

1

University of Bergen

Department of linguistic, literary and aesthetic studies

DIKULT350

Master’s Thesis in Digital Culture

Fall 2020

Software as an art

The aesthetic influence in software development

Jostein Enes

2

Abstract Norwegian

Denne master oppgava bruker litteratur og intervjuer til å se nærmere på hvordan

estetikk og system utvikling hengersammen og påvirker hverandre. Oppgava tar

utgangspunkt i Warren Sack sin bok "The Software Arts". Sack argumentere i denne

boka at de liberal arts er kjerna i databehandling. Måten Sack argumentere for dette

er ved å se på historie og språk (programmering). Denne oppgava argumentere at

de liberal arts er et for stort tema til å kunne argumentere imot og at man må se

nærmere på hver enkel bit innad i det. Derfor omhandler denne oppgava estetikk i

systemutvikling, systemhåndtering, programmering og programvare design.

Målet er å finne ut hva de som jobber med dette tenker og føler for å kunne se

hvordan de påvirker produktet som blir lagd. Oppgava gir også overblikk over

hvordan dette har endret seg i tritt med samfunnet, fra et produktfokus mot et

brukerfokus, på rundt 2000 tallet.

Oppgava viser til at det finnes noe estetisk vakkert med systemutvikling og emnene

funnet i det. Det blir også argumentert for at det er mer til systemutvikling enn

programmering, noe som gjør at andre utdanninger som ikke er innenfor data har en

plass i utviklingen av programvare.

Metodene som oppgava brukte, gjorde at argumenter kunne begrunnes seg i forsker

artikler med kommentarer ifra utviklere rundt hva de mente er estetisk med

systemutvikling. Funnene som ble gjort viser at det er estetiske attributter med

systemutvikling. Ett eksempel er utvikleres positive følelser rundt å lage et produkt

som brukarene trenger og får nytte av.

3

Abstract English

This thesis uses literature and quantitative interviews to look closer at how aesthetics

and software development is connected. The thesis springs of from Warren Sacks

claim, in “The Software Arts”, that at the centre of computing is the liberal arts. In this

book Sack only focused on language and programming something that this thesis

found lacking. Since aesthetics is a large part of humanities and the liberal arts, it

can therefore be argued that aesthetics is also a part of the centre of computing.

Because of this this thesis is investigating not just at programming but software

management and software design as well, to see where aesthetics can be seen and

how it has affected software development. The thesis therefore gives definition and

explanation to what aesthetics is in the three topics just mentioned, programming,

software management and software design. Before using these definitions to create

a fourth definition around the aesthetics of software development.

The thesis is trying to show the aesthetic beauty of software development and

argues that there are more to software development then coding and mathematics. It

also takes a closer look at outside forces that has helped change what developers

have found aesthetic through the last few decades.

The method this thesis used allowed the arguments to build on scientific articles and

check these up towards what developers in businesses thought about aesthetics.

The findings were that the developers in the businesses showed a great interest in

some aesthetic attributes, specifically working to create a good product for the user

gave them positive feelings.

4

Acknowledgments

Before starting this thesis, I would like to give my thanks to Daniel Jung, my advisor

who helped me create the framework of this thesis. As well as Nicholas Montfort who

gave me advises in the coding chapter of this thesis. Without them this thesis would

have been a lot harder to write then what it was.

I would also like to give thanks to the person that has been my mental note board,

my mother. She has been there and had to survive all my ramblings about aesthetics

and software development, and it is thanks to her that I’ve been able to see the

larger change in society and finish this thesis with my mind almost intact.

There are also my fellow students at Digital Culture. Thanks for the student meetings

we have had throughout the semester, it has been good to talk and see some faces

in the pandemic and know that we are all in this boat together.

I would like to thank my better half. She might be disagreeing that she has helped

with this thesis, but the fact that she is there for me no matter what pushes me to do

better.

Lastly, a thank to you, reader of this thesis. I hope that my thoughts, ramblings and

findings might be of use to further studies on culture, aesthetics and software

development.

5

Table of Content

Abstract Norwegian .. 2

Abstract English ... 3

Acknowledgments .. 4

Introduction .. 7

Background .. 10

1. Definitions and methods .. 11

1.1 Definitions ... 12

1.1.1 Aesthetic definition .. 12

1.1.2 Liberal Arts .. 17

1.1.3 Software development .. 18

1.1.4 Software Design .. 19

1.2 Methods .. 20

1.2.1 Interview .. 20

1.2.2 Literature ... 23

1.3 The Software Arts ... 25

2. Deep dive into system development .. 28

2.1 Software management ... 29

2.1.1 Traditional methodology .. 29

2.1.2 Agile methods.. 32

2.1.3 Developers view on managment ... 35

2.1.4 The Cultural Change ... 39

2.2 Aesthetics in Coding ... 42

2.2.1 Structure in Code .. 42

2.2.2 Work languages vs Machine languages .. 48

2.2.3 Beauty in Code .. 51

2.3 Software Design ... 55

6

2.3.1 User Experience .. 55

2.3.2 Universal design .. 61

2.3.3 User Interaction Design ... 64

2.3.4 Aesthetics of software design .. 67

2.4 Conclusion ... 71

2.4.1 Aesthetics in software development .. 71

2.4.2 Research question .. 73

2.4.3 What does aesthetics bring to software development 75

2.4.4 Future Work... 76

Sources .. 78

Appendix A) “Interviews” .. 83

7

Introduction

This thesis topic is the aesthetics in software development and the research question

is “How has software development changed since it was introduced and in

what way has aesthetics been a part of that change?”

There are many reasons for this topic, but one of the main once is Warren Sacks

book “The Software Arts”. In this book he brings up that at the root of programming is

the liberal arts. This thesis argues that this claim is too broad of a statement and

nobody could argue against that. Instead, there are aspects of the liberal arts that

has had a stronger focus then others. Mathematics and science have been the

cornerstones of software development and programming. What Sack is really trying

to bring up is the discussion that humanities, philosophy and the fine arts has a part

here as well. The only part Sack looks at is programming.

This thesis is therefore focusing away from a purely programmer centric viewpoint,

and rather towards a software development one. There is more to software then just

programming. If one is to look at the “Arts” in software development, then it is

important to have an overview of it all. Because of the size of the thesis topic, the

specific topic that will be focused on is the aesthetic of software development. This is

a topic Sack did not touch on, but it would have brought much to his investigation of

programming as a literature.

Another topic that inspired this thesis is the cultural change that hit software

development in the early 2000’s. This thesis will look closer at the changes that

happened, why this change happened and how developer’s aesthetical judgment

has changed because of this. Few studies and thesis are looking at how the focus

change has affected the developers, but rather on what benefits one approach has

over the other. This thesis on the other hand, tries to see the developer and what

they want to gain from software development.

The thesis topic is closely linked to user experience for the end users as well as for

the developers of software. The research that has been done around this has often

been focused towards the users of the technology and not on the creators. This is

8

another reason that this thesis will be focusing primarily on the creators and their

view and thoughts on what they’re doing.

The way this will be done is by presenting what aesthetics are and how it changes

based on what topic is being looked at and who you ask. Then it will analyse the

qualitative interviews that have been done with developers and cross examining

these against the literature that has been found. Part one starts with looking at the

definitions that needs to be explained, these are aesthetics, software development

and liberal arts. From there it gives a rundown of the methods used to gather

information, literature search and quantitative interviews. Before lastly giving a

summary of “The Software Arts”.

In part 2 it looks closer at the aesthetics found in software development from two

viewpoints in four different parts of system development. Coding, User experience,

User interaction and Software management. One of the viewpoints is from Warren

Sack who views coding as closely related to literature, creativity and the “liberal arts”.

While the other point of view sees a more systematic description over how the

systems and machine works. This viewpoint believes that system development is the

same as creating any machine and needs a robust framework. We will also look at

how these views have changed since the introduction of the agile way of thought and

try to explain why these changes happened.

Specifically, for coding, we will be looking at how these viewpoints have changed

how coding is being done. As well as looking closer at how aesthetics has become a

tool in creating code, investigating code and reading code. We will also be analysing

Warren Sacks claims that coding and literature is closely related and see what the

interviewed programmers think about this.

User experience brings up the topic of how aesthetics helps with creating what we

call “good” experiences from software development. When you hear that most often

a picture of the graphics of the software or models comes to mind. What this thesis

will be arguing is that user experience and aesthetics is so much more than that. It

also embraces understandability of code, communication between different parts of

development, adaptability and creativity. Something that will be looked at closer in

the software design chapter.

9

User interaction on the other hand is, like the name suggests, about interaction. The

chapter will be investigating how interacting with code, people and design can be

aesthetic. Where user experience looks at the feeling you get from these topics, user

interaction is about how the software works and interacts with its users. Is the user

understanding the design without problems? Is the way the functions and code

works done in a way that allows you to quickly learn what it is doing? And so on.

Because the user experience and user interaction topics are so closely related,

these two topics is part of the software design chapter.

In Software management will be looking at the methods that have been used and are

being used for creating software. It will go deeper into the methods that agile

development has put forth and see how it creates a framework that allows for

aesthetic thinking and creation. We will also investigate what the project owner finds

aesthetic and what their thoughts are on the topics that were mentioned to the

developers and designers. How is aesthetics relevant for project owners and what is

their view on aesthetical topics for developers? Is one of the questions we will be

trying to find out. The reason that this is important to look at is that there has been a

conflict between management and developers before. The agile methodology was

the reaction to the power imbalance between management and developers. By

looking at the aesthetical differences, one can find out if this is still the case.

Lastly, there had to be some cuts and though calls on what should be part of the

thesis. Since the topic of aesthetics could be looked at from every single aspect of

software development and how it all fits together. The call was made too only focus

on the areas the interview objects mentioned and found the most important. This is

based on the questions asked and what they wanted to talk about. Therefore, the

focus the thesis became the four topics mentioned earlier, coding, user experience,

user interaction and software management.

10

Background

Before going into the thesis, I will give an introduction of where my viewpoint comes

from. The reason for this is that I have a bias from my education in system

development, something that might affect some of the interview questions that were

asked and what sources that were used. To mitigate this, I have been sending my

questions to the thesis advisor and used friends and family as sparring partners to

make it as unbiased as possible.

From the former mentioned education in system development I started the master

program in Digital Culture with a technical perspective. This perspective has

changed somewhat. As a developer you do not need to focus on the aesthetics of

what you’re doing, but as I now can see, it might be useful to understand its effects

so one can improve the work and culture surrounding development.

Another important fact I feel should be mentioned, is my passion for user experience

and user interaction. These are topics that I care deeply about and has been a

driving factor for me to investigate how aesthetics is being used by developers and

designers.

11

1. Definitions and methods

Part one of this thesis will be focusing on giving the reader an overview over the

methods and definitions that is needed to be able to follow along with this thesis.

This will be done by defining how this thesis will be using specific word and topics

like software development and aesthetic. Before explaining the method used to find

the information that will be used in part two.

12

1.1 Definitions

This chapter gives the definitions and how four different words and topic will be used.

First it explains what aesthetics will mean in this thesis, then it will be looking at

liberal arts. This is because of how often it gets mentioned in Sacks book. Thirdly

Software development, what is software development? Fourthly it explains what this

thesis means with the word software design.

1.1.1 Aesthetic definition

When someone mentions aesthetics, it is often associated with the fine arts, in form

of pictures, painting, sculptures and music. But what is aesthetics really? Immanuel

Kant tackles this problem by describing aesthetics as the judgment of taste. He

continues saying that judgment of taste has two sides, subjectivity and universality.

By subjectivity it means the aesthetic is based on feelings of pleasure and

displeasure found within. While aesthetics based on universality is told to us through

culture and people. (Zangwill 2019)

Aesthetics in software development is not something that has been described in great

deals by other authors. There is tough a field of study that is closely related that has

been researching this and that is the field of video games. One of the researchers in

the field Kristine Jørgensen, who is on the project “Games, Transgression and

Aesthetics”, she defined aesthetics in games around not only the audio visuals but

also that gameplay is an important part of the beauty and aesthetics of video games.

“The project assumes that games are experienced as aesthetic objects, and

that the “aesthetic” or “beauty” can be found in gameplay as well as in content

or in the audiovisual features of the game. This means that people playing a

game for the sake of good gameplay and interesting challenges also have an

aesthetic experience, in a similar way as those appreciating the message or

the audiovisual art.” (Jørgensen 2015).

13

Jørgensen points out that the enjoyment or beauty of video games comes from not

only the visual objects you can see, but also overcoming challenges, the gameplay

and music. This is a new way to look at aesthetics and differ from the established

views that most people have on the topic. This way of looking at aesthetics started to

spread in the scientific and research world after a lecture by Charles Percy Snow

named “The Two Cultures and the scientific revolution” (1959) (Meisenberg 2018).

Here he brought up the divide between scientific and literary scholarships. One of the

things he brought up in this lecture is the split between literary intellectuals (which are

art, philosophy and humanities) and other types of science like mathematics and

physics. To quote Snow “The intellectual life of the whole of Western society is

increasingly being split into two groups, … literary intellectuals at one pole --- at the

other scientist … Between the two a gulf of incomprehension.” (Meisenberg 2018)

Snow was on the side of science in the debate but with this lecture he defined the

divide between the two factions, something both sides agreed on. This divide is

something one can notice in the amount of interdisciplinary research that has been

done between the two sides.

Where scientist and engineers focus on close frames and product development,

game development, on the other hand, has a culture focused around creativity. To

develop interesting games, one needs to focus more on the end users then what

product developers do. Often games are made to be enjoyed or to send a message.

It is therefore important that the person playing the game can consume the product.

Which is why game developers and the indie development scene has always had a

closer tie to humanities and aesthetics, something that reflects in the research done

on the areas.

There are some scholars who think there is a connection between aesthetics and

science. One of these scholars is Tauber. He brings up the point that scientists use

empirical criteria when figuring out if a theory is true, but this is just one of the

principles that are being used.

“However, in constructing their notion of what makes a theory acceptable,

many scientists refer to concerns other than for the empirical performance of

theories. Some of these concerns are aesthetic. Many scientists have

possessed a concept of the beauty of theories; they have subjected to

14

aesthetic appraisal the intellectual constructs that make up theories, and the

verdicts of these appraisals have contributed to determining whether they

deemed each theory acceptable” (Tauber 1996)

The point Tauber is trying to get across is that science and aesthetics does not have

a gulf between them. This thesis argues therefore that aesthetics and beauty can be

found anywhere and ignoring that it exists in empirical theories shows an arrogance

and close mindedness to other perspectives. This way of thought has gradually

started to change but there is still a public opinion that science and aesthetics does

not go hand in hand.

In a study in 2011 called “The Aesthetics of Software Code: A Quantitative

Exploration” (Kozbelt, Dolese and Soidel 2012) they investigate if aesthetics can be

found in software coding. Their literature search shows that there is a connection but

continues with:

“Even so, while research linking science and aesthetics continues to

proliferate, the focus of research and discussion tends to be mainly in

nonapplied highly theoretical domains. In contrast, in more applied or technical

domains like software development, investigation of aesthetics are rare, and

studies with a quantitative emphasis are virtually nonexistent” (Kozbelt, Dolese

and Soidel 2012)

Kozbelt and his colleagues did follow this up with quantitative interviews of software

developers. Where they found out that experts in the field of software development

and programming, often find coding and creative artefacts to have an aesthetic

appeal. Further in the study it is shown that aesthetics can be used for quality

assurance and testing, this is something that will be looked at closer in part two of the

thesis.

Another look at this topic was done by Warren Sack in the book “The Software Arts”,

where he and the other authors on the project investigate different topics of software

from a humanistic perspective. In the autumn of 2019, Warren Sack also had a

lecture at the University of Bergen, where he introduced the project and claims the

book takes. The lecture started with Sack highlighting some part of the book on a

15

PowerPoint. The part he focused on was Adam Smith’s workshops in the 1800’s.

Sack brings forth that modern computing and digitalization follows the same principles

of the workshop made by Adam Smith. Step by step commands that the workers are

to follow. These commands were blueprints of different machines with both text and

drawings, something that puts engineering and art in a coalition. It wasn’t the only

part that can be linked to computing. The workshops also brought up specialisation

and the division of labour. It was this division and specialisation that made Herbert

Simon say that Smith was the inventor of the digital computer. With the division of

labour, we got a new way to organize and structure workforce. Herbert Simon saw

that this way of dividing tasks is the same way that a computers function. (Sack 2019)

The reasoning for bringing this up, is to argue that the specialisation and division of

labour created pride and an intellectual fulfilment. Knowing that one had mastered a

part of the larger machine, and with this a feeling of fulfilment from the work that is

being done. Ergo, not only the drawings of the blueprint could be aesthetic but with

knowledge of the production line, every part of it brings a feeling of enjoyment, with

other words aesthetic qualities. The same can be said for the evolution of the

medium, software development.

Noël Carrol wrote in his article “the specificity of media”.

“Use determines what aspects of the medium are relevant for aesthetics,

rather than some essential trait of the medium determining the proper use of

the medium. But if the use of the medium is key, then effects will be evaluated

in terms of how well they serve presiding purposes.” (Carroll 1985)

Aesthetics in software development does have hints of what Noël brings up. The term

“spaghetti code” is used by most software developers to point out overly complicated,

not to the point, unstructured or difficult to maintain code. Following Noël’s thought

process, useful, relevant and to the point code will be evaluated as aesthetically

pleasing. Something Kozbelt’s research into “beautiful vs ugly code” seems to prove.

Another of the thing’s Noël brings up around this is that one should not use one type

of medium to critique another. This could also be said for aesthetics as well. Because

of aesthetics being subjective, using painting aesthetics to critique software

development or game development would create friction. This is why there needs to

16

be a definition on what aesthetics in software development is, to be able to critique it

correctly.

Therefore, this thesis will be borrowing from Kant’s description of aesthetics. That it is

subjective as well as universal. It will also be linked with what Noël mentioned, with

use. Aesthetics for a developer could be boiled down to how systems, code and

graphics are being used and thought about. An aesthetic code as mentioned above is

quick, functions as wanted, easy to read and understand. Graphics is measured in

how quickly a user finds what he is searching for, if everyone can understand what is

being shown and is it good to look at. The point is that aesthetics in software

development differ from who is looking at it, but the fact is that good aesthetics brings

a measurable benefit, follows throughout the field.

However, this is not the only aesthetic present in software development. This thesis

argues that there are many different forms of aesthetics even in software

development. The three most normal ones are emotional, practical and visual

aesthetics. With emotional aesthetics for software development it means the drive,

feeling of achievement and excitement over a topic. These types of aesthetics are

harder to measure but can be seen, and in some cases, felt when using the finished

product. A well-polished bug free product gives off the feeling that the creators cared

about it, something that makes it stand out from other products. Practical aesthetics

on the other hand looks closer at the solutions that were implemented. It is here that

function, and proficiencies show its face. The things that fall under it are smart design,

code quality, UML models and functionality. And lastly visual aesthetics which is the

composition of both code and design.

The visual aspect is often what gets contributed to aesthetics because of the similarity

to art. In a way, visual aesthetics for software development falls between painting and

writing since it encapsulates both. How the code is written as well as the design of the

graphical user interface (GUI). These three aspects are influenced by aesthetic

emotions and draw from that field of study. More specifically from the reasearch

article “What are aesthetic emotions” by Menninhaus and others. (Menninghaus, et

al. 2018)

Menninhaus’s article puts aesthetics down to four points. One, “full-blown discrete

emotions, for all their differences in affective nature, relevant appraisals, and other

17

emotion components, always include an aesthetics evaluation/appraisal of the object

or event under consideration” (Menninghaus, et al. 2018). A example of what this

means for the software would be looking at a piece of code or design and get a

feeling inside oneself. The second part of aesthetics emotions is that it is differentially

tuned to a type of aesthetic virtue. By this they mean that it brings up a specific

emotion. Thirdly, its associated with subjectively felt pleasure or displeasure during

an emotional episode. With other words, the code or design can bring both positive or

negative emotions based on its subjective aesthetics. And lastly, “aesthetics emotion

are an important (though certainly not the only) predictor of resultant liking or

disliking.” (Menninghaus, et al. 2018) The point is that it is through aesthetic emotions

that one can measure the effect of the aesthetics of coding and design in software

development.

1.1.2 Liberal Arts

Warren Sack uses the term, the liberal arts, as he makes his case for it being in the

centre of the computer revolution. (Sack 2019) What does this mean precisely?

Sack never gives a concreate answer to what the liberal arts are, but he mentions a

bit about how he uses it

“The Software Arts is also a reading of the texts of computing-code,

algorithms, and technical papers- that emphasizes continues between prose

and program. Historically, it is possible to say that this position was first

sketched out in the seventieth century in proposals to develop artificial,

philosophical language that were used to knit together the liberal arts (e.g.,

logic, grammar, and rhetoric, the liberal arts of language) and the mechanical

arts (e.g., those practiced by artisans in workshops producing pins, stockings,

locks, guns, and jewellery).” (Sack 2019)

Based on this one can see that it might have something to do with logic, grammar

and rhetoric. Following up on this description by Sack one must find out more

specifically what is meant by this. Moore posted in the journal of the American

Statistic Association a deep dive into the liberal arts and statistics. He categorizes

18

liberal arts as “flexible and broadly applicable modes of thinking” before he shows

there are two sides to the liberal arts. The philosophers like Socrates that are

seeking truth and understanding of the world and the orators that there are “known

truths and fixed standards of personal and civic virtue” (Moore 2012). With other

words the liberal arts are a term to describe western philosophy and education. From

a modern view point it is natural and social science, humanities and arts. (Liberal

Arts 2020)

This changes the perspective of what Sack is claiming. With other words, the claim is

that liberal arts, natural and social science, humanities and the fine art is at the

centre of computing and software development. A claim that is hard to disagree with.

1.1.3 Software development

This thesis is about the aesthetics in software development, but what is software

development in this thesis? Software development can be easily described as how to

develop software, but that does not explain what it is or does. The field of software

development is the planning, designing, creation, implementation and maintenance

of digital solutions (aka software). It is about creating solutions to fix problems or

inconveniences that customer or end users has through software code and design.

There are many aspects to software development, and they have been changing

throughout the decades. This thesis will be looking closer at three parts of it, these

three parts are software management, coding and software design.

This thesis is also arguing that when using the term developers, it means everyone

that is developing software. Meaning programmers, designers, testers and project

owners.

19

1.1.4 Software Design

Software design is the term this thesis will be using to explore user experience and

user interaction. As the name suggests, it should encompass everything design

related around software, but because of the scope, the topics that will be brought up

are. User experience, user interaction and universal design.

20

1.2 Methods

This chapter will be focusing on showing the methods that was used to find the

information needed to answer the research question. The way this was done was

with the help of interviews and a literature search. The chapter is therefore divided in

two, interview and literature.

1.2.1 Interview

With a new understanding of how aesthetics can be interpreted from the viewpoint of

humanities and software development, it is important to take a closer look at the

research interviews that were done during the thesis. This chapter will not be going

over the findings from the interviews but rather the process, difficulties and

challenges that presented themselves and how it was dealt with. The findings will be

laid forth to build up under arguments or against them in later chapters.

It was decided early that the way this thesis was going to be done was through a

dual research method. By this it means both literature and interview research. The

plan for the thesis was to focus first on the literature, and then write qualitative

interview questions, based on aesthetics and the topics that were being presented in

Warren Sacks book. By doing it this way, one could use theory to create questions

focused around the topic to increase the chance of getting relevant answers.

While talking about answers. The interview was created to find out what aspects of

development different programmers, designers and project owners (management)

find aesthetic. Because one cannot mention what one is looking for, the questions

that were made followed the comic strip found bellow. This comic strip is a well-

known comic, pointing out the different failures often found in software development

21

(unknown 2020)

This comic strip was introduced to the interview objects with the question: what is it

you find most relevant in your daily work based on this comic? Followed by, is there

some of these points you think mirrors reality more than others? As an icebreaker

the comic did its job and sent the interview towards topics that the interview object

was interested in. From there, questions about more generalised topics began.

These topics were, user experience, coding, software development and user

interaction. There were questions outside of these topics, around security and ethics,

that might be brought up if relevant.

The interview objects were put into three categories, designers, programmers and

project owners. They all got the same questions except for the branching ones that

naturally came up. The hope was that by talking to a wide spread of people who had

different roles in software development, it would give more data on the different

views on what aesthetics in software development is. Since aesthetics changes

based on people, it was important for this study to gather information from people

with different backgrounds. This was to gather a better picture of how they interact

with aesthetics across different roles.

Before doing the interviews, there was some prejudice against what the findings was

going to be found. One of these was that there would be a big difference between

project owners and programmers in what they found as interesting topics. Another

one, was that programmers would be less aware of aesthetics than designers, this

22

prejudice is based on their education and the development culture that is being

thought in higher education. In the same way the difference between the two

businesses was thought to be rather severe before starting, one business is a

product company while the other is focused on consulting. These prejudices will be

analysed and answered at the end of the chapter to see if where true or not.

As mentioned, this was a qualitative interview that interviewed interested people at

two businesses in and around Bergen. The plan was to meet them in person to

increase familiarity and get a good dialog around the topics. This came to an end

early march because of the pandemic closing most of society down. The solution

was to do this over the internet, and with it came a few more challenges. First off,

was that the records of the conversations would have to be saved on a computer or

server. This meant that one needed a secure server and access to it from and save

it. This was done by contacting UIB and getting a SAFE account. SAFE is UIB’s way

to connect to the local server at the university. Here all the recordings were saved

while encrypted with a key that is saved on an external disk. The project was also

sent to NSD (the Norwegian centre for research data) for confirmation that it was

done after the law.

After all this was done, the interviews were done over a two-week time in May /

June. The first interview had some audio issues, where the recording did put

interviewers voice and the interviewees voice in two different recordings, and it had

to be patched into each other. This left it with some places where they talk over one

another. The program Voicemeter Banana was then downloaded which works as a

recorder, and both inn and output volume was recorded successfully on the next few

interviews.

Overall, the interviews were a success, even though they took longer than first

anticipated to complete, something that is to be expected with a global pandemic.

The data was then encoded and safely stored on SAFE through anyconnet.

The interviews were created both in English and Norwegian, but since all the

interviewees was native Norwegian speakers it was held in Norwegian. This means

that all the quotes and thoughts from the interviewees are translated from Norwegian

to English in this thesis.

23

1.2.2 Literature

The literature used in this thesis has been found with the help of google scholar, the

University of Bergens (UiB) library search database Oria, and with the help of a

librarian at the university library. The book “The Software Arts” was found because of

a lecture the author held at UiB in 2019. The last method used to find literature, was

going through the sources of articles that was found in said search engines. This

was done to check what the original articles or books said on the topic and to find

more information and to double check its legitimacy.

Examples of the sources that was searched for are “aesthetics in software

development”, “aesthetics in coding”, “software development aesthetics” and

“aesthetics in games”. Since the search engines read every word and use them as

keywords to find related articles, the focus was on finding related topics that

mentioned or talked around what this thesis investigates.

To make sure that the quality of the sources was kept, only research articles and

books was used. When it came to books it was also investigated what was written to

make sure it made sense based on sources and context.

A problem that came up under the search for sources was that most articles that

google scholar found, were behind a paywall. The solution became to use google

scholar to find relevant sources and the Oria database to gain access to them, since

UiB allows students access to most articles that are pay to view. Because of this, a

wide scope of articles and papers was accessible. The share amount of information

led to it being categorized by date, and the newest and most cited was investigated

first. The reason for this is that they often draw sources from the older papers, which

means that by reading the newer ones you would also be able to follow the path

backwards, to see the whole picture instead of making it from scratch.

The second problem that was found was that aesthetics in software development is

not something that has been defined by anyone. Most often they mention it in

passing and just hope that people know what it means. Therefore, this thesis looked

deeper into aesthetics by following sources which led nowhere and had to go looking

into the study of aesthetics to create an argument for what aesthetics is in software

24

development instead. The research article that helped the most was “The Aesthetics

of software code: A Quantitative Exploration” (Kozbelt, Dolese and Soidel 2012) that

looks specifically at coding and not development as a whole and is something that

will be looked at in chapter 2.

25

1.3 The Software Arts

In the book “The Software Arts”, Sack argues that computing and software is a part

of the liberal arts, of humanities and literature. He quotes many renowned software

developers, like Steve Jobs and Edsger Dijkstra, that share his views. Sack then

follows up by critiquing universities and societies view on computing. The view he is

criticize is that programming is a part of science or engineering and nothing else.

Sack continues to point out how scientists and engineers coined the term “Software

engineering” in 1968 to create a link between software development and

engineering, even though many disagreed with it then. (Sack 2019)

Only two years later, Winston W. Royce posted an article called “Managing the

Development of Large Software Systems”. Here Royce introduced a couple of

different approaches and thoughts on how to develop and manage large software

systems. Royce did not name the development processes he thought of, but the first

method he mentioned was named Waterfall by others. (Royce 1970) An interesting

fact is that this is the one methodology that became popular (Waterfall) and is the

one Royce thought had the greatest flaw. This methodology was an example on how

not to develop. He thought that one needed to use an iterative method, something

that is much closer to how development is today.

“I believe in this concept, but the implementation described above is risky and

invites failure. The problem is illustrated in Figure 4. The testing phase which

occurs at the end of the development cycle is the first event for which timing,

storage, input/output transfers, etc., are experienced as distinguished from

analyzed. These phenomena are not precisely analyzable. They are not the

solutions to the standard partial differential equations of mathematical physics

for instance. Yet if these phenomena fail to satisfy the various external

constraints, then invariably a major redesign is required. A simple octal patch

or redo of some isolated code will not fix these kinds of difficulties. The

required design changes are likely to be so disruptive that the software

requirements upon which the design is based and which provides the

rationale for everything are violated. Either the requirements must be

modified, or a substantial change in the design is required. In effect the

26

development process has returned to the origin and one can expect up to a

100-percent overrun in schedule and/or costs.” (Royce 1970)

The method is very closely related to how engineers work on their projects. Which is

something that could be used by the software engineering camp, to argue that

software development is part of their camp and not humanities and arts. One can

argue that because of the similarities, the art and aesthetics side of development

was buried by the science field. Universities taught students that one had to be good

at math and logic to develop software and that creativity, humanities and art was

secondary.

This trend has changed after those that thought programming should have more

freedom created the agile manifesto in 2001. (Grenning, et al. 2001) The manifesto

contains 12 principles on how programming and development should be done. The

manifesto started a cultural change in software development, and today almost all

projects follow some of these principles. With this cultural change, software

development has changed in the way Sack wanted it too. There is less stigma for

looking at development from an art perceptive, but schools are hanging behind in

this change.

Sack then comes with three claims: One, education needs to change to mirror the

change in the field and integrate liberal arts into the teaching of software

development. Two, software can be written in the manner of an artist/humanist, one

does not need to be good at math or an engineer to understand how to write

software, it is a language on how to do tasks and not a mathematical argument on

how the world works. Third, if software is the new lingua franca, then there are a

series of ethical and moral questions that must be pursued. And lastly, the most

general claim, is that software arts are a new name for something that has been

going on for a long time. He then argues that he, just like Steve Jobs, puts arts in the

centre of software. (Sack 2019)

This thesis will be investigating Sacks arguments closer in later chapters, but it is

important to look a bit closer on the history of the Software Arts. In the 1800’s Adam

Smith started the first workshops and created the first work language. It describes

what artisans, designers and artists are supposed to do. Instead of being a

mathematical language, it is a description of how work is to be done. Looking

27

forward, many great minds have taken inspiration from this work language Smith

created. One of them is computer scientist and Nobel prize winning economist

Herbert Simon, who said Smith was the inventor of the computer. (Sack 2019)

Based on the information that Sacks puts forth, one can see that there is some proof

that literature and humanities is a part of software and computing. The focus of “The

Software Arts” is on software and coding, specifically its ties to literature and writing.

Where one can see the argument for it, there are also many more aspects to it that

could be looked deeper into. One of these aspects is aesthetics and how it fits into

software as an art.

The following chapter will be taking a deeper look at different topics in system

development, to figure out where aesthetics and the arts mentioned by Sack fits into

the overarching field of software development.

28

2. Deep dive into system development

This part is focusing on the three topics Coding, Software management and

Software design. The structure of the three topics will be, an introduction to each

topic, some history around the topic, how it has grown and why it is what it is today.

The thesis will be highlighting what aesthetics is inside of these topics, and how it is

being used to improve culture, standards and the product. There will also be quotes

from the interviews. These will be used to argue, for, against or as extra information

around the themes of aesthetics, humanities and liberal arts in software

development.

29

2.1 Software management

In this chapter we will be looking closer at how software management has changed

throughout the years. From a business focused approach, on requirements of the

customers, towards the needs of the end-users. It also brings up two different

aesthetical beauties found in the different approaches, and the interview findings

show how the different parts of software development views these methods. At the

end of this chapter, it will be shown how this change happened and what outside

forces might have influenced this change.

2.1.1 Traditional methodology

To really understand software development and investigate how aesthetics is being

used inside of the development process, one need to understand the two viewpoints

that exists in software development. As mentioned earlier, these two viewpoints are

the engineering and mathematical view, with their detailed descriptions of how to

develop and code. The side is the agile method which comes from a humanities

approach, with its focus on creativity and adaptability. These two sides are often

called traditional and agile, which is something this thesis will be using from now on.

The traditional method was created from the viewpoint of engineers and

mathematicians, as a guideline to make sure software got developed in a

sustainable way.

Royce, in his paper around development methodologies, puts fourth different

methods to develop software in a safe and efficient way. This came from his

personal view on managing large software development projects, mainly from

spacecraft missions and post flight-analysis. He continues to point out that a step by

step guide will lead to problems, because if all information is not known at the start,

one will need to return to start if more information gets uncovered throughout

development. (Royce 1970)

30

 (Royce 1970)

Most did not take Royce concerns to heart and started using his model to develop

software. A study around traditional and agile development at the university of

southern Denmark, described it as “Traditional (or rich) processes aim to address the

whole software project lifecycle, e.g., by providing comprehensive guidelines,

standardized procedures, project planning templates, and interfaces to further

organization processes” (Theocharis, et al. 2015). This means that the workload to

describe the project, before it started, became massive in bigger projects. If

information was uncovered after the start, one could not change it without extra

costs. This is something that effected the user experience for the end users the

most, because they were the last priority, and the time and money was used up by

the time they got to see the product.

This is not to say that this way of development is universialy bad. There are times

where one have all the required information and no changes will happen. It is like

creating a car, one starts with planning the car, then the components of said car,

before analysing and designing it, followed by putting it togheter and testing it before

release. In small well defined settings, it works wonders. It is when the goal post

keeps moving that this approach to development starts having problems. Another

31

problem is when projects gets to complicated. If this happens, the planning will take

a along time, since it is necessary to be sure before starting production.

The way waterfall works, is the same way as the workshops Waren Sack mentions

by Adam Smith. Smiths workshops describes how to create a product, by designing

and creating blueprints for every part of the process. The workshops then starts to

assemble, testing and lasty implementing the product described. With other words,

the aesthetics of this way of development is about structure, planning and security.

Someone that argues that the traditional methods is the best, is the “Software

development: Agile vs. Traditional” by Marian, Marinela and Bogdan at the

Buchacest University of Economics studies. They argue that having less

documentaion, will make it harder for new people joining a project. These people will

need to ask more question and by that decreasing the productivity. They also argue

that periodic meetings with the client are boring and tiring. This is because having to

present the modules repeatedly to the client, to new members and the end users

takes away from time that they could have used on coding. Another argument is that

short iterations, creates thight schedules, that will take time away from complex parts

and making it hard to create those. (Stoica, Mircea and Ghilic-micu 2013)

Which might be true, but the way they are framing the agile method is from the view

point of mathematics and engineerers. By not following the structured system, it will

lead to disorganization and confusion around what to do. Something that is weird,

since the agile methodology is the reaction to the bureaucracy of the overdefinisation

on what to do and the lack of a focus on the end users.

The aesthetics of the traditional system of development is very clear. Just like with

engineering and the workshops, its about the practial aesthetics of planning and

order. It’s the emotional aestheic of saftey in a framework that defend you if timelines

cannot be met and unforseen problems arive. It’s about creating a vison of a product

and making it just like that. Which is a great thing, but there is a reason this way of

development has slowly disapeard more and more. Which is saftey and

comfortability does not create progress.

32

2.1.2 Agile methods

While the traditional framework might bring saftey in development, and a standarized

way to make a product. The inventors and creators often work outside of that

framework, and through the thought process that one should learn from ones

mistakes. In this case, having the freedom to create something, find what could be

done better and implementing those changes can lead to new and better ways of

developing products.

A place we can see this type of approaches, are from the game development and

computer clubs all the way back to the 1960s. This thesis will be focusing on the

80s, because it was around that time home computers became avaliable for

everyone. The games and software created by these clubs did not follow the

tradiontonal method of development, but was focused in creating something to

entertain others or to send a message. One of these developers was Bernie De

Koven, he and Jaron Lanier created Alien Garden in the 1982. which later has been

termed the first art game. De Koven said in a interview with Jesper Jull, around the

creation of the book “Handmade Pixles: Independent Video Games and the quest for

independecy”.

“At this early stage in video games, cultural independence was slighly

different from today: there was a sense of mainstream conventions, but De

Koven also described working in open field of creativity freedom, especially on

home computers” (Jull 2019)

Which touches on the freedom to create something outside the established

framework. This is not the only place one can find traces of what would become the

adaptive agile method of development. The book “Gaming The Iron Curtain” by

Jaroslav Švelch, takes a closer look at how computer and programming developed

inside the iron curtain. His findings show how computers was introduced to Czech

and the clubs and games that was born from this. The later part of the book,

investigates how games and programs was used during the revolution to question

and critique the society they were living in. Something they could do only through

games because they were not seen as a medium capable of doing so. (Švelch 2018)

33

The point is that hobbyist, social critics and others often find themselves developing

software and games outside of the traditional methodology. They focus more on the

experience of the players or users of the software, while the traditional workshop

view, is on just the designed product. The disconnect between the traditional

methods and the creative side of the software field, creates discontent between

developers and management, which led to the creation of the “Agile Manifesto” in

2001. (Grenning, et al. 2001)

This manifesto was created by the collaboration of seventeen people from different

groups of development. These people had gone away from the traditional way of

developing, to use a more adaptable and user focused methods, such as SCRUM

and Extreme Programming. Their main goal was to create an alternative to the

document driven and the heavy software focus that had controlled most of software

development the last few decades. In February 2001, they met up over the weekend

to discuss and create a frame for their views and thoughts on how development

should change. This ended in the creation of the “Agile Manifesto” which is twelve

principles that one should strive to reach for when developing. (Highsmith 2001)

These principles describe the main values of the participants in this meeting and

describes what they take pride in when working. They also created a sales pitch for

the manifesto which is

“Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan”

(Grenning, et al. 2001)

These few lines try to change the focus of what one should find important in

development. It points out that instead of processes and tools you should see the

individuals and the interactions happening. Let us not focus on documentation but

rather on creating software. Let us try to help the customer to get the best product he

can have and not negotiate with him and deliver something he might not need. Let

us be adaptable and change when it is needed to, instead of planning everything and

sticking to it. These ideals opened the doors for many developers to take back some

control around how software should be made.

34

An example of a development method that has been gaining a lot of traction

because of the agile manifesto is the for mentioned SCRUM. SCRUM is an adaptive

and iterative approach on how to develop software. It is user focused and with the

goal to deliver smaller increments of the product to test and make sure what is being

made is what the user needs and wants.

(Sutherland and Schwaber 2011)

Looking at the picture above it might seem rather complicated in difference to the

easy to read waterfall in chapter 2.1.1, but SCRUM is not that complicated. The way

it works is that one creates a list of the features for the program, based on what the

customer wants and what the users need. This is what one call the product backlog,

or what is supposed to be made by the time the software is done.

This is followed up with a sprint planning meeting where the development team

meets and discuss what tasks should be done by the end of the sprint, how much

time each feature will take and who is going to be doing them. This creates the sprint

35

backlog. The sprint is just the name for the development process in SCRUM, it lasts

for 1-4 weeks as shown on the figure. Every day or two the team sits down and talk

about their progression and what hardships they have encountered. This is so

everyone knows where each other work is at, and one might get the feedback that is

needed to complete the challenges that appear. At the end of the sprint one checks if

all the tasks are completed, talk about what they were able to do and not, the things

that wasn’t completed gets put at the front of the next sprint. This continues until the

product backlog is empty.

When an increment is completed, it gets a “released” tag and is pushed out for

testing by the customer and users. This is a major improvement from waterfall that

could not show any progress before the software was complete. With SCRUM it

takes 1-4 weeks to be able to show and get feedback. This happens in the review

meeting at the end of the sprint, while the retrospective meeting talks about how they

can improve the process for each team. This makes it so that the development

should always be able to improve and adapt to different projects. (Sutherland and

Schwaber 2011)

This type of development method also has a lot of communication with the end

users. After every completed module or increment it will be tested with the end users

to figure out if it is what they need. This makes it so that one might be showcasing a

prototype every month, something that allows for both adaptability and collaboration.

2.1.3 Developers view on managment

Under the interview that was done in May/June 2020, the topic of what part of the

development process they liked to work with came up. The product owners (PO)

brought up communication as one of the main pillars of what they found interesting

with their job. Developing for the user and trying to understand their needs and

communicate these needs to the developer is a challenge they like doing. (Appendix

A “PO 1”, 3:00) As well as sitting down and focusing on the end user’s problem and

finding solutions to them. (Appendix A, “PO 2”, 5:29) A follow up around this topic

was what their thoughts around the agile development method was. The POs

36

thought that working this way was a much better because of the adaptability and

control one has in the project. (Appendix A, “PO 1”, 5:15) If something likes Covid

happens, they can change without the project taking too much backlash from the

changes. One could also argue that with large projects, being able to develop and

test smaller pieces and changing them if needed, is a great boon for both PO and

the rest of development.

The project owners also brought up one of Warren Sacks claims. That society has

another view on development of software. The conversation came up because of the

question, have you experienced that the buyer disagrees with what is being made for

the end user? One of the POs said that “We have been in some projects where the

customer says they want something, but their lack of knowledge makes it hard to

figure out what they actually are asking for”.(PO 2, 21:00) It was followed up by

asking if agile would have helped with figuring out this knowledge barrier. The PO

answered yes and no but brought up that the product focus of the customer can

crash with the user focus that agile brings.

Customers often have a budget and would like to just get a price and hand off the

requirements. Agile development does not work like that. With most development

companies working with agile today, it is weird that their still acquiring work by

winning bids on contracts. (Appendix A, “PO 1”, 16:05) To win a contract, user

experience, unknown development time and price is not really a good sales pitch.

The interview touched on this topic and it’s a clear example of the perception that still

lingers around what software development is.

As mentioned, this is what Warren Sack was talking about. More specifically, by

letting software development be seen as engineering and mathematics, customers

and society, has gotten a perspective of what interacting with them should be like.

Which sometimes lead to a culture shock when they meet. Based on the interview

with POs, this culture clash is becoming less and less after having worked with

software developers. By communicating and being clear on how software is being

created, and why the focus is on the users, one can slowly change the customers

perspective on software development.

The coders and designers that was interviewed, also had a positive view on agile

development. By focusing on user experience, the designers have someone to focus

37

the software towards, as well as someone to test new concepts with. This is, based

on what one of the designers said. What they find fun and interesting with this job

was testing concepts and software with the end-users (UX 2, 34:50). One of the

coders on the other hand, told a story about a project that had four hundred pages

with requirements back in the day. They used three months to try to decode what the

users wanted from that stack of papers. (Appendix A, “Programmer 1”, 05:35) By

going agile this problem seems to have become mitigated. Instead of a stack of

papers it is now meetings and discussion in person, something that from the

programmer’s view is a welcomed change. With this change the programmer is now

able to focus more on what they care about, which in this case, was creating

technical solutions that helped the users.

The POs found the aesthetic in communication, figuring out solutions and making the

people under them better. The programmers brought up the architecture and the

technical solutions to the difficulties in the assignment. How should the software

work, what feature and how are they supposed to work. The designers brought up

the same things that the coders did for the most part. The difference is in viewpoint,

instead of technical solutions and architecture they are focused on low fidelity

prototypes (design) and finding out what the user will need and understand. They

create solutions one can click through and test on the users. The thesis will look

more in-depth at coding and design in the next two chapters.

The visual aesthetics in software management would be the conceptual models

that only one of the interview objects said they did not use. These models describe

the overall system or part of the system that developers are focusing on. In this way

they are both practical and visual, a way one can think about models is as a visual

representation of relations between functions. In the book “How to be a Geek” (Fuller

2017) they bring up the topic of object orientation (OO). The reason OO is being

brought up, is that the models that is being talked about, often describes the world

through objects. Every item in the world is an object that has relations to other

objects it can interact with. This goes for systems, ideas, items and so on. One way

to think of it is like sources. The sources in this thesis has a relation to the source

list, which again is part of a book, who has relations to the authors and so on and on.

The point is that modelling the world, or system in this case, describes how the

system functions and how it should interact with its surroundings (other systems and

38

users). In a way, it is like painting but with lines and boxes. A good model could with

other words, be visual pleasing to look at and give an understanding of the world and

what is describes.

Communication, as mentioned, is also a part of system management. The question

is what aesthetical properties does it have? Based on the interviews, communication

is both emotional and practical. It is the medium that both emotions and practical

thoughts are shared between those who are a part of the development process.

Communication happens throughout the whole process and is one of the pillars of

development. All the interviewees mentioned communication at one point throughout

the interview and thought that it was an important part of development both for

developers and towards buyers and users. With knowing that, making sure that there

is an understanding of the thought process the coders, designer and user/buyers

has, is important. Looking at traditional vs agile development one can see how the

viewpoint of developers and management has changed the last decades. One can

see from the interviews that has been done, that the developers views are closely

linked with the agile way of thought. With it the aesthetics of the hobby and indie

developer has appeared in business software development. If Warren Sack had

released his book a few years earlier, it might have had a bigger impact than today.

Most of what he is saying around engineers and mathematician’s vs liberal art does

not seem to exist, or if it does in a much more subtle way inside the development

space.

The aesthetics of software management has also been rapidly changing together

with the agile movement. Like mentioned, it has become more of a focus in looking

at the users as people that needs help with fix a problem. The buyers is not buying a

product, their buying the knowledge developers has around find solutions and

implement it to help fix their problems. With this change in mentality they can be

adaptable and creative without the constraint they had before. The interviewees did

agree that there had to be some structure and planning, but it should not be the only

thing they focused on. The focus should rather be on making something that will help

the users, which is emotional aesthetic from the agile method

39

2.1.4 The Cultural Change

System management and project owners seems to have embraced the user focus

that humanities and liberal arts often focus on. The problem is that companies and

others have low to no knowledge about this change. Which is something that can

create cultural conflicts when they meet to collaborate on projects. One good note is

that there has been changes happening in school and healthcare that mirrors the

agile movement. This is a has happened in a clear parallel and maybe even before

the changes in software development.

In 1991, the Norwegian government came with a reform called “Ansvarsreformen”

loosely translated as the responsibility reform. It was renamed HVPU (Helsevernet

for psykisk utviklingshemede) in later times. This governmental change made it so

that people with development disabilities was not going to be the responsibility of the

county (fylke), but rather each district (kommune). This led to the institution that took

care of people with disabilities to close. In its place. apartments were created that

should make sure that the individual that was going to live there, got the tools they

needed to live as normally as possible. Instead of the structure of an institution they

should be given the closest form of normal life that is possible to give them. Where it

is possible, they should be able to rule over themselves instead of following the plan

made by the system (Kjøs 2020).

Ten years after the reform, a report from Ivar Brevik and Karin Høyland investigated

how the service and living situation for people with development disabilities was after

the HVPU reform. They found out that the living standards were high, and that

service was more focused towards the individual. It was also clear that it was easier

for people with disabilities to function in society, in the form of work and free time

activities when having their own apartment. (Brevik and Høyland 2007)

The reason for pointing out this reform is to show the similarities between this and

the agile movement. They are both the response to a system that does not look at

the individual, that creates plans, structure and followed them to the smallest detail.

These are systems that makes one detached from the users, in this case people with

development disabilities and people using the software that is created. The solutions

have much of the same thoughts behind them. The individual first, instead of

40

planning do something, collaboration with the users and change things to make it fit

for the individual you are working for.

This reform laid the groundwork for a change in focus both in the health sector, but

also in school. With HVPU saying that people with development disabilities should

have an integrated and mostly normal life, schools became liable to give them the

best education they could. In 1998 there was a change in the law for primary school,

middle school and high school that changed who was available for special needs

education. (Regjeringen, Om forholdet mellom «funksjonshemning» og «særlig

behov for opplæring, 12.2 2020)

With this everybody that needs some extra help with their education, is by law, able

to get the help they need. With this schools in Norway started focusing on

developing individual education plans or IOP for those that needed it. In 2019 the

government presented a new education plan. The new plan is by the words of the

head of the department of education Jan Tore Sanner (translated from Norwegian)

“Society is constantly changing, and schools has to change with it to make sure that

children learns what they need to join it when their done (…) The new education plan

will give the students a foundation for reflection, critique, to create and research”

(Regjeringen, Nye læreplaner for bedre læring i fremtidens skole 2019)

What this mean in practice is that schools are now going away from a structure that

said that these are the topics you must talk about. Instead its more up to the teacher

to go as deep as they want into different areas. It is also a push towards doing more

practical learning in the form of games, arts and crafts. Interdisciplinary courses are

one of the things that are being looked at to make sure that students see the reason

for why they are learning about a topic.

With other words there is a focus towards the individual, adaptability in the form of

individual education plans, creativity, practical learning instead of theory and problem

solving across multiple courses. As shown above these are thoughts that one finds

in the agile movement as well as in the health sector. Something that the head of the

department of education eludes to in his statement about the changes to the national

education plan needing to follow the changes happening in society.

This thesis is therefore arguing that the gulf of incomprehension might have been

identified by the Norwegian government and that his new education plan might be

41

what one needs to start making a change in how society views software

development. As well as increasing the general understanding about how to create

solutions that helps the most people possible.

.

42

2.2 Aesthetics in Coding

This chapter takes a closer look at the beauty one can find in coding. Both in the

code and in the practise of writing said code. To do this the topics of structure,

syntax, stylesheets and policies will be analysed towards what aesthetics in code are

in a system development organisation. This chapter also brings up how aesthetics is

being used as a tool to help programmers to understand and create better software.

As mentioned in the aesthetic definition, aesthetics is the judgment of beauty

(Zangwill 2019). Following that logic, the aesthetics is different based on who is

looking at it. This thesis is looking at how developers in a business looks at the

beauty in code. This mean that programmers that work with digital art, digital poesy

or other form of coding art will not be mentioned. Since the field of coding is so

large, this thesis has chosen to showcase a few different topics within coding that

shows the aesthetics in coding from the viewpoint of system developers in a

business community.

2.2.1 Structure in Code

When talking about aesthetics in code, it is important to not just look at the code but

also on the outside factors that pushes for code to be written a specific way. That is

why the first thing this thesis will be looking closer at is the structure in code. More

specifically the visual factors one can find in it, and what attributes developers find

aesthetical, as well as practical factors.

When it comes to the visual part of code, the two terms that most often gets used is

syntax and semantics. Syntax is the grammar of coding; it is the rules that govern

how one are to write in a specific programming language. Semantics on the other

hand is the meaning of what one is writing. Another way to look at semantics is that

semantics is the symbolised version that describes how the software works. The

reason for bringing this up is to make it clear that developers work around the syntax

43

to create the semantics. This means that when a developer looks at code, what they

see first is the semantics of the code that is written.

An example of how different and still runnable code can be was shown in the article

written by Nick Manafort and Michael Mateas “Obfuscation, Weird Languages, and

Code Aesthetics”. Here they bring up the point that the syntax and semantics cannot

stop the developer from making code hard to read. They post a hello world example

to showcase this. This thesis made its own example using the principle they brought

up. (Mateas and Nick 2005)

This code posts Hello world 10 times once with a line break after each one. It is

readable and understandable. In the Manafort example they started writing one letter

each line, which is a semantic choice that makes the result harder to read but not the

code. If one wants to make the code harder to read one could write it like this.

By looking at the two examples, there are a few rules of thumbs implemented in the

first one that are not there in the second. These rules of thumbs are what coders

often look after when they first watch new code. From an outsider perceptive, when

code gets cramped together like in the last example, it becomes hard to understand

where one-part ends, and another begins. To stop this, code is often written with

indents to indicate different layers of the code. Think of it like paragraphs in writing. A

text without paragraph gets harder to read because of the share amount of

information presented.

Another part is to use whitespace to break up arguments to make it easier on the

eye. These visual differences do nothing for the efficiency in the code but makes it

much easier to test and read later. Most developers would agree with the two

44

examples that was shown here. There are though, many more rules that differ

between programmers. That is why programmers and businesses has created their

own style guides on how they want code to look.

Style guide or coding standards are documents describing how code, structure,

comments and libraries should be used. It is the guide that every developer in a

team should follow to make sure that the code their making looks the same. The

reasoning for wanting people to follow style guides, is to be able to follow one set of

standards when getting into the software. If every file in a project followed different

standards, it would create tons of confusion for the developers that did not create the

file. To look closer at the aesthetics found in these coding standards, this thesis is

investigating the coding standard of Epics Unreal Engine (Epic Games 2020) and

Googles C++ style guide (Google 2020).

At the start of Epics code standard, they give a few reasons for the creation of said

standard. One is that most of the lifetime cost of a piece of software goes to

maintaining it. Which means that it should be easy to maintain and easy to

understand. Another part of it is that software is seldom maintained by the same

programmer throughout its whole life. If it is not documented, commented and using

a standard that is written down. It becomes increasingly hard for others to

understand the software. If code is to be given out to others, it should be readable

and easily understood. Lastly many of the conventions are required for cross-

compiler compatibility. (Epic Games 2020)

Google on the other hand, define their style guide as “The goal of this guide is to

manage this complexity by describing in detail the dos and don'ts of writing C++

code. These rules exist to keep the code base manageable while still allowing

coders to use C++ language features productively.” (Google 2020) Google does

mention a few goals as well for how their code should be. Focus your code towards

the reader and not the writer, be consistent with existing code and the broader

community, avoid hard to understand constructs and constructs that might act

surprising. Lastly keep in mind the scale of the projects, when working on million-line

software code, do not take shortcuts that might hurt the project in the future.

45

When one takes a closer look at what the rulesets are between the two, one finds

there is a large difference in naming conventions. Unreal Engine used a letter in front

of classes and variables to tell what they are. Example every Boolean should have a

b in front of their names, for example bBoolean. This is something Google does not

do. Instead they have different ways to write names based on the type they have. An

example of this, is that constants needs a k before the name while other names

follow the capital letter for every word in a name, kThesisName and ThesisName.

Even though there are differences the main thoughts behind these rules seems to be

the same. By having a standard or style guide, everyone that approaches the code

will have an innate understanding of how it should look and work. This gives

experienced programmers a way to see if code is good or bad. They will base these

assumptions on the community standards and the guide/standards that their place of

work has implemented. These standards are prone to change over time as new

solutions and the culture change.

In 1999, Kent Beck and Martin Fowler released a shared chapter called “Bad smells

in code” that focused on how and what one should keep in mind when creating code

to stop it from “smelling bad”. By this they mean code that could be refactored or

changed in a way to make it more readable, better documented, structural change

and so on.

“One thing we won't try to do here is give you precise criteria for when a

refactoring is overdue. In our experience no set of metrics rivals informed

human intuition. What we will do is give you indications that there is trouble

that can be solved by a refactoring. You will have to develop your own sense

of how many instance variables are too many instance variables and how

many lines of code in a method are too many lines.” (Beck and Fowler 1999)

They go on to describe how to change your code to stop it from smelling bad. When

reading through what they are pointing at one can see clear parallels to the coding

standard and style guide of Epic and Google. “Bad smells in code” brings up

duplication, large classes, shotgun surgery, feature envy and comments to name a

few bad smells often found in code. (Beck and Fowler 1999) Which is something

code standards and style guides help manage, by giving a set of rules to make

coders aware of what they are doing. This thesis is therefore arguing that styles and

46

standards in themselves is a judgment of the beauty of coding. They are all created

by communities that sees different ways to create code, and if one does not follow

the guidelines the code will be smelly or ugly. As mentioned, they are there to make

it easier to read and maintain the code which creates less frustration and increases

the quality of the software. For the business software development viewpoint, the

common attributes in the coding standard is the focus on readability, consistency on

names and comments as well as remembering that others will be using the code one

makes. One can therefor argue that all these topics are important for the aesthetics

in coding and if any of these things are done half-heartedly it will leave a bad smell.

Another viewpoint that is important for the structure found in code is object

orientation. As mentioned earlier, OO is a way to structure information into smaller

more understandable packages and how objects relate to themselves and the rest of

the world. (How to be a geek)

(Jostein Enes, Figure 3 “Object orientation” 2020)

The figure above is a class diagram following the OO thought process and is

describing how a application that controls a smart house works. The way this figure

47

interacts with the coding structure is that every box is a class. The information found

inside the boxes is the functions and attributes that exsist in the class, while the lines

and numbers describe the releations between them. For example, Activity_Main,

which is the home page, is connected to Household. The number 0…* means that

Activity_Main has none to many household classes it can connect to, while

Household must have one but can exsist for many Activity_Main instances (one

household can have many users). Activity_Main on the other hand, does not need to

have a Household but can be apart of many Households.

By making more classes that does specific features, one can create smaller files and

classes that gives a better understanding of what they do. This means by proxy that

it is easier to debug and change if needed. This works in tandem with stylesheets

when it comes to creating readable and easy to understand code, as well as helping

with moduling. It also helps that it is easier to fracture up the software so that one

can create a feautre throughtout one sprint.

Stylesheets, semantics and OO is very usefull for programmers. These standards

and methods helps to bring a readable structure, so that one can easly find faults in

the program. For a programmer that is doing testing it is paramount that software

code follows the same pattern and style throught the whole program. This makes it

easier to notice inconcistencies, logical and semantic errors that might have

happened.

When one hear “testing code” there are two things that one think about. Unit testing

and reading code. Unit testing for those that do not know what it is, is a check list

that gets programmed to make sure that the software returns the value the

programmer wants to get back. This is done a bit different based on the language

that is being used, but the thought is that if one sends in 3 and an 5 and the software

adds them togheter it should return 8. If 8 is not returned the test fails. This can be

done a lot throught the software, it helps both programmers and testers to find out

different strenght and weaknesses with the code. The other testing methodolgy is

reading code. Some busnisess do have quality assurance meetings where they read

eachothers code. This is to make sure that it follows the standards they have and

that there are no better solutions to whats been made. There are many other testing

methods but therese are the most well known.

48

The reason for bringing up testing in the structure is that the stylesheet, semantics

and structure is so important for testers so that it had to be specified. Chapter 2.2.3

will be talking more about how aesthetics and beauty interacts with the testing of

code.

2.2.2 Work languages vs Machine languages

Warren Sack brings up two constructs he calls work language and machine

language in his book “The Software Arts”. He defines work language as “To mean

the language-the text- employed to describe the processes and products of work”.

(Sack 2019) In a coding perceptive it means the code a programmer is writing, or the

language developers use between themselves. For the point of this thesis it is the

languages used for coding. Machine language on the other hand, is by Sacks

defined as: “A machine language is a work language that employed in the design

and analysis of machines. When a machine is designed to replace a human in a

work process, the actions performed by the human must be translated into a

machine language” (Sack 2019)

For developers the way they think about machine language is a bit different. Warren

Sacks definition is missing a third step. A developer’s job is to turn human actions

into their work language (code), which then creates the machine language that the

machine uses. It is therefore the action performed by humans that is translated into

work language, and then generating further into machine language. Michael Schmit

described machine language as:

“Machine language is the language understood by a computer. It is very

difficult to understand, but it is the only thing that the computer can work with.

All programs and programming languages eventually generate or run

programs in machine language” (Schmit 1995)

A way to think about the difference between work language and machine language in

coding, is that there is a translator sitting between the computer and the developer. Its

job is to break down what the programmer says, “work language”, into machine code

and translate the results the computer gets, back into a language or form that is

49

understandable for the programmer. Because the computer only understands

machine code, one could look at the coding language and the compiler as the

translator. When a programmer tries to create something, he might hit the limitations

of what the translator understands. Think of it as translating paintings to words. This

limitation has made it so that the work language of programmers does not look like

human speech language at all. Even though coding languages has a big difference

from normal speech, it has become more prominent that the they should be readable

for most people that read them.

Like mentioned in the chapter 2.2.1. Readability has a lot to do with the semantic of

how something is written, but it is not just that. Different languages have different

syntaxes that can change how code reads immensely. As mentioned earlier,

readability of code has a lot to do with the visual aesthetics of the code. Therefore,

different programming languages might look completely different and focus on

different aspect of what one could call beauty. An example of programming languages

that tries to look like normal writing is COBOL. Instead of the math symbols they use

words which makes it look much like pseudocode. This example comes from stack

overflow

 “ADD YEARS TO AGE.

 MULTIPLY PRICE BY QUANTITY GIVING COST.

 SUBTRACT DISCOUNT FROM COST GIVING FINAL-COST.”

 (Stack Overflow 2008)

There is other language that takes this even further like Inform 7, that writes as an

adventure game, something that makes its very easy to create. As a drawback, the

more these type of languages goes towards what one could call natural language

(what we speak day to day), the more prone they are to misunderstandings and is

often harder to debug if errors happen. On the other hand, the closer the work

language is towards machine language, the more micromanagement of a computer’s

resources can be done. This leads to the code becoming more complicated to

understand and write but giving more options to work with. The debate between

languages, closely related to machine code and those that are close to speech, shows

that there is a gulf between the science side and the culture side of software

50

development. With science focusing on the possibilities of the complex solutions, while

the culture and creative side on readable and understandable solutions.

This is why software development most often use standardized and object-oriented

languages like Java, JavaScript and the C languages. These languages find

themselves in a middle road between machine and natural language. This allows them

to not be too complicated to understand, while also giving the option to implement

solutions at a level close to the machine language. This gives the programmers full

control over the solution their crafting. As software developers the software that gets

created will be different each time, and it is therefore a must that the language used

allows for the creation of step by step solutions.

One of the programmers that was interviewed commented that

“There are many people with language education that do well in coding without

math or engineering backgrounds[…] in the end, coding is about

communication and writing, and if you are good at writing I think you can do it

well within software development” (Appendix A, “Programmer 1”, 59:33)

This correlates with Warren Sacks claims that humanities or liberal arts is a main part

of software development. The programmer does specify that it does not help with the

deep technical solutions, but coding is much more than that.

Front end development requires less of a deep technical understanding and does work

a lot like writing. One describes how components, for example a button, work and look

in relations to everything else. In a way. it is a way of world building, of communicating

how the world or software works.

The point is that languages like Java, C and others gives a toolbox to create what one

could call worlds. So, if one was to talk about the aesthetics in code, one could argue

that the unlimited potential of the medium is beautiful. For programmers, specifically,

it is the fact that one can create features and code that removes inconvenience or fixes

problems for themselves or others. This is reflected in the work languages that they

use, most of them allows for detailed explanations of how one interacts with the world.

Leaving them to describe it for the users of the software.

51

2.2.3 Beauty in Code

In 2012 there was a quantitative investigation around what developers found to be

beautiful and ugly code. It was done by Brooklyn college and the graduate centre of

the city university of New York. Their findings were put forth in the research article

“The Aesthetics of Software Code: A Quantitative Exploration” (Kozbelt, Dolese and

Seidel 2012). They sent out a survey to 12 experts and 38 novice programmers, to

get a feel for the difference in aesthetics between new programmers and old once.

The results that was found from the survey was that every expert (programmers

working for a business) had experienced an aesthetic experience when working with

code and creative artefacts. They also found a correlation between functionality,

beauty, ugliness, correct and incorrect code and aesthetics. From their findings, the

time it takes to find and understand if the code is ugly is much quicker than with

beautiful code. This fits into the other chapters of this thesis that has found out that

practicality is one of the attributes programmers finds aesthetically beautiful. Based

on this, one could see that aesthetics has a part in both debugging and testing of

code. An interesting find is that ugly code seems to be a visual experience and is

discovered by looking quickly at the code, while beautiful code needs more time and

effort to be found. Correct and incorrect on the other hand, is closer to each other

when talking about the time it takes to figure out if its correct or incorrect. With other

words, the aesthetics of code is being used to make sure that the code that is being

created holds a high standard.

With the stylesheet of how code should look in business, it is much easier to see if

the code is “ugly”. Which might explain some of the reasons why it is so much easier

to find out if it is that then the other way around. Following up on this, the interviews

done in this thesis also shows that programmers and other type of developers do

tend to find problem solving to be one of the more fun part of the job. The

programmers that was interviewed all talked about creating solution, and it was not

only about the code, but the combination of code and other artefacts that made their

jobs interesting.

Testing gains a lot from the aesthetic in code. As mentioned, it becomes

significantly easier to test and read code that is not “ugly”. As a by-product of this,

52

noticing bad or ugly code is a lot easier. The fact that it takes more time to figure out

if code is beautiful, shows that what is beautiful about it might not be how it looks, but

rather the artistic understanding by programmers that can see the nuances and the

thought that has gone into a solution. Which is something that takes more time and

energy to notice.

Another perspective is around describing the world and creating systems that work

within it. Being able to create small eco systems of code in much the same way that

figure 3 showed earlier is a fulfilling experience. Seeing the code that is being

created form into a full system and tweak it into perfection, is something

programmers often find interesting.

(Nobledesktop 2020)

Looking at the picture above, one can see the code on the left and what it creates on

the right. In web development this is how one develops a webpage. The fact that one

can see the changes happening as the changes happens, gives positive feedback to

the programmer. As mentioned, being able to see the blood sweat and tears one

puts into something take form and becoming something is a fulfilling feeling both

emotionally and visually.

53

Looking back to the interviews, UX designers and front-end developers seemed to

follow the same thought process. Their views follow the agile method of developing

for the end user, and code is there for a part of the process to reach that goal. This

thesis is therefore arguing the aesthetic feeling of working towards a goal, which in

this case is the best software for the end user. This way of thinking is quite

prominent in business software development. The view pushes developers to try

their best when it comes to creating a sturdy and useful software that fits the users.

So, the aesthetics in coding vary a great deal based on who one questions about it.

The main points they seem to agree on is that structure, language, readability and

efficiency is important aspects to be able to say if code is beautiful. Everything else

is up to the cultural background and education of whom you ask. Another way to

investigate the beauty in code is through John Ruskin, who defined his view on art

and the grotesque into three parts.

A) Art arising from healthful but irrational play of the imagination in time of rest

B) Art arising from irregular and accidental contemplation of terrible things; or evil

in general

C) Art arising from the confusion of the imagination by the presence of truths

which cannot be wholly grasp (Amigoni, Trodd and Barlow 2018)

The third definition has been redefined by Colin Trodd, Paul Barlow and David

Amigoni as “the expression, in a moment, by series of symbols thrown together in

bold and fearless connection, of truths which it would have taken a long time to

express in any verbal way” (Amigoni, Trodd and Barlow 2018). This third form of art

can be seen in science, mathematics and software development. For what is coding

if not symbols thrown together in a bold and fearless connection of trust which would

take too long time to tell in a different way? There is an aesthetic beauty found in

there, of describing concepts and solutions with as few words or symbols as

possible. An example of this is Einstein’s mass energy equation E= MC^2. The fact

that it takes 5-6 symbols to describe how energy, mass and light relates to each

other is fascinating.

This is the same in programming, the more knowledge and expertise one has around

it, the easier it is to see the genius or beauty of code. Everyone that sees a painting

can comment on what it looks like, but it takes knowledge to be able to see the brush

54

movements and understand the skills required to create it. By being able to put

beauty and coding together, one can bring in the expertise from philosophers and

researchers that has focused on this topic for centuries, to help create code that

represents the world in a better way than it already does. For programmers in a

business setting, it means that they would get new methods that might fit better

when developing software for cultural purposes, it can also make it easier for

creative people to be able to get into programming which would let them learn from

each other and thereby grow, or help give a middle ground for global programmer

teams to discuss and develop software with less culture clashes.

55

2.3 Software Design

This chapter investigates what aesthetics are for those that work with software

design, more specifically user experience and user interaction. Software design is

just a term this thesis is using to talk about these topics. It will also dive deeper into

universal design and how this thought process has helped to change what designers

find aesthetical. The chapter also explores how art and design, is being used to

reach a standard, that allows the user to instinctively know how the software works.

2.3.1 User Experience

User experience is a term that encompass a lot of topics. Allistar Sutcliffe says in the

book “Designing for user experience: Aesthetic and Attractive User Interfaces”:

“Hence in HCI, UX generally refers to a wider concept of design beyond

functional products, which encompasses interaction, flow, and aesthetic

design. It draws on literature from psychology, investigating how people

assess aesthetically related design qualities, interaction and graphical design

and contextual analysis of user experience.” (Sutcliffe 2019)

With other words, user experience could be thought of as a greater topic around the

design in software development, while user interaction is just that, how the user

interacts with the software and the computer. Sutcliffe mentions that this definition is

taken from HCI, which stands for Human Computer Interaction, and is therefore

more focused towards the design and the structure of the software instead of code.

There is an argument to be made that user experience should encompass the

readability and structure of code. This is because following Sutcliff’s definition it

encompasses interaction, flow and aesthetic design or if one looks at it from another

perspective, readability, structure and semantics that is found in code.

As was brought forth in chapter 2.2. A lot of the standards and methods that are

being used in coding, is to help developers with being able to interact, read and

design code better. To make sure that other programmers can easily get into the

56

project by following the coding flow (stylesheets) developed by businesses. In the

interviews with the different businesses in Bergen. The programmers that was asked

had a big interest in user experience but did not look at it towards coding but rather

as a design and methodology perceptive. When asked about how they tried to make

sure their code was readable or if they did any tests around this, the answer was “I

am the coordinator of one of the guilds in the business and every scrum team has

their own code reviews and before every merge another team has to review it”

(Appendix A, “Programmer 1”, 39:47). While talking about readability in code it came

up that “We often have a smart solution and a readable solution to problems. And we

try to use the readable solution where performance is not the key[...] with today’s

languages and computers there are few places where the smart solutions are better

than the readable once”. (Appendix A, “Programmer 1”, 43:33)

The programmer ended with saying that beautiful code is readable code and that

code that is not readable is bad. The underlaying feeling that came out of this part of

the interview is that user experience of code has much to do with the aesthetics of

the code. It is therefore an argument that stylesheets, code standards and such, is

an aesthetic artefact to help with the user experience programmers has with code.

The topic of user experience in code, is not a topic that is often talked about with

those words, but one can see a clear parallel between the goals UX and coding is

trying to go towards. Looking back towards software management, most of what one

can see in these fields, are following the thought of agile development and its focus

on just these topics: Usability, customers first and less planning.

User experience is most often thought of as more of a planning and software

development related topic, as mentioned in Sutcliffe’s definition. The UX Book by

Rex Hartson and Pardha Pyla says that “Most in the field will agree that user

experience, as the word imply, is the totality of the effect or effects felt (experienced)

internally by a user as result of interaction with, and the usage context of, a system,

device, or product” (Hartson and Pyla 2012). From a software development

viewpoint, it is about the experience or feelings of those who use the product. It is

therefore no perfect design answer when it comes to UX, since it goes on the

individuals experience with the software. Jesse James Garrett follows up on this

topic with

57

“User experience design makes sure that the aesthetic and functional aspects

of the button work in the context of the rest of the product, asking questions

like “Is the button too small for such an important function?”” (Garret 2010)

The goal is therefore, as Garrett insinuates, to find and create solutions that the user

can easily understand and use. But to do that one needs to do what Garrett just did,

ask oneself if what has been developed is the best it can be for the demographic that

is going to use the software. This is the main thought process that UX developers

and designers have when working. How would the user react with this feature?

There has been done a lot of research around this. Everything from how people

react to different colours to association of symbols. This has brought in many new

people in software development that does not have a background from computer

science or engineering. This has also brought in new perspectives and thoughts on

how to develop for a better user experience. One of the programmers that was

interviewed said “I do find it helpful with a project owner with a technical background,

but it is just as helpful with one that has a greater insight into the needs and

demographic we are developing the software for” (Appendix A, “Programmer 1”,

26:17). With other words software development is more than coding and technical

solutions. It is about understanding and formulating solutions that is usable and

workable for the end-users. So, the fact that people from with other educations and

cultures are being let into the development process, will lead to the software being

design for a bigger user base.

Because of the size of this topic, the rest of the chapter will be looking into some of

the tools and aspects that software developers use to make sure the product holds

the standard for user experience. From the aesthetic perspective of this thesis, user

experience is one of the thing software developers find aesthetic. It is also the

easiest topic to notice when it comes to beauty because of the focus on people,

experience and design. When the UX and UI designers was interviewed and asked

what they found fun, interesting or what passions they had. They answered user

testing (Appendix A, “UX 2”, 34:50) and “creating a tool that people use, as well as

gives them something that brings them value” (Appendix A, “UX 1”, 1:50). Both are

topics that are closely related to each other. This is also the same thing the

programmer said about problem solving.

58

User testing and creating something for the user, are both attributes of user

experience. There is therefore room to say that the methods of user experience can

be seen in an aesthetic light, since it gives an emotional response from working with

it. If one was to pinpoint the aesthetic beauty in the top layer of user experience, it

would be the beauty found in what it encompasses, flow, interaction and aesthetic

design.

The flow of user experience is the thought that the user of the program must find a

middle ground between interest and complexity. (Sutcliffe 2019) This is based on

Mihaly Csikszentmihalyi, a psychologist that found out just that. When there are too

much skill requirement people become anxious, when it is too easy, they become

disinterested. One therefore needs to find the sweet spot where the users are

interested and not to challenged too much. (Baron 2012) (Sutcliffe 2019) For

software development this means that one could measure the time they take to do a

task, listen to their experience with it and based on that slowly improve the software

towards the “flow zone”.

59

(Orji, et al. 2019)

Interaction is the focus on the graphical user interface and how the user interacts

with it. In “Adapting UX to the design of healthcare games and applications” one can

find 8 criteria’s for efficient interaction design. These are based on L. Alben’s

“Defining the criteria for efficient interaction design”. (Fanfarelli, McDaniel and

Crossley 2018) These criteria are aesthetic experience, manageable, understanding

of users, learnable usable, needed, mutable, efficient design process and

appropriate. This will be looked closer at later in this chapter.

Aesthetic design is not user interaction, but rather the look and feel of the software.

Sutcliffe says that:

“Design qualities such as good aesthetics and usability are likely to evoke

positive emotions, such as pleasure and joy, leading to positive memories,

60

although we tend to remember positive experiences in more general terms.

We have found that a positive usability experience was not remembered in

any detail but poor usability was, while general impressions of good aesthetic

design were remembered favourably, so it appears that usability has to avoid

serious errors; while investing in aesthetics adds value.” (Sutcliffe 2019)

A good example of this is when one finds an old website or new website that breaks

with the conventions that the users already knows. The users then often get a

negative experience with the webpage because of how different it is to what they

normally use. It is the same whenever Twitter, Facebook or other large website

changed the GUI, it creates backlash from people that says they do not like the

change but forget about it a week later. One of the UX designers that was

interviewed talked about intuition when it came to design. After asking what he

meant with intuition he said following his gut feeling, what looks pretty or has some

call to action for the user. He also mentioned it is very detail oriented, changing a

colour could make the design work much better. (Appendix A, ”UX 1”, 21:10). On the

other hand, the other UX designer talks about just that, how being the first out to

change design towards a new feature standard might not be a good thing because

people have not gotten used to it. (Appendix A, “UX 2”, 28:15)

When talking about experiences with websites, one is also much more likely to find

less error in a website that looks modern, because if something looks outdated, we

become on guard and starts looking for errors. It is therefore an important part of

system development to create a beautiful aesthetic design to enforce positive

experiences and mitigate the negatives ones.

User experience has a few ways that it is being used to make sure that what is

being made gives a good experience for the user. One of these ways are scenario-

based design (SBD). (Sutcliffe 2019) This is a popular method and has the same

iterative approach as Scrum and most other agile methods. The way it works is that

one gather information on the end, take their attributes such as ages and abilities, to

create fake people called personas. After that a scenario is created on what problem

these people have. A quick example is “Fred is about to head to work, but he has

lost his car keys. This has happened before so he checks the web for a find your key

application that might help him. The solutions he finds does not fit his needs and he

must go back to manually find his keys” This gives the designer a way look into how

61

the users will be using the product and lets them create prototypes that builds on

this. These personas and scenarios are the same as the user stories that developers

are using for the features and coding but focused towards the software flow and

design instead. What the designers are doing here is creating the framework for

what the product is supposed to do and focus it towards the need of the users. The

personas and scenarios is based on the knowledge designers have of the user, and

often they go out to talk and interview the demographic that will be using the product

to get an understanding of who they are.

The next part is creating storyboards, prototypes and testing. The way this is done is

by a group of people that draw and create a paper version of the software based on

the scenarios. They then take the best ideas of solutions and create a bit more

professional version that they start testing on the users to get feedback on it. They

then test multiple versions to find the best solutions to the different parts and after

every iteration they evaluate it and try to improve it until the product is finished.

The aesthetical process of creating a product for a user is long and full of trial and

errors. It is commendable how passionate the designers seem to be when it comes

to creating the best experiences for the users. It is also important for the users and

the buyer of the product to be able to be a part of the development process, and UX

design focuses on keeping the contact frequent to make sure everyone has a say in

what gets created. Therefore, the aesthetics of user experience can also be seen as

the collaboration between everyone in the system development process,

programmers, management, designers, users and buyers to find the best solutions

and implement them in a way that is intuitive and aesthetically beautiful for everyone.

2.3.2 Universal design

As mentioned earlier, readability and usability are two attributes that often gets

associated with aesthetics. It is therefore important to take a closer look at how

designer develop software to be readable and usable for all users. Which brings us

to the topic of universal design. As mentioned all the way back to chapter 2.1, the

focus on agile development did not start in software development but in society itself.

62

The change brought with it an understanding that all members of society should be

able to get entry and use public areas and products. It was these thoughts that

started the focus on universal design. All humans no matter what abilities they have

should be able to use normal day applications. It does not matter if one is blind,

mental or physically disabled, young, old or anything in-between.

In 1997 the Centre for Universal Design at North California State University

developed and released seven principles around what universal design is and what it

tries to achieve.

1. Equitable use. The Design does not disadvantage or stigmatize any group of

users

2. Flexibility in use. The design accommodates a wide range of individual

preferences and abilities

3. Simple, intuitive use. Use of the design is easy to understand, regardless of

the user’s experience, knowledge, language skills, or current concentration

4. Perceptible information. The design communicates necessary information

efficiently to the user, regardless of ambient conditions or the user’s sensory

abilities.

5. Tolerance for error. The design minimizes hazards and adverse

consequences of accidental or unintended actions

6. Low physical effort. The design can be used efficiently and comfortably, with

minimum of fatigue

7. Size and space for approach and use. Appropriate size and space is provided

for approach, reach, manipulation, and use, regardless of the user’s body

size, posture, or mobility (Null 2013)

These seven principles are still being used today and is still very relevant. An

interesting thing is that universal design became a thing around the same time that

software development started thinking about agile development. There are also clear

parallels between the two, like their focus towards making sure that what is being

developed is for the best of the end users. These design changes are for everyone,

a great example for this is the change from doorknobs to levers. By changing to

levers it makes it so one can open doors without using the whole hand. So, if one is

63

coming from the store with full hands it is possible to get the door open if it is a lever

but not if it’s a knob. (Null 2013)

For software development, universal design has become a part of the design

process. It helps with creating a robust design that leads to less errors and increases

the user experience for everyone. In 2013, Norway passed a law that said that all

information and technology solutions had to strive towards universal design, so that

public solutions could be used by everyone. (Regjeringen, Forskrift om universell

utforming av informasjons- og kommunikasjonsteknologiske (IKT)-løsninger 2013)

This led to software designers in Norway having to stretch themselves to upgrade

and change a lot of applications to reach the standards of this law. Last year (2019),

the European Union passed a directive to make sure that the accessibility

requirements around products and services is fulfilled by every member. (Parliament

2019)

Before these laws was implemented organisations, governments and others had

started a collaboration to create a standard for web content accessibility called

WCAG. WCAG was published in 1999 and was updated in 2008 to 2.0 and in 2018

to 2.1. (Lawton, Web Content Accessibility Guidelines (WCAG) Overview 2020)

Something that fits the timeline of the agile movement and the general change in

society that happened around that time. Either way. WCAG is a standard that

defines

“How to make Web content more accessible to people with disabilities.

Accessibility involves a wide range of disabilities […] These guidelines also

make Web content more usable by older individuals with changing abilities

due to aging and often improve usability in general”. (Lawton, Web Content

Accessibility Guidelines (WCAG) Overview 2018)

These are the same thoughts and principles that defines universal design, the

difference is that WCAG also has success criteria’s that must be tested to confirm

that it is up to an acceptable standard. The results from a WCAG test is A, AA and

AAA, where A is lowest, and AAA is the highest. One of these tests are based on

colour and the readability of text. Webaim is a web page that lets one choose the

colour of the background, and the text and creates a contrast ratio and checks it up

towards the WCAG guidelines for colour and text. (WebAim Contrast Check 2020).

64

By playing around with the colours on that webpage, it gives an understanding of

how text and colour has a huge impact on how easy it is to read information on the

web. It leaves one to think about how small changes might have a greater impact on

user experience then one first thought.

The WCAG is an interesting standard/guideline that helps designers to create what

one could describe as aesthetical good choices for software design. Much like the

stylesheet and standards mentioned in coding, it helps and gives a framework that

should be followed to make sure that the most users are able to use and gets a good

experience with the product. The greatest difference is the fact that this is a global

standard instead of a bossiness standard and that the WCAG does affect how one

should code but not the other way around.

Universal design is by itself an attribute of aesthetic in user experience. Sitting down

and micromanaging design to be able to make it as helpful for as many people as

possible brings with it its own kind of beauty. One of the UX designers said that

“universal design makes me simplify the GUI and make it more general. So even if I

do not think about the outliers it helps with forming the product for everyone.”

(Appendix A, “UX 1”, 39:50). This shows that universal design is a framework to help

form and create a good design, as well as an aesthetic perceptive focused on

making sure that everyone can enjoy the product.

2.3.3 User Interaction Design

Then there is user interaction. User interaction is, as briefly mentioned earlier, is

about how the user and the graphic user interface interacts with one another and

how to make sure that this leads to the best experience possible. As written in

Interaction Design: Beyond Human-Computer Interaction: “It is important to point out

that one cannot design a user experience, only design for a user experience. In

particular, one cannot design a sensual experience, but only the design features that

evoke it” (Preece, Rogers and Sharp 2002). User interaction is trying to create

features and graphics that gives their users specific feelings when they interact with

65

it. They are also focused on creating a good experience for all users and is therefore

using both user experience and universal design to reach this goal.

Dan Saffer comments in his book “Design for interaction: creating innovative

applicatios and devicces (voices that matter)” that:

“Interaction design is about behaviour, and behaviour is much harder to

observe and understand then appearance. It is much easier to notice and

discuss a garish colour than subtle transaction that may, over time, drive you

crazy” (Saffer, Designing for Interaction: Creating Innovative Applications and

Devices (Voices That Matter) 2009)

One can from this understand that user interaction and indirectly the WCAG is trying

to figure out human behaviour and their reactions to colours, placement and thought

process, when it comes to software. It is the designer’s job to focus on what the

users want and need, even though the users might not know it themselves. This

leaves them with a job to create and find solutions that has no end answer, there is

always something to make better or try out. Saffer says that designing is not about

choosing among different options, it is about finding and creating a third option that is

better than the others. (Saffer, Designing for Interaction: Creating Innovative

Applications and Devices (Voices That Matter) 2009) Which is something that gets

touched on in the interview with one of the UX designers. (Appendix A, “UX 1”,

18:13, “Solutions design”) They talk about having to change the design that was

working p10erfectly because of outside factors. This is not a good feeling but

something that happens, but they still find it one of the more interesting parts of the

job.

The reason why user interaction is being mentioned by itself is that it is one of the

topics that gains the most from a liberal art perspective and aesthetics. The user

centric development and the use of sound, colour, systems and more, to create

emotions and connection between the product and the user is some of the things

that makes user interaction and user experience interesting from this thesis

viewpoint. As mentioned earlier, Saffer says that design is about behaviour and how

to create a framework that allows connections and feelings to be generated in the

users. One could look at it as closely related to actor network theory (ANT) (Latour

1996), about how the designer, structure, graphical user interface and the user is

66

connected and changing based on each other. More specifically for this thesis it

would be how the software designers are able to create relations between

experiences, colours and other parts to connect to similar experiences in the user.

This is also an ever-changing topic because of the advancement in technology. One

of the UX designers said “What is kind of like a reality check after a few years is that

everything changes. Technology changes, people change, how to use a phone

change. What we wish is to follow the trends as the come and go. To find and follow

a balance between trends and innovation” (Appendix A, “UX 2”, 28:15) Showing that

this is something that is an important topic to keep in mind.

For a software development business, it is important, as mentioned by the UX

designer, that the user interaction design can follow all these trends but still know

when and what to innovate. The balance that was mentioned is the flow zone from

the user experience part of the chapter. There are clear aesthetical points in user

interaction, from the practical aesthetics of ANT, that shows the human relations

between developer, machine and users. And the emotional aesthetics of putting

oneself in the shoes of the users to experience, what they feel so that one can slowly

change these feelings by editing the design.

When developing the GUI, one has to mention the fact that they are working with

visual aesthetics. Symbols, boxes and pictures are important aspects of this. There

are also been done a lot of research about these things in other fields of study that

can and should be useful. Art and linguistics have had hundred even thousands of

years of time to test and develop their aesthetics and user interaction design can

learn much from these fields of study. As mentioned earlier, one of the programmers

said that other fields of study give a different understanding around the topics that

their developing, and that this knowledge helps with developing the product just as

much as another computer scientist or engineer.

To get a better understanding around this, one can look towards interaction design in

games, more specifically Candy Crush and other microtransaction apps. The way

they are designed is with the strategy that the players should get enough good

feedback in the start, so they get invested in the game, before they turn up the

difficulty. Following the flow theory mentioned earlier. User interaction design is what

keeps the interest, this is in the form of colour pallets that trigger good feelings,

67

explosions with “Good Work” and similar slogans. This is all examples of how

aesthetics affects the end users and can make them, in this case, use money by

making them used to the feeling of mastery and then slowly start taking it away while

offering insignificant sums to make them regain what they lost. (Hart 2017) For

software development in businesses this is not applicable, but it gives an

understanding of how important and how powerful user interaction design can be.

The fact that the design that is being created has so much effect on the users is both

interesting and terrifying.

2.3.4 Aesthetics of software design

After having taken a closer look at user experience, universal design and user

interaction design one can see how they interact with each other more clearly. Saffer

tries to show how interconnected UX and UI is by creating a figure to show what they

focus on.

68

(Saffer, Figure 1.15 The disciplines surrounding interaction design 2009)

As one can see on the figure UX design is a much broader topic. It both design,

coding and architecture of the software, while user interaction design only focuses

on the design that the end users are going to interact with. This gives us a better

understanding of how project owners, coders and designers must work together to

make sure that the product becomes user friendly. This is not a job just for user

experience designers and user interaction designers, but everyone in software

development. It is a team effort to make sure that all the clogs in the system has

been thought of and designed in a way that not only makes the software intuitive for

the end users, but also for those who are going to develop on it later and maintain it.

From the interviews that was done with UX and programmers, it came forth that they

work in teams and help each other with designing the product. (Appendix A, “UX 1”,

23:55) On the other side the programmers showed a large interest in universal

69

design (Appendix A, “Programmer 1”, 54:45) and user experience. Based on this one

can see that the gap between engineers and designers seems to not exist in the

businesses this thesis looked at. It shows on the other hand an understanding on

both side that working together is needed to be able to create something beautiful,

and that could be argued to be aesthetically beautiful.

Following up on this, one of the parts that was brought up by the UX people was that

it was much easier to work when sitting together with their team. The team they were

talking about was the scrum team, which has both project owner, programmers and

designers. (Appendix A, “UX 1”, 23:55) By being able to freely communicate with

each other, the UX designer was able to focus on creating something then quickly

get feedback from the other developers. Being able to see how the other parts of the

development works allows for new perceptive and inputs. The way the interviewees

talked about this gives of a feeling that it takes the whole team to push and develop

with the user in mind. Something that is reinforced in the literature and latest by the

figure from Saffer. It is this collaboration and communication that the project owners

mentioned as the most interesting part of their work. With other words team

communication, relations and teamwork is one of the more aesthetically pleasing

things with how software development is being done today. And they go hand in

hand with user experience, because for software development the users are the

project owners, programmers and designers.

There a difference in culture between games and business software development as

mentioned in 2.1. This different can be seen clearly in the end products. There are

many games that use microtransactions while business development does not have

this. One could look at mobile games and their focus on microtransaction and the

design that give of the feeling of gambling, something that more and more countries

is starting to agree is unacceptable. Latest country to try to do something about this,

from when this thesis was written, was Canada suing Electronic Arts over loot boxes.

(Kent 2020) Based on how prominent these types of mechanics are one can imagine

how lucrative and damaging these are for people. From a user experience

perspective, it is not in the interest of the users to develop a product like this. For not

to mention the ethical shadiness of it all. As the digital continues to become more

and more important, this thesis argues that the focus on what is best for the end-

users becomes more important as well. As shown programmers, developers and

70

project owners do share the view that a user focused goal is something they are

passionate about. It is also important to cultivate these feelings to create a culture

that does just this, so that what is happening in the games industry does not affect all

software development.

There has been a lot of talk about the user experience of the end-users and

programmers. And new tools are being created for designers, more specifically

sketches to code generators. This will allow designers to learn minimal code and

focus more specifically on the interaction with the graphics of the software. From the

aesthetic view, it will be interesting to see how interaction design will change if these

solutions become good enough to generate design based on the standards of

WCAG.

There are already websites out there that are pushing tools that should in theory

allow non software developers to create their own websites by drag and drop.

(Squarespace 2020) The thing they are missing though is the expertise that a

software designer would bring with them. From a practical aesthetic point of view,

interaction design that is so simple that one is able to drag and drop seems to be the

goal. Minimalistic, easy to use and understandable tools and design, is part of

universal design. In a way, software design has gone full circle and started to

implement universal design in software development, which is something that was

needed. It is important though to keep looking at software development with a user

experience mindset to find inconveniences, like the sketch to code process, that one

can fix. For that is the beauty of software design, creating solutions to remove these

annoyances.

71

2.4 Conclusion

The conclusion of the thesis will go over the findings and try to summarize what the

aesthetics in software development is. It will also look at the research question and

the findings of the thesis, look at the use of aesthetics and argue for why more

research on the topic is needed and what research and work should be focused on

further.

2.4.1 Aesthetics in software development

Throughout this thesis, the focus has been on the aesthetics in the topics found in

software development. This time it will be looking at it from a bigger picture and try to

connect everything together to give a better understanding of relations between

software management, programming, design and the aesthetic similarities.

The goal of software development as defined in chapter 1.1, is to create solutions to

problems or inconveniences with the help of software. Creating and solving problems

is what software development is about, and how this is done is by focusing on the

details, communication and working as a team. Something that project manager,

programmers and designers all have mentioned as thing they find important and

interesting to work with. This thesis argues that the aesthetical judgment that the

developers have around creating and solving problems is a practical and emotional

one. By focusing on problems and creating ways to mitigate or solve said problems,

software developers tend to figure out how the situation works and then create a

feature to make it “easier” to handle. So, the creation of the solution can be a

practical aesthetic while the underlaying reasons for wanting to solve it is emotional.

When talking with the interviewees they used emotions to describe their thoughts

and reasons to like or dislike different aspects of development. Something that is one

of the forces that drives them to specialise in different technical parts of the process,

some likes communication, some technical solutions, others problem solving. With

all these different views, it is important to be able to see what others find aesthetical

72

about their specific specialisation. This is so that one is able to work together and

make the job easier for everyone.

And that brings us to another topic that has been mentioned in every chapters so

far, user experience and user focus. As talked about in 2.1 and 2.3.2, there has been

a social change in how society and software development views the users of

software, and more generally products and solutions. The things that was acceptable

before the millennium, is no longer how thing should be solved. The whole thought

process that was steering society, started to focus more on how to help and develop

products and solutions to help everyone and not just the able bodied.

As mentioned earlier, this social change started in Norway with the healthcare reform

and the focus towards universal design. This, together with the growing support for

agile development methodologies, was able to change most businesses towards an

agile way of thinking. The reasons for bringing this up is that the user centric view of

developing for the users is strongly embedded in software development. The focus

on developing a quality product that is there to help the user is a noble thought that

all the interviewees mentioned was something they were striving towards. The fact

that developers focus on what is best for the end-users, gives a perceptive into the

ethical and philosophical viewpoints they have. This thesis argues that the ethical,

philosophical and emotional thoughts that developers has around software

development is its aesthetical judgment. It is these judgments that shows what

topics, solutions, processes and ideas is seen as beautiful or not.

Morkel Theunissen took a closer look at what professionalism is in software

engineering. He points to the five attributes IEEE mentions: One, a professional

software education, two, a voluntary certification or mandatory licensing, three,

specialized skill development, four, continuing professional education, five,

communal support via a professional society and five, a commitment to norms of

conduct often prescribed in a code of ethics. (Theunissen 2009) At the end he

specifies his view on it.

 “One may naively state that the first four points are primarily an infrastructure

and process problem with an associated solution. However, for practical

purposes one may state that the crux of professionalism for the individual lays

within the last point —“A commitment to norms of conduct often prescribed in a

73

code of ethics”. This brings us back to the basics of humanity, the values that are

embedded in the fibre of the individual which might be shared to some degree by

a group/community.” (Theunissen 2009)

As Theunissen describes professionalism, one can see it has a clear parallel with the

aesthetical beauty found in software development and in the different topics that has

been brought up. Based on this one can see that aesthetic beauty and

professionalism are closely related. Since professionalism is a commitment to norms

of conduct, one can see how following the norms might be aesthetically beautiful

while breaking with them creates a negative aesthetical response. Something that is

shown with the norms and standards mentioned in this thesis and how developers

think and feel about them as well as what beautiful code is and is not.

2.4.2 Research question

Throughout this thesis the focus has been on the aesthetics of software

development, in both small and bigger topics. Looking back at the research question

“How has software development changed since it was introduced and in what

way has aesthetics been a part of that change”, one can see a clear change both

in development and the culture surrounding software development. As Meisenberg

brought up, there has been a gulf of incomprehension between mathematicians,

engineers and the other liberal arts. (Meisenberg 2018) Based on the findings of this

thesis that gulf seems to be much smaller today.

With the focus going away from a waterfall method towards the agile methods, it

brought with it a humanity perceptive that made software development stop thinking

about developing just the requirements, but rather making sure that it was useful and

what the users of the product needed. This change with the societal changes

towards universal design, made it so that the value of user experience (UX) and

coding had to be re-evaluated. By creating Scrum teams that had people from all

sides of software development and increasing the need for good design it slowly

started chipping away at the notion of the gulf.

74

As pointed out in the chapter 2.1, this change was influenced by programmers and

designers outside of the mathematical and engineering circle. Those that created

programs for fun, by themselves or in small businesses. The reason for why smaller

business and single developers have another view is because that they had to

design and develop everything by themselves. Something that gave them a whole

different view on development. There is beauty in both design and programming,

something that is easy to miss when focusing to hard on one’s own field and not the

bigger picture. This is what the agile movement brought to software development,

the perspective to see the whole picture. An ethos to follow, that gives the

developers enough freedom to do what they feel is right. To push the field further by

experimenting and working together in a way where everyone is working for the

same goal, the best product for the end user.

When it comes to aesthetics it has been a large part of this development. Looking

at the change that has happened, aesthetics is one of the reasons developers felt

that waterfall methodologies was wrong. It took away their ability to be creative and

change the software as needed. It also had a focus on documentation to such a

degree that developers were burnt out before beginning. An example of this is the

programmer that was interviewed that talked about the 300 pages of documentation

that they needed almost 6 months to get up to speed on. This does not feel like the

right way to do things. So, when the software developers sat down and decided

these are the aspects that we find important, it spread like wildfire. This shows that

there was a bad aesthetic feeling in the field of software development, and by

changing the methods and thoughts on how to develop it brought a new passion to it.

This thesis argues therefore that aesthetics in software development is one of the

leading actors in changing and creating standards for the field. From software

management to coding standards to design, the thing that is the same is the

aesthetic judgment of the developers and how it reinforces the work that is being

done. As the thesis has shown through its interviews and literature search,

aesthetics is interlinked with all aspects of development. One can therefore argue

that a cultural change around what people find important, will influence software

development just like in the early 2000s with the agile movement.

75

2.4.3 What does aesthetics bring to software development

What use has software development for aesthetics? As shown and talked about, the

aesthetics has always been a part of the creative process. From describing the world

to physically creating an object. What makes it so important in software development

specifically, is that it is both of those things. Aesthetic judgment helps with telling the

developer if what they are seeing is up to standard or is breaking with the for

mentioned ethos of software development. This is the reason why ugly code or

design is easier to notice then beautiful one. Aesthetics does therefore bring a way

to see what code, design and architecture, is by the majority, seen as beautiful, of

quality or efficient and maybe more importantly what is not.

Another thing is the professionality and how one appears towards buyers and end-

users. As talked about earlier, the buyer of the software might not know how

software is being developed and is just looking at the price and their own budget.

Since software is a growing product it might therefore lead to confusion and

problems between software developers and the customer. It is therefore important

that it gets handled in a professional manner where software developers tell them

how it works. Aesthetics can be a part of this communication. Showing and telling

them how and what is being delivered and why it is being done this way can lead to

the collaboration that developers are trying to reach for. It might also slowly change

the view these different businesses that buy software, has on how software is

developed.

It might also be smart to try changing what students are being told about software

development. This is to allow more groups and not just data scientist and software

engineers to take the path towards software development. A good way to do this is

by showing them the aesthetics of software development and how creative studies

can be used to enhance the development of the product. That software development

is much more then coding, as they are told today, and that other liberal art fields are

also able join these businesses and do well. This thesis also argues with its findings

that creating Scrum teams across different fields of study to allow students to see the

practise of their education can help them understand their positions better. That what

76

their being thought is not to make programs but how to solve problems with the help

of programs and other tools in their possession.

2.4.4 Future Work

As mentioned at the start, this thesis began because Warren Sack did not look at the

whole of system development but rather just programming in the book “The Software

Arts”. In a way, this thesis is a continuation of his work and a springboard for others

to investigate the connection that’s been found. This thesis could have focused on a

single topic and gone deep into that. Instead this is the groundwork to understand

how interconnected aesthetics and software development is and give others the

tools and inspiration to look closer at aesthetics.

The first part that could be continued is looking deeper at the aesthetics of coding

and talking with more programmers, both in businesses and outside of it, on what

they find aesthetical about coding. There is a cultural difference between

businesses, game developers, hobby developers and others. It would therefore be

an interesting assignment to investigate the differences found in these groups and

how it affects the product that gets made. Based on the findings of this thesis one

can already see that there is a difference in the management of software in large

scale game companies versus software businesses. A further study on this could

give a better understanding of why this is and give a better understanding of the

different programming cultures out there. It could also go much deeper into the

differences in stylesheets and investigate how the programmers feel about the

rulesets they must follow.

Another topic that could be looked further into is testing. Testing was mentioned to

be one of the areas that gained a lot from aesthetics, but it was never talked much

about. A future study around testing and checking how and if aesthetics is being

used for this purpose could be interesting. It could be a way to support the findings in

the programming chapter, that aesthetics able to decrease the number of errors and

increase the readability of the code.

77

Since testing also can be done on the UI side it could also be looked at towards that.

How is testing being done in UI and is the aesthetic judgment of the designers

different from the users? This would let the study figure out what aesthetics the

designers have and how it conflicts with the people they are developing for. This

could be a good digital culture thesis on just that. How the aesthetics of developers

affect the users. A way to do this is to interview the users on what they want, what

they like and such before the designers show them the product and see how their

views has changed afterwards. It would draw on McLuhan and his thought that “The

media is the message” to showcase how our perception is coloured by the

technology we use.

While talking about the how users and developers affect each through technology.

This thesis brought rather early up Sacks claim that school and education still is

under the thumb of the science department. And as the thesis argues, one of the

ways to fix this is to teach the customers and students about what development

really is. From this thesis one could start a study about just this, finding out what

customers of software development think it is, as well as from the viewpoint of high

schoolers that might be thinking about joining a software development program.

On the other hand, one could also go deeper into what this thesis mentioned as

professionalism. What is a professional programmer and what does it entail? This

would be a study around what qualities developers find important and what image

they are trying to reach for. It could then look at how the image is seen by

customers, end-users and students. One could also look at the different meanings’

professionalism has between groups inside of development or even between

different programming practises. Since this thesis argues that professionalism is

manifested by the aesthetics judgment of a group with the same views, it would be

interesting to see how different this view can be between hackers and programmers.

78

Sources

Amigoni, David, Colin Trodd, og Paul Barlow. Routledge Revivals: Victorian Culture

and the Idea of the Grotesque (1999). Routledge, 2018.

Baron, Sean. Cognitive Flow: The Psychology of Great Game Design. 2012.

https://www.gamasutra.com/view/feature/166972/cognitive_flow_the_psychol

ogy_of_.php (funnet 10 10, 2020).

Beck, Kent, og Martin Fowler. Bad Smells in Code. 1999. http://www-public.imtbs-

tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/BeckFowler99.pdf (funnet

09 15, 2020).

Brevik, Ivar, og Karin Høyland. «Utviklingshemmedes bo- og tjenestesituasjon 10 år

etter HVPU-reformen.» veiviseren. 2007. https://www.veiviseren.no/forstaa-

helheten/forskning-og-utredninger/rapport/utviklingshemmedes-bo--og-

tjenestesituasjon-10-ar-etter-hvpu-reformen (funnet 09 25, 2020).

Carroll, Noël. «JSTOR.» Journal of aesthetic education 19, no. 4, winter 1985: 5-20.

Epic Games. «Coding Standard.» Unreal Engine. 2020.

https://docs.unrealengine.com/en-

US/Programming/Development/CodingStandard/index.html (funnet 10 05,

2020).

Fanfarelli, Joey R, Rudy McDaniel, og Carrie Crossley. Adapting UX to the design of

healthcare games and applications. 2018.

https://www.sciencedirect.com/science/article/abs/pii/S1875952118300211

(funnet 09 20, 2020).

Fuller, Matthew. How To Be a Geek: Essays on the Culture of Software. Polity; 1st

edition, 2017.

Garret, Jesse James. The Elements of User Experience: User-Centered Design for

the Web and Beyond. New Riders; 2nd edition, 2010.

Google. «Google C++ Style Guide.» Google github. 2020.

https://google.github.io/styleguide/cppguide.html (funnet 10 05, 2020).

Graham, P. Hackers and painters: Big Ideas From The Computer Age. O'Reilly

Media, 2004.

Grenning, Kent Beck James, et al. Agile Manifesto. 2001.

http://www.agilemanifesto.org (funnet 08 17, 2020).

Hart, Casey, B. «Free-to-Play.» I The Evolution and Social Impact of Video Game

Economics, av Hsuan-Yi Chou, 61-78. Lexington Books; Illustrated edition,

2017.

Hartson, Rex, og Pardha S Pyla. The UX Book: Process and Guidelines for Ensuring

a Quality User Experience 2012. Morgan Kaufmann; 1st edition, 2012.

79

Highsmith, Jim. «History: The Agile Manifesto.» AgileManifeto. 2001.

https://agilemanifesto.org/history.html (funnet 08 15, 2020).

Jørgensen, Kristine. «Games and Transgressive aesthetics.» gta.w.uib.no. 02 06

2015. https://gta.w.uib.no/2015/02/06/a-short-introduction-to-transgressive-

aesthetics-in-games/ (funnet 02 18, 2020).

Jull, Jesper. Handmade Pixels: Independent Video Games and the Quest for

Authenticity. MIT Press, 2019.

Kent, Emma. «EA faces class action lawsuit over loot boxes in Canada.»

Eurogamer. 2020. https://www.eurogamer.net/articles/2020-10-22-ea-faces-

class-action-lawsuit-over-loot-boxes-in-canada (funnet 10 28, 2020).

Kjøs, Skjald. «NTNUOPEN.» ntnu.no. Mai 2020. https://ntnuopen.ntnu.no/ntnu-

xmlui/bitstream/handle/11250/2663823/no.ntnu%3Ainspera%3A56974044%3

A24751243.pdf?sequence=1&isAllowed=y (funnet 09 25, 2020).

Kozbelt, A, M Dolese, og A Soidel. «APA PsycNet.» psycnet-apa-org. 2012.

https://psycnet-apa-org.pva.uib.no/fulltext/2011-22084-001.html (funnet 08 11,

2020).

Kozbelt, Dexter A, M Dolese, og A Seidel. «The aesthetics of software code: A

quantitative exploration.» APA psycNet. 2012. https://psycnet-apa-

org.pva.uib.no/record/2011-22084-001 (funnet 08 30, 2020).

Latour, B. «On actor-network theory: A few clarifications.» I Soziale Welt, 47(4), 369-

381. Nomos Verlagsgesellschaft mbH, 1996.

Lawton, Henry Shawn. «Web Content Accessibility Guidelines (WCAG) Overview.»

Web Accesibility Initiative. 2020. https://www.w3.org/WAI/standards-

guidelines/wcag/ (funnet 10 15, 2020).

—. «Web Content Accessibility Guidelines (WCAG) Overview.» Web Accessibility

Initiative. 2018. https://www.w3.org/WAI/standards-guidelines/wcag/#wg

(funnet 10 15, 2020).

Liberal Arts. «Why modern Liberal Arts?» Liberal arts: modern liberal arts education.

2020. https://liberalarts.online/why-modern-liberal-arts/ (funnet 10 28, 2020).

Mateas, Michael, og Montfort Nick. A Box, Darkly: Obfuscation, Weird Languages,

and Code Aesthetics. 2005. https://eis.ucsc.edu/papers/a_box_darkly.pdf

(funnet 09 15, 2020).

Meisenberg, Gerhard. «Researchgate.» Researchgate.net. 2018.

https://www.researchgate.net/publication/325665493_Editorial_The_Two_Cult

ures_An_Update (funnet 08 10, 2020).

Menninghaus, Winfried, et al. «What Are Aesthetic Emotions?» Reaserchgate.net.

September 2018.

https://www.researchgate.net/publication/327779286_What_Are_Aesthetic_E

motions (funnet 08 21, 2020).

80

Moore, David S. «Statistics among the Liberal Arts.» Taylor & Francis Online. 2012.

https://www.tandfonline.com/doi/abs/10.1080/01621459.1998.10473786

(funnet 10 15, 2020).

Nobledesktop. «Front-end web development.» Nobledesktop. 2020.

https://www.nobledesktop.com/image/coding-example-hipstirred.jpg (funnet

10 30, 2020).

Null, Roberta. Universal Design: Principles and Models. CRC Press, 2013.

Oram, A, og G Willson. Beautiful code. O'Reilly Media, 2007.

Orji, Rita, Gerry Chan, Ali Arya, og Zhao Zhao. «Motivational strategies and

approaches for single and multi-player exergames: a social perspective.»

Researchgate. 2019.

https://www.researchgate.net/publication/337020353_Motivational_strategies

_and_approaches_for_single_and_multi-

player_exergames_a_social_perspective (funnet 10 30, 2020).

Parliament, EU. Directive (EU) 2019/882 OF THE EUROPEAN PARLIAMENT AND

OF THE COUNCIL OF 17 APRIL 2019 ON THE ACCESSIBILITY

REQUIRMENTS FOR PRODUCTS AND SERVICES. 2019. https://eur-

lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0882 (funnet 09

24, 2020).

Preece, Jenny, Yvonne Rogers, og Helen Sharp. Interaction Design: Beyond

Human-Computer Interaction. John Wiley & Sons Inc, 2002.

Regjeringen. Forskrift om universell utforming av informasjons- og

kommunikasjonsteknologiske (IKT)-løsninger. 2013.

https://lovdata.no/dokument/SF/forskrift/2013-06-21-732 (funnet 09 10, 2020).

—. «Nye læreplaner for bedre læring i fremtidens skole.» Regjeringen. 18 03 2019.

https://www.regjeringen.no/no/aktuelt/nye-lareplaner-for-bedre-laring-i-

fremtidens-skole/id2632829/ (funnet 09 25, 2020).

—. «Om forholdet mellom «funksjonshemning» og «særlig behov for opplæring,

12.2.» Regjeringen.no. 2020. https://www.regjeringen.no/no/dokumenter/nou-

2001-22/id143931/?ch=13 (funnet 09 25, 2020).

Royce, Winston W. Managing the development of large software systems: concepts

and techniques. 1970.

https://leadinganswers.typepad.com/leading_answers/files/original_waterfall_

paper_winston_royce.pdf (funnet 08 25, 2020).

Sack, Warren. The Software Arts. The MIT press, 2019.

Saffer, Dan. Designing for Interaction: Creating Innovative Applications and Devices

(Voices That Matter). New Riders; 2nd edition, 2009.

Saffer, Dan. «Figure 1.15 The disciplines surrounding interaction design.» I

Designing for Interaction: Creating Innovative Applications and Devices

81

(Voices That Matter) 2nd Edition, av Dan Saffer, 20. New Riders; 2nd edition,

2009.

Schmit, Michael. «What is Assembly.» Sciencedirect. 1995. https://www-

sciencedirect-com.pva.uib.no/topics/engineering/machine-language (funnet

08 30, 2020).

Squarespace. Squarespace. 2020. https://www.squarespace.com/ (funnet 10 28,

2020).

Stack Overflow. «Is there a human readable programming language? [closed].»

Stackoverflow. 2008. https://stackoverflow.com/questions/202750/is-there-a-

human-readable-programming-language (funnet 10 05, 2020).

Stoica, Marian, Marinela Mircea, og Bogdan Ghilic-micu. «Software Development:

Agile vs. Traditional.» proquest. 04 2013. https://search-proquest-

com.pva.uib.no/docview/1492882301/fulltextPDF/A5F601E7AD9F4E48PQ/1?

accountid=8579 (funnet 09 04, 2020).

Sutcliffe, Alistar G. «Design for User Engagement: Aesthetic and Attractive User

Interfaces.» researchgame. 2019.

https://www.researchgate.net/publication/220696087_Designing_for_User_En

gagement_Aesthetic_and_Attractive_User_Interfaces (funnet 10 04, 2020).

Sutherland, Jeff, og Ken Schwaber. The Scrum Papers: Nut, Bolts, and Origins of an

Agile Framework. 2011.

https://d1wqtxts1xzle7.cloudfront.net/61009942/SEHR_WICHTIG_erste_Kapit

el_fur_die_theoretische_Umsetzungscrumpapers20191024-10891-

p9l46b.pdf?1571965855=&response-content-

disposition=inline%3B+filename%3DThe_Scrum_Papers_Nut_Bolts_and_Ori

gins_o.pdf&Expires (funnet 11 17, 2020).

Švelch, Jaroslav. Gaming the Iron Curtain: How Teenagers and Amateurs in

Communist Czechoslovakia Claimed the Medium of Computer Games. MIT

Press, 2018.

Tauber, A I. The Elusive Synthesis: Aesthetics and Science. Kluwer Academic

Publisher, 1996.

Theocharis, Gerogios, Marco Khurmann, Jürgen Münch, og Philipp Diebold.

«Researchgate.» Is Water-Scrum-Fall Reality? On the Use of Agile and

Traditional Development Practices. December 2015.

https://www.researchgate.net/publication/281546858_Is_Water-Scrum-

Fall_Reality_On_the_Use_of_Agile_and_Traditional_Development_Practices

(funnet 08 27, 2020).

Theunissen, Morkel. «Software Engineering Professionalism.» UPSpace Institutional

Repository. 2009. https://repository.up.ac.za/handle/2263/9192 (funnet 10 28,

2020).

unknown. System development comic [figure 1]. 2020.

https://i.redd.it/7dcz5131wak01.png (funnet 08 13, 2020).

82

WebAim Contrast Check. 2020. https://webaim.org/resources/contrastchecker/

(funnet 10 15, 2020).

Zangwill, Nick. «Aesthetic Judgment.» Standford Encyclopedia of Philosophy. 2019.

https://plato.stanford.edu/entries/aesthetic-judgment/#JudgTastBigQues

(funnet 11 05, 2020).

83

Appendix A) “Interviews”

These interviews were done in Norwegian and the transcribed information is found

bellow.

PO 1:

Med utgangspunkt ifra denne tegneserie stripa. Hvilke av disse rutene eller

områdene du har mer med å gjøre enn andre. Eller som du har mer interesse

for en andre. (1:30)

“Jeg holder på med å oversette kundens krav til ønsker som utviklerne kan forstå og

jobbe etter. (2:00) Å forstå hva ikke bare hva de seier, men hva de trenger.”

Hvilke av disse utfordringene finner du vanskeligst

“Det er vel kanskje det at en kunde kanskje ikke har verktøy, språk eller en bakgrunn

for å klare å formidle hva den trenger. Det er kommunikasjon mellom de forskjellige

fagområdene.” (03:00) “Det er kommunikasjon som er nøkkelen til alt” (3:50)

Jeg går ut ifra det skjer endringer underveis i utviklingsfasen. At det brukeren

vil ha endres, hva føler du om dette og hvordan håndterer du slikt? (4:57)

“Det er en hverdagslig sak forså vidt. Det finnes ingen prosjekter uten endringer, så

det venner man seg til. Det er umulig å spesifisere slik som vi gjorde I gamle dager.

Det ble veldig detalj spesifisert hva som skulle bli laga, men er nesten ikke mulig

fordi ting vil forandre seg […] Det å ha endringer skjer heile tida, dette som har gjort

at agilt har blitt tatt veldig mye mer imot” (5:15)

Føler du av og til press grunnet tidsplanen er forliten? (16:05)

“Ja, særlig fordi at måten vi får arbeid er ved å vinne anbud som blir utlyst og så må

vi konkurrere med andre selskap, og da er det ofte en urealistisk tidsplan som ligger i

bunnen” (16:15)

PO 2:

84

Hva interesser har du innenfor jobben din. Hva er det du holder på med og

liker å gjøre? (5:00)

“Det har jeg faktisk reflektert over de siste par årene også fordi at dette er mitt fjerde

yrke. […] Jeg er en person som elsker å lære nye ting og som nummer to på listen

så liker jeg å løse problemer, og det får jeg brukt veldig godt i denne jobben.

Kombinere utforsking av brukere sine utfordringer, problemer og hverdag med både

finne og beskrive løsninger for di. Men også de å hjelpe utviklere å grave i

problemstillinger […] Særlig dette med problemløsningen er topp for meg.” (5:29)

Så, når du snakker med kunden, føler du at de ikke veit hvordan utvikling, at

de har et gammelt tankesyn på hvordan de fungere? At de tror at de fungerer

som fossefall? (21:00)

“Ja jeg tror en del ligger der at vi ikke har innsikt i denne måten å jobbe på. Men jeg

tror det at, de fremdeles driver gammeldags program ledelse, med då, leveranse av

en hel del systemer. Og da tenker man fremdeles, her er alt vi trenger, her er

utviklingsfasen og her er test fasen og leveranse til slutt. Dette fordi det lar seg

planlegge, telle og måle. Det passer mye bedre på et telle ark men gir ikke beste

svar og løsninger.” (21:20)

Har du noe tanker rundt, synes du at tanke gangen må endres slikt at kunden

får en bedre forståelse for hvordan disse prosessen fungere på utvikler siden?

(22:35)

“Jeg er litt splittet, og grunnen er at jeg er et regne ark menneske. Ting er veldig lett

når det passe i et regneark. Og så har jeg igjennom denne jobben lært at det er en

måte å jobbe på som jeg forstår intellektuelt at det gir bedre resultater, det vi ender

opp med for brukeren. Men er fortsatt vanskelig å få de til å matche inni hodet mitt”

(22:50)

UX 1:

Hva er det du liker med UX?

85

“Det er veldig gøy å løse problemer. Å lage et verktøy som folk trenger og bruker.

Noe di får en verdi av” (1:50)

Hvis du har lagd deg et bilde over hvordan et program skal fungere og så

kommer det en endring så gjør at denne løsningen du mener var god må

endres. Hva gjør dette med deg? (17:55)

“Nei det er jo selvfølgelig kjedelig når man har en veldig god ide og er sikker på det

blir fenomenalt, men er alltid noe som legger kjepper i hjulene på en måte som gjør

at det ikke kan gå den veien. Det er jo synd, men man må jo alltid omstille seg da,

det er jo veldig ofte dette skjer i stor og liten grad.” (18:13)

Du nevnte intuisjon, er det då at du titter på løsningen og ja detter ser ut som

det kommer til å virke på grunn av at det føles rett? Og kan du forklare litt hva

som er grunnen til at intuisjonen din kan ta disse beslutningene? (21:10)

“For meg så er det jo, når jeg jobber for meg selv så er det veldig viktig å følge

magefølelsen. Ofte er det jo relativt rett det jeg gjør, eller det jeg går for. Og det er

mer hvor kjapt jeg ser hva som føles riktig. Uten å gå fordyp i det å analysere alle

detaljer. Det er ikke viktig når jeg jobber for meg selv, men mer viktig når vi tester

med brukere." Er de det at det bare ser rett ut eller er det at det er vakkert? “Ja,

det føles veldig rett ut, men det går utpå hva jeg jobber med eller ser på.

Informasjonsstruktur eller rent GUI, hva som ser bra ut, er øyenfallende eller en Call

to action. Det blir ofte veldig detalj orientert, endre en farge her så blir det bedre. Det

er mye frem og tilbake.” (21:30)

(23:40) Jeg har et spørsmål angående code review, men dere har noe

tilsvarende innen UX. Er dette noe du er ofte borti?

"Ja, det er noe vi gjør ofte inni SCRUM teamene. Nå har starter å gjøre det på tvers av

avdelingene også. Sånn at vi kan dele litt ider med andre prosjektledere eller andre team.

Men innad i hvert SCRUM team har vi gjerne en review av hva som skal lages i neste sprint.

Og da har vi en diskusjon med utviklerne om det er mulig å kode dette her, eller finnes det

teknisk bedre løsninger. " Sitter dere ofte på team med utviklere? Ja, vi kommunisere ofte

med utvikleren og på kontoret så sitter vi sammen i teamet. Så de er veldig mye lettere å

diskutere med hverandre å stille kjappe spørsmål (23:55)

86

Hva tanker har du rundt universell utforming? (39:50)

"Det er jo veldig viktig selvfølgelig. Det har jo en veldig stor verdi for mange brukere,

men det har veldig stor verdi for hva jeg produsere også. Fordi måten universell

utforming fungere er at det skal fungere best mulig for alle. Og det vil jo si at UI og

UX må være veldig enkelt og universell utforma. Dette får meg til å virkelig forenkle

brukergrensesnittet og brukerflyten. Så uansett om man tenker eller ikke tenker på

blinde skal bruke det så gjør det de mye lettere å forme produktet." (40:00)

UX 2:

Føler du at det har hjulpet at utvikling har blitt mer agile? (4:57)

“Ja uten tvil, i starten så var det veldig budsjett drevent med fossefall, man skal gjøre

det ene foran det andre. Man har fått en større forståelse i de forskjellige

organisasjonene at det er på lang sikt lurer å jobbe mer smidig, men det koster mer.

Hvis man jobber etter fossefall så kan man vise regningen dag en. Det kan man ikke

med smidig.” (5:01)

“Offentlige kunder har jo fortsatt sine budsjetter sant, og de må holde seg til disse.

Det gjør det vanskelig å jobbe veldig smidig. Det er noe med måten å tenke penger

på burde vært mer smidig.” (5:40)

Du har vel gått innpå ei nettside som funker på en slik måte at du vil dra deg i

håret. Er dette noe som får deg til å ville passe på at det dere lager holder en

standard som forhindrer dette? (28:00)

"Sånne ting er jo med på å påvirke motivasjonen for faget, man ønsker å lage noe

som hjelper mennesker og som er brukervennlighet, og på mange måte ønsker man

å være noen som gjøre dette vellykket. Man ser kanskje i starten at det var veldig at

man ønsket å være bedre enn de fleste. Det som er en slags reaility check etter

noen år er jo at man kan være så grundig og ha fikset ting så mye man vil og tro at

man har gjort alt riktig. Men med en gang man … Ting forandrer seg jo alltid også,

bruksmønstre forandrer seg, folk forandrer seg. Måten å bruke mobilen forandrer

seg. Scrolling og tasting, måten å gjøre ting på. Ting forandrer seg og neste

87

ingenting er likt ifra år til år og da blir det litt sånn at man ønsker ja, men man ønsker

kanskje bare å være de som føller trender og holder det jevnt og gående. Man

ønsker selvsagt ikke å være de som lager noe som får deg til å dra deg i håret, men

det er en hårfin balanse mellom å prøve å være innovativt også. Veldig ofte er det

tingene som ikke er innarbeidet, det kan være bedre løsninger, men er ikke

innarbeidet så det oppleves som dårligere. Det er noe med å vite når man skal være

først ut med noe."(28:15)

Måten dere utvikler UX på, liker du måten dere gjør dette på? (32:30)

“Man starter med innsiktsarbeid, lager use case og personas, finner ut hva disse

trenger for å nå sine mål, og om det samsvarer med forretningsmålet til bedriften.

Prøve å finne ut vist et av målene til bedriften er selvhjulpen, de vil få ned

henvendelsene til service disken. Så trengs gode selvhjelp sider der designet er

brukervennlig. Man tar på seg brukerens, setter seg i brukerens sko og prøver å

finne ut hvordan jeg vil gjøre dette, fylle ut dette skjema sjøl hvordan skal jeg klare

dette etc. Og da er det jo sånn at universell utvikling er veldig viktig […] så er det

klart at man må lage knapper, koden god nok til skjermleser, godt språk og annet.”

(32:43)

Ifra det du nå nevnte, hva er det du liker best med det som nett ble nemnd.

(34:40)

“Ja, det aller kjekkeste for min del er å jobbe med bruker testing, når man allerede

har lagd en prototype av et konsept og se hvordan brukeren reagere på nye konsept

og det som er blitt lagd” (34:50)

Programmer 1:

“Når jeg begynte så var det veldig vanlig med fossefall, vi fikk en stor bibel fra

kunden, dette er hva vi vil ha. Første jeg var utenfor var 1400 sider med beskrivelse

om hvordan produktet skulle være. Noe som betydde at når jeg kom in så var det

satt av 3 måneder for å forstå hva de ville ha. Og da satt alle sammen i tre måneder

for å forstå hva de ville ha. Fra kundens ståsted så var de ferdig.” (5:30)

88

Føler du at det er lettere vist prosjekt eier har mer IT kunnskap? (26:06)

“Det er ikke tvil at de gangene jeg har hat en prosjekteier med dyp teknisk forståelse,

at jeg har funnet det lettere. Men samtidig, eller, trenger ikke være dyp teknisk

forståelse, men tema. En av prosjekteierne vi har er utdannet om hva vi utviklere nå,

har vært vel så viktig som en annen prosjekteier vi hadde før […] Personlig for meg

så har jeg funnet det vanskeligere, men for andre så har di de lettere” (26:17)

Holder du på med code reviews i måten du jobber på? (39:40)

"I bedriften er jeg koordinator for frontend guildet. Det betyr at de forskjellige

teamsene har folk med interesse for forskjellige ting. De kan da bli med i guildet for å

få delt erfaring fra gamle utviklere til nye. I frontend guildet har ansvar for mange av

de interne bibliotekene som er blitt lagd. Og de betyr at man får et par personer som

gatekeepers. Typisk for alle teams er interne code reviews før merge request

etterfulgt av en code review. Dette skjer også i front end guildet." (39:47)

Når du ser på kode, finner du av og til biter eller alt vakkert? I så fall, hva finner

du vakkert med den? (43:30)

"Ja absolutt, det er mange forskjellige ting jeg finner vakkert med kode. I sinn tid når

ruby on rails dukket opp i 2005. Så såg jeg den lille screencasten, 15 minutter lag en

blogg ting. Og to ting som jeg la merket til. En var språket RUBY. Det var fryktelig

vakkert, måten det var lagd på, men også at det var som engelsk. Mye god Ruby

kode er som engelsk, man kan ta funksjonsnavn gi til noen som ikke kan

programmering og de kan forstå hva som skjer. Den andre tingen var tekst editoren.

Det førte til at jeg ville gjøre ruby on rails etter dette. De er fortsatt favoritt språket

mitt fordi jeg syns koden er flott å se på. Andre ting som kan være fint er flotte måter

ting er løst på. Ikke nødvendig vis smarte, jeg er veldig lite begeistret for smarte fordi

de ikke er lesbar. Man trenger de av og til, men i bedriften jeg nå jobber i så finnes

det masse eksempler på at funksjoner finnes i en lesbar og en smart utgave. Noen

steder vet vi at vist en variabel er over ett spesifikt tall så må vi bruke den smarte.

89

Men vi vil ikke at den smarte skal være den folk jobber med. De skal kunne forholde

seg til den lesbare […] Jeg mener ikke lesbar kode er til stor grad dårlig kode, med

språkene vi har i dag og de maskinene vi har så er det sjeldent at ikke lesbar kode er

bedre enn lesbar kode."

Det har jo komt ett nytt regelverk rundt universell utforming, har du noen

tanker rundt universell utforming? (54:45)

"Jeg er jo veldig mye større tilhenger av universell design en det motsatte. Alt for ofte

blir ting lagd, designet og så kommer tilgjengeligheten oppå der igjen. Et eksempel

jeg liker om dette er butikken som oppdaget etter at de hadde åpnet at rullestoler

kom seg ikke inn. Men vi har en dør på siden og så kan vi lage ei rampe opp dit.

Eller hvis man bare tenkte universelt med en gang så hadde det aldri vært en trapp

ved hovedinngangen. Ifra de firmaene jeg har jobbet for så er det ikke tvil at denne

tankegangen er veldig kostnads besparende, men endrer også hvordan man

designer og tenker igjennom alt. […] Jeg er en veldig stor fan av universell design og

har prøvd å få UX til å bevege seg i samme retning som universell design

gjør."(55:00)

Programmering / programvareutvikling er et stort fagfelt, ser du på det som

matte ingeniør, eller er det mer kunst og litteratur? (58:40)

“Samtidig når man ser at ingen skriver kode likt […] Man ser en stor grad med folk

med språk utdanning som gjør det godt innenfor programmering, som gjerne ikke

har en stor teknisk matte naturfag bakgrunn. Til syvende og sist så tror jeg at mye

handler om kommunikasjon, mye av programmering handler om å skrive og hvis du

er å flink til å skrive så kan du klare deg godt innenfor programmering. Det er slett

ikke alle som må holder på med dyp teknisk kode innenfor AI eller tilsvarende.”

(59:33)

