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Abstract  
Coronavirus disease 2019 (COVID-19), caused by the zoologic virus severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), is among the most impactful pandemics in modern 

history. Infection impact has variating tendency within patients that experience mild disease 

compared to severely affected patients, such as respiratory failure and death. Currently, 

treatment strategies aim to alleviating the symptoms, but a healing cure except vaccination 

is not resolved yet, due to lack of knowledge about the virus and how it affects the immune 

system. Duration of immunological memory after experiencing COVID-19 is unclear and 

unknown, along with limited knowledge about the disease grade influence on the immune 

system recovery.  

Firstly, this thesis aimed to study the peripheral blood immune system in SARS-Cov-2 infected 

patients 6 months post-infection.  Using a mass cytometric approach, fixed whole blood in 

SARS-Cov-2 infected patients and healthy controls were analyzed. We compared immune 

cell frequencies among moderate and severe disease patients compared to healthy controls. 

A SARS-CoV-2 specific heterogeneity was observed which indicated recovery based on 

other factors, such as genetics and medical history.  

Secondly, we aimed to identify cell-affecting concentrations of randomly selected 

phytochemicals (Ellagic acid, rumic acid, Dinatin 7-glucuoronide, and plantainoside D) that 

can potentially be used in COVID-19 treatment. MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-

diphenyltetrazolium bromide) assay was exploited to find concentrations that affected the 

cell proliferation on human embryonic kidney cells (HEK293), human embryonic kidney 

cells variant that express a temperature- sensitive allele of SV40 T antigen (HEK-293t) 

and colorectal adenocarcinoma cells 2 (CACO-2).    

 

 

 

 

 

 

 



Side 4 av 74 
 

Abbreviations  
ACE2 Angiotensin-converting enzyme II 
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1. Introduction  

1.1. The immune system  

The immune system has advanced mechanisms and many different important components that 

together protect an individual against harmful pathogens, such as viruses, bacteria, fungi, and 

parasites. The immune system is divided into two interconnecting branches, the innate immune 

system and the adaptive system. Both systems work cooperatively together. The innate immune 

system is congenital and is developed before birth and is the first line of defense (1). 

Since the innate immune system is the first line of defense it is dominating in the first hours/days 

of fighting an antigen. In contrast, the adaptive system must be slowly developed and is not 

inherited (figure 1). This system has a great capacity to develop an immunological memory. 

Generally, the innate immune system is non-specific, while the adaptive immune system is 

more advanced and specific (1). 

  

 

Figure 1 Innate and adaptive immunity. The innate immune response occurs within hours after 

infection, while the adaptive immune responses appear later. Figure adapted from (1) and 

reprinted with permission from Elsevier. 

Innate and adaptive immunity activates different immune cells that can result in cytokine 

production. Cytokines are messenger molecules that regulate the immune system by 

suppressing or inducing the immune responses, and it has a major role in orchestrating the 
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balance between innate and adaptive immunity. These molecules bind to cell receptors and 

induce complex signalling cascade (1).  

Cytokines can have autocrine (effect on the secreting cell), paracrine (effect on other cells), 

juxtracrine (on adjacent cells, needs membrane anchored proteins), or endocrine (distanced 

target cells) effects (1). These pleiotropic proteins are divided into proinflammatory (e.g., type 

1 interferons/INF-1, tumor necrosis factor/TNF, interleukin/IL-1, IL-12) and anti-inflammatory 

cytokines (e.g., IL-4, IL-10, transforming growth factor β/TGFβ). However, a cytokine can 

have both activities dependent on the local microenvironment (1, 2).  

 

1.1.1 Innate immune system  

The innate immune system is congenital and has briefly three important functions: 

inflammation, antiviral response, and stimulation of the adaptive immune system. The innate 

immune response does not develop immunological memory in the same manner as the adaptive 

immune system. Responses provided by the innate immune system are essentially similar in 

every microbe encounter (1). 

As shown in figure 1 the main components of the innate immune system are epithelial barriers, 

monocytes, dendritic cells (DCs), neutrophils, macrophages, natural killer (NK) cells, and the 

complement system.  Innate immune cells recognize the pathogen-associated molecular 

patterns (PAMPSs) that have been evolutionarily conserved in microorganisms infecting 

humans. There are five main pattern recognition receptors (PRR) in the innate immune cells 

that recognize PAMPS: (Toll-like receptors (TLRs), nucleotide-binding oligomerization 

domains (NOD-)-like receptor, retinoic acid-inducible gene (RIG-I), DNA sensors, and C-type 

lectin (1).   

One way of activation of the innate immune system is through PAMPs are lipopolysaccharides 

binding to TLR on antigen presenting cells (APC) and other cells, like endothelial cells. This 

will lead to proinflammatory cytokines. PAMPs can also be digested and processed in the APCs 

and then bounded to major histocompatibility complex (MHC) and translocated on the surface 

of the APC (1). Dying or damaged cells can release endogenous molecules, called damage-

associated molecular patterns (DAMPs) that can also bind to PRR (1). 

A collection of cell membrane proteins, surface and intracellular, constitutes the complement 

system, which plays an important role in defeating inflammations and harmful microbes. 
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Activated complement proteins can affect microbes through opsonization, cell lysis, or with 

triggering immune cells to produce molecules that result in an inflammation (1). 

1.1.2 Adaptive immune system  

In contrast to the innate immune system, the adaptive immune system needs to be gained and 

built up through exposure to different kinds of infections and antigens. When activated the 

adaptive system provides a specific response against specific pathogens/antibodies based on 

immunological memory. B lymphocytes and T lymphocytes are the important components in 

the adaptive immune system. B and T cells have specialized antigen-specific receptors. 

Adaptive immune system is divided into two response types, humoral immunity (mediated of 

B lymphocyte produce antibodies) and cell-mediated immunity (T lymphocytes) (1). 

Upon recognition of a microbial antigen, naive lymphocytes proliferate and differentiate into 

effector or memory cells. Naive T lymphocytes have a unique receptor not responding to self-

antigen and have not been presented to its specific antigen by an APC. When a naive T-cell, 

CD4+ or CD8+ is presented to its antigen by an APC, activation of the T-cell will occur and 

start an immune response. Of the T-cell clonal expansion, some cells are programmed to be 

memory cells. Effector CD4+ T cells activate B cells, macrophages, and other cell types through 

the production of cytokines. Effector CD8+ T cells have the ability to kill infected host cells. B 

effector lymphocytes are antibody-secreting plasma cells located in the peripheral lymphoid 

organs, plasmablasts located in the blood, or long-lived plasma cells in the bone marrow (1). 

In contrast to effector cells, memory cells remain alive without the presence of antigen, resulting 

in a higher frequency of memory cells dependent on age. The peripheral blood of adults can 

contain 50% or more memory cells (figure 2) (1). 
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Figure 2 Age-dependent alteration of naive and memory cells. Figure adapted from (1) and 

reprinted with permission from Elsevier. 

CD4+ T helper cells are divided into subtypes based on their cytokine production. These subsets 

have distinct functions and defend against different types of microbial infections (1). Subtypes 

of T helper (Th) cells are Th1, Th2, Th9, Th17, and TFH. Th1 is essential in IL-2 and IFN-γ 

mediated activation of macrophage, effector cytotoxic cells, and NK cells. Th2 cells are 

essential for humoral response, and IL-4 and IL-6 mediate activation of eosinophils, basophils, 

and mast cells (3). 

B lymphocytes mediated the humoral immunity and produce antibodies. Antibodies, also 

known as immunoglobulins (Ig), can be membrane-bounded on B cells or secreted proteins. 

Different Ig isotypes (IgD, IgM, IgE, IgG, and IgA) have specific effector, physical, and 

biologic characteristics. Engagement of membrane-bounded antibodies starts B cell activation 

and triggers antibody secretion. Stimulation of antibodies triggers a range of effector 

mechanisms that eliminate the antigen/microbe (1). 

Although the immune system is broadly divided into two arms, the systems work together to 

provide an effective host response. APCs have major histocompatibility complex (MHC) 

presented on their surface that shows antigen fragments to cells in the adaptive immune system. 

MHC can be divided into two subclasses, MHC class I and MHC class II. MHC class I is present 

on every nucleated cell in our body, and MHC class II is only expressed on the DC, 

macrophages, and B lymphocytes (1).  

Even though the lymphocytes are mainly a part of the adaptive immunity, they have has some 

features that function in the innate immunity. These cells have the same morphological and 

functional characteristics similar to T cells, but the receptor diversity is limited. γδ T cells and 

NK-T cells are examples of lymphocytes with limited diversity. NK-T cells express T cell 

receptors with limited diversity along with NK-cell-specific surface molecules (1).  
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1.2. CORONAVIRUS 

1.2.1 A brief historical perspective of human coronaviruses 

The first coronavirus (CoV) was discovered in mid 1960s and has in the past years caused viral 

outbreaks all over the world. The name is adapted from their characteristic surface crown-like 

spikes. Normally CoVs circulate in animals, such as camels, cats, pangolin, snakes, and bats, 

and have the ability to be transmitted between animals and humans (4).  

In modern medical history, three types of CoVs have caused viral outbreaks. In 2002 the first 

CoV, severe acute respiratory syndrome CoV (SARS-CoV) discovered in Guangdong, in 

southern China caused a pandemic. During this SARS pandemic, 26 countries were affected in 

different continents. Overall, 8098 infected individuals were reported. In 2012 and 2015 Middle 

East Respiratory Syndrome CoV (MERS-Cov), which has until today caused 858 deaths since 

September 2012. Altogether 27 countries were affected. Lately, the SARS-Cov-2 in 2020 (late 

2019) and by 15th May 2021 SARS-CoV-2 had caused 3 352 109 deaths worldwide (5-7). 

For SARS-CoV-2 it is believed that the disease has transferred from a seafood market that sold 

live animals in Wuhan, China. Infection with SARS-CoV-2 gives the disease COVID-19 and 

is developed through transmission through the respiratory tract (8). 

 

1.2.2 SARS-CoV-2  

Several different zoonotic viruses cause acute respiratory tract infections in western and 

developing countries. Annually, there are an estimated one billion zoonotic positive cases every 

year, and up to millions of deaths yearly (9). 

Coronaviruses are identified as a zoonotic virus-containing single stranded RNA, that transmit 

infection between people and vertebrate animals and is found throughout this world. The three 

big coronaviruses that have caused fatal consequences have started twice in China and once in 

middle east (6, 7). SARS-CoV-2 in human and betacoronaviruses in bats are proven until date 

to be the most closely related, but the intermediate host leading to transmission in humans is 

still unknown (10, 11).  

To survive the mammal immune system, SARS viruses develops virulence factors that 

manipulate and suppress the immune system. SARS-CoV-2 has developed postponement and 

hindrance of IFN mediated production of neutralizing antibodies (12). In comparison to SARS-

CoV-1, SARS-CoV-2 has an evolutionary gain of FURIN cleavage site (FCS) on the S protein. 
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As for December 2020, it is believed that FCS is responsible for the tremendous infectivity and 

transmissibility. For influenza viruses, the FCS has been a significant part of developing high 

virulence. To what extent it does the same for SARS-CoV-2 is not known yet (13).  

SARS-CoV-2 has four characteristic proteins, spike (S), membrane (M), nucleocapsid (N), and 

envelope (E) proteins as shown in figure 3. S protein binds to the angiotensin-converting 

enzyme II (ACE2) on epithelial cells located in the lungs (14). 

 

Figure 3 Overview of the SARS-CoV-2 structure. The figure shows the SARS-CoV-2 structure 

and the significant proteins that it contains. Figure adapted from BioRender.  

Infection caused by this virus can be spread with contact/droplet, airborne, and fomite 

transmission, along with other methods of transmission. Contact and droplet transmission is 

spread with respiratory droplets through coughs, sneezes, and talks with infected people. 

Touching contaminated surfaces and then eyes, nose or mouth, can lead to fomite transmission. 

Fomite of liable SARS-CoV-2 virus or RNA analyzed with RT-PCR has shown that SARS-

CoV-2 can be found on these surfaces for hours to days, depending on the environment 

(humidity and temperature) (15). 

Airborne and other modes of transmission are under scientific research. The definition of 

airborne transmission is spread of an infection through exposure of droplets containing virus 

that can remain in the air for a period and over long distances. For SARS-CoV-2 the possibility 

for a susceptible person to be infected based on inhaled aerosols is not fully known (11, 16, 17). 

Other modes of transmission can possibly include urine and feces transmission. SARS-CoV-2 
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has been detected in biological samples of both urine and feces, but to date, it has not been 

confirmed if transmission can occur with these pathways (11, 18, 19).   

Some individuals have higher risk of getting severe case history, depending on health factors, 

such as diabetes, high blood pressure, asthma, immune deficiency, age, obesity, dementia, 

stroke, chronic liver diseases, and stroke (20). Comorbidities have an impact on the disease 

course and on which scale the disease can be harmful.  

Mild to moderate infections leads to fever, dry cough, and tiredness. Aches, pain, sore throat, 

diarrhea, conjunctivitis, headache, loss of taste or smell, rashes on the skin, and discoloration 

of fingers or toes are more infrequent symptoms. In severe cases, loss of speech or movement, 

acute respiratory distress syndrome, multi-organ failure, difficulty breathing, or shortness of 

breath, and chest pain can occur. In critical severe cases, the disease can lead to respiratory 

failure and death (5).  

New studies suggest that almost one in five infected people are asymptomatic for SARS-CoV-

2. Reliable figures are difficult to develop since a clear difference between the asymptomatic 

patients and pre-symptomatic patients is not fully determined and a standardized definition is 

not made (21).  

One out of five patients with COVID-19 develops long-term effects that last more than 12 

weeks, called long COVID (22). Patients who experience a severe disease progression and 

require intensive care have a higher risk to develop long COVID. However, it is still unclear 

whether symptoms are caused by COVID-19 or intensive care consequences.  Patients who 

have been undergoing intensive care have normally post-intensive care syndrome (PICS), 

which has similarities with COVID-19 symptoms. Older age, female sex, and disease severity 

is a typical risk factor for PICS. Long COVID studies focus on the symptom prevalence, but to 

what extent these remaining symptoms effect life quality is unknown (23).  

 

1.3.3 SARS-CoV-2 lifecycle  

Coronaviruses have a proofreading mechanism that prevents the virus to be weakened. 

Compared to influenza viruses, coronaviruses swap RNA chunks with other coronaviruses, 

which gives the coronavirus new unknown sequences for the human immunity.  

The S1 protein on SARS-CoV-2 surface binds to angiotensin-converting enzyme II (ACE2) on 

epithelial cells located in the lungs. S2 mediates then the spike cleaving by transmembrane 
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protease serine 2 (TMPRSS2) and fusion of the virus into the host cell occurs. Newly discovered 

is the FURIN proteases helping/priming activity ensuring that the virus enters the host cell (24). 

Endosomal cysteine proteases cathepsin B (CatB) and CatL assists in the fusion process in a 

minor order (24).  

Immediately after entry into the host cell, the virus releases RNA. The two large genomes 

ORF1a and ORF1b undergo translation and results in the production of two large polyproteins, 

pp1a and pp1ab. Papin-like protease (PLpro) and chymotrypsine protease (a serine type Mpro), 

3CLpro, supplement the polyproteins. Non-structural proteins (nsp) with different functions are 

released by the pp1a and pp1ab (figure 4) (20, 25-27).  

Nsps are important for intracellular replication and can assemble into replicase-transcriptase 

complex (RTC). RTC is a key factor for viral RNA transcriptase, leading to S, E, M production 

in endoplasmic reticulum. Viral components get maturated in Golgi vesicle resulting in mature 

lipid enveloped virion. By exocytosis, the new virion leaves the cells and will bind to other host 

cells (28).  
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Figure 4 SARS-CoV-2 life cycle phases. SARS-CoV-2 binds to ACE-2 receptors located on the 

epithelial cells in the lungs. Conformational changes happen in the S protein, which leads to 

fusion between the virus and the host cell. Upon entry into the cell, RNA gets released which is 

translated into essential proteins and viral replicase polyproteins. New virions get produced in 

the endoplasmic reticulum Golgi intermediate compartment (ERGIC) and then by exocytosis 

released. Figure adapted from (29) and reprinted with permissions from RightsLink/Springer 

Nature.  

1.3.4 Diagnosis  

Diagnosis and detection of SARS-CoV-2 in patients are done by nasopharyngeal and 

oropharyngeal swabs. Samples are then carried in a transport media and sent to laboratories to 

detect the virus in the samples. In most countries, and especially in Norway, the 

recommendation of diagnosis in people has changed multiple times. Depending on the capacity 

of the testing that could be conducted. However, it is recommended that everyone experiencing 

acute respiratory infection symptoms and other symptoms for more than two days should be 

tested (30). 

The diagnostic procedures are done in two ways. Firstly, direct detection of virus in patient 

samples with for example detection of proteins from the virus by culturing it, with using nucleic 

acid amplification tests, such as RT-PCR, transcription-mediated amplification), or Loop 

mediated isothermal amplification (LAMP). Secondly, immunological diagnostics used for 

identifying the virus-specific antibodies after having the viral infection. (31) 

Global standards of detecting SARS-CoV-2 in patient samples are done using real-time 

polymerase chain reactions (RT-PCR) assays that have high specificity and sensitivity. The 

specificity is estimated around 99% and sensitivity around 80%. Sensitivity is slightly lower 

than the specificity because that parameter is dependent on the stage of the disease. The 

sensitivity of RT-PCR increases if the test is conducted within the onset of symptoms. (30) 

However, alternatively, SARS-CoV-2 infections can be detected with antigen rapid-tests. Most 

of the rapid-tests are mainly based on detecting specific viral antigens depending on the 

particular test kit. Antigen tests has lower sensitivity hence low antibody count in early phase 

detection of COVID-19 (32). 
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1.3.5 Treatment of COVID-19 
Treatment of SARS-CoV-2 is not fully specific; however, guidelines are developed that are 

updated regularly. In the first few first months of 2021, vaccines have been developed and rapid 

vaccination is happening, although limitations of doses slowdowns the process of developing 

herd immunity. However, patients who need acute treatments in Norway, get 

immunosuppressives, such as dexamethasone, prednisolone, or other types of glucocorticoids. 

If the course of the disease is severe, treatment with antiviral remdesivir can be given. (33) 

1.3.6 Immunity against SARS-CoV-2  

Understanding of the SARS-CoV-2 immune response is limited and updating rapidly. Along 

with lack of information about alterations occurring in convalescent patients’ immune system. 

However, the antiviral response against SARS-CoV-2 is believed to be like other CoVs since 

the homology is similar. (34) 

ssRNA and dsRNA from the virus engage the PRR receptors, such as RIG-I like receptors 

(RLRs) and TLRs, and initiates downstream signalling cascades resulting in cytokine 

production. In antiviral responses cytokines as INF type I/III, TNF-α, IL-1, IL-6, and IL-18 get 

released. IFN-1 is believed to limit the CoV infection. (34) However, studies have shown that 

SARS-CoV-2 has a mutated difference compared to other CoVs, resulting in the ability to block 

the IFN type I/III production. (34) 

IFN levels are delayed in SARS-CoV-2 infected patients. IFN levels correspond to the severity 

of COVID-19. Due to poor initial IFN response, the recruitment of neutrophils can be 

postponed. Late recruitment of neutrophils can result in increased viral load (35). In severe 

COVID-19 patients increased neutrophils was reported by Schulte-Schrepping et.al, 2020 (36). 

In severe COVID-19 patients elevated inflammatory cytokines such as IL-6, IFN-γ, TNF-α, IL-

8, MCP-1 (CCL2 chemokine ligand 2), and IL-10 have been detected and show resemblance to 

an inflammatory phenomenon called cytokine storm. Reasons for the cytokine storm occurring 

are yet to be established. One theory is the viral PAMPs and host danger signals trigger the 

phenomenon (37). 

The knowledge about T cells against SARS-CoV-2 is limited. In peripheral blood, the total 

number of CD4+ and CD8+ T cells, B cells, and NK cells has been low (3). COVID19 disease 

outcome is associated with the Th1/Th2 balance. Th1 can discreetly clear the viral infection 

and lack of its function can lead to exacerbated reaction leads to the cytokine storm. Th2 cells 

are associated with poor prognosis for the disease. (3) 
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Acute phases of SARS-CoV-2 infections are associated with significantly marked lymphopenia 

with low numbers of circulating CD4+ T cells and CD8+ T cells (38). Lymphopenia can be 

caused by reduction in APCs functions and impaired migration of DCs that lead to limited T 

cell proliferation (38), this includes decreasing numbers of γδ T cells (39). In SARS-CoV-2 

infections γδ T cells act as a bridge between the adaptive and innate immune system since it 

has an antigen presenting role. Furthermore, these cells have antiviral effects by secreting IFN-

γ (40). 

CD4+ T cells and CD8+ T cells are associated with viral clearance in primary infections (38). 

In a previous study, it has been shown that S-reactive CD4+ T cells are present in patients and 

healthy donors, suggesting that these T cells are already present in our human body. A possible 

explanation for this is the previously CoV epidemics (41). The S reactive CD4+ T cells in 

COVID-19 patients co-expresses CD38 and HLA-DR (38). Some studies have shown that GM-

CSF and IL-6 expressing CD4+ T cells are more abundant in severe COVID-19 patients that do 

not need intensive care. (37) 

T cells memory has been shown that it can last up to 17 years after SARS-CoV infection, 

resulting in protection in long-term cross-immunity (38). However, if this is reliable for SARS-

CoV-2 is still unknown.  

Follicular helper T cells (TFH) play an important role in antibody mediated humoral immunity. 

In viral infections, TFH aids long-lived memory B cells and plasma cells, which is important for 

virus-specific neutralizing antibodies (38).  In  a case study it has been seen that TFH, APCs, 

activated CD4+ and CD8+ T cells, IgG and IgM had an increasing tendency post symptoms. 

(38) To understand if SARS-CoV-2 has an impact on TFH must be investigated by analyzing 

the immune response in peripheral blood.  

IgM and IgA have been detected in blood samples from patients as early as 5 days after 

infection, while IgG has been measured within 14 days in most patients. Seroconversion starts 

on day  6 after symptom onset (38). SARS-CoV-2 neutralizing antibodies are directed mainly 

to the viral surface S-protein and the N-protein. These antibodies neutralize viral infections of 

ACE-2 expressing human cells and tissues (42). In recovered COVID-19 patients considerable 

amounts of IgG antibody against SARS-CoV-2 have been detected.  
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1.3 Aims of the study  
Specific aim 1: Identifying and evaluating specific immunological responses and correlate the 

disease course 6 months post-infection and how SARS-CoV-2 patients differ from healthy 

controls. Understanding how SARS-CoV-2 patient immune cell composition recovers 6 months 

post-infection. Subgroup patients and compare to healthy controls differ from the healthy 

controls and from each other.   

Specific aim 2: Use MTT assay to determine toxic concentration of 4 different chemical 

extracted substances that can be used in the treatment against COVID-19.  
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2. Materials and Methods  

2.1 Specific aim 1 

2.1.1 Materials  

Written informed consent was obtained from all the participants. The protocol for the collection 

and storing of blood for research purposes was approved by the regional ethical committee 

(REK number 118664). The study was conducted in accordance with the Declaration of 

Helsinki Ethical Principles and Good Clinical practices.  

 

2.1.1.1 Recruitment of SARS-CoV-2 infected individuals   

Individuals (table 1) who had SARS-CoV-2 in March 2020 were contacted by the Influenza 

Centre at University of Bergen and asked to take a part in the project “COVID-19 infeksjon: 

klinisk og immunologisk respons” at UiB. Blood samples will be taken at onset of disease at 6, 

12, and 18 months. For this study blood was analyzed from timepoint 6 months post-infection.  

 

2.1.1.2 Recruitment of healthy controls   

Ten randomized healthcare workers were recruited for healthy controls (table 1). Blood 

samples obtained from the healthy controls were part of a research project evaluating 

vaccination against COVID-19. All samples were taken pre-vaccination against COVID-19.     

 

Table 1 Characteristics of the participants  

  COVID-19 

Control Moderate Severe 

Groups n 10 35 14 

Sex M 3 19 7 

 F 7 16 7 

Age < 40 5 9 1 

 40 – 65 5 18 6 

 >65 0 8 7 

Comorbidity + 

BMI 

Y 0 13 10 

 N 10 22 4 
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2.1.1.3 Harvesting and stabilizing samples    

Full blood samples, including healthy control samples, were stabilized with proteomic 

stabilizer (Smart Tubes Inc., San Carlos, California, US). Proteomic stabilizer is used for 

preserving whole blood within short time. When these whole blood samples were taken, around 

100 samples were collected. To minimize the sample variation when preserving the cells 

proteomic stabilizer was chosen.  

Blood from patients and controls were collected in BD Vacutainer® EDTA (Becton, Dickinson 

and Company, Franklin Lakes, New Jersey, US. Within 2 hours, 400 µl was mixed with 1.4x 

proteomic stabilizer and incubated for 10 minutes and then stored at -80oC in Micronics tubes. 

Within 2 days samples were transferred to -150oC.  

 

2.1.2 Methods  

2.1.2.1 Mass cytometry  

The relatively novel analytical technology mass cytometry is the central method used in this 

study. Mass cytometry or cytometry by Time-of-Flight (CyTOF) is an analysis that quantifies 

cellular features at single-cell resolutions (43). This relatively new analyzing method was 

developed in 2009 and is a fusion between flow cytometry and mass spectrometry (43).  Flow 

cytometry has been dominating in single-cell analysis since the 1960s but until recently the 

methodology has been limited of analyzing more than 15 analytes simultaneously. The 

limitation for making large panels is the fluorescent spectral signal (44).  

In flow cytometry antibodies are conjugated with fluorophores for detection. Spread of light 

from several probes in the sample will cause issue in detecting and quantifying each probe. The 

CyTOF technology have overcome the problem with overlapping detection using one detector 

and dividing them by mass. Little or no issues with channel overlapping gives the technology 

the ability to set up and analyze panels with more than 40 antibodies (45). In mass cytometry 

probes are conjugated with heavy-metal isotopes (44). One has chosen metals from rear-earth 

metals. These metals are never found in biological materials, therefore background “noise” is 

neglectable. (46) 

Prepared, fixed, and stained single cells in suspension are applied to the nebulizer by constant 

pressure and flow. The nebulizer is pressurized with argon it will transform the cell suspension 

into a fine mist of tiny droplets, ideally no more than one cell (particle) droplet. The mist is 

generated inside a heating chamber holding 200oC. In this chamber, all liquid, also water in the 

cells, is evaporated leaving only dried cells to enter the mass spectrometry (46). 
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The second part of the CyTOF is inductively coupled plasma spectrometry (IPC-MS). The 

argon plasma generated holds a temperature around 5000K. This high temperature fully 

atomizes and ionizes all molecules in the sample, ending up with a cloud of charged ions. The 

ion cloud holds all components built of a cell and the metal-conjugated antibodies and probes 

that were used for barcoding and staining. The quadrupole unit removes all organic ions, leaving 

only a cloud of heavy metal reporter ions used for identifying cells and quantifying the given 

molecules. (43, 44, 46, 47).  

The Time-of-flight (TOF) contains absolutely vacuum (10-8Torr). When ions from the cloud 

are pushed into the TOF, the vacuum will separate the ions according to mass. Lighter ions 

reach the detector first. From the push is initiated, one can calculate the given time for each ion 

to reach the detector by mass. Each time frame/window corresponds to one given isotope by 

mass, equivalent with a channel in mass cytometry. The high sensitivity for the detector, a 

discrete-dynode electron multiplier, can identify one single ion. Signal intensity detected for 

each channel determines the abundance of the isotopes in the cloud. Mass abundance values 

from each cloud generated are saved as a text file and further converted into a Flow Cytometry 

Standard (FCS) file. (43, 44, 46, 48, 49) 

 

 

Figure 5 Systemic overview of the mass cytometry process. Heavy metal labeled antibodies are 

stained to cells in suspension. These are applied into a capillary system in the mass cytometer. 
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The suspension is then taken through the nebulizer, which carries out the single cells. ICP 

makes ion clouds out of the single cells and the quadrupole removed biological ions. TOF 

analyzes the remaining ionized ion clouds. Figure adapted from (47) and reprinted with 

permissions from RightsLink/Springer Nature. 

2.1.2.2 Barcoding  

Barcoding technique (figure 6) is used for staining all samples with a unique code before 

combining all of them in one multiplexed sample. There are three main reasons for using this 

technique; preventing technical variability, reducing volume and antibody consumption, and 

removing doublets in the analysis. Technical variabilities include washing, volume staining, 

antibody concentration, temperature variability, and CyTOF acquiring. The individual samples 

were tagged with heavy metal isotopes combinations, that were unique for the different 

samples. (50)  

    

Figure 6 Barcoding workflow. Thawed fixed cells are barcoded with metal isotopes and 

converted to one multiplex sample. The multiplex sample is stained with metal-conjugated 

antibodies. Samples will then be acquired by CyTOF® and then debarcoded to single data 

samples. Figure adapted from (51).  

Palladium (Pd) the most common tags used for barcoding. It is in the lower mass detection 

range where sensitivity is the lowest.  Palladium isotopes are not commercially used as antibody 

tags, because of  its antibody instability (52). 

In this project, a 20-plex barcode, set based on Zunder et.al. 2015 (49), was made in-house. Six 

stable palladium isotopes, 102, 104, 105, 106, 108, 110, were used. All samples get a unique 

combination of 3 palladium isotopes out of 6. In this project four additional isotopes, cisplatin 

(Pt) 194, 195, 196, and 198 were used 2 out of 4 for combining the three 20-plex barcodes. The 

schematic setup and all barcode combinations are shown in figure 7.  
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Figure 7 Schematic presentation of the barcoding patterns. Each sample gets stained with 

three different palladium isotopes and two cisplatin.  
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2.1.2.2.1 Sample barcoding 

Barcode mix with 20 plex barcode and both cisplatin isotopes were prepared in a 96 well rack. 

Cisplatin isotopes used was pre-optimized by Flow Cytometry Core Facility at University of 

Bergen, Resulting in the appropriate volume of 200nM cisplatin of each isotope for each 

sample. Each sample contained 7 µl of 20 plex palladium barode and 4 µl of each cisplatin.  

Fixed cells were rapidly thawed, washed with MaxParTM CBS (Fluidigm Corporations, South 

San Fransisco, California, US), and transferred to a 96 well plate with 100µl MaxParTM PBS. 

Before adding the barcode reagent, cells were washed twice with 200µl MaxParTM 1X Barcode 

Perm buffer mixed (10X barcode perm buffer mixed with Maxpar® PBS in the ratio 1:9). 

Barcode perm buffer is essential for CyTOF® signal-to-noise detection. Centrifugation 

conditions were 500g for 5 min at 20oC. All centrifugation in the barcoding stage was done with 

these conditions if nothing else is mentioned.  

After last wash, cells are resuspended in 100µl barcode perm buffer. Approximately 85 µl 

barcode perm buffer was added to barcode mix giving a total volume of 200µl. Cell suspension 

and barcode was mixed immediately and incubated for 30 minutes at room temperature on a 

shaker (300rpm). At 5 and 10 minutes, the cells were mixed by pipetting. All 

samples were washed with 250µl Maxpar® CBS five times, before being resuspended in 

100 µl Maxpar® CBS and incubated on ice. To verify that all barcode quality, 5 µl of each well 

were mixed into 3 tubes (one tube per 20 plex barcode) and acquired on the CyTOF. After 

verifying that the barcodes could be debarcoded appropriately, all barcodes were transferred 

into 3 tubes according to the 20 plex barcode and stored at -80oC.    

 

2.1.2.3 Antibody staining of barcoded samples  

Before staining the barcoded samples, cells were washed once with 9 mL Maxpar® CSB and 

counted using Bürker hemocytometer. For each of the three barcoded samples (20 samples in 

each barcode), it was counted 15 million, 11 million, and 17,8 million cells. Barcoding protocol 

suggests that the number of cells in each sample ideally should be 1-3 million, whereas in this 

study lower number of cells per samoles were estimated to 0.6-0.9 million.   

Samples were washed with Maxpar® CBS and the cell pellet was transferred to a FACS tube. 

Already aliquoted 3µl heparin solution (100IU/ml) was added into the tube and incubated on 

shaker for 15 minutes. 90 µl of premade antibody cocktail with some adjustment with IgA 
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(chapter 2.12.3) was added to the sample and incubated for 30 minutes. After 30 minutes the 

sample was washed twice with 3mL Maxpar® CSB.  

Fresh paraformaldehyde (PFA) and perm buffer is added to thoroughly fix the cell and also the 

antibodies to the cells. In addition, per ensures the access and binding of Iridium (Ir) to the 

cellular nucleic acid. Fix and perm buffer was diluted with 0.1 nM Iridium-nucleic acid 

intercalator (Fluidigm) and 4% PFA (Alfa Aesar, 16% PFA, methanol-free) containing 

MaxparTM PBS. Samples were stored overnight at 4oC. 

Right before acquiring on the CyTOF, cells were washed once with MaxparTM CBS and twice 

with MaxparTM CAS and resuspended in MaxparTM CAS supplemented with 1:10 dilution of 

EQ Four Element Calibration beads at a cell concentration of >1.0 million cells pr milliliter.  

 

2.1.2.4 Antibody titration  

Antibody titration is used for determining the optimal concentration of antibodies. The 

right concentration of antibodies is crucial since low concentrations lead to poor antibody-cell 

ratio and high concentrations can lead to high background or false-negative results. If the panel 

consists of high concentration of one antibody it will bind with low affinity to cells and will not 

replicate and show a correct image of the immunological aspects in the samples.   

For antibody titration, PBMC were used. Thawed PBMC were washed with Maxpar® Cell 

staining buffer twice. Heparin was added to the cells and incubated for 10 min before in-house 

and premade 11 antibody backbone panel covering the main populations of the immune system 

(CD3, CD4, Cd8, CD11c, CD14, CD16, CD19, CD45, CD56, CD66b, HLA-DR) was added 

and incubated for 30 minutes. While incubation, the antibody for titration was made ready. Six 

eppendorf tubes were marked and filled with 20µl Maxpar® CSB, except in the first Eppendorf 

tube which had 40 µl added. To the first tube 2µl antibody was added, and from this tube 20µl 

were transferred to tube 2, mixed carefully and from this 20µl were transferred into tube 3 

etc. From the last tube, after mixing, the 20µl was discarded. All cells stained with backbone, 

were equally divided and added to the tubes and acquired individually. This resulted in the 

concentrations 1/100, 1/200, 1/400, 1/800, 1/1600, and 1/3200.   

Data was analyzed in CytobankTM and the staining index was calculated. Stain index is 

calculated with the difference between the positive and negative population of the 

antibody titrated, divided on the standard deviation of the negative population times two 
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(equation 3.1.4). Higher staining index with low background noise means good antibody 

concentration (53). Values from this study are given in table 2 and figure 8. 

𝑠𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥 (∆) =
𝑀𝐹𝐼𝑝𝑜𝑠−𝑀𝐹𝐼𝑛𝑒𝑔

2 𝑥 𝑆𝐷
                (3.1.4)  

 

Table 2 Overview of the dilutions and their negative population median, positive population 

median, standard deviation and staining index.  

Dilution   Negative 

population 

median   

Positive population 

median   

Standard 

deviation   

Stain index  

1/100  2.62  84.83  4.73  8.69  

1/200  1.56  68.72  3.90  6.63  

1/400  0  15.64  1.65  4.75  

1/800  0  17.27  1.70  5.09  

1/1600  0  7.84  1.11  3.57  

1/3200  0  8.16  1,11  3.68  

In table 2 the median and standard deviation values for negative and positive populations are 

taken from Cytobank after gating of the populations. Staining index is calculated manually 

using equation 3.1. 
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Figure 8 Positive and negative populations of the titrated IgA. Figure a-c shows the positive 

population of IgA with different concentrations. Figure d-f shows the negative population of 

IgA with different concentrations. Figure a and d shows 1:100 titers, figure b and e show 1:200 

titers and figure c and f show 1:400 titers. Plots adapted from Cytobank.  

2.1.2.5 Calibration Beads  

EQTM Four Element Calibration Beads (containing 140/142Ce, 151/153Eu, 165Ho, and 

175/176Lu) were used for identifying and monitoring instrument differences and fluctuation 

across batches and during data acquisition. The beads are used to correct for inter-sample 

variations and intra-sample variations. 

2.1.4 Data analysis  

Manual gating on biaxial plots in mass cytometry involves a high error risk, time-consuming, 

susceptible to operator bias, and not easily scalable (54). Computational challenges such as pre-

processing, normalization, dimensional reduction, and clustering can arise while analyzing 

high-dimensional single-cell data. However, traditional approaches are mastered with advanced 

algorithms that fundamentally altering the processing and interpretation of the data. Although 

algorithms, such as SPADE, FlowSOM, and tSNE are available through Cytobank®, a large 

number of choice and lack of consensus on the best data for pre-processing and analysis is 

problematic (55). SPADE and FlowSOM are clustering algorithms that group cell populations 

together based on the expressed markers. tSNE algorithms aim to give an easier visualization 

by presenting single-cell data in a two-dimensional map (56). In this project the cluster 
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annotation, identification of subpopulations, and statistical analysis was done by cloud-based 

cytometry analysis platform, Astrolabe Diagnostics located in New Jersey, USA. Astrolabe 

provides labeling of the cells with Ek’Balam hierarchy-based algorithm. This algorithm 

combines knowledge-based gating strategy with unbiased FlowSOME R package clustering 

(56). Statistical analyses were performed using Astrolabe Diagnostics. False discovery rate 

(FDR) adjusted p ≤ 0.05 and above were considered statistically significant.  

Identifying cell subtypes/populations that differed in the different study participants volcano 

plots were used. Volcano plots show the spread of populations on the x-axis and the confidential 

interval on the y-axis. Subpopulations that differ within the study group have a higher y-axis 

value and thereby higher significance. However, using this method must be doublechecked, 

since some subsets can be strongly expressed that it will give a biased result for the whole parent 

population.  

2.2 Specific aim 2  

2.2.1 Materials  

19 substances were received from professor Torgils Fossen, University of Bergen. Out of these 

19 substances, four substances were chosen for MTT assay; Ellagic 

acid (EA), Rumic acid, Plantainoside D, and Dinatin 7-glucuronide. These compounds were 

tested on three different cell lines for cytotoxic concentration identification. Human embryonic 

kidney cells (HEK293, ATCC), human embryonic kidney cells variant that express a 

temperature- sensitive allele of SV40 T antigen (HEK-293t, ATCC), and colorectal 

adenocarcinoma cells 2 (CACO-2, ATCC) has been selected to be used in this project. These 

three different adherent cell lines replicate the epithelial cells located in different places in 

the body, where two of these have a positive replication of SARS-CoV-2 virus and one has 

negative replication. 

2.2.2 Methods  

2.2.2.1 Cell culturing  

HEK293 (ATCC) and HEK293t (ATCC) were cultured 

in GibcoTM Dulbeccos Modified Eagles’s Medium (DMEM,) with high glucose and 2mM 

Glutamine, supplemented with 10% Fetal Bovine Serum (FBS).  CACO-2 (ATCC) were 

cultured in GibcoTM DMEM supplemented with 10% FBS and 1% GibcoTM MEM non-

essential amino acids.  
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Cell lines were kept in cell tissue incubators at 37 oC and 100% humidity with 95% air and 5% 

CO2 cultured in 75 cm2 culture flasks (Nunc, Thermo Fischer Scientific, Waltham, 

Massachusetts, USA) in monolayers. Cell culturing happened under sterile conditions.   

 

2.2.2.2 Passaging, seeding, expanding, and cryopreservation of cells  

Sub-culturing, seeding, expanding, cryopreservation, and thawing of the cells was done 

according to ATCC® protocol for HEK293 and HEK293t cell lines. While the same procedures 

as described in the product sheet for CACO-2 were followed. Cells were used between passage 

5 to 17.   

Sub-culturing of the cells was done by removing the growth medium with a pipette. Cells were 

washed with phosphate buffered saline (PBS, Ficher Scientific, Arendalsvagen, Goteborg, 

Sweden) and loosened with Trypsin EDTA at 37oC for 2-3 minutes. Growth medium was used 

for resuspending the cells and appropriate dilution of cells was transferred in a new flask with 

more growth medium added.   

In the ATCC® protocol for CACO-2 cells, Eagle’s minimum essential medium (EMEM) is 

recommended to be used. However, the growth medium was changed to GibcoTM Dulbecco’s 

Modified Eagle Medium (DMEM) supplemented with 10% FBS and 1% GibcoTM MEM non-

essential amino acids, because of the lack of availability of EMEM. 

 

2.2.2.3 MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay   

MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assays is a non-

radioactive method used for quantification of cell proliferation and viability of cells. This assay 

is established on the yellow tetrazolium salt MTT metabolization. Metabolic active 

cells cleave MTT with pyridine nucleotide cofactors NADH and NADPH from the viable 

cells, resulting in purple formazan crystals as shown in figure 9. Formazan crystals 

are insoluble, but with the help of a solubilization solution, the crystals are dissolved resulting 

in a solution that is colored. Absorbance of the colored solution is measured with a multi-well 

spectrophotometer. Lighter solutions contain less viable metabolically active cells. (57) 

Downside with using this method is the lack of sensitivity compared using fluorescent and 

luminescent methods. However, the sensitivity is dependent on the cell types that are being 

tested. Along with the lack of the sensitivity, chemical compounds can increase the background 

absorbance values resulting in artifacts. One example of these compounds is ascorbic acid and 
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vitamin A. If the MTT assay is exposed to light and high pH too long the background noise 

might get elevated.   

  

Figure 9 Overview of metabolic active cells cleavage of MTT to formazan crystal. Figure 

adapted from (57). Reprinted with permission from Springer/Rightslink  

 

2.2.2.3.1 Substances tested with MTT assay   

Ellagic acid (EA) is a compound that is extracted from different fruits and vegetables, such as 

raspberries, strawberries, cranberries, and pomegranates. This compound is undergoing clinical 

trials for the treatment of Follicular Lymphoma, cardiovascular functional improvement in 

obese younger adults/adolescents, solar lentigines treatment, and protect intrauterine growth 

restricted babies from brain injury. Mainly, the effect is believed to be in their antioxidant and 

anti-proliferative properties (58, 59) 

In previous studies, it has been shown that EA affects immunological activities by regulating 

different proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α. It has also been shown 

that it affects NF-κβ. Continuously exposure to TNF-α can lead to inflammation local and 

systematic (58). In one study it was shown that TNFα mediated production of IL-6 and IL-8 

waws inhibited by EA.   

Rumic acid (RA) used in this project was extracted from Peucedanum ostruthium and belongs 

to the flavonoids group that is associated with biochemical and pharmacological effects, such 

as antioxidative, anticarcinogenic, anti-inflammatory, and antiviral properties. Anti-

inflammatory responses include targeting cyclooxygenase and cytokines, such as TNF-α. (60) 

Plantainoside D (PD) is an antioxidative compound that was extracted from Plantago 

major and has been used in treating diseases that are associated with free radicals. For example, 

in treatment with the anti-tumor drug, Adriamycin, plantainoside D has shown to have 

inhibiting effects on the ROS generation and NF-kB activation and thereby preventing 

apoptosis of the cardiac muscle cells (61).  
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Dinatin 7-glucuronide (D7G) is a flavone that is found in the leaves of Plantago major. 

Plantago major has different pharmacological activities, such as analgesic, antibacterial, 

antidiarrheal, anti-inflammatory, antioxidant, antiviral, immunomodulatory, and 

immunostimulatory. The different pharmacological activities might depend on which part 

of Plantago major is being used. (62) 

 

  

Figure 10 Chemical structure for Ellagic acid, rumic acid and plantainoside D. Chemical 

structures were made in ChemDraw 

 

2.2.2.3.2 MTT preparation  

Optimal concentrations of the stock solution required dilution of the stock solutions (Table 3). 

Further dilution was done with the DMSO (Sigma Aldrich Norway AS, Oslo). EA and RA 

concentrations at 10mM, 1 mM, 100 µM, 10µM, 1µM, 100nM, 10nM and 1 nM was tested.  

For D7G and PD 1 mM, 100 µM, 10µM, 1µM, 100nM, 10nM and 1nM was tested. For D7G 

one additional concentration at 0.1nM was tested. Dilution method and overview of 

concentrations for each compound is further described in figure 11 and 12.  

Table 3 Amount and concentrations received from Torgils Fossen and amount used for making 

the concentration needed for each compound  

 
Concentration on 

received raw material 

DMSO 

(µL) 

Concentration 

(mM) 

Ellagic acid 33,5 mg 1100 100  

Rumic acid 2916 mM 96,6 100  

Dinatin 7-glucuronide 11,9 mM  16 10  

Planainoside D 780 mM 84 10  

EA was received as solid, while the rest of the compounds were liquids.  
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Figure 11 Overview of the setup for making dilutions solutions in a 96 well plate. 15µl each 

stock volume was transferred to A wells (as marked in the figure). In B wells 18µl DMSO and 

2µl stock volume were added to C well and so on.  

Solution made as shown in figure 11 was directly transferred to 96 well plate with 3 x 104 

cells in each well, so the end concentration ended up as shown in figure 12. 

 

Figure 12 Overview of the setup for each compound concentration in the 96 well plate.  

3 x 104 cells per well for the three cell lines were exposed for different concentrations of the 

compounds as described in figure 12. Cells was incubated for 24 hours in incubator at 37oC and 
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5% CO2.  After 24 hours 10 μl of MTT labeling agent (Sigma, St Louis, MO, USA)) and 

incubated for 4 hours before adding 100 μl solubilization solution (10% Sodium dodecyl sulfate 

solution in 0.1M HCl, Sigma, St Louis, MO, USA) overnight in incubator at 37oC and 5% CO2, 

before measuring the spectrophotometrical absorbance in SynergyTM H1 microplate reader 

(BioTek instruments Winooski, VT, USA).  

2.3 Instruments used in this project   

Mass cytometer: Fluidigm CyTOF HeliosTM
 analyzer (Fluidigm Corporation, South San 

Francisco, California, USA) was used for defining metal properties of cells. 

Cell counting:  Bürker Haemocytometer counting chambers (Sigma Aldrich, MilliporSigma, 

Missouri, USA) was used to count cells before staining antibodies, running samples on the 

CyTOF, and to count HEK293, HEK293t, and CACO-2 cells.   

Centrifuge: Centrifuge 5810 R (Eppendorf, Hamburg, Germany) was used for centrifugation of 

samples in the lysis process and of 96 well plates.  

Eppendorf centrifuge: Eppendorf Centrifuge 5417 C (Eppendorf, Hamburg, Germany) was 

used for spinning down cell pellets while staining and barcoding samples.  

Cell culture imaging: Cytation 5 Cell Imaging multi-mode reader (Biotek instrument Inc, 

Winooski, USA) was used for imaging 96 well plate with cell cultures for determining ideal 

concentrations.   

96 well microplate reader: Biotek Synergy H1 Hybrid multi-mode microplate reader (BioTek 

instruments Winooski, VT, USA) was used for measuring the spectrophotometric absorbance 

of the samples in the MTT project.  

2.4 Software used in this projects  

Word: the project has been written and edited on Microsoft ® Word for Microsoft 365 MSO 

(Microsoft Corporation, Redmond, Washington, USA) 

Excel: Histograms and graphs were made with Microsoft ® Excel for Microsoft 365 MSO 

(Microsoft Corporation, Redmond, Washington, USA) 

Mass cytometry analysis software: Analysis of high parameter workflows was done in 

Cytobank Inc., (Beckman Coulter Life Science. Indianapolis, USA). 

Astrolabe Diagnostics; Paid service from Astrolabe diagnostics (Fort Lee, NJ, USA) was used 

for analyzing mass cytometric data.  
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3. Results  

3.1 Specific aim 1 
Mass cytometry with a pre-made antibody panel (Supplementary) was used to 

immunophenotype different peripheral blood cell subsets from patients who had been infected 

with SARS-CoV-2 six months prior to the analysis and healthy controls. In this study, major 

immunological subtypes in SARS-CoV-2 infected patients and healthy controls were 

investigated (Table 4). Total cell count below 20 000 cells was considered low, and 4 patients 

with mild disease, 2 patients with severe disease, and 1 healthy control came under this category 

but included in further analysis.   

Table 4 Immune cell subtypes identified by the Astrolabe Cytometry Platform  

Main population in bold. Subpopulations indicated with additional receptors for identification 

Population names  Surface receptors   
B cells  CD3- CD14- CD19+ CD56-CD66b - 

   B naïve CD24- CD27- 

   B memory  CD27+ CD38- 

          Switched memory  IgD- 

          Non-switched memory IgD+  

  Plasmablast CD20- CD27+ CD38+ 

  Transitional  CD38+ CD24+ CD27+ 

T cells  CD3+ CD14- CD19- CD56- 

  Double negative  CD4- CD8- TCRgd- 

  Double positive   CD4+CD8+ TCRgd- 

  CD4+ CD4+ CD8- 

          Naïve  CD45RA+, CD27+ 

          Central memory  CD45RA-, CD27+ 

          Effector memory CD45RA-, CD27- 

          CD4+Tregs CD25+ CD127- 

  CD8+  CD4- CD8+ TCRgd- 

          Naïve  CD45RA+ CD27+ 

          Central memory CD45RA- CD27+ 

          Effector memory CD45RA- CD27- 

Gamma delta T cells  TCRgd+ 

NK cells  CD3- CD14- CD19- CD56+ CD66b - 

    Natural killer (CD56+ CD16+) CD16+ 

    Natural killer (CD56+ CD16-) CD16- 

NKT cells  CD3+ CD14- CD19- CD56+ CD66b - 

Dendritic cells  CD3- CD14- CD19- CD56- CD66b- 

    Conventional dendritic cells type 1 CD123- HLA_DR+, CD16- CD141+ 

    Plasmacytoid dendritic cells  CD11c- CD123+ HLA_DR+ 

Monocytes  CD3- CD14+ CD19- CD66b- 

  Classical  CD14+ CD16+ 

  Intermediate  CD14+ CD16- 

  Non-classical  CD14- CD123- HLA_DR+, CD16+ CD141- 

Granulocytes  CD3- CD14- CD19- CD56- CD66b+ 

Basophils  CD123+ HLA_DR- 
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3.1.1 SARS-CoV-2 patients and healthy controls display similar frequencies of whole blood 

cell populations  

Varies cell subset frequency differences amongst healthy controls and SARS-CoV-2 infected 

recovered patients were observed. However, in parent/main populations no significant 

variations in cell frequencies were found. Small differences in cell frequencies were observed 

in the T cell population and granulocytes (figure 13). Compared to the healthy controls, patients 

had a slightly higher frequency (FDR = 0.095) in overall T cells 6 months post-infection, while 

granulocytes had a small decrease in the patient group (FDR=0.057) 

Astrolabe Diagnostics uses a multidimensional clustering algorithm and assign all cluster into 

known subsets based on markers used by the algorithm (figure 14). Astrolabe found known 

subset and unassigned subpopulations. In figure 14, figure 15, and figure 16, some subsets in 

the myeloid and T cells show higher fold change than other subsets. 
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Figure 13 Overview of compartment populations in SARS-CoV-2 patients and healthy 

controls.  Comparisons were made among healthy controls (n=10) and SARS-CoV-2 infected 

patients (n=49). Single-cell data was clustered together with FlowSOME R package with 

Ek’Balam algorithm labeling. Median for each cell population is stated and statistical 

significance is considered with FDR/adjusted for 0.05 ≥ p. 

 

  

Figure 14 Differential abundance analysis amongst healthy controls(n=10) and SARS-CoV-2 

patients (n=49). a) Cell subsets overview in a multidimensional scaling map (MDS) found by 

Astrolabe Diagnostics using labeling Ek’Balam algorithm (Amir et. al., 2019 (56)) and 

clustered together with FlowSOM R package (Van Gassen et. al 2015(63)). b) Frequency 

across all assigned subsets in a volcano plot. False discovery rate (FDR), Fold change (FC).    

Exploring subcellular populations of T-cells, B cells, myeloid, and granulocytes, difference was 

found in 5 populations. Although, CD4+ central memory T cells (Figure 15A) were increased 

in the patient group (FDR = 0.233), large spread in the data is shown.  In contrast, no differences 

were seen in CD8+ T central memory cell frequencies (Figure 15B). 

Figure 16 shows a small median frequencies value and spread in the γδ T cells for the two 

groups. However, two samples in the control group showed very low frequencies of γδ T cell 

population, while one patient sample had relatively high frequency. 
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Figure 15 T cell subpopulations A) CD4+ central memory T cells frequencies in healthy controls 

(n=10) and SARS-CoV-2 patients (n=49). FDR=0.233. B) CD8+ central memory T cell 

frequencies in healthy controls (n=10) and SARS-CoV-2 patients (n=49). FDR=0.095. Single-

cell data was clustered together with FlowSOME R package with Ek’Balam algorithm labeling. 

Median for each cell population is stated and statistical significance is considered with 

FDR/adjusted for 0.05 ≥ p. 

  

Figure 16 γδ T cell frequencies in control samples (n=10) versus patient samples (n=49). 

FDR=0.233. Single-cell data was clustered together with FlowSOME R package with 

Ek’Balam algorithm labeling. Median for each cell population is stated and statistical 

significance is considered with FDR/adjusted for 0.05 ≥ p. 
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Looking into the monocyte compartment, two subpopulations showed differences (figure 17). 

The classical monocytes show significantly higher frequency (FDR=0.095) in the patient group 

compared to healthy controls (figure 17a). Four SARS-CoV-2 infected patients had ≥ 0.6% 

frequencies of CD14- CD16+ non-classical monocytes (figure 17b), resulting in a high negative 

impact on the overall result for this small population of non-classical monocytes. No significant 

differences for dendritic cell type 1 were observed (figure 18), but the median differs in the two 

groups. 3 out of 10 healthy control samples showed a very low frequency <0,05 % dendritic 

cell type 1 frequencies, and 1 of the patient sample had 0.45% frequency.   

 

Figure 17 Myeloid compartments. A) CD14+ CD16- classical monocyte frequencies in patient 

(n=49) and healthy controls (n=10). FDR= 0.095. B) CD14- CD16+ non-classical monocyte 

frequencies in patient (n=49) and healthy controls (n=10). FDR= 0.117. Single-cell data was 

clustered together with FlowSOME R package with Ek’Balam algorithm labeling. Median for 

each cell population is stated and statistical significance is considered with FDR/adjusted for 

0.05 ≥ p. 
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Figure 18 Dendritic cell frequencies in patients and healthy controls.  A) Dendritic cell type 1, 

CD141+ cell frequencies in controls (n=10) and patients (n=49). FDR=0.233. B) Plasmacytoid 

dendritic cells in healthy controls (n=10) and patients (n=49). FDR=0.009 Single-cell data 

was clustered together with FlowSOME R package with Ek’Balam algorithm labeling. Median 

for each cell population is stated and statistical significance is considered with FDR/adjusted 

for 0.05 ≥ p. 

 

3.1.2 Moderate and severe patients showed altered expressions in some cell 

subpopulation frequencies  

SARS-CoV-2 patients were subdivided based on the severity of the disease that was 

experienced by the patients. Patients who were admitted at the hospital (Haukeland University 

hospital or Haraldplass Diakonale Sykehus) were considered to have severe disease, while 

patients who did not require hospital admission were considered as mild/moderate. Duration 

and reason for admission were not reported, making it difficult to understand the grade of 

severity for the patients. Disease history and medication like immune suppressive was not 

reported.  

Analyzing mild disease patients, severe disease patients, and healthy controls showed 

differences in subpopulation frequencies, but no significant differences are observed in any of 

the parent populations (Figure 19). All parent populations have FDR=0.05. As shown in figure 

15A a large spread was seen in the CD4+ central memory T cells among patients. Dividing them 

into moderate and severe, one did see a higher population frequency in the severe group, 

compared to CD8+ central memory cells (figure 20). In figure 20A the differences within the 

patient group and control group are shown, a lower difference between the group is observed. 
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However, no significant difference is observed (FDR=0.177).  CD8+ effector T cells are slightly 

higher in the severe disease patient group, but differences within the group are high (figure 21). 
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Figure 19 Overview of compartment populations in severe (n=14) and moderate (n=35) disease 

patients and healthy controls (n=10, ctr).  Comparisons were made among healthy 

controls/controls (n=10) and SARS-CoV-2 infected patients (n=49). Single-cell data was 

clustered together with FlowSOME R package with Ek’Balam algorithm labeling. Median for 

each cell population is stated and statistical significance is considered with FDR/adjusted for 

0.05 ≥ p. 

 

Figure 20 Central memory compartments in in healthy controls (n=10), moderate (n= 35) and 

severe patients (n=14). A) CD4 + Central memory cell frequencies in healthy controls (n=10), 

moderate (n= 35) and severe patients (n=14). FDR=0.177. B) CD8+ central memory 

frequencies in healthy controls (n=10), moderate (n= 35) and severe patients (n=14). Single-

cell data was clustered together with FlowSOME R package with Ek’Balam algorithm labeling. 

Median for each cell population is stated and statistical significance is considered with 

FDR/adjusted for 0.05 ≥ p. 
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Figure 21 CD8+ effector memory T cells in healthy controls (n=10), moderate (n=35) and severe 

(n=14) disease patients. FDR = 0.177. Single-cell data was clustered together with FlowSOME 

R package with Ek’Balam algorithm labeling. Median for each cell population is stated and 

statistical significance is considered with FDR/adjusted for 0.05 ≥ p. 

 

 

Figure 22 γδ T cell frequencies in healthy controls (n=10), moderate (n=35) and severe (n=14) 

disease patients. FDR=0.177. Single-cell data was clustered together with FlowSOME R 

package with Ek’Balam algorithm labeling. Median for each cell population is stated and 

statistical significance is considered with FDR/adjusted for 0.05 ≥ p. 

Slight decrease in the significance was seen when γδ T cell frequencies (figure 22) were divided 

further. In the mild group, one sample that had initially low total cell count, shows remarkably 

elevated frequencies (>0.45).  
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3.2.1 Differences in monocyte subpopulations in moderate and severe patients  

Investigating the change of non- and classical monocytes, we observed a decreasing pattern in 

frequency in the moderate group for classical monocytes (figure 23a). Four patients had higher 

frequency (>0.4%). Non-classical monocytes do not show large spread in the data compared to 

classical monocyte frequencies, and frequencies don’t differ in the three groups.  

 

Figure 23 Monocytes compartments frequencies in healthy controls (n=10), moderate (n=35) 

and severe (n=14) disease patients. A) CD14-CD16+ classical monocytes. FDR=0.043 B) 

CD14+CD16- non-classical monocytes. FDR=0.045. Single-cell data was clustered together 

with FlowSOME R package with Ek’Balam algorithm labeling. Median for each cell population 

is stated and statistical significance is considered with FDR/adjusted for 0.05 ≥ p. 

 

3.2.2 Wide variation among B cell phenotypes within convalescence COVID-19 

patients and healthy controls 

Normalized B cell frequencies in moderate and severe COVID-19 patients were found 6 months 

post infections. No differences in B cells in the control group and the patient group as a whole 

were detected (figure 24A). When characterizing B memory cell subsets depending on IgD 

expression, no significant differences were observed. However, compared to non-switched 

memory cells, bigger heterogeneity within the group was found in the switched memory B cell 

frequencies, suggesting different recovery (Figure 24B and 24C). Expansion of switched 

memory B cells in healthy control was also highly variable. Variation within the healthy 

controls might be a result of minimal exclusion criteria used for selection (figure 25). 
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Figure 24 B cell compartments. A) Total B cell. FDR=0.005 B) IgD+ Non-Switched memory 

B cells frequencies in control, moderate and severe group. FDR=0.045 C) IgD- Switched 

memory B cell frequency in healthy controls, moderate and severe patient group. FDR=0.043 

Single-cell data was clustered together with FlowSOME R package with Ek’Balam algorithm 

labeling. Median for each cell population is stated and statistical significance is considered 

with FDR/adjusted for 0.05 ≥ p. 

 

Figure 25 Frequencies of switched memory B cells within the individuals.  

 

3.3 Age impact on our study samples  

Due to highly variance data we choose to look at the impact of age immunological mechanisms 

so we could see if the variance/heterogeneity is SARS-Cov-2 dependent. Participants have been 

divided into three age groups as shown in table 1.  

The same trend as seen for disease grade was observed, with no significant differences in parent 

cell populations rather in cell subsets. 6 months post-infection age-dependent variations in 

immunological aspects showed bigger difference (figure 26).  Especially in naïve CD8+ T cells 

and naïve B cells, significant lower frequencies in elderly (>65) patients as shown in figures 27 

and 28.   
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Figure 26 Overview of immune populations dependent on age a) Differential abundance effect 

of age group cell subsets overview in a multidimensional scaling map (MDS) found by 

Astrolabe Diagnostics using labeling Ek’Balam algorithm (Amir et. al., 2019) and clustered 

together with FlowSOM R package (Van Gaseen et. al 2015). Frequency across all assigned 

subsets in a volcano plot based on age. False discovery rate (FDR), Fold change (FC).    

  

Figure 27 CD8+ Naïve T cells differences between age group <40 (1), 40-60 (2) and >65 (3). 

FDR=1.714. Single-cell data was clustered together with FlowSOME R package with Ek’Balam 

algorithm labeling. Median for each cell population is stated and statistical significance is 

considered with FDR/adjusted for 0.05 ≥ p. 
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Figure 28 B naïve cell compartments in A) age group <40 (1), 40-60 (2) and >65 (3). 

FDR=0.491 B) healthy controls and SARS-CoV-2 patients. FDR=0.009. Single-cell data was 

clustered together with FlowSOME R package with Ek’Balam algorithm labeling. Median for 

each cell population is stated and statistical significance is considered with FDR/adjusted for 

0.05 ≥ p. 

 

3.2 Specific aim 2  

3.2.1 Method development: Determining the cell density 

Initial analysis for determination of the cell density was performed. HEK293, HEK293t and 

CACO-2 cells were seeded in 96 well plate for 24 hours with 2,5x103, 5x103, 1x104, 2x104, 

4x104 and 8x104 for determining the optimal cell number for further analysis. Finding the right 

concentration is crucial for adequate confluency of the cells in the wells.   As shown in figure 

29, 2 x 104 and 4 x 104 cells per well gave good confluency and cell density after 24h, and 

therefore 3 x104 cells per well were chosen for both cell lines. 
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Figure 29 CACO-2, HEK293, and HEK293t cells seeded in 96 well plate. 2 x 104 and 4 x 104 

cells were seeded per well in 96 well plate for 24h.  

 

3.1.2 Cell proliferation   

CACO-2, HEK293, HEK293t cells were seeded and cultured with EA, RA, D7G, and PD in a 

96 well plate with 3 x 104 cells per well for 24h.  MTT assay was used for determination of 

proliferation and cell viability. On all three cell lines EA, RA, D7G, and PD were tested with 

different concentrations. EA and RA were tested with concentration at 10mM, 1 mM, 100 µM, 

10µM, 1µM, 100nM and 10nM. For EA, an extra concentration at 1nM was additionally tested. 

For D7G concentrations at 1 mM, 100 µM, 10µM, 1µM, 100nM, 10nM, 1nM and 0,1nM was 

tested, while PD was tested with the same concentrations except from 1nM and 0,1 nM. 

The higher the absorbance measured, the more metabolic active cells remain in the culture. For 

the HEK293 cell line (figure 30) the only remarkable change in the proliferation is for EA at 

high concentrations. EA shows a decreasing tendency in proliferation starting from 1µM, 

suggesting a dose-dependent response. For HEK293 cell lines variation between the triplicates 

shown through the ±standard deviation. Especially for EA, the standard deviation is remarkably 

higher for all concentrations, suggesting methodological errors.    

For CACO-2 cells (figure 31) the same tendency is observed for EA. However, cell proliferation 

starts getting noticeably affected from 10 µM and higher concentrations. For the other tested 

substances, the proliferation remains unaffected.  
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In the HEK293t cell line (figure 32) the cell proliferation shows effect by PD and D7G from 

0.01mM and higher concentrations. For EA effecting concentration starts from 0.1mM and 

shows a stronger response for higher concentrations. For RA it was expected the same effects 

as the other cell lines or that the proliferation decreases with higher concentrations. However, 

the opposite was observed arising questions about the possibility of methodological errors 

disturb the result considerably. Due to time constraints re-acquisition of the experiment could 

not find place.  

 

 

Figure 30 Proliferation of HEK293 cells in response to Ellagic acid, Rumic acid, Dinatin 7-

glucuronide, and Plantainoside D using MTT assay. Figure shows three replicates. 
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Figure 31 Proliferation of CACO-2 cells in response to Ellagic acid, Rumic acid, Dinatin 7-

glucuronide, and Plantainoside D using MTT assay. Figure shows three replicates. 

 

 

  

Figure 32 proliferation of HEK293t cells in response to Ellagic acid, Rumic acid, Dinatin 7-

glucuronide, and Plantainoside D using MTT assay.  Figure show three replicates 

 

When seeding the cell cultures, 6 wells in the 96-well plate were not exposed for the substances, 

and these were used as controls. As shown in table 5 all three cell lines had variation in the 

control well, but the biggest variation was observed in HEK293t cell line. Ideally, the control 

values are supposed to have similar values. All graphs start with the mean value of all 6 controls.  

Table 5 Absorbance at 590nm, mean value and standard deviation for control values in 

HEK293, CACO-2, and HEK293t cell lines  

 HEK293  CACO-2 HEK293t 

Controls 1,106 0,766 0,418 

 1,093 0,708 0,384 

 1,104 0,657 0,392 

 0,852 0,799 0,732 

 0,772 0,807 0,423 

 0,752 0,552 0,450 

Mean 0,095 0,715 0,467 

Standard deviation  0,175 0,098 0,132 
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4. Discussion  

4.1 Specific aim 1   
Exploiting mass cytometry, this study identified multiple blood immune cell subsets in SARS-

CoV-2 infected patients 6 months post-infection. Mainly, populations that showed alterations 

in the study group have been focused on. Previously few available studies have investigated 

mass cytometric analysis with only extracellular markers on SARS-CoV-2 infected patients. In 

addition, very little is known about unique aspects in SARS-CoV-2 pathogenesis and much of 

the published data suffer from internal and external thorough validation.  

Heterogenicity among individuals found in this study is highly believed to be SARS-CoV-2 

specific. Looking at, age-related differences in the immune system data shows homogeneity in 

accordance with science and already knowledge about the immune system. Other factors, such 

as disease history, weight, and medication, can affect the immune system and recovery after 

SARS-CoV-2 infection.  

Comparing the control group and the patient group, no significant differences could be seen in 

any of the parent populations, but in some subpopulations, differences were found. CD4+ central 

memory and gamma delta T cell subset altered non significantly. For CD4+ central memory 

cells, we saw a large spread in the data that came from three samples in the patient group that 

showed relatively low frequencies of CD4+ central memory cells. In addition, one of these 

samples had an extremely low total cell number (total cell number: 19 710 cells).  

Rodriguez et. al. 2020 (64) have reported that CD127+ memory CD4+ cells have a decreasing 

pattern 26 days post-infection. Findings from our study show the opposite with slight increased 

CD4+ central memory cells which are in accordance with Dan et. al 2021 (65). These findings 

suggest that CD4+ central memory cells increase after the acute and early phases. Studies have 

shown that CD4+ T cells are affected by lymphopenia, and severe cases have lower levels of 

total lymphocytes, such as CD4+ T cells, CD8+ T cells, and B cells (Wang et al 2020, (66)). If 

any of our patients did suffer from lymphopenia, our data suggest that the lymphopenia does 

not remain post 6 months. Previously Silvin et. al. 2020 (67) have found that the overall 

monocyte population was non-significant between healthy controls and patients when the 

infection occurs. However, looking into subsets significant differences were observed. In 

accordance with their findings, we disclosed that CD14-CD16+ non-classical monocytes had a 

slightly lower frequency in the patient group than control group, although it was not significant. 

CD16+ monocyte decreases are SARS-CoV-2 specific since CD16+ monocytes have previously 

been reported to be dominant in bacterial diseases and viral infections. (68)  
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In classical monocytes, there were no differences between the patient group and the control 

group. Classical monocytes have previously been described to be lower in the acute phase of 

COVID-19 but showing elevating concentrations in the recovery phase (Rodriguez et.al 2020, 

(64)). Increased classical monocytes indicate that the monocytes go back to their initial 

concentrations 6 months post infections. Although no alteration between the patient group and 

healthy control was observed in our data, a variation between individuals was observed. These 

variations can be caused by genetic variation between individuals and low cell count in some 

of the samples. Variation in the human immune system due to genetic variations generally and 

in COVID-19 needs to be investigated (69).  

In other viral infection, γδ T cells tend to increase in acute viral infections, but in COVID-19 

patients this cell subtype has shown decreased frequencies, suggesting that γδ T cells are 

affected in different ways depending on the virus (40). Rodriguez et al 2020 showed increase 

frequencies of different subtypes of γδ T cells, suggesting recovery of γδ T cells after 1 month 

(64). Normally γδ T cells are approximately around 5% of the peripheral blood (70), in our data 

shows around ~1% median value of γδ T cells in peripheral blood, which is lower, and thereby 

suggest not fully recovery of the immune system. Looking at γδ T cell frequencies (figure 22) 

in moderate and severe cases recovery among severe patients seems to be slower. In the mild 

group, one sample that had initially low total cell count shows remarkably elevated frequencies 

(>0.45).  

Similarly, to Rodrigues et al 2020, we experienced high variating data in both conventional and 

plasmacytoid dendritic cells. In our data, we experienced high variation between our controls 

and patient group, which reflects issues with low total cell numbers in samples caused by debris.  

B cells in convalescent patients showed heterogenicity and lack of similar trends within the 

individuals, making it difficult to conclude whether the B cell subsets are restored 6 months 

post-infection. Rodriguez et. al. 2020 and Shuwa et. al 2021 reported a decreasing trend in 

unswitched memory B cells in contrast with increasing trend in switched B cells, which is in 

line with findings in this study with equality frequencies in patients and healthy controls (64, 

71). We experienced wide heterogenicity within individuals for switched B cell frequencies, 

suggesting recovery is affected by other factors, such as genetic variation, severity, 

comorbidities etc., then only time. Wide heterogeneity among individuals in the same group 

also indicates that COVID-19 patients should be subdivided based on the lymphocyte 

phenotypes and then compared in order to find clear similarities.  
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Next, we investigated age differences among the study group to strengthen our theory about 

SARS-Cov-2 induced heterogeneity within our data. CD8+ naïve T cells and naïve B cells were 

significantly lower in higher age groups. It is previously known that naïve cells decrease 

proportionally with increased memory cells and age (1). Other research groups that investigate 

immune cells in peripheral blood of COVID-19 patients, such as Newell et. al. 2021 also 

experienced heterogeneity in SARS-CoV-2 convalescence patients (72).   

Taken together, we expected SARS-CoV-2 infected patients to have recovered from COVID-

19 and thereby have similar immune system composition as non-infected SARS-CoV-2 

individuals. However, we report differences in adaptive immune cell subsets, such as CD4+ 

central memory T cell and switched memory B cells 6 months post-infection. Lack of 

homogeneity in different papers challenges making any concluding remarks. 

4.1.1 Mass cytometry versus flow cytometry  

Mass cytometer is an explorative method that can detect more than 40 targets with a single cell 

panel and can analyze a broad range of immunological aspects. Using more than 17 markers in 

flow cytometer analysis is relative seldom, due to issues with spectral overlap. Running flow 

cytometry can risk of giving autofluorescence and spectral overlap. In comparison with the flow 

cytometer, mass cytometer does not have these factors affecting the data, and thereby has a 

lower range of background noise. 

The range of intensities differs in both methods, whereas the metal isotopes in mass cytometry 

has almost the same signal intensity, while in flow cytometry the different fluorophores have a 

broader range of intensities. Complexity of the panel is affected by the signal intensity, but 

detection of low expressed cell populations/molecules. Resulting that mass cytometry is the 

preferred method in explorative experiments, while flow cytometry is preferred to investigate 

further specific targets/molecules. However, events in massy cytometry get lost before it 

reaches the detector, making it a less sensitive method compared to flow cytometry.  

Using mass cytometry limits some information that can be provided by using flow cytometry. 

Firstly, in mass cytometry analysis, the information about the granularity size of the cells cannot 

be provided since measurement of forward scatter and side scatter is not possible. Secondly, 

fluorophores used in flow cytometry have higher sensitivity than the lanthanide metals that are 

used in mass cytometry. Thirdly, mass cytometric measurements limit 500 cells per second 

resulting in a more time-consuming technique. Lastly, in mass cytometry sorting of the cells is 

not possible, since all biological material is removed before the analysis (54). Furthermore, 
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mass cytometric analysis is relatively expensive resulting in low availability of mass 

cytometers.  

4.1.2 Methodological considerations  

Large-scale data experience challenges regarding quality control, batch effect, and laboratory 

variability. Impact on this on data in this study, was highly replicable in each sample’s total cell 

count.  In addition to the loss of cell events due to poor fixation and lysis of the cells, removing 

debris can cause loss of cell events, along with doublets and bead normalization. In some 

samples, extremely low total cell count (> 20 000) was identified, which can affect some 

populations frequencies in the analysis.  

4.1.2.1 Contamination/background noise 

Contamination/background noise: In biological materials metal isotopes from the rear-earth 

metals should not occur, resulting in no endogenous cellular background. Sources of 

contamination that can interfere with the analysis can be Barium (137-138 Ba), Iodide (127 I), 

and Lead (208Pb). Sources of Barium can be contaminated bovine serum albumin (BSA) and 

some lab and sample preparation equipment like rubber. Core Facility for Flow cytometry has 

discovered that latex-free gloves can be a source for Barium. Iodide contamination usually 

comes from remnants of salts from reagents preparing samples, like PBS. samples contaminated 

with lead have usually been processed with reagents prepared and stored in glass ware. To 

reduce the risk for contamination, choice of reagents, lab equipment, and washing procedures 

were chosen with high precautions.  

4.1.2.2 Antibody titration: 

Minimizing the spillover, antibodies were titrated to distinguish the optimal staining 

concentrations benefiting experimental conditions. The premade antibody panel used in this 

project had already titrated most of the antibodies. Adjustments for IgA (Chapter 2.1.2.4) was 

performed, and antibodies that were sensitive to fixation were removed. However, IgA was 

adjusted and titrated it was seen to be too high concentration of IgA in the analysis. This is most 

likely caused by errors while pipetting when titrating or making the antibody cocktail. 

Although, high concentrations of IgA were observed, it gave low impact on the main analysis 

due to the labeling hierarchy/gating.  

4.1.2.3 Freezing and thawing of cells 

Massive sample handling with limited staff during the national lockdown in 2020 due to the 

pandemic resulted in variable quality of samples of the cryopreserved peripheral blood 

mononuclear cells (PBMCs). Due to the large variability of sample quality of the cryopreserved 
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PBMCs, samples acquired when participants had COVID-19 (timepoint zero) could not be 

analyzed and had to be excluded from this study. Not having data from timepoint zero has 

caused difficulties to conclude whether recovery among the patients happens and to understand 

the heterogenicity.  

Using the fixed whole blood preservation leads to accurate replication of all cell composition 

in the peripheral blood. Cryopreserving PBMC using density separation results in altered 

basophils and eosinophils and excluding neutrophils that can not be frozen and thawed without 

massive cell death (73, 74). Whole blood preservation requires less blood volume which is 

beneficial in pediatric and critically ill patients. Therefore, the method of choice for sample 

gathering 6 months post-infection was changed to stable fixation of whole blood.  

Thawing the fixed whole blood cells was done rapidly at 37oC water bath, to regain cell viability 

and recovery by reducing the chances for recrystallizing and osmotic stress (75). While 

removing red blood cells from the fixated whole blood it was experienced problems in 

achieving fully white pellet in some samples. These samples had red pellet even after 

undergoing the lysis process twice (CP-HUS 57, PAS-HDS 22, PAS-BLV 252, PAS-BLV 

0253, PAS-BLV 0032, PAS-HDS 01, PAS-HDS 21, PAS-BLV 069, PAS BLV 0152), arising 

question about poor mixing of stabilizer in the fixation process or plasma factors, such as 

polymerized fibrin affecting the lysis process. However, COVID-19 disease-associated 

coagulopathy was excluded as a possibility since the same occurrence was found in the healthy 

controls.   

Removing the remaining red blood cells with sorting was tried in the methodology development 

but resulted in low numbers of total cell count, and therefore excluded from the main 

experiment.  In the sample preparation, it was experienced struggles to achieve a completely 

white pellet, even after washing several times. Having red blood cells in the sample results in 

debris that disturb the analysis with giving a higher fraction of poor/bad events will occur.  
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4.2 Specific aim 2  
Effects of ellagic acid, rumic acid, dinatin 7-glucuronide, and plantainoside D on cell 

proliferation were investigated by MTT assay on HEK293, HEK293t, and CACO-2 cells in 24 

hours incubation period.  

In all three cell lines, our data (figure 30, 31, and 32) suggest EA had a dose-dependent response 

effect on the metabolic active cells. In the CACO-2 cells, the other tested substances had a 

homogenous absorbance value, suggesting low impact of tested drugs on the cells. An overall 

overview on the standard deviation (supplementary) for all substances tested in CACO-2 cell 

lines, shows that triplicates are not varying a lot. The opposite is discovered in HEK293 and 

HEK293t cell lines, where a bigger difference between the triplets, along with the control values 

was seen, resulting in difficulties to make any concluding remarks whether EA, RA, D7G and 

PD have an influence on the cells.  

Although EA has previously been reported (76) to be soluble in DMSO, it was experienced 

issues with solubilization in this study. Studies, such as Byrne et. al, 2008 have shown that EA 

has poor aqueous solubility characteristics, suggesting DMSO would be a good choice of 

solvent (77). However, the data from this study replicates segmentation of the compound, 

suggesting poor solubilization of ellagic acid in DMSO. Reasons behind segmentations 

occurring are still unknown, but ideally, ellagic acid with same concentrations should have been 

tested again with DMSO or another solvent, but due to lack of time this could not be conducted.  

Cell-based assay, such as MTT assay, have numerous flaws and limitations. In MTT assay 

formation of water insoluble purple formazan crystals from tetrazolium salt, occur in live cells 

with the help of mitochondrial succinate dehydrogenase enzyme. However, it has previously 

been reported that some phytochemicals can affect mitochondrial succinate dehydrogenase with 

can give inconsistent results (78, 79). Phytochemicals used in this study is newly developed, 

and therefore limited studies have been published regarding their effect on MTT assays. 

However, previous studies (Li et al., 2018, Kumar et al., 2016) on determination of cell 

proliferation after EA exposure have shown that EA have a dose- and time-dependent response 

(80, 81). Other compounds tested in this study are relevantly new compounds that have limited 

studies available. No previously studies were found where MTT assay was used for detecting 

cytotoxicity on cells using these compounds, arising question whether a potential interaction 

might be true.  
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In the MTT assay exponentially growing cells metabolic activity are measured, but exposure of 

substances on the cells gives a possibility for delayed growth and metabolic activity. This 

statement arises questions about whether the substances tested in this study perhaps have a time-

dependent effect. Therefore, other timepoints, such as 48h, 72h and 96 hours, should have been 

measured. In this project MTT assay was supposed to be confirmed with other apoptosis assays, 

such as Annexin staining assay. In that way apoptotic cells could be measured and subdivided 

between early and late apoptotic cells. Another advantage with Annexin assay, is that this 

method does not rely on cell density in the same manner as MTT assay for detection of apoptotic 

cells. This would eliminate the problem with heterogeneous cell number observed in this study 

(Table 5).   

4.2.1 Methodological consideration 

Proliferation of cells can give a good indication of tolerance of chemical substances. Using 

MTT assay can be used as first step in determining the drug effect of ellagic acid, rumic acid, 

dinatin-7 glucuronide and plantainoside D on different cell types. In this study it has not been 

showed clear results, which might be the result of using MTT assay. MTT assay has large 

variation, resulting in that MTT assay do not have the ability to detect small changes in the cell 

viability/proliferation (82). Chemical compounds can have a different effect, such as 

cytotoxicity, depending on the cell density, since cell density can correspond with oxidative 

stress resistance. (83) 

The number of cells and cell density in each well are critical for the MTT assay and for detecting 

drug toxicity. Accordingly to the manufacture (84), optimal seeding density is achieved with 

around 1 x 104 cells per well, however in this study the number were chosen to be  3 x 104. 

Using a higher number of cells, as recommended from the manufacture, was based on the 

evaluation for reaching optimal confluency after 24 hours.  

Counting cells with a hemocytometer is a subjective approach, resulting in higher variation in 

counting technique. Although using a hemocytometer is a time-consuming technique compared 

to other methods available on the market, it is a low-cost technique. Adherent cells tend 

aggregate within few minutes, leading to cells not being equally distributed in the suspension, 

which can lead to influence on the suspension homogeneity. This leads to challenges during 

manual counting and while breaking up the clusters without effecting the cell viability. To 

overcome these challenges suspension was gently mixed with a pipette for increasing the 

homogeneity.  
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5. Limitations of the study  

5.1 Specific aim 1  
While carrying out this research, different factors limited the study. The study population size 

was a compromise between the ability to identify differences and feasibility, such as expensive 

reagents and laboratory approaches. More SARS-CoV-2 infected individuals that had been 

discharged from the hospital should have been included in the cohort. Having few individuals 

can affect the statistical significance of individual parameters negatively.  

Healthy individuals were used as the control group in this study. The number of healthy controls 

were limited since the ethical approval of the project was connected to a bigger project which 

is limited to healthcare workers. Although, relevant information about the healthy control, such 

as age and sex were gathered, information about negative COVID-19 test were lacking, arising 

questions about slight chances that unknowingly these individuals have been exposed to SARS-

CoV-2 and developed immune responses.  

Limited information regarding some clinical parameters resulted in difficulties to subdivide the 

cohort groups further. In participants characteristics (table 1), comorbidities and BMI are 

considered as one parameter showing an unclear understanding how these to parameters effect 

the immune response separately. Details about comorbidities and how this parameter was 

defined by the samplers remains unknown. Other parameters such as medical history and 

fatigue are also limited in this study.  

Collection of blood samples for the project were done over time and we wanted to analyze them 

together, the samples were therefore cryopreserved within an hour after collection. As 

mentioned before blood samples were fixed whole blood and ideally it will not affect the cell 

recovery and intracellular signaling. However, we experienced that some of the samples had a 

thick consistency after thawing, suggesting that the fixation solution was not mixed properly. 

Patient samples had a longer cryopreservation time than the healthy controls giving a higher 

inter-individual variation in terms of storage.  

For the cytometric analysis, some limitations occurred. Firstly, we experienced low numbers of 

cells in some patients that effect on the analysis of some cell populations (e.g., classical 

monocytes). Secondly, wide heterogeneity among the group resulted in challenges determining 

clear differences dependent on disease severity. Finally, analyzing whole blood gives high 

frequencies of granulocytes and difficulties to separate them occurs when putting CD66b and 
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TCRγδ on the same metal tag. Therefore, looking at the γδT cell population some biased results 

might be expected.  

In this study whole blood was studied, but primarily COVID-19 is a pulmonary disease, and a 

more accurate overview of the immune responses will be achieved with alveolar samples. 

However, in this study peripheral whole blood was analyzed.  

5.2 Specific aim 2  
For the MTT assay the biggest limitation was time restrictions. Due to the pandemic, lab work 

started later than expected, resulting in no time for acquisition of plate replicates, especially 

with Ellagic acid the analysis should have been redone. However, this is an ongoing study that 

will proceed and analyze in-depth potential natural compounds that can affect SARS-CoV-2.  
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6. Future perspectives 

6.1 Specific aim 1  
Infection with SARS-CoV-2 is a fast-mutating virus that has resulted in fatal complications 

such as severe acute respiratory syndrome and in worst cases death. Worldwide an enormous 

investigating is ongoing to understand the immune response in human against SARS-CoV-2. 

This is important for developing treatments and vaccines that has good effect in the existing 

and mutated version of SARS-CoV-2. The results presented in this thesis aim to increase the 

understanding of the immune responses against the virus and to find potential candidates for 

drug treatment against the virus. However, some questions about immunity development 

against the virus remains unclear and unanswered. In addition, therapeutic strategies need to be 

determined and explored.  

Based the result of this project, further studies should include analyzing the longitudinal blood 

samples gathered up to 9 months and 12 months post SARS-CoV-2 infection of the participants. 

Knowing the immunological aspect after 9 and 12 months will give an impact on how the 

immunity will change and show a better understanding.  

Another interesting angle of this project would have been to compare the immunological 

development in SARS-CoV-2 infected patients with individuals that has been infected with 

some of the mutated variants of the virus. To compare these groups will give an insight on the 

immunological differences and a better understanding on how the treatments can differ for the 

native virus and mutated virus.  Include COVID-19 vaccinated individuals and compare the 

differences in the immunity with the group included in this study would also have been 

interesting.  

Using peripheral blood in this study is due to availability and advantages regarding biomarker 

discovery. However, to fully understand COVID-19 pathophysiology it is important to 

investigate the active site of the disease, which in this case will be the lungs. Imaging mass 

cytometry analysis of lung biopsies will provide multiple markers visualization in tissue 

sections. Thus, interplay of cell subsets involved in COVID-19 can be discovered.     

6.2 Specific aim 2  
In this study the MTT assay approach to find a potential COVID-19 drug treatment were limited 

and did not give a clear understanding if the compound tested had a cytotoxic on the cell 

cultures. However, what have been done with the testing of potential drugs against COVID-19 

in this study is a start of a bigger study that includes testing at least 19 naturally extracted 
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substances received from Torgils Fossens group Natural Products Chemistry and 

Pharmacognosy.  

Although, Ellagic acid was tested in this study, further studies must be done considering this 

compound. In this study issues regarding the solvent occurred and gave a biased result since 

the active compound most likely segregated. Changing the solvent and analyzing with MTT 

assay again will show a better understanding if the compound has a cytotoxic effect on human 

cells. Importantly, this study only included testing on 24h exposure, longer exposure need to be 

analyzed.  

In addition, it will be interesting to explore whether the compounds show different effects using 

other assays, such as Annexin Assay. After finding the potential cytotoxic effect for Ellagic 

acid, Rumic acid, dinatin 7-glucorunide and plantainoside D, these compounds need to be tested 

against the SARS-CoV-2 virus. This can for example be done with qPCR.  

Cells used in this study originated from primary cell cultures. Cell lines subcultured from 

parental tissue can have generated genetic and phenotypic alterations during the process leading 

to loss of important characteristics from the original tissue. Importantly, cells that differs from 

original tissue can provide false negative or false positive findings due to low resemblance of 

the in-vitro environment. For future projects this should be considered, and effects from the 

compound should be double-checked with primary cells.  
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Conclusion  
In COVID-19 recovered patients it was found increased trend of CD4+ central T cells and 

switched B cells. Along with data suggesting not fully recovery of γδ T cells and CD14-CD16+ 

monocytes.  

Taken together, differences in adaptive immune cell subsets were found, in CD4+ central 

memory T cell and switched memory B cells differences between healthy controls and SARS-

CoV-2 infected patients were found 6 months post-infection. However, we experienced a 

heterogenicity among the study group that we believe is SARS-CoV-2 specific.  

For the MTT assay we could not conclude whether the Ellagic acid, rumic acid, dinatin 7-

glucuronide, and Plantainoside D had any effect on HEK293, HEK293t and CACO-2 cells.  

Further studies must be done to get better understanding.  
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Supplementary  
Table S1 Raw data, standard deviation, coefficient of variable for triplicates for Ellagic acid 

in HEK293t  

Concentration 

(mM) 

Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0 - - 

10-6 0,508 0,441 0,464 0,471 0,034 13,835 

10-5 0,709 0,505 0,558 0,591 0,106 5,580 

10-4 1,007 0,708 0,926 0,880 0,155 5,693 

10-3 1,105 1,048 1,018 1,057 0,044 23,918 

10-2 1,191 1,174 1,154 1,173 0,019 63,336 

0,1 0,826 1,072 1,034 0,977 0,132 7,380 

1 0,517 0,49 0,494 0,500 0,015 34,336 

10 0,329 0,341 0,36 0,343 0,016 21,965 

 

Table S2 Raw data, standard deviation, coefficient of variable for triplicates for Rumic acid in 

HEK293t  

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0 0,000 - 

10-6 - - - - - - 

10-5 0,461 0,479 0,472 0,471 0,009 51,871 

10-4 0,608 0,658 0,683 0,650 0,038 17,012 

10-3 1,017 0,986 1,094 1,032 0,056 18,564 

10-2 1,17 1,137 1,035 1,114 0,070 15,829 

0,1 1,207 1,26 1,07 1,179 0,098 12,025 

1 1,143 1,139 0,968 1,083 0,100 10,844 

10 1,196 1,123 1,078 1,132 0,060 19,014 

 

 

 

 

 

 

 

 

 



Side 70 av 74 
 

Table S3 Raw data, standard deviation, coefficient of variable for triplicates for Dinatin 7-

Glucuriode in HEK293t 

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0 0,000 - 

10-7 0,31 0,377 0,324 0,337 0,035 9,536 

10-6 0,387 0,381 0,422 0,397 0,022 17,913 

10-5 0,526 0,525 0,59 0,547 0,037 14,688 

10-4 0,898 0,958 0,939 0,932 0,031 30,382 

10-3 1,077 1,146 1,013 1,079 0,067 16,217 

10-2 1,016 1,2 0,921 1,046 0,142 7,372 

0,1 0,921 0,981 0,799 0,900 0,093 9,708 

1 0,803 0,773 0,71 0,762 0,047 16,054 

 

Table S4 Raw data, standard deviation, coefficient of variable for triplicates for plantainoside 

D in HEK293t 

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0,000 0,000 - 

10-6 0,949 0,545 0,614 0,703 0,216 3,252 

10-5 1,013 0,785 0,784 0,861 0,132 6,524 

10-4 1,031 0,999 0,97 1,000 0,031 32,774 

10-3 0,924 0,926 0,838 0,896 0,050 17,835 

10-2 0,936 0,934 0,751 0,874 0,106 8,224 

0,1 0,67 0,766 0,358 0,598 0,213 2,803 

1 0,287 0,329 0,325 0,314 0,023 13,532 

 

Table S5 Raw data, standard deviation, coefficient of variable for triplicates for Ellagic acid 

in HEK293 

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0 0,000 - 

10-6 1,136 0,872 1,004 1,004 0,132 7,606 

10-5 1,182 0,971 1,039 1,064 0,108 9,879 

10-4 1,167 0,938 1,019 1,041 0,116 8,968 

10-3 1,053 0,826 0,494 0,791 0,281 2,814 

10-2 1,041 0,774 0,632 0,816 0,208 3,928 

0,1 1,142 0,819 0,423 0,795 0,360 2,207 

1 0,769 0,57 0,432 0,590 0,169 3,484 

10 0,302 0,308 0,267 0,292 0,022 13,202 
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Table S6 Raw data, standard deviation, coefficient of variable for triplicates for rumic acid in 

HEK293 

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0 0,000 - 

10-6 - - - - - - 

10-5 1,148 1,279 1,238 1,222 0,067 18,231 

10-4 1,08 1,241 1,348 1,223 0,135 9,066 

10-3 0,942 1,176 1,259 1,126 0,164 6,848 

10-2 0,942 1,067 1,136 1,048 0,098 10,661 

0,1 1,001 1,078 1,223 1,101 0,113 9,764 

1 1,061 1,15 1,252 1,154 0,096 12,078 

10 1,344 1,35 1,462 1,385 0,066 20,844 

 

Table S7 Raw data, standard deviation, coefficient of variable for triplicates for Dinatin 7-

glucuronide  in HEK293 

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0 0,000 - 

10-7 1,147 1,323 1,152 1,207 0,100 12,049 

10-6 1,352 1,209 1,223 1,261 0,079 16,000 

10-5 1,382 1,24 1,445 1,356 0,105 12,910 

10-4 1,261 1,382 1,328 1,324 0,061 21,837 

10-3 1,062 1,314 1,123 1,166 0,131 8,871 

10-2 1,283 1,15 1,188 1,207 0,069 17,619 

0,1 1,286 1,107 1,172 1,188 0,091 13,115 

1 1,193 1,129 1,149 1,157 0,033 35,338 
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Table S8 Raw data, standard deviation, coefficient of variable for triplicates for plantainoside 

D  in HEK293  

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0,000 0,000 - 

10-6 - - - - - - 

10-5 0,908 0,751 0,752 0,804 0,090 8,894 

10-4 0,997 0,857 0,826 0,893 0,091 9,805 

10-3 1,061 0,886 0,899 0,949 0,098 9,730 

10-2 1,242 1,209 1,094 1,182 0,078 15,209 

0,1 1,384 1,34 1,231 1,318 0,079 16,737 

1 1,339 1,195 1,184 1,239 0,086 14,329 

10 1,343 1,243 0,977 1,188 0,189 6,278 

 

Table S9 Raw data, standard deviation, coefficient of variable for triplicates for ellagic acid in 

CACO-2  

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0 0,000 - 

10-6 0,827 0,793 0,842 0,821 0,025 32,687 

10-5 0,818 0,712 0,599 0,710 0,110 6,480 

10-4 0,819 0,699 0,817 0,778 0,069 11,327 

10-3 0,677 0,7 0,864 0,747 0,102 7,325 

10-2 0,598 0,526 0,754 0,626 0,117 5,371 

0,1 0,38 0,412 0,648 0,480 0,146 3,279 

1 0,475 0,488 0,651 0,538 0,098 5,486 

10 0,361 0,331 0,374 0,355 0,022 16,113 

Table S10 Raw data, standard deviation, coefficient of variable for triplicates for Rumic acid 

in CACO-2 

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0 0,000 - 

10-6 - - - - - - 

10-5 0,672 0,599 0,595 0,622 0,043 14,349 

10-4 0,688 0,541 0,618 0,616 0,074 8,373 

10-3 0,709 0,633 0,681 0,674 0,038 17,544 

10-2 0,709 0,65 0,649 0,669 0,034 19,482 

0,1 0,7 0,612 0,638 0,650 0,045 14,377 

1 0,747 0,714 0,721 0,727 0,017 41,830 

10 0,831 0,861 0,836 0,843 0,016 52,428 
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Table S11 Raw data, standard deviation, coefficient of variable for triplicates for Dinatin 7-

glucuroide in CACO-2  

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0 0,000 - 

10-7 0,834 0,74 0,779 0,784 0,047 16,608 

10-6 0,83 0,804 0,684 0,773 0,078 9,921 

10-5 0,726 0,644 0,7 0,690 0,042 16,466 

10-4 0,75 0,677 0,691 0,706 0,039 18,223 

10-3 0,782 0,756 0,72 0,753 0,031 24,175 

10-2 0,763 0,762 0,778 0,768 0,009 85,649 

0,1 0,757 0,73 0,753 0,747 0,015 51,241 

1 0,729 0,711 0,732 0,724 0,011 63,745 

 

Table S12 Raw data, standard deviation, coefficient of variable for triplicates for 

plantainoside D in CACO-2  

Concentration Replicates Mean Standard 

deviation  

CV 

1 2 3 

0 0 0 0 0 0,000 - 

10-6 - - - - - - 

10-5 0,763 0,708 0,515 0,662 0,130 5,083 

10-4 0,784 0,602 0,493 0,626 0,147 4,260 

10-3 0,709 0,554 0,699 0,654 0,087 7,539 

10-2 0,695 0,583 0,661 0,646 0,057 11,256 

0,1 0,678 0,699 0,609 0,662 0,047 14,060 

1 0,843 0,737 0,595 0,725 0,124 5,826 

10 0,904 0,891 0,721 0,839 0,102 8,213 

 

 

 

 

 

 

 

 

 

 



Side 74 av 74 
 

Table S13 Antibody panel information  

Antibody Clone  Metal  

CD45  HI30 89Y 

CD57 HCD57 142 Nd 

CD45RA HI100 143 Nd 

CD4 RPA-T4 145 Nd 

IgD IA6-2 146 Nd 

CD20 2H7 147Sm 

IgA Polyclonal 148Nd 

CD25  2A3 149Sm 

CD123 6H6 151Eu 

CD66b 80H3 152Sm 

TCRg/d 11F2 152Sm 

CD62L DREG56 153Eu 

CD366 D5D5R 154Sm 

CD27  LI28 155Gd 

CD11c BU15 159Tb 

CD14 RMO52 160Gd 

CD152 14D3 161Dy  

CD8 RPA-T8 162Dy 

CD56 NCAM16.2 163Dy 

CD161 HP-3G10 164Dy 

CD45RO UCHL1 165Ho 

CD11b ICRF44 167Er 

CD19 BTG 169Tm 

CD3 UCHT1 170Er 

CD38 HIT2 172Yb 

CD141 1A4 173Yb 

HLA-DR L243 174Yb 

CD279 PD-1 175Lu 

CD127 A019D5 176Yb 

CD16 3G8 209Bi 

 


