 

Age has emerged as the second most important selection criterion for HSCT. 

Younger donor age has a positive impact on recipient survival, both in unrelated and 

related HSCT, and an increase of 5.5% in the hazard ratio for each decade of donor 

age was recorded in a study of 10,000 unrelated transplants.24-26 The majority of 

unrelated grafts are now donated by individuals below 30 years of age, and MUDs 

above 50 years of age are avoided if possible.24,26 Records for HSCT to high-risk 

MDS patients over the age of 50 suggest MUDs below 30 years of age may be 

preferable to older MRDs,27 and a more careful assessment of risks associated with 

the increasing use of related donors over 60 and even 70 years of age has been 

suggested.28  

ABO compatibility, CMV serocompatibility and gender match between donor and 

recipient are preferred and may improve post-transplant outcome (Table 1), though 

different studies have produced conflicting results.24-26,29,30 The impact of minor 

histocompatibility antigen (mHAg) incompatibility depends on the mismatched  
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Table 1.  Important donor evaluation/selection criteria with examples of heterogeneity and impact on 
mobilization/graft characteristics and clinical outcome.  

Evaluation/ 
selection criteria  

Examples of 
variability 

Examples of reported effects on mobilization/ graft 
characteristics/ clinical outcome 

Ref. 

HLA 
compatibility 

-10/10 or 9/10 
  MRD or URD 

Potential increased incidence of GVHD and reduced overall 
survival from HLA incompatibility, HLA-a*0101 correlated to 
incidence and severity of cutaneous aGVHD 

15,16,

24,31 
 -Haploidentical  
 -Other MMD 
 -6/6 or 5/6 

  matched UCB       
Stem cell source -Bone marrow aGVHD risk: PBSC > BM > UCB / possibly higher incidence of 

grade III-IV after transplantation with PBSC  
14,32  

 -PBSC 
 -UCB 

Donor type -Related Increased age, comorbidity and adverse reactions and prolonged 
post-collection recovery in MRD compared to URD  

33 
 -Unrelated 

Age 7–76 Reduced stem cell mobilization, lower T cell and monocyte graft 
content and increased graft NK cell concentration in elderly 
donors, recipient survival negatively affected by advanced donor 
age 

25,26,

34-41 

ABO 
compatibility* 

-ABO identical 
-Major ABO 
  mismatch 
-Minor ABO 
  mismatch 
-Bidirectional 
  ABO mismatch 

Delayed erythrocyte recovery and engraftment in major ABO-
mismatched transplantations, increased risk of hemolytic 
reactions and after major and minor ABO-mismatched 
transplantations 
Increased requirement of RBC transfusions after ABO-
mismatched transplants and of platelet transfusions after major 
ABO-mismatched transplantations 

30  
 
 
 
29 

 Increased TRM after major ABO-incompatible transplantation 
with matched related donors 

25 

 Increased risk of delayed engraftment and grade II-IV aGVHD in 
AML patients after haploidentical transplantation with major and 
bidirectional ABO incompatibility, respectively 

42 

CMV 
compatibility 

-Donor CMV+/ 
  recipient CMV- 

Decreased OS in CMV-  recipients after transplantation with 
CMV+ MUD grafts 

43 

 -Donor CMV-/ 
  recipient CMV+ 

Decreased OS in CMV+ recipients after myeloablative 
conditioning followed by transplantation with CMV- MUD grafts 

43 

Ethnicity -European Negative correlation of white ethnicity to stem cell mobilization. 
Availability of MUD grafts associated to ethnicity  

19,35 
  -Hispanic 

 -African  
 -Asian 

Gender match -Male-to-male Inferior stem cell mobilization in females, female-to-male 
transplantation associated with increased TRM after related and 
lower relapse risk after unrelated donation 
Y-encoded SNPs associated with aGVHD in female-to-male 
transplantation  

25,35-

37,44,

45 
 -Female-to-female 
 -Male-to-female 
 -Female-to male 
  

BMI 18–45 Negative correlation of low BMI to stem cell mobilization. 
Increased donor weight associated with reduced T cell graft 
content 

26,35,

36,39 

HLA-matched related and unrelated donors (MRD and MUD) are defined based on compatibility for the six class I HLA-A, 
-B and -Cw alleles and the four class II HLA-DRB1 and HLA-DQB1 alleles by high-resolution typing, i.e. at the level of 
the 2nd field (formerly designated 4-digit).16,17 HLA-DPB1 typing may be included, searching for 12/12 match.18 
Mismatched donors (MMD): two or more allelic disparities between donor and recipient for the abovementioned genes 
regardless of donor-recipient relationship.18 Umbilical cord blood (UCB) should be matched 6/6 or 5/6 with the recipient 
for the HLA-A, –B and –DR.BMI: body mass index. CMV: cytomegalovirus. RBC: red blood cell. SNP: single nucleotide 
polymorphism. TRM: transplant-related mortality. *Major and minor ABO mismatch are characterized by recipient and 
donor isohemagglutinins directed against donor and recipient red blood cell antigens, respectively. In bidirectional ABO 
mismatch both recipient and donor have isohemagglutinins directed against ABO incombatible red blood cells. 

mHAg epitope, its distribution, the donor type and clinical setting.46,47 

Mismatches for broadly expressed mHAgs may cause both aGVHD and GVL, 

whereas hematopoietic system-restricted mHAgs may induce GVL selectively.46 

Furthermore, donor-recipient incompatibility for natural killer (NK) cell killer 
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immunoglobulin-like receptors (KIR) may reduce relapse after HLA-mismatched and 

MUD HSCT but seems to increase risk of acute and chronic GVHD, both in HLA-

matched and -mis-matched transplants.48,49 Several cytokine and chemokine gene 

polymorphisms also impact clinical outcome (see Chapter 1.3). 

1.1 Preparation of hematopoietic stem cell allografts 
Granulocyte colony-stimulating factor and G-CSF Receptor 

Endogenous human G-CSF is a glycoprotein and a cytokine encoded by the colony-

stimulating factor 3 (CSF3) gene and is produced by various cells including BM 

stromal cells, monocytes, macrophages, fibroblasts and endothelial cells.50 G-CSF 

belongs to the helical cytokine family,51 and its dominant endogenous form has a 

molecular weight of 19.6 kilo Dalton (kDa) and 174 amino acids.52 In vivo native G-

CSF is the principal lineage-specific growth factor for steady-state granulopoiesis 53 

and the dominant cytokine regulator of the stress-induced neutrophil response during 

infection.54 

G-CSF acts through homodimerization of the helical Type I cytokine/hematopoietin 

transmembrane receptor G-CSF receptor (G-CSFR),55-57 thereby inducing activation 

of various pathways–the Janus kinase/signal transducer and activator of transcription 

(JAK/STAT), phosphoinositide 3-kinases (PI3K/AKT) and mitogen-activated protein 

kinases/extracellular signal-related kinases (MAPK/ERK) pathways–and expression 

of the suppressor of cytokine signalling 3 (SOCS3).58 Differential effects on the 

multitude of kinases downstream of G-CSFR is integrated via mechanisms yet not 

fully understood to activate target genes, resulting in different cellular responses: 

proliferation, differentiation, effector functions and/or survival.57,59 Seven different 

isoforms of G-CSFR-encoding mRNA have been identified,60 and a variety of CSF3R 

mutations have been identified in myeloid disorders including severe congenital 

neutropenia, myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and 

atypical chronic myeloid leukemia (CML).59 

G-CSFR was originally regarded as strictly a myeloid receptor, and G-CSF was 

supposed to exert a solely indirect effect on lymphocytes via induction of  

immunomodulatory IL-10 production in monocytes.61 More recently, time-dependent  
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induction of G-CSFR in activated CD4 and CD8 T cells during G-CSF treatment has  

been demonstrated, indicating an additional direct T cell effect.62-64 

G-CSF-mediated hematopoietic stem cell mobilization 
Hematopoietic stem cells (HSC) reside within distinct BM niches that regulate their 

quiescence and capacity of self-renewal, proliferation and ifferentiation.65 

Physiological release of HSC into peripheral blood displays a circadian rhythm with 

peak concentrations early in the morning and nadir at night,66 and release is increased 

by inflammation, strenuous exercise and tissue injury.67-69 

Multiple and complex mechanisms have been proposed as contributors to G-CSF– 

mediated HSC mobilization to peripheral blood. Mobilization does not depend on G-

CSFR expression by HSC or stroma cells, and G-CSF is thought to act on several 

mature hematopoietic cells, including neutrophils, monocytes, T cells and B cells, to 

induce the mobilization process through bone remodeling and suppression of 

osteoblasts.70-72 The constitutively expressed potent HSC attractant chemokine C-X-C 

motif ligand 12 (CXCL12) together with its main receptor C-X-C chemokine receptor 

4 (CXCR4) represent the major components in BM retention and quiescence of 

HSC.73 G-CSF-induced HSC mobilization is facilitated through several 

CXCL12/CXCR4 axis-suppressing mechanisms: (i) reduced BM stroma CXCL12 

production74; (ii) apoptosis and inhibition of differentiation of CXCL12-producing 

osteoblasts75; (iii) cleavage of CD34+ HSC CXCR476; (iv) proteolytic cleaving of 

CXCL12 by carboxypeptidase M or dipeptidyl peptidase 4 (CD26) or other similar 

enzymes77,78; (v) reduced HSC and stroma cell expression of platelet endothelial cell 

adhesion molecule-1, potentially modulating HSC migration in response to 

CXCL1279; and (vi) enhanced HSC hepatocyte growth factor/c-Met signaling, 

potentially inhibiting HSC responsiveness to CXCL12.80 The sympathetic nervous 

system is probably also important for the  G-CSF induced osteoblast suppression and 

CXCL12 downregulation.81 

During G-CSF treatment, the BM neutrophil population is significantly expanded 

through enhanced release of neutrophil serine proteinases and metalloproteinases, 

including neutrophil elastase, cathepsin G and Matrix metalloprotease 9 (MMP-9).82 
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In addition to their cleaving of CXCL12,83 their proteolysis of vascular cell adhesion 

molecule (VCAM) 82 and the receptor tyrosine kinase c-kit impedes the anchoring 

and quiescence of HSC in the BM niche, potentially enhancing their release into 

peripheral blood.84 

Other parts of the innate immune system also participate in HSC mobilization. 

Mobilizing agent-induced sterile inflammation through the release of endogenous 

danger-associated-molecular pattern (DAMP) molecules, reactive oxygen species 

(ROS) and proteolytic and lipolytic enzymes is thought to trigger activation of and 

crosstalk between the complement and coagulation cascades.85,86 Induction of the 

complement component fragments C3a and C5a modifies HSC retention and 

contributes negatively and positively to mobilization, respectively.87,88 Finally, the 

role of several bioactive metabolites, such as sphingosine-1-phosphate, adenosine and 

phospholipase C β2, is being elucidated.89,90 

G-CSF-induced immune cell mobilization and immunomodulation 
After 4–6 days of G-CSF administration, peripheral blood white blood cell count 

(WBC) averages 40 × 109/L, corresponding to an approximately six-fold increase 

over baseline concentrations, with significant individual variation (approximate 

range: 5–120 x 109/L).91-95 A wide range of myeloid and lymphoid cell subsets are 

mobilized to peripheral blood along with neutrophils and hematopoietic progenitor 

cells.91,96,97 Innate and adaptive immune cells and hematopoietic stem and progenitor 

cells (HSPC) are thought to rely on many of the same retention factors in the BM.98,99 

The mobilization of immune cells may therefore at least partly depend on the same 

mechanisms (see p. 6–7). The G-CSF–induced egress of various immune cell subsets 

from the BM or other lymphoid organs can potentially differ and depend on the 

expression of various retention factors. Different mobilization of distinct immune cell 

subsets may thus represent one immunomodulatory effect of G-CSF. Reported effects 

of G-CSF on different parts of the immune system are presented in Table 2. G-CSF 

produced in vivo essentially serves as a pro-inflammatory mediator during the innate 

immune response to infections, and G-CSF production is induced by bacterial 

components like lipopolysaccharide (LPS) and inflammatory mediators (interleukin 1 
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(IL-1), tumor necrosis factor-alpha (TNFα), IL-17.100-103 In the course of an infection, 

however, endogenous G-CSF has been suggested to regulate inflammation by 

paradoxical reduction of neutrophil mobilization.104 

Table 2.  Examples of reported G-CSF effects on the innate and adaptive immune systems 

Innate immunity  
Immune 
function 

Subset/ 
factor 

Effect Ref. 

Physical barriers IEC Decreased apoptosis of intestinal epithelial cells 105 
Phagocytosis Neutrophils Increased bactericidal capacity 106 
 Mo/MΦ Increased bactericidal capacity 107 
Cytotoxicity NK cells Reduced unstimulated and IL-2–stimulated cytotoxicity 108 
  Reduced proliferation 108 
Complement 
system activation 

C3 and C5 Classical immunoglobulin-dependent complement cascade activation 109 

Cytokine 
production 

Mo/MΦ Decreased M1/M2 ratio* 110 

Adaptive immunity 
Antigen 
presentation  

 DC§ Selective increase of pDC (former DC2) over cDC, (former DC1) 
potentially skewing T cell differentiation towards Th2/Treg 

111,112 

  pDC§ Reduced expression of costimulatory molecules CD40, CD80, CD86 
and CD123  

111 

  Downregulated CD62L with assumed reduced migration to secondary 
lymphoid organs (of CCR7+ cells) 

112 

T cell activation CD3+ T cells Upregulated mRNA for activation markers CD69 and CD53  64 
  Reduced T cell activation level based on CD25, CD95 and HLA-DR 

expression 
96 

   Downregulated mRNA expression of costimulatory and adhesion 
molecules CD5, CD44, LFA-1α 

64 

B cell activation  CD19+ B cells Increased expression of activation markers CD23 and CD25 113 
T helper cell 
differentiation† 

CD4+ T cells ‡Increased/decreased expression of T cell-specific Th2 master 
transcription factor GATA-3  

64,114 

    Downregulated transcriptional regulator complex ISGF3 64 
   ‡Increased/decreased IL-4 secretion and decreased IL-2 secretion 64,114,115 
  Increased IL-10 secretion 114 
  ‡Increased Th17 differentiation/ Decreased level of Th17 cells and 

Th17-specific transcription factor RORgγt 

115,116 

T cell  CD3+ T cells Upregulated mRNA expression of the proliferation promoter STAT5 64 
proliferation CD4+ T cells Reduced proliferative capacity 114 
T cell-mediated 
cytotoxicity 

CD8+ T cells Reduced alloresponse through up-regulated inhibitory NK receptor 
CD94/NKG2A expression 

117 

Induction of 
suppressor cells 

Treg cells ‡Reduced /increased/ unchanged proportion in PBSC compared to BM 
grafts. Increased proportions of Vδ1, CD27+Vδ1 and CD25+Vδ1Tregs 

118-122  

  Reduced CD62 expression indicating poor suppressive effect  118 
 MDSC Increased proportion in PB 123,124 
 CD34+ Mo Increased proportion in PB 125 

CCR: C-C chemokine receptor. Dendritic cells are currently classified into conventional and plasmacytoid subsets: 
cDC/pDC and cDCs subdivided into DC1 and DC2 subsets.126 §: DCs are categorized as an innate subset, but link innate 
and adaptive immunity through antigen presentation to T cells. GATA: guanine-adenosine-thymidine-adenosine recognizer. 
IEC: intestinal epithelial cells. ISGF3: IFN-stimulated gene factor 3. LFA-1α: lymfocyte function-associated antigen 1. 
MDSC: myeloid-derived suppressor cells. Mo/MΦ: monocyte/macrophage. *Macrophages can be classified into the subsets 
M1 and M2, producing pro-inflammatory and anti-inflammatory cytokines, respectively.110 mRNA: messenger RNA. NK: 
natural killer. RORγt: retinoid-related orphan receptor γt. T reg: T regulatory. ‡ contradictory results. 

Knowledge of the effects of G-CSF on adaptive immune response (Table 2) is  

derived from studies of recombinant human G-CSF (rhG-CSF) administration 
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(Table 3). Extensive immunosuppressive effects, involving the entire repertoire of 

immune cell subsets have been reported with (i) generally reduced cellular activation, 

expression of costimulatory molecules, migration, proliferation, antigen presentation 

and cytotoxicity 64,96,111,112,117; (ii) polarization towards production of anti-

inflammatory cytokines and T helper cell subset 2 (Th2) phenotype 64; and (iii) 

induction of various suppressor cells.119,120,123,125 This trend is nuanced by several 

contradictive results regarding, in particular, T cell differentiation and regulatory T 

cell induction or enrichment.114,118,121 In general, these studies are small and very 

heterogeneous with respect to study objects (animals, hematological and oncological 

patients, healthy donors), G-CSF administration (formulation, dose, schedule, 

duration, combination with chemotherapy), sample collection (peripheral blood, BM, 

splenocytes, in vitro cultures) and study conditions (stem cell mobilization, transplant 

models, infection/cancer/autoimmune disease models, in vitro stimulation). 

Table 3.  Typical administration characteristics of rhG-CSF analogs and biosimilars 
G-CSF 
administration 

Standard procedure 
alternatives 

Formulation/variation 
range 

Important effects on 
mobilization/ graft characteristics  

G-CSF analog Filgrastim 127 Non-glycosylated 
r-met-HuG-CSF Superior stem cell mobilizing with 

lenograstim compared to filgrastim 
in some studies  Lenograstim 4,37 Thr-133 glycosylated 

r-met-HuG-CSF 
 Pegfilgrastim 128 Pegylated* non-glycosylated 

r-met-HuG-CSF 
Slower pharmaceutical 
degradation* 

 Zarzio/Tevagrastim/ 
Ratiograstim,/Nivestim/
Grastofil/Accofil/ 
Filgrastim Hexal 129-133 

Biosimilars**  Significant differences compared 
with originator drugs have not been 
reported 

Dose 
35-37,95,127,134-138 

10–12 (16) µg/kg/24 h 3–24 µg/kg/24 h  Association of total G-CSF dose 
given to stem cell yield and to 
adverse effects 

Schedule 
95,137-139 

One single dose or 
twice daily  

One single dose or twice daily Improved stem cell yield after 
G-CSF administration twice daily 

Duration 
33,34,44,92,135,138 

4–5 d 
   

4–9 d  Harvest on day 4 of G-CSF 
administration associated with 
lower stem cell yield compared to 
day 5 

*covalent attached polyethylene glycole molecules increases the molecule size to reduce renal clearance, can be 
administered as a single dose for allogeneic stem cell mobilization128,140 ** Biosimilars are formulations that are 
biological equivalent but not identical to the originator drug due to differences in cell lines and production/purification 
technology. 

Collection of mobilized hematopoietic stem cells by leukapheresis 
Stem cell collection usually starts after 4–6 days of rhG-CSF treatment (Table 3). 

The main principle of PBMC apheresis is separation of whole blood components by 

individual density using specialized collection kits within a closed tubing system.141 

(Table 4). Two alternative mechanisms for cell separation are used; while continuous 
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flow devices use centrifugation alone, intermittent flow devices combine 

centrifugation with enrichment in a separation chamber, resulting in cyclic phase cell  

Table 4.  Important characteristics of stem cell collection procedures with examples of variability 
Apheresis 
variables 

Common 
alternatives/values 

Graft characteristics/reported donor and recipient outcome 
(examples) 

Apheresis 
device 
 

Terumo BCT Spectra Optia 
Terumo BCT Cobe Spectra 
Fenwal Amicus 
Haemonetics MCS+ 
Baxter CS 3000 Plus 
Fresenius AS104 

Grafts from Cobe Spectra, Amicus and Haemonetics MCS+ show 
differences in product volumes, WBC and CD34+ counts. Grafts 
harvested with Spectra Optia are characterized by larger volumes 
and higher concentrations of platelets and neutrophils but lower 
lymphocyte and red blood cell platelet content compared to Cobe 
Spectra. Lower incidence of aGVHD in recipients of grafts from 
Spectra Optia was recently reported in a small study142-146 

Threshold for 
apheresis 

(8)15–20 x 103 CD34+ cells 
per L PB pre-collection*   

Pre-apheresis PB CD34+ count is significantly correlated to 
administrated G-CSF dose and to stem cell yield 36,135,147,148 

Processed 
blood volume 

Normal volume apheresis 
(2–3 x TBV) Processed blood volume is significantly correlated to stem cell 

yield. Large volume apheresis reduces collection efficiency 148,149  Large volume apheresis 
(3–6 x TBV) 

Centrifugation 
technique 

Continuous flow 
Intermittent flow 

Centrifugation technique dependent differences in graft volume and 
RBC and platelet contamination are reported 142,150,151 

Inlet flow rate 5–140 ml/min Inlet flow rate is negatively correlated to stem cell yield 36 
Collection 
efficiency  

5–120% CE potentially influences graft purity and volume and need for 
repeated aphereses 93 

Number of 
collections 

1–5   The number of collections potentially influences the ratio between 
progenitor and differentiated graft cells, total nucleated cell dose 
and infused plasma volume 33,44,92 

Technical 
dysfunction  

Return problems 
Hemolysis 
Leakage 
Clotting 

Technical dysfunctions may lead to need for repeated procedures 
and potentially lead to volume, electrolyte and coagulation 
disturbances in the donor and influence graft volume and 
composition 44,93,152 

Collection efficiency (CE): Percentage collected of processed CD34+ cells = (CD34+graft/(CD34+pre + CD34+post)/2) * 
(Processed volume–AC volume))*100 153 *evaluated using ISHAGE ( International Society of Hematotherapy and Graft 
Engineering) “single platform” technique.147 TBV: total blood volume. 

separation and collection.141,154 The HSC rich buffy coat is directed into the 

product bag, while uncollected blood components are returned to the donor.141,154 

Semi-automated apheresis devices use optical sensor systems and procedure specific 

computer controlled programs for interphase control.93 

The device-dependent inlet flow necessary for PBMC apheresis is normally 

obtained through peripheral vein access using the antecubital veins.93 Less than 20% 

of PBSC donors require central venous catheters placed in the internal jugular, 

subclavian or femoral veins.44,93,155-157 In the extracorporeal apheresis circuit, the 

foreign surface of the tubing set represents a potent pro-coagulative factor, leading to 

platelet activation and contact-mediated activation of the hemostatic system.158 The 

preferred anticoagulant for extra-corporeal circuits is the divalent cation-chelator 

acid-citrate-dextrose formula A (ACD-A), which inhibits hemostasis by reduction of 

the co-factor function of ionized calcium in phospholipid-dependent tenase and 
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prothrombinase complex assembly.158,159 Further technical details are presented in 

Tables 4 and 5. 

The aim of the apheresis procedure is to optimize yield with minimal risks to the  

donor and recipient. Individualized procedure settings are based on a total assessment 

of stem cell mobilization, hematology count, collection efficiency depending on yield 

prediction and the donor’s individual age and health-related risk.160,161 Stem cell 

mobilizing capacity shows great variability among healthy donors and, together with 

apheresis dependent variables, contributes to variations in infused stem cell doses 

(Table 1 and 4). Donor age is the most important dose-predictive factor, but several 

other donor and G-CSF administration characteristics, including gender, BMI, 

baseline platelet count and several genetic polymorphisms, show associations to HSC 

mobilizing ability (Table 1, 162). A stem cell graft containing a minimum of (4–)5 x 

106 CD34+ PBPC per kg recipient weight is associated with reduced relapse and 

improved OS/DFS in MUD and MRD transplants and is achieved by one apheresis in 

63–89% of collections.38,93,94,163,164 Suboptimal mobilization with an achieved total 

dose below 4 x 106 CD34+ cells/kg or mobilization failure with a yield below 2 x 106 

CD34+ cells/kg after up to three aphereses is reported in 2–5% and <0.5% of 

allogeneic donations, respectively.44,93-95,135In case of poor mobilization, a dose down 

to 3 x 106 CD34+ cells per kg recipient weight is normally accepted, and less than 5% 

of donors need three aphereses or more.38,93,135  

Common strategies to improve suboptimal donor mobilization are increased G-CSF 

doses, prolonged administration or salvage BM harvest.165 The use of the CXCR4 

antagonist plerixafor is increasing.166-171 The direct antagonism of plerixafor with 

CXCR4/CXCL12 leads to more rapid HSC mobilization with lower toxicity 

compared to G-CSF, and the modest mobilization effect of single dosage can be 

overcome by increased doses, intravenous administration or combination 

therapy.166,167,169,171,172 Other potential interventions for poor mobilization include 

treatment with non-steroidal anti-inflammatory drugs,173 pre-harvesting exercise,174 

customizing harvest hours to circadian mobilization rhythms175 and modulation of 

sympathetic activation.176,177 Standardized algorithms for early identification and 

follow-up of poor mobilizers based on defined donor characteristics, and for 
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controlled studies of the effect and risk of alternative salvage strategies for both donor 

and recipient are needed. 

Combined adverse effects of G-CSF and leukapheresis 
The most important adverse effects of HSC mobilization and leukapheresis are 

presented in Table 5. Even after a single subcutaneous injection of rhG-CSF, healthy 

donor G-CSF plasma levels exceed peak physiological concentrations typically 

reached in hematological malignancies or in sepsis by more than 20– or 5-fold, 

respectively.178-180 However, the treatment is relatively well tolerated,92,181,182 with 

dose-dependent but usually mild and transient adverse effects (Table 5). During stem 

cell collection, symptoms and adverse effects can arise from both G-CSF 

administration and apheresis, and synergistic effects are possible; hence most studies 

do not distinguish between adverse events caused by G-CSF and apheresis. 

Table 5.  The most common adverse effects of G-CSF treatment and apheresis in healthy HSC donors 
Adverse effects (AE) Frequency Cause 
Immunohematological disturbances44,92,93,134,155,183,184    
  Leukocytosis (mild/moderate: WBC > 50 x 109/L, severe: WBC> 100 x 109/L) 20–30% G-CSF 
  Thrombocytopenia (PC <100 × 109/L) 20–30% Combined 
  Neutropenia  Apheresis 
  Anemia (Hb <8 g/dL) <1% Combined 
  Hypercoagulability/thromboembolism <1% Combined 
  Hemorrhage§  Combined 
General symptoms44,92,95,127,134,155,185   
  Skeletal pain 70–95%   G-CSF 
  Fatigue 20–60%   Combined 
  Headache/ muscle pain/ flu like symptoms/fever/insomnia/spleen enlargement  20–60%   G-CSF 
  Infections/nausea/emesis/anorexia/ dizziness < 10–20%   Combined 
Hemodynamic‡/cardiovascular disturbances44,186   
  Hypotension/vasovagal reactions/syncope/over-hydration 20% Apheresis 
Access problems 44,92,93   

Local pain/skin rash/vascular damage/hematoma  20–60%   Apheresis 
Nerve injury/arterial puncture/air embolism/pneumo- /haemothorax/cardiac perforation <1% Apheresis 

Biochemical effects127,134,158,185,186    
  Hypocalcemia † - Apheresis  
  Hypomagnesemia/hypopotassemia † - Combined 
  Increased PB [ALP], [AST], [GGT], [LD] and [UA] - G-CSF 

‡ Normally, extracorporeal blood volume amounts to <15% of TBV.186 † Ca2+and Mg2+ions are chelated by ACD-A, 
whereas hepatic citrate metabolism leads to metabolic acidosis counteracted by renal bicarbonate excretion, potentially 
leading to hypopotassemia.158 Various electrolyte disturbances give similar symptoms: paresthesia, muscle cramps, nausea, 
vomiting, abdominal pain, chills, and fever (moderately reduced electrolyte levels) or (rarely) spasm, tetany, seizures or 
arrhythmia.44,186 Electrolyte disturbances are prevented by oral or intravenous supplementation with calcium 
gluconate/chloride, calcium carbonate, magnesium sulfate and/or potassium.158,186 §. Decreased platelet counts due to 
combined effects of G-CSF and apheresis combined with anticoagulation results in post-donation bleeding in up to 5 - 10% 
of healthy donors,152 usually clinically insignificant.44 ALP: alkaline phosphatase, AST: aspartate aminotransferase, GGT: 
gamma-glutamyltranspeptidase, Hb: hemoglobin, IV: intravenous, LD: lactate dehydrogenase, P: potassium, PB: peripheral 
blood, PC: platelet count. P.O.: per os. Mg: magnesium, UA: uric acid, WBC: white blood cell count. 

Combined and partially synergistic effects of G-CSF and apheresis influence the 

peripheral blood cell counts and the coagulation and immune systems during stem 
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cell donations. Not only will pre-apheresis WBC count show great variability among 

healthy donors (see p. 7), the decrease in peripheral blood WBC and concentrations 

of lymphocytes and neutrophils also vary between 20 and 75% during 

apheresis,44,92,134,155,183 reflecting heterogeneity in G-CSF response and apheresis 

procedure settings (Tables 3 and 4). G-CSF administration for allogeneic stem cell 

mobilization leads to a modest but significant decrease in platelet count (about 10 x 

109/L)44,92,134,155,183 and hemoglobin level (approximately 0.2 g/L).44,92,155 

Leukapheresis leads to further decline in platelet concentration by approximately 20–

50%.44,92,93,183,186-188 

 A minority of donors experience absolute neutropenia for up to four months after 

stem cell collection,183 and protracted decreases in peripheral blood counts is not 

uncommon. Follow up of approximately 4000 healthy donors showed slightly but 

significantly reduced median WBC and neutrophil counts compared to baseline levels   

five years post-donation.44 Neutrophil counts normalize within 2 years in the majority 

of donors but in a subpopulation, remain reduced for more than 4 years.183 Monocyte 

and lymphocyte levels may be reduced for at least one year and up to two years, 

respectively,44,183,184 whereas platelet level and hemoglobin concentration are usually 

normalized within 6–12 months.44,189 Processing of a large blood volume, several 

consecutive apheresis procedures, younger age and female gender have been shown 

to predict pronounced cytopenia after apheresis.44,92,93,134,183 Isolated severe 

neutropenia is observed more often after G-CSF treatment lasting more than 5 days, 

and platelet reduction is correlated to G-CSF dose.183 Healthy, untreated platelet 

donors return to baseline platelet counts more quickly after donation compared to 

healthy stem cell donors mobilized with G-CSF and thereafter have a more 

pronounced rebound increase in platelet counts,190,191 further substantiating the 

importance of G-CSF as a cause of cytopenia. 

Activation of the coagulation system is a part of the general systemic response to G-

CSF, leading to increased platelet activation, ADP-induced platelet aggregation and 

elevated thrombogeneic plasma factors like von Willebrand factor, D-dimer and 

FVIII.192-194 Apheresis also leads to platelet activation, but the hypercoagulability is 

counterbalanced by anticoagulant effects. While partial thromboplastin time is 
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decreased after G-CSF treatment, it is transiently prolonged during apheresis, and 

platelet counts are decreased due to combined effects from G-CSF, apheresis and 

anticoagulation.38,152,194 Stem cell collection therefore infrequently leads to severe 

thromboembolic complications and results in post-donation bleeding, usually 

moderate, in up to 5 - 10% of healthy donors.152,195,44 

The immunoregulatory effects of G-CSF have been summarized in Table 2. 

Apheresis also has several immunomodulatory effects, and the term “extracorporeal 

immunomodulation” has been used to describe the removal of plasma proteins and 

cellular immune components by various plasmapheresis, lymphocytapheresis or 

granulo-cytapheresis techniques tried in the treatment of certain autoimmune, 

neurological and hematological diseases.196 Furthermore, due to exposure to high 

centrifugal forces and artificial surfaces during apheresis, various blood and immune 

cells undergo stress-induced activation or fragmentation with increased release of 

soluble mediators into the apheresis product.197-199 Plasma proteins like immune-

globulins, cytokines and soluble HLA Class I molecules (sHLA-I) can potentially 

bind to graft cells, plastic surfaces and cells in the donor and graft recipient.200-202 

Whether such potential immunomodulation caused by apheresis may result in 

significant clinical effects for patient or donor in the setting of allogeneic HSCT is 

not currently known. 

Typically, the mild to moderate side effects of G-CSF and apheresis resolve within 

1–4 weeks and are relieved with non-steroid analgesics, which may even enhance 

HSC mobilization.93,155,173 Less than 1% of donations are complicated with severe 

adverse events, and the total fatality rate including both G-CSF treatment and 

apheresis has been estimated at 1:10,000 donations.92,195,203 The role of CSF3R 

mutations in myeloid malignancies,59 epigenetic and chromosomal alterations in 

donor lymphocytes 204 and development of myeloid malignancy in three healthy 

family donors 1–5 years post-donation 205,206 have raised concerns of potential severe 

long term adverse effects of G-CSF. However, persistent chromosomal aberrations in 

donors have not been confirmed five years after mobilization,207 and despite follow-

up time being too short to draw final conclusions, several prospective register studies 
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of more than 50,000 healthy unrelated donors, with a median follow up of 3–5 years, 

have not revealed increased development of malignancy or autoimmunity.207,208 

1.2 The cellular compostion and functions of the HSC graft 
In a traditional view of hematopoiesis, self-renewal and differentiation represent 

inversely proportional traits of HSC, with hierarchical development of mature blood 

and immune cells through a process from multipotent stem cells via oligopotent and 

unipotent progenitors. Recently, this perspective has been challenged due to the 

detection of a very low proportion of oligopotent progenitors in adult BM, indicating 

multipotent and lineage restricted progenitors as the functionally predominant subsets 

in adult hematopoiesis.209 A few small studies compare the infused doses of 

progenitors and mature immune effector cells from allogeneic PBPC 

grafts and BM grafts; the results are summarized in Table 6. The transplanted doses 

to recipients of PBSC grafts show, on average, a 1.5–30–fold increase of progenitor 

and immune cell subsets over corresponding doses from BM grafts. 

Table 6.  Summary of seven studies comparing BM and PBPC grafts from HLA-matched related 
allogeneic donors with respect to infused doses of progenitor and mature immune cells to the recipients 

Progenitor/ 
immune 
cell subset 

Immunophenotype   Fold increase 
PBPC/BM  

Range BM 
(10^6/kg) 

Range PBPC 
(10^6/kg) 

TNC - 3.9–4.6 (132) 91,96 2–3860 (285) 150–3270 (244) 91,210,211 
HSC (total) CD34+ 1.4–3.7 (178) 91,96,212 0.5–154 (199) 0.7–68.3 (235) 91,211,213 
HSC (multipotent) CD34+ CD38- (CD90+ 45RA-) - 0.02–0.1 (13) 0.07–0.2 (25) 212 

T progenitor   CD34+ CD2+ - 0.04–0.2 (13) 0.04–0.2 (25) 212 
CD34+ CD7+ - 0.03–0.1 (13) 0.05–0.2 (25) 212 

B progenitor   
CD34+ CD10+ - 0.3–1.3 (13) 0.06–0.2 (25) 212 
CD34+ CD19+ - 0.2–0.9 (13) 0.04–0.1(25) 212 
CD34+ CD20+ - 0.04–0.2 (13) 0.02–0.08 (25) 212 

Myeloid 
progenitor   

CD34+ CD13+ - 0.6–2.8 (13) 1.8–6.7 (25) 212 
CD34+ CD33+ - 0.2–19.1(26) 0.4–18.0 (31) 213 

T cells   CD3+ 4.9–16.1(198) 91,96,214 3.6–1699 (326) 15.6–2123(336) 91,210-214 
Th cells    CD3+ CD4+ 13.1–15 (152) 91,96,214 9–51 (75) 50–663 (75) 91,212,214 
Tc cells   CD3+ CD8+ 8.3–27.4 (152) 91,96,214 1.7–40 (75) 20–472 (75) 91,212,214 
αβT cells   CD3+ TCRαβ+ 16 (20) 214 18–86 (10) 240–1064 (10) 214 
γδT cells CD3+ TCRγδ+ 13 (20) 214 0–6 (10) 6–85 (10) 214 
Naïve Th   CD3+ CD4+ 45RA+ 11.3–17 (67) 96,214 44–280 (10) 4–24 (10) 214 
Memory Th  CD3+ CD4+ 45RO+ 9.8–17 (67) 96,214 1–22 (10) 18–296 (10) 214 
B cells CD19+ 6–11 (152) 91,96,214 1.8–47 (79) 2.9–193 (82) 91,213,214 
Monocytes CD14+ 24–29.3 (67) 96,214 2.1–60.7 (36) 27–1053 (41) 213,214 
NK cells CD56+ CD16+ 7.8–19.4(152) 91,96,214 0–154 (194) 0–665 (214) 91,211,212,214 

BM: bone marrow. HSC: hematopoietic stem cell. NK: natural killer. PBPC: peripheral blood progenitor cells. TNC: total 
nucleated cells. TCR: T cell receptor. Th: T helper. Tc: T cytotoxic. The number of participants in the various studies are 
given in paretheses. 

The graft target doses for differentiated immune cell subsets are less precisely 

defined than for HSC. Similar to HSC, the peripheral blood levels of T cells, B cells 
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and NK cells may show circadian variations,215 and the distribution of subsets varies 

between compartments. Whereas approximately 50% of the total neutrophil 

population is normally located in peripheral blood 216 the mononuclear fraction is 

located in primary, secondary and tertiary lymphoid organs to a higher degree, and 

only about 2% of body total lymphocytes are found in the peripheral blood of healthy 

individuals.217 

Table 7.  Summary of donor and manufacturing process heterogeneity 
Donor selection G-CSF treatment Stem cell collection Graft preparation 
Age Formulation Apheresis device Plasma removal* 
Weight Dose Procedure length Red blood cell depletion* 
Comorbidity Schedule Centrifugation technique Immune cell depletion 
Ethnisity Duration Processed blood volume Cryopreservation 
Gender match  Number of collections Additive solutions 
HLA compatibility 
ABO compatibility 

   

*Plasma removal and RBC depletion are performed in minor and major ABO incompatibility, respectively, to avoid 
hemolysis of recipient or donor RBCs. 

As presented in the previous sections and summarized in Table 7, each step of the 

multi-stage donor selection and graft manufacturing process adds variability to the 

grafts. Despite strict guidelines for the preparation of allogeneic stem cell grafts, lack 

of agreement on concise specifications and the inherent heterogeneity of donors, 

recipients and procedures leads to more pronounced dose differences within the 

PBPC group than between PBPC and BM grafts. Infused peripheral blood graft  
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Figure 2.  Comparison of BM and PBMC graft CD3+ doses.91,210-214 Median (mean214) infused BM or PBMC CD3+ 
doses (10^6/kg) with variation ranges and number of study participants are presented, also see Table 6. 
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immune subset doses show more than a 100-fold variation between recipients (Figure 

2).  

Post-transplant immunosuppression 
Post-transplant immunocompetence is further modulated by the donor-recipient 

histocompatibility and the individual recipient immune profile. G-CSF–treated donor 

progenitor and immune cells evolve in a host environment shaped by the primary 

disease and burden of comorbidity, previously performed chemo- and radiation 

therapy, ongoing immunosuppression and the residual host immune system (Figure 1, 

p. 2). The overall imprint of these factors is decisive for quantitative and qualitative 

recipient immunity in terms of absolute and relative concentrations, distribution and 

activation levels of various immune cell subsets and soluble mediators. Due to the 

chemotherapy-specific toxicity profile against different cells 

(myeloablative/lymphotoxic), combinations with TBI or inclusion of two or more 

agents is usually preferred for conditioning; after RIC and mismatched/haploidentical 

HSCT, additional immunosuppressive treatment to enable engraftment and protect 

against graft rejection and GVHD is needed.13 To alleviate harmful effects from both 

donor and recipient T cells, several alternative combinations of immunosuppressive 

agents directed against different molecular and cellular targets are used (Table 8). The 

immunomodulatory effects of TBI are also highly variable as the practice is currently 

not standardized and the techniques and radiation doses vary among centers.218 

Table 8.  Examples of immunosuppressiva used as prophylaxis in HSCT recipients 14,219-222 
Drug class Drug Mechanism of immunosuppression 
Calcineurin 
inhibitors 

Cyclosporine A 
Tacrolimus 

Inhibits activation of NFAT leading to reduced IL-2 
transcription/T cell activation 

Antimetabolites Methotrexate (Folate antagonist) Prevents T cell proliferation by inhibition of purine/purine 
nucleotide synthesis   MMF (IMPDH inhibitor) 

mTOR inhibitors Sirolimus Prevents intracellular signal transduction (more efficiently 
in conventional T cells compared to T regs) 

Antibodies ATG (polyclonal) Modulates multiple key immune response, adhesion and 
cell migration surface molecules resulting in complement-
related lysis and/or apoptosis of conventional T cells with 
spared or expanded Treg cells and reduced DC 
functionality. Contradictory reports with respect to the 
effect on NK,  B and iNKT cells 

 Alemtuzumab 
(monoclonal anti-CD52) 

Eliminates mature lymphocytes and monocytes by 
antibody-dependent cell-mediated cytotoxicity 

Alkylating agents (PT)-CY Promotes n vivo TCD by DNA alkylating of proliferating 
cells  

ATG: anti-thymocyte globulin. IMPDH: inosine-5'-monophosphate dehydrogenase. MMF: mycophenolate mofetil. mTOR: 
mechanistic target of rapamycin. NFAT: nuclear factor of activated T cell family of transcription factors. PT-CY: post-
transplant high-dose cyclophosphamide. 
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Immune reconstitution after PBSCT 
The overall post-transplant goal is hematological and immunological recovery, 

combining eradication of malignant cells with tolerance by the host. Neutrophil 

engraftment, the first of three consecutive days with absolute neutrophil count (ANC) 

≥ 0.5 × 109/L, and platelet engraftment, platelet count ≥ 20 × 109/L without platelet 

transfusions,223 are achieved significantly faster after PBPCT than after BMT.32 

Reported times to reconstitution of other immune cell subsets after allogeneic PBPC 

transplantation are summarized in Table 9. 

Table 9.  Approximate time to reconstitution of various immune cell subsets after PBSCT (examples) 
Immune 
cell subset 

Immuno-
phenotype 

Time to 
recovery 

Examples of reported associations to clinical outcome 

Neutrophils CD15+16+ 2–4 w 
224,225 

Rapid PMN engraftment strongly correlated to improved 
OS/NRM 226 

DC1  CD11c+CD123lo† 4 w 227 Slow DC engraftment associated with increased incidence of 
relapse, aGVHD and inferior survival 228 DC2  CD11c-CD123+† > 6 m227 

Mo/MΦ CD14+16lo14lo16+ 4 w 214,225 Early recovery of Mo associated with improved OS 229 
NK 
   cytokine 
   producing 

 
CD56++16+ 

 
1–> 6 m 
225,227 

 
Delayed reconstitution of NK cells, especially immature CD56++ 
associated with increased incidence of aGVHD 230 

   cytotoxic 
   

CD56+16++ 1–> 6 m 
214,225,227 

Reconstitution time of NK cells/CD56dim subset negatively 
associated to aGVHD, cGVHD and CMV reactivation 212,231   

T cells 
(total) 

CD3+ 1–1.5 y 
212,225,232 

Lower Treg/ CD3+ 9 m post-transplant associated to increased 
cGVHD risk 232 

Th  CD4+ >2 y 232 Early CD4+ recovery/ high 9 m percentage associated with low 
TRM and improved OS 233,234/ increased cGVHD risk 232  

Naïve   CD45RA+CCR7+ >2 y 232 Higher 3 m naïve CD4+ percentage in patients with cGVHD 232 
CM  CD45RA-CCR7+ >2 y 232 Increased CD4+ CM/EM 3 m post transplant in cGVHD patients 

232 EM    CD45RA-CCR7- 1.5 y 232 
Tc    CD8+ 1 m–1 y 

212,232,235 
Lower Treg / Tc 9 m post-transplant/enhanced CD8+ associated to 
higher cGVHD risk 212,232 

Naïve   CD45RA+CCR7+ 1.5 y 232 Higher 3 m naïve CD8+ percentage in patients with cGVHD 232 
CM  CD45RA-CCR7+ >2 y 232 Higher 3 m CD8+ CM percentage in patients with cGVHD 232 
EM    CD45RA-CCR7- 1–1.5 y 

232 
Lower 3 m CD8+EM percentage in patients with cGVHD 232 

TEMRA CD45RA+CCR7- 9 m 232 Lower 3 m TEMRA percentage in patients with cGVHD 232 
Naïve Treg CD4+FOXP3+45RA+ 

CD62L+ 
>2 y 232 Increased 6 m naïve Treg percentage in patients without cGVHD 

232 
Treg CM CD4+FOXP3+45RA- 

CD62L+ 
1.5 y 232 

Increased Treg CM/EM 3 m post transplant in cGVHD patients 232   Treg EM  CD4+FOXP3+45RA- 

CD62L- 
>2 y 232 

γδ T CD3+4-8- γδ+ 1 m 236  
iNKT  CD3+Vα24+. 1 m 237   

Naïve B   CD19+IgD+  1 y 235 Delayed reconstitution of B cells is associated with increased 
incidence of aGHVD /cGVHD irrespective of graft source 212,238 Memory B   CD19+IgD- >1–2 y 235  

CM: central memory. † DC1/DC2 dendritic cell immunophenotype defined by the authors 227, update in 126. EM: effector 
memory. iNKT: invariant natural killer T cells. Mo/MΦ: monocyte/macrophage. NRM: non-relapse mortality. Tc T 
cytotoxic. TEMRA: T effector memory RA (terminally differentiated cytotoxic effector cells). Th: T helper. Treg: T 
regulatory. TRM: transplant-related mortality. 2–4 w: 2–4 weeks. 3/6/9 m: 3/6/9 months. 1.5 y: 1.5 years. 

Earlier immune recovery post transplant using PBPC has been attributed to 

homeostatic expansion of mature immune cells transferred with the graft.212,214 

Thereafter, de novo differentiation of engrafted donor progenitor cells is anticipated 
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to dominate the process of reconstitution. Soluble mediators from the graft and 

growth factors produced by transplanted progenitors and immune cells potentially 

influence the differentiation of the reconstituted immune system along with soluble 

mediators from recipient stroma and residual immune cells 239 (see also chapter 1.3). 

Immune reconstitution is a selective process typically recapitulating immune 

ontogeny.227,235 Recovery of the innate immune system proceeds the adaptive, and 

preferential reconstitution of certain subpopulations in advance of others leads to 

increased DC1/DC2, CD56++16+/CD56+16++ NK cell and naïve/memory B cell ratios 

early post transplant.227,235 In contrast, T cell recovery does not parallel ontogenesis; Tc 

regenerate faster than Th and memory T cells before naïve.232 Analysis of recent thymic 

emigrants show selectively reduced thymic production of CD4+ T regulatory cells 

(Tregs) at least 2 years post transplant.232 However, post-transplant immune subset 

counts to a limited degree reflect TCR diversity, and CD4+ TCR diversity has been 

reported to be approximately 50 times higher compared to CD8+ diversity during the 

first year post transplant.240 

The term “immune reconstitution” is poorly defined in published literature. Studies 

of reconstitution are, in general, biased with variability of target values for recovery 

of various immune cell subsets and heterogeneity with respect to donor type and stem 

cell source. The reconstitution times after PBSCT given in Table 9 are therefore 

approximate, and the results are conflicting for several immune cell subsets. Some 

studies report delayed recovery of NK cells compared to BMT, with both 

quantitatively deficient and functionally impaired NK cells for at least 6–12 months 

post transplant.225 Immune recovery may be influenced by donor type, and 

reconstitution of CD4+ T cells has been suggested to be faster in MRD than in MUD 

transplants.234 Time to reconstitution is also highly influenced by host pre–, peri– and 

post-transplant clinical and therapeutical characteristics. 

The existing knowledge of post-transplant recovery of immune function is mainly 

based on studies of BM transplantation. Data on the influence of PBPC graft 

progenitor and immune cell content on quantitative and qualitative recovery are too 

scarce and conflicting to support final conclusions.91,241-248 In vitro studies have 

demonstrated reduced T cell proliferation and NK cell cytotoxicity for more than one 
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year post transplant.225,227 PBPC grafts contain relatively low amounts of B cell 

progenitors and no plasma cells,97,212 and B lymphocytes may reconstitute faster after 

BMT than after PBSCT.235 However, due to less pronounced CD4+ T cell deficiency 

after PBSCT,235 a higher frequency of somatic hypermutation may, in theory, reduce 

long-term impairment of humoral immunity. 

Graft failure 
The incidence of primary and secondary graft failure (GF), defined as ANC below 

0.5 × 109/L by day 28 post transplant or recurrence of this ANC level after initial 

engraftment, respectively,249 is approximately 5–10% after allogeneic HSCT.249,250 

Donor T and NK cells and both recipient and donor Treg cells are thought to facilitate 

immune reconstitution, and immunological rejection of donor HPC by recipient T 

cells and possibly NK cells is considered the primary mechanism of GF, whereas 

antibody-mediated rejection is more controversial.250,251 GF can also be caused by 

non-immunological mechanisms (e.g. drug toxicity, viral infections, sepsis).265,266 

RIC, HLA incompatibility, ex vivo T cell depletion (TCD), transplanted TNC ≤ 2.5 x 

108/kg and non-malignant disorder are the most important risk factors for GF; graft 

source (UCB/BM) and major ABO-incompatibility are weakly and indirectly 

associated factors.250-252 

Graft versus leukemia and graft versus host effects 
Post-transplant immunity is composed of (i) expanded mature graft immune cells, 

(ii) graft progenitor cells matured in the recipient and (iii) residual recipient immune 

cells. The interplay between donor and recipient cells is crucial for both 

reconstitution, graft rejection, GVHD and GVL effects. The complex cooperation of 

various donor and recipient subsets in development of aGVHD is not fully elucidated, 

and existing knowledge is primarily based on murine models.14,253 The pathological 

process includes three stages. (i) Conditioning-induced tissue damage leads to 

activation of host antigen-presenting cells (APCs), induced by damage-associated 

molecular patterns (DAMP) and pathogen-associated molecular patterns (PAMP), 

with increased production of pro-inflammatory cytokines (see Chapter 1.3).14,253 (ii) 

Donor T cell are activated, primarily in recipient secondary lymphoid organs, where 
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CD4+ and CD8+ TCR recognize non-self MHC class II and I antigens presented by 

recipient APCs or mHAgs presented by either recipient or donor APC (primary 

activation signal) 14,46,253; APCs further provide costimulatory (secondary) and 

cytokine (tertiary) signals, leading to T cell differentiation and proliferation (see 

chapter 1.3, Table 11 and 13).14,46,253 (iii) A cytolytic response that acts preferentially 

against recipient skin, gastrointestinal tract and liver tissues is effectuated by a 

complex network of reactions involving numerous cellular and soluble 

mediators.14,253 Based on the severity of skin reactions, cholestasis and 

gastrointestinal dysfunction, aGVHD is clinically classified into grades I–IV.253 

Closely associated mechanisms underlie the GVL effect; recipient APCs present 

mHAgs and MHC-dependent and leukemia-associated antigens to donor CD4+ and 

CD8+ cells, resulting in production of pro-inflammatory cytokines and cytotoxicity 

through the Fas and perforin pathways.254,255 Less is known about the 

pathophysiological mechanisms of cGVHD, but differentiation of donor naïve T cells 

towards Th17 and Tfh phenotype (detailed in chapter 1.3, Table 13), impaired 

germinal center B cell maturation and abnormal activation and differentiation of T 

and B cells generating auto– and allo-antibodies are recently proposed pathogenic 

factors leading to pathogenic M2 differentiation of macrophages, thymic damage, 

disturbed Treg generation and homeostasis and multi-organ tissue fibrosis.256 While 

cGVHD diagnostic criteria traditionally included temporal relation to HSCT with 

occurrence >100 days post-transplant, clinical organo-specific features are currently 

considered decisive.257 The pathogenesis of cGVHD is supposed to be linked both to 

aGVHD, GVL and autoimmune disease.256 

The importance of graft composition for clinical outcome 
In the complex post-transplant in vivo setting, the functionality of single 

reconstituted immune cell subsets is hard to characterize accurately. Intricate 

interactions of multiple host and donor factors and microorganisms decide the 

individual balance between immune reconstitution, graft rejection, infection, relapse, 

cancer cell eradication and attack on normal host cells. Several of these processes are 

mutually dependent. A recent study confirmed a complex diversity of reconstitution 
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dynamics dependent on both conditioning regimens and graft compositions; NK and 

B cells reconstituted faster and CD4+ slower after CD34+-selected transplantation, 

and RIC promoted faster lymphocyte and T cell recovery.245 aGVHD and/or cGVHD 

delay the reconstitution of both NK, Tc, DC1 and B cells.212,214,230,231 

The incidence and severity of post-transplant infections are indicators of 

immunological functionality. For example, higher lymphocyte counts and especially 

naïve CD4+ counts in PBPC compared to BM recipients are associated with decreased 

incidence of bacterial and fungal infections in the first year post transplant.235 

Another example is the impact of CMV reactivation on post-transplant evolvement of 

the entire T cell repertoire and NK cell repertoire.258,259 More refined immune 

repertoire analyses, called next generation sequencing (NGS), provide comprehensive 

lymphocyte repertoire diversity analysis with definition of individual T and B cell 

clones and possibilities for simultaneous phenotypic and functional assessment of 

multiple populations, increasing the resolving power of reconstitution dynamics 

diagnostics.260,261 For example, NGS studies of γδ TCR repertoires during 

reconstitution after PBSCT and CMV reactivation provide novel insights in γδ T cell 

activation mechanisms, substantiating an adaptive, clonal γδ T cell response in viral 

reactivation.236 

The importance of different donor T cell subsets as well as donor and recipient 

immune cell subsets beyond the T cell compartment for post-transplant immunity is 

gaining attention. NK cells are classified as innate lymphoid cells (ILCs) group 1 and, 

based on recognition of their novel functions in self-tolerance, regulation of adaptive 

immune reactions and memory, are considered to bridge innate and adaptive 

immunity in addition to serving their classical role as innate players.262,263 Donor and 

recipient NK cells may promote engraftment and graft rejection, respectively.262,263 

Donor NK cells are presumed to exert GVL effects through recognition of malignant 

cells by (i) HLA-mismatched inhibitory KIRs or (ii) HLA-matched activating KIRs 

and to prevent GVHD by cytolytic elimination of host DC or activated donor T cells 

by similar receptor-mediated mechanisms.262,263 However, their role in GVHD is still 

controversial, with the potentially aggravating effect of NK release of pro-
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inflammatory cytokines.263 NK cells are also vulnerable to aGVHD with increased 

risk of impaired maturation and functionality.264 

The γδ T cell subset is another with well-documented HLA independent anti-

leukemia effects; however, the associated mechanisms have not been definitively 

established.265,266 γδ T cells are characterized by great diversity both phenotypically 

and functionally.265,266 Plasticity is a basic featureof these cells, and still new effector 

and regulatory subsets are discovered with context-dependent potential to influence 

innate and adoptive immune responses via multiple mechanisms, including antibody-

dependent cellular cytotoxicity (ADCC), perforin-granzyme and TNF-related 

apoptosis-inducing ligand (TRAIL) pathways, cytokine production and antigen 

presentation.265,266 This diversity may explain the conflicting views of the importance 

of γδ T cells in aGVHD development.265,267,268 

Table 10 provides examples of reported effects of donor graft content of various T, 

B and NK subsets. The results from pre-clinical trials are, to variable degrees, 

confirmed in humans. In general, the human studies are small and the interpretation 

of the results confounded by the extensive heterogeneity in transplantation protocols, 

making assessment of the relative importance of single immune cell subsets for the 

complex in vivo human post-transplant immunity difficult. Studies claiming to have 

identified the only or the most important subset for a given post-transplant endpoint 

tend to reach different conclusions. For example, different groups report the 

concentration each of CD3+,269 CD8+,270 Tregs,271 iNKT cells,272,273 as the only graft 

mature immune cell parameter predictive of aGVHD.
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Graft manipulation and adoptive transfer of cells 
T cell depletion (TCD) can be performed ex vivo or in vivo. Post-transplant in vivo 

TCD with cyclophosphamide has recently been established as a superior alternative to 

conventional ex vivo CD3+ depletion with respect to recipient outcome.301 A recent 

retrospective study of recipients of MMUD grafts also reported better outcome after 

post-transplant in vivo TCD with cyclophosphamide compared to ATG.302 

The following discussion is confined to manipulation of the graft with various ex 

vivo depletion and enrichment techniques that alter the balance between immune cell 

subsets. In haploidentical HSCT, graft manipulation is a prerequisite to reduce severe 

graft versus host and host versus graft immune reactions caused by bidirectional 

alloreactivity.287,297,303 Various physical and immunological techniques have been 

developed, from the original soybean lectin agglutination and rosette depletion via 

monoclonal antibody methods to the use of semi-automated devices for positive and 

negative selection, culture and differentiation within closed systems.287,297,303 

Documented experience with graft manipulation, ranging from CD34+ selection to 

depletion of the entire T cell compartment or selected subsets like ɑβ or naïve CD3+, 

possibly combined with B cell depletion, provides a basis for the clinical importance 

of single subset concentrations and the balance between various cellular factors 

(Table 10).287,297,304,305 Results from clinical studies using depleted grafts potentially 

provide information about the functions both of the remaining subsets in the graft and 

of the depleted graft cells, but discrimination between these two factors is not always 

clearly discussed in the interpretation of results. Neither are the subdivisions and 

phenotypes of immune cells unambiguously defined across studies. To mention a few 

examples, naïve T cells are sometimes treated as a uniform population, independent 

of their CD4+/CD8+ origins, and the definition of central and effector memory cells 

and various regulatory subsets varies between studies (Table 10). 

The balance between different immune cell subsets may also be changed by pre- or 

post-transplant adoptive transfer of effector or regulatory cells to improve immune 

reconstitution and to prevent relapse or aGVHD, respectively. Prophylactic post-

transplant donor lymphocyte infusion (DLI) of unmanipulated CD3+ cells may 

improve OS in high-risk leukemia.306 Several strategies are used to overcome the high 
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aGVHD risk associated with conventional T cell infusion: (i) delayed post-transplant 

infusion awaiting recipient donor cell tolerance,255 (ii) escalated doses to facilitate 

tolerance induction,255 (iii) depletion of CD8+ or naïve subsets,307 (iv) combination 

with Treg cells,308 (v) suicide gene modification to allow in vivo elimination in the 

event of aGVHD,309 (vi) selection and expansion of tumor-specific subsets,254,310 (vii) 

G-CSFmodified DLI,311 (viii) post-transplant infusion of genetic modified and 

expanded CD3+ cells with antigen-specific chimeric antigen receptor (CAR T),312 and 

(ix) pre-transplant infusion of allogeneic universal gene-edited TCR– and CD52-

deficient CAR T cells.313 Furthermore, several small studies report beneficial effects 

of pre– or post-HSCT infusion of NK cells, but timing and cellular activation may be 

of importance; increased incidence and severity of aGVHD have been observed after 

delayed infusion and IL-15 activation.263,264,296 Finally, pre– or post-transplant Treg 

infusion, possibly enhanced with ex vivo antigen stimulation and expansion or in vivo 

IL-2 activation, may improve engraftment, prevent aGVHD and possibly replace 

pharmaceutical immunosuppression.264,314,315 However, the relative importance of 

different Treg subsets including thymic natural nTregs, CD4+ and CD8+ inducible iTregs 

and FoxP3- Tregs type 1 (Tr1) for attenuation of aGVHD or GVL has not been 

established.264 

The importance of several other immune cell subsets including non-NK ILC, 

mesenchymal stroma cells (MSC), myeloid-derived suppressor cells (MDSC) and 

mucosa-associated invariant T cells (MAIT) as allogeneic HSCT graft and adoptive 

immune therapy components is currently under investigation.264 The complexity in 

the field is further increased by new pharmaceutical approaches to achieving donor 

cell tolerance with sustained GVL effect, e.g.: (i) inhibition of T cell costimulatory 

signals (CTLA-4 Ig, CD28 antagonists), (ii) reduced migration of pro-inflammatory 

immune cells by chemokine receptor antagonists, (iii) inhibition of mediator-induced 

immune cell activation and proliferation by blocking JAK signaling, (iv) altered 

epigenetic regulation of transcription by histone deacetylase inhibitors, and (v) 

reduction of post-transplant inflammatory responses by treatment with the acute 

phase reactant alpha-1-antitrypsin.316 
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1.3 Soluble mediators in allogeneic HSCT 

As illustrated in Tables 11 and 12, a wide range of soluble mediators play central 

roles throughout the HSC mobilization and transplantation processes. The 

classification of mediators and their receptors/substrates may differ depending on 

structural/phylogenetic or functional criteria.317,318,319 Furthermore, as pleiotropy 

(multiple biological functions) and redundancy (shared biological functions) are 

fundamental characteristics of most mediators, divisions between the listed groups 

may fluctuate.320 Numerous mechanisms for pleiotropy and redundancy are 

described, including (i) receptor distribution on various cell lines, (ii) receptor 

promiscuity, (iii) sharing of receptor components, and (iv) signal pathway trans-

activation/crosstalk.320 These mechanisms contribute to the complexity and fine- 

tuning of the network of interacting soluble mediators in homeostasis and disease, for 

which information about the level of a single mediator is of little value without 

knowledge of its biological context and the clinical setting. For example, G-CSF 

functions both as a pro-inflammatory cytokine and a growth factor as well as a strong 

chemotactic agent for HPC during mobilization.321 Moreover, response to G-CSF is 

context dependent: while immunosuppression of the graft is considered the primary 

effect of HSC mobilization (see Chapter 1.1, Table 2), post-transplant administration 

of G-CSF has been suggested as a possible factor in higher incidences of 

aGVHD/cGVHD and higher transplant-related mortality.322,323 

G-CSF is one of several cytokines known to induce the release of both progenitor 

cells and more differentiated immune cells into peripheral blood through several 

direct and indirect mechanisms, and the pre-treatment levels of TNFα and IL-6 have 

been reported to predict HSC-mobilizing capacity.324 As detailed on pages 6–7, the 

mobilization process comprises complex interactions of interdependent 

immunoregulatory cytokines, interleukins, chemokines, growth factors, adhesion 

molecules and matrix metalloproteases. Furthermore, CD34+ cell expression of 

VCAM-1, CD44, VLA-4 and integrinα is correlated to stem cell yield.325 
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Table 12.  Examples of adhesion molecules, matrix metalloproteases and matrix metalloprotease 
inhibitors in allogeneic HSC mobilization/HSCT 

Selected 
mediators 

Important 
sources 
332,367-371 

Important 
functions* 
367,369-371 

Examples of reported effects/ functions in allogeneic stem cell 
mobilization and transplantation 

Adhesion molecules 
 
P-Selectin EC, P WBC rolling Facilitates rolling of HSC in homing and engraftment 361 
E-Selectin EC WBC rolling Expression increased by G-CSF 324; facilitates rolling of HSC in homing and 

engraftment 361. 
VCAM-1 EC, OB WBC adhesion/ 

transmigration 
Expression increased by G-CSF 324; constitutively expressed on BM 
endothelium/stroma, contributes to retention of VLA-4+ HSC; cleaved by 
MMPs during mobilization 361; biomarker for diagnosis and prognosis of 
post-transplant hepatic SOS 348 

ICAM-1 EC WBC adhesion/ 
transmigration 

Expression increased by G-CSF 324; regulates HSC homeostasis in the BM 
niche 372 

Matrix metalloproteases 
 
MMP-1 MΦ Collagenase.  Overexpressed in intestinal GVHD lesions 373 
MMP-2 MSC, EC, 

EPC, HSC, TC, 
MΦ 

Gelatinase Secretion from stroma cells and HSC increased by G-CSF 361; mediates 
HSC mobilization, proMMP-2 is activated by MT1-MMP cleavage of 
CXCL12, further activates MMP-9 and -13 contributes to general 
proteolysis (see MMP-9) 361 

MMP-3 MΦ Stromelysin Included in diagnostic cGVHD biomarker panel and associated to post-
transplant bronchiolitis obliterans 348,374 

MMP-7 EPC, MSC, 
MΦ 

Matrilysin  

MMP-8 PMN, EPC Collagenase Secretion from neutrophils increased by G-CSF 375; mediator HSC 
mobilization through proteolysis of CXCL12 375 

MMP-9 PMN, HSC, 
TC, MΦ 

Gelatinase Secretion from neutrophils and HSC increased by G-CSF 324,361; mediates 
HSC mobilization through proteolysis of CXCL12 and HSC retention and 
quiescence factors (VCAM, ECM-components, c-kit) 341,361; associated to 
aGVHD incidence and severity 376 

MMP-12 MΦ Elastase Host-derived MMP-12 suggested to limit development of post-transplant 
idiopathic pneumonia syndrome (murine transplant model) 377 

MMP-13 EPC, MSC, 
MΦ 

Collagenase Mediates HSC mobilization through ECM proteolysis 361 

Metalloprotease inhibitors 
 
TIMP-1 MΦ, EC, MSC Cell growth 

regulator 
Involved in HSC migration in mobilization and homing through interaction 
with chemokines, cytokines and MMPs 378; reduced post-transplant levels of 
pro-fibrotic TIMP-1 in primary myelofibrosis 379; increased levels in 
patients diagnosed with aGHVD 380 

TIMP-2 EC, MSC Cell growth 
regulator 

Involved in HSC migration in mobilization and homing through interaction 
with chemokines, cytokines and MMPs 378 

TIMP-3 EC, MSC Apoptosis 
inductor 

Expression decreased by G-CSF 381; thought to regulate HSC proliferation 
and trafficking 381; TGFβ-induced TIMP-3overexpressed in intestinal and 
cutaneous aGVHD, possibly contributing to apoptosis 373  

TIMP-4 P, MSC P aggregation 
regulator 

 

*In addition to the listed functions, all MMPs share shedddase activity and all TIMPs inhibit MMPs. MMPs have both pro- 
and anti-angiogenetic functions whereas TIMPs are mainly inhibitors of angiogenesis.369 MMP substrate specificity: 
collagenases: collagen type I-III, stromelysins: laminin, gelatinases: type IV collagen, elastase: low substrate specificity.367 
EC: endothelial cells. ECM: extracellular matrix. EPC: epithelial cells. ICAM: intercellular adhesion molecule. MΦ: 
macrophage. MMP: matrix metalloprotease. MSC: mesenchymal stroma cell. MT-MMP: membrane-type matrix 
metalloprotease. P: platelets. PMN: polymorhponuclear neutrophil. SOS: sinusoidal obstruction syndrome. TC: T cell. 
TIMP: tissue inhibitor of metalloproteases. VCAM: vascular cell adhesion molecule. VLA: very late antigen. 

In addition to G-CSF, granulocyte‐macrophage‐colony‐stimulating factor (GM-

CSF), stem cell factor (ancestim), IL-8/CXCL8 and the CXCR4 antagonist plerixafor 

have been used for HSC mobilization as monotherapies or in combination with G-

CSF and led to different immunoregulatory profiles for the grafts.169,332,382Grafts 

mobilized with GM-CSF contain lower and plerixafor-mobilized grafts contain  

higher concentrations of T and B cells compared to G-CSF-mobilized grafts.169,382 
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Two small studies recorded higher concentrations but similar proportions of different 

T cell subsets in plerixafor-mobilized compared to G-CSF–mobilized grafts.169,382 

Plerixafor has been observed to preferentially mobilize plasmacytoid dendritic cells 

and CD56++ NK cells, which may reduce the incidence of GVHD.172,383 G-CSF 

treatment also affects levels of other mediators (Tables 11 and 12), but data are 

relatively limited and heterogeneous. One study, which compares a limited number of 

interleukins and immunoregulatory cytokines in BM and PBSC grafts, shows 

generally heterogeneous mediator levels in both types of grafts, with higher levels of 

IFN-γ and IL-10 but lower levels of TGF-β1in PBSC than in BM.384 

The CXCL12-CXCR4 axis; cytokines like GM-CSF, HGF, IL-3, IL-6, SCF and 

Flt3-ligand: adhesion molecules and proteases also participate in the post-transplant 

homing of the HSC to BM.385 Mediators in the stem cell graft supernatant including 

VCAM-1 and platelet-derived micro particles (PMP) are thought to increase HSC 

chemotactic responsiveness towards a CXCL12 gradient, contributing to the rapid 

engraftment of PBSC.385 The reconstitutive capacity of PBSC may be further 

increased by combining G-CSF mobilization with blockade of the adhesion molecule 

CD44 or CD49.386 Combined mobilization treatment with CXCR4- and CXCR2- 

antagonists gives swift MMP-9–dependent mobilization of highly engraftable HSC, 

potentially reducing time spent on donation and adverse effects.387 CXCL12 is 

thought to facilitate reconstitution through induction of adhesion molecules, retaining 

HSC in the BM niche and thereby allowing differentiation and expansion of CD8α 

DC and subsequently CD4+ cells.388 GM-CSF and Flt3 ligand contribute to progenitor 

and DC expansion, and IL-15 and especially IL-7 are important for the reconstitution 

of T cells and IL-2 for NK-cells.388,389 The same mediators may also contribute to 

aGVHD, and the dynamics over time in absolute and relative mediator levels seem to 

be crucial predictors of favorable or pathological post-transplant courses.347,388,389,380 

The traditional dichotomous view of cytokines as pro– or anti-inflammatory, with 

differentiation of CD4+ T cells into Th1 or Th2 subsets, has been nuanced by the 

discovery of several new transcription factors and differentiation pathways, which are 

summarized in Table 13. Various factors including (i) the timing and sequence of 

cytokine actions; (ii) the nature and the origin of target cells; (iii) the characteristics 
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of the activating signals and signaling pathways; and (iv) genetic heterogeneity(single 

nucleotide polymorphisms, SNPs, in cytokine and cytokine receptor genes) decide the 

effect and specific role of a cytokine in a given clinical setting, allowing a high 

degree of plasticity and complexity.340 

Table 13.  Differentiation scheme of naïve CD4+ T cells390 
CD4+ 
subset 

Master cytokines Master transcription 
factors 

Cytokine release induced after 
differentiation 

Th1 IL-12, IFN-γ T-bet (STAT4) IL-2, IFN-γ, TNF-α 
Th2 IL-4, IL-33 GATA3 (STAT6) IL-4, IL-5, IL-9, IL-10, IL-13 
Th9 IL-4, TGF-β PU-1 (IRF4) IL-9, IL-10, IL-21 
Th17 TGF-β, IL-6, IL-23 RORγt (STAT3) IL-17A, IL-17F, IL-22, IL-6 
Th22 IL-6, TNF-α AHR TNF-α, IL-22 
Treg TGF-β Foxp3 IL-10, IL-35, TGF-β 
Tfh IL-6, IL-21 Bcl-6 IL-4, IL-21 

AHR: Aryl hydrocarbon receptor Bcl-6: B-cell lymphoma 6 protein. IRF: Interferon regulatory factor. T-bet: T-box 
expressed in T cells. 

Variation in allotransplant setting further increases complexity, as the effects of a 

given cytokine differs depending on the origin of donor or host cytokine-producing 

cells/target cells.340 Given this variability, the traditional view of G-CSF–induced 

HSC mobilization as an anti-inflammatory process (see Table 3), and the 

classification of meditators in aGHVD into tertiary signals for T cell activation and 

inflammatory mediators 253 (see p. 21 and Table 11) may need modification. First, G-

CSF mobilization in healthy donors is associated with increased expression of genes 

encoding pro-inflammatory mediators 391,392. Second, the cytokine storm induced by 

conditioning chemo- and irradiation therapy may be modified by several factors: 

• diverse and individual PAMPs and DAMPs of the gastrointestinal microbiota,340 

• differences in immunosuppressive therapy,340 and 

• diverse conditioning regimens, RIC showing unique cytokine patterns and 

distinctive associations to aGVHD compared with myeloablative 

regimens.340,393 

Third, the examples of contradictions and context-dependent adaptions of single 

mediator functions are numerous: 

• The role of IFNɣ in GVHD is complex. IFNɣ is released during conditioning 

and has traditionally a proinflammatory function and a central role in controlling 

the expansion of alloreactive T cells.253 However, high IFNɣ levels lead to 
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apoptosis of donor cells and reduced incidence of GVHD, and IFNɣ-knockout 

CD8+ donor T cells induce more severe GVHD.394,395 

• The role of IL-10 in aGVHD pathogenesis is also controversial. Preparative IL-

10 treatment is associated with low incidence of aGVHD,396 and low IL-10 

levels are observed in patients with early donor chimerism and aGVHD.397 In 

contrast, in an animal model, IL-10 caused exacerbated aGVHD due to 

induction of T cell expansion.398 

• The presumed pro-inflammatory cytokines IL-12 and 1L-18 may also have 

unexpected protective effects against GVHD due to apoptosis of donor T 

cells.399-401 

• IL-2 is thought to promote or protect against aGVHD depending on dose, IL-22 

depending on cell of origin (Th17 or ILC) and IL-6 depending on mode of 

signaling (i.e. trans-signaling through soluble IL-6R complex versus classical 

signaling through membrane-bound IL-6R).340 

Finally, G-CSF–induced skewing of T cell differentiation from Th1 to Th2 

dominance possibly represents greater immuno-regulatory complexity than a purely 

immunosuppressive effect. Based on animal studies, Th1 seems to preferentially 

induce aGVHD in the gastrointestinal tract whereas Th2 and Th17 seem to be 

encourage GVHD development in lungs, liver and skin.402-404 This organ-dependent 

infiltration of different lymphocyte subsets is regulated by interactions between 

chemokines and their receptors (Table 11). 

Beyond the knowledge of expressed mediators in allogeneic HSCT, numerous 

recipient and donor genetic polymorphisms of adhesion molecules, cytokines, 

chemokines and their receptors affect both HSC mobilization and post-transplant 

outcome. Among others, CXCL12, CXCR4, VCAM1 and CD44 polymorphisms are 

associated with the HSC mobilization response after G-CSF dministration 162 and 

recipient/donor SNPs of TNFα, IL-6, IL-10, IL-6R, IL-7Rα, IL-23R, CCL5 and 

CCR9 with aGVHD or/and cGVHD (reviewed in 405). 

To summarize, a wide range of interacting immunoregulatory cytokines, 

interleukins, adhesion molecules and matrix metalloproteinases as well as proteinase 

inhibitors regulate both HSC mobilization and post-transplant outcome. Due to a high 
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degree of crosstalk and context dependency, investigation of mediator profiles is 

preferable to analyses of single mediator levels. 

1.4 Osteopontin in immunoregulation 
Osteopontin (OPN) is an extensively glycosylated and phosphorylated non-

collagenous protein in the small integrin binding ligand N-linked glycoprotein 

(“SIBLING”) family.406 Alternative splicing, post-translational modifications and 

several cleaving sites for thrombin and matrix metalloproteases, including MMP-3 

and MMP-7, provide structural and functional diversity to the molecule. OPN is 

involved in a wide range of homeostatic mechanisms as a structural molecule of 

mineralized tissues, an extracellular soluble factor and an intracellular molecule.407 

 Soluble OPN (sOPN) is secreted from osteoblasts, osteocytes and osteoclasts along 

with a wide spectrum of immune cells, endothelial cells, smooth muscle and 

epithelial cells.408 sOPN is ligand for several integrins including αvβ1,3,5,6, α4β7 and 

α4,5,8,9β1 409,410 and for the CD44 isoforms CD44v6 and CD44v7.411 Intracellular OPN 

(iOPN) is a shorter isoform originating from alternative translation and binds to the 

CD44-ezrin/radixin/moesin complex.412 OPN has also been identified in the cell 

nucleus.413 Intracellular and intranuclear OPN participate in cell duplication, 

cytoskeletal rearrangement and cell migration and contribute to innate immune 

receptor signal transduction.413,414 

OPN is upregulated and maintains and rearranges cells and tissues in response to 

mechanical, oxidative and physical stress as well as through various physiological 

and pathological inflammatory processes including bone remodeling and wound 

healing, normal hematopoiesis and angiogenesis, immune responses during infection 

and development of atherosclerosis.410,415 Its involvement in cell signaling, 

proliferation and motility, regulation of apoptosis and survival makes OPN important 

for normal immune regulation as well as in autoimmune diseases and 

carcinogenesis.416 

OPN contributes to the migration of HSC towards the endosteal surface of the stem 

cell niche and is a quiescence factor, limiting the proliferation and differentiation of 

HSC and the size of the stem cell pool.417,418 HSCs can adhere to OPN, and after 
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peripheral stem cell infusion, OPN is important for the homing of HSC to BM.418 G-

CSF treatment reduces the concentration of OPN in the stem cell niche, which may 

contribute to stem cell mobilization.419 Stroma-derived OPN attenuates the HSC 

phenotypes associated with aging.420 

Interactions between OPN and CD44 receptors are important for migration of 

macrophages, neutrophils, dendritic cells, T cells and NK cells.421-424 T cell migration 

is dependent on OPN concentration; in an in vitro chemotaxis model, human T cell 

movement was determined by the OPN concentration gradient, and T cell activation 

was required for adhesion of T cells to surfaces coated with OPN.425 It is likely that 

OPN-CD44 interactions contribute to G-CSF–induced mobilization of immune cells 

(see above). OPN is a central regulator of innate and adaptive immunity, and it is 

involved in the regulation of T cell differentiation as well as T cell proliferation.426,427 

OPN secretion by activated T cells dependens on the master Th1 transcription factor 

T-bet (Table 13) and is an essential early step in type 1 immune responses by (i) 

potentiating the IL-12 response and inhibiting the IL-10 response in macrophages and 

plasmacytoid dendritic cells (pDC) and (ii) skewing T helper cells and cytotoxic T 

cells towards the Th1 and Tc1 phenotypes, respectively.426,428 In conventional 

dendritic cells (cDCs), iOPN expression is thought to promote Th17 T cell 

differentiation through suppressed IL-27 production,429,430 and in autoimmune disease 

models, differential regulation of DC IL-27 and OPN expression has been shown to 

suppress inflammation.431 Inhibition of IL-10 response is mediated via OPN-CD44 

ligation, and CD44-deficiency has been reported to enhance Th2 differentiation.432 

In B cells, OPN is secreted after IL-4–induced activation of the alternate B cell 

receptor pathway in combination with the classical pathway.433 iOPN support for 

differentiation of T follicular helper (Tfh) cells and T follicular regulatory (Tfr) cells 

is crucial for normal B cell development in germinal centers in response to antigenic 

challenge.434 OPN enhances polyclonal B cell activation and increases 

immunoglobulin production,435 and overexpression of OPN in B cells is associated 

with B-cellmediated autoimmunity.436 

OPN is important for NK cell differentiation from hematopoietic stem cells and also 

for homeostasis and functional response in normal NK cells.437 NK cells can be 
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directly activated by OPN to contribute to inflammatory responses, and iOPN 

contributes to the development of long-lived memory-like NK cells.424 

Binding of sOPN to CD44 protects lymphocytes from activation-induced cell death, 

thereby prolonging inflammation, a mechanism that ensures that the normal immune 

response is completed.415 However, the anti-apoptotic effects of OPN can also extend 

the life span of pathogenic immune cells and cancer cells, thereby aggravating 

autoimmune disease and cancer.415 The majority of OPN studies describe pro-

inflammatory characteristics for the molecule; but anti-inflammatory effects have also 

been reported in colitis, sepsis, wound healing and autoimmune diseases.410 

Researchers have tried to explain this dichotomous presentation of OPN though time-

dependent functions of the mediator in early and late phases of immune responses, 

and concentration-dependent and isoform-dependent effects represent other potential 

mechanisms through which OPN influences health and disease.438,439 

The complex and context-dependent role of OPN in inflammation and cell survival 

is also emphasized by the apparently contradictory results from two studies of murine 

aGVHD models. In the first model, OPN blockade attenuated GVHD through 

reduced migration of immune cells to target organs and reduced activity and viability 

of CD8+ T cells.440 In the second model, OPN knockout mice were more susceptible 

to GVHD, and the disease was characterized by more severe gastrointestinal 

inflammation and increased epithelial apoptosis.441 OPN is also a biomarker for 

cGVHD.374 

To summarize, OPN is important in the regulation of numerous fundamental cellular 

processes. It can be released by a wide range of cells, including many 

immunocompetent cells, and its role in immunoregulation depends on the biological 

context. Evidently, OPN can exert a wide spectrum of effects in response to the 

overall challenges and available resources of an organism, and by that, on the total 

immunoregulatory profile. G-CSF–induced reduction of OPN levels in the stem cell 

niche contributes to HSC and possibly to immune cell mobilization. The diverse 

effects of OPN may also explain why its impacts seems to differ in various 

experimental models of allogeneic stem cell transplantations and GVHD. 
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1.5 Metabolomics and immunoregulation are closely 
connected 

Metabolomics can be defined as the systematic identification, quantification and 

analysis of the highest possible number of low-molecular weight metabolic products 

and intermediates of a biological system (the metabolome).442 The metabolomic 

profile represents a “functional readout” of an organism and reflects the dynamic 

response to physiological, pathophysiological and developmental stimuli and to 

genetic and environmental modulation.443 Both the levels of single metabolites and 

the overall metabolomic profile are important for immunoregulation.444 The 

interaction between metabolic pathways and the immune system is regulated by 

genetic and nutritional factors and by the intestinal genome.445 Metabolism provides 

substrates for Adenosine triphosphate (ATP) synthesis and building blocks for 

synthesis of macromolecules and fuels development, differentiation, proliferation and 

effector functions of all cells and tissues, including the immune system.446 By 

alteration of histone– and DNA-modifying enzyme activity and by supplying 

substrates, metabolism can directly modify epigenetic signatures of immune cells.447  

The interface between metabolism and the immune system seems to represent a 

dynamic equilibrium optimizing the cellular response to a wide range of external 

stimuli and bioenergetic demands.444 Several metabolic switches control the intensity 

and duration of innate and adaptive immune activation.446 The most important 

metabolic checkpoint kinases, mechanistic target of rapamycin complex 1 and 2 

(mTORC1 and mTORC2) and 5´-AMP-activated kinase (AMPK), sense and integrate 

extrinsic and intrinsic signals including (i) immunocompetent cell activation, (ii) 

growth factors and immunoregulatory factors, (iii) nutritional status, (iv) positive and 

negative feedback from downstream effector pathways.444,448,449 This signal 

integration leads to metabolic reprogramming of cells to adapt to the actual 

immunological challenges and bioenergetic potential.444,446,448,449 In metabolic 

reprogramming of T cells, induction of the transcription factors MYC and hypoxia 

inducible factor 1 α (HIF-1α) is especially important.450,451 

The metabolic pathways most commonly used by T cells have different intracellular 

locations (Figure 3) and depend on cellular activation and differentiation status, and 
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may also vary between T cell subsets. Studies have shown that naïve T cells primarily 

use oxidative phosphorylation for energy generation, cellular housekeeping functions 

and survival.452 T cell activation is however characterized by metabolic 

reprogramming to aerobic glycolysis (Warburg metabolism) and induction of the 

pentose phosphate pathway. This leads to less bioenergetic efficiency, but higher 

abundance of metabolic intermediates that are needed for anabolic processes 

important for cell growth and proliferation and for maintenance of the cellular redox 

balance.453,454 Enhanced glycolysis can also supply the tricarboxylic acid (TCA) cycle 

with lactate, recently demonstrated as an important fuel for mitochondrial 

metabolism.455 Aerobic glycolysis seems to be required for normal effector cell 

cytokine mRNA translation.456 Lactate produced during glycolysis controls T cell 

motility and migration, skews pro-inflammatory cytokine generation towards IL-17 

production and inhibits CD8+ cytolytic function.457 T cell activation is enhanced when 

glucose uptake is increased and suppressed in malnutrition or when glucose 

metabolism is inhibited.458 Activated T cells also upregulate glutamine consumption 

through the TCA.450 

CD4+ T cell differentiation is critically dependent on metabolism. Glycolysis is the 

preferred metabolic pathway of Th1, Th2 and Th17 cells, whereas Tregs rely on 

mitochondrial fatty acid oxidation.452 Glycolysis controls the induction and 

suppressive function of iTreg cells.459 In contrast to Tregs, Th17 cells do not take up 

exogenous fatty acids for synthesis of cellular membranes, but rather use de novo 

acetyl-CoA carboxylase-mediated phospholipid synthesis from glucose.460 

Interestingly, decreased availability of alpha-ketoglutarate due to glutamine-

deprivation has been suggested to shift the balance between Th1 and Treg generation 

towards a Treg phenotype.461 

In vitro studies of T cells suggest that human CD8+ cells are less glycolytic than 

CD4+ cells both during quiescence and upon stimulation, and more reliant on 

oxidative phosphorylation for cytokine production.462 Following the primary immune 

response, metabolic reprogramming from glycolysis to fatty acid oxidation is 
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Figure 3. Overview of important T cell metabolic pathways.463 1. GLUCOSE METABOLISM. After entering the cell 
by facilitated diffusion, glucose may, dependent on the needs of the organism, undergo glycolysis to pyruvate or be used for 
nucleotide synthesis by oxidation in the pentose phosphate pathway or by shuttling of the intermediate 3-phosphoglycerate 
(3PG)  into the serine biosynthesis pathway. Pyruvate is decarboxylated to acetyl-coenzyme A (acetyl-CoA) that enters the 
tricarboxylic acid circle (TCA), or is alternatively transformed to lactate under anaerobic conditions. 2. FREE FATTY ACID 
(FFA) METABOLISM. FFA enter the cell through specific transport proteins or is synthesized in cytosol (fatty acid 
synthesis–FAS). After activation in cytoplasma, the fatty acid intermediates are transported across the mitochondrial 
membrane for β-oxidation/fatty acid oxidation (FAO) to acetyl-CoA that enters the TCA. 3. AMINO ACID 
METABOLISM. Excess amino acids from the diet are taken up by the cell by membrane-bound transporter proteins that are 
upregulated in activated T cells. Glutamine is important for activation and differentiation of T cells. Through glutaminolysis, 
glutamine is hydrolyzed to glutamate, that is either used for protein synthesis, entering the TCA after metabolization to α-
ketoglutaratoxaloacetate or used for nucleotide synthesis. TCA and oxidative phosphorylation (OXPHOS) take place in the 
mitochondrion and involve release of the energy from sugar, fatty acid and amino acid derivatives through oxidation of acetyl-
CoA to oxaloacetate before high-energy electrons from the TCA are passed through the mitochondrial electron transport chain 
with oxygen as the final electron acceptor, creating a proton gradient for synthesis of adenosine triphosphate (ATP).  
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essential for CD8+ memory T cell development and survival,464 and compared to 

naïve cells, the mitochondria in memory T cells are larger with increased respiratory 

capacity.465 

Crosstalk between metabolism and the immune system during the humoral immune 

response has not been characterized in detail. However, transition from the naïve 

quiescent state to B cell proliferation depends upon metabolic reprogramming, and B 

cell activation leads to increased uptake of glucose that is mainly used for nucleotide 

biosynthesis.466in addition, efficient glycolysis is necessary for antibody production, 

and mitochondrial remodeling during B cell activation lead to augmented  oxidative 

phosphorylation.466-468 

Recent studies have shown that OPN may also function as a metabolic regulator, at 

least for certain types of cells,414,469 but it is not known whether modulation of 

immunocompetent cell metabolism is important for the immunoregulatory effects of 

OPN. Furthermore, several metabolites including RBC and platelet-derived 

sphingosine-1-phosphate, ceramide-1-phosphate, adenosine triphosphate, uridine 

triphosphate and uridine diphosphate-glucose are thought to participate in HSC 

mobilization and homing.332 

The possible importance of T cell metabolism for allogeneic HSCT 
The results are conflicting regarding T cell post-transplant metabolic adaptions. 

Some animal models suggest upregulated glycolysis in donor-derived CD4+ T cells, 

especially early post-transplant,470 whereas other studies report that chronic 

stimulation of CD4+ cells is reliant on oxidative phosphorylation and shows failure to 

engage glycolysis for effector function.471,472 Allotransplanted murine T cells show 

hyperpolarized mitochondrial membrane potential and increased oxidative stress,473 

upregulation of the pentose phosphate pathway,470,472 increased glutamine uptake and 

glutaminolysis 470 and accumulation of fatty acids.470 Upregulation of fatty acid 

oxidation has been demonstrated for T cells during GVHD, but not in T effector cells 

activated under other conditions,474 while another study reported T cell upregulation 

of both glycolysis and oxidative phosphorylation in GVHD.473 Intestinal microbial 
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metabolites have also been shown to be important for T cell homeostasis and 

influence GVHD pathogenesis and severity.475 

Targeting of metabolic pathways is an emerging therapeutic option for cancer and 

autoimmune disease 476,477 and may potentially be used in the assessment of graft 

function and prevention of graft rejection after solid organ transplantation.478,479 

Malignant transformation of tumor cells and clonal expansion of T effector cells 

share similarities in metabolic reprogramming towards Warburg metabolism.454,480 As 

inhibition of glycolytic activity in CD8+ T cells is thought to increase their antitumor 

efficacy,481 glycolysis inhibitors may attenuate GVHD-inducing T cells without 

inhibition of graft versus leukemia effect.482 In murine GVHD models, several 

potential metabolic checkpoints and pathways have been targeted, including 

glycolysis via mTORC1 or 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 

3,470 fatty acid oxidation,474 fatty acid synthesis through acetyl-CoA carboxylase-1,483 

mitochondrial F1F0-ATPase,473 sphingolipid biosynthesis via ceramide synthase-6 484 

and replenishment of intestinal microbiome-derived butyrate.475 

In a small study of healthy allogeneic stem cell donors, G-CSF was suggested as a 

factor in impairing lymphocyte mitochondrial function leading to increased 

generation of ROS, increased activation-induced apoptosis and cell cycle arrest.485 

Recipient pre-transplant metabolic distress has been suggested as a predictor of 

relapse in another recent study.486 More detailed metabolic characteristics of human T 

cells during HSC mobilization, collection and allotransplantation remain to be 

elucidated in clinical trials. Targeting of T cell metabolic pathways may have a 

therapeutic potential when used post transplant to prevent or treat GVHD and may 

potentially be used pre-transplant to optimize donor and graft T cell metabolism. 
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 Scientific question and aims 
A major challenge in studying allogeneic HSCT is capturing the complexity of 

interactions between donor-derived and recipient immunity. While extensive recipient 

variability with respect to disease, comorbidity and treatment protocols is a well-

known confounding factor, less is known about the importance of donor 

heterogeneity. Our main scientific question was the following: 

- How is the balance between different allogeneic donor immune cell subsets and 

immunoregulatory soluble mediators altered during hematopoietic stem cell 

mobilization and collection, and how is this reflected in the graft? 

In this study, we aimed to map central donor immunological and metabolomic 

parameters including selected lymphocyte subsets, cytokines, soluble adhesion 

molecules, matrix metalloproteases and metabolites. Cell and mediator profiles were 

analyzed prior to, during, and after stem cell mobilization and apheresis and in the 

stem cell graft in order to 

• characterize the immunomodulatory and metabolomic effects of G-CSF 

treatment and leukapheresis on the donor and on the stem cell graft and 

thereby describe donor and graft heterogeneity; 

• explore potential associations between immunological donor profiles and 

mobilization response; and 

• examine possible associations between donor and graft immunological 

profiles and clinical outcome. 
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 Summary of papers 

3.1 Paper I: 
Peripheral Blood Stem Cell Mobilization in Healthy Donors by 
Granulocyte Colony-Stimulating Factor Causes Preferential 
Mobilization of Lymphocyte Subsets. 

The literature is contradictory regarding the immunomodulatory effects of G-CSF 

during hematopoietic stem cell mobilization and the importance of graft composition 

for clinical outcome after allogeneic HSCT. 

A detailed multicolour flow cytometry-based characterization of 27 donor T, B and 

NK cell subsets showed skewed phenotype proportions during G-CSF treatment with 

preferential mobilization of naïve T and T regulatory subsets, mature and memory B 

cells and reduced fractions of NK and γδ T cells. Apheresis further skewed the 

distributions, with notable enrichment of the B cell fraction in the allogeneic stem cell 

graft. Bioinformatics analyses revealed extensive donor variability in the G-CSF 

immune cell mobilizing response and suggested slower platelet engraftment and 

increased risk of aGVHD in recipients of grafts from donors with strong G-CSF 

responses. 

Our results confirm allogeneic hematopoietic stem cell mobilization and collection as 

a heterogeneous process with regard to effects on various immunocompetent cell 

populations in healthy donors as well as in the stem cell graft. Both G-CSF treatment 

and apheresis contribute to extensive redistribution of the lymphoid compartment, 

representing an immunomodulatory potential of the graft. Healthy donor G-CSF 

immune cell mobilization response seems to have a stronger impact on clinical 

outcome than infused cell doses, but this hypothesis should be tested in larger studies 

sufficiently powered to enable meaningful sub-group analyses based on diagnosis, 

conditioning, immunosuppression and donor type. 
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3.2 Paper II: 
The healthy donor profile of immunoregulatory soluble mediators 
is altered by stem cell mobilization and apheresis. 

Soluble plasma mediators including immunoregulatory cytokines, chemokines, 

growth factors, adhesion molecules, proteases and protease inhibitors are regulators 

of innate and adaptive immunity and are important for hematopoietic stem cell 

mobilization and post-transplant immune reconstitution. 

Donor and recipient plasma levels of 38 mediators were monitored by Luminex 

quantification, and bioinformatics analyses used to identify individual profiles. 

Healthy donors generally displayed substantial heterogeneity in plasma mediator 

levels. G-CSF treatment and apheresis led to altered donor mediator profiles, mainly 

through increased levels of most mediators, and the donor profile during G-CSF 

administration was associated with the stem cell yield. Grafts harvested with Cobe 

Spectra showed significantly higher content of neutrophils, lymphocytes, platelets 

and red blood cells and significantly different mediator profiles compared to Spectra 

Optia. Recipient pre-transplant mediator profiles showed associations to the 

Hematopoietic Cell Transplant (HCT) Comorbidity Index. Graft infusion led to 

relatively small changes in single mediator concentrations, but the overall mediator 

profiles were altered, allowing separation of the patients into two subsets with 

different prognoses independent of comorbidity. 

Individual donor heterogeneity in plasma mediator levels before mobilization seemed 

to have more impact on the subsequent donor and graft mediator profiles at the time 

of harvest than G-CSF and apheresis induced changes during stem cell mobilization 

and collection. G-CSF–induced systemic donor profiles may predict stem cell yield. 

Graft mediator profiles seemed to be apheresis device dependent and associated with 

leukocyte and platelet levels in the graft. Recipient mediator profiles changed during 

HSCT, and the possible predictive impact of early post-transplant mediator profiles 

for clinical outcome should be further investigated in future studies. 



 45 

3.3 Paper III: 
Immunomodulation Induced by Stem Cell Mobilization and 
Harvesting in Healthy Donors: Increased Systemic Osteopontin 
Levels After Treatment With Granulocyte Colony-Stimulating 
Factor. 

The phosphoprotein osteopontin has complex functions that are dependent on 

concentration, time and context, including hematopoietic stem cell mobilization and 

differentiation. Osteopontin also regulates the migration of several leukocyte subsets 

and the differentiation of T cells through interaction with CD44; this may influence 

graft composition and immunomodulation. 

Healthy donor systemic osteopontin plasma concentration was quantified during 

hematopoietic stem cell mobilization and collection. The effect of G-CSF treatment 

was rather weak, with a moderate total increase of osteopontin concentration, and an 

inverse correlation between systemic osteopontin levels and neutrophil 

concentrations. CD44 expression was relatively stable during G-CSF administration 

and was generally stronger in T cells compared to B cells ,with particularly high 

CD44 expression in T memory and Tr1 cells. Allogeneic stem cell recipients showed 

high levels of osteopontin compared to healthy stem cell donors, platelet donors and 

myeloma patients, and these levels were stable during the first week post transplant. 

Stem cell mobilization with G-CSF influenced healthy donor systemic osteopontin 

levels. Whether the sustained rise in osteopontin levels during apheresis can be 

attributed to combined effects of G-CSF and apheresis is currently not clear. Altered 

levels of osteopontin during stem cell mobilization and collection have potential 

immunomodulatory effects on the graft cells and the recipient and/or may be a 

biomarker of altered immunoregulation. 
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3.4 Paper IV: 
Granulocyte Colony-Stimulating Factor Alters the Systemic 
Metabolomic Profile in Healthy Donors. 

Metabolic pathways interact with innate and adaptive immune activation and T cell 

differentiation, migration and memory. The healthy donor metabolomic profile prior 

to and during G-CSF treatment may be reflected in the stem cell graft and possibly 

influence post-transplant donor-derived immunity. 

We applied an untargeted metabolomics approach for identification of the global 

serum metabolomic profile of 15 healthy stem cell donors. G-CSF treatment altered 

the concentration of 239 out of 641 metabolites, as documented using ultrahigh 

performance liquid chromatography–tandem mass spectrometry (UPLC-MC) and gas 

chromatography/mass spectrometry (GC-MS). Despite heterogeneous individual 

distribution of metabolites with partially overlapping groups in principle component 

analysis prior to and after G-SCF treatment, G-CSF–treated and pre-treatment 

samples could be distinguished with 97% predictive accuracy by random forest 

classification based on the overall metabolomic profile. The levels of numerous long-

chain fatty acids and carnitine-conjugated lipids were significantly increased during 

G-CSF administration, whereas high proportions of branched and aromatic amino 

acids displayed reduced concentrations. Metabolomic pathway enrichment analysis 

revealed glycogen and pyrimidine metabolism as the most important pathways 

augmented during G-CSF treatment. 

Our study is the first to explore the short-term systemic metabolomic effects of G-

CSF and suggest significantly altered healthy donor global metabolomics profiles 

during HSC mobilization, but this finding should be confirmed by additional studies 

that include larger sets of donors and long-term analyses. Several of the G-CSF 

modified metabolites have established immunoregulatory and angioregulatory effects 

and may influence epigenetic regulation, and the potential impacts on donor 

management, graft characteristics and recipient outcome need to be clarified. 
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 Methodological considerations 
The following discussion is limited to aspects of the underlying methodological not 

already covered in the thesis and of particular importance for the reliability and 

interpretation of the results of the present project. 

4.1 Considerations in choice of study design and analytes 
As emphasized through the previous chapters, during the last decade, numerous 

reports of the effects of single immune cell subsets and soluble mediators have been 

published, often with contradictory conclusions. To avoid oversimplification of the 

complex biological context generated by the fusion of the immune systems from two 

different individuals, our priority was to focus on broad panels of biomarkers rather 

than single analytes. In retrospect, based on recent research, the selection of 

biomarkers for analysis could have been improved. In particular, we acknowledge the 

importance of IL-7, IL-12, IL-15, CCL3 and CCL8 for the process of allogeneic 

HSCT (Table 11). However, the capture of all relevant variables is not achievable, 

and the advantage of knowledge and experience using reagents and techniques that 

are well established in our laboratory should not be underestimated. 

Limitations related to the sample size are discussed in Chapter 5, p. 65. 

4.2 Preanalytical aspects: variability of sample handling 
Sample collection and anticoagulation 

Despite its ready availability as a specimen that reflects  systemic immunological 

and metabolic status, sampled peripheral blood represents a “snapshot” of the overall 

biological status of the organism at the time of sampling, with limited resolution of 

the contributions from different organs and processes. Moreover, the blood sampling 

and preparation process introduces risk of bias generated by variability in blood 

drawing technique, choice of anticoagulant and processing time and methods. Pre-

analytical variability has been estimated to account for more than 90% of errors 

occurring throughout laboratory test-based diagnostic processes.487 
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In order to minimize pre-analytical errors in the current project, we standardized the 

handling of samples. Samples were drawn at the same time of the day to avoid 

diurnal variations and processed immediately to prevent overall or selective loss or 

alterations of cellular and soluble analytes. Anticoagulation agents with ACD, 

ethylene diamine tetraacetic acid (EDTA) and heparin are reported to maintain 

similar PBMC viability 488 but may result in skewed reported distributions of 

different immune cell subsets.489 We chose ACD due to presumed superior 

preservation of T cell functionality compared to EDTA.488,490 We rejected heparin due 

to its platelet activating effect 491 that would have confounded the known effects of 

G-CSF and apheresis in platelet activation (see Chapter 1.1), with potential 

implications for mediator analyses with increased levels of platelet-derived cytokines. 

Likewise, we preferred plasma to serum for mediator analyses to avoid the effects of 

ex vivo sample preparation on the levels of platelet-derived cytokines and potentially 

reduced levels of other mediators due to clotting-induced degradation.492,493 The 

impact of different anticoagulants differs between mediators, but a recent study from 

our group indicated ACD is preferable to EDTA and represents the best compromise 

in assessment of a broad panel of mediators including matrix metalloproteinases, 

tissue inhibitors of metalloproteinases and adhesion molecules.493 

Finally, the reproducibility of metabolite analyses has been shown to be good in 

both serum and plasma analyses.494,495 Compared to plasma, serum has higher 

metabolite concentrations, which increases sensitivity 494 and was therefore preferable 

for the current project. However, higher metabolite concentrations in serum may be 

partly caused by blood cell metabolic activity during the coagulation process,495 

which represents a potential source of error in Paper IV. 

Sample processing, cryopreservation and storage 
Gradient separation of whole blood with Ficoll-Hypaque to isolate the mononuclear 

white blood cell fraction potentially leads to loss and skewed distributions of immune 

cell populations. The efficiency of the method is influenced by several factors 

including cell size and concentration.496,497 Consequently, the yield of various 

immune cell subsets, and thus the results in Paper I, may have been influenced both 
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by individual variations in peripheral blood immune cell concentrations and by the 

general increase of virtually all immune cell subsets during G-CSF treatment (Figure 

1, Paper I). Increased cell concentration generally improves the separation and yield 

of different subsets,497 and identical dilution of whole blood samples with saline prior 

to and after G-CSF treatment may lead to overestimation of G-CSF–induced 

concentration increases. Furthermore, separation of peripheral blood using the 

apheresis technique leads to a different distribution in the stem cell graft that is not 

directly comparable to Ficoll-Hypaque separated samples from peripheral blood. This 

is an important caveat to the reported correlations between peripheral blood and graft 

immune cell concentrations (Table 3, Paper I). 

Plasma samples were diluted prior to Luminex mediator analyses. Due to a high 

degree of heterogeneity between donors in mediator levels, it was challenging to find 

the optimal sample dilution to keep the results within the standard range of the assay. 

As values below or above the standard range were set to a fixed value, the variation 

of mediator levels between donors was even greater than reported in Paper II. 

Cryopreservation of PBMC samples enables efficient flow analyses, improving 

intra- and inter-individual comparisons of samples from different time points by 

minimizing the day-to-day variation of reagents and instrument performance.498 The 

cost of this standardization is cryopreservation-induced alterations of immune cell 

phenotypes.499 T cell populations are especially vulnerable to cryopreservation, in 

particular, central memory cells and certain subpopulations of the Th17 and Treg 

subsets.499 Furthermore, cord blood hematopoietic cells show altered expression of 

cell surface molecules (e.g. cytokine receptors, adhesion molecules) after 

cryopreservation, with functional consequences for migration and proliferation 

potential.500,501 

The impact of cryopreservation on T cell characteristics has implications not only 

for the validity and interpretation of flow analyses, but also for the use of 

cryopreserved HSC grafts for allogeneic transplantation. Preconditioning 

cryopreservation of allografts have hitherto been used primarily when there was 

doubt about the reliability and availability of the donor. Cryopreserved allogeneic 

PBSC grafts show inferior in vitro growth potential despite normal CD34+ numbers 
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and may increase the risk of impaired engraftment compared to fresh PBSC grafts,502 

although these results may be biased by delayed cryopreservation after transport. 

Furthermore, T cells and other immunocompetent components of the graft show 

lower recovery after cryopreservation than HPCs, and the tolerance to freezing seems 

to differ among different T cell subpopulations.503-505 The potential implications for 

functionality and clinical outcome remain to be addressed. Although graft T cells are 

very important for the antileukemic effect of allotransplantation, beyond simple 

quantification there is no routinely performed assessment of graft T cell function. 

Generally, reduced graft viability due to long-time storage is associated with 

increased incidence of aGVHD and TRM.506 Cryopreservation leads to reduced 

viability, but the impact of cryopreservation on aGVHD and engraftment is 

contradictory.507-509 Cryopreservation of human Tregs leads to reduced L-selectin 

expression, and in animal models, this results in impaired homing to secondary 

lymphoid organs and reduced ability of Tregs to protect from aGVHD.510 However, in 

cryopreserved stem cell grafts, such effects may be counteracted by attenuation of 

adhesion molecules on progenitor cells and aGVHD-inducing cells, and the decrease 

in L-selectin expression may be reversible during thawing.511 Available studies are 

too small to offer definitive conclusions regarding possible consequences of 

cryopreserved grafts on clinical outcome, and there is a need for larger prospective, 

randomized studies to provide clarification. 

In the current project, a minority of the HSC grafts were cryopreserved prior to 

transplantation. The numbers were too small for meaningful statistical evaluation of 

the clinical effect, but an influence from graft cryopreservation on clinical outcome is 

hard to exclude. 

Finally, even though the half-life of soluble mediators is short and mediators may be 

released and degraded during storage, most cytokines show stable levels for at least 2 

years at -80 ℃.512 For P Papers II–IV, we endeavored to implement immediate 

cryopreservation of samples, maintain similar storage time within groups of 

compared individuals and avoid multiple freeze-thaw cycles to minimize pre-

analytical errors. 
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4.3 Analysis aspects 
Multiparameter flow cytometry 

In contrast to methods that measure average cellular responses, including reverse-

transcription quantitative polymerase chain reaction (RT-qPCR) and common cell 

proliferation and cytotoxicity assays, flow cytometry enables high-resolution single-

cell analysis of surface-expressed and intracellular markers.513 It can be used for 

quantification of absolute numbers and relative proportions of different immune cell 

subsets as well as functional assessment of characteristics such as activation and 

differentiation state, secretory and migratory capacity, proliferative and cytolytic 

potential.513 Advancements in multiparameter/polychromatic flow cytometry include 

broadened availability of fluorochrome conjugates, upgraded instrumentation with 

enhancement of lasers, dichroic filters and photomultiplier tubes (PMT) as well as 

more refined software compensation and analysis modalities.513 These developments 

provided unique opportunities to capture cellular heterogeneity, including detection 

and in-depth characterization of rare subsets, and gain insight into the complex 

cellular interactions characteristic of immunological processes. However, a side effect 

of more complex methodology is increased risk for bias and reduced capability to 

detect it. 

Standardization of flow cytometry is limited by the vast availability of instruments, 

reagents and analysis software. Virtually inevitable variability in reagents, instrument 

settings and performance must be accounted for in the interpretation of every flow 

cytometry-based study, and particularly in comparison studies. Of particular 

importance are discrepancies in antibody characteristics based on lot, vendor, choice 

of conjugated fluorochrome and tandem conjugate instability, fluctuations of PMT 

voltage and inherent inaccuracy of signal log amplification.514 Autofluorescence of 

cells, non-specific binding of antibodies and variability in mathematic software 

compensation of spectral overlap between fluorochromes are further complicating 

factors, together with subjective visualization in sequential manual gating.498 All 

these factors make distinction between different subpopulations and distinction 

between antigen-positive and –negative cells difficult. 
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These technical challenges are exacerbated by biological heterogeneity in antigen 

expression and inconsistent definitions of immune cell phenotypes between studies, 

leading to a virtually infinite number of potential subsets separated by indistinct 

boundaries.515 For example, to varying degrees, studies distinguish between CD4+ 

and CD8+ naïve T cells and between effector and central memory T cells (Table 10), 

and there are no consensus definitions for the increasing number of reported 

regulatory T cell subsets.516 T cell versatility also contributes to the fluctuating 

boundaries between subsets; for example, Tregs may be converted to Th17 cells under 

inflammatory conditions.516 Finally, the interplay between donor and residual 

recipient immune cells after allotransplantation cannot readily be defined by flow 

cytometry, and the importance of species-dependent phenotype, level of antigen 

expression and immune cell distribution may be underestimated in comparison with 

murine and human studies. 

In the current project, the reagent panels were carefully constructed to match marker 

expression with the conjugated antibody fluorescence intensity in accordance with the 

optical setup of our flow cytometer.517 The antibodies were precisely titrated to 

optimize the resolution of antigens and cellular subsets, and we used antibody 

cocktails to reduce pipetting errors.517 PMT voltages were adapted to the cells of 

interest, and the chosen fluorochromes and laser alignment and instrument 

performance were monitored daily. We used bi-exponential log transformation, and 

acquisition of cells was performed at the slowest speed possible in order to increase 

sensitivity with higher resolution of weakly expressed markers and unstained 

populations.518 Fluorescence minus one (FMO) controls ensured proper adjustment of 

the results for unspecific staining.514 We used template gating with copy and reuse of 

the template set of gates to all samples with minimal manual individual adjustment in 

order to achieve unbiased comparison across samples.519 However, we observed 

considerable variability in biomarker expression between individuals.520 

Consequently, the biological heterogeneity of healthy donor immune cells is probably 

even greater than what is reported in Paper I. 

For the most advanced flow cytometers, which use up to five lasers, the number of 

parameters that can be investicated per sample is approaching that of mass cytometry. 
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Beyond its superiority in multidimensional approach, the advantages of mass 

cytometry are the lack of need for spectral compensation and the absence of 

autofluorescence bias. However, the sensitivity and acquisition rate tend to be lower 

for mass cytometry compared to flow cytometry, and flow cytometry offers greater 

ability to analyze live cells. These two complementary single-cell analysis methods 

may advantageously be combined in transplant immunology studies.521,522 

Multiplex bead array analysis and ELISA 
Methodological choices in soluble mediator quantification are influenced not only 

by test performance characteristics (reviewed in 523) but also by practical and 

economical limitations. Enzyme-linked immunosorbent assay (ELISA) 524 and 

multiplex bead array analysis (MBAA) 525,526 can both use the “sandwich antibody 

technique,” show a high degree of correlation in cytokine quantification and have in 

common high sensitivity, specificity, precision, accuracy and reproducibility.524-528 In 

contrast to bioassays, the two methods are not particularly informative with respect to 

the biological activity of the analytes, but they have wider analytical ranges, higher 

specificity and precision and are less time-consuming and labor intensive. Based on 

required sample volume per analyte, protocol simplicity and efficiency, 

instrumentation needs, reagent cost, capacity of multianalyte detection and 

availability of antibodies with the required specificities, we chose ELISA for 

quantification of single analytes (Paper III) and MBAA for simultaneous 

measurement of multiple mediators (Paper II). 

Besides the challenges associated with statistical evaluation of multiplex data sets 

discussed in Chapter 4.4, multiplex technology is encumbered by the “matrix effect,” 

i.e. unwanted cross-reactivity between the components within the assay, reducing the 

reliability of the results.526-528 We used standardized kits carefully optimized and 

validated by the vendor in order to minimize such errors. 

In addition to the soluble mediator quantification in Paper II, the intracellular 

concentration of several of the same cytokines in various immune cell subsets was 

analyzed in Paper I. In retrospect, the possibilities for exploring intracellular and 
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soluble mediators in context at the individual level during the mobilization and stem 

cell collection process might have been better exploited. 

Metabolomics analytic platforms 
To investigate the metabolomic response during G-CSF administration, we chose an 

explorative approach using untargeted global metabolomics, i.e. explorative analysis 

of a huge number of metabolites. This approach, often with limited preliminary 

knowledge of the investigated issue, was not based on a specific hypothesis, but was 

rather intended to be hypothesis generating.529 

The power of metabolomics platforms in high-throughput, multiplex quantification 

of metabolites is explained by the combination of the highly sensitive and accurate 

analytical tools mass spectrometry (MS) or nuclear magnetic resonance (NMR), with 

preparative separation of metabolites by gas, liquid, high performance liquid or 

ultrahigh performance liquid chromatography (GC, LC, HPLC, UPLC). MS acquires 

molecule-specific spectra expressed as mass-to-charge ratios (m/z) after initial 

ionization of the sample by electrospray or atmospheric pressure, and tandem MS 

(MS/MS) further increases resolution by fractionating the spectral data from two 

connected instrument components in time or space.530 Chromatic separation of 

compounds by GC, LC, HPLC and UPLC prior to MS or MS/MS leads to method-

dependent dynamic ranges. In order to maximize the total analytical range and 

capture as much of the complexity of the mixture as possible, four different platform 

approaches were used, as described in Paper III. 

Apart from the high costs and the statistical challenges connected to analyses of 

huge data sets that are discussed in the next section, the untargeted metabolomics 

approach has several limitations that should be kept in mind when interpreting our 

results. To mention a few of the most important, only about 25% of compounds are 

identified properly during metabolomics analyses.531,532 Instrument-dependent MS 

spectra, differences in compound definitions between the numerous established in-

house and public spectral libraries and shortage of pure synthetic reference standards 

are still obstacles to highly specific metabolomics analyses producing results that are 

comparable across studies.533-537 The sum of metabolic compounds in an organism is 
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countably infinite, and despite improved heuristic algorithms for compound 

characterization and discrimination, molecular formulas are not entirely 

unambiguous.538 Moreover, metabolic intermediates participating in dynamic 

biological processes tend to be versatile, with each compound often playing more 

than one role in several disparate pathways, and diversion of metabolic pathways is 

regulated by the physiological context, further complicating the contextualization and 

interpretation of metabolomics data.529 

4.4 Post-analytical aspects: handling multivariate data sets 
During the last decades, the classical conflict of a reductionist versus a holistic 

approach to understanding biological science has been actualized by in-depth 

characterization of the human genome, transcriptome, proteome and metabolome and 

the identification of multiple new interconnections between the different biological 

systems. These developments have caused the pendulum to swing back from 

confirmatory testing of strictly pre-defined hypotheses towards a more explorative 

and broader perspective encompassing analyses of systems biology and a 

personalized diagnostic and therapeutic approach. Using multivariate data sets, the 

number of variables typically exceeds the number of participants, and personalized 

clinical trials in the purest form will move against n = 1.539 The huge increase of 

available data has lead to a higher level of knowledge, but also to analytical 

challenges and increased risk of bias. 

Powerful biostatistical tools and a critical attitude towards the methodological 

pitfalls and limitations are both equally important for correct interpretation of 

multivariate data. In the first two papers we used hierarchical clustering analysis 

(HCA), with unsupervised classification and subgrouping based on data similarity in 

order to extract the underlying structure of the data sets.540-542 In HCA, the similarity 

between data is evaluated semi-quantitatively as the proximity of different 

observations using distance measures including Euclidean and Pearson Chi-Square 

distances.540-542 The first step of the hierarchical agglomerative bottom-up clustering 

algorithm is construction of a list of inter-pattern distances for all unordered pairs of 

observations.540,543 We used the complete-linkage clustering algorithm, estimating the 
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proximity of observations as the maximum distance between all pairwise 

observations.540,543 The list of pairwise distances is then sorted ascendingly until a 

graph of the dissimilarity values is formed, shaped as a nested hierarchy of clusters 

and subclusters.540,543 

The HCA method provides a visual intuitive categorization of complex data and is 

easily performed by specialized software,543 but it cannot handle missing data. 

Furthermore, the data must usually be transformed (e. g. median normalization, log2 

transformation) prior to analysis to achieve meaningful comparisons between 

individuals.541,542 Transformation may alter the relationship between data and thus 

bias the results. In the current project, the median normalization of the data prior to 

biostatistical analyses partially masked donor heterogeneity. Several different 

approaches are used both for data transformation, distance measure and alternative 

clustering methods, and there is no clear guidelines for choice of methods to use on 

different data sets.541,542 Consequently, each data set may be interpreted in various 

ways, which allows flexibility and individual exploration of data, but at the cost of 

unambiguity, exactness and comparability between studies. Overfitting of the 

statistical models to fulfill underlying or analysis-generated hypotheses is perhaps the 

greatest potential pitfall of the method.541,542 

Although visually appealing and intuitive understandable through pattern 

recognition, the two-dimensionality of HCA is a limiting factor for the presentation 

of highly complex data.541,542 Principal component analysis (PCA) was used in Paper 

IV and potentially captured a higher degree of the variability of multidimentional data 

sets by decomposition of the variance into vectors with subsequent three-dimensional 

comparison of groups in an orthogonal coordinate system.529 The method may have 

revealed outlayers and hidden bias in the data set, but it is inferior to hierarchical 

clustering analyses with respect to detection of non-linear data trends.529 Correlation-

based network analysis is another approach for analysis of multidimensional data, 

emphasizing the importance of networks rather than pathways.529 In retrospect, due to 

a high degree of overlap of participants between our four papers, we might have 

considered evaluating correlations across the datasets to examine relationships 

between the sets of immune cells, soluble immune mediators and metabolites. 
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Prior to the overarching bioinformatics analyses, we performed simple statistic tests 

evaluating single analyte changes during HSCT mobilization and collection. Correct 

handling of multivariate data requires a strategy for multiple testing to optimize the 

significance level and minimize the sum of type I and type II errors (false positive 

and negative results, respectively 529). The Bonferroni correction, involving division 

of the overall significance level for the study by the number of simultaneously 

performed comparisons, is considered the most conservative approach and will, in 

practice, eliminate the risk of type I errors.529,541 However, this method leads to a high 

risk of type II errors. As the opposite extreme, no correction for multiplicity has been 

proposed, a rationale that prioritizes the inherent orderliness of the natural word over 

theoretically calculated statistical chance.544 In the current project, we chose a 

moderate position and adjusted the significance level to p <0.01. 
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 Discussion 
G-CSF responsiveness is probably multifactorial 

In Paper I, we made detailed characterizations of 27 donor lymphocyte subsets 

during HSC mobilization and collection. Due to small sample size, our study should 

be considered explorative and hypothesis generating, and the lack of methodological 

standardization of phenotype definitions (see Chapter 4.3) complicates comparison of 

single immune cell subsets between studies. Nevertheless, our results strongly 

suggest a dichotomous G-CSF immune cell mobilizing response in healthy 

individuals, involving 24 of 27 investigated subsets, irrespective of donor age, G-CSF 

dose, immune cell concentrations in peripheral blood prior to mobilization and in the 

stem cell graft (Paper I, Figure 4). 

Variable G-CSF HSC mobilizing response due to BM-toxic effects of 

chemotherapeutics is well-known in autologous stem cell mobilization. Furthermore, 

autologous stem cell donor response to a single dose of G-CSF, in terms of neutrophil 

peak the following day, predicts neutrophil and especially platelet engraftment and 

defense to infection,545 and low G-CSF responsiveness with regard to HSC 

mobilization is associated with prolonged neutropenia.546 Less is known about the 

mechanisms for the variable stem cell mobilization that is observed even in healthy 

donors (see Chapter 1.1) and the possible impact on recipient engraftment and clinical 

outcome. Age was identified as the most important predictive factor for HSC 

mobilization in healthy individuals (Table 1). Even though age had little impact on 

the proportion of BM HPCs, the in vitro proliferative response of BM HPCs was 

lower in elderly individuals.547 

Several potential mechanisms may modulate G-CSF immune cell mobilizing 

response and lead to variable immune cell composition of the graft. G-CSF acts 

through both direct G-CSFR dependent effects and indirect cytokine-mediated 

mechanisms, and HSC G-CSFR expression is not required for mobilization.70 On the 

other hand, G-CSFR is widely expressed on myeloid cells and has recently been 

identified on most lymphoid subsets (see Chapter 1.1), indicating possible 

involvement in immune cell mobilization. 
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Heterogeneous immune cell mobilization may be partially due to variable regulation 

of G-CSFR expression and structural variation in the G-CSFR. Pathogenic mutations 

in G-CSFR are found in several myeloid disorders and are potential leukemogenic 

factors60,548. Targeted G-CSFR mutations in murine models showed normal resting 

granulopoiesis but hyperproliferation of neutrophils in response to G-CSF.549,550 

During HSC mobilization of myeloma patients, the CSFR3 variant rs3917924 

showed association to HSC mobilization potential and neutrophil engraftment.551 In a 

study of 303 autologous and allogeneic HSC donors, 16 missense G-CSFR SNPs 

were screened, and three of those (rs3918001, rs 3918018 and rs3918019) had 

potential impact on peripheral blood CD34+ cell enrichment.552 The possible impact 

of G-CSFR genetic polymorphisms for immune cell mobilization remains to be 

elucidated. 

Direct G-CSFR–mediated effects may also lead to functional alterations of a broad 

spectrum of immune cell subsets with potential implications for recipient outcome. 

For example, by use of artificial antigen-presenting cells, direct antigen-dependent 

and –independent effects of G-CSF on isolated CD8+ T cells have been 

demonstrated.553 The effects were synergistic to the previous known indirect effects, 

were detectable both at the RNA and protein levels and involved several central 

elements in T cell activation: surface activation markers, miR-155 expression and 

ERK1/2 and CD3ζ/Lymphocyte-specific protein tyrosine kinase (Lck) signaling 

pathways.553 

G-CSF is part of an extensive immunoregulatory network, and the variability of 

multiple extracellular and intracellular receptors and signaling molecules potentially 

influences the G-CSF response. For example, SOCS3 is a negative regulator of G-

CSF signaling, and modification of its protein structure leads to hyper-responsiveness 

to G-CSF with regard to granulopoiesis and inflammatory response in murine 

models.554 SOCS3-deficient mice have prolonged STAT3 activation and enhanced 

cloning frequency, proliferative capacity and survival.555 

CXCL12 is a key mediator of HSC mobilization (Chapter 1.1), and the experience 

from autologous stem cell mobilization has revealed associations between CXCL12 

genetic polymorphisms and HSC mobilization capacity and neutrophil 
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engraftment.556 As CXCR4, the receptor of CXCL12, is broadly expressed on 

leukocytes,336 CXCL12 SNPs may have implications also for immune cell 

mobilization. Immune cell migratory capacity is possibly a prerequisite for G-CSF 

responsiveness and is potentially influenced by the expression of multiple other 

chemokines, chemokine receptors and adhesion molecules. To mention a few 

examples, G-CSF leads to STAT3-dependent CXCR2-mediated neutrophil 

chemotaxis 557 and the general neutrophil chemotactic activity and phagocytic 

functionality is reduced by G-CSF, not only in healthy donors, but also in their HSC 

graft recipients up to 4 weeks post transplant.558 G-CSF mobilization of healthy 

donors also alters the conformation of the integrin leukocyte function-associated 

antigen-1 (LFA-1) and thereby inhibits interaction with its receptor ICAM-1, 

potentially reducing activation, proliferation and migration of CD4+ T cells.559 In 

vitro studies indicate that this influence of G-CSF on LFA-1 directly suppresses 

CD4+ migration, adhesiveness and release of inflammatory cytokines by 

downregulation of Lck and Zeta-chain–associated protein kinase 70 (ZAP-70).560 

In addition to the adhesion molecules investigated in Paper II, CD44 was included 

in the antibody panel of Paper III. CD44 is not only a receptor for OPN, but has 

multiple functions including serving as an adhesion molecule.325 CD44 is a major E-

selectin ligand controlling CD4+ and CD8+ T cell migration and adhesion to and 

extravasation from inflamed endothelium.561-564 CD44 shows highlevels of expression 

in T memory cells and is thought to promote effector cell survival by limitation of 

Fas-mediated death and activation of the PI3K/Akt signaling pathway.565 

During G-CSF therapy, we observed significantly reduced CD44 expression in 

CD19+ B cells. A functional role of CD44 in murine B cell activation and chemotaxis 

has been described.566 High levels of expression of CD44 in autoantibody-secreting B 

cells has been reported in murine cGVHD,567 and a reduced level of CD44 in G-CSF–

mobilized B cells may contribute to attenuate GVHD. 

Finally, the migration of immune cells is also linked to sphingolipid metabolism.568 

G-CSFR signaling leading to STAT3 phosphorylation and increased neutrophil 

CXCR2 expression, and migratory capacity depends on translocation of G-CSFR 

regulated by the ceramide synthetase CerS2.568 CerS2 gene deletion leads to anti-
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inflammatory effects through reduced G-CSF–induced neutrophil migration in 

murine models568. 

Apheresis device dependent and immune subset specific effects 
on the profile of soluble mediators need clarification 

In our second paper, we found significant differences in the graft and peripheral 

blood mediator profiles between donors harvested with Cobe Spectra and Spectra 

Optia. The pre-apheresis peripheral blood concentrations of neutrophils, monocytes, 

lymphocytes and platelets did not differ significantly between the two groups, but 

they were significantly higher in grafts harvested with Cobe Spectra compared to 

Spectra Optia. We considered the clinical significance of this observation to be 

uncertain. In a recent study, a similar difference in graft leukocyte and platelet 

concentrations between samples taken using Cobe Spectra and Spectra Optia was 

reported, as well as a lower incidence of aGVHD in recipients of grafts harvested 

with Spectra Optia.144 The study was small and reported contradictory increased 

cGVHD associated with Spectra Optia. The results of other comparisons of the two 

devices with respect to graft content are also contradictory.142,143,569,570 

From autologous stem cell collection, it is known that not only the apheresis device 

used but also the apheresis settings influence graft composition.571,572 Even though 

apheresis procedures are supposed to be standardized and automated, the procedure 

settings still, to a large extent, need to be individualized depending on donor and 

patient characteristics (e.g. age, weight, mobilization efficiency, disease status, 

comorbidity) and events occurring during the apheresis procedure (e.g. access 

problems, platelet aggregation, electrolyte and fluid balance disturbances). Thus, 

great variability in processed blood volume, processing time, ACD-A/whole blood 

ratio, collection efficiency and graft composition can be expected not only between 

different apheresis devices and different protocols used in the same device but also 

between different donors harvested with the same protocol/device. Due to multiple 

patient, donor and apheresis procedure confounding factors, very large studies will be 

needed to confirm device-dependent differences in post-transplant clinical outcome. 

Donor G-CSF treatment increased the systemic level of most investigated mediators, 

but generally the increase was modest, with the exception of a more than 50-fold rise 
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in MMP-8 concentration. MMP-8 is thought to be a marker of inflammation severity 

and an important mediator in chronic inflammation 573 and has recently shown anti-

tumor and complex immunoregulatory functions in gastrointestinal cancer.574 The G-

CSF–induced systemic increase of several pro-inflammatory cytokines including 

TNFα and IL-6 is not an unexpected response as G-CSF is considered a component of 

the pro-inflammatory program normally triggered by infection. In a related project, 

we found increased C-reactive protein (CRP) during G-CSF treatment in the same 

donor cohort.575 These results align with several other published studies reporting an 

acute phase-like response to G-CSF injections with increased IL-6 and CRP 

levels.576,577 Both G-CSF treatment and apheresis contribute to the inflammatory 

response in healthy donors, accompanied by increased serum ferritin and iron 

levels.577 Apheresis in healthy donors also leads to increased protein-limited oxidative 

stress that is counteracted by increased antioxidant capacity thought to limit tissue 

damage.577 

In contrast, a recent study demonstrated reduced in vitro secretion of inflammatory 

cytokines in isolated CD4+ cells from G-CSF–treated healthy donors.560 CD4+ cells 

were stimulated with ICAM-1 and anti-CD3+, and downregulated Lck and ZAP-70 

expression was proposed as the mechanism for the observed reduced LFA-1-ICAM 

mediated CD4+ migration in vitro.560 The significant peripheral blood concentration 

increase for virtually all immune cell subsets during G-CSF administration (see Paper 

I, Figure 2) may explain these apparent contradictory results with respect to G-CSF 

induction of pro-inflammatory cytokines. The peripheral blood increase in immune 

cell numbers by far exceeded the increase in mediator levels during G-CSF therapy 

(see Paper II, Table I), and the G-CSF effect on cytokine secretion probably differs 

between various immune cell subpopulations. Thus a total increase of systemic 

cytokines may be possible, despite reduced secretion in certain immune cell subsets. 

Donor heterogeneity–an undervalued outcome-predictive factor? 
The high degree of variability characterizing the entire multi-step process of 

allogeneic HSCT has been emphasized throughout this thesis (summarized in Figure 

1 and Table 7). As discussed in a recent review, the current project confirms and 
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augments the impression of extensive untreated healthy donor heterogeneity 

encompassing both innate and adaptive immunity, and the variability is further 

enhanced during G-CSF treatment.578 There are great controversies around the effects 

of G-CSF on graft composition, as well as about the importance of graft composition 

on clinical outcome. These disagreements may be explained both by the already 

recognized variability and by the still unexplored heterogeneity of donor 

characteristics, allogeneic HSC mobilization and collection procedures. Outcomes 

after HSCT using MUDs or MRDs are now comparable (see p. 3). Improved 

immunosuppression potentially reduces the importance of immunological donor-host 

incompatibility and increases the relative impact of donor traits beyond the already 

recognized factors of age and HLA and ABO types.24 The impacts of a wider range of 

donor factors on graft quality and recipient outcome need to be explored in studies 

controlled for confounding patient factors. 

There is also a need for more precise HSC graft specification with regard to infused 

cell types and doses. HSC graft specifications are, to a limited degree, standardized. 

The required HSC dose for allotransplantation is usually requested as a minimum 

dose, and the final infused dose is influenced by individual and local factors like the 

donor mobilization response, the donor/recipient weight ratio and the capacity and 

routines at the collection center (Figure 1). For other immune cell subsets, the 

requested and infused doses are even less clearly defined. 

Furthermore, based on genetic differences, the distribution of several donor traits 

may vary between regions. Confounding factors due to heterogeneity in donor origin 

may be enhanced by the small sample size study design typically found in this field. 

These factors add to the extensive variability in transplant courses due to recipient 

diversity, encompassing disease, comorbidity, conditioning therapy and 

immunosuppression. 

Recently, a risk stratification model for acute and chronic GVHD was developed 

based on retrospective multivariate analyses of clinical and genomic factors.579 The 

failure of this algorithm to stratify risk when repeated on another patient population 

may illustrate the effects of the extensive heterogeneity of the transplant process.580 

The risk factors are probably largely individual and dependent on multiple clinical 
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and immunological factors; hence a general risk prediction scheme may be hard to 

construct for inhomogeneous populations. The degree of complexity included in both 

recipient and donor multivariable heterogeneity may also explain the failure of two 

recent studies to identify clinically important effects of donor heterogeneity.26,581 To 

handle the full range of patient and donor heterogeneity, powerful biostatistical tools 

may be valuable, to inform individualized decision making throughout the transplant 

course. In principle, standardization of graft characteristics and cell doses is desirable, 

but is hard to achieve in practice due to the extreme variability. To improve the 

treatment of the heterogeneous patient population with individual donors, taking a 

more personalized approach may be more advantageous than efforts at 

standardization. 

The principles of personalized medicine already apply to allogeneic HSCT, with 

adaption of conditioning therapy and immunosuppression depending on age, 

diagnosis, disease stage, remission status and comorbidity. Based on increased 

knowledge of the importance of donor heterogeneity, the personalization of therapy 

could be extended beyond choice of donor type and source, in terms of HLA 

compatibility, HSC and T cell doses. Donor selection may be refined by inclusion of 

updated criteria based on total assessment of patient and donor traits and individual 

risk. However, the availability of donors is usually a limiting factor, and 

individualized treatment of the donor and graft are consequently more relevant 

options. Predictions of donor HSC and immune cell mobilization capacity compared 

with patient characteristics may be the decisive factor in the choice of alternative 

mobilizing agents or combinations of two or more agents, as well as the dosage and 

duration of mobilization treatment. Similarly, the collected stem cell graft may be 

adapted to the individual recipient regarding doses and features of both progenitor 

and mature immune cells using existing ex vivo depletion and enrichment techniques. 

Intervention with the graft components further increases the possibilities for 

individualization. Prediction of risk based on donor and graft specifications may 

influence post-transplant immunosuppression and/or adoptive immunotherapy 

regimen for the recipient. Pharmacological donor intervention, in addition to 

mobilization therapy, may even be considered. For example, 3-hydroxy-3-
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methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) not only 

lowers serum cholesterol but also has multiple immunoregulatory effects, and statin 

treatment of the sibling donor but not the recipient has been shown to reduce the 

frequency of aGVHD.582 

Small sample size and heterogeneity–can we trust the results? 
The major limitation of the present study is the small sample size. However, the 

study population is a consecutive group of patients and donors. Based on the national 

organization of allotransplantation activity in Norway, they represent all patients from 

a defined geographical area (western, middle and northern regions) transplanted 

during a defined time period with family donors. It is thus a relatively homogeneous 

group with regard to type of donor and also with regard to conditioning regimen and 

GVHD prophylaxis. However, additional larger studies are needed to confirm our 

results and clarify whether our observations are relevant also for other groups of 

allotransplant recipients, such as patients receiving grafts from MUDs. 

Our four papers focus on different parts of the donor and recipient 

immunoregulatory systems. The donors and recipients included in the different 

papers overlapped to a great extent, which opened an opportunity to compare the 

results on an individual level in order to reduce the uncertainty associated with the 

small sample size and to assess different parts of the immunoregulatory networks in a 

more complete manner. In general, the results from all papers were characterized by a 

high degree of donor heterogeneity both prior to and during stem cell mobilization. 

The heterogeneity with respect to G-Rsp was most distinct, presumably with the 

greatest potential for clinical application, and was compared to the results from the 

three other papers to reveal common trends or contradictions. 

First, a possible association between donor G-Rsp and recipient post-transplant 

mediator profile was investigated. The unexpected observation of an association 

between the early post-transplant mediator profile and the overall survival of the 

recipients could not be explained by patient factors such as comorbidity or remission 

status (Paper II). Donor G-Rsp was available for 8 of the 16 recipients and identical 

hierarchical cluster analyses of recipient post-transplant mediator profiles and donor 
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G-Rsp were repeated on these subsets and resulted in identical distribution of patients 

and donors compared to the original clustering analyses (Paper I, Figure 4 and Paper 

II, Figure 4B). Kaplan Meier survival analysis repeated on this smaller recipient 

subset showed consistent results compared to the original analysis, with inferior mean 

overall survival of 266 days for the three patients in the lower cluster compared to 

1429 for the five recipients in the upper cluster (p = 0.022). 
 
 

 
 
Figure 4.  The recipient post-transplant mediator profile compared to donor G-Rsp. Unsupervised hierarchical 
clustering analysis based on the first day post-transplant mediator profile of a subset of 8 HSCT recipients. The column to 
the right shows the corresponding donor G-Rsp. 

When comparing the clustering analyses of the plasma mediator profiles of the 

patients with the G-Rsp of the respective donors, the clustering was identical for 7 out 

of 8 donor/recipient pairs (Figure 4, p = 0.028, Pearson Chi-Square test). Three of 

four recipients of stem cell products from donors with high G-Rsp were localized in 

the lower cluster with inferior overall survival, whereas the fourth recipient (Figure 4) 

was diagnosed with aGVHD grade II and was still alive at termination of the study. 

Certain conclusions cannot be drawn based on this limited data set, but results in 

Paper I and II do not seem contradictory and suggest a possible association between 

donor-related early post-transplant events and transplant outcome. 

Second, if it is confirmed that G-Rsp is important for the clinical outcome of the 

patient, new strategies to improve product quality and individualize the treatment 

based on both donor and patient features could be beneficial. It would then be 
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advantageous to be able to predict donor G-Rsp to optimize donor mobilization, 

harvest and graft processing. As mentioned above, adhesion molecules are important 

for G-CSF–mediated stem cell mobilization and T cell immunomodulation. CD44 is 

an adhesion molecule and also a functional osteopontin-receptor, which was 

evaluated in Paper III. We used the Mann-Whitney U test to compare pre-treatment T 

cell CD44 levels available from Paper III for 12 of the donors in Paper I with the G-

Rsps of the same donors. We found a significant association between the CD3+ cells’ 

level of CD44 expressed as CD44-Ax 488 MFI and lower or higher G-Rsp defined as 

G-CSF immune cell mobilizing response (p = 0.030). 

In the autologous setting, CD44 polymorphisms influenced G-CSF–induced stem 

cell mobilization,583 and BM CD34+ HSC expression of several adhesion molecules 

including CD44 correlates to stem cell yield in both autologous and allogeneic PBSC 

collections.325 High levels of adhesion molecules might reflect generally increased 

migratory capacity. CD44 also facilitates T cell proliferation,584 and one may 

speculate whether this mechanism contributed to the significant increases in 

leukocytes concentrations observed in donors with high levels of expression of CD44 

during G-CSF treatment. CD44 is required for adhesion of lymphocytes to high 

endothelial venules 584 and extravasation of activated T cells into inflammatory 

sites.585 High T cell CD44 expression was also recently shown to enhance the 

strength of T cell receptor signaling and promote induction of the Th17 subset.586 

CD44 mediates lymphocyte binding to dermal endothelium in acute cutaneous 

GVHD,587 and CD44hi effector memory CD8+ T cells have been identified as the 

dominant population in murine aGVHD.588 Antibody blockade of CD44 attenuates 

disease activity in animal models of various autoimmune diseases and is considered 

especially valuable in inflammatory liver disease due to unique leukocyte adhesion 

without endothelial rolling in the liver vasculature.589 Based on these observations, 

CD44 blockade may help prevent aGVHD. 

We hypothesize that analysis of T cell CD44 expression represents a potential 

means of predicting G-Rsp and individualizing stem cell mobilization and harvest of 

the donor, manipulation of the graft and preparation and post-transplant follow up of 

the recipient. 
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Third, we looked for associations between metabolomics profiles and G-Rsp. G-Rsp 

was available from Paper I for 13 of the 15 participants in Paper IV. We performed 

bioinformatics analyses with two unsupervised hierarchical cluster analyses as 

described in Papers I and II based on the donor serum levels of 641 metabolites prior 

to and during G-CSF treatment (Figure 5). Based on their total metabolomic profiles, 

the donors could be separated into two different subsets with 10 and 5 donors, 

respectively, both prior to and during G-CSF administration. With the exception of 

two donors, the distribution of individuals into two subsets was identical before and 

after G-CSF treatment. 

 

 
Figure 5.  The donor pre-G-CSF metabolomics profile compared to G-Rsp and early post-transplant complications. 
Unsupervised hierarchical clustering analysis based on donor pre-transplant levels of 641 identified metabolites. Two 
donors clusters called Metabolite profile 1 (10 donors) and Metabolite profile 2 (5 donors) were identified both prior to and 
during G-CSF administration. Below the heatmap the Metabolite profiles 1 and 2 prior to and during G-CSF are compared 
to the responsiveness to G-CSF in the same donors and to the incidence of early post-transplant complications in the 
corresponding recipients. Evaluated by Pearson Chi-Square test, the donor metabolite profiles both prior to and during G-
CSF were associated to G-CSF responsiveness (p = 0.008) and to early post-transplant complications in the recipient (p = 
0.001). 

Comparing these metabolomics bioinformatics results to G-Rsp, 5 of the 7 donors 

with high G-Rsp belonged to the right donor clusters both prior to and during G-CSF, 

whereas all six donors with lower G-Rsp were included in the left clusters (Figure 5). 
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Thus, the G-Rsp differed significantly based on serum metabolite profile both prior to 

and during G-CSF treatment (p = 0.008, Pearson Chi-Square test). 

Paracetamol is used as an analgesic for skeletal pain during HSC mobilization. Prior 

to G-CSF treatment, paracetamol metabolites were detected at low levels in a 

minority of the donors (Figure 6). During G-CSF administration, the levels rose 

substantially and were significantly higher in the donors classified as highly G-CSF 

responsive (p = 0.036, Pearson Chi-Square test), indicating that donors with the 

strongest immune cell mobilizing effect from G-CSF had a stronger need for 

analgesics (i. e. had more toxicity) during mobilization. 
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Figure 6. The level of paracetamol metabolites during G-CSF administration in donors with high and lower G-Rsp. 
In addition to the three representative metabolites shown, 3-(cystein-S-yl) and 3-(N-acetyl-L-cysteine-S-yl) acetaminophen, 
4-acetamidophenol, 4-acetamidophenylglucoronide and 4-acetaminophen sulfate showed similar patterns. 

Furthermore, out of the six recipients diagnosed with early transplant-related 

complications (five with aGVHD and one with multi-organ failure), five received 

grafts from donors included in the right cluster both prior to and during G-CSF, while 

only one stem cell graft originated from a donor included in left cluster (Figure 5). 

Thus, both the untreated and G-CSF-treated donor serum metabolomic profiles seem 

to predict the risk of early post-transplant complications (p = 0.001, Pearson Chi-

Square test). 

This possible association between donor metabolic status and recipient outcome 

aligns with a murine model in which obese donors were studied.590 Obesity was 

reported to induce expansion of the BM HSC and myeloid progenitor compartment, 

and the HSC inclination to differentiate into pro-inflammatory macrophage 
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phenotypes was transferrable to the recipient.590 These observations suggest that 

donor nutritional status, diet and total metabolomic profiles may be important to 

HSCT outcome. Moreover, targeting of metabolic pathways in order to prevent 

GVHD while pre-serving the GVL effect (see p. 41) may be useful not only post 

transplant, but also for optimizing stem cell grafts. In case of pre-transplant in vitro 

expansion and modulation of cellular graft components, the possible effects of the 

availability of different metabolites during cultivation should gain greater attention.481 

To summarize, our observation of heterogeneity in donor G-Rsp with possible 

clinical implications for recipient outcome in Paper I is not contradicted by the other 

papers. On the contrary, through identification of possible associations between G- 

Rsp identified in Paper I and central aspects of Papers II, III and IV, we have 

identified new potential associations between donor features and recipient outcomes. 

Thus, even though the small numbers of investigated donors necessitates great 

caution in interpretating our results, there seems to be good agreement between the 

suggested importance of donor G-Rsp and recipient early post-transplant mediator 

profile for clinical outcome. Furthermore, both donor T cell expression of the 

adhesion molecule CD44 and the total metabolomic profile of the donor prior to G-

CSF treatment seem to predict G-Rsp. Thus, the donor trait G-Rsp does not seem to 

be limited to the concentration change of various immunomodulatory cells, but rather 

seems to be associated to a wider range of immune system characteristics and to 

systemic metabolism. These observations further strengthen our hypothesis that 

heterogeneity of the stem cell donors and hitherto unknown donor factors represent 

potential therapeutic aspects of allogeneic stem cell transplantation. 
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 Conclusions and future perspectives 
Our present studies demonstrate extensive heterogeneous effects of allogeneic HSC 

mobilization and collection on the donor profile of immune cells, soluble mediators 

and metabolites that is also reflected in the stem cell graft. In recent years, it has 

become increasingly evident that the interplay of multiple clinical and immunological 

factors influences the course of recovery after allogeneic HSCT. Donor heterogeneity 

may represent a hitherto underestimated factor contributing to the risk of 

complications after allogeneic stem cell transplantation. 

The explorative approach of the current project generated new hypotheses: 

1. The donor G-CSF immune cell mobilizing response (G-CSF responsiveness), 

and not only graft composition, is important for recipient clinical outcome. 

2. The pre-mobilization, pre-harvesting immunological and metabolic status of 

the donor predicts the response to G-CSF and the composition of the stem 

cell graft. 

3. Individualized adaption of HSC mobilization, modification of the graft and 

adjustment of recipient immunosuppression can therefore potentially improve 

HSCT therapy. 

Larger studies are needed to establish a more detailed and comprehensive 

characterization of the donor immune system and metabolomics profile. Advanced, 

multiplexed technology and bioinformatics tools will be necessary to overcome the 

challenges associated with pervasive immunological and metabolic heterogeneity and 

interconnectedness, thereby enabling elucidation of underlying mechanisms and 

potential targets for modification. 

There has been little improvement in survival in acute high-risk leukemia over the 

last three decades. Allogeneic HSCT is, to date, the best curative treatment option for 

many patients. Despite numerous advances in HSCT over the past decades with 

improved post-transplant outcomes, this treatment is still encumbered with serious 

complications and there is continued need for novel therapeutic strategies. 
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Background: Allogeneic hematopoietic stem cell transplantation is associated with a 
high risk of immune-mediated post-transplant complications. Graft depletion of immu-
nocompetent cell subsets is regarded as a possible strategy to reduce this risk without 
reducing antileukemic immune reactivity.

Study design and methods: We investigated the effect of hematopoietic stem cell 
mobilization with granulocyte colony-stimulating factor (G-CSF) on peripheral blood and 
stem cell graft levels of various T, B, and NK cell subsets in healthy donors. The results 
from flow cytometric cell quantification were examined by bioinformatics analyses.

Results: The G-CSF-induced mobilization of lymphocytes was a non-random process 
with preferential mobilization of naïve CD4+ and CD8+ T cells together with T cell recep-
tor αβ+ T cells, naïve T regulatory cells, type 1 T regulatory cells, mature and memory 
B cells, and cytokine-producing NK cells. Analysis of circulating lymphoid cell capacity 
to release various cytokines (IFNγ, IL10, TGFβ, IL4, IL9, IL17, and IL22) showed pref-
erential mobilization of IL10 releasing CD4+ T cells and CD3−19− cells. During G-CSF 
treatment, the healthy donors formed two subsets with generally strong and weaker 
mobilization of immunocompetent cells, respectively; hence the donors differed in their 
G-CSF responsiveness with regard to mobilization of immunocompetent cells. The diff
erent responsiveness was not reflected in the graft levels of various immunocompetent 
cell subsets. Furthermore, differences in donor G-CSF responsiveness were associated 
with time until platelet engraftment. Finally, strong G-CSF-induced mobilization of various 
T cell subsets seemed to increase the risk of recipient acute graft versus host disease, 
and this was independent of the graft T cell levels.

Conclusion: Healthy donors differ in their G-CSF responsiveness and preferential mobi-
lization of immunocompetent cells. This difference seems to influence post-transplant 
recipient outcomes.

Keywords: apheresis, graft versus host disease, granulocyte colony-stimulating factor, hematopoietic stem cell 
mobilization, hematopoietic stem cell transplantation, immune reconstitution, living donors, peripheral blood 
stem cells
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation is increas-
ingly used in the treatment of several diseases, especially 
hematological malignancies and disorders characterized by 
severe bone marrow failure (1–4). The treatment is associated 
with a risk of early death mainly due to treatment toxicity, severe 
early immunological complications [i.e., acute graft versus host 
disease (aGVHD)], and a risk of long-term morbidity mainly 
caused by chronic GVHD (5). Various strategies of graft 
manipulation have been tried to reduce the frequencies of these 
immunological complications, including CD34 enrichment by 
positive or negative selection, general T cell depletion, depletion 
of T cell subsets, or combined B/T cell depletion (5). The early 
studies showed that general T cell depletion was associated with 
a reduced risk of severe GVHD but an increased risk of leukemia 
relapse and graft failure (5), whereas more recent studies based on 
depletion of immunocompetent cell subsets are more promising 
(6–10). However, the effects of depleting subsets of immuno-
competent cells from the graft will probably be influenced by the 
frequencies of various remaining subsets of immunocompetent  
cells.

Treatment with granulocyte colony-stimulating factor (G-CSF) 
is commonly used for mobilization of peripheral blood stem cells 
in healthy donors (11, 12). G-CSF has several immunomodula-
tory effects, and for a detailed discussion and additional refer-
ences we refer to a recent review (13). First, among the important 
effects on T cells are G-CSF-induced preferential mobilization of 
naïve T cells, decreased expression of T cell activation markers 
as well as adhesion molecules and chemokine receptors, and  
finally Th2 polarization with reduced production of Th1 cyto
kines. The levels of regulatory T  cells are increased. Second, 
effects on NK cells and NK cell subsets are less well characterized, 
but there seems to be a decreased release of pro-inflammatory 
cytokines. Third, the differentiation status of monocytes is 
altered with reduced production of pro-inflammatory cytokines 
and increased release of immunosuppressive IL-10. These effects 
seem to favor an immunosuppressive effect of G-CSF administra-
tion to healthy stem cell donors, but it should be emphasized that 
the question of donor heterogeneity has not been investigated in  
detail previously.

The aim of this study was to characterize more in detail the 
effects of G-CSF on the mobilization of various subsets of immu-
nocompetent cells and to have a focus on donor heterogeneity 
and differences in donor response to G-CSF. Hereafter, we will use 
the term “G-CSF responsiveness” to express the heterogeneous 
changes in donor peripheral blood levels of various lymphoid 
cell subsets during G-CSF treatment. We have characterized in 
detail the peripheral blood levels of various T, B, and NK  cell 
subsets after G-CSF stem cell mobilization for an unselected 
group of healthy stem cell donors. Our results showed that G-CSF 
treatment of healthy donors caused a preferential mobilization 
of immunocompetent cell subsets, donors could be classified 
as either strong or weak mobilizers of immunocompetent cells, 
and this difference in G-CSF responsiveness seemed to affect the 
post-transplant recipient outcomes.

MATERIALS AND METHODS

Stem Cell Donors and Allotransplant 
Recipients
The following participants were included: (i) 22 consecutive 
healthy HLA-matched related allogeneic stem cell donors, 14 
males and 8 females, median age 52.5 years (25–73) and (ii) 13 male 
and 7 female allogeneic stem cell recipients with hematological 
diseases, median age 47 years (35–69). 11 patients were diagnosed 
with acute myeloid leukemia (AML), 4 with aplastic anemia, 2 
with chronic myeloid leukemia, 2 with myelofibrosis, and 1 with 
chronic lymphatic leukemia. A more detailed characterization of 
the allotransplant recipients is given in Table S1 in Supplementary 
Material. The patients represent all allotransplanted patients from 
a defined area in Norway (the Western, Middle, and Northern 
Regions) during a defined time period and receiving stem cell 
grafts from matched family donors; i.e., this study should be 
regarded as a population-based study.

Stem Cell Mobilization and Apheresis
The donors received stem cell mobilization with the human 
non-glycosylated G-CSF analog Filgrastim (Neupogen; Amgen, 
Thousand Oaks, CA, USA) or Tevagrastim (biosimilar Filgrastim; 
Petah Tiqwa, Israel). The donors received a median dose of 
5.4 µg/kg (range 4.1–6.7 µg/kg) twice daily. Stem cell harvest was 
performed when the peripheral blood stem cell count exceeded 
15–20 × 103/mL after 4 or 5 days with either large volume apher-
esis using Cobe Spectra cell separator version 7 (Terumo BCT 
Inc., Lakewood, CO, USA; 8 donors) or automated large volume 
MNC procedure using Spectra Optia cell separator version 9 
(Terumo BCT Inc., Lakewood, CO, USA; 14 donors).

Allogeneic Stem Cell Transplantation
At the time of transplantation 11 patients were in their first com-
plete hematological remission, 2 patients were in their second 
complete remission and 7 patients had detectable disease (Table S1 
in Supplementary Material). 10 patients received myeloablative 
conditioning with intravenous busulfan plus cyclophosphamide 
(i) and 10 patients received reduced intensity conditioning with 
intravenous fludarabine plus busulfan (ii). After transplantation, 
all patients received GVHD prophylaxis with cyclosporine A plus 
methotrexate.

Sample Collection and Preparation
Blood and Allograft Sampling
Venous blood samples from the allogeneic stem cell donors 
were collected (I) prior to G-CSF treatment at the time of the 
pre-transplant evaluation (median 20.5 days before apheresis). 
Blood samples were also drawn (II) in the morning immedi-
ately before apheresis, (III) immediately after apheresis, and 
(IV) approximately 24  h after start of apheresis. Samples for 
cell preparation were collected into ACD-A tubes with sodium 
citrate and acid-citrate-dextrose solution A as anticoagulants 
(Greiner Bio-One GmbH, Kremsmünster, Austria). Samples 



Table 1 | Effect of granulocyte colony-stimulating factor (G-CSF) on peripheral blood and graft concentrations of various leukocyte subsets (n = 22) presented as 
median levels (×109/L) with variation ranges in parentheses.

Leukocyte subset Prior to G-CSF During G-CSF p Stem cell graft R/p

Neutrophils 3.4 (2.4–11.0) 36.8 (21.0–65.5) <0.00005 100.6 (29.6–234.0) 0.182/0.193
Monocytes 0.5 (0.2–0.7) 1.9 (0.9–3.9) <0.00005 35.1 (5.5–75.6) 0.062/0.659
Lymphocytes 1.7 (0.9–2.8) 3.9 (2.4–6.5) <0.00005 78.1 (42.2–182.6) 0.195/0.170
T cells 1.25 (0.60–2.26) 2.92 (1.29–4.17) <0.00005 53.92 (23.72–145.71) 0.316/0.052
B cells 0.15 (0.03–0.33) 0.50 (0.21–1.77) <0.00005 13.50 (3.12–26.46) 0.357/0.033*
NK cells 0.22 (0.05–0.50) 0.25 (0.07–0.68) NS 4.46 (1.74–14.47) 0.421/0.009**

The Wilcoxon’s test for paired samples was used for comparison of pre-treatment and G-CSF-treated concentrations (fourth column). The correlations between pre-apheresis and 
graft concentrations were analyzed with Kendall’s tau-b test and the correlation coefficients (R) and corresponding p-values are presented in the rightmost column.
*p < 0.05 and **p < 0.01.
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from stem cell allografts were transferred to plastic tubes with-
out additives.

Cryopreservation of PBMC Samples
After isolation by density-gradient centrifugation (Lymphoprep, 
AXIS-SHIELD PoC AS, Oslo, Norway; specific density: 1.077 g/
mL), PBMCs were dissolved in RPMI 1640 medium supplemented 
with 2 mmol/L l-glutamine, penicillin 100 IE/mL, streptomycin 
0.1 mg/mL (Sigma-Aldrich, St. Louis, MO, USA), and 20% inac-
tivated fetal bovine serum (Biowest, Nuaillé, France). Dimethyl 
sulfoxide 10% (Sigma-Aldrich, St. Louis, MO, USA) was used as 
a cryoprotectant, and the vials were stored in liquid nitrogen at 
−150°C after gradual cooling to −80°C in a Mr. Frosty Freezing 
Container (Thermo Fisher Scientific, Waltham, MA, USA).

Preparation and Flow Cytometry Analyses 
of Peripheral Blood Mononuclear Cells
(a)	 All PBMC samples were thawed in a 37°C water bath, dis-

solved in supplemented RPMI 1640 medium and incubated 
for 1  h (37°C, a humidified atmosphere of 5% CO2) before 
incubation with Near-IR fluorescent reactive dye (LIVE/
DEAD Fixable Dead Cell Stain Kit, Molecular Probes, 
Eugene, OR, USA) for 30 min. After washing in phosphate-
buffered saline with 1% bovine serum albumin fraction V 
(Roche Diagnostics GmbH, Mannheim, Germany), the 
cells were incubated for 20  min with the following mouse 
anti-human monoclonal antibodies: CD3-PE-Cy7 (SK7), CD3- 
V450 (UCHT1), CD4-PerCP-Cy5.5 (RPA-T4), CD8-V500 
(RPA-T8), CD16-Ax647 (3G8), CD19-PerCP-Cy5.5 (SJ25C1),  
CD24-PE-Cy7 (ML5), CD25-PE (M-A251), CD26-FITC 
(M-A261), CD27-FITC (M-T271), CD45-RA-V450 (HI100), 
CD56-PE (B159), CD45-RO-PE (UCHL), CD197/CCR7-
FITC (150503), CD197/CCR7-Ax647 (150503), T cell recep-
tor (TCR)αβ-BV510 (T10B91.A), TCRγδ-PE-Cy7 (11F2), 
iNKT(Vα24)-FITC (6b11) (all from Becton Dickinson 
Biosciences; BD Pharmingen, San Diego, CA, USA), CD49b- 
FITC (AK7; BioLegend, San Diego, CA, USA), LAG-3-PE 
(FAB2319P; R&D systems, Minneapolis, MN, USA), and 
mouse anti-human CD38-PB (HIT2; EXBIO, Prague, the 
Czech republic).

(b)	 Samples for quantification of Treg cells were thawed and sur-
face stained as described earlier before fixation and permea-
bilization using eBioscience Staining Buffer Set (00-5523) as 

recommended by the manufacturer (eBioscience, San Diego, 
CA, USA). Intracellular staining was performed by incubat-
ing the cells for 30 min with mouse anti-human FoxP3-Ax647 
(236A/E7; Becton Dickinson Biosciences).

(c)	 Samples for intracellular cytokine analyses were thawed as 
described in (a). The cell concentration was adjusted to 106 
cells/mL before stimulation for 5 h with leukocyte activation 
cocktail with BD GolgiPlug 2 μL/mL (PMA, Ionomycin and 
Brefeldin A) from Becton Dickinson Biosciences at 37°C in 
a humified atmosphere of 5% CO2. The cells were surface 
stained as described in (a) before fixation and permeabili-
zation as described in (b) and finally incubated for 30 min 
with the following mouse anti-human monoclonal antibod-
ies: IL4-Ax488 (8D4-8), IL9-Ax647 (MH9A3), IL10-APC 
(JES3-19F), IL17-A Ax488 (N49-653), IFNγ-V450 (B27), 
TGFβ (LAP)-PE (TW4-2F8) (all from Becton Dickinson 
Biosciences), and mouse anti-human monoclonal IL22-PE 
(142928) from R&D Systems (Abingdon, UK).

Flow cytometry analysis was performed using a FACS Canto II 
flow cytometer (Immunocytometry Systems; Becton Dickinson 
Biosciences, San Jose, CA, USA). Acquisition of 30,000 CD3+ 
T cells or 10,000 CD19+ B cells per sample was endeavored, and 
cytometer performance was monitored daily with Cytometer 
Setup and Tracking Beads (Becton Dickinson Biosciences). The 
data were analyzed with FlowJo software version 10.2 (FlowJo 
LLC, Ashland, OR, USA). The detailed gating strategy is shown 
in Figure S1 in Supplementary Material, and the main lymphoid 
cell subsets identified are presented in Table S2 in Supplementary 
Material together with detailed description of monoclonal anti-
bodies. The identification of various cell subsets are also shown 
in Tables 1 and 2.

White blood differential counts were performed at Laboratory 
of Clinical Biochemistry, Haukeland University Hospital, Bergen, 
Norway by multi-angle polarized scatter separation optical 
flow cytometry using the Cell-Dyn Sapphire analyzer (Abbot 
Diagnostics, Santa Clara, CA, USA).

Statistical and Bioinformatics Analyses
Descriptive statistics are given as median and range for non-
normally distributed variables. The Wilcoxon’s test for paired 
samples was used for analyses of paired observations, and the 
independent-samples Mann–Whitney U test and the Chi Square 
test for comparison of unpaired groups. Correlations between 



Table 2 | Effect of granulocyte colony-stimulating factor (G-CSF) on peripheral blood and graft concentrations of T cell subsets (n = 22) presented as median levels 
(×109/L) with variation ranges in parentheses.

T cell subsets Prior to G-CSF During G-CSF p Stem cell graft R/p

T helper cells (TH) (CD4+) 0.83 (0.39–1.37) 2.11 (0.92–3.47) 0.00004 41.10 (17.85–107.76) 0.337/0.038*
Cytotoxic T cells (TC) (CD8+) 0.29 (0.09–0.79) 0.58 (0.14–1.08) 0.0003 10.85 (3.37–33.15) 0.274/0.092
Naïve TH (CD4+45RA+CCR7+) 0.45 (0.13–0.95) 1.21 (0.34–2.05) 0.00004 21.82 (7.30–60.24) 0.474/0.004**
Central memory cells (TCM) (CD4+45RA−CCR7+) 0.20 (0.09–0.39) 0.37 (0.13–0.87) 0.00007 7.38 (2.79–24.35) 0.442/0.006**
Effector memory cells (TEM) (CD4+45RA−CCR7−) 0.14 (0.06–0.28) 0.29 (0.08–0.72) 0.00004 5.44 (4.01–13.36) 0.326/0.044*
Terminally differentiated (TTD) (CD4+45RA+CCR7−) 0.05 (0.02–0.18) 0.11 (0.05–0.38) 0.00008 3.09 (1.12–8.05) 0.463/0.004**
(CD4+45RO+CD26++) 0.02 (0.01–0.07) 0.05 (0.02–0.20) 0.00004 0.82 (0.31–3.25) 0.474/0.004**
Naïve TC (CD8+45RA+CCR7+) 0.13 (0.04–0.36) 0.24 (0.06–0.66) 0.0002 5.77 (1.63–12.46) 0.316/0.052
Central memory (CD8+45RA−CCR7+) 0.023 (0.003–0.080) 0.030 (0.007–0.137) 0.004 0.67 (0.08–3.03) 0.567/0.001**
Effector memory (CD8+45RA−CCR7−) 0.03 (0.01–0.10) 0.06 (0.01–0.17) 0.0002 1.05 (0.52–3.85) 0.442/0.006**
Effector (TEMRA) (CD8+45RA+CCR7−) 0.08 (0.02–0.41) 0.12 (0.02–0.36) 0.036 2.93 (0.88–14.35) 0.537/0.001**
(CD8+45RO+CD26++) 0.011 (0.001–0.088) 0.016 (0.002–0.101) NS 0.24 (0.02–1.83) 0.637/0.0001***
𝜶β T cells (CD3+T cell receptor (TCR)𝜶β+) 1.18 (0.58–2.14) 2.76 (1.21–4.04) 0.00005 52.60 (20.63–140.47) 0.316/0.052
γδ T cells (CD3+4−8−TCRγδ+) 0.048 (0.004–0.118) 0.046 (0.009–0.178) 0.017 1.15 (0.30–4.20) 0.484/0.003**
Naïve T regulatory cells (CD4+25+45RA+FOXP3+) 0.010 (0.003–0.042) 0.019 (0.007–0.124) 0.00008 0.457 (0.165–1.817) 0.453/0.005**
Effector T regulatory cells (CD4+25+45RA−FOXP3+) 0.030 (0.016–0.068) 0.071 (0.027–0.178) 0.00004 1.268 (0.541–4.207) 0.453/0.005**
Type 1 regulatory (Tr1) (CD4+45RA−49b+LAG3+) 0.006 (0.002–0.018) 0.011 (0.004–0.064) 0.003 0.217 (<0.001–0.920) 0.211/0.194

The Wilcoxon’s test for paired samples was used for comparison of pre-treatment and G-CSF-treated concentrations (fourth column). The correlations between pre-apheresis and 
graft concentrations were analyzed with Kendall’s tau-b test and the correlation coefficients (R) and corresponding p-values are presented in the rightmost column.
*p < 0.05, **p < 0.01, and ***p < 0.001.
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continuous variables are given as the Kendall’s tau-b coefficient 
with corresponding p-value. J-Express (MolMine AS, Bergen, 
Norway) was applied for bioinformatics analyses (14). Time to 
reconstitution was analyzed with the Kaplan–Meier survival 
method with the log-rank test, Cox regression with backward 
selection, and competing risks analysis. All statistical analyses were 
performed in the standard computer software package IBM SPSS 
Statistics 22 (IBM Corporate, New York, NY, USA) except for the 
competing risks analyses that were done using Stata (StataCorp, 
Lakeway Drive College Station, Texas, USA).

RESULTS

G-CSF Treatment of Healthy Stem Cell 
Donors Increased Peripheral Blood Levels 
Especially of Neutrophils but Also 
Monocytes and Total Lymphocytes
Granulocyte colony-stimulating factor treatment induced 
a five- to tenfold increase in the total peripheral blood 
leukocyte counts from a median level of 6.0 ×  109/L (range 
4.4–13.4 ×  109/L) to 44.9 ×  109/L (range 26.0–71.2 ×  109/L). 
The absolute levels of virtually all leukocyte subpopulations 
increased (see below, Table  1; Figure  1). The increase in the 
proportion of neutrophils corresponded to a median fold 
change of 8.6, whereas the median fold change for monocytes 
was 5.0 and for total lymphocytes 2.1 (Figure  2; Table S3 in 
Supplementary Material).

G-CSF Treatment Resulted in an Increased 
B Cell Fraction and Decreased NK Cell 
Fraction Whereas the T Cell Fraction Was 
Not Altered
As can be seen from Table 1 and Figures 1 and 2, there was a 
twofold rise in median peripheral blood T  cell concentration 

and a threefold increase in median B cell concentration during 
G-CSF administration. However, the median NK cell concen-
tration was not significantly affected by G-CSF. Consequently, 
there was a significant decrease in the NK  cell percentage 
among lymphoid cells during G-CSF treatment from median 
11.7 to 6.4% (p = 0.00006) and an increase in lymphocyte B cell 
percentage from median 8.4 to 10.8% (p = 0.0001). The change 
in T cell percentage from a median value of 73.3 to 69.4% was 
not statistically significant (Table S3 in Supplementary Material; 
Figure 1).

G-CSF Increased the CD4/CD8 Ratio and 
the Proportion of Naïve T Regulatory Cells 
but Reduced the Fraction of Cytotoxic 
Terminally Differentiated Effector T Cells 
and TCRγδ+ T Cells
There was a significant increase in the fraction of CD4+ T helper 
cells (TH) in peripheral blood and an equivalent decrease in CD8+ 
T cytotoxic cells (TC) during G-CSF therapy (Table 2; Figure 1). 
The median CD4/CD8 ratio thereby increased from 2.6 (range 
1.1–7.3) to 2.9 (range 1.3–7.4, p = 0.001) during treatment. The 
increased fraction of CD4+ cells was mainly due to an increased 
mobilization of naïve CD4+ T  cells (TN) with a significantly 
reduced fraction of central memory cells.

Cytotoxic CD8+ T cells can be divided into at least four subsets 
(15, 16). G-CSF caused a preferential mobilization of naïve CD8+ 
cytotoxic T  cells, and we now observed significantly reduced 
fractions of terminally differentiated cytotoxic CD45RA+ effec-
tor cell (TEMRA) and cytotoxic CD45RA−RO+ CD26hi cells 
with unchanged central and effector memory TC levels (Table 2; 
Figure 1; Table S4 in Supplementary Material).

Granulocyte colony-stimulating factor therapy preferentially 
increased the levels of circulating TCR𝜶β+ T  cells, leading to 
significantly reduced proportion of TCRγδ+ T  cells. Finally, 



Figure 1 | Untreated healthy donor peripheral blood immune cell concentrations (black columns) are compared to levels after granulocyte colony-stimulating  
factor (G-CSF) treatment (white columns). Subsets with significantly changed concentrations during G-CSF treatment are indicated with bold fonts. The peripheral 
blood concentrations (×109/L) are given on the x-axes. The following subpopulations are presented: neutrophils, monocytes, and lymphocytes (CD4+ T helper cells, 
CD8+ T cytotoxic cells, CD19+ B cells, and CD56+ NK cells), NK cells [CD56+16++ cytolytic NK cells, CD56++ 16+ cytokine producing NK cells, and CD3+Vα24+ 
invariant NKT (iNKT) cells], B cells [CD19+24++38++ transitional B cells, CD19+24+38+ mature B cells, CD19+24++38−, and CD19+27+ memory B cells and B cell  
IL-2 receptor (CD25) expression], CD3+ T cell expression of T cell receptor 𝜶β and γδ, CD4+ and CD8+ memory subsets (naïve CD45RA+ CCR7+, central memory 
CD45RA−CCR7+, effector memory CD45RA−CCR7−, and terminally differentiated CD45RA+CCR7−), and T regulatory cells [naïve CD4+25+45RA+FOXP3+ 
T regulatory cells, effector CD4+25+45RA−FOXP3+ T regulatory cells, and CD4+45RA−49b+LAG3+ type 1 T regulatory cells (Tr1)]. All immune subsets with 
corresponding immunophenotypes and concentrations before and after G-CSF treatment are also listed in Table 2 and in Table S4 in Supplementary Material.  
The percentages from all flow cytometry analyses are presented in Table S4 in Supplementary Material.
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especially the levels of circulating naïve but also effector T regula-
tory cells and type 1 T  regulatory cells (Tr1) increased during 
G-CSF therapy (Table 2; Figures 1 and 2).

Taken together, these observations demonstrate that G-CSF-
induced T cell mobilization is not a random process with a similar 
effect on all T  cell subsets, but rather a more selective process 



Figure 2 | Comparison of granulocyte colony-stimulating factor (G-CSF) induced peripheral blood increments of different immune cell populations and blood 
platelets. T, B, and NK cell subsets are presented with different colors. The peripheral blood concentration of each subset was calculated before and after G-CSF 
treatment and relative change calculated. Please see Table 2 and Table S2 in Supplementary Material for classification of all immunophenotypes presented.
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with preferential mobilization of naïve CD4+ and CD8+ T cells 
together with TCR𝜶β+ T cells and various subsets of regulatory 
T cells.

G-CSF Therapy Caused a Strong 
Mobilization of Mature and Memory  
B Cells and Decreased B Cell Expression 
of the IL-2 Receptor
Peripheral blood CD19+ B  cells can be divided into the three 
subsets transitional, mature, and memory B  cells based on the 

coexpression of CD24 and CD38 (17). Mature and memory 
B cells showed the highest fold change during G-CSF treatment 
of all lymphoid cell subsets examined (Figure  2). Thus, B  cell 
mobilization is not a random process either but represents a 
preferential increase of certain subsets similar to the T cell mobi-
lization. Finally, the expression of IL2 receptor on human B cells is 
reported to be important for their antigen presentation and T cell 
activation (18). During G-CSF treatment, the B cell expression 
of the IL2 receptor decreased, and particularly the fraction of 
B cells with high IL2-R expression was reduced (Figures 1 and 2; 
Table 3; Table S4 in Supplementary Material).



Table 3 | Effect of granulocyte colony-stimulating factor (G-CSF) on peripheral blood and graft concentrations of B and NK cell subsets (n = 22) presented as median 
levels (×109/L) with variation ranges in parentheses.

Lymphoid cell subsets Prior to G-CSF During G-CSF p Stem cell graft R/p

Transitional B (CD19+24++38++) 0.005 (0.001–0.021) 0.013 (0.005–0.034) 0.00004 0.311 (0.087–1.045) 0.310/0.064
Mature B (CD19+24+38+) 0.094 (0.022–0.274) 0.352 (0.147–1.471) 0.00004 7.61 (1.52–19.09) 0.462/0.006**
Memory B (CD19+24++38−) 0.023 (0.002–0.097) 0.059 (0.016–0.295) 0.00004 1.898 (0.319–9.011) 0.427/0.011*
(CD19+27+) 0.027 (0.003–0.131) 0.067 (0.018–0.459) 0.00004 1.055 (0.535–13.742) 0.462/0.006**
IL-2R+ B (CD19+25+) 0.002 (<0.001–0.017) 0.002 (0.001–0.043) NS 0.065 (0.012–1.028) 0.661/0.00008****
IL-2Rdull B (CD19+25dull) 0.017 (0.002–0.070) 0.031 (0.007–0.228) 0.0001 0.671 (0.196–6.422) 0.322/0.054
Cytolytic NK (CD56+16++) 0.191 (0.025–0.447) 0.201 (0.025–0.521) NS 3.901 (0.882–11.986) 0.379/0.019*
Cytokine producing NK (CD56++16+) 0.018 (0.006–0.038) 0.029 (0.005–0.230) 0.001 0.619 (0.261–2.117) 0.200/0.218
Invariant NKT (CD3+Vα24+.) 0.003 (0.001–0.022) 0.003 (0.001–0.023) NS 0.089 (0.006–2.147) 0.295/0.069

The Wilcoxon’s test for paired samples was used for comparison of pre-treatment and G-CSF-treated concentrations (fourth column). The correlations between pre-apheresis and 
graft concentrations were analyzed with Kendall’s tau-b test, and the correlation coefficients (R) and corresponding p-values are presented in the rightmost column.
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Only Cytokine-Producing NK Cells 
Increased During G-CSF Therapy  
Whereas the Levels of Other Circulating 
NK Cell Subsets Were Not Altered
The peripheral blood concentrations of cytokine-producing 
CD56++CD16+ NK cells increased only weakly (Table 2, p = 0.001)  
during G-CSF treatment, whereas neither the level of cytolytic 
CD56+CD16++ NK cells nor invariant NKT (iNKT) cells showed 
any significant changes. Consequently, the fractions of these 
subsets were decreased during G-CSF therapy [i.e., immediately 
before stem cell apheresis (Table 3; Figure 1 and 2; Table S4 in 
Supplementary Material)].

G-CSF Treatment of Healthy Donors 
Caused Preferential Mobilization of 
Certain Cytokine-Producing Lymphoid  
Cell Subsets
We investigated the intracellular levels of IFNγ, IL10, TGFβ, IL4, 
IL9, IL17, and IL22 in circulating main lymphoid subsets, and 
generally we found increased levels of cytokine-producing cells 
during mobilization with G-CSF (Figure 3; Tables 4 and 5). In 
addition to CD3+, CD4+, and CD8+ T cells and CD19+ B cells, 
we analyzed the cytokine production in the PB CD3−19− and 
CD3+4−8− populations. The CD3−19− compartment is mainly 
composed of NK cells and innate lymphoid cells and the CD3+4−8− 
subset primarily contains γδ T cells in addition to NKT cells. As 
shown in Table S5 in Supplementary Material, the percentage 
distribution of various cytokines was characteristic of each lym-
phoid subset, and the essential cytokine profile of each subset was 
conserved during G-CSF treatment. The fractions of IFNγ- and 
TGFβ-producing cells were high in all subsets except B  cells, 
which showed low IFNγ and high IL10 production, and CD3−19− 
cells with low TGFβ-production and high IL9 expression.

Both prior to and during G-CSF administration, the highest 
fractions of IFNγ expressing cells were observed for TC. G-CSF 
treatment led to reduced IFNγ+ fractions for TC cells, CD4−CD8− 
T cells, and CD3−19− cells. Furthermore, G-CSF increased the frac-
tions of IL10 expressing TH, TC, and CD3−19− cells. Finally, TGFβ 
was expressed in a large fraction of most investigated lymphoid  

subsets before and during mobilization, but only B  cells and 
CD3−19− cells showed significantly reduced TGFβ+ fractions 
during G-CSF therapy. There were generally low fractions of IL4, 
IL17, and IL22 expressing cells for all lymphoid subsets and these 
fractions remained small after G-CSF therapy, whereas for IL9 
we noticed relatively large fractions within CD4−8− T cells and 
especially CD3−19− cells (Figure 3; Table S5 in Supplementary 
Material).

Taken together, these observations suggest that the preferen-
tial mobilization alters the overall cytokine release capacity of 
circulating immunocompetent cells.

Graft Levels of Lymphoid Cell  
Subsets Were Increased but Reflected  
the Peripheral Blood Levels of 
Immunocompetent Cells Immediately 
Before Harvesting
As expected, the graft concentrations of various lymphoid cell 
subpopulations were generally higher than the peripheral blood 
levels tested immediately before apheresis, and for most lymphoid 
cell subsets the graft concentration represents at least a 20-fold 
enrichment (Figure  2; Tables  1–3). The median lymphocyte 
percentage corresponded to only 9.3% of circulating viable white 
blood cells immediately before stem cell apheresis, but increased 
to 36.6% in the stem cell graft. The median monocyte percentage 
increased to 16.2%, whereas the neutrophil percentage decreased 
to 42.4% (Figure 2; Table 1; Table S3 in Supplementary Material).

The fractions of B  cells and monocytes among total PB 
leukocytes increased during G-CSF treatment, and there was 
an up-concentration of these two cell subsets in the grafts (cor-
responding to 90-fold and almost 60-fold, respectively) compared 
to the blood level before G-CSF administration. The T cell and 
especially neutrophil fractions also increased during mobiliza-
tion, and the up-concentration in the graft corresponded to 
45-fold and 30-fold increments compared with the pre-treatment 
levels. The NK cell fraction was reduced during mobilization and 
the graft levels of NK cells corresponded to a 20-fold increment 
compared to pre-treatment PB level (Figure 2; Table 1; Table S3 
in Supplementary Material).



Table 5 | Effect of stem cell mobilization with granulocyte colony-stimulating 
factor (G-CSF) on healthy donor B and CD3−19− cell intracellular cytokine 
production (n = 22).

B cells CD3−19− cells

Cytokine Prior to/during 
G-CSF

p Prior to/during 
G-CSF

p

IFNγ 0.0013/0.0036 0.002 (↑) 0.0789/0.0776 NS
IL10 0.0012/0.0041 0.001 (↑) 0.0005/0.0010 0.005 (↑)
IL17 0.0001/0.0003 0.001 (↑) 0.0001/0.0004 NS
TGFβ 0.0130/0.0249 0.000295 (↑) 0.0043/0.0033 0.022 (↓)
IL4 0.0013/0.0049 0.000069 (↑) 0.0039/0.0078 0.003 (↑)
IL9 0.0011/0.0012 NS 0.0925/0.1086 NS
IL22 0.0010/0.0030 0.000187 (↑) 0.0006/0.0006 NS

For each cytokine, the pre-treatment concentrations (×109/L) of positive cells are 
shown together with the concentrations after G-CSF treatment on the line below  
(prior to/during G-CSF), see also Figure 3. The Wilcoxon’s test for paired samples  
was used for comparison of pre-treatment and G-CSF-treated concentrations.
(↑), significant increased concentration; (↓), significant decreased concentration; NS, 
non-significant; p = p-value.

Table 4 | Effect of stem cell mobilization with granulocyte colony-stimulating factor (G-CSF) on healthy donor T cell intracellular cytokine production (n = 22).

TH cells TC cells CD3+4−8− T cells

Cytokine Prior to/during G-CSF p Prior to/during G-CSF p Prior to/during G-CSF p

IFNγ 0.157/0.374 0.00004 (↑) 0.154/0.302 0.001 (↑) 0.030/0.040 0.022 (↑)
IL10 0.0042/0.0100 0.00004 (↑) 0.0010/0.0019 0.000061 (↑) 0.0001/0.0003 0.001 (↑)
IL17 0.0091/0.0152 0.000046 (↑) 0.0008/0.0014 0.005 (↑) 0.0001/0.0004 0.007 (↑)
TGFβ 0.178/0.367 0.000061 (↑) 0.112/0.231 0.004 (↑) 0.0150/0.0297 0.024 (↑)
IL4 0.0175/0.0322 0.000367 (↑) 0.0053/0.0070 NS 0.0002/0.0002 NS
IL9 0.0048/0.0152 0.001 (↑) 0.0112/0.0107 0.011 (↓) 0.0025/0.0055 NS
IL22 0.0153/0.0211 NS 0.0033/0.0034 NS 0.0001/0.0001 NS

From left to right, the results for T helper cells (TH), T cytotoxic cells (TC), and CD3+4−8− T cells are presented. For each cytokine, the untreated concentrations (×109/L) of positive 
cells are shown together with the concentrations during G-CSF treatment on the line below (prior to/during G-CSF), see also Figure 3. The Wilcoxon’s test for paired samples was 
used for comparison of pre-treatment and G-CSF-treated concentrations.
(↑), significant increased concentration; (↓), significant decreased concentration; NS, non-significant; p = p-value.

Figure 3 | Intracellular concentrations of immunoregulatory cytokines prior to stem cell mobilization (black columns) are compared to levels after granulocyte 
colony-stimulating factor (G-CSF) treatment (white columns). Subsets with significantly changed concentrations during G-CSF treatment are indicated with bold 
fonts. The peripheral blood concentrations (×109/L) are given on the x-axes. From left to right, results for CD4+ T helper cells, CD8+ T cytotoxic cells, CD4−8− T cells, 
CD19+ B cells, and CD3−19− cells are presented. The concentrations of all subsets prior to and during G-CSF treatment are also listed in Tables 4 and 5 and Table 
S5 in Supplementary Material. The percentages from all flow cytometry analyses are presented in Table S5 in Supplementary Material.
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Finally, we investigated whether the PB  cell subset levels 
immediately before apheresis showed any correlations with the 
corresponding graft levels (Tables 1–3). Significant correlations 
were detected for most cell subsets. Thus, the graft levels of 
immunocompetent cells in general reflected the corresponding 
peripheral blood levels at the time of harvesting.

Healthy Donors Could Be Sub-Classified 
Based on Both the Pre-Treatment Levels 
and the Increase in Circulating Lymphoid 
Cell Subsets in Response to G-CSF 
Treatment
We observed a considerable variation between stem cell donors 
in leukocyte subset levels in peripheral blood both prior to and 
during G-CSF therapy. An unsupervised hierarchical clustering 
analysis based on untreated B, T, and NK  cell concentrations 
identified two donor clusters (Figure S2A in Supplementary 



Figure 4 | Unsupervised hierarchical cluster analyses based on healthy donor lymphocyte subset concentration changes during granulocyte colony-stimulating 
factor (G-CSF) treatment. All values were median normalized and log-2 transformed before performing the unsupervised hierarchical clustering analysis, and 
complete linkage was used as a linkage method. Euclidian distance metrics was used for distance measure. The heat map with the corresponding dendrograms  
is presented. Red color indicates concentration change higher than the median, whereas blue color indicates concentration change lower than the median. The 
vertical donor clustering into two main clusters is presented to the left of the heat map, whereas the rightmost column presents the donor identification numbers of 
the two clusters marked with different colors. The prevalence of acute graft versus host disease (GVHD) grades II–IV in the recipients of the donor cells is presented 
in a separate column to the right of the heat map. The six donors to the recipients diagnosed with this complication are marked with purple color.
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Material) characterized by significant and inverse differences in 
NK cell and B cell concentrations (p = 0.0001 and 0.0004, Mann–
Whitney U test). Differences between donors with regard to the 
B/NK cell levels were maintained during G-CSF therapy (Figure 
S2B in Supplementary Material).

We also performed unsupervised hierarchical clustering based 
on concentration changes in immunocompetent cells during 
G-CSF therapy (i.e., the ratio between pre-harvest PB concentra-
tions and the concentrations prior to G-CSF administration for 
each immune cell subset), and again we identified two main donor 
subsets characterized by a generally strong or weak immune cell 
mobilizing effect of G-CSF (Figure 4). The donors in the upper 
cluster had significantly stronger effects of G-CSF compared 
to the donors in the lower cluster, and a greater increase in the 
peripheral blood cell concentration than in the lower cluster 
was seen for all lymphoid cell subsets except Tr1, iNKT  cells, 
and CD25+ B  cells. The most significant differences in G-CSF-
induced concentration alterations were seen for TCR𝜶β+ T cells 
and T cytotoxic effector memory cells (Mann–Whitney U test; 
p = 0.000006), T helper effector memory cells and CD3+4−8− cells 
(p = 0.00002), and T helper central memory cells (p = 0.00004).

We investigated whether the main clusters identified in these 
two analyses (i.e., pre G-CSF lymphocyte concentration and 

G-CSF responsiveness) differed with regard to donor age, gender, 
ethnicity, previous diseases (especially autoimmune diseases), 
G-CSF dose, peripheral blood and graft CD34+ cell concentra-
tion, donor yield, infused dose of CD34+ cells per kilogram to the 
patients and graft content of all identified cell subsets. However, 
no significant differences were then observed for any of these 
variables when comparing the two main clusters in each of the 
two hierarchical clustering analyses (data not shown).

Graft Levels of Immunocompetent Cell 
Subsets Did Not reflect the Corresponding 
Alterations in Circulating Lymphoid Cell 
Subsets During G-CSF Mobilization
We investigated whether the G-CSF-induced alteration in 
PB concentrations of various immunocompetent cell subsets  
(i.e., their cell concentration increments or G-CSF responsiveness) 
showed any correlations with the corresponding graft concentra-
tions. However, these analyses did not show significant correla-
tions for any of the cell subsets. Thus, the graft concentrations of 
immunocompetent cell subsets do not reflect the pre-apheresis  
donor responsiveness to G-CSF immune cell mobilization. Fur
thermore, we also compared the two donor subsets identified in 
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the clustering analysis of G-CSF responsiveness (Figure  4), and 
these two donor subsets did not differ significantly with regard to 
graft concentrations or infused cell doses of CD34+ cells or of any 
immunocompetent cell subset or with regard to any of the donor 
characteristics mentioned above. Both these analyses suggest that 
the differences in donor responsiveness to G-CSF treatment (i.e., 
qualitative characteristics) are not reflected in the graft concen-
trations (i.e., quantitative characteristics) of immunocompetent 
cell subsets.

G-CSF Responsiveness in Mobilization of 
Various Immunocompetent Cell Subsets 
Was Associated With Time Until Post-
Transplant Hematopoietic Reconstitution
During the first day of apheresis, the median yield of CD34+ 
hematopoietic stem cells corresponded to 5.1  ×  106  per kg 
donor weight (range 0.8–22.4 × 106/kg) and showed a negative 
correlation to donor weight (R = −0.481, p = 0.001). The stem 
cell products from 20 of the 22 healthy donors were transplanted 
to the recipients as planned, whereas the two last transplanta-
tions were canceled due to disease progression. The median total 
stem cell dose infused was 5.6 × 106 per kg patient’s body weight 
(range 3.9–8.2 ×  106/kg). Neutrophil reconstitution with stable 
peripheral blood neutrophils >0.5 ×  109/L was achieved by 18 
of the 20 recipients after a mean of 17 days (range 8–26 days). 
Furthermore, stable platelet reconstitution with peripheral blood 
levels exceeding 50 × 109/L was achieved by 15 recipients after a 
mean of 18 days (range 12–39 days).

We investigated whether the donor subsets identified based 
on the pre-treatment levels of lymphocytes (Figure S2A in 
Supplementary Material) or the G-CSF induced concentration 
increase in various lymphocyte subsets (Figure  4) differed 
with respect to recipient neutrophil and platelet reconstitution. 
The recipients corresponding to donors in the upper cluster in 
Figure S2A in Supplementary Material (n = 9) had mean time 
to neutrophil reconstitution of 20  days (range 17–26  days), 
whereas the recipients corresponding to the lower cluster (n = 9) 
achieved neutrophil reconstitution after mean 16  days (range 
8–18). Two patients died early before reconstitution. We did a 
multivariate analysis of predictors potentially influencing time to 
neutrophil reconstitution using Cox regression and including all 
20 patients. Patients that died and patients without reconstitution 
were treated as censored observations. The potential predictors 
included patient age and gender, female to male transplanta-
tion, myeloablative versus reduced intensity conditioning, acute 
GVHD prophylaxis (completed methotrexate prophylaxis versus 
reduced methotrexate dose), infused stem cell dose, infused total 
leukocyte dose, ABO incompatibility, disease diagnosis, disease 
stage according to the EBMT index (19), and patient classification 
based on the donor clustering in Figure S2A in Supplementary 
Material. In the Cox regression of time to neutrophil recon-
stitution, the following four variables remained significant 
predictors after backward selection at significance level 0.05 in 
the likelihood ratio test: ABO incompatibility [HR = 11.74, 95% 
CI: (1.84, 75.70), p =  0.004], patient age [HR =  1.12, 95% CI: 
(0.99,1.26), p = 0.037], conditioning regimen [myeloablative or 

reduced intensity conditioning, HR = 7.48, 95% CI: (0.78,71.20), 
p =  0.045] and pre-transplant remission status [first complete 
remission, second complete remission or detectable disease 
[HR1 = 9.45:95% CI: (0.96,92.71), HR2 = 4.81; 95% CI: (0.46, 
50.45), p = 0.050].

We also compared the hematopoietic reconstitution for the 
two donor clusters/subsets identified in Figure 4 (G-CSF induced 
concentration increase in peripheral blood cell levels). These 
donor/patient subsets did not differ with respect to neutrophil 
reconstitution. Of the 15 patients who achieved platelet counts 
above 50 × 109/L during the first 7 weeks seven belonged to the 
upper donor cluster that was characterized by a generally large 
G-CSF induced increase in the peripheral blood levels of all 
immunocompetent cell subsets, and their mean time until plate-
let reconstitution was 21 days (range 15–39 days). Eight of the 15 
patients recipients belonged to the lower donor cluster had a mean 
time until platelet reconstitution of 15 days (range 12–17 days). 
Two patients died early before reconstitution, one patient never 
had platelet counts below 50 × 109/L (registered as missing data), 
and two patients showed delayed platelet reconstitution. Similar 
to our analysis of neutrophil reconstitution (see above), we did 
a multivariate analysis of factors potentially influencing platelet 
reconstitution, including all the variables listed above (patient 
age and gender, female to male transplantation, myeloablative 
versus reduced intensity conditioning, acute GVHD prophylaxis, 
infused stem cell dose, infused total leukocyte dose, ABO incom-
patibility, disease diagnosis, disease stage according to the EBMT 
index (19), and patient classification corresponding to the donor 
clustering presented in Figure 4). In the Cox regression of time 
to platelet reconstitution, the following two variables remained 
significant predictors: ABO incompatibility [HR = 16.0, 95% CI: 
(1.64,156), p = 0.002] and overall donor G-CSF responsiveness 
in terms of G-CSF-induced concentration change [see Figure 4, 
HR =  4.54, 95% CI: (1.25, 16.5), p =  0.017]. Thus, the donor 
G-CSF responsiveness seems to be one of the factors important 
for the hematopoietic reconstitution.

Post-Transplant Outcomes Differ for 
Patients Receiving Allografts From  
Donors With Generally Strong and  
Weak Mobilization of Immunocompetent 
Cells in Response to G-CSF
After allogeneic stem cell infusion, the patients were observed 
until death or study closure; the median observation time was 
701 days (variation range 19–1944 days). All survivors had been 
observed for at least 1160 days. Six recipients were diagnosed with 
acute GVHD grade II–IV, and all their donors belonged to the 
upper cluster in Figure 4 characterized by great G-CSF-induced 
increase, i.e., strong G-CSF responsiveness (p = 0.001, Pearson 
Chi-Square test).

We also compared the recipient mortality for the two donor 
subsets identified in Figure  4 (response to G-CSF) using the 
Kaplan–Meier method. The two recipient subsets corresponding 
to these two donor clusters did not differ significantly in overall 
survival. However, the causes of death differed between the two 
groups. For the donors/patients in the upper cluster, one patient 
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died of relapse but five patients died from other causes, whereas 
for the patients in the lower subset five patients died from relapse 
and one patient died after retransplantation for graft failure. Thus, 
there was a different distribution of relapse and non-relapse mor-
tality for the patients corresponding to these two donor clusters/
subsets. In a competing risk analysis of time to non-relapse or 
relapse death, we found that patients receiving stem cell grafts 
from donors with strong G-CSF responsiveness had a higher risk 
of non-relapse death compared to recipients of grafts from donors 
with weaker G-CSF responsiveness (Figure 5, p = 0.031), but the 
donor G-CSF responsiveness did not have any effect on time to 
death due to relapse (p = 0.121).

DISCUSSION

In the present study, we describe hematopoietic stem cell mobi
lization in healthy donors as a heterogeneous process both with  
regard to differences between donors in pre-mobilization levels 
of circulating immunocompetent cell subsets, the general donor 
responsiveness to G-CSF with respect to mobilization of immune 
cell subsets, and differences in mobilization between various 
immune cell subsets (i.e., preferential mobilization). Our obser-
vations suggest that such differences may have an impact on the 
post-transplant outcome of the graft recipients.

We investigated an unselected group of allotransplanted 
patients from a defined geographic area during a defined time 
period and receiving peripheral blood stem cell grafts from 
matched family donors; this study should therefore be regarded as 
population-based and including well-characterized patients with 
a limited heterogeneity with regard to conditioning treatment, 
stem cell donors, graft preparation, and posttransplant handling 
with regard to GVHD and antibiotic prophylaxis. We would 
therefore emphasize that future studies have to clarify whether our 

results are representative also for other allotransplant recipients, 
i.e., patients with matched unrelated donors, other condition-
ing regimens, other GVHD or antibiotic prophylaxis, or other  
diagnoses.

The immune system represents an interactive network of a 
wide range of immunocompetent cell subsets. Clustering analysis 
is a methodological approach to identify such network-mediated 
interactions and correlations/covariations, and these covariations 
can then be a basis for identification of patient or donor subsets 
showing biological similarities. In the present study, clustering 
analyses could be used to identify distinct donor subsets based 
on analysis of their responsiveness to G-CSF.

The preferential G-CSF induced mobilization of several T, B, 
and NK cell subsets is also reflected in the graft. Graft manipu-
lation either as ex vivo positive or negative selection, in  vivo 
depletion of T cells by anti-thymocyte globulin or in vivo donor 
immunomodulation prior to harvesting are now considered 
as possible strategies for graft manipulation of healthy donors 
(5–10, 20–25). This study shows that donors/grafts differ in 
their content of various immunocompetent cell subsets, and a 
detailed characterization of these cells in stem cell allografts will 
probably be a necessary basis for optimally designed allografts. 
Previous studies of immunocompetent cells in G-CSF-mobilized 
grafts (13, 26–28) as well as more recent studies investigating 
associations between graft immunocompetent cells and recipi-
ent outcome have focused on selected immunocompetent cell 
subsets (26, 29–34), whereas we examined a wider profile of 
immunocompetent cells and included a focus on their G-CSF 
responsiveness.

Our results suggest that G-CSF therapy induces a preferen-
tial mobilization of immunocompetent cells. Relatively weak 
mobilizing of certain cell subsets may be important for the post-
transplant clinical course of the allotransplant recipients. First, 
TCRγδ+ T cells and NK cells seem to be important for the risk 
of aGVHD (35–37). Second, high numbers of CD8+ CD45RO+ 
CD26++ cells in autografts are important for the risk of relapse/
progression (38), whereas TEMRA is associated with a risk of 
cGVHD (39). Third, IL-2R-expressing B cells play a role in T cell 
activation and may have a role in the pathogenesis of aGVHD 
(18). Finally, reduced fractions of iNKT  cells and preferential 
mobilization of naïve TH may increase the risk of aGVHD (40, 41), 
but the preferential mobilization of CD4 cells also includes regu-
latory T cell subsets with immunosuppressive effects (42). Thus, 
the final effect of the reduced mobilization of these functionally 
different lymphoid subsets is difficult to predict but may represent 
an immunosuppressive effect. The effect of G-CSF on the cytokine 
release by immunocompetent cells has only been examined in a 
few previous studies (43–47); our present detailed characteriza-
tion suggests that G-CSF therapy also alters the cytokine release 
profile of immunocompetent cells.

We did not find any associations between the infused dose 
of various immune cell subsets and the clinical outcome of the 
recipients, and results from previous studies of associations 
between cell subset dose and outcome are also conflicting 
(29, 30, 33, 48–50). Our present results support previous studies 
suggesting that the balance between different immunocompe-
tent cell subsets is important (31, 32, 37, 51) and in addition 
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our results suggest that the broader immunocompetent cell 
subset profile as well as the dose-independent responsiveness 
to G-CSF (i.e., the increase in the concentrations of various 
subsets, Figure 4) are more important than differences in single 
cell subset levels. Dhedin et al. previously reported that the indi-
vidual donor response to G-CSF with regard to CD34+ stem cell 
mobilization was the best predictor of later aGVHD (52), but 
we could not confirm this. However, we also observed an asso-
ciation between donor responsiveness to G-CSF and aGVHD 
(Figure 4), i.e., a generally strong G-CSF-induced mobilization 
of immunocompetent cells (especially T  cell subsets) in the 
donor was associated with increased risk of aGVHD for the 
recipient. The G-CSF responsiveness showed no association 
with the concentrations of various immunocompetent cells 
in the stem cell grafts, and this last observation suggests that 
the impact of G-CSF responsiveness is not caused simply by 
quantitative differences of reinfused immunocompetent cells to 
the transplant recipients.

The possible importance of the overall CD34+ stem cells 
dose and T cell dose for engraftment, aGVHD, and survival is 
still uncertain, and results from previous studies are conflicting 
(53–57). One possible explanation could be that the described 
impact of donor responsiveness to G-CSF represents an addi-
tional and dose-independent mechanism that differs between 
donors and thereby between recipients. Another explanation 
could be differences in patient inclusion, e.g., one study included 
only AML patients (30), whereas our study was population-based 
but included only patients with family donors.

We identified two main donor clusters based on the respon-
siveness to G-CSF (Figure 4), but at the same time the grafts from 
these two donor subsets did not differ with regard to the amount 
of CD34+ cells or immunocompetent cell subsets. The most likely 
explanation for our observed effects of donor heterogeneity on 
reconstitution/non-relapse mortality in the absence of quantita-
tive differences in the number of reinfused cells is qualitative 
differences between the grafts. One would expect immunocom-
petent graft cells to exert their effects on outcome during the early 
post-transplant period, and several previous studies suggest that 
this is a critical period with regard to later complications. First, the 
clinical experience suggests that GVHD prophylaxis should start 
pre-transplant; this is true both when using prophylaxis based 
on anti-thymocyte globulin and cyclosporine (58). Second, post-
transplant cyclophosphamide as well as methotrexate prophylaxis 
also start early post-transplant (58, 59). Third, the adverse effects 
of G-CSF treatment after allogeneic stem cell transplantation 
seem to depend on the biological context early after graft infusion 
and the use of total body irradiation in the conditioning treat-
ment; this is supported both by clinical and experimental studies 
(60–62). Finally, the adverse effects of post-transplant G-CSF 
therapy was not seen for patients receiving G-CSF mobilized 
stem cell grafts, i.e., graft cells where one would expect the post-
transplant effects of G-CSF to be limited because the cells had 
already been exposed to G-CSF before and during graft prepara-
tion. All these previous observations support our hypothesis that 
activation/qualitative differences between donors with regard to 
infused donor immunocompetent cells (i.e., their responsiveness 
to G-CSF) can influence the posttransplant outcome.

The immunological heterogeneity of the donors is evident 
both prior to and during G-CSF therapy. Platelet engraftment 
seems to be predicted by the intrinsic G-CSF immune cell 
mobilizing effect, and engraftment in the patient is influenced 
by both G-CSF-dependent and G-CSF-independent character-
istics. The time to platelet engraftment was longer in recipients 
of the most G-CSF responsive donors, an apparent paradox 
as T  cell depletion increases the risk of graft failure (63, 64). 
However, experience from autologous transplantation shows 
that T cells are less important for engraftment, when the stem 
cell dose is sufficient (65), and the absolute concentrations or 
infused doses of any immune cell subset did not differ between 
the G-CSF high and low responsive donor groups in this study. 
Furthermore, several immune cell subsets have been shown 
to facilitate engraftment without increasing the risk of acute 
GVHD through mechanisms that are not yet known (66). In 
line with this, intrinsic donor responsiveness to G-CSF may 
represent a separate mechanism that can increase the risk of 
recipient acute GVHD but at the same time tend to prolong 
time to engraftment.

Stem cell harvest by leukapheresis also contributes to the 
immune cell composition and activation status of the stem cell 
graft. Immunomodulatory effects of apheresis procedures are 
taken advantage of in therapeutic apheresis (67–71). Not only 
the mobilization but also the collection of stem cells results in 
a skewed distribution of different immune cell subsets that may 
represent a separate immunomodulatory mechanism.

In addition to detailed characterization of various lymphoid 
subsets, we also detected increased monocyte:lymphocyte ratio 
during G-CSF therapy, and stem cell mobilization with G-CSF 
has been shown to give preferential mobilization of CD34+ regu-
latory monocytes as well as monocytic myeloid-derived suppres-
sor cells (34, 72–76). Monocytic and lymphoid cells are not easily 
separated by leukapheresis, and consequently a large fraction of 
monocytic cells are infused during transplantation and prob-
ably contributes to the immunomodulatory effect the stem cell 
graft. Several studies have demonstrated that the levels of CD34+ 
regulatory monocytes as well as monocytic myeloid-derived 
suppressor cells are associated with the risk of post-transplant 
GVHD (34, 75, 76). However, the immunosuppressive effect of 
monocytic cells is considered to be a double-edged sword (75), 
and in autologous stem cell transplantation high fractions of 
monocytes in the graft have been shown to have a negative effect 
on overall survival (77).

We observed a difference in post-transplant outcomes bet
ween the two patient clusters/subsets identified by the analysis 
of donor G-CSF responsiveness (Figure 4). First, for neutrophil 
reconstitution ABO incompatibility, patient age, conditioning 
regimen, and pre-transplant remission status were significant 
predictors after multivariate Cox regression analysis, whereas the 
donor differences did not have any influence. Second, for platelet 
reconstitution we observed an independent effect of differences 
in donor G-CSF responsiveness in addition to the effect of ABO 
incompatibility. Finally, the two clusters identified in Figure  4 
showed similar early recipient mortality and no statistically sig-
nificant difference in median overall survival. However, the cause 
of recipient death differed significantly between the two donor 
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clusters; for the upper cluster only one out of six patients died 
from relapse, whereas for the lower cluster five out of six patients 
did so. Our competing risk regression analysis also showed an 
association of borderline significance between high G-CSF 
responsiveness and non-relapse mortality. Taken together, these 
observations suggest that immunological differences between 
donors with regard to G-CSF responsiveness are important for 
recipient outcome after allotransplantation. However, due to our 
low number of donors/recipients, we would emphasize that our 
observations need to be confirmed in larger clinical studies.

In conclusion, our study gives one of the most detailed char
acterizations of the immunomodulatory effects of stem cell mobi
lization and apheresis on the distribution of multiple lymphoid 
cell subsets available this far and shows that donor immune 
characteristics may be important for recipient outcome. Both 
G-CSF treatment and apheresis skew the distribution of various 
immune cell subsets and thereby influence graft composition, 
and both G-CSF dependent and independent immunological 
heterogeneity of the donors are reflected in the outcome of the 
patients. The results of our study indicate that the intrinsic effect 
of G-CSF on donor immune cell mobilization is associated with 
the reconstitution of platelets and the prevalence of acute GVHD 
after related HLA-matched stem cell transplantation. As this 
study includes relatively few participants, these results need to be 
confirmed in larger studies.
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1 Legends to Supplementary Figures  

1.1 Legend to Supplementary Figure 1 

Gating strategy for lymphoid subsets. The selection and identification of subsets is described from 

left to right for all panels: 

Panel (A): Initial gating of all events included the lymphocyte gate followed by the selection of 

singlets based on  FSC-H (forward scatter-Height) and FSC-W (forward scatter-With) plus SSC-A 

(side scatter-Areal) and SSC-H (side scatter-Height). All lymphocytes were evaluated for viability by 

use of Near-IR fluorescent reactive dye. Live CD3+ T cells were separated from live CD3- 

lymphocytes with CD3 PECy7, except from in initial characterization of NK cell subsets (Panel (C)), 

CD3 V450 was then used.  

Panel (B): With a CD4/CD8 four-quadrant gate on selected CD3+ cells four T cell subsets could be 

identified: (i) CD4+8- T helper cells (ii)  CD4-8+ T cytotoxic cells (i) CD4+8+ double positive T cells 

and CD4-8- double negative T cells. A four-quadrant gate was also used for identification of naïve 

and memory T helper cells based on CD45-RA and CCR7 expression: (i)  CD4+45-RA+CCR7+ naïve 

Th cells (ii) CD4+45-RA-CCR7- effector memory (EM)  Th cells (iii) CD4+45-RA-CCR7+ central 

memory (CM) Th cells (iv) CD4+45-RA-CCR7- terminally differentiated (TD) Th cells. Identical 

gating strategy was used for identification of CD8+ naïve and memory cytotoxic T cells. A distinct 

CD45RO+CD26hi subpopulation was identified in selected CD8+ cells, and the corresponding 

phenotype was also detected for CD4+ cells. Finally, the identification of T cell receptor (TCR) 

divergent ɑβ T cells and γδ T cells is shown. 

Panel (C): CD56+16++ cytolytic and CD56++16dim cytokine producing NK cells were selected from 

CD3- lymphocytes and Vα24+  iNKT cells from CD3+ cells. T regulatory cells were selected from 

CD4+25+ cells and gated into CD45RA+ FoxP3+ naïve and CD45RA- FoxP3+ effector T regulatory 

cells. 

Panel (D): Type 1 regulatory (Tr1) cells were identified as CD4+45RA-49b+LAG3+. Cytokine 

expressing cells (IFNɣ, TGFβ and IL-10) are shown as fractions of CD4+ T cells. Corresponding 

subset identification was performed for CD8+ T cells, CD19+ B cells, CD3-19- lymphocytes (i.e. 

mainly NK cells and innate lymphoid cells) and CD4-8- T cells (i.e. mainly γδ T cells and NKT cells).  

Panel (E): Identification of IL17, IL4, IL9 and IL22 expressing cells is like in Panel D shown for 

CD4+ T cells, but was also identified in CD8+ T cells, CD19+ B cells, CD3-19- lymphocytes (i.e. 

mainly NK cells) and CD4-8- T cells (i.e. mainly γδ T cells). 

Panel (F): CD19+ B cells was identified and could be separated into CD24+38+ mature B cells, 

CD24++38- memory B cells and CD24++38++ transitional B cells. Finally, the expression of IL2-R 

(CD25) and CD27 on all B-cells was evaluated; the IL2-R expressing cells were classified as CD25+ 

or CD25dim. 
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1.2 Legend to Supplementary Figure 2 

Unsupervised hierarchical cluster analyses based on untreated (A) and G-CSF treated (B) healthy 

donor T, B and NK cell PB concentrations.  All values were median normalized and log-2 

transformed before performing the unsupervised hierarchical clustering analyses and complete 

linkage was used as linkage method. The Pearson correlation was used for distance measure. The 

heat maps with corresponding dendrograms are presented. Red color indicates concentration higher 

than the median; whereas blue color indicates concentration lower than the median. The vertical 

donor clustering into two main clusters is presented to the left of the heat maps, while the rightmost 

columns present the donor identification numbers of the two clusters marked with different colors 

based on the donor clustering in (A). With only two exceptions (donor 4 and donor 13), the donors 

clustered identically into the upper and lower donor cluster during G-CSF (B). 
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STEM CELL MOBILIZATION

The healthy donor profile of immunoregulatory soluble mediators is
altered by stem cell mobilization and apheresis
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of Clinical Science, University of Bergen, Bergen,Norway, 3Department of Biomedical Laboratory Sciences and
Chemical Engineering, Faculty of Engineering and Business Administration, Bergen University College, Bergen,
Norway, and 4Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen,Norway

Abstract
Background. Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF)
and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. Methods. Plasma levels
of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were analyzed in samples
derived from healthy stem cell donors before G-CSF treatment and after 4 days, both immediately before and after leukapheresis.
Results. Donors could be classified into two main subsets based on their plasma mediator profile before G-CSF treatment.
Seventeen of 36 detectable mediators were significantly altered by G-CSF; generally an increase in mediator levels was seen,
including pro-inflammatory cytokines, soluble adhesion molecules and proteases. Several leukocyte- and platelet-released
mediators were increased during apheresis. Both plasma and graft mediator profiles were thus altered and showed corre-
lations to graft concentrations of leukocytes and platelets; these concentrations were influenced by the apheresis device used.
Finally, the mediator profile of the allotransplant recipients was altered by graft infusion, and based on their day +1 post-
transplantation plasma profile our recipients could be divided into two major subsets that differed in overall survival. Discussion. G-
CSF alters the short-term plasma mediator profile of healthy stem cell donors. These effects together with the leukocyte
and platelet levels in the graft determine the mediator profile of the stem cell grafts. Graft infusion also alters the systemic
mediator profile of the recipients, but further studies are required to clarify whether such graft-induced alterations have a
prognostic impact.

KeyWords: allogeneic stem cell transplantation, apheresis, chemokine, granulocyte colony-stimulating factor, hematopoietic stem cell
mobilization, interleukin, peripheral blood stem cell grafts, plasma profile, protease, soluble adhesion molecule

Introduction

Allogeneic stem cell grafts from both bone marrow
and peripheral blood allografts contain hematopoi-
etic stem cells as well as large populations of
immunocompetent cells and platelets [1]. Previous
studies have demonstrated that T-cell graft depletion
reduced the risk of severe graft-versus-host disease
(GVHD) but increased the risk of leukemia relapse
and graft failure [2–5]. Thus, the risk of immune-
dependent post-transplantation complications was

dependent on the number of graft immunocompe-
tent cells and especially the number of T cells. One
would therefore expect an increased frequency and/
or severity of GVHD when using peripheral blood stem
cells (PBSCs) mobilized by granulocyte colony-
stimulating factor (G-CSF) because such grafts contain
high T-cell numbers [6]. However, the incidence of
acute GVHD after allogeneic peripheral blood stem
cell transplantation (PBSCT) has been reported to be
lower than expected [7–9], an observation indicating
that T cells in blood grafts differ from bone marrow
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grafts.The plasma levels of soluble mediators may then
reflect a G-CSF–induced immunomodulation that
could involve the graft immunocompetent cells and
thereby be important for the risk of post-transplantation
immune-mediated complications. It is not known
whether such G-CSF effects can influence donor
health. A recent study showed that G-CSF therapy in
healthy stem cell donors induced changes in the CD34+

cell expression of more than 2000 genes and
microRNAs involved in regulation of cell cycle pro-
gression, proliferation, angiogenesis and immune
responses [10]. These changes increased during the
first 30 days after G-CSF treatment, and lasted for
at least 1 year. G-CSF also alters the short-term sys-
temic metabolic regulation [11]. We previously
described altered cytokine levels in autologous donors
after both hematopoietic stem cell mobilization and
apheresis [12,13] and an association between the
pretransplantation serum cytokine profile of allotrans-
plant recipients and risk of post-transplantation
complications [14]. Taken together, these observa-
tions suggest that early cytokine-mediated effects are
important for outcome after allotransplantation and
donor immunoregulation seems to have an addition-
al impact on patient outcome [15–19]. In this context
we have examined the effects of G-CSF treatment
and stem cell harvesting on plasma levels of
immunoregulatory soluble mediators, the levels of these
mediators in allogeneic stem cell grafts and the effects
of stem cell infusion on the recipient cytokine network.

Materials and methods

Healthy allogeneic stem cell donors and allotransplant
recipients

All studies were approved by the local ethics com-
mittee (REK III No.126.01, Regional Committee for
Medical and Health Research Ethics ofWestern Norway:
2011/996, 2011/1237, 2011/1241 and 2013/634).The
participants were included after signing a written in-
formed consent. The present study includes 25
consecutive healthy HLA-matched related allogeneic
stem cell donors, 16 males and 9 females with median
age 54 years (range, 25–77 years), and 16 allogeneic
stem cell transplant recipients, 7 males and 9 females
with median age 47 years (range, 35–63 years).

Stem cell mobilization and harvesting in the healthy
donors

The matched related donors received the stem cell mo-
bilizing agent human non-glycosylated G-CSF 10 µg/
kg/d for 4 days prior to stem cell harvesting. Stem cell
quantification started on day 4 of G-CSF stimula-
tion, and harvesting was performed when the stem cell
count exceeded 15–20 x 103/mL.The first nine stem

cell donors were harvested by large-volume
leukapheresis with four times processing of the total
blood volume, using the Mononuclear Cell Removal-
protocol with the WBC kit for the Cobe Spectra cell
separator version 7 (Cobe Laboratories). During the
study the apheresis devices of our department were
replaced due to timely equipment upgrade; hence the
mononuclear cell (MNC) procedure with the Spectra
Optia Collection Set on the Spectra Optia cell sepa-
rator version 9 (Terumo BCT Inc.) was used for the
16 last donors.

Allogeneic stem cell transplantation

Eleven of the 16 allotransplant recipients were diag-
nosed with acute myeloid leukemia (AML), three with
acute B cell lymphoblastic leukemia (B-ALL), one with
myelofibrosis and one with myelodysplastic syn-
drome (MDS). At the time of transplantation, all
leukemia patients were in complete hematologic re-
mission; 14 patients received myeloablative conditioning
with intravenous busulfan plus cyclophosphamide, and
two patients received reduced intensity conditioning
with intravenous fludarabine plus busulfan. All allo-
transplant recipients received G-CSF mobilized
peripheral blood stem cell grafts derived from HLA-
matched family donors and GVHD prophylaxis with
cyclosporine A plus methotrexate. Neutrophil counts
exceeding 0.5 x 109/L and stable platelet counts ex-
ceeding 50 x 109/L without platelet transfusions for
at least 3 consecutive days were defined as neutro-
phil and platelet reconstitution, respectively.

Preparation of plasma and stem cell graft supernatant
samples

Venous blood samples from the allogeneic stem cell
donors were collected (i) at the time of the pre-
transplantation evaluation prior to G-CSF treatment,
median 20.5 days before apheresis, (ii) during G-CSF
therapy in the morning immediately before apheresis,
(iii) immediately after apheresis and (iv) approximate-
ly 24 h after start of apheresis. From the allotransplant
recipients venous blood samples were collected (i)
between 0700 and 0900 AM the day of transplanta-
tion, (ii) between 0700 and 0900 AM the day after
stem cell infusion and (iii) between 0700 and 0900
AM approximately 1 week after allogeneic stem cell
transplantation (median, 6 days; variation range, 4–13
days). All venous blood samples were collected into
Vacuette 9NC tubes with sodium citrate and acid-
citrate-dextrose solution A (Greiner Bio-One GmbH).
Plastic tubes without additives were used for samples
from stem cell allografts. All blood and graft samples
were centrifuged at 1310g for 10 min at room tem-
perature within 30 min of sampling. The plasma
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supernatants were immediately transferred to plastic
tubes, frozen and stored at -70°C until analyzed.

Plasma mediator levels

The concentrations of the following 38 mediators were
determined using Luminex analyses (R&D Systems):
(i) the immunomodulatory cytokines interferon-γ (IFN-
γ), CD40 ligand (CD40L) and tumor necrosis factor-α
(TNF-α); (ii) the interleukins IL1-β, IL-6, IL-8/
CXCL-8, IL-10, IL-12 and interleukin 1 receptor
antagonist (IL-1 RA); (iii) the chemokines CCL-2/
4/5/11 and CXCL-5/10/11; (iv) the growth factors
G-CSF, granulocyte macrophage colony-stimulating
factor (GM-CSF), vascular endothelial growth factor
(VEGF), thrombopoietin (TPO), hepatocyte growth
factor (HGF) and leptin; (v) the soluble adhesion mol-
ecules P-selectin, E-selectin, intercellular adhesion
molecule 1 (ICAM-1) and vascular cell adhesion mol-
ecule 1 (VCAM-1); (vi) the matrix metalloproteases
MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-
9, MMP-12 and MMP-13 and (vii) the tissue
inhibitors of metalloproteases 1-4; TIMP-1, TIMP-
2, TIMP-3 and TIMP-4.

Bioinformatics and statistical analyses

Bioinformatics analyses were performed using J-Express
(MolMine AS) [20]. All values were median normal-
ized and log-2 transformed before performing the
unsupervised hierarchical clustering analyses. Com-
plete linkage was used as linkage method and the Pearson
correlation for distance measure. In unsupervised hi-
erarchical clustering with complete linkage a multivariate
dataset is divided into related groups based on simi-
larities between objects without prior information about
group similarity patterns.The data are presented as a
binary tree, which is shaped as a hierarchy of nested
subsets with the most similar patterns situated in closest
proximity to each other.The linkage method describes
the calculation of the distance between two objects in
this hierarchy; in complete linkage the maximum dis-
tance possible between the objects is used [21–23].

Additional statistical analyses were performed using
the standard computer software package IBM SPSS
Statistics 22 (IBM Corporate).The Wilcoxon test for
paired samples was applied for analyses of paired ob-
servations, and the Independent-Samples Mann-
Whitney U test and the chi-square test were used for
comparison of groups.The Kendall tau-b test was used
for analysis of correlations between continuous vari-
ables, and the Kaplan-Meier method with two-sided
log-rank statistics was used for estimation of survival
curves.Variables assumed to have a prognostic impact
on survival were further analyzed using the Cox pro-
portional hazards model [24].

Results

The plasma mediator concentrations of healthy donors
are altered during stem cell mobilization and apheresis

We compared the plasma concentrations prior to and
during G-CSF treatment for each individual media-
tor (Figure 1; Table I). Plasma levels of IL-12 and GM-
CSF showed undetectable levels for all donor samples
at all time points and were therefore omitted from all
statistical analyses. G-CSF administration caused a sig-
nificant alteration of the plasma levels of 17 mediators.
Fourteen of the 35 detectable mediators showed in-
creased concentrations during mobilization, and the
most significant increases were detected forTNFα, IL-1
RA, IL-6, IL-10, CCL4, E-Selectin,VCAM-1, ICAM-1
and MMP-8 (Table I; Figure 1). MMP-3,TIMP-2 and
TIMP-4 showed significantly decreased levels during
G-CSF treatment (Figure 1; Table I).

Plasma mediator concentrations were thereafter
compared before and after leukapheresis; 19 media-
tors then showed decreased levels post-apheresis,
whereas three exceptional mediators (IL-6, CXCL10
and leptin) showed increased levels (Figure 1;
Supplementary Table S1). However, it should be em-
phasized that the differences in median levels were
relatively small compared with the G-CSF–induced
alterations (Figure 1; Table I) and the wide variation
between donors was maintained following apheresis.

Healthy stem cell donors can be subclassified prior to
G-CSF treatment based on their plasma mediator
profiles

We noticed a substantial variation in plasma media-
tor levels between donors both prior to and during
G-CSF treatment. We first performed a hierarchical
clustering analysis including all the donors based on
the levels of mediators measured before G-CSF treat-
ment. As shown in Figure 2A, the donors could be
divided into an upper main cluster with 12 donors and
a lower main cluster with 13 donors, and the 36 de-
tectable mediators also formed two main horizontal
clusters (Figure 2A).

The two main donor clusters (Figure 2A, left side
of the figure) were compared with regard to the levels
of each single mediator. Sixteen mediators showed sig-
nificant differences between the two donor clusters;
CD40L (P < 0.000005), MMP-13 (P < 0.0005), IL-8
(P < 0.0005), HGF (P < 0.001),TIMP-3 (P < 0.001),
MMP-1, MMP-2,TPO, CXCL11, CCL11 and IFN-γ
(P < 0.005) and CXCL5, CCL4, MMP-12, IL-1 RA
and G-CSF (P < 0.05). All these mediators be-
longed to the left mediator cluster (Figure 2A, top of
the figure), whereas none of the 16 mediators in the
right cluster differed significantly between the two main
donor clusters (chi-square test; P = 0.000002).
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Figure 1. The effect of stem cell mobilization and apheresis on healthy donor plasma levels (pg/mL) of representative soluble mediators
from each mediator group (Table I and Supplementary Table S1). Mediator levels were determined (A) prior to treatment with G-CSF,
(B) after stem cell mobilization (immediately before apheresis) and (C) immediately after apheresis. The individual values and medians
(solid line) for 25 consecutive healthy donors prior to G-CSF and immediately before apheresis and 23 donors immediately after apheresis
are presented.
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There were no significant differences between the
two main donor clusters with respect to age, gender,
weight, height, HLA-A, B or DR phenotype, pro-
cessed blood volume, later stem cell mobilization or
yield, pretreatment hemoglobin values and peripher-
al blood leukocyte/platelet counts (data not shown).

The plasma mediator profile of healthy stem cell donors
is altered by in vivo G-CSF treatment

We then did a clustering analysis of the mediator levels
after G-CSF treatment (Figure 2B). G-CSF mainly

altered the levels of mediators that were previously
shown to not differ significantly between the two main
donor clusters identified before G-CSF therapy
(Figure 2A, four of 20 versus 13 of 16; chi-square test,
P < 0.0005).

Furthermore, 15 of the 35 mediators differed sig-
nificantly between the two main donor clusters identified
during G-CSF treatment (Figure 2B); 12 of these 15
mediators also differed significantly between the two
main donor clusters identified before G-CSF
(Figure 2A). Thus, differences between donors with
regard to their plasma mediator profile are maintained

Table I. Median plasma mediator levels for the 25 allogeneic stem cell donors during stem cell mobilization.

Mediator Prior to G-CSF During G-CSF G-CSF effect (P)

Immunomodulatory cytokines
IFNɣ 3.7 (<2.2–34.7) 2.8 (<2.2–25.5) NS
CD40L 1361 (<998–10 1562) 1309 (<998–95 487) NS
TNFα 3.6 (<0.8–7.2) 7.9 (<0.8–18.4) 0.000016 (↑)

Interleukins
IL-1 RA 741.1 (248.1–6400) 4867 (2415– > 7528) 0.000012 (↑)
Il-1β <0.3 (<0.3–1.0) <0.3 (<0.3–0.9) NS
IL-6 0.9 (<0.9–12.3) 1.9 (<0.9–5.5) 0.000296 (↑)
IL-8 (CXCL-8) 15.7 (<8.3–146.5) 14.3 (<8.3–149.5) NS
IL-10 <0.5 (<0.5–7.9) 0.51 (<0.5–12.8) 0.000219 (↑)

Chemokines
CXCL5 (ENA-78) 170.2 (<61.1–2384) 155.9 (<61.1–3220) NS
CXCL10 (IP-10) 70.9 (29.3–438.2) 129.9 (30.0–512.3) 0.021 (↑)
CXCL11 (I-TAC) 42.1 (<17.0–236.3) 58.1 (<17.0–256.6) 0.003 (↑)
CCL2 (MCP-1) 267.1 (93.7–437.0) 240.9 (89.4–477.8) NS
CCL4 (MIP-1β) 253.4 (191.4–700.5) 324.5 (216.6–742.5) 0.00009 (↑)
CCL5 (RANTES) >6000 (923.5– > 6000) 4120.9 (885.9– > 6000) NS
CCL11 (Eotaxin) 292.1 (<124.6–1580) 279.2 (<124.6–1977) NS

Growth factors
TPO 1324.5 (<378.2– > 109,611) 1394.7 (<378.2– > 109,611) NS
VEGF 166.8 (71.7–600.0) 159.4 (74.8–464.8) NS
HGF 202.5 (<41.6–1518) 260.6 (<41.6–1459) NS
Leptin 6760 (1747–35135) 7216 (966.1–29917) NS
G-CSF 46.9 (<29.9–241.7) >7425 (3687–14178) 0.000012 (↑)

Adhesion molecules
P-Selectin 13 322 (4953–61 068) 18 663 (6358.1–65 218) 0.002 (↑)
E-Selectin 15 575 (7920–47 953) 25 661 (12 691–71 422) 0.000012 (↑)
VCAM-1 617,232 (212,562–1,150,000) 970,313 (425,794– > 1,807,879) 0.000012 (↑)
ICAM-1 184,793 (55,037–1,310,000) 236,484 (119,891–1,470,000) 0.000012 (↑)

Matrix metalloproteases
MMP-1 465.4 (201.5–1309) 538.1 (153.3–1979) NS
MMP-2 40 364 (24 626– > 58 201) 40 851 (19 616– > 58 201) NS
MMP-3 8289 (3417– > 8924) 6508 (2487– > 8924) 0.004 (↓)
MMP-7 3711 (1190–7353) 3468 (630.0–7624) NS
MMP-8 332.7 (181.6–2407) 21 316 (6354.4–44 166) 0.000012 (↑)
MMP-9 4148.0 (1773–12111) 7386.7 (3276– > 37370) 0.000296 (↑)
MMP-12 <29.8 (<29.8–69.7) <29.8 (<29.8–109.3) NS
MMP-13 309.1 (<220.4 -1872) 392.8(<220.4–2031) NS

Metalloprotease inhibitors
TIMP-1 64 100 (39 044–157,544) 79 591 (52 049.5–217,884) 0.001 (↑)
TIMP-2 77 727 (57 078–128,221) 69 037 (52 632–121,228) 0.000403 (↓)
TIMP-3 15 308 (<3897–34 409) 16 055 (<3897–37 381) NS
TIMP-4 1275 (699.2–2097) 1129.3 (574.7–2199) 0.005 (↓)

All mediator concentrations are given in pg/mL and presented as median values with variation ranges given in parentheses. IL-12 and GM-
CSF showed undetectable levels and were not included in the table. Untreated mediator levels are compared with concentrations after
G-CSF treatment (Wilcoxon test for paired samples).
NS, not significant; (↑), increased level; (↓), decreased level.
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during G-CSF therapy, and this constancy of relative
concentrations of single mediators between donors can
probably explain why most of the donors and most of
the mediators that cluster in each of the pretherapy
groups also cluster close to each other even after G-CSF
treatment (Figure 2B).

The mediators that were most significantly altered
between the two donor clusters during G-CSF therapy
were CD40L (P < 0.00005), IL-8 (P < 0.00005),
MMP-13 (P < 0.0001), TPO (P < 0.001) and HGF
(P < 0.001), all belonging to the same cytokine sub
cluster (Figure 2B). Finally, in the upper donor cluster,
the median stem cell yield was 3.4 x 106 CD34+ cells
per kg donor-weight (n = 15; range, 0.8–22.4), whereas
for the lower cluster it was 5.8 x 106 CD34+ cells per
kg (n = 10; range, 3.1–15.1; P = 0.026; Mann-Whitney
U test).The other clinical variables mentioned in the
section above did not differ between these two donor
clusters.

Stem cell harvesting causes a further modulation of the
plasma mediator profile–effects of apheresis device

We also performed an unsupervised hierarchical clus-
tering analysis for plasma mediator levels immediately
after apheresis (Supplementary Figure S1), and the
cluster results differed from those seen during G-CSF
treatment immediately before apheresis (Figure 2B).
Still, two main donor clusters were observed after clus-
tering, and 20 mediators differed significantly between
these two clusters; the most significant differences were
observed forTPO (P < 0.000005), IL-8 (P < 0.00005),
CCL11 (P < 0.00005) and CD40L (P < 0.0005). All
but one of the nine donors harvested with Cobe
Spectra clustered together in the upper main cluster.
Thus, there was a significant association between
apheresis device used and plasma mediator profile
(P < 0.0005; Pearson chi-square).

The soluble mediator profiles in the stem cell graft
supernatants are associated with the preharvesting
plasma cytokine profile, the graft levels of platelets and
leukocytes and the apheresis device

Samples from the graft supernatants were available for
22 donors. The majority of mediators showed in-
creased levels in graft supernatants compared with the
plasma concentrations before and/or during G-CSF
treatment, especially IL-1 RA, HGF, leptin, MMP-8
and MMP-9 (Supplementary Table S2). Levels were
decreased for IL-6, CCL2, ICAM-1 and MMP-3 com-
pared with pre-apheresis plasma concentrations. We
also did a hierarchical clustering analysis of the graft
supernatant concentrations (Figure 3); the grafts/
donors could then be divided into two main clusters

with 13 and nine grafts, respectively. For 15 of the 35
mediators, the corresponding graft supernatant me-
diator concentrations differed significantly between
these two graft clusters: CD40L (P = 0.036), TNFα
(P = 0.001), IL-1β (P = 0.006), CXCL10 (P = 0.025),
CCL11 (P = 0.043), TPO (P < 0.0005), VEGF
(P = 0.036), HGF (P < 0.00005), leptin (P = 0.043),
P-Selectin (P = 0.011), ICAM (P = 0.007), MMP-8
(P = 0.001), MMP-9 (P < 0.0005), TIMP-1
(P = 0.006) and TIMP-2 (P < 0.000005).

As shown in Figure 3, the nine grafts harvested
with Cobe Spectra and all 12 grafts harvested with
Spectra Optia clustered together/close to each other
(P = 0.001, Pearson chi-square). Grafts collected
with Cobe Spectra and Spectra Optia also differed
significantly with regard to the levels of two
immunoregulators (TNFα P < 0.00001; IL-1β
P < 0.000005), several chemokines (CXCL5 P = 0.003;
CXCL10 P = 0.004; CCL4 P = 0.036) and growth
factors (TPO P = 0.001; VEGF P < 0.0005; HGF
P < 0.00001), soluble P-Selectin (P = 0.001) as well
as several MMPs (MMP-7 P < 0.0005; MMP-8
P = 0.001; MMP-9 P = 0.004) and their inhibitors
(TIMP-1 P < 0.0005; TIMP-2 P < 0.00005).

The concentrations of white blood cells and
platelets in the stem cell graft were dependent on
the apheresis device (Table II). The graft leukocyte
concentration was positively correlated with the
graft levels of IL-1β (r = 0.707/P < 0.00005),
TIMP-2 (0.550/ < 0.0005), HGF (0.541/ < 0.0005),
TNFα and TIMP-1 (0.506/0.001), MMP-8 (0.498/
0.003) and VEGF (0.472/0.002), and the graft
platelet concentration correlated positively to
VEGF (0.524/0.001), CXCL5 (0.498/0.001) and
P-Selectin (0.455/0.003) for the 22 available graft
samples.

Donor mediator levels are not normalized 24 h after
finalized G-CSF treatment

The desired stem cell dose was achieved after 1 day
of apheresis for 10 donors and therefore G-CSF
treatment was ended. This group of good mobilizers
was younger than the donors needing two aphereses
to achieve the target dose (Supplementary Table S3).
Plasma samples were collected from both groups 24 h
after start of the first apheresis (ongoing versus ended
G-CSF treatment), and the plasma mediator levels did
not differ between the groups except for CXCL10 and
HGF (Supplementary Table S3).We also did a hier-
archical clustering of the mediator levels in 24 h
post-apheresis samples derived from the 10 good mo-
bilizers; the clustering showed that the mediator profiles
had not normalized compared with the profiles found
before G-CSF treatment and a significant associa-
tion between levels of mediators and the apheresis
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Figure 2. Unsupervised hierarchical clustering analysis based on the pretreatment plasma levels of 36 detectable mediators in 25 alloge-
neic stem cell donors (A). All color schemes are explained in the lower part of the figure. Each figure shows the heat map with corresponding
dendrograms. Red color in the donor/mediator columns of the heat maps indicates levels higher than the corresponding median level for
each mediator, whereas green color indicates low levels compared with the median. G-CSF concentrations were included in the analysis
prior to but not after injections of recombinant human G-CSF. (A/Upper) This part of the figure shows the clustering analysis of plasma
mediator levels before G-CSF therapy. The horizontal mediator clustering into two main clusters marked with different colors (dark grey
and yellow) is presented at the top of the figure, whereas the column to the left of the heat map presents the two main donor clusters
marked with different colors (blue and white) and with the donor identification/number within each square. (B/Lower) This figure pres-
ents the unsupervised hierarchical clustering analysis of soluble mediator levels after treatment with G-CSF.The clustering of both mediators
(horizontal, upper part) and donors (vertical, left column) was altered by G-CSF. The dark grey and yellow coloring of the mediators at
the top of figure B indicates the mediator clustering from Figure 2A (pretreatment samples), whereas the column to the left of the heat
map presents the two main donor clusters identified in Figure 2A marked with different colors (pigeon grey and white) and with the donor
identification/number within each square. *G-CSF effect. The upper horizontal row in Figures A and B between the heat map and the
mediator clustering indicate the G-CSF effect on the plasma concentration of each individual mediator. Significant increased (Wilcoxon
test for paired samples, beige color) and decreased mediator levels (turquoise color) during G-CSF therapy are indicated. †Donor cluster
difference. The lower horizontal rows of Figures A and B between the heat map and the mediator clustering indicates single mediators
that differed significantly between the two donor clusters; they are marked with purple color. Mediators that differed significantly between
the donor clusters identified both prior to and after G-CSF are marked with an X in Figure B. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Figure 3. Unsupervised hierarchical cluster analyses based on mediator concentrations in the graft supernatant. All color schemes are ex-
plained in the lower part of the figure. The dendrogram showing the horizontal mediator clustering is presented at the top of the heat
map, and the vertical donor clustering is shown to the left of the dendrogram. Red color in the patient/mediator columns indicates levels
higher than the corresponding median level for each mediator, whereas green color indicates low levels compared with the median. The
green horizontal line indicates the border between the two donor clusters, and the black line marks the border between the donor groups
harvested with Cobe Spectra and Spectra Optia. Two columns to the left are marked with Donor ID and Apheresis Device, respectively.
These two columns indicate (i) the two main donor clusters from the analysis of pretreatment samples (Figure 2A/upper; grey and white
color), and (ii) the apheresis device used for each donor (Cobe Spectra in yellow, and Spectra Optia in blue). §Graft versus pre-apheresis.
This upper horizontal row between the heat map and the mediator clustering indicates the mediator levels in the graft supernatant com-
pared with pre-apheresis plasma levels; beige color indicates significantly higher levels and turquoise color lower levels in the graft (Wilcoxon
test for paired samples; Supplementary Table S2). †In this lower horizontal row single mediators differing significantly between the two
graft clusters are marked with purple color. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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device (Cobe Spectra versus Spectra Optia) could still
be detected (Supplementary Figure S2).

The plasma mediator levels in allotransplant recipients
are altered after graft infusion

The pretransplantation mediator concentrations in the
allotransplant recipients were generally significantly
higher compared with the untreated levels of the healthy
stem cell donors, in particular, for TNFα, IL-1β, IL-
6, IL-10, CXCL11, CCL2,VCAM-1, MMP-1, MMP-
2, TIMP-1 and TIMP-4 (Supplementary Table S4).
Two main patient clusters were identified in the hi-
erarchical clustering analysis of pretransplantation
plasma samples (Figure 4A), and these two clusters
differed significantly with respect to the concentra-
tions of MMP-8 (P < 0.0005), MMP-9 (P < 0.0005),
IL-1β (P < 0.0005), CXCL11 (P < 0.0005), CCL4
(P < 0.0005), IL-8 (P < 0.001), VEGF (P = 0.007),
CCL5 (P = 0.007) and P-Selectin (P = 0.007). As
shown in Figure 4A, the patient mediator profile iden-
tified using hierarchical clustering analysis correlated
significantly to the Hematopoietic Cell Transplanta-
tion Comorbidity Index [26] (P = 0.008, Pearson
chi-square).

The plasma mediator profiles were also exam-
ined 1 and median 6 days post-transplantation. The
immediate response of allogeneic stem cell infusion

on mediator levels was rather individual and vari-
able (Figure 4B; Supplementary Figure S3). However,
decreased TPO level and slightly increased concen-
trations of P-Selectin and MMP-8 were observed
(Supplementary Table S4; Supplementary Figure S3).
Finally, samples 4–13 days post-transplantation
showed increased concentrations of IL-6, IL-8 and
G-CSF (Supplementary Table S4; Supplementary
Figure S3).

The post-transplantation patient mediator profile is
associated with disease-free and overall survival

After allotransplantation the patients were observed
until death (n = 8) or the end of the study (n = 8).
Median time of observation was 1125 days (range,
8–1715 days).The median time until peripheral blood
neutrophil counts >0.5 × 109/L was 17 days (range,
13–28 days), whereas the median time until the first
of 3 consecutive days with stable platelet counts
>50 × 109/L was 15 days (range, 11–39 days).Two of
the 16 patients were diagnosed with acute GVHD
grade II–IV, nine with chronic GVHD and four with
leukemia relapse. Early death before day +100 oc-
curred in four patients.The time until neutrophil and
platelet reconstitution and the incidence of acute or
chronic GVHD, early death or relapse did not differ
between the major patient subsets identified by

Table II. Comparison of apheresis procedure characteristics, graft cellular concentrations and decrements of peripheral blood cell con-
centrations for Cobe Spectra (n = 9) and Spectra Optia (n = 13).

Cobe Spectra (n = 9) Spectra Optia (n = 13) P

Apheresis variables
Number of TBV processed 4.7 (3.0–7.0) 3.1 (2.0–4.0) <0.00001
Graft volume (mL) 378 (294–463) 327 (146–536) NS
Apheresis time (min) 300 (231–360) 322 (221–377) NS

Graft components
CD34+ stem cells (10^9/L) 1.2 (0.6–5.4) 1.0 (0.3–2.4) NS
Total leukocytes (10^9/L) 304 (226–418) 189 (130–253) <0.000005
Neutrophils (10^9/L) 131 (53–234) 70 (30–120) <0.001
Monocytes (10^9/L) 39 (6–112) 28 (3–46) NS
Lymphocytes (10^9/L) 126 (56–183) 64 (37–113) <0.0005
Platelets (10^9/L) 2509 (1200–3753) 1444 (689–2237) 0.003
Red blood cell volume (mL) 9.7 (3.5–28.6) 3.0 (1.5–16.0) <0.001

Apheresis-induced decrements (PB)
Total leukocytes (10^9/L) 12.1 (1.5–20.0) 3.8 (-7.2–10.4) 0.002
Neutrophils (10^9/L) 7.4 (-1.6–13.8) 2.2 (-9.7–6.2) 0.002
Lymphocytes (10^9/L) 1.7 (1.0–2.8) 1.5 (-0.5–2.9) NS
Monocytes (10^9/L) 0.9 (0.2–2.0) 0.6 (-1.0–2.8) NS
Platelets (10^9/L) 152 (92–238) 95 (34–154) 0.003
Hgb (g/dL) 1.3 (0.6–2.4) 1.0 (-0.5–1.4) NS

The TBV of the donor is calculated by the apheresis device based on donor gender, height and weight in accordance with Nadler’s equa-
tion [25]. The decrements of peripheral blood cells during apheresis are calculated as the difference between post-apheresis and pre-
apheresis concentrations. Increments are presented as figures with negative signs. All values are given as medians with variation ranges in
parentheses.
Hgb, hemoglobin; PB, peripheral blood; TBV, total peripheral blood volume.
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hierarchical clustering of pretransplantation samples,
immediately after or 6–8 days after transplantation.

Median disease-free survival of the 16 allotrans-
plant recipients (see above) was estimated to be 573

days (95% confidence interval [CI], 0–1184 days) and
median overall survival to be 1179 days. There was
no significant difference in survival based on
pretransplantation patient clustering (Figure 4A) or

Figure 4. Unsupervised hierarchical cluster analysis based on plasma mediator levels in 16 allogeneic stem cell recipients (Part A/Upper)
in the morning on the day of stem cell transplantation (pretransplantation) and (Part B/Lower) the first day after stem cell infusion (post-
transplantation). All color schemes are presented in the lower part of the figure. Red color in the patient/mediator columns indicates levels
higher than the corresponding median level for each mediator, whereas green color indicates low levels compared with the median. The
heat maps with corresponding dendrograms are shown with horizontal mediator clustering at the top of the figures and the vertical patient
clustering to the left. (A/Top) The pretransplantation cluster shows three main mediator subsets indicated by green, red and grey, respec-
tively, at the top of the figure. Two main patient clusters marked with either blue or pink color were identified as indicated in the Patient
ID column to the left in the figure. The Comorbidity column to the left in the figure indicates the scoring of each individual patient ac-
cording to the Hematopoietic Stem Cell Transplantation Comorbidity Index (HCT-CI) [26]. (B/Lower) This figure presents the clustering
analysis of patient mediator levels on the first day post-transplantation (day +1). The mediator clustering is shown at the top of the figure,
and the colors indicate the mediator clustering from the pretransplantation analysis (Figure 4A). Two main patient clusters marked with
either blue or pink color were identified as indicated to the left in the figure, and the Patient ID column shows how the patients clustered
in the pretransplantation analysis. The Comorbidity column to the left in the figure indicates the scoring of each individual patient as ex-
plained in the legend above for Figure 4A. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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graft clustering (Figure 3). However, when the pa-
tients were divided into two main clusters/subsets based
on hierarchical clustering of plasma levels on the first
day post-transplantation (Figure 4B), these groups dif-
fered significantly with respect to both disease-free
(P = 0.011) and overall survival (P = 0.003). In the Cox
regression (Table III) the unadjusted effect of the me-
diator profile on overall survival showed a hazard ratio
(HR) of 12.20 (95% CI, 1.48–100.6; P = 0.003).When
adjusting for age and Hematopoietic Cell Transplan-
tation Comorbidity Index (HCT-CI) the mediator
profile still showed a significant effect on overall sur-
vival with an increased HR of 17.73 (95% CI, 1.52–
207.3;P = 0.003). Gender showed no effect on survival.

Discussion

G-CSF–mobilized PBSC grafts derived from healthy
donors are commonly used for reconstitution
of hematopoiesis but also have additional
immunomodulatory effects [11].These last effects may
be mediated through or reflected by altered systemic
levels of cytokines, soluble adhesion molecules, pro-
teases and protease inhibitors.These mediators form
an interacting network for intercellular communica-
tion, but there is also additional crosstalk at the receptor
level (i.e., trans-signaling) and between downstream
intracellular signaling pathways [27,28]. In this context
we have investigated the effects of G-CSF mobiliza-
tion and stem cell harvesting on the systemic
concentrations of a large number of soluble media-
tors, and we have focused on the altered profiles of
immunoregulatory mediators rather than variations in
single mediator concentrations.The effects of G-CSF
and leukapheresis on donor and graft mediator pro-
files may have impacts both on donor health and on

the post-transplantation function of graft immuno-
competent cells. Previous studies of systemic mediator
levels in healthy stem cell donors are few and have
focused on a limited number of single mediators that
are mainly relevant for stem cell mobilization and en-
graftment [29–34].

The most significant increases in mediator levels
during G-CSF treatment were observed for MMP-
8, the soluble adhesion molecules E-Selectin,VCAM
and ICAM, the pro-inflammatory cytokinesTNFα and
IL-6 and the anti-inflammatory cytokines IL-10 and
IL-1 RA. An increase of MMP-8 concentrations is
probably caused by enhanced release by neutro-
phils, while increased levels of soluble adhesion
molecules are most likely due to down-regulation of
their ligands, which is an expected effect of G-CSF
[35,36].

Previous studies have also described altered sys-
temic cytokine levels during G-CSF mobilization,
including increased levels of anti-inflammatory
cytokines as a part of the tolerogenic or immunosup-
pressive effect of G-CSF [37,38]. However, two
previous studies investigating a limited number of
soluble mediators (10 and 4 mediators, respectively)
described increased levels of certain pro-inflammatory
mediators during G-CSF treatment [29,39].The stem
cell donors in these two studies were younger (median
age, 39 and 28 years, respectively) than the donors
included in our present study (median age, 54 years),
but our present study investigating an extended me-
diator profile also showed that G-CSF increased the
systemic levels of a large number of mediators usually
regarded to mediate pro-inflammatory effects.

A recent study compared cytokine levels in allo-
geneic PBSC grafts versus bone marrow grafts [40].
IL-10 was then the only cytokine (10 mediators

Table III. Results from Cox-regression of time from allogeneic stem cell transplantation to death in 16 patients from Haukeland Univer-
sity Hospital, Bergen, Norway included from 2012–2014 and followed up till 2017.

Predictor

Unadjusted models Fully adjusted model

HR 95% CI P HR 95% CI P

Post-transplantation mediator profile 0.003 0.003
Upper donor cluster (Figure 4B) 1.00 Reference 1.00 Reference
Lower donor cluster (Figure 4B) 12.20 (1.48, 100.6) 17.73 (1.52, 207.3)

Age (per 10 y) 1.18 (0.71, 1.96) 0.526 1.17 (0.31, 4.39) 0.810
Gender (female/male) 0.559 - Not includeda -

Female 1.00 Reference
Male 1.33 (0.51, 3.46)

HCT-CI 0.522 0.276
0 1.00 Reference 1.00 Reference
1–2 1.94 (0.41, 9.16) 2.23 (0.36, 13.83)
3 2.33 (0.48, 11.25) 6.09 (0.66, 56.25)

HR, hazard ratio; CI, confidence interval; P, P value from the likelihood ratio test.
aGender could not be included in the fully adjusted model due to nonconvergence of the estimation procedure. In reduced models, however,
gender was not significant and including it did not change the results substantially.
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examined) that was significantly increased during
G-CSF treatment, and they observed increased levels
of IFNγ as well as other pro-inflammatory media-
tors in the graft supernatants compared with bone
marrow grafts. However, animal models suggest that
pro-inflammatory cytokines may also have immuno-
suppressive effects through induction of donor T-cell
apoptosis resulting in a reduced risk of acute graft-
versus-host disease (aGVHD) development [41–43].
Thus, the final effect of pro-inflammatory cytokines
seems to depend on the biological context. It is not
known whether “paradoxical” immunosuppressive
effects of pro-inflammatory cytokines on donorT cells
in the stem cell grafts contribute to the tolerogenic
effects of G-CSF therapy in humans.

Platelets express several mediators that are re-
leased during activation, including immunomodulators
(TNFα, CD40L), IL1β, chemokines (e.g., CXCL5,
CCL2 and CCL5), VEGF and P-selectin as well as
MMPs and their inhibitors (MMP1, MMP2 and
TIMP1-3) [44–46].Ten of these 12 mediators showed
increased plasma concentrations after in vivo G-CSF
administration (Table I), even though the peripheral
blood platelet counts were not significantly altered
during G-CSF treatment (data not shown). G-CSF
leads to more than a five-fold increment of white blood
cell counts, and a corresponding increase of the leu-
kocyte mediator release is a possible explanation for
the generally increased plasma mediator level. However,
in vivo G-CSF treatment also induces platelet acti-
vation [47]; an observation suggesting that G-CSF
induced platelet activation may contribute to the in-
creased levels of these mediators.

Our study clearly demonstrates that G-CSF treat-
ment leads to substantial alterations of the plasma
mediator levels of healthy stem cell donors, but with
a high degree of individual variations, and the donor
heterogeneity in mediator profiles prior to mobiliza-
tion is largely maintained during G-CSF treatment
(Figure 2A and 2B). Furthermore, we found a weak
but significant association between the systemic me-
diator profile during G-CSF administration and the
stem cell yield, indicating that the overall systemic me-
diator profile influences the complex process of stem
cell mobilization.

We found associations between the apheresis device
used and the mediator profiles of the stem cell grafts
as well as donor plasma profiles after apheresis. The
leukocyte and platelet counts were higher in the grafts
prepared with Cobe Spectra (Table II), and the pos-
itive correlations between graft leukocyte/platelet levels
and the graft concentration of various mediators further
substantiate different leukocyte and platelet concen-
trations (see discussion above) as the most important
and most likely explanation for the device-dependent
differences in mediator levels in the grafts and in the

donor plasma after apheresis. However, one cannot
exclude the possibility that differences in separation
and isolation of cells by themselves also contribute to
differences in mediator profiles in the stem cell grafts.
Cobe Spectra and Spectra Optia apply different mecha-
nisms for separation and collection of mobilized stem
cells [48], the major differences being (i) continuous
automatic versus intermittent manual interface posi-
tion control during centrifugation, (ii) intermediate
versus high centrifugation force, (iii) intermediate versus
low extracorporeal blood volume and (iv) continu-
ous collection of buffy coat versus intermittent
deposition of platelet-rich buffy coat into a collec-
tion chamber [48,49]. These differences may lead to
additional variations in processing- and product-
volumes as well as apheresis time in addition to the
differences in graft composition [49,50]. A higher
number of total blood volumes was also processed with
Cobe Spectra compared with Spectra Optia (Table II);
this may contribute to a stronger activation of cells
in the grafts and thereby increased mediator release
(Figure 3).

Even though G-CSF treatment leads to increased
plasma concentrations of several mediators, and the
levels of most mediators are further increased in the
graft, the infused graft volume is relatively small and
the pretransplantation level of many mediators is even
higher in the recipient. Thus, a post-transplantation
effect in the recipient caused by the infused cytokines
is probably small; in our opinion, potential modifica-
tion of graft immunocompetent cells more likely
influences the patient.

We observed an association between patient
comorbidity and pretransplantation mediator profile
(Figure 4A). However, the change in recipient medi-
ator profile early after stem cell infusion was not
predicted by comorbidity and the patients with in-
creased comorbidity index were evenly distributed
between the two main donor clusters identified in
Figure 4B.

The immediate post-transplantation mediator
profile of the patients was significantly associated to
both overall and disease-free survival, and this cor-
relation was not weakened by adjustment for HCT-
CI and age. On the contrary, when we expanded our
analysis with the Cox proportional hazards model to
calculate the effect size for each factor, the HR asso-
ciated with inclusion in the lower patient cluster in
Figure 4B after adjustment for comorbidity and age
increased from 12.20 to 17.73. Even though the sample
size in our study is small and the results, therefore,
should be interpreted with greatest caution and re-
garded as an exploratory survey, these results suggest
that larger prospective studies should be done to clarify
whether the post-transplantation mediator profile rep-
resents a prognostic marker for patient outcome.
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To conclude, both G-CSF treatment and apheresis
procedures alter the systemic mediator levels in stem
cell donors and in graft supernatants. Our results
suggest that infusion of allogeneic stem cell grafts from
healthy family donors will alter the short-term sys-
temic mediator levels in the recipients/patients. Altered
donor mediator levels caused by stem cell mobiliza-
tion and apheresis may also lead to potentially more
sustained changes of the properties of graft immu-
nocompetent cells. Whether these effects have any
impact on patient outcomes needs to be investigated
in future clinical studies.
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Supplementary Table 1: Median plasma mediator levels for the 25 allogeneic stem cell donors during stem cell apheresis.  
All mediator concentrations are given in pg/ml and presented as median values with variation ranges given in parentheses. 
IL-12 and GM-CSF showed undetectable levels and were not included in the table. From left to right, unstimulated mediator 
levels are compared to concentrations after G-CSF treatment, and these pre-apheresis levels are then compared to the 
mediator concentrations immediately after apheresis (Wilcoxon’s test for paired samples).  

Mediator Pre-apheresis Post-apheresis Apheresis effect (p) 

Immunomodulatory cytokines    
IFNɣ 2.8 (<2.2 - 25.5) <2.2 (<2.2 - 21.2) 0.004 (↓) 
CD40L 1309 (<998 - 95487) <998 (<998 - 88418) 0.000291 (↓) 
TNFα 7.9 (<0.8 - 18.4) 7.3 (3.2 - 16.8) ns 

Interleukins    
IL-1 RA 4867 (2415 - > 7528) 5443 (2701 - >7528) ns 
Il-1β  <0.3 (<0.3 - 0.9) <0.3 (<0.3 - 1.3) ns 
IL-6 1.9 (<0.9 - 5.5) 2.3 (1.3 - 10.5) 0.01 (↑) 
IL-8 (CXCL-8) 14.3 (<8.3 - 149.5) <8.3 (<8.3 - 135.8) 0.004 (↓) 
IL-10 0.51 (<0.5 - 12.8) <0.5 (<0.5 - 14.5) ns 

Chemokines    
CXCL5 (ENA-78) 155.9 (<61.1 - 3220) 90.4 (<61.1 - 1330) 0.000099 (↓) 
CXCL10 (IP-10) 129.9 (30.0 - 512.3) 161.7 (54.9 - 603.2) 0.001 (↑) 
CXCL11 (I-TAC) 58.1 (<17.0 - 256.6) 46.2 (<17.0 - 244.2) 0.000103 (↓) 
CCL2 (MCP-1) 240.9 (89.4 - 477.8) 251.9 (89.5 - 473.1) ns 
CCL4 (MIP-1β ) 324.5 (216.6 - 742.5) 294.4 (226.0 - 632.2) 0.000068 (↓) 
CCL5 (RANTES) 4120.9 (885.9 - >6000) 2789 (912.2 - >6000) 0.016 (↓) 
CCL11 (Eotaxin) 279.2 (<124.6 - 1977) 221.7 (<124.6 - 1379) 0.000162 (↓) 

Growth factors    
TPO 1394.7 (<378.2 - >109611) 1267.6 (<378.2 - >109611) 0.000438 (↓) 
VEGF 159.4 (74.8 - 464.8) 141.0 (72.8 - 266.6) 0.002 (↓) 
HGF 260.6 (<41.6 - 1459) 535.2 (<41.6 - 7641) ns 
Leptin 7216 (966.1 - 29917) 10469.5 (1488 - 42033) 0.000027 (↑)  
G-CSF >7425 (3687 - 14178) 5899 (1437 - >7425) 0.001 (↓) 

Adhesion molecules    
P-Selectin 18663 (6358.1 - 65218) 17531 (6293 - 30248) 0.000262 (↓) 
E-Selectin 25661 (12691 - 71422) 24976 (11759 - 69414) 0.000233 (↓) 
VCAM-1 970313 (425794 - > 1807879) 1020000 (619125 -  >1807879) ns 
ICAM-1 236484 (119891 - 1470000) 212718 (100571 - 1300000) 0.000087 (↓) 

Matrix metalloproteases    
MMP-1 538.1 (153.3 - 1979) 373.9  (129.4 - 807.9) 0.000068 (↓) 
MMP-2 40851 (19616 - >58201) 38415 (20145 - 44084) 0.002 (↓) 
MMP-3 6508 (2487 - >8924) 4477 (2519 - >8924) 0.00006 (↓) 
MMP-7 3468 (630.0 - 7624) 3212 (905.4 - 8078) ns  
MMP-8 21316 (6354.4 - 44166) 20531 (4362 - 46387) ns 
MMP-9 7386.7 (3276 - >37370) 7476.3 (3743 - 21406) ns 
MMP-12 <29.8 (<29.8 - 109.3) <29.8 (<29.8 - 94.9) 0.008 (↓) 
MMP-13 392.8(<220.4 - 2031) 325.0 (<220.4 - 1863) 0.000398 (↓) 

Metalloprotease inhibitors    
TIMP-1 79591 (52049.5 - 217884) 81399 (<12.7 - 146644) ns 
TIMP-2 69037 (52632 - 121228) 64526 (<42.1 - 100684) ns 
TIMP-3 16055 (<3897 - 37381) 14425 (<3897 - 44804) ns 
TIMP-4 1129.3 (574.7 - 2199) 1241.1 (<6.8 - 1994) ns 

Abbreviations: Ns; not significant, (↑): increased level, (↓): decreased level. 
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Supplementary Table 3:  Comparison of clinical parameters and plasma levels of  single mediators 24 hours after start of apheresis in 
the donor group achieving the target dose of CD34+ stem cells within one day of stem cell collection and the donor group in need of 
several aphereses to achieve the target dose. In the first group (I) the last dose of G-CSF treatment was given before start of apheresis. 
In the second group (II) G-CSF therapy was continued during sampling until the last day of apheresis. All values are given as medians 
with variation ranges in parenthesis. *Stem cell yield achieved per kg donor weight during the first day of apheresis.   
Clinical variable/ 
Mediator 

Single stem cell apheresis (I) 
 (n = 10) 

2 - 3 stem cell aphereses  (II) 
(n = 15) 

p-value 

 
Clinical variables 

   

       Age (years) 43 (25 - 77) 60 (45 - 73) 0.007 
       Weight (kg) 84 (63 - 91) 86 (51 - 160) ns 
       Apheresis device (CS/SO) (4/6) (5/10) ns 
       Apheresis duration (minutes) 305 (231 - 363) 313 (221 - 377) ns 
       No. of TBV processed 3.8 (3.0 -7.0) 3.4 (2.0 - 6.0) ns 
       PB [CD34+] x 103/mL 62.2 (30.4 - 147.8) 22.1 (16.7 - 58.8) 0.004 
       CD34+ yield x 106/kg* 7.2 (4.3 - 22.4) 3.2 (0.8 - 5.6) 0.000007 
Immunomodulatory cytokines    

IFNɣ <2.2 (<2.2 -  22.0) <2.2 (<2.2 -  8.5) ns 
CD40L 1442 (<998 - 95723) <998 (<998 - 18947) ns 
TNFα 6.1 (3.3  - 13.4) 9.0 (6.0  - 16.8) ns 

Interleukins     
IL-1 RA 3562 (1935 - 6711) 4921 (3078 - >7528) ns 
Il-1β <0.3 (<0.3 - 1.3) <0.3 (<0.3 - 1.1) ns 
IL-6 1.9 (1.2 - 8.1) 2.9 (1.5 - 7.1) ns 
IL-8 (CXCL-8) <8.3 (<8.3 - 140.2) <8.3 (<8.3 - 116.1) ns 
IL-10 0.5 (<0.5 - 1.5) 0.6 (<0.5 - 15.6) ns 

Chemokines     
CXCL5 (ENA-78) 93.3 (<61.1 - 1619) 101.4 (<61.1 - 215.5) ns 
CXCL10 (IP-10) 118.1 (66.6 - 164.2)  171.2 (50.4 - 503.7) 0.004 
CXCL11 (I-TAC ) 47.8  (<17.0 - 251.2) 52.5  (<17.0 - 91.1) ns 
CCL2 (MCP-1) 198.2 (69.6 - 282.5) 215.7 (129.1 - 448.5) ns 
CCL4 (MIP-1β ) 291.1 (230.4 - 647.5) 329.7 (237.6 - 613.9) ns 
CCL5 (RANTES) 2678 (738.4 - >6000) 2633 (1293 - >6000) ns 
CCL11 (Eotaxin) 225.6  (<124.6 - 1456) 230.9 (<124.6 - 941.8) ns 

Growth factors     
TPO 1827 (<378.2 - >109611) 987.7 (<378.2 - >109611) ns 
VEGF 154.0 (63.1 - 342.2) 129.2 (80.1 - 238.7) ns 
HGF 143.8 (<41.6 - 531.1) 284.3 (131.8 - 762.5) 0.012 
Leptin 8367 (2170 - 37720) 8105 (1061 - 24254) ns 
G-CSF 232.6  (116.7 - >7425) >7425  (5557 - >7425) 0.001 

Adhesion molecules     
P-Selectin 17750 (9137 - 32103) 19049 (6501 - 27253) ns 
E Selectin 28131 (13860 - 73710) 24425 (12569 - 71748) ns 
VCAM-1 1025780 (425136  -  >1807879) 1040000 (810567  -  >1807879) ns 
ICAM-1 257593 (114756 - 546034) 237033 (176383 - 1430000) ns 

Matrix metalloproteases   ns 
MMP-1 341.6 (179.7 - 959.4) 379.2 (169.8 - 711.7) ns 
MMP-2 39420 (28144 - 52346) 38831 (21012 - 50582) ns 
MMP-3 6792 (5146 - >8924) 7112 (4109 - >8924) ns 
MMP-7 3568 (2467 - 6635) 4009 81128 - 8901) ns 
MMP-8 27550 (3749 - >48433) 28889 (15907 - 72608) ns 
MMP-9 6334 (5761 -  11583) 7914 (5164 - 26402) ns 
MMP-12 <29.8 (<29.8 - 67.9) <29.8 (<29.8 - 94.3) ns 
MMP-13 326.9 (<220.4 - 1906) 266.6 (<220.4 - 905.2) ns 

Metalloprotease inhibitors     
TIMP-1 80738 (51985 - 125305) 85570 (66786 - 194546) ns 
TIMP-2 64060 (52849 - 94557) 72271 (56042 - 147914) ns 
TIMP-3 13313 (<3897 - 27096) 15308 (<3897 - 22237) ns 
TIMP-4 996.4 (707.2 - 1502) 1296 (957.4 - 3251) ns 

Abbreviations: CS: Cobe Spectra; SO: Spectra Optia; PB: Peripheral blood 
 
 
 
 



5 
 Su

pp
le

m
en

ta
ry

 T
ab

le
 4

: M
ed

ia
n 

re
ci

pi
en

t p
la

sm
a 

m
ed

ia
to

r l
ev

el
s d

ur
in

g 
in

fu
si

on
 o

f a
llo

ge
ne

ic
 st

em
 c

el
l g

ra
fts

 g
iv

en
 in

 p
g/

m
l w

ith
 v

ar
ia

tio
n 

ra
ng

es
 g

iv
en

 in
 p

ar
en

th
es

es
. T

he
 p

re
-tr

an
sp

la
nt

 m
ed

ia
to

r c
on

ce
nt

ra
tio

n 
w

as
  

m
ea

su
re

d 
at

 9
 a

m
 b

ef
or

e 
tra

ns
pl

an
ta

tio
n 

an
d 

co
m

pa
re

d 
to

 m
ed

ia
to

r l
ev

el
s i

n 
he

al
th

y 
un

tre
at

ed
 st

em
 c

el
l d

on
or

s (
W

ilc
ox

on
’s

 te
st

 fo
r p

ai
re

d 
sa

m
pl

es
, N

 =
16

). 
Th

e 
m

ed
ia

to
r l

ev
el

s w
er

e 
m

ea
su

re
d 

at
 9

 a
m

 th
e 

fir
st 

po
st-

 
tra

ns
pl

an
t d

ay
 a

nd
 c

om
pa

re
d 

(W
ilc

ox
on

’s
 te

st
 fo

r p
ai

re
d 

sa
m

pl
es

) t
o 

pr
e-

tra
ns

pl
an

t c
on

ce
nt

ra
tio

ns
 (N

 =
 1

6)
 a

nd
 to

 la
te

 p
os

t-t
ra

ns
pl

an
t l

ev
el

s (
m

ed
ia

n 
6 

da
ys

 p
os

t-t
ra

ns
pl

an
t, 

ra
ng

e 
4-

13
 d

ay
s, 

N
=8

). 

M
ed

ia
to

r 
Pr

e-
tr

an
sp

la
nt

 le
ve

l 
(p

g/
m

l) 
Pr

e-
tr

an
sp

la
nt

 v
s  

he
al

th
y 

(p
,  

N
 =

 1
6)

 
E

ar
ly

 p
os

t-t
ra

ns
pl

an
t  

 
le

ve
l  

(p
g/

m
l) 

 E
ar

ly
 p

os
t-t

ra
ns

pl
an

t v
s. 

pr
e-

tr
an

sp
la

nt
  

(p
, N

 =
16

) 

L
at

e 
po

st
-tr

an
sp

la
nt

 
 le

ve
l (

pg
/m

l) 

E
ar

ly
 v

s l
at

e 
po

st
-

tr
an

sp
la

nt
  

(p
, N

 =
 8

) 
Im

m
un

om
od

ul
at

or
y 

cy
to

ki
ne

s 
 

 
 

 
 

 
IF

N
ɣ 

<2
.2

 (<
2.

2 
- 4

.9
) 

0.
01

1 
(↓

) 
(<

2.
2 

(<
2.

2 
- 5

.3
) 

ns
 

<2
.2

 (<
2.

2 
-  

4.
7)

 
ns

 
C

D
40

L 
<9

98
 (<

99
8 

- 2
61

8)
 

0.
04

9 
(↓

) 
<9

98
 (<

99
8 

- 1
46

8)
 

ns
 

  <
99

8 
(<

99
8 

- 1
91

9)
 

ns
 

TN
Fα

 
7.

3 
(3

.8
 - 

11
.6

) 
0.

00
00

73
 (↑

) 
6.

4 
(3

.9
 - 

13
.3

) 
ns

 
6.

2 
(3

.4
 - 

8.
7)

 
ns

 
In

te
rle

uk
in

s 
 

 
 

 
 

 
IL

-1
 R

A
 

83
8 

(4
03

 - 
20

00
) 

ns
 

72
1 

(3
47

 - 
12

53
) 

0.
03

4 
(↓

) 
55

0 
(1

33
 - 

91
0)

 
0.

03
6 

(↓
) 

IL
-1

 β
 

0.
58

 (<
0.

37
 - 

1.
52

) 
0.

00
00

48
 (↑

) 
0.

65
 (0

.4
2 

- 1
.3

6)
 

ns
 

0.
68

 <
0.

37
 - 

1.
58

) 
ns

 
IL

-6
 

4.
5 

(6
.0

 - 
32

.4
) 

0.
00

00
00

43
 (↑

) 
4.

5 
(2

.3
 - 

61
.9

) 
ns

 
30

.2
 (3

.3
 - 

15
7)

 
0.

02
5 

(↑
) 

IL
-8

 (C
X

C
L-

8)
 

9.
7 

(<
8.

3 
- 1

47
) 

ns
 

<8
.3

 (<
8.

3 
- 3

2.
4)

 
0.

01
3 

(↓
) 

87
.8

 (1
1.

1-
 2

73
) 

0.
01

2 
(↑

) 
IL

-1
0 

0.
53

 (<
0.

50
 - 

5.
5)

 
0.

00
00

00
18

 (↑
) 

0.
48

 (<
0.

50
 - 

5.
3)

 
ns

 
0.

85
 (<

0.
50

 - 
5.

8)
 

0.
04

3 
(↑

)  
C

he
m

ok
in

es
 

 
 

 
 

 
 

C
X

C
L5

 (E
N

A
-7

8)
 

20
5 

(<
61

.1
 - 

12
54

) 
ns

 
17

6.
5 

<6
1.

1 
- 3

57
) 

ns
 

89
.2

 (<
61

.1
 - 

23
1)

 
0.

05
0 

(↓
) 

C
X

C
L1

0 
(IP

-1
0)

 
13

7(
19

.3
 - 

26
7)

 
0.

03
0 

(↑
) 

89
.9

 (2
8.

3 
- 4

65
) 

ns
 

83
.6

 (2
9.

7 
- 1

35
) 

ns
 

C
X

C
L1

1 
(I-

TA
C

 ) 
35

8 
(1

17
 - 

57
9)

 
0,

00
00

00
00

05
8 

(↑
) 

32
9 

(1
41

 - 
49

3)
 

ns
 

18
3 

(8
4 

- 3
09

) 
0.

01
2 

(↓
) 

C
C

L2
 (M

C
P-

1)
 

86
9 

(<
44

.0
 - 

14
79

) 
0.

00
00

17
 (↑

) 
81

2.
5 

(<
44

.0
 - 

12
59

) 
ns

 
10

14
 (4

83
 - 

27
29

) 
ns

 
C

C
L4

 (M
IP

-1
β 

) 
37

0 
(1

91
 - 

70
1)

 
ns

 
32

5 
(2

17
 - 

74
3)

 
ns

 
29

4 
(2

26
 - 

63
2)

 
ns

 
C

C
L5

 (R
A

N
TE

S)
 

>6
00

0 
(4

76
 - 

>6
00

0)
 

ns
 

>6
00

0 
(8

27
 - 

>6
00

0)
 

ns
 

27
46

 (1
98

 - 
>6

00
0)

 
0.

01
7 

(↓
) 

C
C

L1
1 

(E
ot

ax
in

) 
19

1 
(<

12
5 

- 2
45

) 
0.

00
03

43
 (↓

) 
18

1 
(<

12
5 

- 3
15

) 
ns

 
18

6 
(<

12
5 

- 3
28

) 
ns

 
G

ro
w

th
 fa

ct
or

s 
 

 
 

 
 

 
TP

O
 

39
98

 (6
14

 - 
89

66
) 

ns
 

31
00

 (7
81

 - 
65

93
) 

0.
00

3 
(↓

) 
47

37
 (3

67
0 

- 5
74

8)
 

0.
01

7 
(↑

) 
V

EG
F 

19
8 

(5
8.

7 
- 2

67
) 

ns
 

17
8 

(6
0.

7 
- 2

29
) 

ns
 

11
1 

(6
0.

4 
- 1

91
) 

0.
05

0 
(↓

) 
H

G
F 

51
6.

6 
(2

10
 - 

18
90

) 
0.

00
2 

(↑
) 

46
1.

1 
(2

62
 - 

15
36

) 
ns

 
27

4.
6 

(<
41

.6
 - 

74
5)

 
ns

 
Le

pt
in

 
22

21
8 

(1
97

8 
- 8

13
10

) 
0.

02
4 

(↑
) 

18
82

0 
(3

10
8 

- 6
43

31
) 

ns
 

23
49

1 
(2

24
9 

- 5
37

39
) 

ns
 

G
M

-C
SF

 
<0

.3
7(

<0
.3

7 
- 0

.6
6)

 
0.

00
7 

(↑
) 

<0
.3

7 
(<

0.
37

- 3
.7

) 
0.

00
8 

(↑
) 

0.
87

 (<
0.

37
 - 

6.
3)

 
0.

01
8 

(↑
) 

G
-C

SF
 

84
.5

 (3
2.

3 
- 2

53
) 

0.
00

7 
(↑

) 
83

.3
 (5

1.
1 

- 2
59

) 
ns

 
15

16
 (1

40
 - 

>7
43

) 
0.

01
2 

(↑
) 

A
dh

es
io

n 
m

ol
ec

ul
es

 
 

 
 

 
 

 
P-

Se
le

ct
in

 
22

74
4 

(1
00

59
 - 

43
88

1)
 

0.
00

5 
(↑

) 
26

70
7 

(1
40

84
 - 

46
94

2)
 

0.
00

1 
(↑

) 
16

28
4 

(6
68

6 
- 2

78
12

) 
0.

01
2 

(↓
) 

E 
Se

le
ct

in
 

23
31

5 
(7

58
1 

- 4
79

28
) 

ns
 

23
77

2 
(7

17
5 

- 5
74

10
) 

ns
 

17
17

5 
(4

21
1 

- 3
60

79
) 

0.
01

2 
(↓

) 

V
C

A
M

-1
 

>1
80

78
79

 (8
38

30
7 

- 
>1

80
78

79
) 

0.
00

00
00

00
03

7 
(↑

) 
>1

80
78

79
 (4

25
79

4 
- >

18
07

87
9)

 
ns

 
10

20
00

0 
(6

19
12

5 
- 

>1
80

78
79

) 
ns

 
IC

A
M

-1
 

34
19

80
 (2

09
06

5 
- 1

31
00

00
) 

ns
 

36
09

66
 (2

21
83

4 
- 1

34
00

00
) 

ns
 

34
30

05
 (2

10
36

9 
- 5

19
83

0)
 

ns
 

M
at

rix
 m

et
al

lo
pr

ot
ea

se
s 

 
 

 
 

 
 

M
M

P-
1 

98
90

  (
92

2 
- >

 7
83

2)
 

0.
00

00
00

00
01

4 
(↑

) 
93

26
 (7

41
 - 

> 
78

32
) 

ns
 

97
56

 (2
57

6 
- >

 7
83

2)
 

ns
 

M
M

P-
2 

>5
82

01
 (>

58
20

1 
-  

>5
82

01
) 

0.
00

00
00

01
8 

(↑
) 

>5
82

01
 (>

58
20

1 
-  

>5
82

01
) 

ns
 

>5
82

01
 (>

58
20

1 
- >

58
20

1)
 

ns
 

M
M

P-
3 

  >
89

24
 (4

27
7 

- >
89

24
) 

0.
02

6 
  >

89
24

 (3
01

2 
- >

89
24

) 
ns

 
  >

89
24

 (4
30

6 
- >

89
24

) 
ns

 
M

M
P-

7 
50

31
 (1

02
0 

- 2
01

43
) 

ns
 

51
30

 (1
12

6 
- 1

95
00

) 
ns

 
69

95
 (4

76
9 

- 1
85

26
) 

ns
 

M
M

P-
8 

12
91

 (<
22

2-
 3

73
1)

 
0.

00
03

04
 (↑

) 
24

79
 (1

36
5 

- 1
01

27
) 

0.
00

1 
(↑

) 
60

1 
(2

16
- 1

84
5)

 
0.

01
2 

(↓
) 

M
M

P-
9 

36
33

 (4
58

 - 
78

79
) 

ns
 

40
29

 (5
21

 - 
10

98
1)

 
ns

 
98

9 
(3

87
 - 

17
14

) 
0.

01
2 

(↓
) 

M
M

P-
12

 
 <

29
.8

 (<
29

.8
 - 

38
2)

 
ns

 
<2

9.
8 

(<
29

.8
 - 

42
8)

 
ns

 
<2

9.
8 

(<
29

.8
 - 

47
5)

 
ns

 
M

M
P-

13
 

<2
20

 (<
22

0 
- 3

81
) 

0.
00

04
89

 (↓
) 

<2
20

 (<
22

0 
- 3

15
) 

ns
 

<2
20

 (<
22

0 
- 2

16
) 

ns
 

M
et

al
lo

pr
ot

ea
se

 in
hi

bi
to

rs
 

 
 

 
 

 
 

TI
M

P-
1 

12
73

45
  (

61
88

6 
 - 

19
19

29
) 

0,
00

00
01

 (↑
) 

11
51

04
.9

  (
93

52
3 

- 1
93

34
7)

 
ns

 
11

95
04

 (9
16

55
 - 

14
66

56
0)

 
ns

 
TI

M
P-

2 
10

10
00

 (5
97

98
  -

 1
36

15
1)

 
0.

00
3 

(↑
) 

10
46

48
 (8

73
44

  -
 1

34
79

9)
 

ns
 

10
04

57
 (7

67
74

 - 
14

41
22

) 
ns

 
TI

M
P-

3 
25

02
7 

(1
22

67
 - 

36
42

6)
 

0.
00

01
62

 (↑
) 

26
96

5 
(2

02
28

 - 
29

45
4)

 
ns

 
26

32
4 

(2
02

28
 - 

31
85

2)
 

ns
 

TI
M

P-
4 

26
31

 (7
39

 - 
76

06
) 

0.
00

00
41

 (↑
) 

20
56

 (4
98

- 4
44

8)
 

0.
01

1 
(↓

) 
26

05
 (1

07
9 

- 5
12

1)
 

ns
 

 



                                       Apheresis effect
                           Donor cluster difference                               

   

Cobe Spectra
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Supplementary Figure 1  
Unsupervised hierarchical cluster analyses based on plasma mediator levels immediately after apheresis. All color 
schemes are presented in the lower part of the figure. The figure shows the heat map with corresponding 
dendrograms. Red color in the donor/mediator columns of the heat maps indicates levels higher than the 
corresponding median level for each mediator, whereas green color indicates low levels compared to the median. 
The dendrogram showing the horizontal mediator clustering is presented at the top of the heat map, and each 
mediator is marked with its original yellow or dark grey color from the pre-treatment clustering analysis (see Figure 
2A. Two columns to the left are marked with Donor ID and Apheresis Device, respectively. These two columns 
indicate (i) the two main donor clusters from the analysis of pre-treatment samples (see Figure 2A/upper; pigeon 
grey and white color), and (ii) the apheresis device used for each donor (Cobe Spectra in yellow, and Spectra Optia 
in blue). 
 
‡Apheresis effect. The upper horizontal row between the heat map and the mediator clustering indicates the 
apheresis effect on the plasma concentration of each individual mediator. Significant increased (Wilcoxon’s test for 
paired samples, beige color) and decreased mediator levels (turquoise color) during G-CSF therapy are indicated.   
 
†Donor cluster difference. The lower horizontal row between the heat map and the mediator clustering indicates 
single mediators that differed significantly between the two donor clusters and they are marked with purple color.  
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Supplementary Figure 2  
Unsupervised hierarchical cluster analyses based on plasma mediator levels 24 hours after start of apheresis. All 
color schemes are presented in the lower part of the figure. The figure shows the heat map with corresponding 
dendrograms. Red color in the donor/mediator columns of the heat maps indicates levels higher than the 
corresponding median level for each mediator, whereas green color indicates low levels compared to the median. 
The dendrogram showing the horizontal mediator clustering is presented at the top of the heat map, and each 
mediator is marked with its original yellow or dark grey color from the pre-treatment clustering analysis (see Figure 
2A. Two columns to the left are marked with Donor ID and Apheresis Device, respectively. These two columns 
indicate (i) the two main donor clusters from the analysis of pre-treatment samples (see Figure 2A/upper; pigeon 
grey and white color), and (ii) the apheresis device used for each donor (Cobe Spectra in yellow, and Spectra Optia 
in blue). 
 
 #G-CSF and apheresis effect. The upper horizontal row between the heat map and the mediator clustering indicates 
the overall effect of G-CSF therapy and apheresis on single mediator levels. Beige color indicates G-CSF induced 
concentration rise not significantly or modestly modified by apheresis and still present 24 hours after termination of 
G-CSF therapy (Wilcoxon’s test for paired samples). Turquoise color indicates significant increasing effect of G-
CSF followed by concentration decrease during apheresis. 
 
 †Donor cluster difference. The lower horizontal row between the heat map and the mediator clustering indicates 
single mediators that differed significantly between the two donor clusters and they are marked with purple color  
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Supplementary Figure 3 
The effect of stem cell infusion on allogeneic stem cell recipient plasma mediator levels. The mediators showing the 
most significant changes are presented (see Table 4). Pre-transplant mediator levels were determined at 9 am on the 
day of transplantation  (A), early post-transplant levels at 9 am the first day after transplantation (B) and late post-
transplant level median day 6 post-transplant (range: day 4–13) (C). The individual values (pg/ml) and medians for 
16 allogeneic stem cell recipients are presented, with the p-values shown at the top. 
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Einar K. Kristoffersen 1,2, Tor Hervig 1,2 and Øystein Bruserud 2,5,*

1 Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5021 Bergen,
Norway; guro.kristin.melve@helse-bergen.no (G.K.M.); einar.kristoffersen@uib.no (E.K.K.);
tor.audun.hervig@helse-bergen.no (T.H.)

2 Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
3 Department of Biomedical Laboratory Sciences and Chemical Engineering, Faculty of Engineering and

Business Administration, Bergen University College, N-5020 Bergen, Norway; elisabeth.ersver@hib.no
4 Department of Immunology and Transfusion Medicine, Oslo University Hospital, Ullevål, N-0424 Oslo,

Norway; uxciak@ous-hf.no
5 Division for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen,

Norway; aymen.bushra.ahmed@helse-bergen.no
* Correspondence: oystein.bruserud@haukeland.no; Tel.: +47-55-97-50-00

Academic Editor: Maurizio Muraca
Received: 28 April 2016; Accepted: 11 July 2016; Published: 19 July 2016

Abstract: Peripheral blood stem cells from healthy donors mobilized by granulocyte
colony-stimulating factor (G-CSF) and harvested by leukapheresis are commonly used for allogeneic
stem cell transplantation. The frequency of severe graft versus host disease is similar for patients
receiving peripheral blood and bone marrow allografts, even though the blood grafts contain more
T cells, indicating mobilization-related immunoregulatory effects. The regulatory phosphoprotein
osteopontin was quantified in plasma samples from healthy donors before G-CSF treatment, after
four days of treatment immediately before and after leukapheresis, and 18–24 h after apheresis.
Myeloma patients received chemotherapy, combined with G-CSF, for stem cell mobilization and
plasma samples were prepared immediately before, immediately after, and 18–24 h after leukapheresis.
G-CSF treatment of healthy stem cell donors increased plasma osteopontin levels, and a further
increase was seen immediately after leukapheresis. The pre-apheresis levels were also increased in
myeloma patients compared to healthy individuals. Finally, in vivo G-CSF exposure did not alter
T cell expression of osteopontin ligand CD44, and in vitro osteopontin exposure induced only small
increases in anti-CD3- and anti-CD28-stimulated T cell proliferation. G-CSF treatment, followed
by leukapheresis, can increase systemic osteopontin levels, and this effect may contribute to the
immunomodulatory effects of G-CSF treatment.

Keywords: allogeneic transplantation; hematopoietic stem cell mobilization; granulocyte
colony-stimulating factor; osteopontin; apheresis

1. Introduction

Osteopontin is a glycosylated phosphoprotein synthesized and secreted by various cells [1].
The ability to interact with several cell surface receptors, including certain integrins and CD44, makes
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osteopontin a functional regulator of cell adhesion, migration, and survival for a wide range of
cells [1]. Binding of osteopontin to the intracellular part of CD44 is important for cytoskeletal
functions [2,3], transcriptional regulation, and anti-apoptotic signaling in normal and malignant
cells [1,4–6]. Finally, osteopontin is important for normal hematopoiesis and is a component of the
hematopoietic stem cell niche, where it regulates the location and cycling of normal stem cells [7,8].

Osteopontin is widely expressed by immunocompetent cells and upregulated both during
inflammation and in various tumors [1,9–15]. It has pro-inflammatory effects by stimulating
chemotaxis of various immunocompetent cells and by increasing pro-inflammatory cytokine release
from macrophages [9] and expression of antigen-presenting and costimulatory molecules by dendritic
cells [16]. It is also important for B cell proliferation and immunoglobulin production and is released by
activated B cells and T cells as a Th1-associated cytokine [17–19]. However, osteopontin may also have
anti-inflammatory effects [1], as observed both in animal models [19,20] and human disease [20,21].

Osteopontin is also important for growth regulation of acute lymphoblastic, and probably also
acute myeloid leukemia, cells located at the endosteal stem cell niche [22,23]. Studies in humans
have demonstrated that plasma osteopontin levels can reflect local inflammation [24] as well as tumor
hypoxia and, thereby, chemo-sensitivity [25].

Systemic administration of granulocyte colony-stimulating factor (G-CSF) is commonly applied
to mobilize hematopoietic stem cells for collection by leukapheresis [26–28]. Several apheresis systems
have been developed for efficient harvesting of mononuclear cells [29–31]. Peripheral blood stem
cell grafts are widely used for allogeneic and autologous hematopoietic stem cell transplantation
(allo- and auto-HSCT) in hematological diseases, solid tumors and immune disorders [26,32–36], and
increasingly in autoimmune and non-malignant gastrointestinal diseases [37–39]. Additionally, G-CSF
mobilized progenitor cells are applicable in regenerative medicine and immunotherapy, and have, e.g.,
been tried in coronary and limb ischemia, as a possible source for differentiation of dendritic cells and
for isolation of mesenchymal stromal cells [40–44].

One important complication associated with allo-HSCT is acute graft versus host disease (acute
GVHD). The risk of acute GVHD seems to be similar for peripheral blood and bone marrow
allografts [45], suggesting that the potentially adverse effect of the larger number of donor T cells in
peripheral blood allografts is counteracted by immunomodulation of graft T cells during mobilization
or harvesting.

Animal models suggest that osteopontin stimulates CD8+ T cell-mediated GVHD [46]. This effect
may be caused either by pre-transplant modulation of immunocompetent cells in the allogeneic
stem cell grafts, or by post-transplant modulation caused by osteopontin in the graft supernatant or
osteopontin released in the recipient. Osteopontin has several immunomodulatory effects, and in
this context we investigated the levels of osteopontin in autologous and allogeneic stem cell donors
and stem cell grafts during mobilization/harvesting and in allogeneic stem cell recipients following
graft infusion.

2. Results

2.1. Plasma Osteopontin Levels of Healthy Stem Cell Donors Increase during Granulocyte Colony-Stimulating
Factor (G-CSF) Treatment and Reach a Maximal Level Immediately Following Stem Cell Harvesting
by Leukapheresis

The median plasma osteopontin levels in healthy allogeneic stem cell donors prior to G-CSF
therapy was 45 ng/mL (variation range: 27–62 ng/mL), see Table 1 and Figure 1. During G-CSF
treatment, and immediately prior to leukapheresis, the osteopontin concentration in the stem cell
donors was increased to a median level of 50 ng/mL (range: 19–75 ng/mL, p = 0.008). The healthy
allogeneic stem cell donors were compared to a group of 15 healthy platelet donors who did not receive
any kind of treatment prior to the apheresis. These healthy platelet donors showed no significant
differences compared to the healthy stem cell donors with respect to age, gender distribution, or
baseline white blood cell counts (Table 2). The pre-apheresis osteopontin concentrations of the platelet
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donors (median 44 ng/mL; range: 28–60 ng/mL) did not differ from the pre-treatment levels of the
allogeneic stem cell donors either (Table 1).
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Figure 1. Plasma osteopontin levels in healthy allogeneic stem cell donors during stem cell mobilization
and harvesting. Peripheral blood plasma osteopontin concentrations were determined prior to
stimulation with granulocyte colony-stimulating factor (G-CSF) (A), after stem cell mobilization and
immediately prior to apheresis (B), immediately after apheresis (C) and approximately 24 h after start
of apheresis (D).

Table 1. The effect of granulocyte colony-stimulating factor (G-CSF) treatment, apheresis procedures
and allogeneic stem cell transplantation on plasma osteopontin (OPN; Upper part) and G-CSF
(Lower part) concentration. (Upper part) From the top, the plasma OPN levels are presented for the
four study groups: (i) prior to and after G-CSF treatment of allogeneic stem cell donors; (ii) immediately
before and after apheresis and in the apheresis product for each study group undergoing apheresis;
and (iii) in allotransplanted patients 8–12 h prior to start of stem cell infusion and 12–16 h after infusion;
(Lower part) Plasma G-CSF concentrations are given for allogeneic stem cell donors prior to and after
G-CSF treatment and for autologous stem cell donors only after the G-CSF therapy. All concentrations
are given as medians with variation ranges in parentheses.

Patients/Donors Procedure Pre-Procedure
OPN (ng/mL)

Post-Procedure
OPN (ng/mL) p Value Apheresis Product

OPN (ng/mL)

Allogeneic stem cell donors G-CSF stimulation 45 (27–62) 50 (19–75) 0.008 -
Stem cell apheresis 50 (19–75) 56 (31–87) 0.006 53 (29–73)

Autologous stem cell donors Stem cell apheresis 89 (41–356) 109 (55–473) 0.008 86 (7–328)
Healthy platelet donors Platelet apheresis 44 (28–60) 46 (33–56) NS 48 (25–75) 1

Allogeneic HSC recipients Allogeneic stem cell
transplantation 126 (80–438) 103 (72–260) NS Not applicable

Patients/Donors Procedure Pre-Procedure
G-CSF (pg/mL)

Post-Procedure
G-CSF (pg/mL) p Value Apheresis Product

G-CSF (pg/mL)

Allogeneic stem cell donors G-CSF stimulation 50 (22–241) 10,780 (3687–31,947) 0.0003 6673 (1704–21,152)
Autologous stem cell donors G-CSF stimulation Not determined 18,366 (9861–46,314) Not determined 12,906 (8863–41,139)

1 The osteopontin values measured in platelet concentrate supernatants were adjusted for dilution of the
products with platelet additive solution (37% plasma, 63% T-sol). NS, not significant.
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Table 2. Clinical and biological characteristics of healthy stem cell donors, autotransplanted myeloma
patients, healthy platelet donors, and allotransplant recipients. Number of individuals, age, and
gender (M: male, F: female) are presented for each study group. Median basal white blood cell
counts (WBC ˆ 109/L) are given for the study groups undergoing apheresis. White blood cell counts
and peripheral blood (PB) concentrations of CD34+ stem cells before start of apheresis and yield of
CD34+ stem cells are given for G-CSF stimulated allogeneic and autologous donors (multiple myeloma
patients). All values are presented as medians with the variation ranges given in parentheses.

Group Age Gender (M/F)

Total White Blood Cell Count in
the Grafts

CD34+ Cells after
G-CSF Treatment

Baseline Level
(ˆ109/L)

After G-CSF
(ˆ109/L)

PB Level
(ˆ103/mL)

Yield
(ˆ106/kg)

Allogeneic stem cell
donors (n = 22) 51 (25–77) 14/8 5.9 (3.1–13.4) 46.0 (30.1–76.3) 44.1 (16.7–147.8) 5.4 (0.8–22.4)

Autologous stem
cell donors (n = 15) 57 (44–67) 9/6 5.4 (2.5–9.0) 10.8 (2.7–43.7) 39.9 (9.7–175.0) 5.3 (1.1–27.9)

Platelet donors
(n = 15) 47 (26–62) 8/7 6.0 (4.7–13.5) - - -

Allogeneic HSCT
recipients (n = 16) 47 (35–63) 7/9 - - - -

HSCT, hematopoietic stem cell transplantation.

The G-CSF-treated allogeneic stem cell donors showed a further increase of the median
osteopontin concentration to 56 ng/mL (range: 31–87 ng/mL, p = 0.008, Table 1) immediately after
leukapheresis, but 18–24 h after start of apheresis the median level had declined to 54 ng/mL (range:
29–76 ng/mL, p = 0.014, Figure 1). In contrast, the control group of healthy platelet donors showed
stable osteopontin levels throughout the observation period without significant altered concentrations
immediately after apheresis or 18–24 h after start of apheresis (Table 1).

Plasma G-CSF concentrations in allogeneic stem cell donors prior to and after mobilization were
also investigated. The median pre-treatment G-CSF level was 50 pg/mL (range: 22–241 pg/mL) and
after four days of G-CSF it was 10,780 pg/mL (range: 3687–31,947 pg/mL); see lower part of Table 1.
G-CSF and osteopontin levels then showed no significant correlation.

There were no significant associations between osteopontin plasma levels and apheresis time
(median: 305 min; range: 231–377 min) the absolute number of total blood volumes processed during
apheresis (median: 3.6; range: 1.6–6.6), or apheresis device applied.

2.2. Plasma Osteopontin Levels Show an Inverse Correlation with Peripheral Blood Neutrophil Levels during
G-CSF Therapy but No Association with Peripheral Blood Levels or Yields of CD34+ Cells

We used simple linear regression analyses with one way analysis of variance (ANOVA) to
study the correlation between healthy stem cell donor osteopontin levels (all donors included in the
analysis) and the corresponding peripheral blood levels of total leukocytes (Table 2) and leukocyte
subsets. Plasma osteopontin levels immediately prior to leukapheresis showed significant inverse
correlations with the corresponding peripheral blood neutrophil counts (median: 38.5 ˆ 109/L;
range: 24.3–66.4 ˆ 109/L; R2 = 0.381; p = 0.002) and total peripheral blood leukocyte counts (median:
46.0 ˆ 109/L; range: 30.1´76.3 ˆ 109/L; R2 = 0.366; p = 0.003). With this exception, there were no
significant associations between osteopontin levels and the total leukocyte counts or the levels of
neutrophils, monocytes, total lymphocytes, CD3+ lymphocytes, or CD34+ cells in peripheral blood or
in the stem cell graft at any other time point.

2.3. Myeloma Patients (Autologous Stem Cell Donors) Show Increased Plasma Osteopontin Levels after G-CSF
Therapy Compared with Healthy Allogeneic Stem Cell Donors

Plasma samples from myeloma patients receiving G-CSF therapy for mobilization of autologous
stem cells were available only immediately before leukapheresis (after five days of G-CSF treatment);
the plasma osteopontin levels then showed a wide variation and were significantly increased for
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the myeloma patients (median 89 ng/mL; range 41–356 ng/mL) compared with the pre-apheresis
levels of the healthy stem cell donors (Mann-Whitney U test, p = 0.001). As presented in Table 1
(lower part), the pre-harvesting G-CSF levels were also significantly higher for myeloma patients
(median 18,366 pg/mL; range 9861–46,314 pg/mL) than for the healthy stem cell donors (median:
10,780 pg/mL; range: 3687–31,947 pg/mL; p = 0.005). There was no significant correlation between
pre-harvesting G-CSF and osteopontin plasma levels in the myeloma patients. As shown in Table 1 and
Figure 2, myeloma patients had a significant increase in plasma osteopontin level during apheresis,
but the increase in median osteopontin level 24 h after apheresis did not reach statistical significance.
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Figure 2. Plasma osteopontin levels in autologous stem cell donors (myeloma patients) after stem cell
mobilization and immediately prior to apheresis (B), immediately after apheresis (C) and approximately
24 h after start of apheresis (D).

2.4. Osteopontin Levels Are Higher in Autografts from Myeloma Patients than in Allografts from Healthy Stem
Cell Donors

We then compared osteopontin concentrations in the apheresis products from autologous and
allogeneic stem cell donors and healthy platelet donors. Autologous stem cell grafts from myeloma
patients showed significantly higher supernatant osteopontin levels than the allografts (p = 0.002) and
the platelet concentrates (p = 0.005); the results are summarized in Table 1 and presented in detail in
Figure 3. The osteopontin levels in auto- and allografts were higher than unstimulated plasma levels in
autologous and allogenic donors, but did not differ significantly from the corresponding plasma levels
during G-CSF therapy. Due to dilution with platelet additive solution as described in the experimental
section, the osteopontin levels in platelet concentrates were lower than the corresponding plasma
levels in the platelet donors, and low compared to allogeneic and autologous stem cell grafts (median:
18 ng/mL; range: 10–28 ng/mL). The patients treated with the platelet concentrates thus received
relatively low amounts of osteopontin during platelet infusion. However, after correction for the
dilution factor, there was no significant difference between osteopontin levels in platelet concentrates
and stem cell grafts from healthy donors or between platelet concentrates and peripheral blood samples
from the platelet donors (Table 1, Figure 3).
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Figure 3. Osteopontin levels in apheresis products, i.e., peripheral blood stem cell grafts and
platelet concentrates. The osteopontin levels were determined in allogeneic stem cell products from
G-CSF-mobilized healthy stem cell donors (n = 22), autologous stem cell products derived from
myeloma patients mobilized by chemotherapy plus G-CSF (n = 15), and platelet concentrates from
unstimulated healthy platelet donors (n = 15). The osteopontin levels measured in platelet concentrate
supernatants were adjusted for dilution of the products with platelet additive solution (37% plasma,
63% solution).

2.5. Pretransplant Osteopontin Levels of Allotransplant Recipients Are Increased and the High Levels Are Not
Altered Following the Infusion of Osteopontin-Containing Stem Cell Grafts

The pre-transplant osteopontin levels in allotransplant recipients were high (median: 126 ng/mL;
range: 80–438 ng/mL) and were significantly higher than the levels in healthy individuals (p < 0.001;
see Table 1), and even higher than for the myeloma patients (p = 0.02). The infusion of the
osteopontin-containing allograft did not alter the plasma levels significantly; the levels remained
high in the allotransplant recipients both when tested one day post-transplant and for eight patients
also tested later after the transplantation (median: six days after infusion; range: 4–13 days).

Additional analyses showed no association between recipient osteopontin plasma levels (Table 1)
and (i) patient age and gender; (Table 2) (ii) allograft content of leukocytes, CD34+ stem cells, CD3+

T cells, neutrophils, monocytes, lymphocytes or platelets measured as absolute numbers or as the
number of cells per kg patient body weight (Table 3).

As presented in Table 3, the median time until neutrophil reconstitution with peripheral blood
neutrophil counts above 0.5 ˆ 109/L on the first of three consecutive days was day +17 (range: day +13
to +28). Furthermore, the median time of platelet counts above 50 ˆ 109/L for the first of three
consecutive days was day +15 (range: day +11 to +39). There was no significant association between
osteopontin levels and time until hematopoietic reconstitution. Finally, for the 16 patients investigated
acute GVHD grade II–IV was seen in two patients, early death before day +100 in four patients, chronic
GVHD in nine patients, and leukemia relapse in four patients. These observations suggest that our
16 patients are representative for allotransplanted patients.
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Table 3. Allogeneic stem cell grafts derived from healthy donors; the levels of various cells in the grafts
and the post-transplant clinical course of the allotransplant recipients. The cell content of the stem cell
grafts infused to 16 allotransplant recipients is presented as the absolute numbers in the graft (graft
content) and as the infused cell doses per kg (infused cells).

Cell Type Graft Content (ˆ108) Infused Cells (ˆ106/kg) Post-Transplant Course 1

Total WBC 791 (342–2495) 109 (376–3054) Neutrophil reconstitution 17 (13–28)
CD34+ stem cells 4.6 (2.4–6.7) 5.5 (3.3–6.8) Platelet reconstitution 15 (11–39)

CD3+ T cells 278 (71–490) 39 (10–61) aGVHD 2/16
Neutrophils 285 (112–1048) 45 (15–133) cGVHD 9/16
Monocytes 127 (18–563) 16 (3–69) Early death 4/16

Lymphocytes 346 (105–759) 50 (14–96) Relapse 4/16
Platelets 7068 (3176–11,449) 9607 (3655–14,260) - -

1 Neutrophil and platelet reconstitution is given as the first of three consecutive days after the transplantation
with neutrophil counts above 0.5 ˆ 109/L and platelet transfusion independence with platelet counts above
50 ˆ 109/L. aGVHD: acute graft versus host disease grade II–IV, cGVHD: chronic graft versus host disease,
early death: defined as death before day +100 after transplantation, WBC: white blood cell count. All values
are presented as medians with the variation ranges given in parentheses or as fractions of the total number of
16 patients.

2.6. T and B Lymphocytes Show High Expression of the CD44 Osteopontin Receptor and these High Levels Are
Maintained during Stem Cell Mobilization and Harvesting

Interaction between osteopontin and the CD44 receptor mediates chemotaxis of lymphocytes and
macrophages [47]. We investigated the expression of CD44 by viable donor lymphocytes during stem
cell mobilization and harvesting; the receptor was generally highly expressed and all comparisons
are therefore based on the mean fluorescence intensity (MFI), see Figure 4. In CD19+ B cells MFI
was reduced from 31,869 to 25,519 (mean values, n = 15) during G-CSF stimulation (p = 0.022).
No significant G-CSF induced change in CD44 expression was detected in CD3+ T cell populations;
neither was there any significant effect of apheresis on CD44 expression in T and B cells. T cell and
B cell CD44-APC MFI did not show any significant correlation to plasma levels of osteopontin or
G-CSF at any sampling point.
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Figure 4. Expression of CD44 in unstimulated (grey-colored bars) and in vivo G-CSF stimulated
(black-colored bars) peripheral blood leukocytes from healthy allogeneic stem cell donors. The results
are presented as the mean fluorescence intensity (MFI) given as mean values ˘ standard error
of the mean (SEM). (Left): The results for CD19+ B cells and CD3+ T cells with CD4+ and
CD8+ main subsets are shown; (Middle): CD4+ and CD8+ naïve (CD45RA+) T cell subsets are
compared with the corresponding T cell memory (CD45RA´) subsets and with T regulatory type
1 (Tr1) cells (CD4+ CD45RA´CD49b+ LAG-3+); (Right): Transitional B cells (CD19+CD24hiCD38hi)
together with mature (CD19+CD24+CD38+) and memory (CD19+CD24hi38´) B-cells and plasmablasts
(CD19+CD24lowCD38hi) are presented. Statistically significant differences are indicated (** p = 0.001,
* p = 0.05).
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CD44 expression was consistently higher for CD3+ T cells than for CD19+ B cells; as expected,
both CD4+ and CD8+ CD45RA´ memory T cells showed significantly higher CD44 expression than
CD45RA+ naïve T cells (Figure 4). Particularly high CD44 expression was found in the subset of
CD49b+ LAG-3+ Tr1 cells (lymphocyte activation gene-3 positive T regulatory type 1 cells) [48].

We also compared CD44 expression in the main CD19+ B cell subsets [49], in unstimulated and
G-CSF stimulated peripheral blood mononuclear cells (PBMC) samples. Compared to the CD24+CD38+

mature subset, transitional CD24hiCD38hi cells showed significantly lower and CD24hi38´ memory
B cells significantly higher CD44 expression. CD19+CD24lowCD38hi plasmablasts showed high CD44
expression similar to B memory cells [50].

To summarize, in vivo G-CSF therapy resulted in a modest reduction in CD44 expression in B cells
exclusively, and apheresis procedures did not alter T and B cell CD44 expression significantly.

2.7. Osteopontin Causes a Minor Increase of in Vitro Proliferative T Cell Responses

The effect of exogenous osteopontin on T cell proliferative responses was investigated for eight
healthy individuals (Figure 5). PBMC were cultured in vitro in the presence of anti-CD3 and anti-CD28.
We compared the proliferative responses for cultures prepared in medium alone and cultures with
osteopontin 50 ng/mL, i.e., the osteopontin level corresponding to the plasma level in healthy stem cell
donors (see Table 1). Osteopontin increased T cell proliferation, but this increase usually corresponded
to less than 20% of the corresponding control cultures both when osteopontin was tested in culture
medium without G-CSF and medium supplemented with G-CSF.
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Figure 5. Peripheral blood mononuclear cells (PBMC) from eight healthy unstimulated donors
were cultured in serum-free medium and stimulated with anti-CD3 and anti-CD28. The effect of
osteopontin 50 ng/mL without G-CSF (left) and with G-CSF 10 pg/mL (right) on in vitro T cell
proliferation was assayed as 3H-thymidine incorporation expressed as median counts per minute
(cpm). The proliferation of normal PBMC in control cultures containing isotypic control antibodies
instead of anti-CD3/anti-CD28 antibodies corresponded to <1000 cpm.
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3. Discussion

Osteopontin can mediate both pro- and anti-inflammatory effects through its binding to
specific receptors expressed by various immunocompetent cells [20,21]. In the present study we
describe that systemic osteopontin levels are altered during stem cell mobilization and harvesting.
Elevated osteopontin levels are detected in the stem cell grafts, and we hypothesize that osteopontin
may thereby affect the immunocompetent cells in the grafts.

Some of the statistically significant differences in osteopontin plasma levels described in our
present study were relatively small. However, the biological day-to-day variation, time of day variation,
and week-to-week variation in osteopontin level in healthy blood donors has been shown to be low [51].
Furthermore, several previous studies have demonstrated that differences corresponding to 15%–25%
of control levels reflect differences of biological and clinical significance, e.g., in cancer patients
and cardiovascular disease patients [52–54]. These observations suggest that even relatively small
variations in plasma osteopontin levels may have a clinical/biological relevance. Our own observations
are also in agreement with these previous observations, e.g., we had similar results in base-line samples
for our two independent groups of healthy individuals.

Our present study compared plasma osteopontin levels in two independent groups of healthy
individuals (G-CSF treated stem cell donors, untreated platelet donors) undergoing apheresis with
or without G-CSF stimulation. Osteopontin concentrations increased during G-CSF treatment, and
the levels showed a further increase after leukapheresis/stem cell harvesting. This was a transient
effect and osteopontin levels decreased during the 24 h period post harvesting. On the other hand, the
control group of healthy untreated platelet donors showed stable osteopontin levels with no detectable
effect of the apheresis.

We also compared the healthy allogeneic stem cell donors with a group of myeloma patients
receiving G-CSF treatment for mobilization of autologous stem cells; the myeloma patients then
showed higher pre-harvesting osteopontin levels and a similar increase as the healthy donors following
leukapheresis. The higher pre-harvesting osteopontin concentrations in myeloma patients may be due
to the combination of G-CSF and chemotherapy for autologous stem cell mobilization in these patients
and five days of treatment with G-CSF in contrast to four days of treatment in the allogeneic donors.
Alternatively, the difference could be disease dependent; increased levels in myeloma patients are
associated with disease burden and decrease when patients respond to anti-myeloma treatment [55,56].
It should be emphasized that only a minority of our patients achieved a complete response prior to the
autologous stem cell harvesting.

Samples drawn prior to G-CSF therapy were not available from our myeloma patients. In a
recent study of myeloma patients mobilized for stem cell harvest, no significant effect of G-CSF on
osteopontin levels could be detected [57]. However, as the regulation of the osteopontin concentration
during stem cell mobilizing in these patients is complex and influenced by both disease stage and
chemotherapy [55], possible effects of G-CSF might be difficult to detect.

Thus, the effect of apheresis (and possibly the effect of G-CSF treatment) on osteopontin levels is
not only seen in healthy donors, but also in myeloma patients. However, the levels were not altered in
healthy blood donors undergoing unstimulated thrombapheresis, which suggests that this is probably
an effect induced by the G-CSF therapy and not a general effect of all kinds of apheresis procedures.
This is further supported by reports of a relatively high degree of product manipulation and activation
in the apheresis device used for platelet collection [58,59]. In contrast to our findings, an eventual
effect of apheresis procedures on osteopontin levels would, therefore, be expected to be stronger
during platelet collection compared to stem cell apheresis. However, it is not possible to exclude that
differences in apheresis techniques between stem cell harvesting and platelet collection (e.g., processed
blood volume, separation techniques, anti-coagulation) contributed to the different effects of apheresis
on osteopontin levels.

G-CSF treatment both in healthy individuals and myeloma patients caused increased levels of
circulating neutrophils that express the osteopontin receptor CD44 [60]. One would, therefore, expect
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increased binding of osteopontin to neutrophils during G-CSF treatment, but despite this increased
binding we could still detect increased osteopontin plasma levels during the treatment.

A recent study of patients with hematological malignancies described an association between
genetic CD44 polymorphisms and the efficiency of CD34+ cell mobilization [61], suggesting that
CD44-osteopontin are important regulators of stem cell retention to the bone marrow during G-CSF
mobilization, at least in myeloma patients. However, we did not observe any association between
osteopontin levels and CD34+ cell mobilization/yield, neither in the myeloma patients, nor in the
healthy stem cell donors.

We investigated the osteopontin levels in the graft supernatants. The high pre-harvesting plasma
levels and the difference between healthy stem cell donors, myeloma patients, and platelet donors
were also reflected in the osteopontin levels in the supernatants. The stem cell transplantation thereby
also includes an infusion of osteopontin.

The osteopontin receptor CD44 is widely expressed by immunocompetent cells; the T cell
expression was not altered by in vivo G-CSF exposure whereas B cell expression was moderately
decreased. Exposure of T cells to osteopontin during in vitro activation caused a slight increase in
anti-CD3 + anti-CD28 initiated T cell proliferation. These experiments show that osteopontin can alter
T cell responses when tested at concentrations corresponding to the in vivo levels. However, additional
studies are required to clarify whether this is a direct stimulatory effect on the proliferating cells, a
reduced effect of T regulatory cells or an indirect effect mediated by the accessory cells.

The highest levels of osteopontin were found in allogeneic stem cell transplant recipients at the
time of transplantation. The levels were high even compared to myeloma patients who had received
both induction therapy and stem cell mobilization, and they were not significantly changed by stem
cell transplantation. This observation indicates that high osteopontin concentrations is one of the
characteristics of the pro-inflammatory state induced by conditioning therapy and underlying disease
in allogeneic stem cell transplant recipients. This pro-inflammatory cytokine balance is considered as
an important basis for development of GVHD [45], and osteopontin blockade is shown to reduce CD8+

T-cell mediated GVHD in mice [46]. Our findings suggest greater importance of the osteopontin
level in the patient compared to the donor and stem cell graft. The osteopontin levels during
conditioning therapy and allogeneic stem cell transplantation in humans and the possible importance
for development of GVHD should be studied in further detail in order to evaluate osteopontin as a
possible therapeutic target in graft versus host disease.

Previous studies have demonstrated that G-CSF has immunomodulatory effects and can suppress
T lymphocytes [62].Such effects are probably important in allotransplant recipients receiving peripheral
blood stem cell grafts because the frequency of GVHD is similar for bone marrow and mobilized
peripheral blood stem cell grafts even though a higher frequency would be expected for the blood
grafts due to their larger number of T cells in these grafts [62]. The molecular mechanisms behind
this are not known, but our present study suggests that effects of osteopontin on immunocompetent
cells may be a part of the G-CSF-induced immunomodulation in healthy stem cell donors. A better
understanding of the mechanisms behind the G-CSF associated immunomodulation will be important
for the future development of therapeutic strategies to target graft T cells and thereby reduce the risk
of severe GVHD without reducing the graft versus leukemia reactivity.

4. Materials and Methods

4.1. Stem Cell Donors and Allotransplant Recipients

All studies were conducted in accordance with the Declaration of Helsinki and approved by the
local ethics committee (REK III No. 126.01, Regional Committee for Medical and Health Research
Ethics of Western Norway: 2008/1580, 2011/996, 2011/1237, 2011/1241, and 2013/634) and donors
and patients were included after signing a written informed consent. The present studies included
(i) 22 consecutive healthy human leukocyte antigen matched (HLA-matched), related, allogeneic



Int. J. Mol. Sci. 2016, 17, 1158 11 of 17

stem cell donors; (ii) 15 consecutive autologous stem cell donors, all patients with newly-diagnosed
symptomatic multiple myeloma; (iii) 16 allogeneic stem cell transplant recipients; and (iv) 15 healthy
platelet donors (Table 2). The allogeneic stem cell donors did not differ from myeloma patients
and healthy platelet donors with regard to age, gender distribution, or initial peripheral blood
leukocyte count.

4.2. Stem Cell Mobilization in Healthy Donors and Myeloma Patients

The matched related donors received stem cell mobilizing with human non-glycosylated G-CSF
10 µg/kg per day for four days before stem cell harvesting. Initial induction therapy for the myeloma
patients was two cycles of either intravenous cyclophosphamide 1 g/m2 on day 1 at four weeks
intervals (14 patients) or bortezomib 1.3 mg/m2 on days 1, 4, 8, and 11 at a three-week interval
(one patient); both regimens were combined with dexamethasone 40 mg orally on days 1–4 and 9–12.
All myeloma patients either responded to the treatment or had stable disease, and stem cells were,
thereafter, mobilized with intravenous cyclophosphamide 2 g/m2 followed by G-CSF 5 µg/kg/day.
Peripheral blood leukocyte counts were significantly higher in healthy stem cell donors compared
to myeloma patients immediately before stem cell harvesting (p < 0.001, Table 2), but the peripheral
blood concentration of CD34+ cells did not differ significantly between groups.

4.3. Apheresis Procedures

Stem cell quantification was started on day 4 or 5 of G-CSF stimulation for stem cell donors
and myeloma patients, respectively. For the myeloma patients this corresponded to day 10 after the
start of cyclophosphamide. Stem cell harvest was performed when the stem cell count exceeded
15–20 ˆ 103/mL. Large-volume leukapheresis with four times processing of the total blood volume
on a Cobe Spectra cell separator, version 7 (Cobe Laboratories, Gloucester, UK) was used for
nine of the healthy stem cell donors and all the myeloma patients; the other 13 healthy stem cell
donors were harvested with a Spectra Optia cell separator, version 9 (Terumo BCT Inc., Lakewood,
CO, USA). The automated mononuclear cells (MNC) procedure was used in accordance with the
instructions from the manufacturer. The yield of CD34+ cells per kg bodyweight obtained by
apheresis and the white blood cell count in the apheresis product did not differ significantly between
groups. Finally, single-donor platelet concentrates from unstimulated healthy volunteer donors were
prepared with a Fenwal Amicus cell separator (Baxter Healthcare Corp., Deerfield, IL, USA) and
leukocyte-reduction provided by elutriation. The platelets were suspended in 37% plasma and 63%
platelet additive solution (T-sol, Baxter Healthcare Corp.) as described in detail previously [63,64].

4.4. Allogeneic Stem Cell Transplantation

Eleven of the 16 allotransplant recipients were diagnosed with acute myeloid leukemia (AML),
three with acute B cell lymphoblastic leukemia (B-ALL), one with myelofibrosis and one with
myelodysplastic syndrome (MDS). All leukemia patients were in complete hematological remission
at the time of transplantation. The patients received (i) myeloablative conditioning with intravenous
busulfan plus cyclophosphamide and mesna (14 patients); or (ii) reduced intensity conditioning
with intravenous fludarabine plus busulfan (two patients). All patients were transplanted with
G-CSF mobilized peripheral blood stem cell grafts derived from HLA-matched family donors and
received graft versus host disease (GVHD) prophylaxis with cyclosporine A, plus methotrexate.
Neutrophil reconstitution was defined as neutrophil counts exceeding 0.2/0.5 ˆ 109/L for at least three
consecutive days, and platelet reconstitution as at least three consecutive days with stable platelet
counts exceeding 20/50 ˆ 109/L.
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4.5. Preparation of Plasma and Peripheral Blood Mononuclear Cells (PBMC)

4.5.1. Blood Sampling

Venous blood samples from the allogeneic stem cell donors were collected (A) prior to G-CSF
stimulation at the time of the pre-transplant evaluation (median 20.5 days before apheresis). For the
three study groups undergoing apheresis, blood samples were also drawn (B) in the morning
immediately before apheresis, (C) immediately after apheresis, and (D) approximately 24 h after
start of apheresis. All venous blood samples from allotransplant recipients were collected between
07:00 and 09:00. Samples for plasma preparation were collected into Vacuette 9NC tubes and samples
for cell preparation into acid-citrate-dextrose solution A (ACD-A) tubes with sodium citrate and
acid-citrate-dextrose solution A as anticoagulants (Greiner Bio-One GmbH, Kremsmünster, Austria).
Samples from stem cell allo- and autografts and platelet concentrates were transferred to plastic tubes
without additives.

4.5.2. Preparation of Plasma Samples

The blood samples were centrifuged at 2000ˆ g (myeloma patients and platelet donors) or
1310ˆ g (allotransplant recipients) for ten minutes at room temperature within 30 min of sampling.
The supernatants were immediately transferred to plastic tubes, frozen, and stored at ´70 ˝C
until analyzed.

4.5.3. Preparation of PBMC Samples

After isolation by density gradient separation (Lymphoprep, AXIS-SHIELD PoC AS, Oslo,
Norway; specific density: 1.077 g/mL), PBMC were dissolved in RPMI 1640 medium supplemented
with 2 mmol/L L-glutamine, penicillin 100 IE/mL, streptomycin 0.1 mg/mL (Sigma-Aldrich, St. Louis,
MO, USA), and 20% fetal bovine serum (FBS, Biowest, Nuaillé, France). 10% dimethyl sulfoxide
(DMSO, Sigma-Aldrich, St. Louis, MO, USA) was used as cryoprotectant, and the vials were stored in
liquid nitrogen at ´150 ˝C after gradual cooling to ´80 ˝C in Mr. Frosty Freezing Container (Thermo
Fisher Scientific, Waltham, MA, USA).

4.6. Analysis of Plasma Osteopontin and G-CSF Concentrations

Plasma osteopontin levels were determined by enzyme-linked immuno-sorbent assays (ELISA)
(Quantikine ELISA Human Osteopontin (OPN) Immunoassay from R&D Systems, Minneapolis,
MN, USA). Plasma G-CSF concentrations were determined by Luminex analyses (R&D Systems,
Minneapolis, MN, USA). All samples were analyzed in duplicates, strictly according to the
manufacturer’s instructions.

4.7. Flow Cytometry Analyses

PBMC were thawed in a 37 ˝C water bath, dissolved in supplemented RPMI 1640 medium, and
incubated for one hour (37 ˝C, a humidified atmosphere of 5% CO2) before incubation with near-IR
fluorescent reactive dye (LIVE/DEAD Fixable Dead Cell Stain Kits, Molecular Probes, Eugene, OR,
USA) for 30 min to determine cell viability. After washing in phosphate-buffered saline (PBS) with
1% bovine serum albumin fraction V (BSA, Roche Diagnostics GmbH, Mannheim, Germany) the cells
were incubated for 20 min with the following mouse anti-human monoclonal antibodies: CD3-PE-Cy7
(SK7), CD4-PerCP-Cy5.5 (RPA-T4), CD8-V500 (RPA-T8), CD19-PerCP-Cy5.5 (SJ25C1), CD45-RA-V450
(HI100), and CD24-PE-Cy7 (ML5) (all from Becton Dickinson Biosciences-BD Pharmingen, San Diego,
CA, USA), rat CD44-Ax 488 (IM7) and mouse CD49b-FITC (P1E6-C5) (both from BioLegend, San Diego,
CA, USA), mouse CD38-PB (HIT2; EXBIO, Prague, Czech Republic) and goat LAG-3-PE (FAB2319P;
R&D Systems, Minneapolis, MN, USA). Eight-color flow cytometry analysis was performed using a
FACS Canto II flow cytometer (Becton Dickinson Biosciences-Immunocytometry Systems; San Jose,
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CA, USA). Acquisition of 30,000 CD3+ T cells or 10,000 CD19+ B cells per sample was endeavored,
and cytometer performance was monitored daily with Cytometer Setup and Tracking Beads (Becton
Dickinson Biosciences-BD Pharmingen, San Diego, CA, USA). The data were analyzed with FlowJo
software version X (FlowJo LLC, Ashland, OR, USA).

4.8. Analysis of T-Cell Proliferation by 3H-Thymidine Incorporation

PBMC were cultured in 96-well microtiter plates (5 ˆ 104 cells per well, 190 µL medium per
well), the culture medium being X-vivo10® with 100 µg/mL gentamycin (BioWhittaker, Walkersville,
MA, USA). The T cells were activated by anti-CD3 (clone CLB-T3/4.E, 1XE, PeliCluster, Sanquin,
Amsterdam, The Netherlands; final concentration 316 ng/mL) and anti-CD28 (clone: CLB-CD28/1,
15E8 PeliCluster; final concentration 842 ng/mL). The corresponding control antibodies were
purchased from R&D Systems (Abingdon, UK). The medium was supplemented with recombinant
human osteopontin 50 ng/mL (R&D Systems, Minneapolis, MN, USA) and eventually recombinant
human G-CSF 10 pg/mL (PeproTech EC Ltd., Rocky Hill, NJ, USA). After three days of culture
3H-thymidine (280 kBq per well added in 20 µL of saline; TRA 310, Amersham International,
Amersham, UK) was added and cultures harvested 18 h later. The median count per minute (cpm) of
nuclear radioactivity for triplicate cultures was used for all calculations.

4.9. Statistical Analyses

The statistical analyses were performed by the standard computer software package IBM SPSS
Statistics 22 (IBM Corporate, Armonk, NY, USA). The Wilcoxon’s test for paired samples was applied
for analyses of paired observations, and the independent samples Mann-Whitney U test for comparison
of groups. The covariance between different continuous variables was studied with simple linear
regression analyses with one way analysis of variance (ANOVA).
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Abstract

Introduction Peripheral blood stem cells mobilized by

granulocyte colony-stimulating factor (G-CSF) from heal-

thy donors are commonly used for allogeneic stem cell

transplantation. The effect of G-CSF administration on

global serum metabolite profiles has not been investigated

before.

Objectives This study aims to examine the systemic

metabolomic profiles prior to and following administration

of G-CSF in healthy adults.

Methods Blood samples were collected from 15 healthy

stem cell donors prior to and after administration of G-CSF

10 lg/kg/day for 4 days. Using a non-targeted metabo-

lomics approach, metabolite levels in serum were deter-

mined using ultrahigh performance liquid chromatography-

tandem mass spectrometry and gas chromatography/mass

spectrometry.

Results Comparison of the metabolite profiles of donors

before and after G-CSF treatment revealed 239 metabolites

that were significantly altered. The major changes of the

metabolite profiles following G-CSF administration inclu-

ded alteration of several fatty acids, including increased

levels of several medium and long-chain fatty acids, as

well as polyunsaturated fatty acids; while there were lower

levels of other lipid metabolites such as phospholipids,

lysolipids, sphingolipids. Furthermore, there were signifi-

cantly lower levels of several amino acids and/or their

metabolites, including several amino acids with known

immunoregulatory functions (methionine, tryptophan,

valine). Lastly, the levels of several nucleotides and

nucleotide metabolites (guanosine, adenosine, inosine)

were also decreased after G-CSF administration, while

methylated products were increased. Some of these altered

products/metabolites may potentially have angioregulatory

effects whereas others may suggest altered intracellular

epigenetic regulation.

Conclusion Our results show that G-CSF treatment alters

biochemical serum profiles, in particular amino acid, lipid

and nucleotide metabolism. Additional studies are needed

to further evaluate the relevance of these changes in

healthy donors.

Keywords Allogeneic stem cell transplantation �
Biochemical � Granulocyte colony-stimulating factor �
Metabolomics � Stem cell donor

1 Introduction

Peripheral blood stem cell (PBSC) grafts are commonly

used for allogeneic hematopoietic stem cell transplantation

for a wide range of hematologic malignancies. These grafts

are generally prepared by administration of granulocyte

colony-stimulating factor (G-CSF) to healthy donors which

mobilizes hematopoietic stem cells (HSCs) into the blood

before cells are harvested by leukapheresis. The clinical

advantage of using PBSCs compared to bone marrow grafts
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includes accelerated neutrophil engraftment, which

increases the likelihood to engraft, and in addition PBSC

allografts contain a much larger number of T-cells com-

pared to bone marrow grafts, which has been correlated

with better outcome (Malard et al. 2016; Pabst et al. 2007;

Rezvani et al. 2006).

The HSC mobilizing agent G-CSF is a glycoprotein with

multiple functions, including effects on the production,

migration, differentiation and proliferation of neutrophils,

as well as affecting adaptive immune responses (Bendall

and Bradstock 2014; Panopoulos and Watowich 2008).

G-CSF may have both direct and indirect effects on

immune cells, including monocytes, granulocytes, T-cells

and dendritic cells, and can also alter the expression of

various soluble factors, including cytokines, metallopro-

teinases and adhesion molecules which may themselves

contribute to effects induced by G-CSF (Rutella et al.

2005). Recently, various metabolites and metabolic path-

ways have been found to be involved in cell signaling, also

among immune cells; e.g. both amino acids as well as their

metabolites can bind to specific receptors on immuno-

competent cells and thereby induce activation and/or dif-

ferentiation of these cells (Buck et al. 2015). Furthermore,

certain metabolites have a key role in fundamental meta-

bolic pathways, such as glycolysis or lipid metabolism, and

their availability may thus affect immune cell functions. As

reviewed by Buck et al. (2015), cellular metabolism is

important in the regulation of immunocompetent cell

growth, e.g. differentiation and activation of T-cells. Thus,

the availability and uptake of metabolites may potentially

affect immune cell fate. In this aspect, metabolomics has

emerged as a powerful tool to identify and characterize the

low molecular mass composition of biological samples. In

this exploratory study, we therefore used non-targeted

metabolomics to investigate the early effects of in vivo

G-CSF treatment on the global serum metabolite profile of

healthy stem cell donors.

2 Materials and methods

2.1 Stem cell donors and mobilization

The study was approved by the local ethics committee

(REK Vest, 2011/996 and 2011/1237) and all samples were

collected after written informed consent. Blood samples

were collected from 15 consecutive healthy HLA-matched

related allogeneic stem cell donors (10 males and 5

females), with a mean age of 47 years (range 25–64 years)

(Table 1). Donors received the human non-glycosylated

G-CSF analog Filgrastim (r-metHuG-CSF, Neupogen,

Amgen) or Tevagrastim (biosimilar Filgrastim) in a dose of

5.4 lg/kg body weight (range 4.1–6.7 lg/kg) twice daily

subcutaneously for four days to induce stem cell mobi-

lization. Our hospital is responsible for all allogeneic stem

cell transplantations in a defined geographic area, and this

study included a consecutive group of donors younger than

65 years of age and achieving pre-harvest CD34? cell

counts above 15 9 103/L. Thus, our donors should be

regarded as representative of healthy adult stem cell donors

because they are unselected (i.e. consecutive), mobilize

sufficient stem cells for preparation of allografts and their

age is also representative for donors used in routine clinical

practice.

2.2 Processing of blood samples

Venous blood samples were collected into Vacuette Z

Serum Clot Activator tubes with Gel Separator (Greiner

Bio-One GmbH, Kremsmünster, Austria) from donors at

two time points, (i) prior to administration of G-CSF and

(ii) following G-CSF administration just before apheresis

on day 4. All samples were collected at 9 am and were

allowed to coagulate for 30 min at room temperature in

upright position before being centrifuged at 13109g for

10 min at room temperature. The serum supernatants were

immediately apportioned into 0.5 mL aliquots in plastic

cryotubes (NuncTM, Roskilde, Denmark) and stored frozen

at -80�C until analysed.

2.3 Analysis of G-CSF levels

Levels of human G-CSF were measured using a Luminex

assay (R&D Systems, Bio-techne, Abingdon, UK), and the

minimal detectable level was 20 pg/mL.

2.4 Analysis of human serum metabolites

All mass spectrometry data were collected at Metabolon

Inc (Durham, NC). Each serum sample was accessioned

into the Metabolon LIMS system and was assigned a

unique identifier by this system which was used to track all

sample handling and results. All samples were prepared

using the automated MicroLab STAR� system (Hamilton

Company, Bonaduz, Switzerland). Briefly, samples were

extracted using Metabolon‘s standard solvent extraction

method (Evans et al. 2014). A recovery standard was added

prior to the first step in the extraction process for quality

control purposes. To remove protein, dissociate small

molecules bound to protein or trapped in the precipitated

protein matrix, and to recover chemically diverse

metabolites, proteins were precipitated with methanol

under vigorous shaking for 2 min followed by centrifuga-

tion. The resulting extract was divided into five fractions:

(i) one for analysis by ultrahigh performance liquid chro-

matography–tandem mass spectrometry (UPLC–MS/MS)
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with positive ion mode electrospray ionization, (ii) one for

analysis by UPLC–MS/MS with negative ion mode elec-

trospray ionization, (iii) one for LC polar platform, (iv) one

for analysis by gas chromatography/mass spectrometry

(GC–MS) and (v) one sample was reserved for backup.

Samples were placed briefly on a Zymark TurboVap�

(McKinley Scientific, Sparta, NJ, USA) to remove the

organic solvent. Then samples were either stored overnight

under nitrogen for LC or dried under vacuum overnight for

GC, before preparation for analysis. Experimental samples

were randomized across the platform and run with appro-

priate quality control samples spaced evenly among the

injections. Compounds were identified by comparison to

library entries based upon retention time/index, mass to

charge ratio (m/z) and chromatographic data (also MS/MS

spectral data), and peaks were quantified using area-under-

the curve.

2.5 Statistical analyses

Two types of statistical analysis were performed: (1) sig-

nificance tests (t-tests) and (2) classification analysis.

Random Forest analysis is a supervised classification

technique that provides an unbiased estimate of how well

individuals can be classified into each group in a new data

set. Statistical analyses were performed with the program R

(http://cran.r-project.org/).

3 Results

3.1 G-CSF treatment alters the global metabolomic

profile of healthy individuals

Metabolites were analysed in all serum samples collected

from the healthy donors (i) prior to G-CSF administration

and (ii) on day 4 after G-CSF administration. In total, 641

metabolites were identified (for a complete list see Sup-

plementary Table 1), where levels of 239 metabolites were

significantly changed (p B 0.05); 149 metabolites had

increased levels (62%) and 90 metabolites had decreased

levels (38%) after G-CSF administration (Table 2). These

significantly altered metabolites belong mainly to amino

acid and lipid classes, while metabolites associated with

the categories nucleotides, carbohydrates, energy metabo-

lism, cofactors/vitamins and xenobiotics are also present.

Furthermore, 39 of these metabolites have a p

value\ 0.0001 and are involved in amino acid (19/39),

Table 1 Characteristics of allogeneic stem cell donors

ID Age

(years)

Gender BMI

(kg/m2)

G-CSF

dosage

(lg/kg)

G-CSF (pg/mL) at

clinical examinationa
G-CSF (pg/mL)

before apheresisa
CD34? cell count

(103/L) pre-harvestb
CD34? stem cell

yield (9 106/kg)b

1 60 F 30 6.1 \20 [15,000 40.2 5.5

2 25 M 24 6.1 \20 13,514 44.4 8.8

3 45 M 25 5.8 242 [15,000 30.4 4.3

4 51 M 47 4.9 37 [15,000 58.8 3.9

5 39 M 30 5.3 72 13,404 108.8 22.4

6 64 M 36 4.1 \20 9495 26.7 3.9

7 54 F 23 5.7 41 [15,000 34.1 5.2

8 25 M 26 5.7 111 [15,000 147.8 15.1

9 46 F 25 4.6 49 3939 57.6 7.2

10 62 M 27 5.6 24 [15,000 97.0 7.2

11 51 M 26 5.1 53 [15,000 17.4 3.1

12 40 F 34 5.3 39 [15,000 66.7 6.8

13 39 M 25 5.5 22 [15,000 111.1 7.8

14 45 F 26 6.7 82 [15,000 55.1 5.6

15 58 M 29 5.1 80 6776 44.7 4.9

Mean 47 29 5.4 61 [13,000 62.7 8.7

Range 25–64 10M/

5F

23–47 4.1–6.7 \20–242 3939–[ 15,000 17.4–147.8 3.1–22.4

M male; F female; BMI body mass index
a G-CSF plasma levels were measured in donor samples collected at clinical examination and after four days of treatment with G-CSF before

apheresis
b CD34? cell counts were done immediately before stem cell harvest and the CD34? stem cell yield estimated per kg donor/weight
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nucleotide (10/39) or lipid (5/39) metabolism (Table 2).

Among the significantly altered levels of metabolites

(n = 239, p B 0.05) we would expect to see approximately

12 metabolites that meet our level of significance criteria

by random chance, however, our data have a low false

discovery rate (FDR) of less than 5% for all metabolites

except one metabolite with 5.1%, indicating a high level of

confidence in the results (Supplementary Table 2). All

significantly altered metabolites (p B 0.05) and their group

mean ratios (before vs. after G-CSF treatment) are shown

in Supplementary Table 2.

We performed a principal component analysis (PCA)

which showed that the samples before and after G-CSF

administration were generally distinguishable from each

other (Fig. 1); one G-CSF treated sample seemed to deviate

from the other samples but no outlier samples were iden-

tified. This exceptional stem cell donor had the highest

total leukocyte and platelet counts in peripheral blood, the

lowest Hb level after G-CSF administration and the lowest

G-CSF plasma level before apheresis, but did not otherwise

differ from the others, and samples from this donor were

included in all our analyses. Taken together, these results

demonstrate that four days of G-CSF administration alters

the systemic metabolomic profile of healthy individuals;

and despite some heterogeneity between donors, an altered

amino acid, lipid and nucleotide metabolism seems to be a

common characteristic.

3.2 Alteration of single metabolites by G-CSF

treatment

Random forest classification was used for further statistical

analyses. Even though there was an overlap between

samples collected before and during G-CSF therapy in the

PCA plot (Fig. 1), the random forest classification

demonstrated that G-CSF treated versus untreated samples

could be distinguished with 97% predictive accuracy based

on their overall metabolite profiles (Fig. 2). The 30 top-

ranking metabolites that contributed most to separation of

the samples are shown where the metabolites are ranked

according to the mean decrease accuracy (%) (Fig. 2).

These metabolites are involved in several pathways, with

the majority of metabolites belonging to amino acid

metabolism (9 metabolites) and nucleotide metabolism (9

metabolites), but lipid (4 metabolites), xenobiotics (3

metabolites), carbohydrate (2 metabolites), cofactors/

Table 2 Metabolite classes significantly altered after G-CSF treatment

Metabolite classes/pathways Total number of

metabolites identified

Number of significantly altered metabolites

P\ 0.05 P\ 0.001 P\ 0.0001

Amino acids 161 75 30 19

Peptide 28 16 1 1

Carbohydrates 25 8 5 2

Energy metabolism 9 2 - -

Lipids 250 78 13 5

Nucleotides 34 21 11 10

Cofactors-vitamins 22 10 4 -

Xenobiotics 112 29 4 2

Total number of metabolites 641 239 68 39

Fig. 1 Principal component analysis (PCA) scores plot based on the

serum metabolome of healthy stem cell donors before and after

G-CSF treatment. An overlap was seen between groups (n = 15 in

each group, open circles before G-CSF treatment, filled circles after

G-CSF treatment), but groups were generally distinguishable from

each other
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vitamin (1 metabolite) and peptides (1 metabolite) were

also included among the 30 top-ranking metabolites in this

analysis.

3.3 Alteration of lipid, amino acid and nucleotide

metabolism by G-CSF treatment

Treatment with G-CSF resulted in altered systemic (i.e.

serum) levels of a wide range of metabolites reflecting an

alteration of different metabolic pathways during this

treatment in healthy individuals:

• Lipid metabolism Among the main metabolites that

distinguished between pre-and post-G-CSF administra-

tion groups, there was a consistent alteration of the

amount of fatty acids indicating altered lipid metabo-

lism (i.e. a change in fatty acid synthesis, lipid

hydrolysis or mitochondrial b-oxidation) (Fig. 3a).

The post-G-CSF group had significantly elevated levels

of several long-chain fatty acids (such as myristate,

palmitate, margarate, and stearate), as well as polyun-

saturated fatty acids (adrenate, linoleate, linolenate,

dihomolinoleate, docosadienoate, docosapentaenoate).

Finally, levels of carnitine-conjugated lipids were

increased.

• Amino acid metabolism was also altered; within the

post-G-CSF samples there was a reduced level of

dipeptides and amino acids including the aromatic

amino acids tryptophan, phenylalanine and tyrosine and

their metabolites, as well as branched-chain amino

acids valine, isoleucine and leucine (Fig. 3b). The

essential amino acid tryptophan can be metabolized by

several pathways to give rise to serotonin or kynur-

enine, and levels of these degradation products as well

as indoleacetate and 3-indoxyl sulfate were all signif-

icantly lower after G-CSF therapy.

• Nucleic acid metabolism Our results show a signifi-

cantly lower level of purine nucleosides, including

guanosine, adenosine and inosine in the post-G-CSF

Fig. 2 Random forest analysis

of the metabolic profiles in

samples taken before and after

administration of G-CSF in

healthy stem cell donors.

Random forest analysis could

distinguish between the

metabolic profiles of the two

groups with a predictive

accuracy of 97%. The variable

importance plot shows the

variable on the y-axis, and their

importance for separation of the

two groups on the x-axis. The

top-ranked 30 metabolites are

thus ordered top-to-bottom as

most- to least-important based

on their importance. The inset

table shows the main signaling

pathways where each metabolite

belongs, reflected by the

different colors in the plot.

Asterisk indicates that the

biochemical name is identified

but has not been confirmed

based on a standard

Granulocyte colony-stimulating factor alters the systemic metabolomic profile in healthy donors Page 5 of 10 2

123



samples, indicating altered nucleotide metabolism

(Fig. 3c). Furthermore, several methylated products

were increased.

3.4 G-CSF induced alteration of metabolic

pathways

We performed a metabolomic pathway enrichment analysis

based on significantly altered metabolites (p\ 0.001), to

identify pathways that contribute to the major differences

when comparing samples taken before and after G-CSF

administration (Fig. 4). This analysis identified altered

glycogen metabolism as a major effect of G-CSF treatment,

and metabolites belonging to pathways involved in

nucleotide metabolism and amino sugar/acid metabolism

were also over-represented in samples after G-CSF

treatment.

3.5 The metabolic alterations induced during G-

CSF therapy are not caused by acetaminophen

Musculoskeletal pain and flu-like symptoms are common

during G-CSF therapy (Stroncek et al. 1996), and symp-

tomatic relief can be achieved by acetaminophen (parac-

etamol). The detection of several metabolites of

acetaminophen in the serum of stem cell donors indicates

that paracetamol had been taken by some donors during

G-CSF therapy. We therefore compared the metabolite

Fig. 3 Metabolite pathways

altered after G-CSF

administration among the

classes lipids, amino acids and

nucleotides. The bar charts

show the different amounts of

metabolites belonging to their

different pathways within the

three main classes: a lipid

metabolism, b amino acid

metabolism and c nucleotide

metabolism, where metabolite

levels were either increased

(dark grey colored) or decreased

(light grey)
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profile before and after G-CSF therapy for donors with high

and low/undetectable levels of metabolites involved in

acetaminophen metabolism. When comparing the levels of

the 30 top-ranked metabolites (Fig. 2), we did not find any

significant differences between the donor samples with

high and low/undetectable paracetamol metabolite (data

not shown). Thus, it seems unlikely that the paracetamol

intake has a major impact on the metabolic modulation

during G-CSF therapy.

4 Discussion

In this study, we investigated the early effects of G-CSF

administration on the serum global metabolite profile of

healthy stem cell donors that were younger than 65 years

and had an adequate stem cell mobilization. G-CSF is

mainly used as short-term therapy, generally requiring

4–6 days of treatment, for stem cell mobilization (Bendall

and Bradstock 2014); however, it is also used as long-term

treatment for patients with low-risk myelodysplastic syn-

drome (Jadersten et al. 2005) and especially for patients

with chronic neutropenia (Dale 2016; Dale and Welte

2011; Donadieu et al. 2011; Zeidler et al. 2014). The

suggested initial doses for congenital neutropenia are

3–5 lg/kg that are increased in steps of 5 lg/kg (Dale

2016; Donadieu et al. 2011), thus these G-CSF doses used

in long-term therapy are also comparable to the doses used

in our present study (5 lg/kg twice daily).

Our study included a relatively small number of sam-

ples, but our random forest classification analysis resulted

in 97% predictive accuracy in differentiating the two

groups, indicating that differences due to G-CSF adminis-

tration were readily present. Several of the 30 top-ranking

metabolites shown in Fig. 2 have been reported to be

involved in biological processes such as regulation of

immune responses, inflammation, vascular biology and

epigenetic regulation (see Supplementary Table 3), though

further studies will be needed to see if G-CSF has a long-

term effect on these biological processes. In general, global

metabolomics profiling revealed altered levels of lipids,

amino acids, carbohydrates and nucleotides after adminis-

tration with G-CSF.

One of the strongest changes in our dataset was the

altered lipid metabolism, in particular the significantly

higher levels of long-chain fatty acids as well as carnitine-

conjugated lipids after G-CSF administration, indicating

changes in fatty acid b-oxidation. Long-chain fatty acids

are conjugated to carnitine to facilitate transport across the

mitochondrial membrane, and the increased acyl carnitine

levels may thus suggest increased b-oxidation. Moreover,

glycerol, a marker of lipolysis, was significantly decreased

in the G-CSF treated group. These alterations may be due

to increased fatty acid b-oxidation or alternatively due to

disturbance of fatty acid oxidation resulting in increased

amounts of lipid precursors. In addition, we found a decline

in the serum levels of sphingosine 1-phosphate (S1P) after

G-CSF administration, which is in concordance with

another study that measured S1P levels in donors under-

going G-CSF-induced mobilization (Juarez et al. 2012).

Disruption of fatty acid signaling has been implicated in

mobilization of stem cells, in particular S1P (Ratajczak

Fig. 4 Metabolite pathway

enrichment analysis to identify

pathways enriched after G-CSF

administration in healthy

donors. A pathway enrichment

analysis was done based on

significantly altered metabolites

with p\ 0.001. Only signaling

pathways with an enrichment

value greater than two and at

least two metabolites within

each pathway are shown in the

figure. The most significant

p-values are seen in red, while

the least significant are in yellow
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et al. 2010). To summarize, G-CSF treatment alters fatty

acid metabolism and decreases the systemic levels of fatty

acid metabolites involved in hydrolysis (phospholipid

metabolism and lysolipids) whereas long/medium-chain

fatty acids are generally increased.

In this study we found lower levels of branched chain

amino acids and aromatic amino acids following G-CSF

treatment. Among the aromatic amino acids we found

altered levels of tryptophan and its degradation products

which are shown to be associated with inflammation.

Kynurenine plays a role in modulation of inflammation and

the ratio of kynurenin/tryptophan has been suggested to be

an indicator for the activity of indolamine-2,3-dioxygenase

(IDO) (Widner et al. 1997), which can affect T cell func-

tions. Branched chain amino acids can be substrates for

both energy production and protein synthesis. They can be

metabolized to give rise to intermediates for several

metabolic pathways including the TCA cycle or fatty acid

synthesis. Less amounts of the branched amino acids iso-

leucine, valine and leucine may thus potentially have an

impact on energy metabolism by reduction of available

metabolites. However, in addition to the lower levels of

these amino acids, we also observed a general decrease in

dipeptide levels after G-CSF administration which is sup-

portive of reduced proteolysis.

Previous studies have examined effects of in vivo

administration of G-CSF on normal peripheral blood

mononuclear cells (PBMCs) using whole genome expres-

sion profiling. Changes in global gene expression profiles

were then described both at early time points after G-CSF

administration (up to 5 days) (Hernandez et al. 2005) and

after 2–10 months (Amariglio et al. 2007), and even a year

after G-CSF administration in CD34? progenitor cells

(Baez et al. 2014). These studies have revealed that there

seems to be both early responses to G-CSF, transient

changes that are normalized over time and more long-

lasting changes. In the recent study by Bàez et al., G-CSF-

mobilized hematopoietic progenitors had a difference in

the expression of six microRNAs and even one year after

G-CSF administration over 2424 genes maintained their

altered expression (Baez et al. 2014). Among the differ-

entially expressed genes were genes involved in cellular

growth, cell death and survival, protein synthesis, gene

expression and nucleic acid metabolism. In another study

of twenty stem cell donors, changes of DNA methyltrans-

ferase activity in peripheral blood cells were found after

G-CSF administration, though these changes returned to

baseline within a week after apheresis (Leitner et al. 2014).

Thus, several studies of donor cells suggest epigenetic

changes induced after G-CSF administration in healthy

donors, though none of these studies have investigated the

global metabolite profile of healthy donors after G-CSF

treatment. Accordingly, in our study of the systemic

metabolite profile, we observed altered nucleic acid meta-

bolism by G-CSF therapy, including lower levels of the

purine nucleosides. Furthermore, several methylated

products were increased which could suggest a difference

in methylation potential through treatment with G-CSF.

These results should be interpreted with great care, but

could suggest that G-CSF has the potential to influence

epigenetics.

We have not performed any functional assays to eval-

uate the potential association between metabolites altered

by G-CSF and immunomodulatory effects; however,

G-CSF has been shown to induce several cellular and

immunological changes in donor cells (Anderlini et al.

1996; Shaw et al. 2015), and several of the altered

metabolites found in our study have known immunoregu-

latory and/or angioregulatory effects, or can be markers of

altered regulation of epigenetic/gene expression that may

contribute to the previously described long-lasting effects

after G-CSF therapy (Baez et al. 2014). Altered metabolite

levels may reflect the direct effects of G-CSF on different

immune cell types, affecting cell proliferation, differenti-

ation and function, but also indirect effects through e.g.

upregulation of cytokine production may subsequently

affect cells and lead to altered metabolite levels. G-CSF

binds to the single high-affinity 140 kDa G-CSF receptor

(G-CSFR), which is expressed on myeloid progenitor cells,

mature granulocytes and monocytes, lymphocytes and

endothelial cells (Demetri and Griffin 1991; Franzke et al.

2003) and can activate multiple signaling pathways

including JAK-STAT and ERK/MAPK pathways. How-

ever, the expression of this receptor does not seem to be

required for progenitor mobilization induced by G-CSF

(Liu et al. 2000), and G-CSF-mediated effects may also

occur independent of the G-CSF receptor. Further studies

are needed to explore the mechanism inducing the

metabolite changes after G-CSF treatment and their

potential immunomodulatory effects and/or effects on

other cell functions.

A possible explanation for our findings could be that

they are secondary to an increased proliferation of imma-

ture hematopoietic cells to replace the cells that are lost

from hematopoietic niches to the circulation. However, the

CD34? cell number and the total peripheral blood leuko-

cyte number is controlled daily during stem cell mobi-

lization, and the duration of this altered

compartmentalization of hematopoietic cells is therefore

relatively short (\24 h). Furthermore, the increased levels

of immature hematopoietic cells in the peripheral blood

probably represent a minor part of the overall number of

nucleated bone marrow cells, and one should also

emphasize that the cells have not yet been harvested at the

time of sampling for metabolite analysis. However, we

cannot exclude the possibility that the metabolic changes
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are secondary to an increased proliferation of bone marrow

cells, but if so this is in our opinion most likely caused by

direct G-CSF stimulated proliferation during the whole

treatment period rather than being a compensatory mech-

anism to altered compartmentalization during the last hours

before stem cell harvesting.

Several metabolites classified as xenobiotics were

altered after G-CSF therapy. Many stem cell donors

experience side effects during treatment (Stroncek et al.

1996), and acetaminophen is then recommended for pain

relief. Some altered metabolites belonging to the xenobi-

otic class are a direct result of acetaminophen usage, and in

our opinion some of the other metabolite changes may be

associated with treatment toxicity and/or altered gastroin-

testinal function.

5 Concluding remarks

In totum, our results show that the level of several

metabolites changed after G-CSF administration, primarily

there were (i) increased levels of lipids indicating altered

fatty acid metabolism, (ii) increased levels of methylated

nucleosides, (iii) changes associated with energy metabo-

lism, and (iv) altered levels of amino acids, including

reduced peptide levels indicating decreased proteolysis and

altered levels of acetylated peptides. Long-term follow up

studies have concluded that the use of G-CSF to mobilize

stem cells appears to be safe (Shaw et al. 2015). Our study

shows distinct differences in the metabolite profiles

between healthy donors before and after G-CSF adminis-

tration; however this is only a snapshot of the metabolomic

profile of donors at an early time point after G-CSF

administration and further studies should examine the

metabolite profiles over time, using a larger set of donors,

to clarify whether G-CSF also has long-term effects on

metabolite profiles and/or if patients on long-term G-CSF

therapy should be monitored with regard to metabolic

abnormalities.
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Mean Pairs Ratio Group Mean Ratio p -value q -value

1 glycine LC/MS pos 263.14662 58 C00037 HMDB00123 750 1.03 1.03 0.5926 0.2889 0.9931 1.0186

2 N-acetylglycine LC/MS neg 116.03531 27710 HMDB00532 10972 1.06 1.08 0.4135 0.2277 1.1664 1.2564

5 dimethylglycine LC/MS pos 104.07061 5086 C01026 HMDB00092 673 1.05 1.05 0.2836 0.1777 1.0523 1.1063

6 betaine LC/MS pos 118.08626 3141 C00719 HMDB00043 247 0.95 0.96 0.1464 0.1118 1.1138 1.0653

9 serine LC/MS pos 106.04987 1648 C00065 HMDB00187 5951 0.79 0.79 0.0000 0.0003 1.1173 0.8779

10 N-acetylserine LC/MS polar 146.04588 37076 HMDB02931 65249 1.63 1.61 0.0000 0.0000 0.8101 1.3054

14 threonine LC/MS pos 120.06552 1284 C00188 HMDB00167 6288 0.92 0.90 0.0826 0.0743 1.0456 0.9420

15 N-acetylthreonine LC/MS neg 160.06153 33939 C01118 152204 1.26 1.23 0.0184 0.0256 0.9305 1.1405

25 alanine LC/MS pos 90.05496 1126 C00041 HMDB00161 5950 1.13 1.11 0.0097 0.0169 0.9654 1.0764

26 N-acetylalanine LC/MS neg 130.05096 1585 C02847 HMDB00766 88064 1.29 1.28 0.0000 0.0001 0.8756 1.1198

28 aspartate LC/MS polar 132.03023 443 C00049 HMDB00191 5960 0.64 0.60 0.0068 0.0132 1.3009 0.7755

30 asparagine LC/MS pos 133.06077 512 C00152 HMDB00168 6267 0.94 0.93 0.0258 0.0310 1.0885 1.0128

32 N-acetylaspartate (NAA) LC/MS polar 174.04079 22185 C01042 HMDB00812 65065 0.84 0.84 0.0667 0.0654 1.0369 0.8707

38 glutamate LC/MS pos 148.06044 57 C00025 HMDB00148 611 0.91 0.82 0.1030 0.0870 1.1249 0.9274

39 glutamine LC/MS pos 147.07642 53 C00064 HMDB00641 5961 1.07 1.06 0.0387 0.0423 0.9626 1.0249

40 N-acetylglutamate LC/MS polar 188.05644 15720 C00624 HMDB01138 70914 0.91 0.85 0.1624 0.1207 1.0550 0.8985

41 N-acetylglutamine LC/MS pos 189.08699 33943 C02716 HMDB06029 182230 1.07 1.02 0.8441 0.3561 1.0729 1.0923

42 N-acetyl-aspartyl-glutamate (NAAG) LC/MS pos 305.09795 35665 C12270 HMDB01067 5255 1.11 1.06 0.5458 0.2767 0.9585 1.0134

49 pyroglutamine* LC/MS pos 129.06586 46225 134508 1.01 1.02 0.9421 0.3821 1.6535 1.6785

53 histidine LC/MS neg 154.0622 59 C00135 HMDB00177 6274 0.84 0.82 0.0013 0.0042 1.0801 0.8873

54 N-acetylhistidine LC/MS neg 196.07276 33946 C02997 HMDB32055 75619 0.78 0.81 0.0212 0.0283 1.0851 0.8799

55 1-methylhistidine LC/MS pos 170.09241 30460 C01152 HMDB00001 92105 1.21 1.08 0.4340 0.2346 1.0495 1.1377

56 3-methylhistidine LC/MS neg 168.07785 15677 C01152 HMDB00479 64969 1.58 0.82 0.8074 0.3470 1.2446 1.0239

57 N-acetyl-3-methylhistidine* LC/MS neg 210.08841 43256 193270 2.45 1.49 0.6148 0.2952 0.8506 1.2711

58 N-acetyl-1-methylhistidine* LC/MS pos 212.1028 43255 1.02 1.03 0.6978 0.3210 1.2117 1.2509

59 hydantoin-5-propionic acid LC/MS polar 171.04113 40473 C05565 HMDB01212 782 1.16 1.10 0.6077 0.2924 1.2455 1.3746

60 trans-urocanate LC/MS pos 139.05021 607 C00785 HMDB00301 736715 1.58 1.40 0.9219 0.3770 1.1521 1.6166

61 cis-urocanate LC/MS pos 139.05021 40410 1549103 2.21 2.26 0.7392 0.3303 1.1927 2.6965

63 imidazole propionate LC/MS pos 141.06586 40730 HMDB02271 70630 0.87 0.90 0.0344 0.0388 1.4112 1.2745

64 imidazole lactate LC/MS pos 157.06077 15716 C05568 HMDB02320 440129 1.06 1.00 0.7503 0.3314 0.9544 0.9559

70 1-methylimidazoleacetate LC/MS pos 141.06586 32350 C05828 HMDB02820 75810 1.95 1.06 0.2762 0.1754 0.9766 1.0325

71 4-imidazoleacetate LC/MS polar 125.03565 32349 C02835 HMDB02024 96215 0.67 0.67 0.0022 0.0062 1.0848 0.7269

72 N-acetylhistamine LC/MS pos 154.09749 48679 C05135 HMDB13253 69602 0.97 0.52 0.2202 0.1488 1.3101 0.6866

73 lysine LC/MS pos 147.11281 1301 C00047 HMDB00182 5962 0.83 0.82 0.0002 0.0009 1.1419 0.9333

74 N2-acetyllysine LC/MS pos 189.12337 36751 C12989 HMDB00446 92907 0.80 0.72 0.0133 0.0213 1.2041 0.8660

75 N6-acetyllysine LC/MS pos 189.12337 36752 C02727 HMDB00206 92832 1.15 1.14 0.0030 0.0074 0.9215 1.0495

76 N-6-trimethyllysine LC/MS pos 189.15976 1498 C03793 HMDB01325 440120 1.04 0.98 0.9011 0.3708 1.0179 0.9984

79 2-aminoadipate LC/MS pos 162.07609 6146 C00956 HMDB00510 469 0.83 0.75 0.0157 0.0234 1.3280 0.9993

82 glutarate (pentanedioate) LC/MS polar 131.03498 396 C00489 HMDB00661 743 0.66 0.62 0.0023 0.0064 1.7006 1.0553

83 glutarylcarnitine (C5) LC/MS pos 276.14417 44664 HMDB13130 71464488 1.01 1.00 0.9426 0.3821 1.0277 1.0318

84 3-methylglutarylcarnitine (1) LC/MS pos 290.15982 46547 HMDB00552 128145 2.23 2.19 0.0000 0.0000 0.9545 2.0915

85 3-methylglutarylcarnitine (2) LC/MS pos 290.15982 46548 HMDB00552 128145 1.03 0.87 0.6702 0.3123 1.3498 1.1801

90 pipecolate LC/MS pos 130.08626 1444 C00408 HMDB00070 849 0.98 0.97 0.3525 0.2017 1.1748 1.1358

98 phenylalanine LC/MS pos 166.08626 64 C00079 HMDB00159 6140 0.88 0.87 0.0019 0.0057 1.0679 0.9320

99 N-acetylphenylalanine LC/MS neg 206.08226 33950 C03519 HMDB00512 74839 0.97 0.96 0.3551 0.2028 1.1306 1.0799

102 phenylpyruvate LC/MS neg 163.04007 566 C00166 HMDB00205 997 0.94 0.92 0.1332 0.1045 1.1377 1.0462

103 phenyllactate (PLA) LC/MS neg 165.05571 22130 C05607 HMDB00779 3848 1.10 1.03 0.5923 0.2889 1.2251 1.2564

106 phenylacetate LC/MS neg 135.04515 15958 C07086 HMDB00209 999 0.78 0.71 0.0179 0.0251 1.3119 0.9367

107 4-hydroxyphenylacetate LC/MS neg 151.04007 541 C00642 HMDB00020 127 0.91 0.84 0.1092 0.0910 1.3172 1.1110

110 phenylacetylglutamine LC/MS pos 265.11829 35126 C04148 HMDB06344 92258 1.02 0.81 0.3858 0.2164 1.3564 1.0965

111 tyrosine LC/MS pos 182.08117 1299 C00082 HMDB00158 6057 0.78 0.77 0.0000 0.0001 1.1540 0.8850

112 N-acetyltyrosine LC/MS neg 222.07718 32390 HMDB00866 68310 0.72 0.73 0.0002 0.0013 1.1960 0.8752

120 4-hydroxyphenylpyruvate LC/MS neg 179.03498 1669 C01179 HMDB00707 979 0.99 0.93 0.4110 0.2270 0.9760 0.9054

121 3-(4-hydroxyphenyl)lactate LC/MS neg 181.05063 32197 C03672 HMDB00755 9378 1.00 0.96 0.6507 0.3072 1.1211 1.0818

126 phenol sulfate LC/MS neg 172.9914 32553 C02180 HMDB60015 74426 0.98 0.92 0.3907 0.2186 2.1406 1.9601

128 p-cresol sulfate LC/MS neg 187.00705 36103 C01468 HMDB11635 4615423 1.84 0.88 0.4789 0.2524 1.2436 1.0977

134 o-cresol sulfate LC/MS neg 187.00705 36845 11615528 1.53 1.42 0.0629 0.0628 0.9383 1.3313

139 vanillylmandelate (VMA) LC/MS neg 197.04555 1567 C05584 HMDB00291 1245 0.93 0.94 0.1767 0.1280 1.0534 0.9886

141 3-methoxytyrosine LC/MS pos 212.09174 12017 HMDB01434 1670 1.11 1.11 0.0027 0.0072 1.0033 1.1138

143 3-methoxytyramine sulfate LC/MS neg 246.04416 44618 0.93 0.67 0.1658 0.1222 1.0819 0.7269

148 homovanillate (HVA) LC/MS neg 181.05063 1101 C05582 HMDB00118 1738 0.76 0.77 0.0062 0.0125 1.1547 0.8859

163 gentisate LC/MS polar 153.01933 18280 C00628 HMDB00152 3469 0.96 0.74 0.1138 0.0937 1.2615 0.9341

167 3-[3-(sulfooxy)phenyl]propanoic acid LC/MS neg 245.01253 45415 187488 1.47 0.49 0.1331 0.1045 1.8998 0.9335

171 3-(3-hydroxyphenyl)propionate LC/MS neg 165.05571 35635 C11457 HMDB00375 91 2.84 0.70 0.1546 0.1167 1.2430 0.8666

172 3-(4-hydroxyphenyl)propionate LC/MS neg 165.05571 39587 C01744 HMDB02199 10394 0.94 0.78 0.1292 0.1024 0.8551 0.6685

174 3-phenylpropionate (hydrocinnamate) LC/MS neg 149.0608 15749 C05629 HMDB00764 107 0.81 0.67 0.0326 0.0373 2.1967 1.4678

179 thyroxine LC/MS neg 775.67944 2761 C01829 HMDB01918 5819 0.95 0.94 0.0296 0.0344 1.0667 1.0056

180 5-hydroxymethyl-2-furoic acid LC/MS neg 141.01933 42040 C20448 HMDB02432 80642 0.82 0.54 0.0227 0.0289 1.6842 0.9148

181 2-hydroxyphenylacetate LC/MS neg 151.04006 1432 C05852 HMDB00669 11970 0.94 0.86 0.2415 0.1590 1.2094 1.0369

183 phenylacetylcarnitine LC/MS pos 280.15434 48425 1.01 0.85 0.1935 0.1370 1.1813 1.0027

184 dopamine sulfate (1) LC/MS neg 232.02848 48406 1.06 0.75 0.5368 0.2733 1.6253 1.2190

185 dopamine sulfate (2) LC/MS neg 232.02845 48407 1.02 0.75 0.4566 0.2432 1.4719 1.1076

186 p-cresol-glucuronide* LC/MS neg 283.08232 48841 HMDB11686 154035 3.75 0.99 0.2788 0.1758 1.1125 1.0986

187 tyramine O-sulfate LC/MS neg 216.0336 48408 HMDB06409 153005 3.42 0.86 0.5074 0.2627 2.1093 1.8182

188 N-formylphenylalanine LC/MS neg 192.06661 48433 759256 0.78 0.61 0.0178 0.0251 1.2909 0.7914

193 tryptophan LC/MS pos 205.09716 54 C00078 HMDB00929 6305 0.75 0.75 0.0000 0.0000 1.1807 0.8829

194 N-acetyltryptophan LC/MS neg 245.09316 33959 C03137 HMDB13713 700653 0.75 0.73 0.0016 0.0050 1.2745 0.9310

197 indolelactate LC/MS pos 206.08117 18349 C02043 HMDB00671 92904 0.94 0.92 0.1440 0.1107 1.2943 1.1847

198 indoleacetate LC/MS pos 176.07061 27513 C00954 HMDB00197 802 0.86 0.82 0.0250 0.0301 1.4667 1.1978

200 indolepropionate LC/MS pos 190.08626 32405 HMDB02302 3744 0.92 0.78 0.1525 0.1157 1.2646 0.9878

202 3-indoxyl sulfate LC/MS neg 212.0023 27672 HMDB00682 10258 0.91 0.90 0.0814 0.0737 1.1600 1.0452

203 kynurenine LC/MS pos 209.09207 15140 C00328 HMDB00684 161166 0.84 0.83 0.0004 0.0020 1.1147 0.9269

204 kynurenate LC/MS neg 188.03531 1417 C01717 HMDB00715 3845 0.77 0.77 0.0007 0.0027 1.2853 0.9840

211 picolinate LC/MS pos 124.03931 1512 C10164 HMDB02243 1018 0.62 0.60 0.0000 0.0001 1.3651 0.8190

218 5-hydroxyindoleacetate LC/MS neg 190.05096 437 C05635 HMDB00763 1826 0.63 0.49 0.0033 0.0078 1.5830 0.7758

219 serotonin LC/MS pos 177.10224 2342 C00780 HMDB00259 5202 0.76 0.69 0.0911 0.0796 1.3318 0.9224

224 indolebutyrate LC/MS pos 204.10191 34402 C11284 HMDB02096 8617 1.07 1.08 0.5051 0.2627 0.7080 0.7641

226 indoleacetylglutamine LC/MS neg 302.11463 42087 HMDB13240 25200879 1.00 0.92 0.4150 0.2277 1.3199 1.2157

227 tryptophan betaine LC/MS pos 247.14411 37097 C09213 HMDB61115 442106 0.55 0.60 0.0000 0.0000 3.6167 2.1754

233 indole-3-carboxylic acid LC/MS neg 160.0404 38116 C19837 HMDB03320 69867 1.15 1.03 0.6661 0.3114 1.0085 1.0392

234 C-glycosyltryptophan LC/MS pos 367.14998 48782 10981970 1.10 1.09 0.1094 0.0910 0.9702 1.0534

235 N-acetylkynurenine (2) LC/MS neg 249.08808 48757 0.68 0.60 0.0010 0.0035 1.1806 0.7137

237 leucine LC/MS pos 132.10191 60 C00123 HMDB00687 6106 0.81 0.80 0.0002 0.0012 1.1029 0.8828

238 N-acetylleucine LC/MS neg 172.09791 1587 C02710 HMDB11756 70912 0.83 0.83 0.0153 0.0234 1.0607 0.8766

240 4-methyl-2-oxopentanoate LC/MS neg 129.05571 22116 C00233 HMDB00695 70 0.86 0.86 0.0157 0.0234 1.1075 0.9495

243 isovalerate LC/MS neg 101.0608 44656 C08262 HMDB00718 10430 0.60 0.58 0.0000 0.0001 1.2311 0.7200

244 isovalerylglycine LC/MS neg 158.08226 35107 HMDB00678 546304 0.54 0.55 0.0008 0.0030 1.2632 0.6927

245 isovalerylcarnitine LC/MS pos 246.16999 34407 HMDB00688 6426851 0.74 0.74 0.0005 0.0022 1.1596 0.8548

248 beta-hydroxyisovalerate LC/MS neg 117.05572 12129 HMDB00754 69362 0.83 0.82 0.0012 0.0041 1.1749 0.9671

249 beta-hydroxyisovaleroylcarnitine LC/MS pos 262.1649 35433 0.88 0.88 0.0444 0.0477 1.1032 0.9744

252 3-methylglutaconate LC/MS polar 143.03498 38667 HMDB00522 1551553 0.94 0.96 0.2008 0.1398 1.1269 1.0768

256 alpha-hydroxyisovalerate LC/MS neg 117.05571 33937 HMDB00407 99823 1.21 1.27 0.0071 0.0134 1.0033 1.2732

258 methylsuccinate LC/MS polar 131.03498 15745 HMDB01844 10349 0.93 0.92 0.1095 0.0910 1.0555 0.9691

266 isoleucine LC/MS pos 132.10191 1125 C00407 HMDB00172 6306 0.80 0.78 0.0005 0.0024 1.1221 0.8719

267 allo-isoleucine GC/MS 274.22357 47034 6950182;99288 1.31 1.25 0.0085 0.0155 0.9935 1.2390

268 N-acetylisoleucine LC/MS neg 172.09791 33967 2802421 0.95 0.93 0.2237 0.1504 0.9721 0.9087

269 3-methyl-2-oxovalerate LC/MS neg 129.05572 15676 C00671 HMDB03736 47 0.86 0.86 0.0105 0.0176 1.1373 0.9769

270 2-methylbutyrylcarnitine (C5) LC/MS pos 246.16999 45095 HMDB00378 6426901 0.89 0.86 0.0219 0.0285 1.0657 0.9210

272 tiglyl carnitine LC/MS pos 244.15434 35428 HMDB02366 22833596 1.03 0.99 0.9726 0.3895 1.0775 1.0638

273 tigloylglycine LC/MS pos 158.08117 1598 HMDB00959 6441567 0.61 0.57 0.0001 0.0006 1.2313 0.6963

275 2-hydroxy-3-methylvalerate LC/MS neg 131.07136 36746 HMDB00317 164623 1.20 1.07 0.4459 0.2385 0.9196 0.9816

276 3-hydroxy-2-ethylpropionate LC/MS neg 117.05571 32397 HMDB00396 188979 1.02 1.01 0.6731 0.3127 1.0507 1.0572

277 ethylmalonate LC/MS polar 131.03498 15765 HMDB00622 11756 1.26 1.24 0.0047 0.0099 1.1462 1.4161

278 valine LC/MS pos 118.08626 1649 C00183 HMDB00883 6287 0.81 0.80 0.0000 0.0001 1.0966 0.8766

279 N-acetylvaline LC/MS neg 158.08226 1591 HMDB11757 66789 1.09 1.08 0.0175 0.0248 0.9730 1.0539

281 3-methyl-2-oxobutyrate LC/MS neg 115.04006 44526 C00141 HMDB00019 49 1.07 1.06 0.5078 0.2627 1.0511 1.1160

282 isobutyrylcarnitine LC/MS pos 232.15434 33441 HMDB00736 168379 0.82 0.78 0.0056 0.0116 1.2666 0.9868

283 isobutyrylglycine LC/MS neg 144.06661 35437 HMDB00730 10855600 0.57 0.55 0.0001 0.0004 1.4584 0.8001

284 3-hydroxyisobutyrate LC/MS polar 103.04007 1549 C06001 HMDB00336 87 0.86 0.81 0.0243 0.0299 1.1686 0.9447

285 alpha-hydroxyisocaproate LC/MS neg 131.07136 22132 C03264 HMDB00746 83697 0.95 0.93 0.2323 0.1552 0.9515 0.8831

290 methionine LC/MS pos 150.05833 1302 C00073 HMDB00696 6137 0.77 0.75 0.0001 0.0005 1.1628 0.8752

291 N-acetylmethionine LC/MS neg 190.05434 1589 C02712 HMDB11745 448580 1.89 1.88 0.0000 0.0000 0.7976 1.4971

292 N-formylmethionine LC/MS neg 176.03869 2829 C03145 HMDB01015 439750 1.05 1.06 0.5808 0.2862 1.0324 1.0930

294 methionine sulfone LC/MS polar 180.0336 44878 69961 1.04 1.04 0.6819 0.3158 1.0787 1.1183

295 methionine sulfoxide LC/MS polar 164.03869 18374 C02989 HMDB02005 158980 0.94 0.90 0.2070 0.1418 1.0534 0.9517

298 S-adenosylhomocysteine (SAH) LC/MS neg 383.11431 42382 C00021 HMDB00939 439155 1.33 1.18 0.4639 0.2465 0.7005 0.8258

303 alpha-ketobutyrate LC/MS polar 101.02442 4968 C00109 HMDB00005 58 1.75 1.48 0.0300 0.0347 0.9656 1.4328

305 2-aminobutyrate LC/MS pos 104.07061 42374 C02261 HMDB00650 439691 1.01 0.99 0.8186 0.3494 1.0219 1.0119

306 2-hydroxybutyrate (AHB) LC/MS polar 103.04006 21044 C05984 HMDB00008 440864 1.41 1.30 0.0170 0.0245 0.9659 1.2542

307 cysteine GC/MS 218 31453 C00097 HMDB00574 5862 0.69 0.66 0.0005 0.0022 1.2676 0.8375

309 cystine LC/MS pos 241.03113 56 C00491 HMDB00192 67678 0.67 0.65 0.0000 0.0000 1.2565 0.8189

310 S-methylcysteine LC/MS neg 134.02812 39592 HMDB02108 24417 1.03 0.93 0.5986 0.2896 1.1396 1.0628

312 cysteine s-sulfate LC/MS neg 199.96928 22176 C05824 HMDB00731 115015 0.69 0.54 0.0030 0.0074 1.2694 0.6871

316 hypotaurine LC/MS polar 108.01247 590 C00519 HMDB00965 107812 1.04 0.91 0.6069 0.2924 1.2855 1.1651

317 taurine LC/MS neg 124.00739 2125 C00245 HMDB00251 1123 0.78 0.73 0.0077 0.0144 1.2349 0.9064

318 N-acetyltaurine LC/MS neg 166.01795 48187 159864 1.62 1.60 0.0000 0.0001 0.9214 1.4727

325 arginine LC/MS pos 175.11896 1638 C00062 HMDB00517 232 0.85 0.84 0.0031 0.0075 1.1366 0.9536

326 urea LC/MS pos 121.07201 1670 C00086 HMDB00294 1176 0.84 0.82 0.0040 0.0087 1.1318 0.9297

327 ornithine LC/MS polar 131.0826 1493 C00077 HMDB03374 6262 0.68 0.67 0.0001 0.0007 1.2163 0.8201

328 proline LC/MS pos 116.07061 1898 C00148 HMDB00162 145742 1.01 1.00 0.9388 0.3821 1.0226 1.0219

329 citrulline LC/MS pos 176.10297 2132 C00327 HMDB00904 9750 0.94 0.92 0.1759 0.1280 1.0654 0.9769

332 homocitrulline LC/MS pos 190.11862 22138 C02427 HMDB00679 65072 1.31 1.26 0.0570 0.0585 1.0883 1.3693

336 dimethylarginine (SDMA + ADMA) LC/MS pos 203.15026 36808 C03626 HMDB01539 123831 1.26 1.25 0.0001 0.0004 0.8930 1.1130

337 N-acetylarginine LC/MS pos 217.12952 33953 C02562 HMDB04620 67427 0.65 0.66 0.0000 0.0000 1.4152 0.9292

340 N-delta-acetylornithine LC/MS pos 175.10772 43249 9920500 0.91 0.91 0.0953 0.0824 1.0595 0.9639

344 N-methylproline LC/MS pos 130.08626 37431 557 1.36 0.83 0.5715 0.2847 2.3253 1.9318

346 trans-4-hydroxyproline LC/MS pos 132.06552 32306 C01157 HMDB00725 5810 1.04 0.94 0.7143 0.3239 1.1325 1.0696

348 pro-hydroxy-pro LC/MS pos 229.11829 35127 HMDB06695 11673055 1.07 1.06 0.5858 0.2872 1.0023 1.0618

352 N-acetylcitrulline LC/MS neg 216.09898 48434 C15532 HMDB00856 656979 0.59 0.60 0.0005 0.0022 1.9575 1.1697

353 creatine LC/MS pos 132.07676 27718 C00300 HMDB00064 586 0.98 0.97 0.4960 0.2587 1.0013 0.9676

354 creatinine LC/MS pos 114.06619 513 C00791 HMDB00562 588 1.08 1.07 0.0697 0.0667 0.9715 1.0420

359 guanidinoacetate LC/MS polar 116.04655 43802 C00581 HMDB00128 763 0.72 0.71 0.0000 0.0002 1.1968 0.8516

362 acisoga LC/MS pos 185.12846 43258 129397 1.33 1.25 0.0060 0.0121 0.8772 1.1006

366 5-methylthioadenosine (MTA) LC/MS neg 296.0823 1419 C00170 HMDB01173 439176 1.19 1.18 0.0012 0.0041 0.9092 1.0733

369 N-acetylputrescine LC/MS pos 131.11789 37496 C02714 HMDB02064 122356 1.62 1.05 0.5801 0.2862 0.9360 0.9811

370 4-acetamidobutanoate LC/MS pos 146.08117 1558 C02946 HMDB03681 18189 0.95 0.95 0.2156 0.1462 1.0295 0.9786

375 4-guanidinobutanoate LC/MS pos 146.09241 15681 C01035 HMDB03464 500 0.93 0.92 0.1895 0.1346 1.1762 1.0778

376 guanidinosuccinate LC/MS polar 174.05203 32446 C03139 HMDB03157 97856 1.06 1.09 0.2840 0.1777 0.6731 0.7356

380 cysteine-glutathione disulfide LC/MS pos 214.05123 35159 HMDB00656 4247235 0.95 0.89 0.2246 0.1506 0.9960 0.8907

384 cys-gly, oxidized LC/MS neg 353.0595 18368 333293 1.16 1.15 0.1324 0.1045 1.0214 1.1729

385 5-oxoproline LC/MS neg 128.03531 1494 C01879 HMDB00267 7405 0.94 0.93 0.0930 0.0808 1.0355 0.9641

393 gamma-glutamylalanine LC/MS pos 219.09755 37063 HMDB29142 440103 1.01 1.00 0.8125 0.3473 1.0106 1.0076

395 gamma-glutamylglutamate LC/MS pos 277.10303 36738 C05282 HMDB11737 92865 0.80 0.77 0.0367 0.0406 1.2617 0.9684

396 gamma-glutamylglutamine LC/MS pos 276.11902 2730 C05283 HMDB11738 150914 0.92 0.91 0.0717 0.0680 1.0731 0.9790

397 gamma-glutamylglycine LC/MS neg 203.06734 33949 HMDB11667 165527 0.67 0.50 0.0068 0.0132 1.7954 0.9043

398 gamma-glutamylhistidine LC/MS neg 283.10479 18245 7017195 0.90 0.87 0.0921 0.0802 1.3621 1.1883

399 gamma-glutamylisoleucine* LC/MS pos 261.1445 34456 HMDB11170 14253342 0.87 0.81 0.0342 0.0387 1.1889 0.9599

400 gamma-glutamylleucine LC/MS pos 261.1445 18369 HMDB11171 151023 0.86 0.83 0.0132 0.0213 1.1059 0.9147

401 gamma-glutamyl-epsilon-lysine LC/MS pos 276.1554 33934 HMDB03869 65254;14284565 0.98 0.93 0.4439 0.2384 1.0674 0.9955

402 gamma-glutamylmethionine LC/MS neg 277.08636 44872 HMDB29155 7009567 0.78 0.74 0.0029 0.0073 1.2240 0.9080

Mass

Supplementary Table 1. Complete list of all metabolites identified.
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Post G-CSF / Pre G-CSF
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Pathway 
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 p  ≤ 0.05, fold of change < 1.00 0.05 < p  < 0.10, fold of change < 1.00
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 p  ≤ 0.05, fold of change < 1.00 0.05 < p  < 0.10, fold of change < 1.00

Comparison mean values significantly different: Comparison mean value difference approaching significance:

403 gamma-glutamylphenylalanine LC/MS pos 295.12885 33422 HMDB00594 111299 0.98 0.96 0.4448 0.2384 1.0615 1.0153

404 gamma-glutamylthreonine* LC/MS pos 249.10812 33364 HMDB29159 0.90 0.90 0.0482 0.0511 1.0908 0.9776

405 gamma-glutamyltryptophan LC/MS pos 334.13975 33947 HMDB29160 3989307 0.80 0.78 0.0017 0.0053 1.1941 0.9356

406 gamma-glutamyltyrosine LC/MS pos 311.12377 2734 HMDB11741 94340 0.85 0.82 0.0166 0.0244 1.0817 0.8885

407 gamma-glutamylvaline LC/MS pos 247.12885 43829 HMDB11172 7015683 0.88 0.86 0.0147 0.0228 1.0957 0.9398

408 gamma-glutamyl-2-aminobutyrate LC/MS pos 233.1132 37092 1.18 1.10 0.7803 0.3405 0.8844 0.9689

410 Dipeptide Derivative N-acetylcarnosine LC/MS pos 269.12444 43488 HMDB12881 9903482 1.00 0.98 0.6322 0.3013 1.0450 1.0260

517 cyclo(val-val) LC/MS pos 199.14411 49796 519728 1.00 0.86 0.5622 0.2822 1.1562 0.9924

545 glycylvaline LC/MS pos 175.10772 18357 HMDB28854 97417 0.56 0.15 0.0034 0.0079 6.9270 1.0565

569 isoleucylglycine LC/MS pos 189.12337 40008 342532 0.82 0.75 0.0157 0.0234 1.1828 0.8889

587 leucylglycine LC/MS pos 189.12337 40045 79070 0.51 0.51 0.0001 0.0004 1.1721 0.5961

656 prolylglycine LC/MS pos 173.09207 40703 7408076;6426709 0.89 0.80 0.0837 0.0744 1.0835 0.8663

696 threonylphenylalanine LC/MS pos 267.13394 31530 4099799;4099798 0.81 0.73 0.0449 0.0480 1.1720 0.8526

735 valylglycine LC/MS pos 175.10772 40475 136487 0.71 0.57 0.0054 0.0112 1.2603 0.7244

738 valylleucine LC/MS pos 231.17032 39994 352039 0.80 0.78 0.0039 0.0087 1.1095 0.8613

751 bradykinin, des-arg(9) LC/MS pos 452.73742 34420 C00306 HMDB04246 105044 0.84 0.68 0.0329 0.0374 1.5525 1.0516

755 HWESASXX* LC/MS pos 471.73762 32836 0.83 0.80 0.0598 0.0599 1.3486 1.0734

781 ADSGEGDFXAEGGGVR* LC/MS pos 768.84989 33084 16133137 2.00 1.18 0.3276 0.1945 0.9326 1.1044

782 DSGEGDFXAEGGGVR* LC/MS pos 733.33133 31548 2.08 1.20 0.7362 0.3303 0.9152 1.1005

793 1,5-anhydroglucitol (1,5-AG) LC/MS neg 163.06119 20675 C07326 HMDB02712 64960 0.91 0.92 0.0028 0.0073 0.9963 0.9126

796 glucose LC/MS polar 179.05611 20488 C00031 HMDB00122 79025 1.00 0.99 0.7329 0.3294 1.0467 1.0349

812 pyruvate LC/MS polar 87.00877 48990 C00022 HMDB00243 1060 1.60 1.42 0.0019 0.0057 0.9167 1.3015

813 lactate LC/MS polar 89.02442 527 C00186 HMDB00190 612 1.46 1.41 0.0002 0.0009 0.8890 1.2513

816 glycerate LC/MS polar 105.01933 1572 C00258 HMDB00139 752 0.83 0.83 0.0008 0.0032 1.0458 0.8642

831 ribose GC/MS 204 12083 C00121 HMDB00283 5779 1.14 1.06 0.5913 0.2889 0.9277 0.9788

832 ribitol LC/MS polar 151.06119 15772 C00474 HMDB00508 6912 1.03 1.02 0.9083 0.3726 1.0396 1.0571

833 ribonate LC/MS polar 165.04046 27731 C01685 HMDB00867 5460677 0.95 0.94 0.2785 0.1758 1.0076 0.9487

836 xylonate GC/MS 292 35638 C05411 HMDB60256 6602431 1.08 1.00 0.9999 0.3961 1.0565 1.0544

837 xylose GC/MS 204 15835 C00181 HMDB00098 135191 1.31 1.19 0.5196 0.2672 1.0809 1.2824

838 xylitol GC/MS 307.2 4966 C00379 HMDB02917 6912 1.27 1.20 0.1646 0.1217 0.9197 1.1026

839 arabinose GC/MS 217 575 C00216 HMDB00646 66308 1.25 1.17 0.3259 0.1944 1.0208 1.1953

842 threitol GC/MS 217.1 35854 C16884 HMDB04136 169019 1.16 1.14 0.2020 0.1398 1.0166 1.1617

844 arabitol GC/MS 307.1 38075 C01904 HMDB00568 94154 1.00 0.94 0.5603 0.2821 1.0551 0.9881

850 fucose GC/MS 204 15821 C01018 HMDB00174 19466 1.13 1.10 0.2856 0.1779 1.0383 1.1442

861 maltotriose LC/MS neg 503.16175 44688 C01835 HMDB01262 439586 39.18 16.27 0.0000 0.0000 0.0782 1.2721

864 maltose LC/MS polar 387.11442 15586 C00208 HMDB00163 10991489 8.72 6.67 0.0000 0.0000 0.4175 2.7867

886 Disaccharides and Oligosaccharides sucrose LC/MS neg 341.10894 1519 C00089 HMDB00258 5988 1.60 0.82 0.6396 0.3040 1.9134 1.5684

900 fructose LC/MS polar 179.05611 577 C00095 HMDB00660 5984 0.92 0.67 0.0818 0.0738 1.4563 0.9765

906 mannose LC/MS polar 179.05611 584 C00159 HMDB00169 18950 1.40 1.23 0.0197 0.0270 0.9723 1.1979

910 mannitol GC/MS 319.1 15335 C00392 HMDB00765 6251 1.34 1.03 0.8009 0.3453 1.1207 1.1490

924 galactonate LC/MS polar 195.05102 27719 C00880 HMDB00565 128869 1.19 0.77 0.4280 0.2323 1.6234 1.2481

950 glucuronate LC/MS polar 193.03537 15443 C00191 HMDB00127 444791 1.02 1.00 0.5349 0.2733 1.0362 1.0334

961 N-acetylneuraminate LC/MS polar 308.0987 32377 C00270 HMDB00230 439197 1.02 1.00 0.7713 0.3371 1.0008 0.9985

973 erythronate* LC/MS polar 135.02989 42420 HMDB00613 2781043 1.26 1.26 0.0003 0.0016 0.9399 1.1804

980 citrate LC/MS neg 191.01973 1564 C00158 HMDB00094 311 6.51 5.51 0.1201 0.0970 0.9461 5.2152

982 aconitate [cis or trans] LC/MS neg 173.00916 46173 C00417 HMDB00072 1.29 1.22 0.0264 0.0315 0.9360 1.1391

985 alpha-ketoglutarate LC/MS polar 145.01425 528 C00026 HMDB00208 51 0.98 0.96 0.4248 0.2316 1.0262 0.9807

987 succinylcarnitine LC/MS pos 262.12852 37058 1.10 1.10 0.0557 0.0577 1.0311 1.1354

988 succinate LC/MS polar 117.01933 1437 C00042 HMDB00254 1110 0.88 0.87 0.0704 0.0671 1.0640 0.9279

989 fumarate LC/MS polar 115.00368 1643 C00122 HMDB00134 444972 1.10 1.04 0.5064 0.2627 1.0186 1.0570

990 malate LC/MS polar 133.01425 1303 C00149 HMDB00156 525 1.02 0.97 0.6297 0.3006 1.1418 1.1068

1000 2-methylcitrate/homocitrate LC/MS neg 205.03538 52282 0.94 0.91 0.1793 0.1291 1.0576 0.9598

1003 Oxidative Phosphorylation phosphate LC/MS neg 96.96962 42109 C00009 HMDB01429 1061 0.81 0.81 0.0175 0.0248 1.0886 0.8828

1004 Short Chain Fatty Acid valerate LC/MS neg 101.0608 33443 C00803 HMDB00892 7991 0.95 0.84 0.2023 0.1398 1.0622 0.8885

1005 caproate (6:0) LC/MS neg 115.07645 32489 C01585 HMDB00535 8892 1.08 1.05 0.7504 0.3314 1.0679 1.1209

1006 heptanoate (7:0) LC/MS neg 129.0921 1644 C17714 HMDB00666 8094 0.86 0.85 0.0157 0.0234 1.1133 0.9497

1007 caprylate (8:0) LC/MS neg 143.10775 32492 C06423 HMDB00482 379 1.22 1.21 0.2506 0.1637 1.0863 1.3186

1009 caprate (10:0) LC/MS neg 171.13905 1642 C01571 HMDB00511 2969 1.65 1.48 0.0274 0.0325 1.0080 1.4871

1011 10-undecenoate (11:1n1) LC/MS neg 183.13905 32497 1.15 1.04 0.4756 0.2512 1.1526 1.1938

1012 laurate (12:0) LC/MS neg 199.17035 1645 C02679 HMDB00638 3893 1.49 1.39 0.0146 0.0228 0.9576 1.3346

1013 5-dodecenoate (12:1n7) LC/MS neg 197.1547 33968 HMDB00529 5312378 1.32 1.34 0.1766 0.1280 1.1826 1.5857

1015 myristate (14:0) LC/MS neg 227.20165 1365 C06424 HMDB00806 11005 1.64 1.51 0.0247 0.0300 1.0213 1.5461

1016 myristoleate (14:1n5) LC/MS neg 225.186 32418 C08322 HMDB02000 5281119 1.80 1.64 0.0233 0.0293 1.3317 2.1785

1017 pentadecanoate (15:0) LC/MS neg 241.2173 1361 C16537 HMDB00826 13849 1.40 1.36 0.0022 0.0062 1.0312 1.3977

1018 palmitate (16:0) LC/MS neg 255.23295 1336 C00249 HMDB00220 985 1.24 1.24 0.0193 0.0267 1.0105 1.2489

1019 palmitoleate (16:1n7) LC/MS neg 253.2173 33447 C08362 HMDB03229 445638 1.85 1.73 0.0754 0.0696 1.3848 2.3988

1021 margarate (17:0) LC/MS neg 269.2486 1121 HMDB02259 10465 1.55 1.50 0.0064 0.0127 1.0301 1.5499

1022 10-heptadecenoate (17:1n7) LC/MS neg 267.23295 33971 HMDB60038 5312435 1.77 1.65 0.0198 0.0270 1.0032 1.6548

1023 stearate (18:0) LC/MS neg 283.26425 1358 C01530 HMDB00827 5281 1.23 1.23 0.0202 0.0273 0.9912 1.2197

1025 oleate (18:1n9) GC/MS 339.2 1359 C00712 HMDB00207 445639 1.70 1.61 0.0086 0.0156 1.0068 1.6250

1027 cis-vaccenate (18:1n7) GC/MS 339.3 33970 C08367 HMDB03231 5282761 1.58 1.38 0.0110 0.0182 0.9850 1.3596

1031 nonadecanoate (19:0) LC/MS neg 297.2799 1356 C16535 HMDB00772 12591 1.34 1.35 0.0008 0.0032 0.9524 1.2840

1032 10-nonadecenoate (19:1n9) LC/MS neg 295.26425 33972 HMDB13622 5312513 1.88 1.74 0.0044 0.0094 0.9312 1.6195

1034 arachidate (20:0) LC/MS neg 311.29555 1118 C06425 HMDB02212 10467 1.31 1.18 0.1587 0.1189 1.0427 1.2306

1037 eicosenoate (20:1) LC/MS neg 309.2799 33587 HMDB02231 5282768 2.04 1.97 0.0001 0.0005 0.8493 1.6754

1041 erucate (22:1n9) LC/MS neg 337.3112 1552 C08316 HMDB02068 5281116 2.39 1.38 0.0463 0.0493 1.0137 1.4032

1050 stearidonate (18:4n3) LC/MS neg 275.20165 33969 C16300 HMDB06547 5312508 1.33 1.23 0.1590 0.1189 1.2865 1.5873

1051 eicosapentaenoate (EPA; 20:5n3) LC/MS neg 301.2173 18467 C06428 HMDB01999 446284 0.83 0.79 0.0596 0.0599 1.6164 1.2783

1052 docosapentaenoate (n3 DPA; 22:5n3) LC/MS neg 329.2486 32504 C16513 HMDB01976 6441454 1.45 1.37 0.0277 0.0326 0.9218 1.2634

1053 docosahexaenoate (DHA; 22:6n3) LC/MS neg 327.23295 44675 C06429 HMDB02183 445580 0.96 0.90 0.3363 0.1955 1.3251 1.1889

1057 linoleate (18:2n6) LC/MS neg 279.23295 1105 C01595 HMDB00673 5280450 1.42 1.38 0.0222 0.0288 1.0030 1.3855

1059 linolenate [alpha or gamma; (18:3n3 or 6)] LC/MS neg 277.2173 34035 C06426 HMDB03073 5280934 1.80 1.70 0.0101 0.0173 0.9509 1.6206

1061 dihomo-linolenate (20:3n3 or n6) LC/MS neg 305.2486 35718 C03242 HMDB02925 5280581 0.90 0.86 0.1201 0.0970 1.1769 1.0136

1062 arachidonate (20:4n6) LC/MS neg 303.23295 1110 C00219 HMDB01043 444899 0.76 0.73 0.0093 0.0168 1.1828 0.8666

1063 adrenate (22:4n6) LC/MS neg 331.26425 32980 C16527 HMDB02226 5497181 2.36 2.25 0.0000 0.0001 0.7346 1.6524

1064 docosapentaenoate (n6 DPA; 22:5n6) LC/MS neg 329.2486 37478 C16513 HMDB01976 6441454 0.86 0.81 0.0397 0.0432 1.2608 1.0182

1065 docosadienoate (22:2n6) LC/MS neg 335.29555 32415 C16533 HMDB61714 5282807 2.96 2.79 0.0000 0.0000 0.6261 1.7463

1066 dihomo-linoleate (20:2n6) LC/MS neg 307.26425 17805 C16525 HMDB05060 6439848 1.90 1.77 0.0002 0.0010 0.8468 1.4958

1116 13-methylmyristic acid LC/MS neg 241.2173 38293 151014 1.40 1.28 0.0813 0.0737 0.9630 1.2317

1119 15-methylpalmitate (isobar with 2-methylpalmitate) LC/MS neg 269.24868 38768 17903417 1.34 1.32 0.3212 0.1930 1.0557 1.3975

1122 17-methylstearate LC/MS neg 297.2799 38296 3083779 1.71 1.63 0.0019 0.0057 0.7957 1.2957

1133 2-hydroxyglutarate LC/MS polar 147.02989 37253 C02630 HMDB00606 43 1.71 1.61 0.0214 0.0284 0.9920 1.5942

1136 2-hydroxyadipate LC/MS polar 161.04554 31934 C02360 HMDB00321 193530 0.88 0.68 0.0558 0.0577 1.1531 0.7814

1137 3-methyladipate LC/MS polar 159.06628 36749 HMDB00555 12292 1.45 1.35 0.1395 0.1088 0.9878 1.3318

1139 maleate LC/MS polar 115.00368 20676 C01384 HMDB00176 444266 0.77 0.73 0.0070 0.0134 1.3816 1.0110

1142 suberate (octanedioate) LC/MS polar 173.08193 15730 C08278 HMDB00893 10457 1.23 0.79 0.3338 0.1953 2.0104 1.5913

1145 azelate (nonanedioate) LC/MS neg 187.09758 18362 C08261 HMDB00784 2266 1.00 0.75 0.1780 0.1286 1.8739 1.4075

1146 sebacate (decanedioate) LC/MS neg 201.11323 32398 C08277 HMDB00792 5192 1.37 1.31 0.0662 0.0654 0.9876 1.2948

1149 dodecanedioate LC/MS neg 229.14453 32388 C02678 HMDB00623 12736 1.28 1.23 0.0541 0.0564 1.0110 1.2428

1150 tetradecanedioate LC/MS neg 257.17583 35669 HMDB00872 13185 1.12 1.08 0.3204 0.1930 1.2258 1.3216

1151 hexadecanedioate LC/MS neg 285.20713 35678 C19615 HMDB00672 10459 1.71 1.68 0.0009 0.0034 0.9444 1.5827

1152 octadecanedioate LC/MS neg 313.23843 36754 HMDB00782 70095 2.08 1.94 0.0003 0.0013 0.9011 1.7485

1153 eicosanodioate LC/MS neg 341.26973 39831 75502 0.95 0.78 0.2812 0.1769 1.3290 1.0409

1155 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) LC/MS neg 239.09249 31787 HMDB61112 123979 0.89 0.96 0.1013 0.0862 2.0180 1.9357

1180 Fatty Acid, Amide oleamide LC/MS neg 280.26458 32458 C19670 HMDB02117 5283387 0.69 0.37 0.0105 0.0176 2.6343 0.9708

1186 2-aminoheptanoate LC/MS pos 146.11756 43761 227939 1.00 0.94 0.4756 0.2512 1.0619 0.9952

1191 2-aminooctanoate LC/MS pos 160.13321 43343 HMDB00991 69522 1.16 0.94 0.9291 0.3793 1.1555 1.0818

1199 malonylcarnitine LC/MS pos 248.11287 37059 HMDB02095 22833583 1.05 0.99 0.8270 0.3524 0.9712 0.9581

1200 malonate LC/MS polar 103.00368 15872 C00383 HMDB00691 867 2.34 2.12 0.1487 0.1132 1.0365 2.1925

1201 2-methylmalonyl carnitine LC/MS pos 262.12852 35482 HMDB13133 53481628 1.05 1.02 0.8324 0.3532 0.9749 0.9922

1213 butyrylcarnitine LC/MS pos 232.15434 32412 C02862 HMDB02013 439829 1.29 1.25 0.0010 0.0035 1.0910 1.3637

1214 butyrylglycine LC/MS neg 144.06661 31850 HMDB00808 88412 0.96 0.90 0.3037 0.1860 1.5664 1.4076

1216 propionylcarnitine LC/MS pos 218.13869 32452 C03017 HMDB00824 107738 0.84 0.84 0.0021 0.0061 1.0682 0.8925

1217 propionylglycine LC/MS pos 132.06552 31932 HMDB00783 98681 0.78 0.77 0.0349 0.0391 1.0967 0.8400

1219 methylmalonate (MMA) LC/MS polar 117.01933 1496 C02170 HMDB00202 487 0.91 0.92 0.1045 0.0880 1.0177 0.9355

1222 hexanoylglycine LC/MS neg 172.09791 35436 HMDB00701 99463 1.38 1.45 0.0237 0.0294 0.9499 1.3790

1225 N-palmitoyl glycine LC/MS neg 312.25441 42092 151008 1.23 1.18 0.1112 0.0921 0.9318 1.1001

1230 acetylcarnitine LC/MS pos 204.12304 32198 C02571 HMDB00201 1 1.09 1.08 0.2524 0.1645 0.9316 1.0068

1231 hydroxybutyrylcarnitine* LC/MS pos 248.14925 43264 HMDB13127 53481617 1.49 1.44 0.0006 0.0025 0.8635 1.2458

1233 hexanoylcarnitine LC/MS pos 260.18564 32328 HMDB00705 6426853 1.39 1.37 0.0010 0.0035 1.0121 1.3885

1234 octanoylcarnitine LC/MS pos 288.21694 33936 C02838 HMDB00791 123701 1.32 1.12 0.0998 0.0852 1.0252 1.1431

1236 decanoylcarnitine LC/MS pos 316.24824 33941 HMDB00651 10245190 1.42 1.13 0.0880 0.0777 0.9643 1.0899

1238 cis-4-decenoyl carnitine LC/MS pos 314.23259 38178 1.05 1.05 0.9411 0.3821 0.9371 0.9856

1239 laurylcarnitine LC/MS pos 344.27954 34534 HMDB02250 10427569 2.86 1.82 0.0696 0.0667 0.7475 1.3612

1242 palmitoylcarnitine LC/MS pos 400.34214 44681 C02990 HMDB00222 461 2.77 2.31 0.2703 0.1735 0.9507 2.1947

1244 linoleoylcarnitine* LC/MS pos 424.34214 46223 HMDB06469 6450015 4.73 3.60 0.2368 0.1575 0.3817 1.3723

1245 oleoylcarnitine LC/MS pos 426.35779 35160 HMDB05065 6441392;53477789 3.77 2.98 0.0586 0.0596 0.7766 2.3145

1247 myristoleoylcarnitine* LC/MS pos 370.29471 48182 3.62 2.54 0.0247 0.0300 0.6640 1.6882

1248 deoxycarnitine LC/MS pos 146.11756 36747 C01181 HMDB01161 134 1.02 1.02 0.8811 0.3674 1.0017 1.0174

1249 carnitine LC/MS pos 162.11247 15500 C00318 HMDB00062 10917 1.07 1.07 0.0034 0.0079 0.9669 1.0327

1252 acetoacetate LC/MS pos 103.03898 33963 C00164 HMDB00060 96 1.20 0.97 0.7890 0.3418 1.1123 1.0767

1254 3-hydroxybutyrate (BHBA) LC/MS polar 103.04007 542 C01089 HMDB00357 441 1.03 1.00 0.7415 0.3304 1.1796 1.1834

1257 alpha-hydroxycaproate LC/MS neg 131.07136 37073 HMDB01624 99824 1.19 1.23 0.5691 0.2840 1.0678 1.3089

1258 2-hydroxyoctanoate LC/MS neg 159.10266 22036 HMDB02264 94180 0.94 0.85 0.2385 0.1579 1.1505 0.9768

1259 2-hydroxydecanoate LC/MS neg 187.13396 42489 21488 1.18 0.89 0.5437 0.2762 1.2932 1.1506

1261 2-hydroxypalmitate LC/MS neg 271.22786 35675 HMDB31057 92836 0.90 0.85 0.0878 0.0777 1.0830 0.9220

1262 2-hydroxystearate LC/MS neg 299.25917 17945 C03045 69417 0.88 0.83 0.0525 0.0554 1.1743 0.9778

1265 3-hydroxyoctanoate LC/MS neg 159.10266 22001 HMDB01954 26613 1.31 1.19 0.1614 0.1203 1.0634 1.2665

1266 3-hydroxydecanoate LC/MS neg 187.13396 22053 HMDB02203 26612 1.37 1.25 0.0175 0.0248 1.0661 1.3361

1267 3-hydroxysebacate LC/MS neg 217.10814 31943 HMDB00350 3017884 2.15 1.72 0.0041 0.0089 0.9934 1.7070

1268 3-hydroxylaurate LC/MS neg 215.16526 32457 HMDB00387 94216 1.57 1.36 0.0234 0.0293 0.9687 1.3179

1273 5-hydroxyhexanoate LC/MS neg 131.07136 31938 HMDB00525 170748 1.16 1.07 0.4059 0.2255 1.0430 1.1150

1280 16-hydroxypalmitate LC/MS neg 271.22786 39609 C18218 HMDB06294 10466 1.44 1.39 0.0246 0.0300 0.9760 1.3539

1285 13-HODE + 9-HODE LC/MS neg 295.22825 37752 43013 1.12 0.96 0.9724 0.3895 1.3972 1.3377

1295 12,13-DiHOME LC/MS neg 313.23843 38395 C14829 HMDB04705 10236635 1.60 1.22 0.3483 0.2002 0.9774 1.1947

1296 9,10-DiHOME LC/MS neg 313.23843 38399 C14828 HMDB04704 9966640 1.12 1.10 0.2207 0.1488 1.1846 1.3070

1361 5-HETE LC/MS neg 319.22786 37372 C04805 HMDB11134 5280733 1.99 1.77 0.0187 0.0259 0.6777 1.1989

1366 12-HETE LC/MS neg 319.22786 37536 HMDB06111 5312983 0.60 0.31 0.0011 0.0036 2.9009 0.9121

1376 oleic ethanolamide LC/MS neg 324.2908 38102 HMDB02088 5283454 1.14 1.08 0.7185 0.3253 1.0167 1.0956

1387 N-stearoyltaurine LC/MS neg 390.26835 39730 168274 1.26 1.01 0.9724 0.3895 0.9774 0.9827

1391 myo-inositol LC/MS polar 225.06159 1124 C00137 HMDB00211 892 0.87 0.88 0.0293 0.0342 1.0789 0.9455

1392 chiro-inositol GC/MS 318.1 37112 C19891 HMDB34220 3.00 1.12 0.8301 0.3531 1.5734 1.7646

1394 scyllo-inositol GC/MS 318.2 32379 C06153 HMDB06088 892 0.79 0.71 0.0096 0.0169 1.5570 1.0997

1399 inositol 1-phosphate (I1P) GC/MS 318.1 1481 C04006 HMDB00213 440194 0.78 0.75 0.0029 0.0073 1.1882 0.8856

1418 choline LC/MS pos 104.10699 15506 C00114 HMDB00097 305 0.89 0.89 0.0065 0.0127 1.0740 0.9552

1419 choline phosphate LC/MS pos 184.07332 34396 C00588 HMDB01565 1014 0.38 0.24 0.0000 0.0002 1.5486 0.3782

1421 glycerophosphorylcholine (GPC) LC/MS pos 258.1101 15990 C00670 HMDB00086 71920 0.77 0.76 0.0017 0.0051 1.1454 0.8651

1424 ethanolamine GC/MS 174.1 1497 C00189 HMDB00149 700 1.02 1.00 0.8639 0.3620 1.0190 1.0169

1427 glycerophosphoethanolamine LC/MS polar 214.04859 37455 C01233 HMDB00114 123874 0.98 0.97 0.4561 0.2432 0.9595 0.9343

1428 trimethylamine N-oxide LC/MS pos 151.14411 40406 C01104 HMDB00925 1145 2.34 2.51 0.7706 0.3371 1.7278 4.3427

1429 glycerophosphoinositol* LC/MS polar 333.05922 47155 1.71 1.29 0.6174 0.2959 0.9448 1.2208

1430 1-palmitoyl-2-oleoyl-GPC (16:0/18:1)* LC/MS polar 804.57604 52461 6436017 0.97 0.96 0.3560 0.2028 1.0222 0.9765

1431 1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) LC/MS polar 854.59091 42450 16219824 0.90 0.86 0.0830 0.0743 1.2047 1.0307

1432 1-palmitoyl-2-linoleoyl-GPC (16:0/18:2)* LC/MS polar 802.56018 52460 5287971 0.93 0.93 0.0722 0.0680 1.0673 0.9914

1433 1,2-dipalmitoyl-GPC (16:0/16:0) LC/MS polar 778.5604 19130 HMDB00564 452110 1.10 1.09 0.3692 0.2090 0.9167 0.9994

1434 1-stearoyl-2-oleoyl-GPC (18:0/18:1) LC/MS polar 832.6073 52438 0.91 0.88 0.1237 0.0992 1.0690 0.9435

1436 1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4)* LC/MS polar 826.56034 52459 10747814 0.88 0.87 0.0036 0.0081 1.0829 0.9405

1437 1-stearoyl-2-linoleoyl-GPC (18:0/18:2)* LC/MS polar 830.59165 52452 0.89 0.87 0.0594 0.0599 1.0246 0.8948

1440 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)* LC/MS polar 776.5447 52470 0.96 0.85 0.3125 0.1900 1.2584 1.0713

1443 1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)* LC/MS polar 788.58109 52478 1.26 0.93 0.7901 0.3418 0.8943 0.8284

1444 1-stearoyl-2-arachidonoyl-GPI (18:0/20:4)* LC/MS polar 885.54948 52449 0.86 0.82 0.0051 0.0108 1.2290 1.0081

1445 1-palmitoyl-2-linoleoyl-GPI (16:0/18:2)* LC/MS polar 833.51845 52450 0.78 0.76 0.0029 0.0073 1.1804 0.8935

1446 1-oleoyl-2-linoleoyl-GPI (18:1/18:2)* LC/MS polar 859.53393 52451 0.74 0.70 0.0006 0.0025 1.2817 0.8955

1447 1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4)* LC/MS polar 857.51855 52467 0.70 0.66 0.0010 0.0035 1.2151 0.7965

1448 1-stearoyl-2-linoleoyl-GPI (18:0/18:2)* LC/MS polar 861.54985 52468 0.79 0.78 0.0031 0.0075 1.1257 0.8800

1451 1-palmitoyl-2-oleoyl-GPG (16:0/18:1)* LC/MS polar 747.51853 52448 5283509 1.10 1.04 0.7099 0.3231 1.1149 1.1559
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1453 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4)* LC/MS polar 750.54431 52475 0.96 0.93 0.3066 0.1873 1.1298 1.0458

1454 1-(1-enyl-stearoyl)-2-docosahexaenoyl-GPE (P-18:0/22:6)* LC/MS polar 774.54431 52476 1.08 1.00 0.9702 0.3895 1.1649 1.1669

1456 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) LC/MS polar 716.52357 19263 HMDB05320 5283496 0.99 0.88 0.3681 0.2090 1.0473 0.9226

1458 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4)* LC/MS polar 766.53922 52447 1.00 0.96 0.6628 0.3112 1.0365 0.9950

1459 1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6)* LC/MS polar 790.53922 52466 1.11 0.95 0.6260 0.2994 1.2806 1.2189

1460 1-stearoyl-2-oleoyl-GPE (18:0/18:1) LC/MS polar 744.55488 42448 1.83 1.23 0.1075 0.0902 0.7743 0.9548

1461 1-(1-enyl-palmitoyl)-GPC (P-16:0)* LC/MS polar 524.33577 52474 10917802 0.79 0.77 0.0003 0.0016 1.1293 0.8739

1462 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4)* LC/MS polar 738.50792 52464 1.03 0.95 0.7670 0.3364 1.0369 0.9799

1463 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6)* LC/MS polar 762.50792 52465 1.12 0.96 0.7135 0.3239 1.4741 1.4083

1464 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) LC/MS polar 714.50792 42449 HMDB05322 9546747 1.12 0.99 0.7200 0.3253 1.0925 1.0797

1465 1-stearoyl-2-linoleoyl-GPE (18:0/18:2)* LC/MS polar 742.5392 52446 0.93 0.92 0.1404 0.1089 1.1628 1.0644

1471 1-palmitoyl-GPC (16:0) LC/MS pos 496.33977 33955 HMDB10382 86554 1.06 0.87 0.1800 0.1292 1.3091 1.1433

1472 2-palmitoyl-GPC (16:0)* LC/MS pos 496.33977 35253 HMDB61702 15061532 1.08 0.87 0.1967 0.1389 1.3901 1.2148

1473 1-palmitoleoyl-GPC (16:1)* LC/MS pos 494.32412 33230 HMDB10383 24779461 0.90 0.79 0.0667 0.0654 1.4601 1.1500

1474 2-palmitoleoyl-GPC (16:1)* LC/MS pos 494.32412 35819 1.12 0.91 0.4853 0.2547 1.0618 0.9612

1477 1-stearoyl-GPC (18:0) LC/MS pos 524.37107 33961 HMDB10384 497299 1.15 0.85 0.2012 0.1398 1.6766 1.4276

1478 2-stearoyl-GPC (18:0)* LC/MS pos 524.37107 35255 10208382 1.26 0.85 0.1133 0.0936 1.6241 1.3864

1479 1-oleoyl-GPC (18:1) LC/MS pos 522.35542 48258 HMDB02815 16081932 1.13 1.01 0.3288 0.1948 1.3328 1.3464

1482 1-linoleoyl-GPC (18:2) LC/MS pos 520.33977 34419 C04100 HMDB10386 11988421 1.17 0.92 0.4091 0.2265 1.4350 1.3218

1484 1-linolenoyl-GPC (18:3)* LC/MS pos 518.32412 45951 1.08 0.85 0.2002 0.1398 1.4876 1.2706

1494 1-arachidonoyl-GPC (20:4)* LC/MS pos 544.33977 33228 C05208 HMDB10395 1.23 1.17 0.8088 0.3470 1.1068 1.3001

1505 1-(1-enyl-palmitoyl)-GPE (P-16:0)* LC/MS neg 436.28334 39270 1.54 1.06 0.7613 0.3345 1.3034 1.3826

1506 1-(1-enyl-stearoyl)-GPE (P-18:0)* LC/MS neg 464.31464 39271 0.90 0.84 0.0884 0.0778 1.1594 0.9687

1507 1-(1-enyl-oleoyl)-GPE (P-18:1)* LC/MS neg 462.29899 44621 2.23 1.27 0.3766 0.2122 1.3984 1.7765

1510 1-palmitoyl-GPE (16:0) LC/MS neg 452.27826 35631 HMDB11503 9547069 0.77 0.73 0.0030 0.0073 1.2350 0.9027

1513 1-stearoyl-GPE (18:0) LC/MS neg 480.30956 42398 HMDB11130 9547068 2.73 0.89 0.7224 0.3259 2.2349 1.9810

1514 2-stearoyl-GPE (18:0)* LC/MS neg 480.30956 41220 1.20 1.01 0.6858 0.3167 1.2215 1.2307

1515 1-oleoyl-GPE (18:1) LC/MS neg 478.29391 35628 HMDB11506 9547071 1.12 0.86 0.5551 0.2809 1.1738 1.0091

1519 1-linoleoyl-GPE (18:2)* LC/MS neg 476.27826 32635 HMDB11507 52925130 0.84 0.76 0.0228 0.0289 1.1630 0.8872

1523 1-arachidonoyl-GPE (20:4)* LC/MS neg 500.27826 35186 HMDB11517 42607465 0.96 0.90 0.2710 0.1735 1.1057 0.9908

1533 1-palmitoyl-GPI (16:0)* LC/MS neg 571.28888 35305 HMDB61695 0.68 0.61 0.0058 0.0119 1.3543 0.8292

1536 1-stearoyl-GPI (18:0) LC/MS neg 599.32018 19324 HMDB61696 0.85 0.73 0.0535 0.0560 1.3270 0.9626

1538 1-oleoyl-GPI (18:1)* LC/MS neg 597.30453 36602 0.59 0.55 0.0005 0.0022 1.3719 0.7493

1540 1-linoleoyl-GPI (18:2)* LC/MS neg 595.28888 36594 0.82 0.78 0.0326 0.0373 1.1479 0.8917

1544 1-arachidonoyl-GPI (20:4)* LC/MS neg 619.28888 34214 HMDB61690 0.91 0.84 0.1368 0.1070 1.0692 0.8930

1555 1-arachidonoyl-GPA (20:4) LC/MS neg 457.23606 46325 0.68 0.59 0.0070 0.0134 1.3556 0.7951

1560 1-stearoyl-GPG (18:0) LC/MS neg 511.30414 34437 1.02 0.79 0.2733 0.1746 0.8553 0.6729

1595 glycerol LC/MS neg 91.04007 15122 C00116 HMDB00131 753 0.67 0.71 0.0024 0.0067 1.3120 0.9366

1596 glycerol 3-phosphate GC/MS 357.1 15365 C00093 HMDB00126 754 1.22 0.59 0.0745 0.0694 3.5547 2.1042

1602 1-myristoylglycerol (14:0) LC/MS neg 227.20163 35625 C01885 HMDB11561 79050 1.18 1.02 0.9995 0.3961 1.1593 1.1828

1606 1-palmitoylglycerol (16:0) LC/MS neg 255.23293 21127 HMDB31074 14900 1.50 1.11 0.7831 0.3409 1.1446 1.2650

1607 2-palmitoylglycerol (16:0) LC/MS neg 255.23293 33419 HMDB11533 123409 1.13 0.55 0.1293 0.1024 1.0680 0.5908

1611 1-oleoylglycerol (18:1) LC/MS pos 374.32649 21184 HMDB11567 5283468 1.58 1.57 0.1875 0.1335 1.0427 1.6322

1612 2-oleoylglycerol (18:1) LC/MS neg 281.24858 21232 5319879 2.48 1.09 0.9940 0.3961 0.9554 1.0369

1613 1-linoleoylglycerol (18:2) LC/MS neg 279.23293 27447 5283469 1.36 1.16 0.2659 0.1715 0.8844 1.0280

1614 2-linoleoylglycerol (18:2) LC/MS neg 279.23293 32506 HMDB11538 5365676 1.41 1.07 0.7523 0.3317 0.9901 1.0612

1615 1-linolenoylglycerol (18:3) LC/MS neg 277.21728 34393 HMDB11569 53480978 1.57 1.12 0.7006 0.3212 1.0108 1.1313

1616 1-arachidonylglycerol (20:4) LC/MS neg 303.23293 34397 C13857 HMDB11572 5282281 1.48 1.08 0.7480 0.3314 1.2854 1.3867

1617 2-arachidonoylglycerol (20:4) LC/MS neg 303.23293 19266 C13856 HMDB04666 5282280 2.65 1.50 0.1823 0.1302 0.7387 1.1068

1621 1-docosahexaenoylglycerol (22:6) LC/MS neg 309.22236 35153 HMDB11587 1.45 1.07 0.6735 0.3127 1.4517 1.5595

1623 1-dihomo-linolenylglycerol (alpha, gamma) LC/MS neg 305.24858 48341 1.58 0.98 0.7840 0.3409 1.2670 1.2413

1624 oleoyl-linoleoyl-glycerol LC/MS polar 663.52055 48424 1.86 0.63 0.3136 0.1901 0.9718 0.6148

1625 2-docosahexaenoylglcyerol* LC/MS neg 309.22236 48675 HMDB11557 1.13 0.85 0.4065 0.2255 1.4629 1.2405

1626 1-palmitoleoylglycerol (16:1)* LC/MS neg 253.21727 52431 1.72 1.01 0.9970 0.3961 1.1795 1.1964

1627 2-palmitoleoylglycerol (16:1)* LC/MS neg 253.21727 52432 1.33 1.03 0.8113 0.3473 0.8085 0.8366

1638 palmitoyl sphingomyelin (d18:1/16:0) LC/MS polar 747.56577 37506 9939941 0.94 0.94 0.1546 0.1167 1.0367 0.9742

1639 stearoyl sphingomyelin (d18:1/18:0) LC/MS polar 775.59707 19503 C00550 HMDB01348 6453725 0.99 0.97 0.6438 0.3051 0.9985 0.9697

1640 sphingomyelin (d18:1/18:1, d18:2/18:0) LC/MS polar 773.58142 37529 6443882 0.95 0.92 0.2148 0.1462 1.1196 1.0306

1643 sphingosine 1-phosphate LC/MS polar 378.24148 34445 C06124 HMDB00277 5283560 0.84 0.82 0.0078 0.0144 1.0986 0.9009

1654 sphingomyelin (d18:1/14:0, d16:1/16:0)* LC/MS polar 719.53447 42463 11433862 0.87 0.88 0.0155 0.0234 1.0413 0.9144

1655 sphingomyelin (d18:2/14:0, d18:1/14:1)* LC/MS polar 717.51882 47154 0.78 0.77 0.0027 0.0072 1.1159 0.8560

1656 sphingomyelin (d18:1/24:1, d18:2/24:0)* LC/MS polar 857.67533 47153 1.05 1.04 0.5966 0.2892 0.9530 0.9938

1657 sphingomyelin (d18:2/16:0, d18:1/16:1)* LC/MS polar 745.55012 42459 0.86 0.86 0.0025 0.0068 1.0752 0.9201

1658 sphingomyelin (d18:1/20:1, d18:2/20:0)* LC/MS polar 801.61272 48491 0.95 0.93 0.2481 0.1625 1.0335 0.9604

1659 behenoyl sphingomyelin (d18:1/22:0)* LC/MS polar 831.65967 48492 1.07 1.00 0.9536 0.3856 0.9538 0.9550

1660 sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)* LC/MS polar 829.64402 48493 0.96 0.95 0.2966 0.1838 1.0023 0.9560

1661 sphingomyelin (d18:1/20:0, d16:1/22:0)* LC/MS polar 803.62837 48490 1.04 1.00 0.9156 0.3750 1.0199 1.0157

1664 Mevalonate Metabolism 3-hydroxy-3-methylglutarate LC/MS polar 161.04555 531 C03761 HMDB00355 1662 0.85 0.80 0.0205 0.0275 1.1788 0.9375

1674 lathosterol GC/MS 255.2 39864 C01189 HMDB01170 65728 0.99 0.91 0.5099 0.2633 1.0795 0.9857

1676 cholesterol GC/MS 329.3 63 C00187 HMDB00067 11025495 0.82 0.82 0.0000 0.0001 1.1012 0.9015

1686 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) LC/MS neg 429.30103 36776 C17337 HMDB12458 3081085 1.11 1.10 0.0770 0.0707 0.9698 1.0627

1699 campesterol GC/MS 343.4 39511 C01789 HMDB02869 173183 0.87 0.81 0.0241 0.0298 1.1340 0.9240

1720 pregnenolone sulfate LC/MS neg 395.18976 38170 HMDB00774 105074 0.90 0.92 0.1245 0.0995 1.4959 1.3824

1728 21-hydroxypregnenolone disulfate LC/MS neg 245.06711 46115 C05485 HMDB04026 134595 1.02 1.01 0.8085 0.3470 1.1006 1.1098

1736 5-pregnen-3b, 17-diol-20-one 3-sulfate LC/MS neg 411.18468 37482 HMDB00416 152971 1.17 1.23 0.1142 0.0937 0.6391 0.7846

1738 5alpha-pregnan-3beta,20beta-diol monosulfate (1) LC/MS neg 399.22106 37196 1.11 1.03 0.3774 0.2122 1.0087 1.0414

1741 5alpha-pregnan-3beta,20alpha-diol monosulfate (2) LC/MS neg 399.22106 37200 1.16 1.11 0.3471 0.2000 1.0967 1.2166

1744 5alpha-pregnan-3beta,20alpha-diol disulfate LC/MS neg 239.0853 37198 1.25 1.13 0.9809 0.3922 0.9300 1.0531

1745 5alpha-pregnan-3(alpha or beta),20beta-diol disulfate LC/MS neg 239.0853 46172 5127902 1.04 0.85 0.4829 0.2540 1.0012 0.8517

1747 pregnen-diol disulfate* LC/MS neg 238.07747 32562 1.04 1.02 0.8627 0.3620 1.0242 1.0481

1748 pregn steroid monosulfate* LC/MS neg 397.20541 32619 1.09 1.05 0.1978 0.1393 1.2464 1.3148

1749 pregnanediol-3-glucuronide LC/MS neg 495.29634 40708 123796 1.14 1.12 0.6403 0.3040 0.9874 1.1021

1757 cortisol LC/MS neg 361.20204 1712 C00735 HMDB00063 5754 0.99 0.96 0.4397 0.2372 0.9891 0.9510

1759 corticosterone LC/MS neg 345.20713 5983 C02140 HMDB01547 5753 1.48 1.10 0.9035 0.3712 0.8957 0.9842

1762 cortisone LC/MS neg 359.18639 1769 C00762 HMDB02802 222786 0.85 0.82 0.0138 0.0220 1.1471 0.9461

1767 dehydroisoandrosterone sulfate (DHEA-S) LC/MS neg 367.15846 32425 C04555 HMDB01032 12594 0.97 0.93 0.3141 0.1901 1.1466 1.0715

1768 16a-hydroxy DHEA 3-sulfate LC/MS neg 383.15338 38168 0.97 0.94 0.3431 0.1981 1.0935 1.0309

1770 epiandrosterone sulfate LC/MS neg 369.17411 33973 C07635 HMDB00365 1.01 1.00 0.7441 0.3309 1.0730 1.0727

1773 androsterone sulfate LC/MS neg 369.17411 31591 HMDB02759 159663 1.08 1.02 0.2394 0.1580 1.2290 1.2593

1774 4-androsten-3beta,17beta-diol monosulfate (1) LC/MS neg 369.17411 37211 HMDB03818 1.22 1.18 0.0755 0.0696 1.0317 1.2170

1775 4-androsten-3beta,17beta-diol monosulfate (2) LC/MS neg 369.17411 37210 0.84 0.75 0.0668 0.0654 1.2791 0.9582

1778 4-androsten-3alpha,17alpha-diol monosulfate (2) LC/MS neg 369.17411 37207 1.10 1.10 0.9967 0.3961 1.3812 1.5208

1779 4-androsten-3alpha,17alpha-diol monosulfate (3) LC/MS neg 369.17411 37209 1.09 1.08 0.2557 0.1658 1.1219 1.2077

1783 4-androsten-3beta,17beta-diol disulfate (1) LC/MS neg 224.06182 37202 C04295 HMDB03818 10634 0.94 0.94 0.0997 0.0852 1.0630 0.9950

1784 4-androsten-3beta,17beta-diol disulfate (2) LC/MS neg 224.0624 37203 C04295 HMDB03818 10634 0.79 0.82 0.0203 0.0274 1.2465 1.0254

1788 5alpha-androstan-3alpha,17beta-diol monosulfate (1) LC/MS neg 371.18976 37186 1.32 1.26 0.0026 0.0069 1.1409 1.4394

1789 5alpha-androstan-3alpha,17alpha-diol monosulfate LC/MS neg 371.18976 37183 1.34 1.06 0.3260 0.1944 0.7442 0.7917

1791 5alpha-androstan-3beta,17beta-diol monosulfate (2) LC/MS neg 371.18976 37192 1.25 1.12 0.0569 0.0585 1.0768 1.2012

1796 5alpha-androstan-3beta,17alpha-diol disulfate LC/MS neg 225.06965 37187 1.33 0.93 0.5113 0.2635 1.0675 0.9882

1797 5alpha-androstan-3alpha,17beta-diol disulfate LC/MS neg 225.06965 37184 1.07 1.03 0.6671 0.3114 0.6755 0.6929

1798 5alpha-androstan-3beta,17beta-diol disulfate LC/MS neg 225.06965 37190 C12525 HMDB00493 242332 0.86 0.87 0.0375 0.0413 1.4057 1.2287

1803 andro steroid monosulfate (1)* LC/MS neg 383.1534 32827 C04555 HMDB02759 0.93 0.90 0.1590 0.1189 1.0725 0.9699

1826 etiocholanolone glucuronide LC/MS neg 465.24939 47112 0.88 0.93 0.0401 0.0434 1.4135 1.3203

1828 5alpha-androstan-3alpha,17beta-diol monosulfate (2) LC/MS neg 371.18976 37185 0.98 0.93 0.4230 0.2311 1.3318 1.2430

1829 17alpha-hydroxypregnanolone glucuronide LC/MS neg 509.2756 47403 1.19 1.12 0.2941 0.1827 0.9477 1.0567

1834 pregnanolone/allopregnanolone sulfate LC/MS neg 397.20541 48394 0.79 0.56 0.0216 0.0284 1.0092 0.5669

1841 cholate LC/MS neg 407.28029 22842 C00695 HMDB00619 221493 1.20 1.12 0.2545 0.1655 2.6735 3.0064

1842 glycocholate LC/MS neg 464.30176 18476 C01921 HMDB00138 10140 1.73 1.07 0.2695 0.1734 1.3238 1.4101

1843 taurocholate LC/MS neg 514.28439 18497 C05122 HMDB00036 6675 2.02 0.81 0.3405 0.1971 1.7445 1.4159

1844 chenodeoxycholate LC/MS neg 391.28538 1563 C02528 HMDB00518 10133 1.51 0.86 0.5609 0.2821 1.2556 1.0758

1845 glycochenodeoxycholate LC/MS neg 448.30684 32346 C05466 HMDB00637 12544 1.20 0.81 0.7292 0.3283 1.5177 1.2302

1846 taurochenodeoxycholate LC/MS neg 498.28948 18494 C05465 HMDB00951 387316 1.33 0.71 0.7397 0.3303 2.1697 1.5304

1850 tauro-beta-muricholate LC/MS neg 514.28439 33983 HMDB00932 168408 1.49 0.84 0.7556 0.3326 1.4203 1.1961

1852 deoxycholate LC/MS neg 391.28538 1114 C04483 HMDB00626 222528 1.19 0.95 0.7400 0.3303 1.2145 1.1520

1853 glycodeoxycholate LC/MS neg 448.30684 18477 C05464 HMDB00631 3035026 1.79 1.44 0.0386 0.0423 0.9031 1.3019

1854 taurodeoxycholate LC/MS neg 498.28948 12261 C05463 HMDB00896 2733768 1.48 0.97 0.2592 0.1676 1.2745 1.2357

1858 glycolithocholate LC/MS neg 432.31193 31912 C15557 HMDB00698 115245 1.48 1.16 0.0727 0.0682 0.8704 1.0108

1859 glycolithocholate sulfate* LC/MS neg 255.63073 32620 C11301 HMDB02639 72222 1.84 1.35 0.1176 0.0959 0.8721 1.1776

1860 taurolithocholate LC/MS neg 482.29456 31889 C02592 HMDB00722 10595 1.08 1.06 0.3524 0.2017 0.8723 0.9241

1861 taurolithocholate 3-sulfate LC/MS neg 280.62205 36850 C03642 HMDB02580 440071 1.78 0.95 0.8332 0.3532 1.3687 1.3063

1863 ursodeoxycholate LC/MS neg 391.28538 1605 C07880 HMDB00946 31401 0.92 0.68 0.0694 0.0667 1.3801 0.9317

1864 glycoursodeoxycholate LC/MS neg 448.30684 39379 HMDB00708 12310288 1.22 0.97 0.9978 0.3961 1.4790 1.4325

1865 tauroursodeoxycholate LC/MS neg 498.28948 39378 HMDB00874 9848818 1.92 0.70 0.8530 0.3592 1.8828 1.3244

1872 glycohyocholate LC/MS neg 464.30176 42574 1.51 1.22 0.1674 0.1230 1.0591 1.2917

1881 glycocholenate sulfate* LC/MS neg 254.62291 32599 1.04 0.94 0.2846 0.1777 1.1210 1.0563

1882 taurocholenate sulfate LC/MS neg 279.61422 32807 0.91 0.76 0.0982 0.0844 1.6493 1.2503

1886 3b-hydroxy-5-cholenoic acid LC/MS neg 373.27482 43507 HMDB00308 92997 1.08 0.85 0.4214 0.2307 1.1839 1.0086

2430 inosine LC/MS neg 267.07349 1123 C00294 HMDB00195 6021 0.34 0.25 0.0000 0.0002 2.2074 0.5410

2431 hypoxanthine LC/MS neg 135.03123 3127 C00262 HMDB00157 790 1.22 1.16 0.4043 0.2253 0.9047 1.0515

2432 xanthine LC/MS pos 153.04071 3147 C00385 HMDB00292 1188 1.18 1.06 0.5955 0.2892 0.9284 0.9849

2434 xanthosine LC/MS pos 285.08296 15136 C01762 HMDB00299 64959 1.36 1.24 0.6936 0.3197 0.8634 1.0725

2439 urate LC/MS neg 167.02106 1604 C00366 HMDB00289 1175 1.05 1.04 0.1231 0.0990 1.0240 1.0686

2440 allantoin LC/MS polar 157.03671 1107 C02350 HMDB00462 204 2.22 2.13 0.0000 0.0001 0.7023 1.4963

2448 adenosine 3',5'-cyclic monophosphate (cAMP) LC/MS neg 328.04524 2831 C00575 HMDB00058 6076 0.81 0.77 0.0217 0.0284 1.1050 0.8499

2452 adenosine LC/MS neg 134.0472 555 C00212 HMDB00050 60961 0.78 0.29 0.0215 0.0284 3.4216 0.9964

2453 adenine LC/MS pos 136.06178 554 C00147 HMDB00034 190 0.89 0.83 0.0811 0.0737 1.1237 0.9381

2458 N1-methyladenosine LC/MS pos 282.11969 15650 C02494 HMDB03331 27476 1.14 1.15 0.8697 0.3632 0.9297 1.0679

2459 N6-methyladenosine LC/MS neg 148.06285 37114 HMDB04044 102175 1.45 1.40 0.0000 0.0003 0.8416 1.1763

2468 N6-carbamoylthreonyladenosine LC/MS neg 411.12698 35157 HMDB41623 161466 1.51 1.47 0.0000 0.0001 0.8161 1.2014

2477 N6-succinyladenosine LC/MS neg 382.10043 48130 HMDB00912 2.10 1.99 0.0000 0.0002 0.7039 1.4013

2485 guanosine LC/MS pos 284.09895 1573 C00387 HMDB00133 6802 0.31 0.22 0.0000 0.0002 2.2781 0.5097

2488 7-methylguanine LC/MS pos 166.07234 35114 C02242 HMDB00897 11361 1.09 1.09 0.5806 0.2862 0.9617 1.0524

2492 N1-methylguanosine LC/MS pos 298.1146 31609 HMDB01563 96373 1.16 1.15 0.0122 0.0200 0.9447 1.0890

2493 N2-methylguanosine LC/MS neg 296.10004 35133 HMDB05862 3035422 1.35 1.32 0.0016 0.0051 0.8647 1.1409

2494 N2,N2-dimethylguanosine LC/MS pos 312.13025 35137 HMDB04824 92919 1.28 1.25 0.0001 0.0006 0.9081 1.1346

2505 dihydroorotate LC/MS polar 157.02548 601 C00337 HMDB03349 648 0.73 0.72 0.0000 0.0000 1.2239 0.8836

2506 orotate LC/MS polar 155.00983 1505 C00295 HMDB00226 967 1.27 1.08 0.2068 0.1418 1.0800 1.1654

2508 orotidine LC/MS polar 287.05209 35172 C01103 HMDB00788 92751 1.89 1.90 0.0000 0.0000 0.8196 1.5540

2518 uridine LC/MS neg 243.06226 606 C00299 HMDB00296 6029 1.03 1.02 0.6472 0.3061 1.0040 1.0221

2519 uracil LC/MS neg 111.02 605 C00106 HMDB00300 1174 1.34 1.30 0.0139 0.0220 0.9029 1.1707

2520 pseudouridine LC/MS pos 245.07682 33442 C02067 HMDB00767 15047 1.26 1.26 0.0000 0.0000 0.9344 1.1812

2521 5-methyluridine (ribothymidine) LC/MS neg 257.07791 35136 HMDB00884 445408 0.84 0.83 0.0228 0.0289 1.0719 0.8916

2528 5,6-dihydrouracil LC/MS pos 115.05021 1559 C00429 HMDB00076 649 1.18 1.19 0.0071 0.0134 0.9634 1.1445

2532 2'-deoxyuridine LC/MS neg 111.01997 1412 C00526 HMDB00012 13712 1.54 1.44 0.0105 0.0176 0.8843 1.2728

2533 4-ureidobutyrate LC/MS polar 145.06186 22118 1571307 0.72 0.71 0.0025 0.0068 1.2137 0.8620

2534 3-ureidopropionate LC/MS pos 133.06077 3155 C02642 HMDB00026 111 1.75 1.64 0.0033 0.0077 0.8271 1.3524

2535 beta-alanine GC/MS 334.1 35838 C00099 HMDB00056 239 1.27 1.04 0.6052 0.2922 1.0703 1.1088

2536 N-acetyl-beta-alanine LC/MS pos 132.06552 37432 C01073 76406 1.02 0.98 0.8902 0.3677 1.1099 1.0896

2544 cytidine LC/MS neg 242.07824 514 C00475 HMDB00089 6175 1.03 0.73 0.3225 0.1933 1.4520 1.0532

2548 N4-acetylcytidine LC/MS pos 286.10337 35130 HMDB05923 107461 1.46 1.45 0.0002 0.0013 0.9307 1.3468

2562 Pyrimidine Metabolism, Thymine containing 5,6-dihydrothymine LC/MS pos 129.06586 1418 C00906 HMDB00079 93556 0.90 0.88 0.0532 0.0560 1.1117 0.9749

2566 quinolinate LC/MS polar 166.01458 1899 C03722 HMDB00232 1066 0.98 0.94 0.4144 0.2277 0.9752 0.9195

2570 nicotinamide LC/MS pos 123.05529 594 C00153 HMDB01406 936 1.40 1.17 0.8360 0.3538 0.9529 1.1141

2582 1-methylnicotinamide LC/MS pos 137.07094 27665 C02918 HMDB00699 10129985 0.66 0.56 0.0006 0.0025 1.2096 0.6797

2587 trigonelline (N'-methylnicotinate) LC/MS pos 138.05496 32401 C01004 HMDB00875 5570 1.00 0.70 0.2016 0.1398 1.8939 1.3334

2589 N1-Methyl-2-pyridone-5-carboxamide LC/MS pos 153.06586 40469 C05842 HMDB04193 69698 0.67 0.62 0.0010 0.0035 1.2544 0.7773

2595 Pantothenate and CoA Metabolism pantothenate LC/MS neg 218.10339 1508 C00864 HMDB00210 6613 1.10 1.02 0.4289 0.2323 1.0451 1.0701

2603 ascorbate (Vitamin C) GC/MS 332.1 1640 C00072 HMDB00044 2.05 1.59 0.8849 0.3677 1.1762 1.8725

2605 threonate LC/MS polar 135.02989 27738 C01620 HMDB00943 151152 0.78 0.76 0.0012 0.0041 1.0236 0.7782

2606 arabonate GC/MS 292.1 37516 C00878 HMDB00539 122045 1.03 0.96 0.8671 0.3627 1.0812 1.0392

2607 oxalate (ethanedioate) LC/MS neg 88.98803 20694 C00209 HMDB02329 971 0.65 0.64 0.0166 0.0244 1.1510 0.7406

2608 gulonic acid* LC/MS polar 195.05102 46957 9794176 2.06 1.75 0.0001 0.0008 0.6970 1.2204

2609 alpha-tocopherol GC/MS 502.5 1561 C02477 HMDB01893 14985 0.82 0.81 0.0005 0.0023 1.0892 0.8851

2611 beta-tocopherol GC/MS 488.3 35702 C14152 HMDB06335 6857447 1.15 0.82 0.5367 0.2733 1.0853 0.8921

2614 gamma-tocopherol GC/MS 488.4 33420 C02483 HMDB01492 14986 0.82 0.66 0.0359 0.0401 1.4611 0.9659

2617 gamma-CEHC LC/MS neg 263.12888 44876 HMDB01931 133098 0.89 0.76 0.0785 0.0718 1.3059 0.9880

2618 gamma-CEHC glucuronide* LC/MS neg 439.16097 42381 1.24 0.93 0.4958 0.2587 0.9912 0.9227

2620 alpha-CEHC sulfate LC/MS neg 357.10134 47666 1.46 1.25 0.4440 0.2384 0.9307 1.1635

2644 bilirubin (Z,Z) LC/MS neg 583.2562 43807 C00486 HMDB00054 5280352 0.56 0.51 0.0001 0.0008 1.7259 0.8726
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2645 bilirubin (E,E)* LC/MS neg 583.2562 32586 5315454 0.74 0.69 0.0042 0.0091 1.3280 0.9198

2647 biliverdin LC/MS neg 581.24056 2137 C00500 HMDB01008 5353439 0.86 0.75 0.0695 0.0667 1.4135 1.0622

2648 I-urobilinogen LC/MS neg 591.31881 32426 C05790 HMDB04157 26818 1.38 0.63 0.5673 0.2837 1.3546 0.8574

2670 Vitamin B6 Metabolism pyridoxate LC/MS neg 182.04588 31555 C00847 HMDB00017 6723 0.77 0.70 0.0021 0.0061 1.4754 1.0353

2672 hippurate LC/MS neg 178.05096 15753 C01586 HMDB00714 464 1.23 0.67 0.2450 0.1609 1.8526 1.2397

2676 2-hydroxyhippurate (salicylurate) LC/MS neg 194.04588 18281 C07588 HMDB00840 10253 1.45 0.72 0.7075 0.3228 1.4091 1.0133

2677 3-hydroxyhippurate LC/MS neg 194.04588 39600 HMDB06116 450268 0.96 0.67 0.0596 0.0599 1.2752 0.8492

2678 4-hydroxyhippurate LC/MS neg 194.04588 35527 HMDB13678 151012 1.56 1.22 0.8892 0.3677 1.4274 1.7445

2684 benzoate LC/MS neg 121.0295 15778 C00180 HMDB01870 243 1.01 0.99 0.8878 0.3677 0.9957 0.9902

2693 4-hydroxybenzoate LC/MS neg 137.02441 21133 C00156 HMDB00500 135 1.93 1.72 0.1819 0.1302 0.9442 1.6219

2701 catechol sulfate LC/MS neg 188.98631 35320 C00090 HMDB59724 3083879 0.88 0.71 0.0743 0.0694 1.2579 0.8891

2703 O-methylcatechol sulfate LC/MS neg 203.00196 46111 22473 0.94 0.72 0.1158 0.0947 1.6539 1.1962

2704 3-methyl catechol sulfate (1) LC/MS neg 203.00196 46165 0.77 0.53 0.0229 0.0289 1.4830 0.7879

2705 3-methyl catechol sulfate (2) LC/MS neg 203.00196 46164 0.74 0.52 0.0158 0.0234 1.3245 0.6851

2706 4-methylcatechol sulfate LC/MS neg 203.00196 46146 1.40 1.00 0.3081 0.1878 1.4099 1.4078

2710 methyl-4-hydroxybenzoate LC/MS polar 151.04006 34386 D01400 HMDB32572 7456 49.34 30.31 0.0363 0.0404 0.9339 28.3049

2714 2-ethylphenylsulfate LC/MS neg 201.0227 36847 1.67 0.93 0.9712 0.3895 1.9349 1.8018

2715 3-ethylphenylsulfate LC/MS neg 201.0227 36848 C14386 3.11 0.80 0.3012 0.1860 1.8728 1.4896

2716 4-ethylphenylsulfate LC/MS neg 201.0227 36099 C13637 1.43 0.78 0.9712 0.3895 1.6244 1.2733

2717 4-vinylphenol sulfate LC/MS neg 199.00705 36098 C05627 HMDB04072 6426766 0.73 0.71 0.0116 0.0191 3.2346 2.3007

2729 3-methoxycatechol sulfate (1) LC/MS neg 218.99688 48763 1.06 0.93 0.5731 0.2849 0.8722 0.8089

2730 3-methoxycatechol sulfate (2) LC/MS neg 218.99688 48752 1.03 0.78 0.1419 0.1094 1.7490 1.3576

2731 methyl-4-hydroxybenzoate sulfate LC/MS neg 230.99688 48429 45.71 2.93 0.3213 0.1930 2.5108 7.3622

2732 propyl 4-hydroxybenzoate sulfate LC/MS neg 259.02818 48460 2.04 1.83 0.0009 0.0034 0.6908 1.2675

2735 caffeine LC/MS pos 195.08766 569 C07481 HMDB01847 2519 1.11 0.80 0.7071 0.3228 1.2373 0.9898

2736 paraxanthine LC/MS pos 181.07201 18254 C13747 HMDB01860 4687 1.09 0.81 0.5850 0.2872 1.2918 1.0507

2737 theobromine LC/MS pos 181.07201 18392 C07480 HMDB02825 5429 1.12 0.88 0.3978 0.2221 1.2205 1.0723

2738 theophylline LC/MS pos 181.07201 18394 C07130 HMDB01889 2153 1.08 0.87 0.5598 0.2821 1.2923 1.1239

2739 1-methylurate LC/MS pos 183.05127 34395 C16359 HMDB03099 69726 0.87 0.63 0.0575 0.0588 1.5026 0.9466

2741 1,3-dimethylurate LC/MS neg 195.05236 32391 HMDB01857 70346 0.90 0.78 0.1199 0.0970 1.3652 1.0687

2742 1,7-dimethylurate LC/MS neg 195.05236 34400 C16356 HMDB11103 91611 1.08 0.82 0.3272 0.1945 1.1517 0.9452

2743 3,7-dimethylurate LC/MS neg 195.05236 34399 C16360 HMDB01982 83126 0.73 0.63 0.0085 0.0155 1.7071 1.0823

2744 1,3,7-trimethylurate LC/MS neg 209.06801 34404 C16361 HMDB02123 79437 0.98 0.83 0.3356 0.1955 1.3519 1.1184

2745 1-methylxanthine LC/MS pos 167.05636 34389 C16358 HMDB10738 80220 0.68 0.55 0.0041 0.0089 1.7840 0.9756

2746 3-methylxanthine LC/MS pos 167.05636 32445 C16357 HMDB01886 70639 0.97 0.80 0.1759 0.1280 1.2181 0.9687

2747 7-methylxanthine LC/MS pos 167.05636 34390 C16353 HMDB01991 68374 0.81 0.61 0.0290 0.0340 1.4468 0.8764

2748 5-acetylamino-6-amino-3-methyluracil LC/MS pos 199.08257 34424 C16366 HMDB04400 88299 1.48 0.52 0.2326 0.1552 1.7199 0.8979

2749 5-acetylamino-6-formylamino-3-methyluracil LC/MS pos 227.07748 34401 C16365 HMDB11105 108214 0.80 0.51 0.0304 0.0350 1.2637 0.6425

2751 cotinine LC/MS pos 177.10224 553 HMDB01046 854019 0.91 0.80 0.2006 0.1398 4.9467 3.9568

2752 hydroxycotinine LC/MS pos 193.09716 38661 HMDB01390 10219774 0.93 0.82 0.3037 0.1860 0.1734 0.1420

2753 cotinine N-oxide LC/MS pos 193.09716 38662 HMDB01411 9815514 1.00 1.00 0.3343 0.1953 0.9699 0.9653

2761 2-piperidinone LC/MS pos 100.07569 43400 12665 0.73 0.67 0.0012 0.0041 1.4596 0.9842

2833 levulinate (4-oxovalerate) LC/MS pos 99.04406 22177 HMDB00720 11579 0.94 0.89 0.2054 0.1415 1.1401 1.0113

2844 1,6-anhydroglucose GC/MS 204.1 21049 HMDB00640 2724705 1.77 1.45 0.3694 0.2090 1.1835 1.7115

2847 2,3-dihydroxyisovalerate LC/MS polar 133.05063 38276 C04039 HMDB12141 677 1.17 0.92 0.7490 0.3314 1.3236 1.2239

2853 2-isopropylmalate LC/MS polar 175.06119 15667 C02504 HMDB00402 77 1.33 0.91 0.8870 0.3677 1.1364 1.0373

2864 3-hydroxyindolin-2-one LC/MS pos 132.0444 42561 C11130 6097 1.32 1.17 0.2768 0.1754 1.0098 1.1811

2871 betonicine LC/MS pos 160.09682 38100 C08269 HMDB29412 164642 2.13 0.71 0.5291 0.2715 4.4510 3.1706

2875 gluconate LC/MS polar 195.05102 587 C00257 HMDB00625 10690 1.09 1.04 0.7001 0.3212 1.0182 1.0584

2885 N-acetylalliin LC/MS neg 218.04925 45404 1.56 0.87 0.6664 0.3114 0.7451 0.6463

2915 cinnamoylglycine LC/MS neg 204.06661 38637 HMDB11621 709625 0.86 0.67 0.0692 0.0667 1.8104 1.2175

2932 dihydroferulic acid LC/MS neg 195.06628 40481 14340 0.97 0.76 0.0909 0.0796 1.6383 1.2442

2941 ergothioneine LC/MS neg 228.08122 37459 C05570 HMDB03045 3032311 0.46 0.51 0.0000 0.0000 1.8383 0.9406

2943 erythritol GC/MS 217 20699 C00503 HMDB02994 222285 1.13 1.11 0.0833 0.0743 0.9812 1.0929

2946 ferulic acid 4-sulfate LC/MS neg 273.00744 47114 HMDB29200 6305574 0.87 0.56 0.0747 0.0694 1.8641 1.0487

2965 homostachydrine* LC/MS pos 158.11756 33009 C08283 HMDB33433 441447 0.97 0.82 0.3027 0.1860 1.1571 0.9504

2969 indolin-2-one LC/MS pos 134.06004 43374 C12312 321710 1.34 0.94 0.8925 0.3679 1.1563 1.0841

2991 methyl indole-3-acetate LC/MS pos 190.08626 1584 HMDB29738 74706 1.11 1.01 0.8905 0.3677 1.4215 1.4291

2994 N-(2-furoyl)glycine LC/MS neg 168.03023 31536 HMDB00439 21863 0.91 0.41 0.0411 0.0443 2.3108 0.9588

3017 piperine LC/MS pos 286.14377 33935 C03882 HMDB29377 638024 1.06 0.87 0.2148 0.1462 1.5315 1.3378

3027 quinate LC/MS polar 191.05611 18335 C00296 HMDB03072 6508 1.11 0.68 0.5945 0.2892 1.3111 0.8937

3031 saccharin LC/MS neg 181.99173 21151 D01085 HMDB29723 5143 1.34 0.79 0.2378 0.1578 0.7700 0.6058

3034 S-allylcysteine LC/MS pos 162.05833 43239 98280 0.73 0.31 0.0225 0.0289 1.3827 0.4245

3049 stachydrine LC/MS pos 144.10191 34384 C10172 HMDB04827 115244 1.75 0.75 0.9436 0.3821 2.1440 1.6021

3054 tartarate LC/MS neg 149.00916 15336 C00898 HMDB00956 444305 1.72 1.66 0.1455 0.1114 1.7360 2.8763

3055 theanine LC/MS pos 175.10772 22206 C01047 HMDB34365 439378 0.99 1.07 0.6583 0.3102 0.2744 0.2928

3057 thymol sulfate LC/MS neg 229.054 36095 C09908 HMDB01878 1.29 0.48 0.1021 0.0865 3.8456 1.8532

3070 4-allylphenol sulfate LC/MS neg 213.0227 37181 0.80 0.38 0.0263 0.0315 2.5218 0.9684

3071 methyl glucopyranoside (alpha + beta) LC/MS pos 212.11268 46144 1.31 0.80 0.4872 0.2552 1.9362 1.5396

3098 4-vinylguaiacol sulfate LC/MS neg 229.01761 48442 0.81 0.57 0.0155 0.0234 1.4245 0.8159

3099 pyrraline LC/MS pos 255.13394 48428 1.28 1.14 0.4679 0.2482 0.9757 1.1162

3100 umbelliferone sulfate LC/MS neg 240.98123 48674 129659 1.66 0.64 0.3018 0.1860 3.2169 2.0485

3102 eugenol sulfate LC/MS neg 243.03326 48715 180632 1.19 0.15 0.1420 0.1094 12.2355 1.8394

3108 isoeugenol sulfate LC/MS neg 243.03326 48997 3.78 0.87 0.4282 0.2323 1.8474 1.6002

3126 Bacterial/Fungal tartronate (hydroxymalonate) LC/MS neg 118.99859 20693 C02287 HMDB35227 45 0.50 0.48 0.0035 0.0079 1.4044 0.6673

3156 2-hydroxyacetaminophen sulfate* LC/MS neg 246.00778 33173 787.95 13.37 0.0097 0.0169 4.4804 59.9252

3157 2-methoxyacetaminophen sulfate* LC/MS neg 260.02343 47031 432.16 18.75 0.0038 0.0086 0.0561 1.0516

3158 3-(cystein-S-yl)acetaminophen* LC/MS pos 271.07471 34365 5233914 25.58 9.80 0.0146 0.0228 0.0845 0.8285

3159 3-(N-acetyl-L-cystein-S-yl) acetaminophen LC/MS neg 311.07072 45721 83967 15.96 5.53 0.0170 0.0245 0.0965 0.5341

3160 4-acetaminophen sulfate LC/MS neg 230.01287 37475 C06804 HMDB59911 83939 1306.61 11.32 0.0095 0.0169 0.7167 8.1123

3161 4-acetamidophenol LC/MS neg 150.05605 12032 C06804 HMDB01859 1983 197.35 14.07 0.0102 0.0175 0.0965 1.3577

3162 4-acetamidophenylglucuronide LC/MS neg 326.08814 15736 HMDB10316 83944 361.77 17.34 0.0098 0.0170 0.0708 1.2280

3163 2-methoxyacetaminophen glucuronide* LC/MS neg 356.0987 33161 50.09 20.62 0.0128 0.0208 0.0618 1.2742

3166 ibuprofen LC/MS pos 224.16451 17799 D00126 HMDB01925 3672 6.10 4.11 0.6627 0.3112 0.1768 0.7265

3167 2-hydroxyibuprofen LC/MS pos 205.12231 43330 1.73 1.60 0.5743 0.2849 0.4312 0.6901

3169 carboxyibuprofen LC/MS neg 235.09758 43333 10444113 6.34 2.93 0.7914 0.3418 0.1163 0.3408

3181 4-acetylphenol sulfate LC/MS neg 215.00196 44620 4684006 0.94 0.78 0.0719 0.0680 1.1673 0.9059

3188 6-oxopiperidine-2-carboxylic acid LC/MS neg 142.05096 43231 3014237 0.92 0.86 0.1628 0.1207 1.1532 0.9940

3228 4-hydroxycoumarin LC/MS neg 161.02441 37445 C20414 54682930 1.42 0.67 0.7080 0.3228 1.1857 0.7970

3258 hydrochlorothiazide LC/MS neg 295.95719 39625 C07041 HMDB01928 3639 0.99 0.99 0.3343 0.1953 0.9481 0.9401

3260 hydroquinone sulfate LC/MS neg 188.98631 35322 C00530 HMDB02434 161220 1.96 1.01 0.8564 0.3601 1.2086 1.2180

3278 lidocaine LC/MS pos 235.18049 35661 D00358 HMDB14426 3676 1.42 1.42 0.0970 0.0836 0.3582 0.5084

3284 metformin LC/MS pos 130.10873 38306 C07151 HMDB01921 4091 0.93 0.14 0.3343 0.1953 0.1525 0.0221

3288 metoprolol LC/MS pos 268.19072 18037 D02358 HMDB01932 4171 0.99 0.98 0.3343 0.1953 0.8911 0.8743

3289 metoprolol acid metabolite* LC/MS pos 268.15434 34109 62936 0.98 0.98 0.3343 0.1953 0.8904 0.8736

3299 N-ethylglycinexylidide LC/MS pos 207.14919 33080 C16561 HMDB60656 24415 1.17 1.17 0.1264 0.1008 0.6983 0.8140

3307 omeprazole LC/MS neg 344.10743 38600 C07324 HMDB01913 4594 1.00 1.00 1.0000 1.0000

3335 salicylate LC/MS neg 137.02442 1515 C00805 HMDB01895 338 0.88 0.57 0.0671 0.0654 1.6994 0.9720

3376 2-acetamidophenol sulfate LC/MS neg 230.01286 48580 181671 1.02 0.51 0.2743 0.1747 1.7075 0.8723

3421 diglycerol LC/MS pos 167.0914 40702 42953 1.53 1.08 0.2157 0.1462 1.3049 1.4121

3422 1,2-propanediol GC/MS 117 38002 C00583 HMDB01881 1030 1.43 1.04 0.8440 0.3561 1.3576 1.4136

3429 2-pyrrolidinone LC/MS pos 86.06004 31675 HMDB02039 12025 1.01 0.90 0.3403 0.1971 1.0221 0.9225

3430 sulfate* LC/MS neg 96.9601 46960 C00059 HMDB01448 1118 0.76 0.76 0.0168 0.0245 1.0917 0.8347

3433 O-sulfo-L-tyrosine LC/MS neg 260.02343 45413 514186 1.40 1.40 0.0000 0.0000 0.8221 1.1480

3449 2-aminophenol sulfate LC/MS neg 188.0023 43266 HMDB61116 181670 0.85 0.67 0.0668 0.0654 2.2961 1.5358

3492 dimethyl sulfone LC/MS pos 95.01613 43424 C11142 HMDB04983 6213 1.20 1.15 0.1404 0.1089 1.0538 1.2138

3494 ectoine LC/MS pos 143.08151 35651 C06231 126041 1.58 1.26 0.5650 0.2831 0.9602 1.2085

3520 phenylcarnitine* LC/MS pos 266.13869 43265 1.08 0.86 0.5815 0.2862 1.3880 1.1878

3536 N-methylpipecolate LC/MS pos 144.10191 47101 11862129;11286529 1.01 1.07 0.6826 0.3158 0.9978 1.0682

3538 4-methylbenzenesulfonate LC/MS neg 171.01213 43592 C06677 6101 0.82 0.76 0.0058 0.0118 1.3533 1.0330

3541 4-hydroxychlorothalonil LC/MS neg 244.90817 48441 34217 0.87 0.86 0.0006 0.0025 1.5026 1.2861

3545 1,2,3-benzenetriol sulfate (2) LC/MS neg 204.98123 48762 1.64 1.44 0.7882 0.3418 1.9093 2.7573

3546 2-methyoxyresorcinol sulfate LC/MS neg 218.99688 48445 1.39 1.08 0.3717 0.2099 1.4372 1.5579

3547 3-hydroxypyridine sulfate LC/MS neg 173.98665 48448 0.72 0.64 0.0110 0.0182 1.2264 0.7808

3550 cyclohexanebutanoic acid LC/MS neg 169.1234 48776 75200 1.35 1.09 0.5350 0.2733 0.9974 1.0850

3553 ethyl paraben sulfate LC/MS neg 245.01253 48463 1.11 0.69 0.1767 0.1280 9.3006 6.3786

[Biochemical Name]*  Indicates compounds that have not been officially confirmed based on a standard, but we are confident in its identity.

Xenobiotics

Benzoate Metabolism

Xanthine Metabolism

Tobacco Metabolite

Food Component/Plant

Drug

Chemical

Cofactors and Vitamins

Hemoglobin and Porphyrin Metabolism



Mean Pairs Ratio Group Mean Ratio p -value q -value

10 Amino Acid Glycine, Serine and Threonine Metabolism N-acetylserine 1.63 1.61 0.0000 0.0000 0.8101 1.3054

1065 Lipid Polyunsaturated Fatty Acid (n3 and n6) docosadienoate (22:2n6) 2.96 2.79 0.0000 0.0000 0.6261 1.7463

2941 Xenobiotics Food Component/Plant ergothioneine 0.46 0.51 0.0000 0.0000 1.8383 0.9406

291 Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism N-acetylmethionine 1.89 1.88 0.0000 0.0000 0.7976 1.4971

2508 Nucleotide Pyrimidine Metabolism, Orotate containing orotidine 1.89 1.90 0.0000 0.0000 0.8196 1.5540

227 Amino Acid Tryptophan Metabolism tryptophan betaine 0.55 0.60 0.0000 0.0000 3.6167 2.1754

309 Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism cystine 0.67 0.65 0.0000 0.0000 1.2565 0.8189

2505 Nucleotide Pyrimidine Metabolism, Orotate containing dihydroorotate 0.73 0.72 0.0000 0.0000 1.2239 0.8836

84 Amino Acid Lysine Metabolism 3-methylglutarylcarnitine (1) 2.23 2.19 0.0000 0.0000 0.9545 2.0915

861 Carbohydrate Glycogen Metabolism maltotriose 39.18 16.27 0.0000 0.0000 0.0782 1.2721

864 Carbohydrate Glycogen Metabolism maltose 8.72 6.67 0.0000 0.0000 0.4175 2.7867

337 Amino Acid Urea cycle; Arginine and Proline Metabolism N-acetylarginine 0.65 0.66 0.0000 0.0000 1.4152 0.9292

2520 Nucleotide Pyrimidine Metabolism, Uracil containing pseudouridine 1.26 1.26 0.0000 0.0000 0.9344 1.1812

193 Amino Acid Tryptophan Metabolism tryptophan 0.75 0.75 0.0000 0.0000 1.1807 0.8829

3433 Xenobiotics Chemical O-sulfo-L-tyrosine 1.40 1.40 0.0000 0.0000 0.8221 1.1480

1676 Lipid Sterol cholesterol 0.82 0.82 0.0000 0.0001 1.1012 0.9015

318 Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism N-acetyltaurine 1.62 1.60 0.0000 0.0001 0.9214 1.4727

1063 Lipid Polyunsaturated Fatty Acid (n3 and n6) adrenate (22:4n6) 2.36 2.25 0.0000 0.0001 0.7346 1.6524

278 Amino Acid Leucine, Isoleucine and Valine Metabolism valine 0.81 0.80 0.0000 0.0001 1.0966 0.8766

243 Amino Acid Leucine, Isoleucine and Valine Metabolism isovalerate 0.60 0.58 0.0000 0.0001 1.2311 0.7200

111 Amino Acid Phenylalanine and Tyrosine Metabolism tyrosine 0.78 0.77 0.0000 0.0001 1.1540 0.8850

211 Amino Acid Tryptophan Metabolism picolinate 0.62 0.60 0.0000 0.0001 1.3651 0.8190

2468 Nucleotide Purine Metabolism, Adenine containing N6-carbamoylthreonyladenosine 1.51 1.47 0.0000 0.0001 0.8161 1.2014

2440 Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine containing allantoin 2.22 2.13 0.0000 0.0001 0.7023 1.4963

26 Amino Acid Alanine and Aspartate Metabolism N-acetylalanine 1.29 1.28 0.0000 0.0001 0.8756 1.1198

2477 Nucleotide Purine Metabolism, Adenine containing N6-succinyladenosine 2.10 1.99 0.0000 0.0002 0.7039 1.4013

2430 Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine containing inosine 0.34 0.25 0.0000 0.0002 2.2074 0.5410

359 Amino Acid Creatine Metabolism guanidinoacetate 0.72 0.71 0.0000 0.0002 1.1968 0.8516

2485 Nucleotide Purine Metabolism, Guanine containing guanosine 0.31 0.22 0.0000 0.0002 2.2781 0.5097

1419 Lipid Phospholipid Metabolism choline phosphate 0.38 0.24 0.0000 0.0002 1.5486 0.3782

2459 Nucleotide Purine Metabolism, Adenine containing N6-methyladenosine 1.45 1.40 0.0000 0.0003 0.8416 1.1763

9 Amino Acid Glycine, Serine and Threonine Metabolism serine 0.79 0.79 0.0000 0.0003 1.1173 0.8779

336 Amino Acid Urea cycle; Arginine and Proline Metabolism dimethylarginine (SDMA + ADMA) 1.26 1.25 0.0001 0.0004 0.8930 1.1130

283 Amino Acid Leucine, Isoleucine and Valine Metabolism isobutyrylglycine 0.57 0.55 0.0001 0.0004 1.4584 0.8001

587 Peptide Dipeptide leucylglycine 0.51 0.51 0.0001 0.0004 1.1721 0.5961

1037 Lipid Long Chain Fatty Acid eicosenoate (20:1) 2.04 1.97 0.0001 0.0005 0.8493 1.6754

290 Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism methionine 0.77 0.75 0.0001 0.0005 1.1628 0.8752

2494 Nucleotide Purine Metabolism, Guanine containing N2,N2-dimethylguanosine 1.28 1.25 0.0001 0.0006 0.9081 1.1346

273 Amino Acid Leucine, Isoleucine and Valine Metabolism tigloylglycine 0.61 0.57 0.0001 0.0006 1.2313 0.6963

327 Amino Acid Urea cycle; Arginine and Proline Metabolism ornithine 0.68 0.67 0.0001 0.0007 1.2163 0.8201

2608 Cofactors and Vitamins Ascorbate and Aldarate Metabolism gulonic acid* 2.06 1.75 0.0001 0.0008 0.6970 1.2204

2644 Cofactors and Vitamins Hemoglobin and Porphyrin Metabolism bilirubin (Z,Z) 0.56 0.51 0.0001 0.0008 1.7259 0.8726

73 Amino Acid Lysine Metabolism lysine 0.83 0.82 0.0002 0.0009 1.1419 0.9333

112 Amino Acid Phenylalanine and Tyrosine Metabolism N-acetyltyrosine 0.72 0.73 0.0002 0.0013 1.1960 0.8752

237 Amino Acid Leucine, Isoleucine and Valine Metabolism leucine 0.81 0.80 0.0002 0.0012 1.1029 0.8828

813 Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism lactate 1.46 1.41 0.0002 0.0009 0.8890 1.2513

1066 Lipid Polyunsaturated Fatty Acid (n3 and n6) dihomo-linoleate (20:2n6) 1.90 1.77 0.0002 0.0010 0.8468 1.4958

2548 Nucleotide Pyrimidine Metabolism, Cytidine containing N4-acetylcytidine 1.46 1.45 0.0002 0.0013 0.9307 1.3468

973 Carbohydrate Aminosugar Metabolism erythronate* 1.26 1.26 0.0003 0.0016 0.9399 1.1804

1152 Lipid Fatty Acid, Dicarboxylate octadecanedioate 2.08 1.94 0.0003 0.0013 0.9011 1.7485

1461 Lipid Phospholipid Metabolism 1-(1-enyl-palmitoyl)-GPC (P-16:0)* 0.79 0.77 0.0003 0.0016 1.1293 0.8739

203 Amino Acid Tryptophan Metabolism kynurenine 0.84 0.83 0.0004 0.0020 1.1147 0.9269

245 Amino Acid Leucine, Isoleucine and Valine Metabolism isovalerylcarnitine 0.74 0.74 0.0005 0.0022 1.1596 0.8548

266 Amino Acid Leucine, Isoleucine and Valine Metabolism isoleucine 0.80 0.78 0.0005 0.0024 1.1221 0.8719

307 Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism cysteine 0.69 0.66 0.0005 0.0022 1.2676 0.8375

352 Amino Acid Urea cycle; Arginine and Proline Metabolism N-acetylcitrulline 0.59 0.60 0.0005 0.0022 1.9575 1.1697

1538 Lipid Lysolipid 1-oleoyl-GPI (18:1)* 0.59 0.55 0.0005 0.0022 1.3719 0.7493

2609 Cofactors and Vitamins Tocopherol Metabolism alpha-tocopherol 0.82 0.81 0.0005 0.0023 1.0892 0.8851

1231 Lipid Fatty Acid Metabolism(Acyl Carnitine) hydroxybutyrylcarnitine* 1.49 1.44 0.0006 0.0025 0.8635 1.2458

1446 Lipid Phospholipid Metabolism 1-oleoyl-2-linoleoyl-GPI (18:1/18:2)* 0.74 0.70 0.0006 0.0025 1.2817 0.8955

2582 Cofactors and Vitamins Nicotinate and Nicotinamide Metabolism 1-methylnicotinamide 0.66 0.56 0.0006 0.0025 1.2096 0.6797

3541 Xenobiotics Chemical 4-hydroxychlorothalonil 0.87 0.86 0.0006 0.0025 1.5026 1.2861

204 Amino Acid Tryptophan Metabolism kynurenate 0.77 0.77 0.0007 0.0027 1.2853 0.9840

244 Amino Acid Leucine, Isoleucine and Valine Metabolism isovalerylglycine 0.54 0.55 0.0008 0.0030 1.2632 0.6927

816 Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism glycerate 0.83 0.83 0.0008 0.0032 1.0458 0.8642

1031 Lipid Long Chain Fatty Acid nonadecanoate (19:0) 1.34 1.35 0.0008 0.0032 0.9524 1.2840

1151 Lipid Fatty Acid, Dicarboxylate hexadecanedioate 1.71 1.68 0.0009 0.0034 0.9444 1.5827

2732 Xenobiotics Benzoate Metabolism propyl 4-hydroxybenzoate sulfate 2.04 1.83 0.0009 0.0034 0.6908 1.2675

235 Amino Acid Tryptophan Metabolism N-acetylkynurenine (2) 0.68 0.60 0.0010 0.0035 1.1806 0.7137

1213 Lipid Fatty Acid Metabolism (also BCAA Metabolism) butyrylcarnitine 1.29 1.25 0.0010 0.0035 1.0910 1.3637

1233 Lipid Fatty Acid Metabolism(Acyl Carnitine) hexanoylcarnitine 1.39 1.37 0.0010 0.0035 1.0121 1.3885

1447 Lipid Phospholipid Metabolism 1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4)* 0.70 0.66 0.0010 0.0035 1.2151 0.7965

2589 Cofactors and Vitamins Nicotinate and Nicotinamide Metabolism N1-Methyl-2-pyridone-5-carboxamide 0.67 0.62 0.0010 0.0035 1.2544 0.7773

1366 Lipid Eicosanoid 12-HETE 0.60 0.31 0.0011 0.0036 2.9009 0.9121

248 Amino Acid Leucine, Isoleucine and Valine Metabolism beta-hydroxyisovalerate 0.83 0.82 0.0012 0.0041 1.1749 0.9671

366 Amino Acid Polyamine Metabolism 5-methylthioadenosine (MTA) 1.19 1.18 0.0012 0.0041 0.9092 1.0733

2605 Cofactors and Vitamins Ascorbate and Aldarate Metabolism threonate 0.78 0.76 0.0012 0.0041 1.0236 0.7782

2761 Xenobiotics Food Component/Plant 2-piperidinone 0.73 0.67 0.0012 0.0041 1.4596 0.9842

53 Amino Acid Histidine Metabolism histidine 0.84 0.82 0.0013 0.0042 1.0801 0.8873

194 Amino Acid Tryptophan Metabolism N-acetyltryptophan 0.75 0.73 0.0016 0.0050 1.2745 0.9310

2493 Nucleotide Purine Metabolism, Guanine containing N2-methylguanosine 1.35 1.32 0.0016 0.0051 0.8647 1.1409

405 Peptide Gamma-glutamyl Amino Acid gamma-glutamyltryptophan 0.80 0.78 0.0017 0.0053 1.1941 0.9356

1421 Lipid Phospholipid Metabolism glycerophosphorylcholine (GPC) 0.77 0.76 0.0017 0.0051 1.1454 0.8651

98 Amino Acid Phenylalanine and Tyrosine Metabolism phenylalanine 0.88 0.87 0.0019 0.0057 1.0679 0.9320

812 Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism pyruvate 1.60 1.42 0.0019 0.0057 0.9167 1.3015

1122 Lipid Fatty Acid, Branched 17-methylstearate 1.71 1.63 0.0019 0.0057 0.7957 1.2957

1216 Lipid Fatty Acid Metabolism (also BCAA Metabolism) propionylcarnitine 0.84 0.84 0.0021 0.0061 1.0682 0.8925

2670 Cofactors and Vitamins Vitamin B6 Metabolism pyridoxate 0.77 0.70 0.0021 0.0061 1.4754 1.0353

71 Amino Acid Histidine Metabolism 4-imidazoleacetate 0.67 0.67 0.0022 0.0062 1.0848 0.7269

1017 Lipid Long Chain Fatty Acid pentadecanoate (15:0) 1.40 1.36 0.0022 0.0062 1.0312 1.3977

82 Amino Acid Lysine Metabolism glutarate (pentanedioate) 0.66 0.62 0.0023 0.0064 1.7006 1.0553

1595 Lipid Glycerolipid Metabolism glycerol 0.67 0.71 0.0024 0.0067 1.3120 0.9366

1657 Lipid Sphingolipid Metabolism sphingomyelin (d18:2/16:0, d18:1/16:1)* 0.86 0.86 0.0025 0.0068 1.0752 0.9201

2533 Nucleotide Pyrimidine Metabolism, Uracil containing 4-ureidobutyrate 0.72 0.71 0.0025 0.0068 1.2137 0.8620

1788 Lipid Steroid 5alpha-androstan-3alpha,17beta-diol monosulfate (1) 1.32 1.26 0.0026 0.0069 1.1409 1.4394

141 Amino Acid Phenylalanine and Tyrosine Metabolism 3-methoxytyrosine 1.11 1.11 0.0027 0.0072 1.0033 1.1138

1655 Lipid Sphingolipid Metabolism sphingomyelin (d18:2/14:0, d18:1/14:1)* 0.78 0.77 0.0027 0.0072 1.1159 0.8560

793 Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 1,5-anhydroglucitol (1,5-AG) 0.91 0.92 0.0028 0.0073 0.9963 0.9126

402 Peptide Gamma-glutamyl Amino Acid gamma-glutamylmethionine 0.78 0.74 0.0029 0.0073 1.2240 0.9080

1399 Lipid Inositol Metabolism inositol 1-phosphate (I1P) 0.78 0.75 0.0029 0.0073 1.1882 0.8856

1445 Lipid Phospholipid Metabolism 1-palmitoyl-2-linoleoyl-GPI (16:0/18:2)* 0.78 0.76 0.0029 0.0073 1.1804 0.8935

75 Amino Acid Lysine Metabolism N6-acetyllysine 1.15 1.14 0.0030 0.0074 0.9215 1.0495

312 Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism cysteine s-sulfate 0.69 0.54 0.0030 0.0074 1.2694 0.6871

1510 Lipid Lysolipid 1-palmitoyl-GPE (16:0) 0.77 0.73 0.0030 0.0073 1.2350 0.9027

325 Amino Acid Urea cycle; Arginine and Proline Metabolism arginine 0.85 0.84 0.0031 0.0075 1.1366 0.9536

1448 Lipid Phospholipid Metabolism 1-stearoyl-2-linoleoyl-GPI (18:0/18:2)* 0.79 0.78 0.0031 0.0075 1.1257 0.8800

218 Amino Acid Tryptophan Metabolism 5-hydroxyindoleacetate 0.63 0.49 0.0033 0.0078 1.5830 0.7758

2534 Nucleotide Pyrimidine Metabolism, Uracil containing 3-ureidopropionate 1.75 1.64 0.0033 0.0077 0.8271 1.3524

545 Peptide Dipeptide glycylvaline 0.56 0.15 0.0034 0.0079 6.9270 1.0565

1249 Lipid Carnitine Metabolism carnitine 1.07 1.07 0.0034 0.0079 0.9669 1.0327

3126 Xenobiotics Bacterial/Fungal tartronate (hydroxymalonate) 0.50 0.48 0.0035 0.0079 1.4044 0.6673

1436 Lipid Phospholipid Metabolism 1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4)* 0.88 0.87 0.0036 0.0081 1.0829 0.9405

3157 Xenobiotics Drug 2-methoxyacetaminophen sulfate* 432.16 18.75 0.0038 0.0086 0.0561 1.0516

738 Peptide Dipeptide valylleucine 0.80 0.78 0.0039 0.0087 1.1095 0.8613

326 Amino Acid Urea cycle; Arginine and Proline Metabolism urea 0.84 0.82 0.0040 0.0087 1.1318 0.9297

1267 Lipid Fatty Acid, Monohydroxy 3-hydroxysebacate 2.15 1.72 0.0041 0.0089 0.9934 1.7070

2745 Xenobiotics Xanthine Metabolism 1-methylxanthine 0.68 0.55 0.0041 0.0089 1.7840 0.9756

2645 Cofactors and Vitamins Hemoglobin and Porphyrin Metabolism bilirubin (E,E)* 0.74 0.69 0.0042 0.0091 1.3280 0.9198

1032 Lipid Long Chain Fatty Acid 10-nonadecenoate (19:1n9) 1.88 1.74 0.0044 0.0094 0.9312 1.6195

277 Amino Acid Leucine, Isoleucine and Valine Metabolism ethylmalonate 1.26 1.24 0.0047 0.0099 1.1462 1.4161

1444 Lipid Phospholipid Metabolism 1-stearoyl-2-arachidonoyl-GPI (18:0/20:4)* 0.86 0.82 0.0051 0.0108 1.2290 1.0081

735 Peptide Dipeptide valylglycine 0.71 0.57 0.0054 0.0112 1.2603 0.7244

282 Amino Acid Leucine, Isoleucine and Valine Metabolism isobutyrylcarnitine 0.82 0.78 0.0056 0.0116 1.2666 0.9868

1533 Lipid Lysolipid 1-palmitoyl-GPI (16:0)* 0.68 0.61 0.0058 0.0119 1.3543 0.8292

3538 Xenobiotics Chemical 4-methylbenzenesulfonate 0.82 0.76 0.0058 0.0118 1.3533 1.0330

362 Amino Acid Polyamine Metabolism acisoga 1.33 1.25 0.0060 0.0121 0.8772 1.1006

148 Amino Acid Phenylalanine and Tyrosine Metabolism homovanillate (HVA) 0.76 0.77 0.0062 0.0125 1.1547 0.8859

Supplementary Table 2. All significantly altered metabolites (p≤0.05), sorted according to their p-value.

Biochemical NameSuper Pathway Sub Pathway
Pre 

G-CSF

Post 

G-CSF

Mean Values

Pathway 

Sort Order

Fold of Change, Paired t-Test

Post G-CSF

Pre G-CSF

Paired t-Test

Post G-CSF / Pre G-CSF

 p  ≤ 0.05, fold of change ≥ 1.00 0.05 < p < 0.10, fold of change ≥ 1.00

 p  ≤ 0.05, fold of change < 1.00 0.05 < p  < 0.10, fold of change < 1.00

Comparison mean values significantly different: Comparison mean value difference approaching significance:



Mean Pairs Ratio Group Mean Ratio p -value q -value
Biochemical NameSuper Pathway Sub Pathway

Pre 

G-CSF

Post 

G-CSF

Mean Values

Pathway 

Sort Order

Fold of Change, Paired t-Test

Post G-CSF

Pre G-CSF

Paired t-Test

Post G-CSF / Pre G-CSF

 p  ≤ 0.05, fold of change ≥ 1.00 0.05 < p < 0.10, fold of change ≥ 1.00

 p  ≤ 0.05, fold of change < 1.00 0.05 < p  < 0.10, fold of change < 1.00

Comparison mean values significantly different: Comparison mean value difference approaching significance:

1021 Lipid Long Chain Fatty Acid margarate (17:0) 1.55 1.50 0.0064 0.0127 1.0301 1.5499

1418 Lipid Phospholipid Metabolism choline 0.89 0.89 0.0065 0.0127 1.0740 0.9552

28 Amino Acid Alanine and Aspartate Metabolism aspartate 0.64 0.60 0.0068 0.0132 1.3009 0.7755

397 Peptide Gamma-glutamyl Amino Acid gamma-glutamylglycine 0.67 0.50 0.0068 0.0132 1.7954 0.9043

1139 Lipid Fatty Acid, Dicarboxylate maleate 0.77 0.73 0.0070 0.0134 1.3816 1.0110

1555 Lipid Lysolipid 1-arachidonoyl-GPA (20:4) 0.68 0.59 0.0070 0.0134 1.3556 0.7951

256 Amino Acid Leucine, Isoleucine and Valine Metabolism alpha-hydroxyisovalerate 1.21 1.27 0.0071 0.0134 1.0033 1.2732

2528 Nucleotide Pyrimidine Metabolism, Uracil containing 5,6-dihydrouracil 1.18 1.19 0.0071 0.0134 0.9634 1.1445

317 Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism taurine 0.78 0.73 0.0077 0.0144 1.2349 0.9064

1643 Lipid Sphingolipid Metabolism sphingosine 1-phosphate 0.84 0.82 0.0078 0.0144 1.0986 0.9009

267 Amino Acid Leucine, Isoleucine and Valine Metabolism allo-isoleucine 1.31 1.25 0.0085 0.0155 0.9935 1.2390

2743 Xenobiotics Xanthine Metabolism 3,7-dimethylurate 0.73 0.63 0.0085 0.0155 1.7071 1.0823

1025 Lipid Long Chain Fatty Acid oleate (18:1n9) 1.70 1.61 0.0086 0.0156 1.0068 1.6250

1062 Lipid Polyunsaturated Fatty Acid (n3 and n6) arachidonate (20:4n6) 0.76 0.73 0.0093 0.0168 1.1828 0.8666

3160 Xenobiotics Drug 4-acetaminophen sulfate 1306.61 11.32 0.0095 0.0169 0.7167 8.1123

1394 Lipid Inositol Metabolism scyllo-inositol 0.79 0.71 0.0096 0.0169 1.5570 1.0997

25 Amino Acid Alanine and Aspartate Metabolism alanine 1.13 1.11 0.0097 0.0169 0.9654 1.0764

3156 Xenobiotics Drug 2-hydroxyacetaminophen sulfate* 787.95 13.37 0.0097 0.0169 4.4804 59.9252

3162 Xenobiotics Drug 4-acetamidophenylglucuronide 361.77 17.34 0.0098 0.0170 0.0708 1.2280

1059 Lipid Polyunsaturated Fatty Acid (n3 and n6) linolenate [alpha or gamma; (18:3n3 or 6)] 1.80 1.70 0.0101 0.0173 0.9509 1.6206

3161 Xenobiotics Drug 4-acetamidophenol 197.35 14.07 0.0102 0.0175 0.0965 1.3577

269 Amino Acid Leucine, Isoleucine and Valine Metabolism 3-methyl-2-oxovalerate 0.86 0.86 0.0105 0.0176 1.1373 0.9769

1180 Lipid Fatty Acid, Amide oleamide 0.69 0.37 0.0105 0.0176 2.6343 0.9708

2532 Nucleotide Pyrimidine Metabolism, Uracil containing 2'-deoxyuridine 1.54 1.44 0.0105 0.0176 0.8843 1.2728

1027 Lipid Long Chain Fatty Acid cis-vaccenate (18:1n7) 1.58 1.38 0.0110 0.0182 0.9850 1.3596

3547 Xenobiotics Chemical 3-hydroxypyridine sulfate 0.72 0.64 0.0110 0.0182 1.2264 0.7808

2717 Xenobiotics Benzoate Metabolism 4-vinylphenol sulfate 0.73 0.71 0.0116 0.0191 3.2346 2.3007

2492 Nucleotide Purine Metabolism, Guanine containing N1-methylguanosine 1.16 1.15 0.0122 0.0200 0.9447 1.0890

3163 Xenobiotics Drug 2-methoxyacetaminophen glucuronide* 50.09 20.62 0.0128 0.0208 0.0618 1.2742

400 Peptide Gamma-glutamyl Amino Acid gamma-glutamylleucine 0.86 0.83 0.0132 0.0213 1.1059 0.9147

74 Amino Acid Lysine Metabolism N2-acetyllysine 0.80 0.72 0.0133 0.0213 1.2041 0.8660

1762 Lipid Steroid cortisone 0.85 0.82 0.0138 0.0220 1.1471 0.9461

2519 Nucleotide Pyrimidine Metabolism, Uracil containing uracil 1.34 1.30 0.0139 0.0220 0.9029 1.1707

1012 Lipid Medium Chain Fatty Acid laurate (12:0) 1.49 1.39 0.0146 0.0228 0.9576 1.3346

3158 Xenobiotics Drug 3-(cystein-S-yl)acetaminophen* 25.58 9.80 0.0146 0.0228 0.0845 0.8285

407 Peptide Gamma-glutamyl Amino Acid gamma-glutamylvaline 0.88 0.86 0.0147 0.0228 1.0957 0.9398

238 Amino Acid Leucine, Isoleucine and Valine Metabolism N-acetylleucine 0.83 0.83 0.0153 0.0234 1.0607 0.8766

1654 Lipid Sphingolipid Metabolism sphingomyelin (d18:1/14:0, d16:1/16:0)* 0.87 0.88 0.0155 0.0234 1.0413 0.9144

3098 Xenobiotics Food Component/Plant 4-vinylguaiacol sulfate 0.81 0.57 0.0155 0.0234 1.4245 0.8159

79 Amino Acid Lysine Metabolism 2-aminoadipate 0.83 0.75 0.0157 0.0234 1.3280 0.9993

240 Amino Acid Leucine, Isoleucine and Valine Metabolism 4-methyl-2-oxopentanoate 0.86 0.86 0.0157 0.0234 1.1075 0.9495

569 Peptide Dipeptide isoleucylglycine 0.82 0.75 0.0157 0.0234 1.1828 0.8889

1006 Lipid Medium Chain Fatty Acid heptanoate (7:0) 0.86 0.85 0.0157 0.0234 1.1133 0.9497

2705 Xenobiotics Benzoate Metabolism 3-methyl catechol sulfate (2) 0.74 0.52 0.0158 0.0234 1.3245 0.6851

406 Peptide Gamma-glutamyl Amino Acid gamma-glutamyltyrosine 0.85 0.82 0.0166 0.0244 1.0817 0.8885

2607 Cofactors and Vitamins Ascorbate and Aldarate Metabolism oxalate (ethanedioate) 0.65 0.64 0.0166 0.0244 1.1510 0.7406

3430 Xenobiotics Chemical sulfate* 0.76 0.76 0.0168 0.0245 1.0917 0.8347

306 Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 2-hydroxybutyrate (AHB) 1.41 1.30 0.0170 0.0245 0.9659 1.2542

3159 Xenobiotics Drug 3-(N-acetyl-L-cystein-S-yl) acetaminophen 15.96 5.53 0.0170 0.0245 0.0965 0.5341

279 Amino Acid Leucine, Isoleucine and Valine Metabolism N-acetylvaline 1.09 1.08 0.0175 0.0248 0.9730 1.0539

1003 Energy Oxidative Phosphorylation phosphate 0.81 0.81 0.0175 0.0248 1.0886 0.8828

1266 Lipid Fatty Acid, Monohydroxy 3-hydroxydecanoate 1.37 1.25 0.0175 0.0248 1.0661 1.3361

188 Amino Acid Phenylalanine and Tyrosine Metabolism N-formylphenylalanine 0.78 0.61 0.0178 0.0251 1.2909 0.7914

106 Amino Acid Phenylalanine and Tyrosine Metabolism phenylacetate 0.78 0.71 0.0179 0.0251 1.3119 0.9367

15 Amino Acid Glycine, Serine and Threonine Metabolism N-acetylthreonine 1.26 1.23 0.0184 0.0256 0.9305 1.1405

1361 Lipid Eicosanoid 5-HETE 1.99 1.77 0.0187 0.0259 0.6777 1.1989

1018 Lipid Long Chain Fatty Acid palmitate (16:0) 1.24 1.24 0.0193 0.0267 1.0105 1.2489

906 Carbohydrate Fructose, Mannose and Galactose Metabolism mannose 1.40 1.23 0.0197 0.0270 0.9723 1.1979

1022 Lipid Long Chain Fatty Acid 10-heptadecenoate (17:1n7) 1.77 1.65 0.0198 0.0270 1.0032 1.6548

1023 Lipid Long Chain Fatty Acid stearate (18:0) 1.23 1.23 0.0202 0.0273 0.9912 1.2197

1784 Lipid Steroid 4-androsten-3beta,17beta-diol disulfate (2) 0.79 0.82 0.0203 0.0274 1.2465 1.0254

1664 Lipid Mevalonate Metabolism 3-hydroxy-3-methylglutarate 0.85 0.80 0.0205 0.0275 1.1788 0.9375

54 Amino Acid Histidine Metabolism N-acetylhistidine 0.78 0.81 0.0212 0.0283 1.0851 0.8799

1133 Lipid Fatty Acid, Dicarboxylate 2-hydroxyglutarate 1.71 1.61 0.0214 0.0284 0.9920 1.5942

2452 Nucleotide Purine Metabolism, Adenine containing adenosine 0.78 0.29 0.0215 0.0284 3.4216 0.9964

1834 Lipid Steroid pregnanolone/allopregnanolone sulfate 0.79 0.56 0.0216 0.0284 1.0092 0.5669

2448 Nucleotide Purine Metabolism, Adenine containing adenosine 3',5'-cyclic monophosphate (cAMP) 0.81 0.77 0.0217 0.0284 1.1050 0.8499

270 Amino Acid Leucine, Isoleucine and Valine Metabolism 2-methylbutyrylcarnitine (C5) 0.89 0.86 0.0219 0.0285 1.0657 0.9210

1057 Lipid Polyunsaturated Fatty Acid (n3 and n6) linoleate (18:2n6) 1.42 1.38 0.0222 0.0288 1.0030 1.3855

3034 Xenobiotics Food Component/Plant S-allylcysteine 0.73 0.31 0.0225 0.0289 1.3827 0.4245

180 Amino Acid Phenylalanine and Tyrosine Metabolism 5-hydroxymethyl-2-furoic acid 0.82 0.54 0.0227 0.0289 1.6842 0.9148

1519 Lipid Lysolipid 1-linoleoyl-GPE (18:2)* 0.84 0.76 0.0228 0.0289 1.1630 0.8872

2521 Nucleotide Pyrimidine Metabolism, Uracil containing 5-methyluridine (ribothymidine) 0.84 0.83 0.0228 0.0289 1.0719 0.8916

2704 Xenobiotics Benzoate Metabolism 3-methyl catechol sulfate (1) 0.77 0.53 0.0229 0.0289 1.4830 0.7879

1016 Lipid Long Chain Fatty Acid myristoleate (14:1n5) 1.80 1.64 0.0233 0.0293 1.3317 2.1785

1268 Lipid Fatty Acid, Monohydroxy 3-hydroxylaurate 1.57 1.36 0.0234 0.0293 0.9687 1.3179

1222 Lipid Fatty Acid Metabolism(Acyl Glycine) hexanoylglycine 1.38 1.45 0.0237 0.0294 0.9499 1.3790

1699 Lipid Sterol campesterol 0.87 0.81 0.0241 0.0298 1.1340 0.9240

284 Amino Acid Leucine, Isoleucine and Valine Metabolism 3-hydroxyisobutyrate 0.86 0.81 0.0243 0.0299 1.1686 0.9447

1280 Lipid Fatty Acid, Monohydroxy 16-hydroxypalmitate 1.44 1.39 0.0246 0.0300 0.9760 1.3539

1015 Lipid Long Chain Fatty Acid myristate (14:0) 1.64 1.51 0.0247 0.0300 1.0213 1.5461

1247 Lipid Fatty Acid Metabolism(Acyl Carnitine) myristoleoylcarnitine* 3.62 2.54 0.0247 0.0300 0.6640 1.6882

198 Amino Acid Tryptophan Metabolism indoleacetate 0.86 0.82 0.0250 0.0301 1.4667 1.1978

30 Amino Acid Alanine and Aspartate Metabolism asparagine 0.94 0.93 0.0258 0.0310 1.0885 1.0128

3070 Xenobiotics Food Component/Plant 4-allylphenol sulfate 0.80 0.38 0.0263 0.0315 2.5218 0.9684

982 Energy TCA Cycle aconitate [cis or trans] 1.29 1.22 0.0264 0.0315 0.9360 1.1391

1009 Lipid Medium Chain Fatty Acid caprate (10:0) 1.65 1.48 0.0274 0.0325 1.0080 1.4871

1052 Lipid Polyunsaturated Fatty Acid (n3 and n6) docosapentaenoate (n3 DPA; 22:5n3) 1.45 1.37 0.0277 0.0326 0.9218 1.2634

2747 Xenobiotics Xanthine Metabolism 7-methylxanthine 0.81 0.61 0.0290 0.0340 1.4468 0.8764

1391 Lipid Inositol Metabolism myo-inositol 0.87 0.88 0.0293 0.0342 1.0789 0.9455

179 Amino Acid Phenylalanine and Tyrosine Metabolism thyroxine 0.95 0.94 0.0296 0.0344 1.0667 1.0056

303 Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism alpha-ketobutyrate 1.75 1.48 0.0300 0.0347 0.9656 1.4328

2749 Xenobiotics Xanthine Metabolism 5-acetylamino-6-formylamino-3-methyluracil 0.80 0.51 0.0304 0.0350 1.2637 0.6425

174 Amino Acid Phenylalanine and Tyrosine Metabolism 3-phenylpropionate (hydrocinnamate) 0.81 0.67 0.0326 0.0373 2.1967 1.4678

1540 Lipid Lysolipid 1-linoleoyl-GPI (18:2)* 0.82 0.78 0.0326 0.0373 1.1479 0.8917

751 Peptide Polypeptide bradykinin, des-arg(9) 0.84 0.68 0.0329 0.0374 1.5525 1.0516

399 Peptide Gamma-glutamyl Amino Acid gamma-glutamylisoleucine* 0.87 0.81 0.0342 0.0387 1.1889 0.9599

63 Amino Acid Histidine Metabolism imidazole propionate 0.87 0.90 0.0344 0.0388 1.4112 1.2745

1217 Lipid Fatty Acid Metabolism (also BCAA Metabolism) propionylglycine 0.78 0.77 0.0349 0.0391 1.0967 0.8400

2614 Cofactors and Vitamins Tocopherol Metabolism gamma-tocopherol 0.82 0.66 0.0359 0.0401 1.4611 0.9659

2710 Xenobiotics Benzoate Metabolism methyl-4-hydroxybenzoate 49.34 30.31 0.0363 0.0404 0.9339 28.3049

395 Peptide Gamma-glutamyl Amino Acid gamma-glutamylglutamate 0.80 0.77 0.0367 0.0406 1.2617 0.9684

1798 Lipid Steroid 5alpha-androstan-3beta,17beta-diol disulfate 0.86 0.87 0.0375 0.0413 1.4057 1.2287

1853 Lipid Secondary Bile Acid Metabolism glycodeoxycholate 1.79 1.44 0.0386 0.0423 0.9031 1.3019

39 Amino Acid Glutamate Metabolism glutamine 1.07 1.06 0.0387 0.0423 0.9626 1.0249

1064 Lipid Polyunsaturated Fatty Acid (n3 and n6) docosapentaenoate (n6 DPA; 22:5n6) 0.86 0.81 0.0397 0.0432 1.2608 1.0182

1826 Lipid Steroid etiocholanolone glucuronide 0.88 0.93 0.0401 0.0434 1.4135 1.3203

2994 Xenobiotics Food Component/Plant N-(2-furoyl)glycine 0.91 0.41 0.0411 0.0443 2.3108 0.9588

249 Amino Acid Leucine, Isoleucine and Valine Metabolism beta-hydroxyisovaleroylcarnitine 0.88 0.88 0.0444 0.0477 1.1032 0.9744

696 Peptide Dipeptide threonylphenylalanine 0.81 0.73 0.0449 0.0480 1.1720 0.8526

1041 Lipid Long Chain Fatty Acid erucate (22:1n9) 2.39 1.38 0.0463 0.0493 1.0137 1.4032

404 Peptide Gamma-glutamyl Amino Acid gamma-glutamylthreonine* 0.90 0.90 0.0482 0.0511 1.0908 0.9776

[Biochemical Name]*  Indicates compounds that have not been officially confirmed based on a standard, but we are confident in its identity.



 

Supplementary Table 3. Top-ranked compounds associated with different pathways  

Amino acid metabolism including 

immune-regulatory compounds 

      

    Genetics and epigenetics  

 

 cysteine-s-sulfate  ↓  inosine ↓ 

 tryptophan ↓  phosphate ↓ 

 isovalerate ↓  N-succinyladenosine ↑ 

 histidine   ↓   orotidine ↑ 

 guanidinoacetate ↓  pseudouridine ↑ 

 5-hydroxyindolacetate ↓        

 N-acetyltaurine ↑     Vascular biology  

 N-acetylmethionine ↑  guanosine ↓ 

 N-acetylserine ↑  5-hydroxyindoleacetate ↓ 

    O-sulfo-L-tyrosine ↑ 

Compounds involved in inflammatory effects   allantoin ↑ 

 choline phosphate ↓    

 guanosine ↓      Energy/glycogen metabolism  

 dihydroorotate ↓  maltose ↑ 

 ergothioneine ↓  maltotriose ↑ 

 gulonic acid ↑    
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