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Abstract 

Tricalcium silicate cements (TSC), are bioactive ceramic materials with a wide range 

of clinical applications in the field of “regenerative endodontics”, i.e. tissue 

engineering concepts applied to regeneration of damaged or lost dental tissue. This 

broad definition includes both vital pulp therapy (VPT) and regenerative endodontic 

procedures (REP) in immature permanent teeth with necrotic pulps. Both procedures 

involve direct contact between stem cells and TSC: the ensuing interaction is an 

essential determinant of regeneration and/or repair. It is therefore important to 

determine the bioactivity and biocompatibility properties of TSC. In REP moreover, 

the application of TSC should take into account potential mechanical effects on teeth 

at greater risk of fracture because of the thin dentinal walls.  

In this thesis three commercially available TSC were compared: White MTA-Angelus 

(MTA), Biodentine and TotalFill BC Root Repair Material PUTTY (TotalFill). 

The surface microhardness of MTA, Biodentine and TotalFill was evaluated by the 

Vicker’s Hardness Test. Biodentine showed the highest microhardness whereas 

TotalFill, which failed to achieve a measurable level, had the lowest. Based on the 

Vicker’s test results, the potential effect of MTA, Biodentine and TotalFill on tooth 

resistance to fracture was investigated. The aim of Study 1 was to compare the fracture 

resistance of immature teeth treated with REP and MTA, Biodentine or TotalFill 

applied to the cervical area. The study utilized an acknowledged bovine tooth model. 

The teeth were prepared to simulate immature permanent teeth, then treated with REP 

and tested for fracture resistance.  No differences in fracture resistance were observed 

in relation to the three TSC tested.  

Cellular responses to MTA, Biodentine and TotalFill were evaluated and compared in 

cell culture experiments. Cell proliferation was assessed by MTT assay and 

osteogenic/angiogenic/ inflammatory responses were assessed with qRT-PCR, ELISA, 

ALP quantification and Alizarin red staining.  

In Study 2 the effect of TSC on human bone marrow stem cells (hBMSC) was 

investigated. Compared to MTA and TotalFill, Biodentine had the least inhibitory 
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effect on hBMSC proliferation. The osteogenic and angiogenic responses to the 

materials varied.  Biodentine and TotalFill induced earlier changes at gene level. All 

TSC induced mineralization after 14 days, with MTA possibly demonstrating the 

greatest effect. 

 In Study 3 the effect of TSC on human dental pulp stromal cells (hDPSC) was 

investigated. Biodentine exhibited the least inhibitory effect on proliferation and 

induced upregulation of most osteogenic markers. TotalFill had an anti-inflammatory 

effect, expressed as downregulation of IL6. Moreover, TotalFill induced increased 

gene expression and production of VEGFA and had a long-lasting effect on the 

inhibition of ALP production.  

The results indicate that although the TSC tested tend to be used interchangeably in 

clinical practice, these materials have not only different   mechanical properties but 

also different biological effects. The microhardness levels of TSC differed, but there 

were no associated differences in fracture resistance. With respect to cellular responses, 

Biodentine was the most inert. It had the least effect on cell proliferation and induced 

pronounced expression of osteogenic markers in both hBMSC and hDPSC.  TotalFill 

exhibited enhanced angiogenic and anti-inflammatory effects on hDPSC.  

The results of these studies have potential clinical implications and further 

investigation is therefore warranted. 
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1. Introduction 

Over the past four decades, there have been great advances in medical technology in 

the field of hard tissue regeneration and repair. Of particular note is the innovative 

application of bioceramic materials (1). Tricalcium silicate cements (TSC), also known 

as hydraulic calcium silicate cements, are now well-established in modern dentistry, 

with a wide range of clinical applications in the fields of endodontics and pedodontics. 

TSC were originally introduced as materials for retrofilling and for perforation repair 

(2, 3). However nowadays they are used in vital pulp treatment such as direct and 

indirect pulp capping and pulpotomy, as well as regenerative endodontic procedures 

(REP) (4). TSC can also be used for perforation repairs and as endodontic sealers.  

TSC may also be regarded as “bioceramics”: they contain glass ceramics such as 

bioactive glass, alumina and zirconia combined with calcium silicate and calcium 

phosphate. Bioceramics should meet specific requirements, e.g. they should be 

bioinert, meaning that the materials do not initiate a host response, bioactive and 

biocompatible. The most important of these properties are biocompatibility and 

bioactivity (5). Biocompatibility is defined as “the ability of a material to perform as a 

substrate that will support the appropriate cellular activity, including the facilitation of 

molecular and mechanical signaling systems, in order to optimize tissue regeneration, 

without eliciting any undesirable local or systemic responses in the eventual host” (5, 

6). Bioactivity on the other hand refers to the ability of a material to induce a desirable 

tissue response. The bioactive constituents of TSC are the dicalcium and tricalcium 

silicates and calcium phosphates (1, 3).  

Bioactivity and biocompatibility are particularly important in dentistry, where the 

success of TSC application depends on the promotion of cell growth, as well as the 

induction of specific cellular responses important for repair and regeneration. A 

desirable property of TSC is the ability to stimulate differentiation of cells associated 

with the pulp-dentin complex, such as odontoblasts, as well as osteoblasts and 

cementoblasts. Osteoblast and odontoblast differentiation are crucial for repair of hard 

tissue, while angiogenic differentiation is desirable for regeneration of an impaired 

vascular supply (7, 8). Moreover, the processes of repair and regeneration also involve 
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the inflammatory response and resolution of inflammation; hence the regulation of 

proinflammatory/anti-inflammatory cytokines is a desirable characteristic of TSC (9).  

In recent literature, TSC are reported to upregulate the expression of gene markers 

directly associated with the differentiation of osteoblasts and odontoblasts, such as 

Osteocalcin (OC), Alkaline Phosphatase (ALP), Osteopontin (OPN), and Bone 

Sialoprotein (BSP), and gene markers associated with angiogenic differentiation, such 

as VEGFA (Vascular endothelial growth factor A) (2, 10, 11). Correspondingly, TSC 

also stimulate macrophages to release the inflammatory cytokines interleukin-1 beta 

(IL1β), interleukin 6 (IL6) and interleukin 8 (IL8) (12, 13). 

1.1 Mineral Trioxide Aggregate (MTA) 

In 1993, Torabinejad et al. introduced the first successful TSC used in endodontics, 

namely Mineral Trioxide Aggregate (MTA) (14). Because of its early introduction, 

much more research has been conducted on MTA than on other more recently 

introduced TSC. Although initially developed as a root-end filling material, MTA was 

gradually introduced into other dental applications, such as vital pulp therapy (VPT) 

and repair of root perforations (4, 15). The chemical composition of the first generation 

MTA was a mixture of a refined Portland cement and bismuth oxide (Bi2O3), with fine 

hydrophilic particles of silicon dioxide (SiO2), calcium oxide (CaO), magnesium oxide 

(MgO), potassium sulphate (K2SO4), and sodium sulfate (Na2SO4) (16). MTA is a 

dimensionally stable, biocompatible and bioactive hydrophilic material which has the 

ability to induce osteogenic and angiogenic regeneration (14, 16-25). The hydrophilic 

nature of MTA is one of its major advantages, as it can set under the moist conditions 

of the oral environment, specifically when in contact with pulp and apical tissue (4).  

MTA formulations were amended to overcome some disadvantages (26). Tooth 

discoloration was associated with the original formulation of gray MTA (GMTA): 

initially this was attributed to a high iron oxide (Fe2O3) content (27, 28).  Discoloration 

became an issue of concern, particularly in esthetically sensitive cases and prompted 

changes in formulation (29). In 2002 white MTA (WMTA) was introduced as an 

alternative to GMTA (4, 30). WMTA contains 90.8% Fe2O3 less than GMTA, as well 

as finer and smaller hydrophilic particles than GMTA. The smaller hydrophilic 
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particles are believed to enhance water absorption as well as calcium ion release (31). 

WMTA however did not entirely solve the issue of discoloration (32, 33). 

Discoloration associated with WMTA could be caused by the chemical reaction 

between Bi2O3 and the collagen in dentin (34, 35). Bi2O3 serves as the radiopacifying 

agent in conventional MTA. In more recent formulations such as Neo MTA (NuSmile) 

and NeoMTA plus® (Avalon Biomed) alternative radiopacifying agents such as 

tantalum oxide (Ta2O5) are used (36). 

It has been shown that during vital pulp therapy (VPT), MTA stimulates odontoblasts 

or odontoblast-like cells to induce the formation of a dentin bridge, similar in 

composition to primary dentin (37, 38). This dentin bridge is reported to be 

significantly superior to that formed by calcium hydroxide (CaOH2) treatment, which 

shows “tunnel defects” within the dentin bridge (39, 40). However, in a recent clinical 

study in which teeth were pulp capped with MTA and examined histologically, the 

newly formed hard tissue did not resemble “regular dentin”. The formed tissue was 

predominantly atubular, while primary dentin is generally tubular in nature (41).  

Another disadvantage of the original MTA was its long setting time, over 2hrs (14). 

The presence of gypsum is thought to prolong the setting time and attempts have been 

made to accelerate it by adding methylcellulose and calcium chloride (CaCl2) to the 

mixture (42). This MTA, chemically modified by the addition of 1% methylcellulose 

and 2% CaCl2, Sets one third faster than the traditional MTA (43). In addition, MTA 

was challenging to handle in the clinic because of its grainy, sand-like consistency after 

mixing (43). In summary, clinical application of MTA requires control of several 

factors in order to achieve the desired effects. Alternative TSC may therefore be 

preferred. 

1.2 Biodentine 

Biodentine is one of the newer calcium silicate-based materials (44). It was made 

commercially available in 2009 by Septodont (45) specifically to serve as a dentin 

substitute or “dentin replacement” while also providing superior handling properties to 

that of MTA, such as ease of mixing and post-mix consistency (46). It is supplied a 
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powder form, to be mixed in an amalgamator with the liquid provided. The powder 

comprises tricalcium (Ca3SiO5), and dicalcium silicate (Ca2SiO4), calcium carbonate 

(CaCO3) (filler material) and zirconium oxide (ZrO2). The liquid is a mixture of water, 

CaCl2 and modified polycarboxylate (47). Mixing the material in an amalgamator 

instead of manually provides better consistency for clinical application (3). 

The setting reaction in Biodentine is comparable to that of MTA with respect to the 

formation of Ca2SiO4, Ca3SiO5, hydrate gel and CaOH2 (3). However, the setting time 

of Biodentine is less than that of ProRoot MTA and most other TSC. This is due to the 

CaCl2 in the mixing liquid, and the carbonate acting as a nucleation site for Ca3SiO5 

hydration, thus reducing the initial chemical reaction time (46, 48, 49). Biodentine, like 

other TSC, has antibacterial properties, attributable to the release of CaOH2 ions during 

the setting reaction:  the pH becomes highly alkaline (12.5) and this in turn leads to 

inhibition of bacterial growth (3).  

Biodentine is the first TSC to incorporate ZrO2 as a radiopacifier, although its 

radiopacity is lower than that of Bi2O3 (50). In terms of cell proliferation, as the 

presence of Bi2O3 has been reported to be detrimental to cell viability, presence of zro2 

in Biodentine serves as an advantage (51). ZrO2 has also shown biocompatible 

properties and bioinert properties, while eliminating the risk of tooth discoloration 

associated with the use of Bi2O3 (52). Nevertheless, studies have shown that neither 

material has cytotoxic effects on stem cells, while ProRoot MTA showed increasing 

osteoinductivity compared to Biodentine, in terms of messenger RNA and protein 

expression of alkaline phosphatase, documented by immunocytochemistry, and 

alizarin red staining data (22, 53).  

1.3 TotalFill 

TotalFill or Endosequence Root Repair Material (ERRM) is also a relatively recently 

introduced bioceramic, made of Ca2SiO4, Ca3SiO5, (calcium silicates), monobasic 

calcium phosphate Ca3(PO4)2, ZrO2, Ta2O5, fillers and thickening agents (54). The 

difference in nomenclature stems from the origin of manufacturing: TotalFill is 

produced and commonly used in Europe, while Endosequence is produced and used 

predominantly in the USA. This bioceramic is available in a variety of forms, including 
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a sealer (TotalFill BC Sealer) and a root repair putty [TotalFill BC Root Repair Material 

(RRM)]. The sealer is available in a syringe and the RRM as either a syringable paste 

or a condensable putty (55). TotalFill is supplied ready-to-use and this is an advantage 

over other root repair materials: it is easier to handle, and the material is always 

consistent for each application. According to the manufacturer, TotalFill has a 

minimum setting time of 2hrs. The setting reaction is initiated by contact with water or 

moisture. In cases of extremely dry canals, the setting time may be prolonged (55). 

The presence of Ca3(PO4)2 induces positive osteoblastic responses in terms of gene 

expression and cellular proliferation (56) (57). Recent studies report Endosequence to 

have high biocompatibility and an antibacterial capacity due to its highly alkaline pH 

(58, 59). TotalFill has been shown to induce increased proliferation of human bone 

marrow stem cells (hBMSC) compared to Biodentine and MTA (60), as well as  

increasing proliferation of human bone marrow mesenchymal cells in serum deprived 

conditions compared to MTA (61). Another paper comparing TotalFill with MTA 

reported similar biocompatibility and bioactivity on human dental pulp cells. Both 

TotalFill and MTA enhanced cell proliferation, expression of 

odontogenic/osteogenic/inflammatory markers as well as deposition of calcium (62). 

These reports suggest that the effect of TotalFill on proliferation and differentiation is 

similar to that of MTA or MTA-like products. In this regard, TotalFill could be a 

suitable alternative for MTA. 

In contrast to the Bi2O3 in MTA, TotalFill contains Ta2O5. Ta2O5 has shown excellent 

radiopacity, without the discoloration potential of MTA products containing Bi2O3 

(57).  

Compared with MTA or Biodentine, there is much less research evidence for TotalFill, 

which has only recently been introduced. 

1.4 Material microhardness 

The mechanical properties of a restorative material are essential as they can have 

implications on the longevity of restored traumatized immature teeth. This includes 

properties such as sealing ability, flexural strength, compressive strength, porosity, 
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and dimensional stability and surface microhardness. Surface microhardness is the 

ability of a material to resist surface deformation and can be used to provide an 

indication of the overall material strength and its mechanical response (63-65). In 

clinical settings, when TSC are applied in the coronal and cervical portion of teeth, 

surface microhardness plays an important role in achieving a proper coronal seal (66, 

67). Occlusal loads may displace the applied TSC particularly when the material has 

not completed its setting and reached its peak microhardness. The faster the setting 

reaction of the material, the quicker it can achieve its peak microhardness and thus, 

better the chance of maintaining the physical seal (67).  

Furthermore, TSC may potentially reinforce the strength of immature teeth if the 

microhardness of the material is close to human dentin as similar microhardness 

allows similar “mechanical behaviour” between TSC and dentin (63). It has been 

shown that the microhardness of MTA is affected by factors such as pH, temperature 

and humidity (68, 69). Under inflammatory conditions, i.e. with increased vascularity 

and an acidic pH, the microstructure of the material and therefore its microhardness 

may be affected (69). Another factor that may affect microhardness is the thickness of 

material. During testing, surface microhardness was found to be directly proportional 

to the sample’s thickness (68). As for Biodentine, its “dentin replacing” potential can 

be attributed to its surface microhardness. Studies have found the microhardness of 

Biodentine to resemble that of human dentin implying similar mechanical properties 

(63). It is also considerably higher than that of MTA (63). On the other hand, 

TotalFill has lower surface microhardness than WMTA and GMTA, especially 

during the first day of setting (70). However, it showed an increase in microhardness 

with time; after 4 days, TotalFill reached a microhardness similar to that of both 

WMTA and GMTA and maintained this throughout 28 days (70). It was concluded 

that all the materials tested, including TotalFill, required at least 7 days to reach a 

complete set (70). Thus, the microhardness of TotalFill after complete setting is 

similar to that of MTA, but lower than that of Biodentine. Nevertheless, when TSC 

were used as apical plugs during apexification, there was no difference in 

microhardness between TotalFill and Biodentine, but MTA had a significantly higher 
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microhardness than TotalFill and Biodentine (71). The contradictory findings of these 

studies illustrate inconsistencies in the literature. 

1.5 Advances in development of TSC  

Work to improve handling characteristics and material properties is ongoing. This 

typically results in variations in the different formulations of bioceramic materials (72). 

In addition to the previously mentioned materials (MTA, Biodentine, TotalFill), 

various other types of TSC are currently in use. These include materials which enhance 

the flowability of MTA, such as MTA HP, which contains calcium tungstate (CaWO4) 

as a radiopacifier and a mixing liquid with a plasticizer agent (72). Increased 

flowability may contribute to closer adaptation on the irregular surface of dentin and 

improve the sealing ability of the material (73).  NeoMTA and NeoMTA Plus are newer 

formulations of MTA material in which Ta2O5 has replaced Bi2O3 as the radiopacifier. 

Other TSC which use Ta2O5 include Bioaggregate and Diaroot (50).  

Another example of material reformulation is the combination of TSC and magnesium 

phosphate (Mg3O8P2) (74, 75). Including Mg3O8P2 in formulations enhances such 

properties as faster setting time, higher compressive strength, superior adhesion and 

antibacterial effects (76). The addition of hydroxyapatite has also been proposed and 

tested, but more research is necessary (77). Hydroxyapatite is believed to be highly 

osteoconductive: as it does not elicit an immune reaction it has the ability to integrate 

directly with bone (78, 79). 

The addition and creation of nanoparticles can also lead to improvement in physical 

properties, as these smaller particles may penetrate into the dentinal tubules (77, 80): 

This may decrease porosity and in turn lead to a denser mass and an increase in the 

modulus of elasticity (81). When WMTA and other TSC were nanomodified with 

smaller radiopacifier particles, ranging in size from 40-100 nm, the physiochemical 

properties were significantly enhanced and improved. This includes properties such as 

microhardness, setting time, push-out bond strength and compressive strength (82). 

This effect was also observed when nanometer size bioactive glass was incorporated 

into the material composition of Biodentine (83). Nanoparticles have a higher surface 
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area and are therefore more reactive and excitable in terms of oxidizing free radicals, 

which may lead to an improvement of physical properties (84). The addition of 

nanoparticles resulted in a decrease in setting time of MTA Angelus (84). This was 

attributed to the higher surface area of the nanoparticles, which hastens the reaction 

between the powder and liquid constituents (84).  

1.6 Application of TSC in regenerative endodontics  

The term “regenerative endodontics” refers to the use of tissue engineering concepts to 

restore root canal health by promoting the continued development of the root and the 

surrounding tissues (5, 85). This has been an essential treatment modality for traumatic 

dental injuries (TDI) in vital and non-vital immature permanent teeth. A broad 

definition of regenerative endodontics may include two separate categories based on 

the site of treatment and the presence or absence of vital pulp (82): treatment of the 

vital pulp is termed VPT and treatment of non-vital teeth is commonly referred to as 

regenerative endodontic procedures (REP) (86).The ultimate aim of VPT is to preserve 

pulp vitality (Figure 1). The European Society of Endodontology (ESE) defines VPT 

as “Strategies aimed at maintaining the health of all or part of the pulp” (87). Pulp 

vitality is essential for continued root development and maturation. Applying TSC to 

pulp tissue not only restores and maintains the vascular network of the pulp (88), but 

also promotes the formation of hard tissue and neural tissues (82, 89-91). VPT may 

lead to recruitment of human dental pulp stromal cells (hDPSC) and differentiation into 

odontoblast-like cells which produce reparative dentin (91). VPT includes indirect pulp 

capping and direct pulp capping (Figure 1) as well as partial and full pulpotomy (Figure 

2) (92, 93). Indirect pulp capping may be indicated when the pulp is not yet exposed 

but threatened with exposure by progression of dentinal caries in close proximity to the 

pulp. The first step in this procedure is to remove as much of the carious tissue as 

possible without exposing the pulp. A randomized controlled trial performed on 94 

children aging 7-12 showed showed that indirect pulp capping with MTA was 

successful in 100% of cases compared to 93% of CaOH2 cases after 1 year follow up 

(94). When Biodentine was compared to glass ionomer cement in a similar clinical trial 

in teeth with deep carious lesions and diagnosis reversible pulpitis, no clinical 
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differences were seen between both materials as both showed success of treatment in 

83% of cases after 12 months. However, radiographic assessment with periapical 

radiographs and CBCT before and after treatment showed significant differences as 

71% of healed lesions were treated with Biodentine and the majority of cases of 

new/progressed lesions (88%) were treated with GIC (95).  

Direct pulp capping is indicated in cases of superficial exposure of the pulp, usually in 

cases of TDI, accidental perforation during excavation of carious dentin or mechanical 

exposure during operative procedures (92). A 2016 study performed on 70 adults aging 

from 18-55 found that MTA was more effective than CaOH2 dressing as a direct pulp 

capping material as it showed 85% pulp survival rate after 3 years compared to 52% 

for the CaOH2 group (96). 

In pulpotomy, a coronally infected portion of the pulp is surgically removed, in order 

to maintain the vitality and normal function of the remaining pulp (97, 98). The 

treatment may comprise either partial or full pulpotomy. In partial pulpotomy, a 2-3mm 

portion of the coronal pulp is surgically removed (99, 100). This is indicated in cases 

of infection of a superficial portion of the coronal pulp. When a deeper portion of the 

coronal pulp has been infected, the entire coronal portion of the pulp is removed as far 

as the canal orifice/s (101). At the time of VPT, it is recommended that the involved 

pulp must be healthy enough to respond to treatment and the diagnosis is reversible 

pulpitis (93, 102). Interestingly, a recent randomized clinical trial was done on mature 

teeth with irreversible pulpitis treated with pulpotomy and included 37 patients aging 

20-25. The criteria of clinical success were resolution of spontaneous pain and pain 

upon chewing, no tenderness to percussion or palpation, and normal response to cold 

test. Absence of internal resorption, root resorption, and periapical pathology was 

considered radiographic success (103). After a 2 year follow up period, MTA partial 

pulpotomy lead to success of 85% of cases compared to 43% of cases treated with 

CaOH2 (103). Furthermore, the same group stipulated in a 2018 study that an 

irreversible pulpitis diagnosis should not be considered a contraindication for 

pulpotomy and that Biodentine was highly successful and a suitable alternative to 

conventional root canal treatment (104). This study agreed with earlier studies 

reporting similar findings with MTA pulpotomy (105, 106). When various MTA 
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formulations (ProRoot MTA, OrthoMTA, and RetroMTA) were compared in a clinical 

trial, no significant differences in outcomes were shown between the different 

formulations and a high success rate of more than 92% was found at 12 months after 

partial pulpotomy procedures (107). 

While these studies confirm the reliability of VPT with TSC, they lack direct 

comparisons between different TSC. It may be useful to have such studies to aid 

clinicians to choose between the available materials.  

 
Figure 1. Vital Pulp Therapy:  indirect and direct pulp capping 

(A) Indirect pulp capping of a nearly exposed pulp with TSC and (B) Direct pulp capping of 

exposed pulp with TSC 
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Figure 2. Vital Pulp Therapy:  Partial and Full pulpotomy 

(A) Partial pulpotomy with TSC and (B) Full pulpotomy with TSC 

 

The second category of regenerative endodontics deals with non-vital teeth (82, 108). 

The standard treatment for non-vital teeth with fully developed roots is conventional 

root canal therapy. However, the immature permanent tooth with open apices and thin 

dentin walls presents a challenge. Apart from the heightened risk of fracture of the 

thinner walls, the infected root canal space is not as easily disinfected by standard 

procedures and the aggressive use of endodontic files, because of the risk of removing 

even more dentin from the already thin walls. The open apex makes it challenging to 

fill the canal: in the absence of an apical barrier, root filling materials tend to be 

extruded into the periapical area (Figure 3).  
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Figure 3. Challenges in treating non-vital immature permanent teeth 1: Disinfection can be 

harmful to periapical tissue. 2: The open apex and absence of an apical barrier makes it 

challenging to fill root canal space 3: Thin dentin walls make root susceptible to fracture 

(109). 

REP is used to treat immature permanent teeth with necrotic pulps and/or apical 

periodontitis: the aim is to promote root development and restore vital tissue (85). REP 

utilize the basic tissue engineering concept, i.e. a combination of stem cells, growth 

factors and scaffolds: the essential components of regenerative medicine (110). 

This shift in treatment modalities attempts to replace traditional approaches involving 

the long-term use of CaOH2 for apexification and the direct apexification method using 

TSC (111). Although relatively successful, CaOH2 apexification is a lengthy treatment 

procedure, sometimes lasting for 18 months and requiring a high level of patient 

compliance, with multiple visits (112). Furthermore, apexification either induces the 

formation of a hard-tissue apical barrier or an apical TSC placement, so that 

conventional root canal therapy can be performed. Although treatment duration for 

TSC is significantly shorter than for CaOH2, none of the methods directly addresses 

the issue of thin dentin walls. Thus, the high risk of fracture remains (111, 113-115). 

There were reports in the literature of susceptibility to fracture of the cervical area 

associated with long-term CaOH2 treatment and apexification of immature teeth with 

TSC: this highlighted the need for research into an appropriate treatment alternative 

(Figures. 4, 5) (116-119). 
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Figure 4. Cervical root fracture on endodontically treated tooth 11. Tooth needed endodontic 

treatment due to trauma at the age of 9 yo. Long-term calcium hydroxide intracanal dressing 

was used during treatment due to persistent infection followed by apical plugs of TotalFill 

and gutta percha. Two years later, tooth 11 sustained cervical fracture upon mastication 

(eating an apple). Courtesy of O. Iden 

 

 

Figure 5. Boy 9yr old had sustained severe intrusion of tooth 11 combined with 

enamel/dentin crown fracture. Tooth 11 was surgically repositioned and root canal treatment 

was initiated when signs of root resorption were evident. Tooth was fractured while CaOH2 

intracanal dressing was in place. Inspection of the fractured tooth shows that fracture occurred 

at the root resorption area. Courtesy of A. Bletsa   

REP commences with standard endodontic procedures: removal of the necrotic pulp 

tissue and thorough disinfection of the root canal (120, 121). The American 

Association of Endodontists (AAE) and the European Society of Endodontology (ESE) 
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recommend minimal or no instrumentation of the canal in order to preserve as much 

remaining dentin as possible (85, 122-124). 

After disinfection of the root canal space, the canal is filled with blood from the 

periapical area by instrumentation of the periapical tissue (82). The intention is to 

transfer undifferentiated mesenchymal stem cells (MSC) from the periapical region and 

apical papilla into the root canal system (125). When the introduced blood coagulates, 

the clot acts as a scaffold for stem cells and contains platelet-derived growth factors 

which may influence and signal stem cell activity (85, 126).  TSC is then placed in the 

cervical part of the root, to establish a seal and possibly stimulate stem cells to induce 

regeneration, ideally in the form of root completion and revascularization of the canal 

space (Figure 6) (120, 127-129). The concept is that the continuation of root 

development and the revascularization of the root canal is a superior treatment outcome 

to that achieved through apexification with CaOH2. A 2017 clinical randomized control 

study performed on patients aged 8-16 compared REP (69 cases) with apexification 

(34 cases) after a 12-month follow up period. Both REP and apexification lead to 100% 

apical healing and resolution of pain, However, REP also induced an increase in root 

thickness and root length in 82% of cases while apexification showed only an increase 

in root length in 26% of cases(130). A 2020 clinical trial quantitatively assessed with 

magnetic resonance imaging (MRI) the regenerated tissue of 18 necrotic teeth with 

periapical lesions treated with REP (131). All teeth were asymptomatic and achieved 

healing of the periapical lesions after a 12-month period. Interestingly, the MRI 

confirmed the regeneration of vital pulp-like tissue by receiving similar signals from 

contralateral vital teeth.  In addition, 60 % of the teeth regained sensibility to cold and 

electric pulp tests (131). Characterization of the regenerated tissue after REP has been 

previously reported; In a 2018 case report, two immature teeth treated with REP were 

clinically and radiographically followed-up until extraction, after 54 months and 43 

months respectively. The extracted teeth were assessed immunohistochemically (132). 

Clinically, both teeth showed resolution of symptoms and apical disease, as well as 

continued root development after REP (132). Furthermore, “recapitulation” of vascular 

and lymphatic tissue post treatment was seen, indicating a potential re-establishment 

of vitality (132). 
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The above studies demonstrate the possibility of pulp-dentin complex regeneration 

with REP but do not compare outcomes of REP with different TSC. REP protocols are 

similar, but variability still exists to a large extent as there is yet to be a preferred 

protocol based on scientific literature (133, 134). Comparisons between studies are 

hard to make as there are variations in the REP protocols regarding irrigation, intracanal 

medication and cervical seal with TSC. .  

 

Figure 6. Principle of Regenerative endodontics 

A: Necrotic Pulp. B: After disinfection bleeding in the root canal is achieved by introducing an 

endodontic file beyond the apex and into the periapical area. C: A TSC material plug is placed 

approximately at cervical area of the root, sealing the blood clot. The clot acts as a scaffold for stem 

cells and source of growth factors. The TSC plug influences the microenvironment. D: Regeneration 

of the pulp-dentin complex, continued root development and thickening of the dentine walls. Tooth 

regains vitality. Adapted from (135) 

 

1.7 Outcomes of regenerative endodontics 

Preserving pulp vitality is important to ensure the development and function of a 

permanent tooth (136, 137). Achieving this through VPT is highly dependent on strict 

case selection and an elaborate treatment protocol, from pre-treatment evaluation of 

pulpal status (138).  Initially younger patients were preferred as they were considered 

to have greater healing capacity of the pulp tissue and higher pulpal vascularity (138, 
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139). Nevertheless, there are reports of successful outcomes for VPT in patients 

ranging in ages from 6-70 years (140-142).  

The CaO in TSC forms CaOH2 in the presence of water and induces mineralization of 

the adjacent pulp by the release of calcium ions (143-145). This leads to an increase in 

overall pH, which in turn induces an early inflammatory reaction. Finally, reparative 

dentin is formed at the material-pulp interface (146, 147). TSC form dentin bridges 

more rapidly than CaOH2 (148-150). This reparative dentin bridge contains fewer 

tunnel defects than those formed by CaOH2 and is therefore more effective in 

preventing bacterial leakage (144). 

The formation of a dentin bridge is crucial to the outcome of VPT. The dentin bridge 

acts as a coronal seal and a barrier against bacterial invasion and microleakage (147, 

151). Bakhtiar et al showed that partial pulpotomy of healthy human maxillary molars 

using RetroMTA led to disorganized pulp tissue, a discontinuous dentin bridge, and 

less dentin thickness than ProRoot MTA (147). These results led to the conclusion that 

ProRoot MTA is preferable to RetroMTA for partial pulpotomy. Whether the findings 

apply to carious pulp exposure is questionable, because the pulpotomy was undertaken 

in the absence of inflammation. This is rarely the case: under clinical conditions: 

pulpotomy is not undertaken on healthy teeth and inflammation is usually a factor 

(147). It is believed that non-resolution of inflammation can negatively influence the 

quality of the dentin bridge formed during pulpotomy and therefore directly affects the 

outcome of VPT. 

Although there are reports of successful REP on mature teeth (152), according to the 

literature the most successful cases of REP are those on immature teeth (127). This 

may be due to the higher regenerative potential of younger patients as well as the 

presence of open apices (86). REP rely on the introduction of blood into the root canal 

through the root apex (86, 153). Therefore, the wide-open apex of an immature tooth 

is an advantage, allowing easier access into the canal space (109). An apex of more 

than 1.1 mm in diameter was shown to enhance the incidence of revascularization 

(154). Ideally TSC would stimulate the differentiation of undifferentiated MSC into 

odontoblasts. However, rather than dentin, the formation of bone-like tissue, 
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cementum-like tissue and periodontal-like tissue is reported (85), indicating that MSC 

differentiate into osteoblasts and cementoblasts. Histologically this outcome is 

considered to be repair rather than regeneration and is less than ideal, because the 

damaged tissue does not regain function (85, 111). Nonetheless, a 2018 case report 

demonstrated that REP could induce the formation of dentin-like hard tissue as well as 

soft tissue in the form of vascular and lymphatic structures (132). 

The absence of infection is also paramount to the success of REP. Effective disinfection 

and coronal sealing to ensure no external leak of microbes into the root canal is 

important (109). The predictability of REP outcomes has however, always been a point 

of contention. This includes measurable clinical outcomes recognized by the ESE and 

AAE as criteria for determining success of REP (122, 123, 134). They are categorized 

into primary and secondary outcomes. Primary outcomes involve the resolution of the 

clinical and radiographic signs and symptoms:  periapical healing, apical closure, 

increased root length and continuation of root development, and an increase in root 

dentin thickness. The secondary outcomes are also termed late-stage effects and 

include pulp canal obliteration and (absence of) discoloration (122, 123, 134). There 

are varying levels of success, depending on the primary and secondary outcomes and 

this has led to questions as to what may be accurately regarded as “successful” 

treatment.  

1.8 Stem cells 

Stem cells are defined as clonogenic, undifferentiated cells capable of self-renewal, 

which also proliferate and differentiate into other cell types (155) (156). They are an 

integral component of the concept of tissue engineering (110), crucial to maintenance 

of tissue homeostasis and play a key role in tissue repair (157). Stem cells are typically 

classified either according to their differentiation properties or plasticity or according 

to the origin and source from which they are isolated or classified (155, 158). 

Stem cells classified according to differentiation capacity may be totipotent, 

pluripotent, multipotent, unipotent or oligopotent (Figure 7) (158).  
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• Totipotency refers to the ability of a single cell to produce all differentiated cells 

of the organism through cell division (159).  

• Pluripotency is the ability and potential of a cell to differentiate into any one of 

three germ layers: endoderm, mesoderm, or ectoderm (160).  

• Multipotency describes a cell which can differentiate into several cells, but only 

those of a family closely related to the specific cell (e.g. MSC) (161). 

Multipotent cells self-renew through development into multiple specialized 

cells types within the specific tissue from which they are isolated (158).  

• Oligopotent cells can differentiate into only a few cells (e.g. lymphoid cells) 

while unipotent cells can produce only their own cell type through self-renewal 

(e.g. skin cells) (161). 

When stem cells are classified according to their origin, they are either embryonic, 

fetal, infant, adult or induced pluripotent stem cells (iPS) (Figure 7) (157).  

• Embryonic stem cells are pluripotent stem cells isolated from the inner cell mass 

of a preimplanted embryo and can be maintained in an undifferentiated state in 

culture (157, 158, 162-164).  

• Fetal stem cells are obtained from fetal tissues and have a greater differentiation 

potential than adult stem cells. 

•  Infant stem cells are derived from the placenta, the umbilical cord or amniotic 

fluid (157).  

• Adult stem cells are found in developed humans postnatally, in both children 

and adults. Adult stem cells are also known as tissue resident cells or somatic 

cells and are mostly multipotent, with the exception of epidermal epithelial stem 

cells, which are unipotent (161, 165, 166). Adult stem cells are classified, 

according to their origin, into 6 different cell types:  hematopoietic, 

mesenchymal, neural, epithelial, hepatic or pancreatic stem cells (157). 

•  Induced pluripotent stem (iPS) cells resemble embryonic cells. They are 

reprogrammed from somatic adult cells such as skin fibroblasts, nerve cells, 

adipocytes and blood cells, into undifferentiated cells which have unlimited self-
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renewal capacity (157). iPS are particularly convenient as they can be directly 

isolated from the patient’s own tissue. 

 

Figure 7. Classification of stem cells. Adapted from (157) 

1.9 Mesenchymal stem/stromal cells 

The International Society for Cellular Therapy (ISCT) defines mesenchymal 

stem/stromal cells (MSC) as “multipotent mesenchymal stromal cells” (167). In this 

definition the term “stromal” describes the plastic adherence property while the “stem 

cell” refers to the ability for self-renewal and tri-lineage differentiation potential i.e. 

capable of giving rise to osteocytes, adipocytes and chondrocytes (168, 169). Found 

within connective tissue/stroma, MSC are a subset of cells with multipotent 

differentiation capacity (170). MSC are isolated and derived from mature adult human 

tissue and are therefore an example of adult stem cells (164, 171). The most reliable 

and notably enriched sources of MSC are bone marrow (172), dermis (173) and dental 
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tissues (174). MSC were first identified by Friedenstein et al. who reported that 

fibroblast-like cells in mouse and guinea pig bone marrow could generate bone and 

exhibited osteogenic potential (168, 175, 176).  

MSC exist in a stem cell microenvironmental “niche” described by Schofield in 1978 

(177). MSC are maintained in an undifferentiated state by being enclosed by the 

immediately adjacent surrounding tissue components (177-179). This includes non-

multipotent cells as well as extracellular matrix (ECM), specific to the niche (177, 178). 

This niche regulates and coordinates the contribution of stem/progenitor cells towards 

repair and regeneration (180). This is achieved through signaling which originates from 

the progenitor stem cells (autocrine), the neighboring resident cells (paracrine), other 

tissues (systemic) or the ECM (179).  

MSC are identified according to specific certain minimal inclusion and exclusion 

criteria established by the ISCT (167). The first of these criteria is that MSC should 

show plastic adherence through attachment to standard culture plates in-vitro. Another 

criterion is the expression or lack of expression of specific surface markers/antigens 

(Table 1). MSC are characterized through the expression of clusters of differentiation 

markers (CD) 105, CD90 (Thy-1), and CD73 (Table 1). However, no single antigenic 

determinant has been identified as specific for MSC. Hence, the criteria should be 

adopted as minimal requirements: depending on the study, further evidence can then 

be included for identification and characterization purposes (167). 

Because of the heterogenous nature of MSC, exclusion criteria are also required for 

identification. These include the negative expression of hematopoietic markers such as 

CD34 (hematopoietic progenitors and endothelial cells marker) and CD45, and CD14 

or CD11b, CD79alpha or CD19 and Human Leukocyte Antigen – DR isotype (HLA-

DR) surface molecules (Table 1) (167) (181, 182).  

Finally, MSC must be able to exhibit multipotency, through differentiation into 

odontoblasts, chondrocytes and adipocytes in standard in-vitro culture (167). The 

flexibility of MSC is epitomized by their differentiation plasticity. MSC have an 

uncanny ability to flip between differentiation pathways, depending on external 

stimulating conditions (183). This becomes especially significant in REP, as MSC are 
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ideally stimulated through TSC towards odontoblastic differentiation. However, in a 

clinical setting, accurately influencing these differentiation pathways through external 

stimuli is more challenging and complex than in in-vitro settings. MSC exhibit a broad 

scope of phenotypic and functional characteristics (169). Variables such as donors, 

tissue origin, culturing and isolation protocols, as well as passage number may 

influence the degree of expression of these characteristics (169).  

In-vitro, MSC have also shown immunomodulatory properties:  suppression of the 

immune response of B cells, T cells, natural killer cells and macrophages (184-186). 

The immunomodulation is achieved by the combined action of known 

immunosuppressive mediators and inflammatory molecules, such as nitric oxide (NO), 

indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), tumor necrosis factor-

inducible gene 6 protein (TSG6), CCL-2, and programmed death ligand 1 (PD-L1) 

(186). Inactivated MSC do not show expression of these factors unless stimulated by 

inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-

1 (IL-1) (186, 187).  

Thus, in the context of the limited regenerative capacity of most tissues in the body, 

MSC have been used to stimulate regeneration of form and function of damaged 

tissues. 
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Table 1. An outline of the minimal criteria in expressed surface markers for identification 

and characterization of MSC (167, 188-192). 

Surface marker 

CD  

Name and function Expression 

CD105  Endoglin (angiogenesis) (previously identified through Mab 

SH2) 

+ve 

CD90  Thy-1 cell surface antigen (osteoblastic differentiation) +ve 

CD73  5’-nucleotidase ecto (previously identified through MAb SH3 

and SH4) (lymphocytes, endothelial cells and fibroblasts) 

+ve 

Stro-1  Heat shock protein family A (Hsp70) member 8 (endothelial 

antigen) 

+ve 

CD34  CD34 molecule (hematopoietic stem cell adhesion) -ve 

CD45  Protein tyrosine phosphatase, receptor type C (Pan-

leukocyte marker) 

-ve 

HLA-DR Human leukocyte antigen, antigen D Related -ve* 

CD14/CD11b CD14 molecule/Integrin subunit alpha M -ve 

CD79alpha/CD19 CD79a molecule/CD19 molecule B cell receptor adaptor 

molecule  

-ve 

* unless stimulated with IFN-γ 

In the oral region, different populations and potential sources of adult stem cells are to 

be found within the specific oral tissues. Bone marrow stem cells (BMSC), dental pulp 

stromal cells (DPSC), stem cells of the apical papilla (SCAP), periodontal ligament 

stem cells (PDLSC) and stem cells from human exfoliated deciduous teeth (SHED) are 

all examples of these various cell populations, as illustrated in Figure 8 (127). For the 

studies in this thesis, stem cells from bone marrow and dental pulp were used. 
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Figure 8. Illustration showing the different populations of stem cells present in the tissues 

of the oral environment. Bone marrow stem cells (BMSCs), stem cells from human exfoliated 

deciduous teeth (SHED), dental pulp stem cells (DPSCs), periodontal ligament stem cells 

(PDLSCs), stem cells of the apical papilla (SCAP), dental follicle stem cells (DFSCs), tooth 

germ progenitor cells (TGPCs), salivary gland stem cells (SGSCs), inflamed periapical 

progenitor cells (iPAPCs), oral epithelial stem cells (OESCs), gingival-derived mesenchymal 

stem cells (GMSCs), and periosteum-derived stem cells (PSCs). Diogenes et al., An update 

on clinical regenerative endodontics. Endodontic Topics 2013. 

1.10 HBMSC and hDPSC 

HBMSC are specialized bone marrow derived MSC which are capable of multipotent 

self-renewal (193). These cells are traditionally identified through their capacity to 

adhere to plates and form colonies in-vitro. Morphologically, hBMSC appear as a 

group of large, flat or cuboidal cells and spindle shaped cells (194). They express a 

range of non-specific cell surface markers that make them identifiable as MSC. 

HBMSC can differentiate into multiple cell lineages when restrictively directing 

conditions are imposed (195). Various treatment protocols involving the use of TSC 

mandate the recruitment of cells from periapical sites: this induces the influx of 
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hBMSC and stem cells from the apical papilla (SCAP) (82, 125). HBMSC are used 

extensively in research because of their clinical importance and availability (196).  

Dental pulp stromal cells (DPSC) are derived from dental pulp tissue (171). The dental 

pulp consists primarily of fibroblasts, neural fibers and vasculature as well as MSC 

(197). DPSC are a clonogenic population of MSC characterized by their rapid 

proliferative capacity compared with BMSC (174). They are harvested from both 

primary and permanent teeth and represent a unique cell population, with reported 

potential in dental pulp engineering and therapy (37, 198). DPSC are considered to be 

MSC because they are positive to MSC cell surface markers (199). Their gene 

expression profile pattern is reported to be similar to that of BMSC, with markers such 

as STRO-1, CD90, and CD105 identified (174, 200, 201). However, it is important to 

note that not all populations of DPSC will express the same surface markers (188).  

HDPSC have shown multiple differentiation potential and a more specific 

odontoblastic differentiation ability than BMSC (202). This has been observed through 

the expression of odontoblastic gene markers crucial for dentinogenesis, specifically 

dentin sialoprotein (DSP) and dentin phosphoprotein (DPP) (174, 203). In-vitro studies 

have shown that both BMSC and DPSC have the capacity to form calcified deposits 

(174, 204, 205). However, compared with BMSC, DPSC induce far less extensive 

calcification in the form of calcified deposits and are also unable to develop lipid-laden 

adipocytes (174). Numerous in-vivo and in-vitro studies have demonstrated DPSC 

differentiation into osteoblasts, odontoblast-like cells, adipocytes, neural cells, 

myocytes, and chondrocytes. However, it is important to note that the multipotent 

differentiation capacity of DPSC in-vivo is much less than that of BMSC (189, 206-

208). 

1.11 Cellular responses to TSC 

During clinical applications, the material constituents and chemical composition of 

TSC play a significant role in the interaction of the TSC with the surrounding cellular 

microenvironment (209). These interactions stimulate desirable treatment outcomes 

such as the formation of reparative dentin during VPT and odontoblast/osteoblast 

differentiation during REP (210). In order to elicit such desirable outcomes, TSC must 
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induce cellular responses in terms of cell proliferation, cell survival, expression of cell 

differentiation markers, expression of inflammatory markers, cellular adhesion, and 

calcium deposition (210-212).  

It is important that TSC do not inhibit cellular proliferation. Studies have shown that 

Biodentine and MTA both have a similar non-inhibitory effect on the cellular viability 

of hDPSC (53). Furthermore, the characteristics of TSC can be influenced by the 

composition ratio of silica/calcium. Increasing the ratio of silica to calcium in the 

composition of TSC leads to promotion of cell attachment and an increase in 

proliferation (213). It has been shown that the viability of fibroblasts and cementoblasts 

in pulp and periodontal tissue are not inhibited by Biodentine, MTA or Bioaggregate 

(214, 215). However, despite the considerable body of research on MTA, there is a lack 

of studies directly comparing the effects on cellular viability of MTA, Biodentine and 

TotalFill.  

Cell viability and proliferation share a reciprocal relationship with differentiation and 

this is essential for regeneration (216, 217). TSC can affect the gene expression profile 

of various types of cells including hDPSC, hBMSC, SCAP, osteoblasts, odontoblasts 

and cementoblasts (210, 218). The silica and calcium content of TSC induces 

expression of osteogenic differentiation markers:  this has been observed in hDPSC 

(210) and gingival fibroblasts (212).  The calcium content of TSC leads to a release of 

calcium ions which induce mineralization in the form of calcium deposition. In mice, 

it was shown that MTA induced the osteogenic differentiation marker alkaline 

phosphatase (ALP) and the dentinogenic differentiation marker DSPP in cells of the 

dental papilla (219). BMSC treated with ProRoot MTA showed enhanced osteogenic 

and odontogenic responses, as evidenced by expression of markers such as ALP, runt-

related transcription factor 2 (RUNX2), osteocalcin (OC), and ALP activity and 

deposition of calcium (220). However, another 2014 study reported that MTA did not 

lead to induction of osteogenic differentiation by expression of osteogenic markers in 

hBMSC (196). Thus, the results of studies of the osteogenic profile of TSC are 

inconsistent, and there is a need for further investigation of the osteogenic potential of 

MTA, Biodentine and TotalFill. 
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TSC can influence the inflammatory response by stimulating inflammatory cells such 

as macrophages and lymphocytes to release inflammatory cytokines. Regulation of the 

inflammatory response through release of inflammatory cytokines is important in the 

healing process (9). It might therefore be desirable for TSC to induce the expression of 

molecules involved in resolution of inflammation and the healing process before the 

cells enter the mineralization phase.  Some studies however report that MTA and 

Biodentine do not elicit an extreme and prolonged inflammatory reaction that is 

detrimental to hDPSC (53). Regulation of inflammation includes the eventual 

resolution of inflammation, to allow differentiation of MSC into odontoblasts, 

osteoblasts and cementoblasts (221). Macrophages exposed to MTA formulations 

induced the release of inflammatory cytokines IL1β, IL6 and IL8 (12, 13). These 

markers are shown to inhibit osteogenic and dentinogenic differentiation of SCAP 

(222).  

Because TSC have similar compositions, specifically silica and calcium content, it has 

been logically assumed that they induce similar cellular responses. However, many 

studies report contradictory findings. There is a lack of more detailed comparisons of 

the cellular responses of MTA, Biodentine and TotalFill, particularly for TotalFill 

which has only recently been introduced.  

1.12 Rationale and aim 

The use of TSC in dentistry has expanded in recent years. Manufacturers have 

introduced new and reformulated materials, intended to improve material properties 

and establish operator preference. Although numerous TSC have been studied and their 

use is well documented, there is still inadequate research directly comparing different 

TSC.  

The introduction of TSC into the root canal space during REP places the material in 

direct contact with the surrounding and juxtaposed dental tissue. This application not 

only induces biological responses, but also has a direct mechanical effect on the hard 

tissue of the tooth, of relevance to the susceptibility of immature teeth to fracture. It is 

reasonable to assume that different TSC will demonstrate different levels of 
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microhardness and subsequently may have different effects on the structural integrity 

of the tooth.  

It is also essential to study the effects of TSC on the mesenchymal cells recruited during 

REP. Specifically, MSC present within the pulp and periapical area as hDPSC and 

hBMSC respectively. The different composition of materials, handling characteristics, 

and setting times may induce different cellular responses. The question arises as to 

whether induction of regeneration yields tissue that replicates the original lost tissue 

and if so, to what extent this tissue resembles the original (223). Ultimately, in-vitro 

studies which simulate the dynamic biological environment can provide initial answers 

to such questions and serve as pre-requisites and guides for in-vivo studies.  

In clinical practice however, TSC are used interchangeably and indiscriminately, under 

the assumption that they induce similar cellular responses and clinical outcomes. This 

is primarily due to inconsistent reports in the literature to date: due to lack of 

conformity of experimental designs, it is difficult to compare materials. The null 

hypothesis tested in this thesis is that TSC used in REP do not influence tooth fracture 

resistance and that TSC do not induce different biological responses by hBMSC and 

hDPSC. Thus, the aim of this project is to investigate and compare the effects of 

commonly used TSC on the surrounding biological tissues, within the context of the 

selected treatment method.  
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1.13 Specific aims 

To compare the three different TSC, MTA, Biodentine, and TotalFill with special 

reference to: 

1. Microhardness. 

2. Fracture resistance of simulated immature teeth treated with REP and sealed 

cervically with TSC. (Study 1) 

3. HBMSC proliferation, osteogenic differentiation, and the expression of markers 

of angiogenesis in-vitro. (Study 2) 

4. HDPSC proliferation and the expression of markers of osteogenesis, 

angiogenesis, and the inflammatory response in-vitro. (Study 3) 
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2. Materials and Methods 

 

2.1 Test Materials 

The following tricalcium silicate-based cement materials were used in this project:  

White MTA-Angelus (Angelus, Londrina, PR, Brazil) (MTA) (Figure 9): supplied as 

a powder and distilled water (Table 2). 

 

Figure 9. Mineral Trioxide Aggregate (224) 

Biodentine (Septodont, Saint-Maurdes Fosses, France) (Biodentine) (Figure 10): 

Supplied as a powder and a liquid (Table 2). 

 

Figure 10. Biodentine (225) 

TotalFill BC RRM PUTTY (FKG Dentaire, La-Chaux-de-Fonds, Switzerland) 

(TotalFill) (Figure 11): Supplied as a ready-made/ready-to-use paste (Table 2). 
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Figure 11. TotalFill (55) 

Table 2. Overview of tricalcium silicate materials used in the studies: composition and 

properties according to the manufacturers 

Material Color Form 

presented 

Powder content Liquid 

content 

X-ray 

contrast 

pH 

(After 

setting) 

MTA-ANGELUS® 

(Angelus, Londrina, PR, 

Brazil) 

White Powder 

and liquid 

Tricalcium silicate, 

dicalcium silicate, 

tricalcium aluminate, 

calcium oxide, iron 

tetracalcium 

aluminate, bismuth 

oxide 

Distilled 

water 

Bismuth 

Oxide 

10 - 13 

Biodentine® (Septodont, 

Saint-Maurdes Fosses, 

France) 

White Powder 

and liquid 

Tricalcium and 

dicalcium silicate, 

calcium carbonate 

and zirconium oxide 

Calcium 

chloride 

Zirconium 

oxide 

10 - 13 

TotalFill® BC RRM™ 

(FKG Dentaire, La-Chaux-

de-Fonds, Switzerland) 

/Endosequence® BC 

RRM™ PUTTY 

(Brasseler, USA) 

White Ready-to-

use Paste 

Calcium silicates, 

zirconium oxide, 

tantalum oxide, 

calcium phosphate 

monobasic and filler 

agents 

No 

liquid 

Zirconium 

oxide, 

tantalum 

oxide 

11 - 12 
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2.2 Study design flow chart 

Figure 12. Flow chart: methodology  

2.3 Vickers’s microhardness test 

The Vickers’s microhardness test was undertaken to assess resistance of the test 

materials to plastic deformation of the surface after indentation (63). The test materials 

were prepared according to the manufacturers’ instructions. Polyvinyl chloride 

cylinder molds 20mm in diameter and 17mm in height were first used to prepare acrylic 

resin cylinders (Heraeus, MELIODENT® Rapid Repair). Five specimens of each 

material were then placed in scoop-like holes made on the top surface of the acrylic 

cylinder by an acrylic trimming bur. Composite (3M ESPE Filtek™ Supreme XTE) 

was prepared using a 4th generation bonding system and served as a control. The 

material specimens were then placed into the prepared scoop-like holes and allowed to 

set in a 37°C incubator at 75% humidity for 72hrs, for optimal setting (226). Prior to 

testing all specimens were wet polished on a Struers TegraForce-1 polishing machine 

(Struers Inc. Westlake, Ohio, USA) using FEPA waterproof silicon Carbide sandpaper 
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(Struers Inc. Westlake, Ohio, USA) with decreasing particle size grit fineness, ranging 

from #220 - #1200.  

A Vickers MicroHardness tester (Zwick/Roell, Indentec Hardness Testing Machines 

Limited, Brierly Hill, UK) with a square-based pyramid-shaped diamond indenter was 

then used to make five different indents on the polished surface of each individual 

specimen, applying a 200g load force for 20sec (Figure 13) (64, 227).  The resultant 

indentations were immediately analyzed under the microscope and a Hardness 

Vickers’s (HV) reading was displayed on a digital readout (69).  The Vickers’s 

hardness tester uses the following formula to generate the reading: 

HV = 1.854 × (F/d2), where F is load (kg−1) and d is the mean of the two diagonals 

(Figure 13). 

 

Figure 13. Vickers Hardness test indentation examples on three samples with different 

hardness levels. The smaller the indent the harder the material. The indent on sample A is the 

smallest, indicating that A has the highest microhardness (228). 
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2.4 Bovine teeth preparation (Study 1) 

Bovine mandibular incisor teeth were obtained from Fatland Slakteri, Ølen, Norway 

(Fatland Ølen A/S) (Figure 14) (229). The extracted teeth were cleaned and stored in 

1% Benzalkonium Chloride until use (210).  

 

Figure 14. Bovine teeth extraction at Fatland Ølen A/S 

The extracted teeth were examined in detail. Those with visible cracks/fractures were 

discarded. The sound teeth were then prepared according to a standard protocol 

intended to simulate the root length and thickness of immature teeth (Figure 15). The 

teeth were sectioned with a water-cooled low speed diamond bur, 10mm coronal to the 

cemento-enamel junction (CEJ) and 15mm apical to the CEJ.  The root canal was 

thereafter instrumented and widened with a size 6 peeso reamer, until an ISO size #120 

file could pass completely unhindered throughout the canal. The internal canal 

diameter and the remaining dentin thickness were standardized close to 2mm (Figure 

15) (113, 114, 230-232).   
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Figure 15. Dimensions of prepared tooth with a TSC plug 

The root canals of the controls (intact teeth) were not prepared. These teeth were 

sectioned to the standardized crown/root ratio only (Figure 15). The dimensions 

(crown/root ratio, intracanal diameter at CEJ, dentin thickness at CEJ, and cervical plug 

length) of all teeth were measured by digital radiography (Figure 16). A control group 

of “simulated immature teeth with no intervention” was not included in our study as 

the primary aim was the comparison of the materials at the cervical part of the root and 

whether they increase fracture resistance.  
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Figure 16. A flowchart of the tooth preparation procedure for the different groups in the 

study. MTA (n=11, group 1), Biodentine (n=10, group 2), TotalFill (n=10, group 3), Gutta 

Percha (GP) (n=10, group 4), controls (intact teeth, n=10, group 5). 
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2.5 Regenerative endodontic procedure (Study 1) 

 

Figure 17. Regenerative endodontic protocol used on simulated immature teeth 

The regenerative endodontic protocol used at the Department of Clinical Dentistry, 

University of Bergen, was applied to the simulated immature teeth (Figure 17). Canals 

were irrigated and dried with paper points before filling with a triple antibiotic paste. 

The teeth were then sealed coronally with temporary filling material and stored in an 

incubator for 10 days (114). TSC cervical plugs were used in groups 1-3 and the teeth 

in group 4 were obturated with gutta percha. The teeth in groups 1-3 were then stored 

for 24 hours in an incubator, to allow setting of the TSC plug, and the teeth in group 4 

were immediately restored with composite. The next day, groups 1-3 were restored 
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with composite. All teeth were then inserted into and stored in wet floral arrangement 

foam in an incubator until fracture resistance testing.  

2.6 Fracture resistance testing (Study 1) 

 

Figure 18. Fracture resistance testing 

The fracture resistance testing procedure, including pre-testing preparation, is outlined 

in Figure 18. Wax-covered roots were embedded in freshly mixed acrylic resin 

cylinders to create a socket (231).  The wax was cleaned from the root surfaces, leaving 

a 0.2-0.3mm margin between the root surface and the acrylic resin. The root surfaces 

were then coated with a thin layer of polyvinylsiloxane impression material, to simulate 

the periodontal ligament (PDL) (113, 230, 233-235) and re-embedded into the acrylic 

block socket (Figure 19). The acrylic block was firmly anchored at a 45° angle to the 

long axis of the tooth (Figure 19). A steadily increasing compressive force at a test rate 
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of 0.05mm/s was exerted on the tooth at the positioned angle until fracture occurred 

(113, 114, 230-232, 236). The peak load at fracture was recorded in Newtons (N).  

 

Figure 19. Fracture-testing setup 

2.7 TSC material extract preparation (Studies 2 & 3) 

Material eluate extracts were prepared from TSC. Under sterile conditions, MTA and 

Biodentine were mixed and prepared according to the manufacturers’ instructions. Four 

plugs of MTA, Biodentine, and TotalFill were made using an amalgam carrier and 

placed in pre-weighed Eppendorf tubes (Figure 20). Using the same amalgam carrier 

for all materials ensured that the diameter and thickness of the plugs was standardized. 

The material plugs were allowed to set in an incubator at 37o C for 24hrs (237). 
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Figure 20. Amalgam carrier provided standard volume of material plugs (Left). Four 

material plugs were used for creating stock material eluate solution (Right). 

ISO Standards 10993-5 (238) were followed to prepare material eluates. Each 

Eppendorf tube was filled with 1 ml of serum-free Mesencult MSC Basal Medium with 

1% penicillin and stored in an incubator for 24hr. The medium was filtered through 

sterile filters and stored for later use (239). The stock solution was serially diluted with 

osteogenic medium (Mesencult MSC Basal Medium, with 10% Mesencult MSC 

Stimulatory Supplement and 1% Penicillin (complete medium) together with 100mM 

dexamethasone, 10mM β-glycerophosphate, 0.05mM ascorbic acid) (240, 241) (Figure 

21).  

 

Figure 21. Serial dilution process for preparation of the material eluates  
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2.8 Expansion of hBMSC (Study 2) 

Primary hBMSC (StemCell Technologies) were cultured and expanded in-vitro, then 

cultured in complete Mesencult MSC Basal Medium with 10% Mesencult MSC 

Stimulatory Supplement and 1% Penicillin at 37o C, 6% CO2 and 100% humidity. The 

cells were usually allowed to reach a confluence of about 70-80 % before being 

passaged.  They were then detached from the plates using trypsinization and counted 

using a trypan blue assay in an automated cell counting machine, evaluating cell 

number and viability. Viability was presented as a percentage of the total number of 

cells and shown to be 86% - 94%. Cells from passages 2-8 were used for the 

experiments. 

The cell morphology of the cultured cells was documented by light microscopy (Nikon 

Eclipse E80i, Nikon Instruments, Tokyo, Japan). 

After the cells has been seeded into the appropriate wells for each experiment, they 

were left for 24hrs to allow complete cellular attachment to the bottom of the well plate 

before exposure to the material extracts for various periods of time (6hrs, 1 day, 3 days, 

7 days and 14 days). Untreated hBMSC served as controls.  

2.9 Isolation and expansion of human Dental Pulp Stromal 

Cells (Study 3) 

Human Dental Pulp Stromal Cells (hDPSC) were isolated from the third molars of 

healthy adults at the Department of Clinical Dentistry, University of Bergen, Norway. 

The following protocol was approved by the ethics committee, Norway (225.05, 

3.2008.1750, 2009/610 and 2013/1248). The teeth were extracted during routine 

clinical procedures (impacted tooth removal) and collected after informed consent of 

the patients. The teeth used for pulp cell isolation were removed in toto and were caries 

free. The cells were then isolated using enzymatic dissociation according to previously 

reported protocols (242) (174, 199, 243). Briefly, a groove (0.5 – 1mm) was created 

along the CEJ using a high-speed bur. A chisel was then used to split the tooth to expose 

the canal chamber and harvest the pulp tissue. The pulp tissue was then minced into 

very small pieces before being exposed to enzymatic dissociation. The minced tissue 
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was placed in an enzymatic digestive solution of collagenase type 1 (4mg/ml) and 

dispase (2mg/ml) for 1hr at 37°C. The digested tissue was centrifuged at 1400rpm for 

10min and then filtered through a 70µm strainer. Single cell suspensions were cultured 

and expanded with Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

10% FBS (Sigma-Aldrich), 4mM L-glutamine (Thermofisher), 100U/ml penicillin 

(HyClone) and 100μg/ml streptomycin (HyClone) in a 5% CO2 incubator at 37o C. The 

culture medium was changed twice weekly. At 75% confluence, cells were either 

subcultured or stored in liquid nitrogen for future use.  

The hDPSC were phenotypically characterized and evaluated for mesenchymal stem 

cell markers. Flow-cytometric analysis on the 1st passage (primary cells) was carried 

out using fluorescein isothiocyanate (FITC) mouse anti-human CD90 (BD 

Biosciences), allophycocyanin mouse anti-human CD105 (Southern Biotech), 

PerCPCy5.5 mouse anti-human STRO-1 (Santa Cruz Biotechnology, Inc.), and 

phycoerythrin mouse anti-human CD24 (R&D System) as positive markers (199, 242). 

A 20µl blocking reagent (0.5% bovine serum albumin (BSA) in phosphate buffered 

saline (PBS) at a pH of 7.4) was used on cells at a cell density of 5×105 per tube at 

37°C for 10min. They were then stained by incubation in the dark for 1hr by conjugated 

antibodies STRO-1 (1:125), CD90, CD24 and CD105 (1:50). The cells were then 

washed with 200µl PBS and centrifuged for 5min at 4°C and a rate of 300 g. After 

centrifugation, the cell pellet was resuspended in 300µl of 10% paraformaldehyde and 

stored at 4oC. During flow cytometric analysis (BD LSRFortessa™ Flow Cytometer 

System (BD Biosciences), 100,000 events were used for each individual sample (199). 

The flow cytometric and immunophenotypical analysis showed that at the 1st passage, 

the hDPSC were positive for CD90 (45.4%), STRO-1 (6.1%), CD105 (5.8%), and 

CD24 (95.9%) (199). The hDPSC used in this study were from passages 3-7.  

The cell morphology of the cultured cells was documented by light microscopy (Nikon 

Eclipse E80i).  

Three different donors with a mean age of 22 were used in this study, referred to as 

DM1 (male, 20yrs), DM10 (female, 22yrs) and DM17 (male, 24yrs). 
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After the cells had been seeded in the appropriate wells for each experiment, they were 

left for 24hrs to allow for complete cellular attachment before being exposed to the 

material extracts for various periods of time (1 day, 3 days, 7 days). Untreated hDPSC 

served as controls.  

2.10 MTT proliferation assay (Studies 2 & 3) 

HBMSC and hDPSC were seeded at a density of 0.1 × 105 cells per well on 96-well 

plates. They were then stimulated by exposure to serially diluted TSC extract 

concentrations (1:2, 1:4, 1:8, 1:16) for different experimental periods (1 day, 3 days 

and 7 days). The 3-(4,5-dimethyl-thiazoyl)-2, 5-diphenyl-tetrazolium bromide (MTT) 

assay was used to test cell metabolism. A microplate reader was used to record 

absorbance at a wavelength of 570 nm. 

 

2.11 RNA extraction and quantitative reverse transcription PCR 

(Studies 2 & 3) 

HBMSC and hDPSC were seeded in 6-well culture plates at a density of 0.3 × 106 cells 

per well. The cell monolayer was exposed to TSC extract medium (eluate of 1:4 

dilution) for various periods (6hrs 1 day, 3 days and 7 days). At the end of each 

experimental period, the cell culture supernatant was collected in 300µl aliquots and 

stored at -80 oC for future protein assessment. The cell monolayer was washed with 

PBS and the plate was then stored at -80o C for later RNA analysis. Total RNA was 

then isolated using a commercially available kit (Maxwell 16 Cell LEV Total RNA 

purification Kit, Promega, Wisconsin, USA). NanoDrop Spectrophotometer 

(ThermoFisher Scientific NanoDrop Technologies, Wilmington, Delaware, USA) was 

used to measure the quantity and quality of RNA.  

After RNA extraction, a cDNA reverse transcription kit (High-Capacity cDNA Reverse 

Transcription Kit by Applied Biosystems, Foster City, CA, USA) was used to reverse 

transcribe 50 µg of total RNA to complementary DNA (cDNA). Quantitative reverse 

transcriptase PCR (qRT-PCR) was completed to quantify the relative changes in gene 

expression. Amplification was done in triplicate replicates with a reaction volume of 



 59 

10 µl for every marker. The PCR reaction in this thesis was recorded  using the 

following TaqMan™ probes (Applied Biosystems, Foster City, CA, USA) : Alkaline 

phosphatase (ALP), Collagen 1alpha (Col1A), Osteoprotegerin (OPG), osteocalcin 

(OC), Runt-related transcription factor 2 (RUNX2), Vascular endothelial growth factor 

A (VEGF-A), Fibroblast growth factor (FGF-1), Interleukin 1 beta (IL1β), Interleukin 

6 (IL6), and Tumor necrosis factor alpha (TNFα) as summarized in Table 3. The 

osteogenic markers were chosen as they can provide a general overview of the hard 

tissue regenerating potential of the material whereas the angiogenic and inflammatory 

markers chosen could provide preliminary information and guide for further 

investigations. Furthermore, comparison between the responses of the two cell types 

could be made. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) served as the 

endogenous control gene (Table 3). The comparative 2-ΔΔCT method was used to 

compute relative gene expression. The target gene value was calculated in relation to 

the control samples, setting the control value to 1.0. GAPDH was stable throughout the 

experiments. 
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Table 3. Overview of TaqMan probes used in this thesis 

GENE ASSAY ID MARKER AMPLICON 

LENGTH 

Study 

GAPDH Hs99999905_m1 Endogenous control 122 Study 2 & 3 

ALP Hs01029144_m1 Osteogenic 79 Study 2 & 3 

COL1A Hs00164099_m1 Osteogenic 68 Study 2 & 3 

OPG Hs00900358_m1 Osteogenic 74 Study 2 & 3 

OC Hs01587814_g1 Osteogenic 138 Study 2 & 3 

RUNX2 Hs01047973_m1 Osteogenic 86 Study 3 

VEGF-A Hs00900055_m1 Angiogenic 59 Study 2 & 3 

FGF-1 Hs01092738_m1 Angiogenic 104 Study 2 & 3 

IL1β Hs01555410_m1 Inflammatory 90 Study 3 

IL6 Hs00985639_m1 Inflammatory 66 Study 3 

TNFα Hs00174128_m1 Inflammatory 80 Study 3 
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2.12 Enzyme-Linked Immunosorbent Assay (ELISA) (Studies 2 

& 3) 

After exposure of cells to 1:4 dilution of TSC eluates, the protein levels of VEGF-A in 

the cell culture supernatants from hBMSC and hDPSC were measured with 

commercially available ELISA kits (R&D Systems, Minneapolis, MN, USA) 

according to the manufacturer’s recommendations. 

2.13 Alkaline phosphatase quantification (Studies 2 & 3) 

Extracellular ALP was measured with a colorimetric assay kit (Sigma-Aldrich) in 

previously collected and stored culture supernatant of cells exposed to material eluates 

(1:4 dilution) for various time periods. ALP activity was expressed as optical density 

measured at 405nm using a microplate reader (FLUOstar OPTIMA).   

2.14 Alizarin Red staining (Study 2) 

Alizarin Red staining was used for qualitative evaluation of in-vitro mineralization 

(deposition of calcium) of hBMSC exposed to TSC eluates. HBMSC were seeded at a 

density of 0.3 × 104 cells per well onto 24‐well culture plates. The cells were then 

stimulated by exposure to TSC eluate (1:4 dilution) for 1, 3, 7 and 14 days.  The cells 

were then washed with PBS and fixed using 10% neutral buffered formalin before 

incubation with Alizarin Red S staining solution (Carl Roth, Karlsruhe, Germany). The 

treated cellular monolayer was observed with light microscopy at a magnification of 

10× (Nikon Eclipse E80i). 

2.15 Statistical analysis (Studies 1-3) 

The statistical package programs used in this thesis were GraphPad Prism5 (GraphPad 

Software, La Jolla, CA, USA) (Study 1-3). The analyses used in this thesis are outlined 

in Table 4. In addition, boxplots were prepared for the presentation of the results. 



 62 

Table 4. Overview of statistical analyses  

Study One-way 

ANOVA with 

Bonferronis’s 

post hoc test 

Two-way 

ANOVA with 

Bonferronis’s 

post hoc test 

Two-way 

ANOVA 

with 

Dunnett’s 

post hoc test 

test 

Kruskal-

Wallis 

with 

Dunn’s 

post hoc 

test 

Mann-

Whitney 

test 

Study 1 + - - + + 

Study 2 - + - - - 

Study 3 - - + - - 
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3. Results 

 

3.1 Vickers’s Microhardness Test 

Analysis of the images showed that materials with a higher surface microhardness were 

better wet polished and consistently resulted in a smoother surface finish. This was 

particularly evident on the surface of composite. The smaller the size of the indent 

created, the higher the microhardness, as more resistance was present (Figure 22). 

TotalFill did not have the surface microhardness necessary to allow a measurable HV 

reading. This was evident as the 10× magnification did not allow for complete 

accommodation of the diamond shape indent made on the material surface, leading to 

inability to read the final indent (Figure 22). Composite (106.3 ± 11.47 HV) was the 

hardest material in the Vickers test compared with the tested TSC (Figure 23). 

Biodentine (87.12 ± 10.4 HV) displayed a significantly higher surface microhardness 

than MTA (14.2 ± 3.8 HV) (Figure 23).  
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Figure 22. Diamond indent created on wet polished surface of Composite, Biodentine, MTA, 

and TotalFill. The size and clarity of the indent are a direct representation of the material 

microhardness. Small clear indents on a smoother finish surface indicate higher 

microhardness, as seen for the composite and the Biodentine. The indent created on the 

surface of TotalFill was unsuitable for measurement and analysis by the Vickers 

MicroHardness Test, indicating very low surface microhardness. Bars: 200µm. 
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Figure 23. Hardness Vickers (HV) test. The tested materials exhibited significant 

differences in surface microhardness.   Composite had the highest microhardness 

(106.3 ± 11.47 HV), followed by Biodentine (87.12 ± 10.4 HV) and MTA (14.2 ± 

3.8 HV). The results are presented as mean±SEM, Kruskal-Wallis test with Dunn’s 

multiple comparison, ***p < 0.001. 

In this context, it was of interest to investigate whether the differences in material 

microhardness would result in differences in fracture resistance of teeth treated with 

these materials, particularly for TSC in the cervical area of immature teeth. 

3.2 Simulated immature teeth (Study 1) 

To guarantee experimental standardization, the crown-root ratios, the intracanal 

diameter at the CEJ and dentine thickness were measured. These measurements 

indicated no intergroup differences among the simulated immature teeth. Nor were 

there any differences among the TSC groups (1-3) in terms of the length of the cervical 

plug. All prepared teeth (groups 1-4) had a significantly higher canal diameter and 

lower dentin thickness at the CEJ than the intact teeth (group 5, p < 0.05) (Figure 24). 
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Figure 24. Intracanal and dentin thickness differences between intact teeth and simulated 

immature teeth. The intracanal diameter was significantly higher in simulated immature teeth. 

The dentin thickness at the CEJ was significantly higher in intact teeth than in simulated 

immature teeth. The data are presented as mean ± SEM, Mann-Whitney test, *p < 0.05; ***p 

< 0.001. 

3.3 Fracture testing (Study 1) 

Fracture testing showed that intact teeth required a significantly higher peak load to 

fracture (1669 ± 60.77 N) than all the other test groups (groups 1-4). Among the 

“immature” teeth there were no differences in peak load required to fracture (Figure 

25). 

Figure 26 shows the fracture pattern observed after testing. Simulated immature teeth 

fractured at the interface of the material plug/or gutta percha and the coronal composite 

filling. The fracture line pattern of intact teeth was within the crown. (Figure 26). 
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Figure 25. Fracture testing results. A significantly higher peak load was needed to achieve 

fracture in intact teeth than in all groups of simulated immature teeth (group 1-4). However, 

there were no differences among groups 1-4 in the peak load required to fracture. Data 

presented as mean ± SEM, Kruskal-Wallis test with Dunn’s multiple comparison, *p < 0.05; 

**p < 0.01. 
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Figure 26. Examples of typical fracture patterns of tested immature teeth showing lingual 

and lateral aspects. a-b: MTA. c-d: Biodentine. e-f: TotalFill. A diagonal fracture line is seen 

through the canal buccolingually. This line crosses the interface between material plug and 

composite filling. Intact teeth (g-h) showed a similar fracture line pattern located within the 

crown. Scale bars = 2mm 
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3.4 Cellular morphology (Studies 2 & 3) 

Cellular morphology of hBMSC and hDPSC was assessed microscopically during 

culture procedures. Both cell types shared similar fibroblast-like morphological 

characteristics, with a flat elongated or narrow spindle shape (Figure 27). 

Morphology was unchanged throughout culture and passaging and no morphological 

differences between hDPSC donors (Study 3) were seen. 

 

Figure 27. Human bone marrow stem cells (A) and human dental pulp stromal cells (B) in 

culture under 10× magnification showing fibroblast-like spindle shaped morphology. 

HBMSC are in culture with complete Mesencult MSC Basal Medium with 10% Mesencult 

MSC Stimulatory Supplement and 1% Penicillin. HDPSC are in culture with DMEM 

supplemented with 10% FBS, 4mM L-glutamine, 100 U/ml penicillin and 100 μg/ml 

streptomycin. Scale bars = 100µm 

3.5 MTT assay (Studies 2 & 3) 

In both cell types, the MTT results showed similar responses by the cells to the TSC. 

One day of exposure to the TSC eluates did not affect cell proliferation.  Differences 

between the materials were apparent after 3 days, with TotalFill showing a greater 

inhibitory effect on cell proliferation of both hBMSC and hDPSC. After 7 days’ 

exposure to TSC, MTA and TotalFill exhibited the highest inhibitory effect on cell 

proliferation of both hBMSC and hDPSC, whereas Biodentine had the least inhibitory 

effect (Figure 28). 
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Figure 28. Proliferation of hBMSC and hDPSC after exposure to TSC. Generally, both cell 

types responded similarly to the TSC eluate exposure. The longer the exposure time, the 

greater the inhibition of cell proliferation, in a dose-dependent manner. It was apparent at 7 

days that compared to MTA and TotalFill, Biodentine had the least inhibitory effect on 

hBMSC and hDPSC proliferation. 

[For the hDPSC, OD values were normalized in relation to the control samples and presented 

as relative cell proliferation (controls values set at 1)].  The data are presented as mean ± 

SEM. Detailed statistical analysis is presented in in papers 2 & 3. 

3.6 Osteogenic, angiogenic and inflammatory gene expression 

(Studies 2 & 3) 

A 1:4 ratio concentration/dilution of material eluate was used for cellular stimulation 

at all experimental timepoints for both hBMSC and hDPSC. 
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Table 5. RNA quantity and quality for hBMSC and hDPSC 

RNA VALUES 

QUANTITY 100 ng/µl - 350 ng/µl 

QUALITY 260/280 1.87-2.2 

260/230 2.00-2.20 

 

RNA quantity ranged from 100 to 350ng/µl. NanoDrop spectrophotometry indicated 

good RNA quality and quantity (Table 5).  

Gene expression analysis showed variations among the tested TSC. Specifically, 

Biodentine induced consistent upregulation of osteogenic markers such as ALP, OPG 

and OC in both hBMSC and hDPSC (Table 6). On the other hand, TotalFill enhanced 

the angiogenic VEGF-A expression in both hBMSC and hDPSC (Table 6). Compared 

to the controls, MTA did not induce many changes in the tested genes in either cell 

type. Inflammatory markers were tested in hDPSC only. IL1 and TNF were not 

detected under the experimental conditions. The only difference in inflammatory 

markers among the TSC tested was that for the longest experimental period, TotalFill 

downregulated IL6 expression (Table 6).  
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Figure 29.  Differential expression of osteogenic and angiogenic markers by hBMSC 

after exposure to MTA, Biodentine and TotalFill. Data are presented as Tukey’s 

boxplot. Statistical significance was determined using two-way ANOVA followed 

by Bonferroni’s post hoc test.  *P < 0.05, **P < 0.01, ***P < 0.001 compared to 

control. 
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Figure 30. Differential expression of osteogenic, angiogenic and inflammatory 

markers by hDPSC after exposure to MTA, Biodentine and TotalFill. Data are 

presented as Tukey’s boxplot. Statistical significance was determined using two-way 

ANOVA, followed by Dunnett’s multiple comparison test.  *P < 0.05, **P < 0.01, 

***P < 0.001 compared to control. 

3.7 Enzyme-linked immunosorbent assay (ELISA) (Studies 2 & 

3) 

Both hBMSC and hDPSC showed an increase in VEGF-A production over time. In 

hBMSC, Biodentine induced a statistically significant increase in VEGF-A production 

compared to the control and TotalFill at 7 days. In hDPSC however, TotalFill yielded 

the highest VEGF-A production, compared to the control, at both 3 and 7 days 

(Figure 29). This finding was also supported by upregulation of VEGF-A gene 

expression in hDPSC.  
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Figure 31. VEGF-A production in hBMSC and hDPSC. 

VEGF-A production was enhanced over time in both cell types. In hBMSC, VEGF-

A production was enhanced by Biodentine compared to TotalFill and the control. In 

hDPSC, TotalFill led to a significant increase in VEGF-A production at 7 days 

compared to Biodentine, MTA, and the control. The data are presented as mean ± 

SEM. The statistical analysis is presented in detail in papers 2 & 3. 

3.8 ALP Quantification (Studies 2 & 3) 

ALP activity in hBMSC and hDPSC was reduced over time by all TSC. In hBMSC, 

there were no differences among the tested TSC materials with respect to their 

inhibitory effect on ALP production (Figure 30). In hDPSC, at 7 days TotalFill 

maintained the inhibitory effect on ALP activity compared to the control (Figure 30).  
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Figure 32. ALP activity in hBMSC and hDPSC. 

ALP activity decreased over time in both cell types. There were no differences 

between materials in the responses of hBMSC whereas in the hDPSC, TotalFill 

significantly decreased ALP at 7 days compared to the control. The data are 

presented as mean ± SEM. The statistical analysis is presented in detail in papers 2 

& 3.   

3.9 Alizarin Red staining (Study 2) 

The stained hBMSC monolayer disclosed osteogenic capacity of the cells in-vitro. 

Mineralization was present after exposure to all the tested TSC but also to the control 

and this effect increased over time for all groups. This was seen as calcium deposits in 

the cells. 

Although no quantification was made, after 14 days of exposure, cells stimulated with 

MTA exhibited more pronounced mineralization than the other TSC tested and the 

control. (Figure 31).  
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Figure 33. Alizarin red staining of hBMSC after 14 days of exposure to TSC.  

Cells exposed to MTA showed more pronounced mineralization than the control, 

Biodentine and TotalFill after 14 days. Scale bars = 500µm 
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3.10 Summary of results (Studies 2 & 3) 

Table 6. Comparison of TSC effects 

 Cell 

morphology 

MTT assay Gene 

expression 

analysis   

ELISA ALP 

Quantification 

MTA hBMSC Fibroblast-

like spindle 

shaped 

 Inhibition of 

proliferation at 7 

days 

COL1A ↑ 7 days,  

VEGFA ↑ 1 day 

 

No effect on 

VEGFA 

production  

Extracellular ALP 

↓ at 1, 3 and 7 

days.  

hDPSC Fibroblast-

like spindle 

shaped 

Inhibition of 

proliferation at 3 

and 7days  

OPG ↓ 7 days, 

 

IL6 ↑ 3 days 

No effect on 

VEGFA 

production 

Extracellular ALP 

↓ at 3 days 

Biodentine hBMSC Fibroblast-

like spindle 

shaped 

Inhibition of 

proliferation at 

highest 

concentration at 

7 days 

ALP ↑ 6 hrs, OPG 

↑ 1 day and 3 days 

VEGFA ↑ 

at 7 days  

Extracellular ALP 

↓ at 1, 3 and 7 

days 

hDPSC Fibroblast-

like spindle 

shaped 

Inhibition of 

proliferation at 

highest 

concentration at 

7 days 

ALP ↑ 3 days, 

OPG ↑ 3 days, OC 

↑ 7 days,  

FGF-1 ↑ 3 and 7 

days, IL6 ↑ 3 days  

No effect on 

VEGFA 

production  

Extracellular ALP 

↓ at 3 days 

TotalFill hBMSC Fibroblast-

like spindle 

shaped 

Inhibition of 

proliferation at 3 

and 7 days 

ALP↓ 3 days, 

OPG ↑ 1 day,  

VEGFA ↑ 1 and 3 

days 

No effect on 

VEGFA 

production  

Extracellular ALP 

↓ at 1, 3 and 7 

days 

hDPSC Fibroblast-

like spindle 

shaped 

Enhance 

proliferation at 1 

day, Inhibition 

of proliferation 

at 3 and 7 days 

ALP↓ 7 days,  

VEGFA ↑ 3 and 7 

days, IL6 ↑ 3 days 

and IL6 ↓ 7 days 

VEGFA ↑ 

at 3 and 7 

days 

Extracellular ALP 

↓ at 3 and 7 days 

(long-lasted 

effect) 

↑=Upregulation, ↓=Downregulation 
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4. Discussion 

In regenerative endodontics, the clinical implications of choice of TSC are 

considerable. Mechanical properties of the TSC need to be taken into account: the teeth 

being treated are more vulnerable to fracture because of the thin dentinal walls. 

Biological aspects must also be considered: there is direct contact between TSC 

materials and the cells and a positive interaction is a major determinant of regeneration 

and/or repair.  

The present project was designed to investigate mechanical and biological aspects of 

the application of TSC in regenerative endodontics, using an experimental design 

which simulated clinical conditions. Two types of mesenchymal cells from different 

sources were utilized. The effect of TSC was investigated not only on cell proliferation 

but also the potential effects on cellular expression of osteogenic, angiogenic and 

inflammatory markers. 

4.1 TSC effect on tooth fracture resistance 

Composite microhardness was tested to illustrate the visual differences in surface 

polish and indent quality between materials of different microhardness levels as is seen 

in Figure 22. In addition, the composite’s close proximity to the cervical plug and its 

use as a coronal restoration justified the comparison to TSC. It is possible that the 

fracture resistance of the treated teeth could be primarily due to the reinforcement by 

the significantly harder composite material, a speculation worth investigating further 

in future projects. 

The results of the studies show that the microhardness of Biodentine is higher than that 

of MTA or TotalFill. Other recent reports also show a higher surface microhardness 

for Biodentine than for MTA (244, 245). This may be attributable to its low water to 

cement ratio (246), achieved by adding water soluble polycarboxylate to the powder 

and a hydrosoluble polymer to the liquid (246, 247). It was of interest to note that after 

72 hrs, TotalFill had not achieved the baseline hardness required to register a HV 

reading, indicating a much lower microhardness for TotalFill than for Biodentine. The 

microhardness of TotalFill putty is reported to be slightly lower than that of MTA after 
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7 days, supporting the present results that TotalFill has the lowest microhardness (248, 

249). Prior to testing, the materials were allowed to set for a period of 72 hrs, as 

opposed to 7 days. This shorter setting time may have influenced the significantly 

lower microhardness of TotalFill: it may not have reached its final set form at 72 hrs. 

The microhardness levels of Biodentine observed in this study are similar to those of 

human dentin as reported in the literature (63, 250, 251). As Biodentine was initially 

developed as a dentin substitute, the current findings are in accordance with that 

concept.  

Based on the findings on microhardness, it was logical to investigate further whether 

these differences in TSC microhardness are reflected in the fracture resistance of teeth 

treated with REP. We did not include a control group of non-treated immature teeth as 

the main scope was to compare the TSC as far as their potential effect on fracture 

resistance. Furthermore, previous studies have consistently shown a significantly lower 

fracture resistance of simulated immature teeth when compared to intact teeth (252-

254). This is primarily due to the thickness of the dentinal walls. Accordingly, the intact 

teeth with the thickest CEJ showed significantly higher fracture resistance in the 

current study.  Although no intergroup differences in fracture resistance were observed 

among the treated immature teeth, a larger sample size of teeth may ultimately have 

disclosed some differences.  Nevertheless, the results support the overall conclusion 

that TSC applied to the cervical area do not negatively influence the fracture resistance 

of the teeth.   

The results indicate no differences in fracture resistance between teeth in which the 

canals were obturated with gutta percha and those treated with TSC, nor were there any 

differences with respect to the individual TSC tested. However, a previous in-vitro 

study has shown that compared to gutta percha obturation, total obturation of the root 

canal with MTA or Biodentine significantly increases the fracture resistance (255, 

256). This is attributed to “chemical bonding” of TSC and dentin by the formation of 

an intermediate layer of hydroxyapatite (255, 257, 258). As the TSC in the present 

study were limited to the cervical area, it may be that the contact surface area between 

the TSC and dentin was too small to influence fracture resistance. A 2016 study 
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suggested that filling the whole root canal of immature teeth with MTA reinforced the 

roots to levels comparable to that of intact teeth (252). 

However, our findings are in agreement with another 2016 study comparing intact teeth 

with simulated immature teeth root-filled throughout the whole canal length with MTA 

or Biodentine. The intact teeth were significantly more resistant to fracture than the 

simulated immature teeth (259). This is not unexpected, as resistance to fracture is 

directly proportional to the remaining tooth structure and the amount of dentin in the 

cervical area (260, 261). Furthermore, consistent with our findings, no differences in 

fracture resistance were reported between teeth filled with MTA or Biodentine (259). 

Although the present findings do not imply that TSC strengthens the cervical area, 

successful REP results in root completion and development; thus, it is reasonable to 

assume that the fracture resistance of the tooth would increase. There are however, in-

vitro studies reporting that the fracture strength of teeth filled with MTA decreases over 

time (236). These studies however, may not be able to simulate the process of further 

root development which can occur in a clinical setting. Considering the susceptibility 

to fracture of endodontically treated immature teeth (117), continued root development 

is crucial for long-term tooth survival. Because of the increase in length and thickness 

of the root, REP is therefore preferable to apexification (262).  

In this context, the differences observed in microhardness of the TSC were not manifest 

as differences in the peak load required to fracture. This may imply that the 

microhardness of the material in this case had no bearing on the fracture resistance of 

the teeth: the fracture resistance of the simulated immature teeth may have been related 

to the composite filling material used as the coronal seal. 

4.2 TSC effect on cell proliferation 

Cell proliferation and differentiation are crucial indicators of progression of the 

regenerative process and/or healing of the dental pulp and the surrounding tissues (85, 

263, 264). In this project, cell proliferation was assessed by MTT assay. The assay 

measures cell proliferation through metabolic activity: in the presence of metabolically 

active cells, the yellow MTT reagent (tetrazolium salt) changes into a purple formazan 
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product. This can then be measured colorimetrically:  the more pronounced purple 

color indicates higher numbers of viable cells (265). The similarities in methodology 

allow comparison of the tested materials across studies 2 and 3. 

HBMSC and hDPSC showed similar proliferation responses to TSC. In the MTT assay, 

both cell types demonstrated a dose-related response to material eluates. This is 

presented as the inhibition of cell proliferation being directly proportional to the eluate 

concentrations. However, after 7 days of exposure, only Biodentine did not induce a 

decrease in cell proliferation in both hBMSC and hDPSC. The MTA used in this thesis 

contains Bi2O3 which is reported to have cytotoxic effects on cells (51). When the Bi2O3 

in MTA was replaced with alternative radiopacifying agents, cell viability improved 

(266). The presence of Bi2O3 in the MTA used in this study may explain the lower 

proliferation rates of hBMSC and hDPSC with MTA than with Biodentine. This is also 

reported in the literature: Biodentine supported greater hDPSC viability than MTA 

during the first 7 days (267, 268). There are however, contradictory reports in the 

literature, with some studies reporting no difference between Biodentine and MTA 

with respect to their effect on cellular proliferation (22, 269).  

Material eluates in this thesis were prepared through a standard volume of material 

plug placed in medium after initially setting for 24hrs. If a material has a higher rate of 

dissolution of its components into the medium it may lead to a higher concentration of 

stock eluate solution. This may be the case with TotalFill, where the decrease in cell 

proliferation may be attributed to a higher dissolution rate of material into the medium, 

possibly due to the long setting time. Guo et al. and Charland et al. report that TotalFill 

has a longer setting time than MTA (270, 271). Guo et al. measured the setting time of 

MTA and TotalFill in an incubator (37 °C, > 95 % relative humidity) while Charland 

et al. compared the ability of the materials to set in wet environments (human blood, 

culture media, with saline as the control). The setting time proposed by the 

manufacturer for TotalFill was questioned. Guo et al. suggested that both MTA and 

TotalFill took 7 days to set completely while Charland concluded that regardless of 

medium exposure, TotalFill took longer to set than MTA (270, 271). The setting time 

for TotalFill was reported to be longer than for Biodentine (272). Considered in this 

context, it is probable that the TotalFill material plugs in the present study may not 
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have reached final set form in 24hrs and possibly effused more composition into the 

stock medium than MTA or Biodentine. When dental pulp fibroblasts were exposed to 

material eluates, TotalFill had a greater inhibitory effect than MTA on proliferation 

during the first 48hrs. After 5 days the inhibitory effect of TotalFill was similar to that 

of MTA, whereas after 8 days TotalFill showed more enhanced dental pulp fibroblast 

proliferation than MTA (273). These results suggest an inhibitory component in 

TotalFill which decreases, over time, as the material sets.  

Overall, the study demonstrated that Biodentine was less harmful to the proliferation 

of hBMSC and hDPSC than MTA or TotalFill. There are studies showing that 

compared to MTA, Biodentine increases proliferation of hDPSC (267, 268). However, 

TotalFill has also been reported to decrease the proliferation of Human Saos-2 

osteoblast-like cells compared to MTA (274). While in studies to date there is a lack of 

direct comparison among MTA, Biodentine and TotalFill, it can be concluded from the 

available literature that Biodentine is more favourable than MTA to the viability of 

stem cells. In contrast to our findings however, Sultana et al. showed greater 

enhancement of hBMSC proliferation by TotalFill than by Biodentine (60). These 

contradictory findings may be attributable to differences in experimental designs. 

Sultana et al. seeded cells onto the specimen cement and thus tested the direct effect of 

contact between the material surface and cells. In contrast, the experimental model in 

the current studies is more appropriate for comparison of material concentrations. The 

model is based on the assumption that the soluble products leached from the TSC are 

the active components. As the results showed that Biodentine was less inhibitory to cell 

proliferation than MTA or TotalFill, it can thereby be considered the superior material 

with respect to cell viability. 

4.3 TSC effects on cell differentiation 

The studies showed that both hBMSC and hDPSC, when stimulated by TSC, expressed 

markers of osteogenic differentiation. Biodentine exhibited the most pronounced and 

consistent effect on both cell types. In hBMSC, Biodentine induced upregulation of 

ALP early and Col1A and OPG late; in hDPSC it induced upregulation of ALP and 
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OPG earlier and OC later. ALP and OC are typically expressed in a reciprocal manner, 

where ALP is an early marker and OC is a late marker of osteogenic differentiation 

(201, 268, 275). ALP expression indicates an initial phase of mineralization and as the 

cells exit this phase, ALP is substituted with the upregulation of OC (201, 268). These 

results indicate that Biodentine has a superior osteogenic profile to MTA or TotalFill. 

This is supported by previous reports that Biodentine has a higher osteogenic 

differentiation potential than MTA, in hDPSC (276) and in SCAP (8). In the latest 

study, ProRootMTA and RetroMTA were used (8). 

There are, however, reports of pulp canal obliteration of more than 50% in pulpotomies 

with Biodentine (Figure 32) (277). This has led clinicians to view the pronounced 

osteogenic response induced by Biodentine as less than ideal. Obliteration of the canal 

is a sign of increased odontoblastic activity, which demonstrates reparative and 

regenerative potential (277-279). However, this reparative response can be less than 

ideal if it overstimulates odontoblastic activity, leading to pulp canal obliteration.  

Overstimulated odontoblastic activity can also be a result of an unresolved 

inflammatory reaction, from caries or trauma, regardless of the TSC used in treatment. 

In other words, it is unclear whether obliteration of the canal is a direct effect of the 

applied TSC, or due primarily to pulpal inflammation independent of the applied TSC, 

or a combination of the two (Figures 32 and 33).  

 

Figure 34. Asymptomatic 11-year-old girl treated with pulpotomy with Biodentine 

due to pulp exposure upon caries excavation: pre-op (A) and post-op (B) 

radiographs. One year later, obvious obliteration of the root canal system (mesial 

root) is seen (C). Courtesy of N. Bletsa 
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Figure 35. Thirteen-year-old boy sustained subluxation injury in tooth 21 (A). Due 

to crown discoloration and negative response to vitality testing, cavity testing was 

performed, Vital pulp was found and pulp capping with TotalFill was performed (B). 

One (C) and 3 years (D) after progressive pulp canal obliteration was seen. Courtesy 

N. Bletsa 

Before osteogenic differentiation reaches the level of mineralization and late 

maturation, it passes through stages of early commitment and matrix synthesis (241). 

This is corroborated by Alizarin red staining images of hBMSC, showing minimal 

mineralization by all groups at 7 days and eventually marked mineralization and 

calcium deposition at 14 days. The deposition of calcium ions in the extracellular 

matrix indicates a commitment of cells towards osteoblastic and osteogenic 

differentiation. In Study 3 this can be observed by the upregulation of OC by hDPSC 

stimulated by Biodentine at later timepoints, possibly indicating the initiation of 

osteogenic differentiation. These findings support those of an earlier study of 

mesenchymal stem cells stimulated by Biodentine, in which OC expression was 

upregulated increasingly over time (280). In this context, it may be concluded that 

under the experimental conditions, Biodentine caused greater expression of osteogenic 

markers than MTA or TotalFill. 

In terms of VEGF-A, TotalFill induced significantly higher gene and protein 

expression in hDPSC than MTA or Biodentine. In a recent report, MTA and Biodentine 

induced VEGF-A expression in hDPSC (281). In mice, TotalFill was shown to induce 

angiogenic responses in the form of VEGFA expression at levels comparable to MTA 
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(282). The expression of angiogenic markers of differentiation is a prelude to the 

formation of vasculature. Although VEGF-A is primarily recognized for its role in 

angiogenesis, it also contributes to bone development and repair. As bone is a highly 

vascular organ, blood vessel formation is closely associated with bone formation and 

therefore these two processes are closely coordinated (283-285). This may explain why 

when there is an increase in the late expression of osteogenic markers of mineralization, 

there is also enhanced production of VEGF-A at protein level. This was observed in 

hBMSC stimulated with Biodentine, in which VEGFA production was higher than in 

the control. 

In hDPSC, the expression of osteogenic markers such as OC and the development of 

mineralization are also associated with the early expression of inflammatory markers 

in-vitro, such as IL1β, IL6 and TNFα (286-288).  

All TSC induced early expression of the proinflammatory cytokine IL6 in hDPSC but 

only TotalFill stimulated a late decrease. IL1β and TNFα were not expressed by 

hDPSC. Previous reports also show early expression of IL6 in SCAP, but in contrast 

to the present findings, there was also expression of IL1β and TNF from cells 

stimulated by MTA and Biodentine (289). Unfortunately, the expression of 

inflammatory markers in hBMSC was not investigated in this thesis. This information 

might have contributed to a more extensive comparative profile of hDPSC and 

hBMSC. Non-resolution of inflammation is detrimental to the healing process, but the 

initial inflammatory reaction is desirable and can be essential to healing (290, 291). 

The current findings in hDPSC suggest greater anti-inflammatory potential for 

TotalFill than for MTA or Biodentine. The TSC may affect the immune response by 

stimulating cells to inhibit the expression of proinflammatory cytokines after the acute 

phase of inflammation. A decrease in IL6 expression indicates resolution of 

inflammation, which in turn is conducive to healing and repair (292-294). In a 2018 

study, the authors carried out pulpotomies using ProRootMTA and RetroMTA and 

later extracted the teeth to study the effect of the materials on the quality of dentin 

bridge formation (147).  Histological evaluation revealed that the quality of the dentin 

bridge was superior in teeth treated with ProRootMTA than with RetroMTA. 

Furthermore, histological evaluation of the pulp revealed that none of the teeth treated 
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with ProRootMTA showed signs of pulpal inflammation, whereas 28% of the teeth 

treated with RetroMTA developed mild pulp inflammation (147). The implication is 

that inflammation and its resolution influence the outcome of VPT. Based on the 

expression of inflammatory markers, it can be concluded that although none of the 

tested TSC induced an exaggerated inflammatory response in hBMSC, TotalFill had 

an anti-inflammatory effect over time. 

4.4 Methodological considerations 

In Study 1 it was decided to simulate immature roots, with a root length approximately 

2/3 the length of the completely developed root. This is consistent with stage 3 root 

development according to Cvek’s classification (117, 295). This length was chosen 

because shorter roots, typical of the earlier stages of root development, were found to 

be easily dislodged from the acrylic mold during loading. The crown was also 

standardized for all test teeth and the canals of the prepared teeth were enlarged to a 

diameter of approx. 2.2 mm, significantly larger than in the intact teeth (ca 1.8 mm). 

Obtaining human single-rooted teeth in large numbers proved impractical and an 

alternative was therefore needed. In order to ensure sufficient numbers of teeth which 

could be standardized according to the experimental protocol, bovine teeth were used. 

This bovine tooth model for simulating immature human teeth is well established and 

has been applied  extensively (113, 114, 119, 230, 231, 233, 235, 296). Several studies 

have demonstrated that bovine incisors are a suitable alternative for mechanical testing 

as the dentin modulus of elasticity and tensile strength are similar to those of human 

teeth (113, 297, 298). An advantage of the adoption of bovine teeth is the feasibility of 

standardization because bovine teeth exhibit fewer morphological variations than 

human teeth (113, 299). Although it would be an advantage to validate the present 

findings by tests on human teeth, this would be fraught not only with practical issues 

but also with concerns about ethics. 

The cells types used in this project are human primary cells. They are directly isolated 

from human tissue and have a limited proliferative capacity and lifespan (81, 300). 

Primary cells differ from immortal cell lines which are used in numerous areas of 

research (301). The most significant difference is that primary cells retain most of the 
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key morphological and functional features of their tissue of origin (302). This 

characteristic makes the in-vitro use of primary cells clinically relevant. On the other 

hand, due to the heterogeneous nature of primary cells, one may expect differences in 

the results due to donor variations.  

The hDPSC used in Study 3 were harvested by enzymatic dissociation, which has been 

shown to generate cells with enhanced, high biomineralization potential (303). Usually 

hDPSC are obtained from extracted third molar teeth and from premolars removed on 

orthodontic indications. The hDPSC used in Study 3 were obtained from young adult 

patients (mean age 22yrs). The relatively young age of the donors may have contributed 

to heterogeneity of the isolated cells, as the roots of the extracted third molars might 

not have been fully developed. The dental pulp of immature teeth contains a larger pool 

of undifferentiated cells; hence isolation may garner a less homogenous population 

(304). The heterogeneous hDPSC still maintain and display multipotent differentiation 

capabilities (207) and have been shown, in immunocompromised mice, to produce 

tissue resembling pulp/dentin tissue (174). In-vivo studies have shown more 

mineralization and matrix formation regenerated from implantation of 

unsorted/heterogeneous populations of hDPSC than from sorted/homogenous 

populations of hDPSC (305). 

4.5 Concluding remarks 

Based on the results of the three studies comprising the research for this thesis, the 

following conclusions can be drawn: 

• Biodentine has a higher surface microhardness than MTA or TotalFill. 

• The use of MTA, Biodentine and TotalFill during REP does not negatively 

affect the fracture resistance of the tooth. 

• The proliferation of hBMSC and hDPSC in-vitro is less inhibited by Biodentine 

than by MTA or TotalFill. 

• Osteogenic and angiogenic responses of hBMSC were differentially affected by 

the materials. Biodentine and TotalFill induced earlier changes at gene level. 
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TotalFill enhanced the expression and production of VEGFA and reduced the 

expression of IL6 in hDPSC.  

4.6 Summary 

This thesis was aimed to be a comparative analysis of TSC in the context of their 

application in regenerative endodontics. The ultimate goal of regenerative 

endodontics is to regenerate functional pulp tissue and particularly in the case of non-

vital immature permanent teeth to achieve resolution of apical disease as well as, 

continuation of the root development (306). Considering the decreased dentin 

thickness of the roots of immature teeth and their susceptibility to fracture, the aim is 

to reinforce the strength and structural integrity of teeth treated with regenerative 

endodontics. Therefore, it is evident that the goal of regenerative endodontics is 2-

fold, on both a biological\physiological level as well as a mechanical\strength-

structural level. To have a comprehensive comparison of TSC it is paramount to 

explore possible differences across all levels.  

Although being performed in-vitro, the findings of this thesis are clinically relevant to 

both REP and VPT considering the use of hBMSC in study 2 and hDPSC in study 3. 

This is primarily based on the assumption that hBMSC are recruited during REP due 

to the over-instrumentation into the periapical area to induce bleeding into the canal. 

Study 3 is designed to relate to VPT where the existence of pulp tissue naturally 

allows the recruitment of hDPSC during treatment with TSC. This experimental 

design further allows an auxiliary comparison between the responses of hBMSC and 

hDPSC to TSC stimulation. However, it must be emphasized that this comparison 

pertains only to the stimulation by TSC and does not offer an analysis of the 

characteristics and properties of the cells. Under the standardized experimental 

conditions, the TSC in this thesis elicited a consistent cellular response from both cell 

types (Table 6). 

It is important to consider that before a physiological change such as hard tissue 

formation or completion of root development can occur, the risk of root fracture 
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remains for immature teeth. For this reason, the immediate effect of TSC introduction 

into the root canal during regenerative endodontics was explored. We hypothesized 

that differences existed between the TSC on fracture resistance of the treated teeth. 

This hypothesis was rationalized by the preliminary findings of significant 

differences between the TSC in the microhardness test. However, the results did not 

support the hypothesis. The cervical area of immature teeth treated with REP 

remained a vulnerable area regardless the choice of TSC.  

Itis important to notice the clinical significance of the current findings bearing in 

mind the experimental limitations. Although Biodentine exhibited a more favorable 

viability response from both hBMSC and hDPSC, additional consideration of 

bioactivity is needed when making clinical recommendations for choice of TSC in 

regenerative endodontics. When comparing the immediate mechanical effects of TSC 

it is evident that Biodentine may be more favorable in contact with dentin as its 

microhardness is closer to that of human dentin compared to MTA. The longer setting 

time required for TotalFill is a disadvantage as it may impair the immediate sealing 

ability compared with TSC with shorter setting time. It can be speculated that the 

continuity of microhardness between Biodentine and dentin could lead to a favorable 

transfer of occlusal and masticatory forces between the two structures. This may be 

particularly relatable to REP where fracture resistance is of primary concern. With 

that being said, this speculation was not supported by our fracture resistance findings. 

However, as previously mentioned, a larger sample size may have indicated such 

differences. 

In terms of making recommendations for specific TSC, it is important to consider the 

treatment outcome desired. During REP it is preferable to achieve formation of pulp-

dentin tissue and continuation of root development. Biodentine however, may induce 

root completion with bone-like hard tissue formation compared to MTA and 

TotalFill. The osteogenic potential of Biodentine is an advantage in perforation 

repair. On the other hand, in VPT overstimulation of hard tissue formation may be 

detrimental to the success of treatment as it may lead to excessive pulp canal 

obliteration. In such cases one must therefore consider using a TSC with a less potent 
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osteogenic effect compared to Biodentine such as MTA or TotalFill. Ultimately, a 

specific odontoblastic response to induce dentin formation is preferred over an 

osteogenic response. Unfortunately, the dentin forming potential of the TSC was not 

explored in this thesis. Although the angiogenic and anti-inflammatory potential of 

TotalFill must be interpreted with caution, the findings suggest that TotalFill may be 

a better alternative for VPT than Biodentine. Particularly when considering that VPT 

can be successful even with the diagnosis of irreversible pulpitis as previously 

mentioned (103, 104). TSC that displays promising findings about resolving 

inflammation and promoting angiogenesis should be considered a better option for 

VPT. 

It is evident that the tested TSC exhibited different microhardness and induced 

different biological responses from stem cells. The findings of this project put these 

differences in the proper context in an attempt to aid operators in making reasonable 

choices for TSC use in regenerative endodontics. 

4.7 Future perspectives 

Because of the relatively small sample size in Study 1, differences in fracture resistance 

among the test TSC may not have been disclosed. For future reference, a larger sample 

size is necessary. Different methods of applying force to achieve fracture should also 

be considered. In the present study teeth were subjected to a steadily increasing 

compressive force to the point of fracture. This is intended to simulate a single 

traumatic blow that results in fracture. A relevant force would be repetitive hitting of 

the tooth (at a 45° angle to the long axis). This would simulate the cumulative effect of 

frequent trauma to the tooth and provide insight into the effect of a repetitive stress 

cycle on the modulus of elasticity of the tooth.  

It would also be of interest to analyse the composition of the material eluate prior to 

application, particularly with reference to differences in the material density and 

effusion rates. For instance, it may be useful to measure calcium ion release by 

inductively coupled plasma-mass spectrometry (307). It would also be of interest to 

explore the effect of altering the cell culture conditions of the experimental model. In 
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the present studies, a 1:4 dilution of eluate was chosen to stimulate cells for gene 

expression analysis. However, it may be of interest to compare the effects of different 

material eluate concentrations on gene expression. For comparison of materials it is 

important to stipulate longer timepoints in the experimental design. The application of 

TSC in VPT and REP is long-term, and therefore effects over time are clinically 

relevant. Longer observation times may be useful for functional assays such as the 

Alizarin red staining assay, as the deposition of calcium nodules takes longer than the 

expression of markers of differentiation. It then becomes important to investigate other 

osteogenic, angiogenic, and dentinogenic markers expressed during the later stages of 

differentiation of osteoblasts/ odontoblasts. It is also relevant to investigate the 

expression by hBMSC of the inflammatory markers as well as other molecules 

involved in the resolution of the inflammatory process, such as transforming growth 

factor beta family proteins and interleukin 10 (308). 

The in-vitro model applied in Studies 2 and 3 is commonly utilized for evaluating the 

biological effects of dental materials. However, it may not readily relate to the true 

biological environment in which these materials must function. The monolayer 2D 

culture does not accurately reflect the complex cellular structure within human tissue 

(309). In the past decade there has been an increase in the application of 3D cell culture 

techniques, as the 3D model more closely simulates in-vivo like conditions within an 

in-vitro setting (309). 3D cell culture models mimic the biological microenvironment 

by attempting to restore the morphological characteristics of functional human tissue 

(309). These include models such as multicellular spheroids, hydrogels, and scaffolds 

created by 3D bioprinting.  

The results and conclusions presented in this thesis warrant further evaluation, in 

prospective long-term clinical trials comparing the effects of the three TSC. The 

differentiation profile observed in the present studies should be confirmed by applying 

TSC to VPT and REP, in order to determine to what extent, the in-vitro findings apply 

to in-vivo regeneration of dental tissues. 
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ABSTRACT
This study aims to evaluate fracture resistance of simulated immature teeth after treat-
ment with regenerative endodontic procedure (REP) using tricalcium silicate cements
(TSCs) as cervical plugs. Bovine incisors were sectioned to standard crown/root ratio.
Pulp tissue was removed and canals were enlarged to a standardized diameter. Teeth
were then treated with a REP protocol consisting of NaOCl and EDTA irrigation, intraca-
nal medication with triple-antibiotic paste for 14 days followed by a TSC cervical seal
and composite restoration. Teeth were divided into groups according to the material
used; Mineral-Trioxide-Aggregate (MTA), Biodentine, TotalFill. Teeth filled with guttaper-
cha (GP) and intact teeth served as controls. All teeth subjected to an increasing com-
pressive force (rate of 0.05mm/s at a 45� angle to the long axis of the tooth) until
fracture. All treated teeth exhibited significantly lower resistance to fracture compared
to the intact teeth but no difference was found between the TSC groups (Kruskal-
Wallis, Dunn’s multiple comparison, p< .05). TSCs applied at the cervical area of simu-
lated immature teeth treated with REP did not reinforce fracture resistance.
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Introduction

Endodontic treatment of non-vital immature perman-
ent teeth presents quite a challenge in dental clinics
due to wide open apices and thin dentinal walls. A
relatively high incidence of cervical root fracture
(>60%) has been reported in such teeth teeth after a
long-term intra-canal treatment with calcium hydrox-
ide (CH) in order to achieve a hard-tissue barrier at
the apical area (apexification) [1,2]. These fractures
may occur with minor impacts or spontaneously over
time [1,3]. In the latest years, tricalcium silicate
cements (TSC) have been widely used as endodontic
repair materials and dentin substitutes [4]. The use of
TSC materials to achieve a root-end closure at the
apical area of necrotic immature teeth (direct apexifi-
cation) has replaced the traditional treatment with
CH. However, with this method the dentinal walls
remain thin, and the risk of fracture is still pre-
sent [5,6].

Regenerative endodontic procedures (REP) have
been advocated as an alternative treatment modality

to apexification for immature permanent teeth with
necrotic pulp [7]. Regenerative endodontics have been
defined as ‘‘biologically based procedures designed to
replace damaged structures, including dentin and root
structures, as well as cells of the pulp-dentin com-
plex’’ [8] with the optimal goal to regenerate func-
tional pulpal tissue and subsequently further root
development. Although there is no consensus regard-
ing the clinical regenerative protocols [9,10] the com-
mon step in all suggested ones is cervical sealing with
a TSC barrier. This biocompatible cervical plug pro-
vides a bacterial-tight seal and acts as pulp space bar-
rier [11,12].

The fact that non-vital immature teeth, due to fra-
gile root, are more prone to fracture represents a sub-
stantial clinical problem. The risk of fracture of
endodontically treated immature teeth relates to the
degree of root development, with lower degree of
development associated with higher fracture risk [1].
REPs aim at inducing further root development and
eventually strengthening the tooth. However, even

CONTACT Athanasia Bletsa Nancy.Bletsa@uib.no Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, N-
5009 Bergen, Norway
� 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ACTA BIOMATERIALIA ODONTOLOGICA SCANDINAVICA
2019, VOL. 5, NO. 1, 30–37
https://doi.org/10.1080/23337931.2019.1570822



with REPs, the cervical area does not develop further.
Furthermore, placement of TSCs at this exact area
may mechanically affect the susceptibility of treated
immature teeth to fracture. Little is known about the
immediate effect of TSCs on the fracture resistance of
immature teeth treated with REPs. The aim of this in
vitro study was to investigate the fracture resistance of
simulated immature teeth treated with REP and sealed
at the cervical area with three different TSC materials;
White MTA ANGELUSVR (MTA), BiodentineTM

Septodont (Biodentine), and TotalFillVR BC RRMTM

Putty (TotalFill).
The null hypotheses tested:

H0, there is no difference in fracture resistance
between intact immature bovine teeth and immature
bovine teeth treated with different TSCs as coronal
seal during REP.

Material and methods

Bovine teeth preparation

Bovine mandibular incisor teeth were extracted,
cleaned and stored in 1% Benzalkonium Chloride
[13]. Teeth were examined thoroughly and teeth with
visible cracks/fractures were discarded. Intact teeth
were then prepared according to a standard protocol
in order to simulate immature teeth. Briefly, they
were sectioned with a water cooled low speed dia-
mond bur, coronally 10mm above the cemento-
enamel junction (CEJ) and apically 15mm below the
CEJ. The root canal was thereafter instrumented and
widened with a size 6 peeso reamer so that an ISO
size #120 file could pass completely unhindered
throughout the canal. In that way, the internal canal
diameter and the remaining dentin thickness were
standardized close to 2mm [5,6,14–16] (Figure 1).

Controls (intact teeth) were sectioned according to
the standardized crown/root ratio but the canal was
not prepared (Figure 1).

Dentine thickness and canal diameter at the cer-
vical area of all teeth was measured with buccolingual
and mesiodistal radiographs using the DIGORA
Optime UV system (Unident, Falkenberg, Sweden)
and the measurements were averaged.

Tricalcium silicate cement materials

The TSC shown in Table 1 were mixed according to
the manufacturer’s instructions and used in the regen-
erative endodontic procedure and throughout
this study.

Regenerative endodontic procedure

Simulated immature teeth were by a random proced-
ure allocated into the 4 groups; MTA (n¼ 11) (group
1), Biodentine (n¼ 10) (group 2), TotalFill (n¼ 10)
(group 3), Gutta Percha (GP) (n¼ 10) (group 4). In
addition, untreated teeth served as controls (intact
teeth, n¼ 10) (group 5) (Figure 1). Intact teeth were
stored in a wet flower arrangement foam in a 37 �C
and 100% humidity incubator until testing. All teeth
in groups 1–4 were treated with the protocol followed
at the dental clinics of the University of Bergen: irri-
gation with 10ml Dakin’s solution (0.5% buffered
sodium hypochlorite) followed by 5ml of 17% ethyl-
enediamine tetraacetic acid (EDTA) and 5ml sterile
water. The canals were then dried with paper points
and filled with a triple antibiotic paste consisted of
equal volumes of 500mg Metronidazole, 500mg
Ciprofloxacin and 500mg Amoxicillin mixed with
sterile water in a slurry paste placed with a lentulo
spiral. The access cavities were then sealed with
CavitVR temporary filling material and the roots
inserted into a wet flower-arrangement foam. The
teeth were stored in incubator (37 �C and 100%
humidity) for 10 days [6]. The CavitVR was then
removed and the triple antibiotic paste was washed
out with the same irrigation protocol as above. Teeth
in groups 1–3 were sealed with a cervical plug of
TSC. Teeth in group 4 were obturated with gutta-per-
cha using lateral condensation technique and sealer
(AH PlusVR DENTSPLY, Germany) and avoiding over-
filling by applying finger pressure at the apex. Those
teeth served as negative controls (Figure 1).

Figure 1. Flow-chart showing teeth preparation. Bovine inci-
sors were first sectioned to standard a certain crown/root ratio
(a). Canals were thereafter prepared to simulate immature
teeth (b). These teeth were divided to groups (1–4) according
to the filling material used (1: MTA, 2: Biodentine, 3: TotalFill,
4: Gutta-percha). Some sectioned teeth, remained unprepared
and served as controls (group 5).
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Buccolingual and mesiodistal radiographs were taken
to measure the material plug length (measurements
were averaged as stated previously) and to confirm
the uniformity of the gutta-percha obturation using
the DIGORA Optime UV system. A wet cotton pellet
and CavitVR temporary filling material was placed at
the access cavity and the teeth were stored overnight
in the incubator to allow the TSC to set. After com-
plete setting of the TSC material, a composite filling
(3M ESPE FiltekTM Supreme XTE) was placed as the
coronal seal using a 4th generation bonding system
involving the use of 38% phosphoric acid (TOP
DENT etch gel 2.5ml, DAB DENTAL, Sweden) fol-
lowed by a primer application (OptibondTM FL) and
Adhesive (OptibondTM FL). Group 4 teeth were filled
with composite immediately after filling with GP
and stored in a wet flower arrangement foam in the
incubator (37 �C and 100% humidity) until testing
(Figure 1). Buccolingual radiographs were again
taken to confirm the integrity of the composite fillings
using the DIGORA Optime UV (Unident,
Falkenberg, Sweden).

Fracture resistance testing

All teeth were dipped into molten wax leaving a
0.2–0.3mm thick layer of wax covering the root
(2mm below the CEJ to the root apex) [14].
Thereafter, the roots were embedded in acrylic resin
cylinders (Heraeus, MELIODENTVR Rapid Repair,
Denture acrylic self-curing, Kulzer, Germany) that
were prepared using polyvinyl chloride cylinder molds
measuring 20mm in diameter and 17mm high [15].
As soon as polymerization of the acrylic resin started,
the teeth were removed from the resin, and the wax
was cleaned from the root surfaces using a curette.
The cleaned root surfaces were then coated with a
thin layer of polyvinylsiloxane impression material
(AffinisVR , Coltene/Whaledent AG, Altstatten,
Switzerland) to simulate the periodontal ligament
(PDL) [5,14,17–19] and then re-embedded into the
acrylic resin block. The acrylic block with the pre-
pared teeth was mounted onto an MTSVR Hydraulic
test System and subjected to an increasing

compressive force at a test rate of 0.05mm/s while
being positioned at 45� angle to the long axis of the
tooth until fracture occurred [5,6,14–16,20]. Peak load
at fracture was recorded in Newton (N).

Statistical analysis

For statistical analysis GraphPad Prism5 (GraphPad
Software, La Jolla, CA, USA) was used. D’Agostino-
Pearson omnibus normality test validated the distri-
bution of the data. For normally distributed data one-
way analysis of variance (ANOVA) with Bonferroni’s
post hoc test was used. When normality test was not
passed, Kruskal-Wallis with Dunn’s post hoc test was
used for the comparison between the groups or
Mann-Whitney test for comparison between two
groups (e.g. prepared vs intact teeth). All tests
were performed at a level of significance a¼ 0.05.
Results are presented as mean ± SEM, (�p< .05;
��p< .01; ���p< .001).

Results

Simulated immature teeth

In the interest of experimental standardization, there
were no differences between the simulated immature
teeth (groups 1–4) in terms of crown/root ratio,
intra-canal diameter at CEJ and dentin thickness
(Table 2). Moreover, there were no differences
between the TSC groups (1–3) in terms of the TSC
cervical plug length (MTA: 3.9 ± 0.193mm;
Biodentine: 4.015 ± 0.1228mm and TotalFill:
3.481 ± 0.125mm) (Table 2). All prepared teeth
(groups 1–4) had a significantly higher canal diameter
and lower dentin thickness measured at the CEJ com-
pared to the intact teeth (group 5) (Figure 2 and
Table 2, p< .05).

Fracture testing

All teeth were looked under �1 magnification for
fracture patterns. The diagonal fracture line extends
from the buccal aspect of the crown to the lingual
aspect of the teeth and exposes the root canal of all

Table 1. Summary of the Tricalcium Silicate Cements (TSC) cements used in the study.

White MTA-AngelusVR (Angelus, Londrina, PR, Brazil)
BiodentineTM (Septodont, Saint-Maurdes

Fosses, France)
TotalFillVR BC RRMTM PUTTY (FKG Dentaire, La-

Chaux-de-Fonds, Switzerland)

Powder: Tricalcium silicate, dicalcium silicate, trical-
cium aluminate, calcium oxide, iron tetracalcium
aluminate, bismuth oxide;

Liquid: distilled water
Mixing ratio: 1 scoop of powder to 1 drop of liquid

Powder: Tricalcium and dicalcium silicate,
calcium carbonate and zirconium oxide;
Liquid: water, calcium chloride and modified
polycarboxylate.
Mixing ratio: 5 drops of liquid into
powder capsule

Ready-made paste: Calcium silicates, zirconium
oxide, tantalum pentoxide, calcium phosphate
monobasic and filler agents
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tested teeth. The fracture line of the simulated imma-
ture teeth (groups 1–4) crosses the interface between
the material plug or gutta-percha and composite fill-
ing (cervical area) whereas the fracture line of the
intact teeth (group 5) is mainly located within the
crown (Figure 3).

The result of fracture testing showed that intact
teeth (Group 5) had a significantly higher peak load
to fracture (1669 ± 60.77N) in comparison to all other
test groups (Figure 4). TotalFill had a higher peak
load to fracture (804.5 ± 147.8 N) in comparison to
MTA (724.2 ± 128.2 N) and Biodentine (779.4 ± 104.7
N) whereas the GP control group 4 exhibited the low-
est peak load to fracture among all simulated imma-
ture teeth (675.8 ± 86.84 N). However, there were no
statistical significant differences among the simulated
immature teeth (groups 1–4) (Figure 4).

Discussion

The experiment model in this study emphasizes the
immediate effect of the TSCs on treated immature teeth
with REPs. We implemented a continuously increasing
load of force model to measure fracture resistance.
Traumatic dental injuries involve mostly anterior teeth
[2]. The absence of high occlusal forces at the incisors

may imply that the type of force that leads to dental
trauma in such cases is a single impact that overwhelms
the structural integrity of the tooth at that moment.
Untreated immature bovine teeth had a higher fracture
resistance than immature bovine teeth treated with
TSCs therefore, the null hypothesis was rejected. Under
the experimental set-up, the treated immature teeth
fractured at the cervical area and thus, REP and cervical
seal with bioceramic materials does not seem to
reinforce fracture resistance of bovine teeth.

Bovine teeth were used and prepared to simulate
immature teeth. Use of human teeth for the same
purpose would have would have allowed for testing
the hypothesis in a more clinically relevant substrate.
However, difficulty to obtain sufficient quantity and
with adequate quality, as well as ethical issues led to
use of bovine teeth. All teeth used were extracted
from animals of approximately same age shortly after
slaughtering and stored under the same conditions
until preparation. Thus, minimizing variations in
morphology and composition. Previous studies com-
paring human and bovine teeth showed similar dentin
tensile strength and modulus of elasticity [21], frac-
ture strength of composites [22], as well as dentin
Knoop hardness [23], properties relevant to the cur-
rent experimental model. Although human teeth are

Table 2. Dimensions (mean ± SEM) of the bovine teeth used in the study.
Group (n ¼ number of teeth) Crown/Root ratio Intra-canal Diameter at CEJ (mm) Dentine Thickness at CEJ (mm) Cervical Plug Length (mm)

1: MTA (n¼ 11) 0.569 ± 0.021 2.030 ± 0.133 1.843 ± 0.046 3.900 ± 0.193
2: Biodentine (n¼ 10) 0.557 ± 0.022 2.269 ± 0.174 1.881 ± 0.053 4.015 ± 0.228
3:TotalFill (n¼ 10) 0.578 ± 0.018 2.155 ± 0.075 1.888 ± 0.067 3.481 ± 0.125
4: Guttapercha (n¼ 10) 0.556 ± 0.015 2.171 ± 0.176 1.816 ± 0.059 N/A
5: Intact teeth (n¼ 10) 0.591 ± 0.008 1.780 ± 0.13 2.704 ± 0.098�,�� N/A
�p< .01 compared to group 1, 2 and 3.��p< .001 compared to group 4; Kruskal-Wallis test with Dunn’s multiple comparison.

Figure 2. The simulated immature teeth (groups 1–4, n¼ 41) had a statistically significant larger canal diameter (2,153± 0,07mm)
and lower dentin thickness measured at the CEJ (1,857 ± 0,027mm) compared to the intact teeth (1,780 ± 0,13mm and
2,704± 0,098mm, respectively) (group 5, n¼ 10); Results are presented as mean± SEM, Mann-Whitney test,�p< 0.05; ���p< 0.001.
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generally preferred for in vitro dental research, bovine
teeth were a valid substitute in this study.

We opted to simulate immature roots with a
certain root length (15mm) consistent with stage 3
development [1,24–26]. This length was chosen as
shorter roots, typical of earlier root development
stages, were easily dislodged from the acrylic mold
during loading. Furthermore, the crown was also
standardized (9mm) for all tested teeth and the
canals of the prepared ones were enlarged to a
canal diameter of approximately 2.2mm, signifi-
cantly larger than the canal of the intact teeth (ca
1.8mm). An earlier report with similar experimen-
tal set-up concluded that teeth with a canal diam-
eter of 1.5mm or less does not need canal wall
reinforcement after endodontic treatment [27] and
the intact teeth in the current study exhibited a

similar lumen diameter. The majority of teeth
treated with REPs are teeth in stages 2 through 5
[28] and thus, the current preparation was suitable
for the scope of this study.

In addition, the experimental set-up included
simulation of the PDL. An elastomeric impression
material was used as in previously evaluating ex vivo
tooth fracture resistance models [5,29]. The modulus
of elasticity of human PDL ranges from
0.12–0.96MPa [30], which is comparable to various
elastomeric impression materials [31] as the thin layer
of polyvinylsiloxane used in the current study. Soares
et al showed that PDL simulation had a significant
effect on fracture resistance in a similar ex vivo
laboratory model [29]. The presence of PDL is
important when teeth are subjected to trauma. It
plays a major role in the stress distribution of forces

Figure 3. Typical fracture pattern of the immature teeth under the fracture test. (a) and (b): Biodentine group; (c) and (d): Gutta-
percha group; (e) and (f): Intact teeth group. The diagonal fracture line extends from the buccal aspect through the canal to the
lingual aspect of the tooth. The treated immature teeth fractured at the interface between the material plug/or gutta-percha and
composite filling (a-d). The fracture line of the intact teeth is mainly located within the crown (e-f). Lingual aspects: (a), (c) and
(e); Lateral aspects: (b), (d) and (f). (�1 Magnification).
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applied to teeth [32]. For all of the above, the present
model is suitable for testing the hypothesis.

Previous studies investigating the intraradicular
reinforcement of structurally compromised roots
showed that the resistance to fracture was directly
related to the remaining tooth structure and to the
amount of dentin at the cervical area [33,34]. This
was confirmed by the current study as the intact teeth
with wide canal but higher dentin thickness at the
cervical area (control teeth), required double the force
in order to sustain fracture under the experimental
set up.

Simulated immature teeth treated with REP
showed no difference in fracture resistance compared
to teeth filled with gutta-percha in the current study.
Group 4 (GP) acted as negative controls and was
expected to exhibit lower resistance to fracture com-
pared to the intact teeth. In clinical situation, imma-
ture teeth filled with gutta-percha represent cases
treated with apexification technique. Apexification
with long-term calcium hydroxide treatment has been
banned as responsible for cervical fractures due to the

effect of calcium hydroxide on dentin structure [1,35].
Therefore, direct apexification techniques with the use
of an apical plug of bioceramic materials have been
advocated as the preferable method of treatment for
necrotic immature teeth. In the current study, the GP
group was not filled with an apical plug of TSCs in
order to facilitate the obturation of the wide canal.
The reason was purely financial, and it would not
have an effect on fracture resistance at the cervical
area. Moreover, we did not treat the GP group with
long-term calcium hydroxide dressing prior to root
canal obturation with gutta-percha. All teeth were
treated with the same REP protocol and all prepared
canals were subjected to the same chemical treatment
with irrigation and antibiotic dressing in order to
avoid possible structural changes of the dentin. There
is evidence that long-term and periodic changes of
the intracanal dressing may negatively affect fracture
resistance of teeth [19]. It is unlikely that the low
resistance to fracture exhibited by the negative con-
trols was due to structural changes of the dentin after
the chosen REP protocol since it was a short-term
treatment. Nevertheless, all treated and filled imma-
ture teeth in this study showed low resistance to frac-
ture regardless of filling material.

The sample size used in this study was sufficient to
demonstrate differences between intact and treated
teeth. Lack of reinforcement in fracture resistance of
simulated immature teeth when bioceramic materials
were applied at the cervical area was the main finding
of this study. There were small, non-significant differ-
ences in fracture resistance between the tested TSCs.
However, increased number of teeth would be needed
in each group in order to detect possible differences
between the tested TSCs as indicated by the current
results. It would have been interesting to further
investigate if the choice and the thickness of biocer-
amic material at the cervical area plays a role in frac-
ture resistance at this vulnerable area.

There are several studies trying to address a similar
question with conflicting results but the difference
from the current study was that the entire immature
canal was filled with TSCs [20,36–39]. Within the
limitations of in vitro studies, canal filling with MTA,
or other bioceramic materials e.g. calcium phosphate
bone cement, or BioAggregate have been reported to
reinforce fracture resistance in some studies
[20,36,39,40] whereas in others, the materials used did
not [17,37,38]. Most of the studies have used MTA as
the golden standard. However, the discoloration
caused by MTA even when placed below the CEJ [41]
have led to the use of other TSC during REP such as

Figure 4. Intact teeth showed a significantly higher peak load
to fracture in comparison to the other four groups
(1669± 60.77 N). Simulated immature teeth filled with gutta-
percha showed the lowest peak load to fracture (GP:
675.8 ± 86.84 N). Simulated immature teeth filled with TotalFill
showed a higher peak load to fracture (804.5 ± 147.8 N)
compared to the other TSCs (MTA: 724.2 ± 128.2 N and
Biodentine: 779.4 ± 104.7 N). However, there was no statistic-
ally significant difference between the simulated immature
teeth regardless of the material. Results are presented as
mean± SEM, Kruskal-Wallis test with Dunn’s multiple compari-
son, �p< 0.05; ��p< 0.01.
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Biodentine or TotalFill. To the best of our knowledge,
this is the first study applying these three commonly
used TSC at the cervical area only according to advo-
cated REPs and evaluating their effect in fracture
resistance ex vivo.

The use of composite resin systems has been rec-
ommended for the reinforcement of the cervical area
of treated immature teeth [16,42,43] and placement of
composite restoration is often the final step in the
treatment of traumatized immature teeth. The lack of
difference in fracture resistance shown under the
current experimental set-up between the treated
immature teeth (groups 1–4) may also attributed to
the composite restoration.

Conclusions

Within the limitations of this study, we can conclude
that TSC such as MTA, TotalFill and Biodentine do
not influence either negatively or positively, the frac-
ture resistance of immature teeth during regenerative
endodontic therapy. Further material tests and clinical
trials are necessary to validate these results.
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Tricalcium silicate cements:
osteogenic and angiogenic responses
of human bone marrow stem cells

Ali MRW, Mustafa M, B�ardsen A, Bletsa A. Tricalcium silicate cements: osteogenic
and angiogenic responses of human bone marrow stem cells.
Eur J Oral Sci 2019; 127: 261–268. © 2019 Eur J Oral Sci

Tricalcium silicate cements (TSCs) are used in endodontic procedures to promote
wound healing and hard tissue formation. The aim of this study was to evaluate
and compare the effect of commonly used TSCs [mineral trioxide aggregate
(MTA), Biodentine, and TotalFill] on cellular metabolism and osteogenic/angio-
genic differentiation of human bone marrow mesenchymal stem cells (hBMSCs)
in vitro. We tested the null hypothesis of no difference between MTA, Biodentine,
and TotalFill in stem cell responses. Cells were subjected to eluates of the tested
materials for up to 14 d. Cell viability was evaluated using the 3-(4,5-dimethyl-
thiazoyl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Real-time PCR was used
to determine the levels of expression of the osteogenic factors alkaline phosphatase
(ALP), osteoprotegerin (OPG), osteocalcin (OC), and collagen 1A (COL1A1), and
the angiogenic factors vascular endothelial growth factor A (VEGFA) and fibrob-
last growth factor 1 (FGF1). ELISAs were used to measure the levels of VEGFA
and ALP in culture supernatants. Mineralization in vitro of hBMSCs was assessed
using Alizarin Red staining. The hBMSCs tolerated exposure to TSCs well, with
Biodentine showing the most favorable effect on cell viability. Expression of ALP,
COL1A1, OPG, and VEGFA were differentially affected by the materials, with Bio-
dentine and TotalFill inducing earlier changes at gene level. Increased mineraliza-
tion was observed with time, after exposure to all TSCs tested, with MTA
showing the greatest effect. The results revealed different responses of hBMSCs to
TSCs in vitro.
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Tricalcium silicate cements (TSCs) are used in modern
endodontics for different procedures, such as pulp cap-
ping and pulpotomy (vital pulp therapy), perforation
repairs, root-end fillings during apicoectomies, apexifi-
cation, and regenerative endodontic procedures (1–4).
During these procedures, the materials come into direct
contact with vital pulp, periradicular tissues, and stem
cells. It is therefore important that these dental materi-
als are biocompatible, preferably promote wound heal-
ing and hard tissue formation, and are hydrophilic (as
they are applied and function in a wet environment)
(5). They should also demonstrate dimensional stability,
and are known to have antibacterial effects because of
their high pH (6, 7).

Mineral trioxide aggregate (MTA), the first bioactive
TSC on the market, has a stimulatory effect on the cells
and induces osteogenic and angiogenic regeneration (8–
12). Biodentine, a relatively new tricalcium silicate-
based material, is used clinically and applied similarly
to MTA (13). Like MTA, Biodentine may modify the
proliferation of pulp cell lines (1). When MTA and
Biodentine were compared in a recent in vitro study,
neither material showed a cytotoxic effect on human

bone marrow mesenchymal stem cells (hBMSCs) after
14 d of exposure but ProRoot MTA exhibited greater
osteoinductivity than Biodentine regarding expression
of alkaline phosphatase (ALP) mRNA and ALP pro-
tein (11).

TotalFill or EndoSequence Root Repair Material
(ERRM) is a recently introduced bioceramic material
made of calcium silicates, monobasic calcium phosphate,
zirconium oxide, tantalum oxide, proprietary fillers, and
thickening agents (14). As it is presented as a ready-to-
use paste in a tube, the material is easy to handle and the
formulation of the product is consistent between batches.
Some studies have shown EndoSequence to have a
higher mitogenic effect on periodontal ligament stem
cells than MTA, but no differences between these materi-
als on hBMSCs have been found (15) and neither showed
any cytotoxic effects on human gingival fibroblasts (16).

Currently, the different TSC brands are used inter-
changeably in dental clinics for the same applications,
without any distinctions or specific recommendations.
The choice of material depends mainly on personal
preference in clinical situations. However, a direct com-
parison of the effects of the TSCs currently available,
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in terms of their ability to elucidate different biological
responses, might help to develop specific guidelines for
the use of these different materials. Cell-culture tech-
niques are useful for evaluating the biocompatibility of
different materials (17). Indeed, in vitro assays with cell
cultures are commonly used to investigate cell behavior
and biological responses in specific situations. The
results of these in vitro assays are relevant to clinical
conditions and provide an appropriate model for
screening the properties of different dental materials
(18) prior to in vivo studies.

Thus, the aim of the present study was to assess and
compare the effects of three TCA materials, namely white
MTA-Angelus, Biodentine, and TotalFill BC RRM
PUTTY, on stem cell metabolism and osteogenic/angio-
genic differentiation in vitro. We tested the null hypothe-
sis that there was no difference between these three
commonly used TCA materials in stem cell responses.

Material and methods

Preparation of extracts

The following tricalcium silicate-based cement materials
were used to prepare the extracts:

(i) White MTA-Angelus (Angelus, Londrina, PR, Brazil)
(MTA): Powder comprised of Tricalcium silicate,
dicalcium silicate, tricalcium aluminate, calcium
oxide, iron tetracalcium aluminate, bismuth oxide;
liquid: distilled water.

(ii) Biodentine (Septodont, Saint-Maurdes Fosses, France,
Lot: 48032): Powder comprised of tricalcium and
dicalcium silicate, calcium carbonate and zirconium
oxide; liquid: water, calcium chloride and modified
polycarboxylate.

(iii) TotalFill BC RRM PUTTY (FKG Dentaire, La-
Chaux-de-Fonds, Switzerland) (TotalFill): ready-made
paste composed of calcium silicates, zirconium oxide,
tantalum pentoxide, calcium phosphate monobasic,
and filler agents.

The MTA and Biodentine materials were mixed and pre-
pared according to the manufacturer’s instructions under
sterile conditions. Four plugs of MTA, Biodentine, and
TotalFill were made using an amalgam carrier and placed in
preweighed Eppendorf tubes. The diameter and thickness of
the plugs were standardized by using the same amalgam car-
rier for all materials. The weight of the plugs was determined
using a Bergman AG204 DeltaRange weight scale (Mettler-
Toledo, Greifensee, Switzerland) and the Eppendorf tubes
were then placed in an incubator (37°C, 6% CO2, and 100%
humidity) Heracell (ThermoScientific, Waltham, MA, USA)
for 24 h to allow for complete setting of the materials.

Thereafter, the eluates were prepared under aseptic con-
ditions according to ISO Standards 10993-5 (19). One milli-
liter of serum-free Mesencult MSC Basal Medium (Human)
(StemCell Technologies, Vancouver, BC, Canada) with 1%
penicillin (HyClone, GE Healthcare, Logan, UT, USA) was
added to each Eppendorf tube as extraction vehicle and
then stored in the incubator (37°C, 6% CO2, and 100%
humidity) Heracell (ThermoScientific) for 24 h. The col-
lected medium (eluate) was filtered through sterile Acrodisc
syringe filters (pore size 0.2 lm diameter; Pall Life Sciences,
New York, NY, USA) and stored at �80°C until required

(20). The stock extract was serially diluted (1:2, 1:4, 1:8, and
1:16) with osteogenic medium (Mesencult MSC Basal Med-
ium; StemCell Technologies), with 10% Mesencult MSC
Stimulatory Supplement (StemCell Technologies) and 1%
penicillin (HyClone) (complete medium) with 5 ll of dex-
amethasone (Sigma-Aldrich, St Louis, MO, USA), 250 ll
of L-ascorbic acid 2-phosphate (Sigma-Aldrich) and 175 ll
of beta-glycerophosphate (Sigma-Aldrich) added per 50 ml
of complete medium before use at the experiments.

Cell culture and reagents

Commercially available primary hBMSCs (StemCell Tech-
nologies) were cultured in complete medium consisting of
Mesencult MSC Basal Medium (StemCell Technologies)
plus 10% Mesencult MSC Stimulatory Supplement (Stem-
Cell Technologies) and 1% penicillin (HyClone), and
expanded in an incubator at 37°C, 6% CO2, and 100%
humidity. After reaching 70%–80% confluence, the cells
were trypsinized and counted using a trypan blue assay in
an automated cell counting machine (Countess; Invitrogen,
Carlsbad, CA, USA) to check cell numbers and cell viabil-
ity. Cells at passages 2–8 were used in the experiments.

After seeding in the appropriate wells for each experi-
ment, cells were left for 1 d to allow complete cellular
attachment. They were then exposed to the different TSC
extracts for various periods of time (6 h, and 1, 3, 7, and
14 d). Untreated hBMSCs served as controls.

Cell morphology was assessed, for all groups at the time
points tested and under all experimental conditions, using
light microscopy (Nikon Eclipse E80i; Nikon Instruments,
Tokyo, Japan).

MTT assay

The hBMSCs were seeded onto 96-well plates, at a density
of 0.1 9 105 cells per well, and exposed to different con-
centrations of TSC extracts (1:2, 1:4, 1:8, 1:16) for differ-
ent experimental time periods (1, 3, and 7 d), as described
above. Cell viability was tested using the 3-(4,5-dimethyl-
thiazoyl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay
(Sigma-Aldrich), according to the manufacturer’s instruc-
tions. Absorbance was recorded and quantified at a wave-
length of 570 nm using the FLUOstar OPTIMA (BMG
LABTECH, Leicester, UK) microplate reader.

The MTT assay was performed in three independent
experiments, with quintuplicate samples used in each.

RNA extraction and quantitative real-time PCR

The hBMSCs were seeded in six-well culture plates at a den-
sity of 0.3 9 106 cells per well. They were then exposed to
the different TSC extracts (1:4 dilution of eluate) for 6 h,
and 1, 3, and 7 d, as described above. At the end of the
experimental period, the cell culture supernatant was
removed and stored at �80°C for later assessment of pro-
tein expression. The cells were washed with PBS and the
plate was then stored at �80°C until required for RNA
analysis. Total RNA was isolated using a Maxwell 16 Cell
LEV Total RNA purification Kit (Promega, Madison, WI,
USA) according to the protocol provided, in conjunction
with the Maxwell 16 Instrument (Promega). Total RNA
was quantified using a Nanodrop Spectrophotometer
(Thermo Scientific NanoDrop Technologies, Wilmington,
DE, USA).
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Fifty micrograms of total RNA was reverse transcribed
to cDNA using the High-Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Foster City, CA, USA).
Quantitative RT-PCR (qRT-PCR) was performed to quan-
tify the relative changes in gene expression using the ABI
StepOnePlus Real-Time PCR System (Applied Biosystems).
Amplification was performed in triplicate for every marker,
in a 10-ll reaction volume [5 ll of TaqMan PCR Master
Mix (Applied Biosystems), 3.5 ll of nuclease-free water,
and 0.5 ll of the designated probe]. The TaqMan probes
used in the PCR reaction were as follows: alkaline phos-
phatase (ALP: Hs01029144_m1), collagen 1alpha (COL1
A1: Hs00164099_m1), osteoprotegerin (OPG: Hs0090035
8_m1), osteocalcin (OC: Hs01587814_g1), vascular endothe-
lial growth factor A (VEGFA: Hs00900055_m1), and
fibroblast growth factor 1 (FGF1: Hs01092738_m1). Glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH: Hs999999
05_m1) served as the endogenous control gene. Relative
gene expression was quantified using the comparative
2�DDCT method. The value of the target gene was calculated
in relation to control samples, hence setting the control to
1.0. The endogenous control gene, GAPDH, was stable
throughout the experiments.

The results are from two independent experiments car-
ried out in triplicate.

ELISA

The levels of VEGFA in the culture supernatants (after
exposure for 1, 3, and 7 d to a 1:4 dilution of the different
TCA eluates) were determined using commercially avail-
able ELISA kits (R&D Systems, Minneapolis, MN, USA),
according to the manufacturer’s recommendations. The
results presented are from two independent experiments
performed in triplicate.

ALP quantification

Extracellular ALP was measured in culture supernatant,
collected after exposure for 1, 3, and 7 d to a 1:4 dilution
of the different TSC eluates, using a colorimetric ALP
assay kit (Sigma-Aldrich), according to the manufacturer’s
instructions. Absorbance was recorded and quantified at a
wavelength of 405 nm using the FLUOstar OPTIMA
microplate reader, expressing ALP activity as absorbance.
Results presented are from two independent experiments
performed in triplicate.

Alizarin Red staining

Detection of calcium deposits (mineralization) in vitro of
hBMSCs exposed to the different TSC eluates was per-
formed with Alizarin Red staining. Briefly, hBMSCs were
seeded in 24-well culture plates at an initial seeding density
of 0.3 9 104 cells per well and stimulated with a 1:4 dilution
of the different TSC eluates for 1, 3, 7, and 14 d. At the end
of the experimental period, the cells were washed with PBS
and fixed for 45 min using 10% neutral buffered formalin.
They were then incubated with Alizarin Red S staining solu-
tion (Carl Roth, Karlsruhe, Germany), pH 4.1, at room
temperature in the dark for 45 min. Visualization of the cel-
lular monolayer was performed under 109 magnification
using bright-field microscopy (Nikon Eclipse E80i).

The results were obtained from two experiments per-
formed in triplicate.

Statistical analysis

For statistical analysis, GraphPad Prism 5 (GRAPHPAD

Software Inc., La Jolla, CA, USA) was used. Data were
analyzed using a two-way ANOVA followed by Bonfer-
roni post-hoc testing to explore differences in cell
responses to the TSC materials in individual experiments.
All tests were performed at a level of significance a = 0.05.
Results are presented as mean � standard error of the
mean.

Results

Cell viability

Cell morphology was not affected under the experimen-
tal conditions. Exposure for 1 day to the TSC eluates
did not reduce viability of hBMSCs, regardless of the
TSC material and/or concentration tested. Differences
between the TSC materials, regarding their effect on
hBMSC viability, were seen after 3 d of incubation;
simple main-effect analysis showed that only TotalFill
reduced cell viability at the highest concentration at 3 d
(P < 0.001). Moreover, after 7 d of incubation with
TSC materials, a statistically significant (P = 0.0036)
concentration–effect interaction was observed for each
TSC: MTA showed the strongest inhibitory effect,
followed by TotalFill and then by Biodentine, and
inhibition occurred in a dose-dependent manner
(Fig. 1).

Based on these results, a 1:4 dilution of TSC material
was selected for the rest of the experiments.

Osteogenic and angiogenic differentiation

Cells were stimulated with TSCs diluted 1:4. This con-
centration was chosen based on the MTT results, in
which lower concentrations showed no effect on
cell viability and higher concentrations reduced cell via-
bility.

A two-way ANOVA was conducted to examine the
effect of TSC and duration of exposure on gene expres-
sion levels. For all genes investigated, there was a sta-
tistically significant interaction between the effects of
TSC and duration of exposure on relative fold mRNA
expression (P < 0.05) showing that, over time, exposure
of hBMSCs to TSC changed the expression of osteo-
genic and angiogenic genes. However, simple main-
effects analysis showed that exposure to TSC altered
expression of ALP, COL1A1, OPG, and VEGFA com-
pared with expression of these genes in the control cells
(P < 0.05). In addition, duration of exposure to TSC
had an effect on the expression levels of all genes inves-
tigated compared with expression of these genes in the
control cells (P < 0.05).

The responses of hBMSCs were not uniform for all the
TSC materials tested. Relative gene-expression levels
after exposure to each TSC, at each experimental time
point, are illustrated in Fig. 2. After exposure to Bioden-
tine for 6 hr, ALP was upregulated (P < 0.001), whereas
after 3 d of exposure to TotalFill, ALP was
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downregulated (P < 0.05). TotalFill and Biodentine
stimulated upregulation of OPG at 1 and 3 d, respec-
tively (P < 0.05 for TotalFill and P < 0.01 for Bioden-
tine) but MTA had no effect on this gene. TotalFill
upregulated VEGFA at 1 and 3 d (P < 0.001 for both
time points), whereas MTA had the same effect at 1 d
only (P < 0.001). Upregulation of COL1A1 was seen
only after exposure to MTA for 7 d (P < 0.05; Fig. 2).
These results show that hBMSCs exhibit differential

responses at gene level when exposed to the bioceramic
materials tested in this study.

ELISA

ELISA results showed that production of VEGFA was
significantly enhanced over time (effect of exposure
time: F(2,58) = 10.22, P = 0.0002). However, this effect
was not attributed to exposure to TSC. Nevertheless,

Fig. 1. Effect of tricalcium silicate cements (TSCs) [mineral trioxide aggregate (MTA), Biodentine, and TotalFill] on cell viability,
measured using the 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Human bone marrow mesenchymal
stem cells (hBMSCs) were cultured with different concentrations of TSC eluates (or with no eluate; control) for 1, 3, and 7 d. The
data presented are from three independent experiments performed in quintuplicate. The results are expressed as mean � standard
error of the mean of the optical density (OD) measured at 570 nm and analyzed using two-way ANOVA with Bonferroni’s post-
hoc test. Statistically significant differences are described in the main text.

Fig. 2. Effect of tricalcium silicate cements (TSCs), applied for 6 h, and 1, 3, and 7 d, on relative fold mRNA expression of osteo-
genic and angiogenic markers by human bone marrow mesenchymal stem cells (hBMSCs). Cells were exposed to a 1:4 dilution of
the tested TSCs [mineral trioxide aggregate (MTA), Biodentine, and TotalFill]. Expression of the osteogenic markers alkaline
phosphatase (ALP), collagen 1A (COL1A1), osteocalcin (OC), and osteoprotegerin (OPG), and of the angiogenic markers vascu-
lar endothelial growth factor A (VEGFA), and fibroblast growth factor 1 (FGF1), relative to the endogenous control gene, glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH), were measured using real-time RT-PCR. The data presented here are from two
independent experiments performed in triplicate. The results are shown as mean � standard error of the mean of expression fold
change compared with the control cells (untreated hBMSCs) (y-axis), analyzed using two-way ANOVA with Bonferroni’s post-
hoc test. Significant differences are described in the main text.
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Biodentine led to enhanced production of VEGFA
compared with the control (P < 0.01) and TotalFill
(P < 0.01) at the 7-d experimental time point (Fig. 3A).

ALP quantification

There was no statistically significant interaction
between the effects of TSC and duration of exposure
on ALP activity, as shown with two-way ANOVA.
Simple main-effect analysis showed that ALP activity
of hBMSCs was reduced over time (P < 0.0001).
Moreover, exposure to TSC materials induced a
decrease in ALP activity compared with the control at
all experimental time points (P < 0.0001). However,
there were no differences between the TSC materials

tested regarding their inhibitory effect on ALP pro-
duction (Fig. 3B).

Alizarin Red staining

Cells stained with Alizarin Red and visualized under
109 magnification showed mineralization and forma-
tion of calcium nodules in all groups, including the
control, after longer periods of incubation. Only very
low levels of calcification were seen in all groups at 1
and 3 d. At 7 d, minimal calcium deposition and stain-
ing were seen in all groups, including the control
groups. Although no quantification was made, slightly
more mineralization and staining were evident for the
MTA group (Fig. 4). Pronounced calcium deposition

Fig. 3. Effect of tricalcium silicate cements (TSCs), applied for 1, 3, and 7 d, on the production of vascular endothelial growth
factor A (VEGFA) (A) and alkaline phosphatase (ALP) (B) by human bone marrow mesenchymal stem cells (hBMSCs). Cells
were exposed to a 1:4 dilution of the tested TSCs [mineral trioxide aggregate (MTA), Biodentine, and TotalFill]. hBMSCs not
exposed to TSCs served as the control. Data presented are from two independent experiments performed in triplicate. The results
are expressed as VEGFA concentration (in pg ml�1) measured in the cell-culture supernatant using ELISA (A) and absorbance of
cell culture supernatant quantified at 405 nm (B). Data were analyzed using two-way ANOVA with Bonferroni’s post-hoc test
(mean � standard error of the mean). Statistically significant differences are described in the main text.

Fig. 4. Light micrographs of human bone marrow mesenchymal stem cells (hBMSCs) exposed to tricalcium silicate cements
(TSCs) [mineral trioxide aggregate (MTA), Biodentine, and TotalFill] for 1, 3, 7, and 14 d and then stained with Alizarin Red.
Cells were exposed to a 1:4 dilution of the tested TSC. Pronounced calcium deposition and mineralization were seen in all groups
at 14 d. However, the mineralized nodules in the MTA-stimulated cells were stained more strongly compared with those in the
other groups, especially after 7 d. Scale bars = 500 lm.
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and mineralization in all groups stimulated with TSC
materials, as well as in control groups, were apparent
at 14 d of stimulation. Again, the nodules in the MTA-
stimulated cells stained more strongly compared with
nodules in the other groups (Fig. 4).

Discussion

The present study compared the effects of three TSC
materials, namely MTA, Biodentine, and TotalFill, on
stem cell viability and osteogenic/angiogenic differentia-
tion in vitro. We found that the hBMSCs exhibited
diverse responses to the tested TSC materials under most
of the experimental set-ups and, based on the results of
the study, we reject the null hypothesis. However, a con-
clusion as to which of the three tested TSCs was overall
superior could not be drawn as the results varied for the
different assays.

Most differences between the three TSC materials on
hBMSC responses were seen at gene level. As shown,
Biodentine enhanced expression of ALP very early after
exposure of the cells, whereas the other materials did
not. On the contrary, TotalFill downregulated ALP at
3 d. The osteogenic gene, OPG, was upregulated after
exposure to Biodentine and TotalFill at 1 and 3 d,
whereas MTA did not have any effect on OPG but
upregulated expression of COL1A1 at 7 d. The angio-
genic marker, VEGFA, was upregulated by MTA and
TotalFill at 1 d of exposure, with this effect lasting
longer for TotalFill. Some results obtained in this study
were in agreement with those presented in previous
reports (11, 21) and some were novel as not many
reports compare these three TSCs. The osteogenic mark-
ers investigated are all implicated in osteogenic differen-
tiation, dentine and mineral formation, regulation of
osteoblastic differentiation, and osteogenesis (22–25).
The angiogenic markers chosen are vital for enhance-
ment of endothelial cell proliferation, migration, and dif-
ferentiation (21, 26). Expression of these molecules is
crucial in the healing process of the periodontium after
endodontic procedures requiring use of TSC, such as
perforation repairs and apicoectomies. It seems that Bio-
dentine and TotalFill induce a larger number of changes
at transcriptional level early after exposure, implying a
stronger effect of these TSCs on hBMSCs compared with
MTA. Of the genes investigated, ALP, OPG, and
VEGFA reached comparable levels of expression after
7 d of incubation with TSCs. Whether the early differ-
ences in gene expression, induced by Biodentine and
TotalFill, have clinical significance in the healing process
is worth investigating further.

Cell morphology of the stem cells was not affected
by exposure to TSCs and none of the three TSC mate-
rials enhanced cellular viability. Biodentine was the
most favorable TSC material in terms of cell viability:
only the highest concentration of Biodentine, after the
longest incubation period, induced a significant
decrease in cell metabolism and this decrease was not
as large as induced by MTA and TotalFill. Moreover,
MTA and TotalFill exhibited their inhibitory effects

earlier, indicating either that these materials are more
potent than Biodentine or that they have a higher dis-
solution rate after setting. It should be noted that in
the current study the amount of TSC material used to
obtain the material eluates was standardized by volume
and not by mass. Nevertheless, a dose-dependent
response was seen because more concentrated eluates
had a higher inhibitory effect on cellular viability for
both MTA and TotalFill. Similarly to the present find-
ings, previous reports showed that high concentrations
of TSCs (i.e. concentrations of >2 mg ml�1) or undi-
luted material eluates, may decrease cell viability (27,
28). Furthermore, differences between the materials
with respect to the time frame of their effect on cell
proliferation have been reported previously (28).
Endosequence (e.g. the same material as TotalFill) has
been shown to exhibit a greater inhibitory effect on the
proliferation of human dermal fibroblasts than MTA
at 48 h but this effect was reversed after 8 d of expo-
sure, suggesting that, over time, Endosequence may
have a favorable effect (29). Moreover, TotalFill/
Endosequence has a longer setting time than MTA
and Biodentine, which may explain the differences in
its early and late effects. A recent study showed that
the highest hBMSC viability was observed after 7 d of
exposure to ERRM, followed by MTA and, lastly,
Biodentine (30). In the same study, enhanced prolifera-
tion of hBMSCs was seen after exposure to Biodentine
for 3 d (30). In contrast to our findings, ZHOU et al.
(28) reported no differences between MTA and Bioden-
tine in their effect on cell viability of human gingival
fibroblasts.

Although Biodentine was the most inert material
tested, even at early time points there are reports of its
initial high cytotoxicity because of the presence of cal-
cium chloride in the liquid and/or the cement’s higher
initial pH (�12) compared with other cements during
the setting period (31–33). In the current study, the elu-
ate was prepared after complete setting of the materi-
als, thus explaining the favorable results of Biodentine.
Many studies have investigated the cytotoxicity of
MTA. Bismuth oxide, the radiopacifying agent in
MTA, has been implicated in the cytotoxicity exhibited
by the material,, being shown to decrease or inhibit cel-
lular proliferation of the Saos-2 osteosarcoma cell line
(34). On the other hand, replacing bismuth oxide with
niobium oxide in MTA promoted higher cell viability
in the Saos-2 osteoblastic cell line (ATCC HTB-85)
(35). The MTA used in this study contained bismuth
oxide, which might have contributed to its inhibitory
effect on the viability of hBMSCs. This response was
only observed at the longest study time point (7 d),
and is in agreement with previous results (34). As heal-
ing of the periodontium is a long process, it would
have been of interest to study cell viability for even
longer periods of time.

Analyses of ALP protein consistently showed a signifi-
cant decrease in production of ALP after exposure to
TSCs, but the response did not differ between the three
materials. Surprisingly, increased production of VEGFA
was seen over time but this was not attributed to the
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materials. Both mRNA expression and protein produc-
tion followed a similar pattern.

All tested TSC materials induced mineralization at
later time points, as seen with Alizarin Red staining.
These findings are consistent with previous results from
a similar study in hBMSCs in which, after 14 d of cul-
ture in differentiation medium, both MTA and Bioden-
tine, as well as control groups, exhibited significant
mineralization (11). The current report is the first to
show that TotalFill induced the same effect. However,
it seems that calcium deposits appeared earlier, and
were more pronounced, with MTA than with either
Biodentine or TotalFill, again underlying a difference
in the response of hBMSCs to the different TSC mate-
rials. The earlier mineralization observed with MTA
may be attributed to a higher pH and further activation
of ALP, which in turn leads to release of a higher con-
centration of Ca2+ ions (36). This high pH, however,
can have a cytotoxic effect on cells, which may also
explain the less favourable effect of MTA on hBMSC
viability in our MTT assay.

The composition of TSCs has a clear effect on their
physical, chemical, and biological properties (37, 38).
The calcium silicate composition of the bioceramic
materials tested in the present study may, in fact, be
responsible for constant release of calcium ions. When
MTA and Biodentine come into contact with water,
calcium hydroxide is created, which in turn leads to the
release of calcium ions. This has been shown for MTA
and Biodentine (38) but also applies for TotalFill and
other materials of similar composition. The silica com-
ponent of TSCs may also have an effect on the osteo-
genic potential of the materials (39). Silica inhibits
bone resorption and osteoclast formation, suggesting
that it is an essential component in the mechanism of
action of TSCs.

This study utilized a relatively short experimental
period, and it is possible that a longer time period of
incubation with the tested materials might identify
further effects on cell viability/metabolism rate, and
gene and protein expression, and consequently alter
the outcome of the study. It is also important to rec-
ognize that substances leaching out from the materials
may diffuse into the medium at differing rates, yield-
ing different concentrations of components with poten-
tially different effects. The findings in this study, while
demonstrating differences between the TSCs in their
overall effects on hBMSCs, are inconclusive in terms
of establishing a true superior material for clinical rec-
ommendation. Therefore, in vivo studies would be the
next step in providing a better and more accurate
understanding of these materials and their ultimate
effect on cellular responses. We believe that the clini-
cal relevance of these findings should be further inves-
tigated.
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