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Abstract 

Nonlinear conservation laws form the basis for models for a wide range of physical 

phenomena. Finding an optimal strategy for solving these problems can be 

challenging, and a good strategy for one problem may fail spectacularly for others. 

As different problems have different challenging features, exploiting knowledge 

about the problem structure is a key factor in achieving an efficient solution strategy.  

Most strategies found in literature for solving nonlinear problems involve a 

linearization step, usually using Newton's method, which replaces the original 

nonlinear problem by an iteration process consisting of a series of linear problems. A 

large effort is then spent on finding a good strategy for solving these linear problems. 

This involves choosing suitable preconditioners and linear solvers. This approach is 

in many cases a good choice and a multitude of different methods have been 

developed.  

However, the linearization step to some degree involves a loss of information about 

the original problem. This is not necessarily critical, but in many cases the structure 

of the nonlinear problem can be exploited to a larger extent than what is possible 

when working solely on the linearized problem. This may involve knowledge about 

dominating physical processes and specifically on whether a process is near 

equilibrium.  

By using nonlinear preconditioning techniques developed in recent years, certain 

attractive features such as automatic localization of computations to parts of the 

problem domain with the highest degree of nonlinearities arise. In the present work, 

these methods are further refined to obtain a framework for nonlinear preconditioning 

that also takes into account equilibrium information. This framework is developed 

mainly in the context of porous media, but in a general manner, allowing for 

application to a wide range of problems. A scalability study shows that the method is 

scalable for challenging two-phase flow problems. It is also demonstrated for 

nonlinear elasticity problems.  
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Some models arising from nonlinear conservation laws are best solved using 

completely different strategies than the approach outlined above. One such example 

can be found in the field of surface gravity waves. For special types of nonlinear 

waves, such as solitary waves and undular bores, the well-known Korteweg-de Vries 

(KdV) equation has been shown to be a suitable model. This equation has many 

interesting properties not typical of nonlinear equations which may be exploited in 

the solver, and strategies usually reserved to linear problems may be applied. In this 

work includes a comparative study of two discretization methods with highly 

different properties for this equation. 
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1. Introduction  

The desire to understand the forces of nature has followed the human civilization 

since its inception, not primarily for the sake of the understanding itself, but rather for 

survival, either by taming the forces or by learning how to adapt to or avoid them. As 

science and mathematics has progressed, these forces and the large variety of related 

natural phenomena have been described by physical laws. Among the most 

fundamental of these laws are the conservation laws, which state that certain 

properties in a system cannot simply appear or disappear, but change at a rate 

balancing the rate of net flux between the system and the surroundings. In classical 

mechanics, conservation laws for mass, energy, momentum and angular momentum 

form the basis for a multitude of other physical laws, which may be derived from, or 

turn out as special cases of these.  

With the relativity theories by Einstein in the early 20th century, the classical 

Newtonian laws were found not to be universally valid. In this new view, with mass 

and energy equivalent and time depending on the reference frame, new and adjusted 

conservation laws were needed. However, this applies first and foremost to 

phenomena at sub-atomic or astronomic scales, and does not invalidate the classical 

models for intermediate scales. The phenomena considered in this work are well 

within the domain of classical mechanics, so relativity is not needed and thus not 

considered here. 

Still, the interesting length and time scales span several orders of magnitude, from 

flow through tiny pores in a rock to global scale weather systems and ocean 

circulation patterns, and from fractions of a second to millions of years. Although the 

conservation laws are scale independent, by incorporating phenomena at all relevant 

scales, performing practical calculations that produce valid results on all scales is 

challenging.  

The nonlinear nature of the phenomena described poses another practical challenge. 

Linear problems represent a special case for which solution strategies are more easily 
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devised than for most nonlinear problems. A rich literature of mathematical solution 

strategies for different kinds of linear problems exists, many of which are applicable 

to a broad range of problems. Nonlinear problems, on the other hand, are generally 

much harder to solve. In fact, the most common solution strategies consist of 

converting the problem to a sequence of linear problems through an iterative method.  

The key to a successful strategy for a given nonlinear problem, lies in identifying 

characteristic features that may be exploited in the solvers. In this work, we will look 

into a few selected areas with different challenges related to nonlinear conservation 

laws, and identify suitable strategies for each.  

In the case of surface gravity waves on water, it may not come as a surprise that 

complex phenomena such as wave breaking, freak waves and undular bores call for a 

nonlinear description. But also very simple wave forms such as a single solitary wave 

travelling along a canal have a nonlinear nature. The Korteweg de Vries (KdV) 

equation provides a model for certain nonlinear waves that we will look into here. 

Flows in porous media such as oil reservoirs and groundwater aquifers also generally 

behave strongly nonlinearly, with nonlinearities arising various relations between 

different properties, such as relative permeabilities for different fluid phases, capillary 

pressure relations and nonlinear couplings between different governing equations. 

Heterogeneous parameter fields and a great span in relevant length and time scales 

further complicates the situation. 

Elasticity is an important property of solid materials and is important to consider in a 

large variety of applications, e.g. in construction projects and in studies of swaying 

trees. The relation between applied stress and strain may be strongly nonlinear and 

calls for a nonlinear solution strategy. 

With these three physical application areas as a starting point, we will present 

different nonlinear models and solution strategies. In particular, we will try to devise 

strategies that challenge the standard procedure of linearizing first and then applying 

specialized methods such as preconditioning and advanced linear solvers, by working 
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directly on the original nonlinear problem. With methods developed in recent years, it 

is more viable to take such an approach now than just a couple of decades ago. 
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2. Conservation laws in physical systems  

Conservation laws are among the most fundamental building blocks for models of 

physical phenomena. This chapter presents conservation laws in general form, and 

discusses a few common formulations, before moving on to some of the fundamental 

special cases of conservation laws, namely conservation of mass, momentum and 

energy. 

2.1 General conservation laws and different formulations 

Conservation of mass, energy, momentum, angular momentum and electrical charge 

are the fundamental principles in classical physics [118,142]. Conservation laws may 

also be defined for derived properties. In this work we will focus on conservation of 

mass and momentum, and models derived from these. We also briefly present energy 

conservation.  

Conservation of a property means that in an isolated system, the property does not 

change with time. By allowing sources and sinks and open boundaries, balance laws, 

which state that the net change of the property equals the net amount of the property 

entering and leaving the domain, and continuity equations can be formed. Continuity 

equations have the additional property of local conservation, in the sense that 

transport of the conserved quantity must be continuous. In this work we follow the 

convention of letting the term 'conservation law' also cover these equations.  

Figure 2.1 illustrates the concept of conservation of a property, whose density is  

for an arbitrary isolated system, represented by the domain . The boundary of the 

domain is denoted by  and the outward unit normal vector on  is . 

Conservation laws form the link between the laws of nature and a mathematical 

model by ensuring that fundamental principles are obeyed in the model, e.g. that 

energy cannot be created or vanish or that mass cannot simply appear or disappear, 

but must come from somewhere. Model equations derived from conservation laws 

may have entirely different characteristics from each other, depending on the physical 
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phenomena they are set to model. When devising a solution strategy, this is crucial to 

consider. Hence, the choice of solution method depends heavily on the characteristics 

of the problem, and for different solution methods different formulations of the 

problem may be desirable.  A few common formulations of a general conservation 

law as described above will be presented briefly in the following paragraphs. For a 

more comprehensive introduction, see e.g. [3,4,118,142]. 

2.1.1 Integral formulation 

In mathematical terms, the rate of change of property  in , which is assumed to be 

fixed in space, is 

 
 

(2.1) 

The outward flux of  across  is 

 (2.2) 

 

 

 

 

Figure 2.1: Conservation of a property  in a volume  with a point source  
and outflux  across the boundary  with outer unit normal vector . 



 9 

The integral form of the conservation law is obtained by combining equations (2.1) 

and (2.2) and introducing the source term , which integrated over  represents the 

net influx of  through sources and sinks within the domain: 

 
 

(2.3) 

This equation states that the accumulation over time of  in  balances with the net 

contribution from flow across the  and sources and sinks within the domain. 

2.1.2 Differential formulation 

Using Gauss' divergence theorem on equation (2.2) yields an alternative formulation 

of the flux integral, assuming that  is continuously differentiable, 

  (2.4) 

Substituting this in equation (2.3) gives  

 
 

(2.5) 

Since this equation is to hold for any , the integrand must be zero and the integral 

sign can be removed to yield the partial differential equation 

 
 

(2.6) 

which is the differential formulation of the general conservation law. 

2.1.3 Weak formulation 

Sometimes it is useful to formulate the conservation law as a minimization problem. 

This can be done by casting the problem on weak form, where 'weak' refers to the fact 

that the requirements of smoothness of the functions are weaker when the problem is 

posed on this form. We will for simplicity consider this for a case where the time 
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derivative term vanishes, i.e. the system is in steady-state. Further, if the flux  can 

be expressed in terms of a potential, say , the problem can be stated 

as 

  (2.7) 

In this presentation, homogeneous Dirichlet conditions on  are assumed, but the 

presentation is readily extendable to general boundary conditions [4]. Let  be 

the Sobolev space of -continuous functions with compact support in  and -

continuous first order derivatives. By multiplying equation (2.7) with a function 

 and integrating over , we obtain the weak form of the conservation law: 

  (2.8) 

The problem then consists of finding  such that equation (2.8) holds for all 

 [4]. Equation (2.8) may be expressed in terms of a bilinear form and an inner 

product, 

  (2.9) 

where the bilinear form  is defined as 

  (2.10) 

and  denotes the standard  inner product on ,  

  (2.11) 

In the case of , where  is the identity operator,  reduces to . 
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2.2 Some fundamental conservation laws 

In this section we will outline some specific conservation laws that are fundamental 

to modelling of physical phenomena. Specifically, conservation of mass and 

momentum is considered, followed by a brief presentation of conservation of energy. 

The differential form presented in Section 2.1.2 will for the most part be used.  

2.2.1 Conservation of mass 

By interpreting  as mass density , and denoting the volume flux by , the mass flux 

becomes  and Equation (2.6) represents mass conservation, 

 
 

(2.12) 

The concept of mass conservation is perhaps the most fundamental in continuum 

mechanics. With this as a foundation, governing equations for a large range of 

applications are formed, together with additional assumptions and constraints.  

By assuming incompressibility, that is, that the mass density  is constant, which is 

often a reasonable assumption for water and many other liquids, mass conservation 

can be formulated as 

  (2.13) 

This is commonly referred to as the continuity equation. Since mass conservation 

forms the basis for governing equations in many continuum mechanics problems, a 

desirable property of any solution strategy for these problems is that mass 

conservation is honored.  

2.2.2 Conservation of momentum  

If  represents momentum, it can be replaced by  and equation (2.6) represents 

momentum conservation, 
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(2.14) 

The product of the flux vectors  is a dyad. This form of momentum conservation, 

where the domain  is assumed to be fixed in space, provides the Eulerian form of 

the conservation principle.  

In many applications it may be more convenient to let  follow the motion of the 

material, or fluid. Then  is denoted a material volume and an integral form of 

Newton's 2nd law will provide the Lagrangian form of the momentum conservation 

principle, that is, the rate of change of momentum is balanced by the forces acting on 

the volume. These forces can be divided into body forces, with gravity as a typical 

example, and surface forces, also denoted as stress. This can be expressed as 

 
 

(2.15) 

where   is the total derivative, Einstein's summation 

convention has been applied, and the subscripts  and  denote spatial directions. On 

the right hand side of equation (2.15), the vector  represents body forces, while the 

tensor  represents stress. Equation (2.15) is also known as Cauchy's equation of 

motion [112]. Sometimes, the primary interest is in the equilibrium configuration of 

the medium, which is described by omitting the time derivative term in Equation 

(2.15). This may be expressed on weak form, similar to as in Section 2.1.3: Find the 

displacement  such that 

  (2.16) 

2.2.3 Conservation of energy 

For completeness, we mention another important conservation law used in continuum 

mechanics. Conservation of energy for a material volume, 
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(2.17) 

where  is the internal energy per unit mass and  is the th element of the heat flux 

vector, describes the balance of mechanical and internal energy in the system. The 

mechanical energy is represented by the term . On the right hand side, the 

first and second terms represent the rate of work done by the body and surface forces, 

respectively, and the third term represents heat transfer. This law is derived from the 

1st law of thermodynamics, which states that the total energy of an isolated system is 

constant, or that for a closed system, the change in internal energy equals the heat 

added to the system minus the work done by the system on the surroundings. When 

the internal energy is neglected, conservation of mechanical energy may be derived 

from momentum conservation [112]. 
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3. Selected physical applications 

In order to highlight different solution strategies for nonlinear problems in physical 

systems,it is useful to restrict the attention to a few selected applications. Specifically, 

we will consider nonlinear surface gravity waves, multiphase flow in porous media, 

and elastic deformation. These applications cover a range of systems with different 

interesting and challenging properties. For surface gravity waves, nonlinear equations 

with unusual properties turn out to be useful models, while for porous media 

heterogeneities, multiscale features, and data uncertainty pose great challenges. For 

nonlinear elasticity simulations, deformation of the physical domain is important to 

take into consideration. 

The objective of this chapter is to outline how the governing equations for these 

problems arise from the mass and momentum conservation principles described in the 

previous chapter. For more detailed derivations of the equations, there is a rich 

litarature that may be consulted, see e.g. [12,43,112,167]. 

3.1 Surface gravity waves  

Understanding the dynamics of water waves is important to coastal and river 

societies, where the energy contained in the waves can both be a threat to 

constructions on- and offshore and a potential resource. In this section, we will give a 

brief presentation of the dynamics of water waves. For a more comprehensive 

introduction, see e.g. [99,112,119,184] and the references therein. 

Waves are motions due to a restoring force. If the restoring force is gravity, we have 

gravity waves. Figure 3.1 shows a sketch of surface gravity waves with an overview 

of some relevant quantities. Depending on the geometry and other assumptions on the 

physical system, different linear or nonlinear models may be applied. At the 

foundation of these models are the conservation laws described in the previous 

chapter.  



 16

For certain types of surface waves in one dimension, a special nonlinear partial 

differential equation, the Korteweg-de Vries (KdV) equation [110,124], turns up. It 

may be formulated for the vertical displacement of the free surface, , in terms of the 

long wave speed , where  is the gravitational acceleration, and the 

equilibrium water depth : 

 
 

(3.1) 

For the purpose of mathematical and numerical analysis, it is common to transform 

the equation to a form with unit coefficients. Using subscript notation for derivatives, 

the KdV equation then becomes: 

  (3.2) 

By introducing the flux , this may be expressed as a 

conservation law for , 

 

 

 

 

 

 

Figure 3.1: Conceptual sketch of surface gravity waves, including some relevant 
quantities: Displacement of free surface , amplitude , wave length  and 
equilibrium depth . 
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(3.3) 

which is the one-dimensional variant of Equation (2.6) with vanishing source term.  

The KdV equation has proved to describe well e.g. solitary waves along a uniform 

canal [147] or undular bores that result from tidal waves entering certain tract-shaped 

river mouths [16,140]. Solitary waves, or solitons, are localized travelling waves of 

uniform shape and size, even when interacting with other solitons, except for a 

possible phase shift. The KdV equation has also been found to be a useful model for a 

variety of other physical applications, and plays a major role in soliton theory 

[53,58,59,156,188]. 

In terms of the conservation concepts presented in the previous chapter, the KdV 

equation may be traced back to conservation of mass and momentum, along with the 

assumptions of fairly shallow water, small amplitude , and a nonlinear 

restoring force. Fairly shallow water is typically characterized by , 

where  is the wavelength, and gives rise to dispersive forces [112].  

The Boussinesq approximation [20] eliminates the vertical coordinate from the basic 

equations, which is useful when the primary interest is in the motion of surface 

waves, which propagate horizontally. The KdV equation then falls out as a balance 

equation between a nonlinear term (third term in equation (3.2)) and a dispersive term 

(fourth term), in addition to pure advection (two first terms). 

The KdV equation has a variety of interesting properties for a nonlinear partial 

differential equation: It has analytical solutions in the forms of solitons and cnoidal 

waves [58], it is completely integrable and it satisfies infinitely many conservation 

laws [124], to mention a few. The analysis of this equation is an ongoing research 

topic. In Paper A, two different solution strategies for the KdV equation are 

compared and discussed. 
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3.2 Flow in porous media 

Understanding the dynamics of flow in porous media is of importance to a large 

number of applications. Although the term 'porous media' can be applied to any solid 

material with an interconnected network of pores, we here restrict our attention to 

geological porous media, typically petroleum reservoirs and aquifers. Modelling flow 

in these porous media accurately is a complex issue, both due to many physical 

processes going on simultaneously and over a broad range of length and time scales, 

and to uncertainty in – or lack of – data on the porous formations. This leads to 

advanced mathematical and numerical models, requiring massive amounts of 

computational power for realistic simulations. Still, providing output of sufficient 

accuracy may be unaffordable in many cases. 

The motivation for studying flow in geological formations is found in many different 

applications. Traditionally, oil and gas production has been the main driver for 

research in this field. This is still the case, but it has been increasingly accompanied 

by other fields such as geothermal energy and CO2 storage in the past couple of 

decades. Other relevant fields are groundwater flow and waste management. 

In the case of oil production, detailed knowledge about reservoir fluid flow has 

become increasingly important, as production techniques have grown more advanced 

and more fields have entered a mature stage. For new oil fields, the pressure in the 

reservoir is usually high enough to drive production alone (primary production). As 

the natural pressure support decreases, it is common to inject water, gas, high 

pressure air [40] or other substances in order to elevate the pressure or enhance fluid 

flow properties in order to increase the production further (secondary and tertiary 

production). Numerical models of the reservoir flow may act as a decision support 

tool for choosing production strategies and placing wells.  

As the awareness of the connection between anthropogenic CO2 emissions and 

climate change has grown, the need for renewable energy resources has become more 

and more evident. Geothermal energy has received increasing attention as there are 

vast amounts of energy stored as heat in the earth crust [74]. In this field, thermal 
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effects and flow through fractured porous media are important aspects that need to be 

understood. Another effort that is being held up as a way of reducing CO2 emissions 

to the atmosphere is the capture and storage of CO2 in geological formations [96]. 

These formations may be saline aquifers, unminable coal seams, old oil reservoirs, or 

producing oil reservoirs, as part of a secondary production strategy. Mathematical 

and numerical modelling is necessary in order to predict the movement of the injected 

plume of CO2, in order to estimate formation capacity and assessing leakage risks 

[46,134]. 

Groundwater contained in porous aquifers constitutes around 30 % of the freshwater 

resources in the world [157]. Understanding of how the water flows through these 

formations is important for efficient water management, and to avoid or monitor 

contamination of the water. 

In order to gain a deep understanding of flow and transport in geological porous 

media, advanced numerical simulators play a crucial role. Due to the large scales 

involved, laboratory tests are of limited use. The simulator may then act as a virtual 

laboratory, where test cases spanning hundreds of kilometers and thousands or even 

millions of years can be run. However, the validity of such tests relies on the quality 

not only of the data, but also on the mathematical and numerical models and the 

solvers used. Unfortunately, the equations describing flow in realistic porous media 

are generally extremely ill-conditioned, and no universal solution technique that 

consistently gives a reliable answer within a reasonable time-frame exists. The 

characteristic features of the governing equations may be highly different in different 

cases, depending on the dominating physical processes in each case. This serves as a 

driving force for further research on modeling and simulation of flow in porous 

media, where effort is divided between improvement on physical models, 

discretization, solvers and other aspects. Two other aspects that complicates the 

situation is that the rock properties are generally highly heterogeneous and highly 

uncertain, leaving little hope of obtaining an accurate and reliable solution of the 

problem.  
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In the remainder of this section, we will give a brief presentation of key concepts and 

equations related to flow in porous media. More detailed presentations may be found 

in e.g. [1,12,15,43] 

3.2.1 Rock physics 

The porosity is a dimensionless quantity that represents the fraction of void volume to 

total volume, 

  (3.4) 

in a representative elementary volume (REV) of the rock. An REV is assumed to be 

at a scale where moderate changes to the volume do not change the parameters, 

significantly larger than pore scale and significantly smaller than the reservoir scale. 

On this scale, the porous medium may be treated as a continuum. An REV scale may 

not always exist, but we will assume it to be the case here. A modified definition of 

porosity, which is of more practical use in flow applications, follows from letting  

only represent the connected pores. If the porous medium is completely filled with 

fluid,  also denotes the total fluid volume. 

Another essential parameter in porous-medium flow is the permeability, which 

quantifies how easily fluid flows through the medium. The permeability is a 

symmetric positive definite tensor [4], which may be written in matrix form as  

 
 

(3.5) 

The form of the tensor may be simplified by letting the grid align with the principal 

directions of the permeability, which leads to a diagonal tensor. Further simplification 

is possible by assuming equal permeability in all directions, in which case the 

permeability is reduced to a scalar value. However, in reality, the permeability in the 

vertical direction often differs significantly from the horizontal permeability. The SI 

unit of permeability is , but often units of Darcy (or milliDarcy, mD), where 1 
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Darcy = , are used. In realistic geological porous media, the 

permeability may vary over several orders of magnitude over small distances. This is 

one of the major challenges in reservoir simulation, since these small scale variations 

may have a substantial impact on large scale flow patterns. 

It is common to assume the rock properties to be constant with respect to time, which 

often is a good approximation. In reality, however, the rock may compress or 

decompress with changes in the overburden pressure, e.g. due to production or 

injection. Also, in fracking and enhanced geothermal systems, part of the process is to 

create fractures in the rock in order to facilitate flow [88,122]. 

3.2.2 Fluid properties 

The fluids most commonly encountered in porous rock formations may be classified 

as water, oil and gas. The phases may each consist of a number of different 

components. In this work, we will only consider the phases and neglect the 

compositional aspects.  

The density  of a fluid is defined as fluid mass per unit volume, that is, 

  (3.6) 

for phase . In general, the density of the fluid depends on other state variables such 

as pressure  and temperature. This dependency may be described through an 

equation of state, see e.g. [139,161]. Neglecting thermal effects, the compressibility 

may be defined as  

 
 

(3.7) 

For ideal fluids, the compressibility is constant, and by assuming the fluids to be 

incompressible it becomes zero. The latter assumption significantly simplifies the 

governing equations. For many liquids, including water, and to some extent oils, this 
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may be a good approximation. Gases, on the other hand, are highly compressible and 

need to be treated as such.  

The viscosity  of a fluid describes its resistance to flow due to internal friction on 

the molecular scale. For Newtonian fluids this does not depend on the shear rate or 

  

3.2.3 Single-phase incompressible flow 

Single-phase flow in porous media is on the continuum scale modelled using Darcy's 

law [52], which gives the volumetric fluid flow rate  as a function of the 

permeability and the pressure, 

 
 

(3.8) 

where  is the vertical coordinate. The second term represents the hydrostatic 

pressure gradient. Combining this with the incompressibility assumption and the 

mass conservation equation given in Section 2.2.1, this gives 

 
 

(3.9) 

or simply 

  (3.10) 

Equation (3.9) is an elliptic partial differential equation for . The time derivative in 

the conservation law vanishes due to the assumption of incompressibility. 

3.2.4 Multiphase flow 

For multiphase flow, an extension to Darcy's law that takes phase mass distribution 

into account is necessary. Two new concepts need to be introduced in order to 

accomplish this; capillary pressure and relative permeability. These are typically 

modelled as a function of phase saturation, , and often also of flow history, 

or hysteresis.  
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The relative permeability  quantifies how the different phases flow relatively to 

each other. Common relative permeability models include the Brooks-Corey [27] and 

van Genuchten [73] models. The relative permeabilities satisfy .  A related 

quantity to the relative permeability is the phase mobility, 

  (3.11) 

With the total mobility defined as , the fractional flow function may be 

defined for each phase as 

 
 

(3.12) 

The capillary pressure in a two-phase system is defined as the difference between the 

pressures of the phases, 

  (3.13) 

where subscripts  and  denote wetting and non-wetting phases, respectively. The 

Brooks-Corey and van Genuchten frameworks provide commonly used models also 

here. 

The multiphase version of Darcy's law can then be formulated for each phase as 

  (3.14) 

Simpler versions may be obtained by neglecting gravity and/or capillary effects, 

which in some cases may be reasonable assumptions. A set of partial differential 

equations that describes an incompressible two-phase system may be obtained by 

formulating conservation laws for mass for each phase. The mass per unit volume of 

phase  is . The densities are cancelled as in the single-phase equation, but a 

time derivative remains in the mass conservation equation for each phase: 
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(3.15) 

Together with constitutive relations for relative permeabilities and capillary pressure, 

the system of partial differential equations (3.15) may be solved for one phase 

saturation and one phase pressure, with the additional assumption that the phases fill 

the entire pore space, 

  (3.16) 

Often, it is more practical to reformulate the problem to different forms than the fully 

coupled formulation (3.15). One example is found by summing the equations to 

obtain  

  (3.17) 

where  and . The time derivative vanishes due to Equation 

(3.16), and the same equation form as in the single phase problem is obtained. The 

total velocity may be expressed in terms of a global pressure  [42],  

 
 

(3.18) 

which eliminates the explicit dependence of the total velocity on the capillary 

pressure. An alternative system of equations is then formed from equation (3.17) and 

one of the equations (3.15). This more weakly coupled formulation, known as the 

fractional flow formulation [39,42], clearly displays the elliptic-hyperbolic nature of 

the problem, as Equation (3.15) is hyperbolic with respect to saturation and Equation 

(3.17) is elliptic with respect to pressure.  

Different solution strategies for nonlinear two-phase flow problems in porous media 

are the topics of  Papers B and C. 
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3.3 Elasticity 

Many physical processes include deformation of some kind. The deformation of an 

object is due to some applied force, and is elastic if the object returns to its original 

shape after the force is released. Other major kinds of deformation include plastic 

deformation and fracturing, which as opposed to elastic deformation are irreversible. 

Examples of elastic deformation include stretching of rubber bands, trees and grass 

swaying in the wind, and steel springs. Elasticity of materials is also important to 

consider in construction projects. Poroelastic models [17,179] are used in applications 

where the deformation of a porous material is of importance, including rock 

formations and human tissue. 

This section will provide a very brief description of linear and nonlinear elasticity, as 

it would be beyond the scope of this study to go deeply into the details. The reader is 

referred to the material presented in e.g. [106,136,150,167,191] for a more in-depth 

presentation. 

The most basic physical model of elastic deformation is the linear elasticity model, 

where the deformation is assumed to be a linear function of the applied force. Linear 

elasticity is based on an assumption of small deformations. The relation between 

applied force and displacement is then described by Hooke's law, which may be 

expressed in terms of the Cauchy stress tensor  and strain tensor  as 

  (3.19) 

where  is the fourth order stiffness (or elasticity) tensor. In the isotropic case,  is 

scalar and known as Young's modulus. The strain tensor may be expressed in terms 

of the deformation  as 

 
 

(3.20) 

that is, a symmetrized deformation gradient, which is composed of the derivatives of 

the displacement vector with respect to the reference configuration. It is often 
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convenient to use the equilibrium configuration as reference configuration, but any 

other configuration may in principle be used. For larger deformations, a nonlinear 

model is needed, as the original and deformed states of the material are significantly 

different. A material that allows expressing the stress tensor as a function of strain 

alone, is called a Cauhy-elastic material, and the stress-strain relation can be written 

on the form 

  (3.21) 

where  is a nonlinear tensor mapping. Hooke's law is a special case of this relation. 

For other materials, e.g. hyper- and hypoelastic materials, the linear model is 

insufficient even for small deformations [167,172]. We will not discuss these further 

here. 

A set of governing equations for nonlinear elasticity problems may be obtained from 

Equations (3.20) and (3.21) above and a conservation law for momentum. In order to 

describe the displacement of each particle in the deforming medium, a Lagrangian 

description of the system is a natural choice. For the equilibrium configuration, and 

using the weak form (2.16), this becomes the problem of finding , such 

that 

  (3.22) 

with  determined by Equation (3.21).  

The finite strain theory provides a framework for arbitrarily large deformations. 

Different kinds of stress measures may be convenient in such cases, e.g. the Piola-

Kirchhoff stress tensors which relate the stress in a deformed configuration of the 

medium to the reference configuration [167]. The first Piola-Kirchhoff stress tensor is 

defined as 

  (3.23) 

where  is the deformation gradient tensor. For a more comprehensive 

presentation of this subject, see e.g. [167,191]. 
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Solution strategies for a nonlinear elasticity problem is presented and discussed in 

Paper D. 
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4. Discretization methods 

In the previous chapter some mathematical models for different physical phenomena 

are outlined. These continuous models cannot be handled directly by computers, 

which only operate on discrete data. Therefore, the models need to be discretized, 

such that the properties involved are defined only on a finite number of points rather 

than on continuous regions. The subject of discretization is very wide, and there is a 

rich literature on different discretization methods, see e.g. [118,145,151,192].  

The optimal choice of discretization depends largely on the problem at hand, as 

different methods have different advantages and disadvantages. For instance, elliptic 

and hyperbolic problems differ in the sense that elliptic problems are globally 

coupled, while hyperbolic problems have local couplings and finite propagation 

speeds. Also, the KdV equation has properties not found in the saturation equation 

(3.15) and vice versa, although both are hyperbolic. The elasticity problem in Section 

3.3 follows a Lagrangian description, while the other problems discussed in this work 

have an Eulerian setup. These and other differences should be reflected in the 

discretization methods. The literature is richer on spatial discretization methods, 

although several different temporal discretization techniques are available. This 

reflects the fact that the differences in the continuous equations are largely found in 

the spatial terms. In this chapter, short presentations of four classes of spatial and one 

class of temporal discretization methods are given. 

4.1 Spatial discretization 

This section provides presentations of different discretization methods that are 

commonly used for the physical systems described in the previous chapter, and some 

discussion regarding why they are natural choices in the respective cases. 

Some important properties of discretization methods are consistency, stability and 

convergence. A discretization is said to be consistent if the discretized equations are 

reduced to the continuous equations as the grid point distance . If the 
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approximation error is bounded, the method is stable. The Lax-Richtmeyer 

equivalence theorem [116,118] states that a discretization that is consistent converges 

if and only if it is stable. These properties, along with conservation properties, are 

important to consider when choosing a discretization scheme. 

4.1.1 Finite difference methods  

The finite difference methods are among the simplest discretization methods 

available. Their simplicity in form has made them popular across many application 

fields. The methods are based on approximations of derivatives in the governing 

partial differential equations, based on the definition of the derivative. These methods 

are most commonly used on rectangular grids, but triangular and hexagonal grids 

may also be used. Formulating the methods on more general grid forms is an 

elaborate task, so the practical use of finite difference method is limited to regular 

grids. Hence, the methods are most efficient on applications that do not require 

complex grid geometries.  

The approximation of a derivative at a certain grid point is determined by function 

values at a limited number of neighboring points, with the number of points used 

depending on the desired accuracy and the order of the derivative. The formulas are 

based on Taylor expansions, 

 
 

(4.1) 

 
 

  

and 

 
 

 

 

(4.2) 
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of the function  around a certain point, here , with a small scalar value , which 

may be positive or negative. For instance, the derivative of a function, , may be 

approximated by rearranging Equation (4.1),  

 
 

(4.3) 

or Equation (4.2),  

 
 

(4.4) 

providing two one-sided schemes. Here,  represents the distance between 

neighboring grid points. The  term indicates that the convergence rate of the 

approximation error as  is of first order.  By combining formula (4.1) with the 

corresponding formula for  to obtain 

 
 

(4.5) 

a central scheme of second order occurs. Higher order derivatives may be calculated 

similarly. Involving more points on each side may generate higher order schemes 

[72]. However, the more points that have to be evaluated, the more costly the scheme. 

Finite difference methods are easily applied to multi-dimensional problems by 

applying the schemes on the different partial derivatives involved in the equations. 

These schemes result in sparse banded matrices representing the derivative term for 

the whole discrete domain. The lack of flexibility in grid forms is a drawback for 

these methods when the geometry of the problem is irregular. Also, convergence rates 

may be slow compared to other methods. 

The one-sided difference schemes above are especially useful for hyperbolic 

problems where the solution propagates in one direction and the solution at a grid 

point is only based on information from one side. For linear hyperbolic equations this 

is straightforward to implement. For more complex problems where the flow 

direction may change, such as in two-phase flow in porous media, it is necessary to 
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automatically detect the flow direction and use information from the upstream cell. 

This is known as upstream differencing [26,152], and is applied to the hyperbolic 

saturation equation in Papers B and C. 

4.1.2 Spectral methods 

Spectral methods [37,141,170] are constructed from a set of global basis functions 

that are weighted using scalar coefficients. The discrete problem then consists of 

finding weights that make the sum of basis functions approximate the true solution 

within a given tolerance level. The global nature of these functions leads to dense 

coefficient matrices. On the other hand, these are typically smaller than the matrices 

corresponding to other methods such as the finite difference method. This is because 

spectral methods require fewer grid points to obtain a certain accuracy due to the 

excellent convergence properties, often denoted spectral convergence.  

We will restrict the discussion of spectral methods to bounded, one-dimensional 

domains. Two important classes of spectral methods are the Fourier methods, which 

use trigonometric interpolation functions on uniform grids, and Chebyshev methods, 

which use the Chebyshev polynomials as interpolating functions on grids based on 

the so-called Chebyshev points. An alternative polynomial approach is based on the 

Legendre polynomials. 

In either case, the derivatives in the governing equations are evaluated in terms of 

derivatives of the basis functions. Since the basis functions have global support, the 

corresponding coefficient matrices become dense. This unattractive feature is largely 

outweighed by the spectral convergence rate, which is exponential with respect to 

grid resolution, assuming the solution is sufficiently smooth. This is in contrast to e.g. 

finite difference methods that have polynomial order of convergence. A drawback for 

many applications is the rigidness of the grid point locations. 

The Fourier method is well-suited for periodic problems, given the form of the 

interpolating functions, although it is also possible to use it for non-periodic problems 

e.g. if the interesting part of the solution is kept away from the boundaries. A 
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phenomenon that occurs for discontinuous solutions is the Gibbs phenomenon, which 

is an overshooting oscillation phenomenon near the discontinuities.  

For non-periodic problems, the Chebyshev method is a popular choice. The 

Chebyshev points are defined as the extreme points of the Chebyshev polynomials, 

defined recursively as 

  (4.6) 

with  and . An equivalent definition of the Chebyshev points is 

  (4.7) 

where  is the number of grid points. This can be visualized as the projection of 

equidistant points on the unit circle to the -axis. Hence, the points are densely 

distributed near the boundaries of the interval  and more sparsely in the 

central parts. This has the effect of minimizing the Runge phenomenon, that is, large 

non-physical oscillations near the boundaries of the domain that occur when 

interpolating smooth functions with polynomials on equispaced points [51]. It may be 

shown that an optimal density of grid points satisfies 

 
 

(4.8) 

This is the case with the Chebyshev points [170], as may be verified from the 

definition of the points. 

The Chebyshev method is related to the Fourier method in the sense that the 

interpolating functions are transformed trigonometric functions, cf. Equation (4.7). 

Consequently, Fourier analysis is relevant for both methods. This includes the use of 

the Discrete Fourier Transform (DFT), which transforms functions from physical 

space to frequency space in order to obtain the coefficients in the Fourier series. The 

Fast Fourier transform (FFT) [48], is a class of efficient algorithms for calculating the 

DFT.  
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While Fourier methods are frequently used for the KdV equation, this is not the case 

for Chebyshev methods. However, for problems with non-homogeneous Dirichlet 

boundary conditions, Chebyshev methods may appear as a more attractive alternative. 

In Paper A, the performances of a Chebyshev spectral method and a finite difference 

method are compared. 

4.1.3 Control volume methods 

Control volume (CV) methods [2,5,63,64] are based on the integral form of the 

governing equations. This class of methods is designed to retain the conservation 

properties of the continuous equation in the discretization. This is done by dividing 

the domain into smaller cells, or control volumes, on which the conservation principle 

is applied. These cells may have arbitrary polyhedral shapes. At the heart of the 

method is the calculation of fluxes on each face of the volume. 

The CV methods are especially suitable to elliptic or near-elliptic problems such as 

the single phase flow equation (3.9) or the pressure equation in the two-phase flow 

problem, which are expressions for mass conservation for flow in porous media. 

Consider a slightly simplified version of these equations, 

  (4.9) 

Darcy's law accordingly gives the flux as 

  (4.10) 

The flux  is proportional to the pressure drop . Let the pressure values be 

represented in the cell centers, and assume the permeability tensor  to be constant 

within each cell. The simplest form of CV is obtained by letting the fluxes across 

each edge based on the pressure differences between the cells corresponding to that 

edge, along with a harmonic mean of the permeabilities. This gives the following 

expression for the flux across the face separating cells  and  in the -direction: 
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  (4.11) 

Here,  is the area of the face between the cells. This is commonly referred to as 

Two-Phase Flux Approximation (TPFA). This method is limited to K-orthogonal 

grids, that is, grids in which straight lines between neighboring cell centers align with 

the principal directions of . This yields simple expressions, which again has made 

this method very popular and widely used in reservoir simulators. However, this 

criterion also limits its usability on general grids, such as grids aligning with features 

in the permeability field.  

In order to work on general grids, the natural extension of TPFA is the Multi-Point 

Flux Approximations (MPFA) methods. As the name suggests, each flux is calculated 

based on multiple points. There are several different MPFA methods, including the L-

method, which uses three points, and the O-method, which uses four points. This 

makes the methods more robust, and applicable on general grids. The combination of 

flexibility with gridding and mass conservative schemes has made these methods 

popular for simulations of flow in porous media, where these properties are critical. 

However, these methods have some issues with monotonicity. While the continuous 

equation (4.13) satisfies a maximum principle, this is challenging to obtain for the 

discrete equation with an MPFA method [102,131,132]. The formulations of the 

methods are also somewhat more complex and computationally more demanding than 

for TPFA. There is no comprehensive theory for the convergence of the CV methods, 

although convergence is proved for some cases [4].  

The TPFA method is applied for the elliptic pressure equation in Papers B and C. 

4.1.4 Finite element methods 

Another important class of spatial discretization methods is the Finite Element 

Methods (FEM) [14,164,192]. These methods are based on dividing the domain into 

a non-overlapping set of smaller elements and representing the solution using basis 

functions with local support. This is similar to the spectral methods described above, 
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except that the basis functions are local here, in contrast to the global basis functions 

of the spectral methods. Each node, or intersection point between different element 

edges, has one basis function associated with it, and the weighting of the functions 

determines the solution. By specifying different types of elements and basis 

functions, different methods may be obtained.  

FEM is based on the weak formulation of the governing equations shown in section 

2.1.3. An equivalent problem to Equation (2.9) is the minimization problem 

  (4.12) 

where 

 
 

(4.13) 

with  and the inner product  defined as in Section 2.1.3. In order to obtain a 

discrete version of the problem, the Ritz-Galerkin method may be used. This 

approach makes use of finite-dimensional test functions , where  is the 

space of nodal basis functions for . Here,  is the set of 

polynomials of degree  or less on , the discretized version of . That is, find the 

 that satisfies 

 
 

(4.14) 

for all . It may be shown that . Here, the subspaces for test 

functions, , and trial functions, , has been chosen to be the same, , but they 

may also be chosen to be different. With the choice above,  is the space of 

piecewise polynomial functions up to degree . A common choice, and the simplest 

option, is to set . This yields piecewise linear basis functions, also known as hat 

functions.  Quadratic and higher degree polynomials may also be used in a 

straightforward manner, but more points are required to define the basis functions 

then. 
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FEM are extremely popular for a wide range of disciplines, including elasticity. Part 

of the popularity is due to the flexibility in grids, which is important in many 

applications. In elasticity problems this is particularly attractive as the physical 

domain deforms. A large part of the popularity also stems from the relaxed 

smoothness criteria due to the weak formulation and the ability to represent arbitrary 

functions in a function space using local basis functions. We have employed a FEM 

discretization for the elasticity problem in Paper D. 

In the case of porous media problems, the lack of mass conservation limits the 

applicability of the method. Also, the permeability tensor is arithmetically averaged 

in FEM, which is a problem if the average is to be taken across a discontinuity, which 

is the case with element-wise constant permeability. Harmonic averaging, such as in 

CV methods, would yield a better representation of the actual effective permeability. 

The convergence rate depends on the grid properties and the basis functions. A 

discussion of the convergence using the Ritz-Galerkin approach with linear basis 

functions can be found in [4]. 

4.2 Temporal discretization  

For equations with time dependence, the temporal terms need to be discretized as 

well. Usually, the temporal dimension is discretized separately from the spatial 

dimensions. A useful model problem for discussing temporal discretization is the 

general form 

 
 

(4.15) 

We will only consider finite difference representations here, as this is by far the most 

common choice, and other discretization methods are of less practical use for time 

stepping.   

The natural approach to a time-dependent problem is to start from an initial time  

and calculate the system state at incremental steps . There are two main 
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directions from here, namely implicit and explicit time-stepping methods. For explicit 

methods, the state at a point  at time  depends only on values from time steps 

up to , that is, known values. For implicit methods, the state at  also depends on 

values from the current time step, , thus requiring the solution of a system of 

equations on each time step. The remainder of this section discusses general 

properties of these classes of time stepping methods, as well as some specific 

examples of methods. 

4.2.1 Explicit methods 

With explicit time-stepping methods, the state at a point in space at a time step can be 

expressed as a function of known quantities, calculated at previous time steps. This is 

favorable from a computational perspective. However, there may be strict criteria for 

stability involved, and this may put severe limitations on the time step length , 

possibly outweighing the low cost per step. The Courant–Friedrichs–Lewy (CFL) 

condition [49] relates  with the spatial grid point distance  and the velocity at 

which wave components of the solution travel. The Courant number is defined in the 

one-dimensional case as 

 
 

(4.16) 

Here,  is the maximum magnitude of the velocity over the entire grid. The CFL 

condition may be stated as , where  depends on the time-stepping 

method and the problem at hand. Typically, . This condition ensures that 

the physical domain of dependence is contained in the numerical domain of 

dependence. If the condition is not met, the numerical solution on the new time step 

suffers from a lack of necessary information, and may become unstable. Equation 

(4.16) is formulated for a one-dimensional problem, similar conditions may also be 

defined for multi-dimensional cases. 
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The most basic explicit time stepping method is known as the forward Euler method. 

This method approximates  at step  by a simple difference formula using 

values from steps  and , 

 
 

(4.17) 

with the subscript denoting the time step, and evaluates all the spatial terms on step . 

This gives the formula for  as 

  (4.18) 

The forward Euler method is a first order method, since the global error of a time-

stepping method, defined as the difference between the true solution and the 

numerical solution, is one order smaller than the local truncation error. This is due to 

the fact that the number of time steps taken in order to reach a certain point increases 

with decreasing time step size. 

Higher order methods, such as Adams-Bashforth methods, may be constructed by 

incorporating information from multiple time steps. By also including time step , 

a method on the form 

 
 

(4.19) 

may be constructed. This is a second order method. Similar formulas may be 

constructed using information from more time steps, with the order of convergence 

increasing with one per time step included [82].  

Several other strategies are available. The Leapfrog method evaluates the spatial 

derivatives on an intermediate step between the time steps involved in the temporal 

difference. The class of Runge-Kutta methods offer higher order methods, although at 

the cost of more complicated formulas. 
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4.2.2 Implicit methods 

The backward Euler method is the implicit counterpart of forward Euler, with  

evaluated at the current time step, , 

  (4.20) 

As  here cannot be stated as a function of known quantities, a system of 

equations has to be solved on each time step. This may be very computationally 

expensive, especially for large grids. On the other hand, the stability properties are 

usually far superior to explicit methods, allowing for larger time steps. There may 

still be other factors, such iterative solvers failing to converge, that contribute to 

lowering the time step. 

It is also possible to construct methods that combine the two approaches just outlined. 

An archetypical method is the trapezoidal or Crank-Nicolson scheme [50], which 

may be seen as a combination of the forward and backward Euler methods, 

 
 

(4.21) 

Second order convergence and excellent stability properties, including unconditional 

stability for e.g. the diffusion equation, makes this implicit method a popular choice 

in many applications [145]. 
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5. Solution strategies 

In the preceding chapters, some mathematical models of different physical systems 

and discretization methods have been described. This section will focus on forming 

efficient solution strategies by combining these with suitable iterative solvers for the 

linear and nonlinear systems of equations that arise. Trade-offs between different 

desirable properties are discussed.  

While the governing equations in general are nonlinear, the solution techniques for 

these equations will result in systems of linear equations. We start by presenting some 

strategies for solving nonlinear systems, before moving on to linear solution 

strategies. At the end of this chapter, some strategies for solving time-dependent 

problems, linking spatial and temporal discretizations and strategies for nonlinear and 

linear systems, are discussed.  

5.1 Solving nonlinear systems 

The general nonlinear problem may be formulated as 

  (5.1) 

along with a set of boundary conditions on . It is readily seen that the general 

linear problem is the special case where . Finding solution strategies 

that work well for a general nonlinear problem is a challenging task, since all known 

strategies have some weak points. The best strategy is usually found by considering 

the specific features of the problem at hand and finding a method that addresses these 

features. This involves both taking advantage of features that may simplify the 

solution process and being especially careful with challenging features. For instance, 

in the special case of the KdV equation, exceptional features such as complete 

integrability and the existence of analytical solutions may lead to solution strategies 

that are unavailable to most other problems. As the KdV equation in this way forms 

an exception to the rule, most of this section will be devoted to the more general 
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nonlinear problems, but with special attention to the problem structures found in the 

physical systems described in Chapter 2. 

For most nonlinear problems, the backbone of the solution strategy is linearization, 

usually by Newton iterations [57,103,137]. From this point, a linear solution strategy, 

discussed in the next section, may be applied. Different features of the nonlinear 

problem may guide the strategy, both on the nonlinear and the linear sides of the 

linearization process.  

5.1.1 Newton's method 

Newton's method is an iterative root-finding algorithm for general functions in 

arbitrary dimensions. This makes it well-suited for solving nonlinear problems, since 

Equation (5.1) is really a problem of finding the roots of the nonlinear function .  

The mechanics of the algorithm may be explained in one dimension. Starting from an 

initial guess , Newton's method calculates the derivative . The linear 

function intersecting  with slope  determines the next iterate,  to 

be the point where the linear function is zero. Then   is calculated and the 

process is repeated until a root is found with sufficient precision. This gives the 

following formula for :  

 
 

(5.2) 

However, there is no guarantee that a root will be found at all, and in the case of 

multiple roots, at most one root will be found for each starting point . In practice, 

uniqueness of the solution may often be assumed, which eliminates the latter concern.  

In multiple dimensions, the equivalent of  is the Jacobian  a matrix 

consisting of all the partial derivatives of all of the components of  with respect to 

all of the components of . The iteration then takes the form 
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  (5.3) 

This corresponds to solving the linear system 

  (5.4) 

where , at each iteration step. The analysis of multi-

dimensional Newton iterations is not straightforward in the general case. It has 

however been proved that Newton's method converges quadratically under certain 

assumptions, that is, 

  (5.5) 

for the error  and some constant . One of the assumptions that 

needs to be met is that the initial guess must be in the convergence basin of that root. 

This is generally difficult to predict a priori. In order to improve this situation, 

globalization techniques such as linesearch or trust-region methods may be employed 

in order to expand the convergence basin [55,128]. 

For time-dependent problems, a nonlinear problem of the form (5.1) is to be solved 

on each time step. A common approach then is to reduce the initial time step length if 

the solution does not converge in a pre-defined number of iterations. After successful 

time steps, the time step length may again be increased, based on a suitable set of 

criteria. 

In practice, the iteration process is stopped before the exact solution is found. This is 

partly due to the limitations of floating point arithmetic, and partly due to the fact that 

for many large problems, the cost of solving the linear systems on each Newton step 

is dominating the computational cost. Another aspect is that the exact properties of 

the physical system may be highly uncertain, and the models may also have been 

simplified to such a degree that going beyond a certain precision level in the 

numerical solvers may not improve the precision with respect to the physical 

problem, which ultimately is the most interesting one. This is indeed the case e.g. for 
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flows in geological porous media. Hence, convergence is declared when the error, 

based on a suitable measure, satisfies a certain tolerance , 

  (5.6) 

This is known as Inexact Newton iteration [54]. As the exact solution generally is 

unknown, the error may be represented e.g. by the residual, that is, . 

Alternatively the difference between two successive iterates may be used.  

It should be noted that although  may be very large when resulting from a fine 

discretization of a problem of the type discussed in the previous chapters, it is usually 

sparse, with just a fraction of the elements nonzero. Still, evaluating the Jacobian 

explicitly may be difficult and multiplying it with vectors may be costly. In order to 

save computational time and memory, several techniques that eliminate the need for 

an explicit representation of  have been developed. These are known as Jacobian-

free methods [109] and are motivated by the fact that for most linear solvers,  itself 

is not needed for solving the system, just the vector  resulting from multiplying it 

with another vector , 

  (5.7) 

This is indeed the case for the Krylov methods presented in the next section, where  

typically represents basis vectors for subspaces where a solution is sought. 

In addition to the standard Newton's method, many other variants and similar 

methods exist, e.g. continuation Newton methods [6,187], Broyden's method and the 

secant method [103]. 

5.2 Solving linear systems 

The general real linear system of  unknowns and  equations may be expressed as  

  (5.8) 
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where  is an  matrix consisting of the coefficients ,  is the vector of 

unknowns and  is the right hand side vector. Systems like this show up 

frequently in numerical models of physical systems, e.g. at each step in a Newton 

iteration, cf. Equation (5.4) in the previous section. The solution of Equation (5.8) is  

  (5.9) 

where  is the inverse of , defined by . Calculating  directly has a 

computational cost of  operations, meaning that for large systems, this is not a 

realistic option. Therefore, other strategies for solving linear systems are needed. 

Solution methods for linear systems of equations can be categorized as direct or 

iterative. Direct methods solve the systems exactly using a finite number of 

operations while iterative methods approximate the solution by successively 

performing simpler operations based on certain rules. The latter may or may not 

converge to the true solution. There is a rich literature on solution methods for linear 

systems, see e.g. [75,84,103,117,145,171]. 

5.2.1 Direct methods 

A direct method for solving linear systems of equations is a solution strategy that 

yields the exact solution in a finite number of steps, assuming exact arithmetic. For 

more than a handful of unknowns, it is crucial to automate the solution process of the 

system (5.8). The most commonly known direct approach is the Gaussian 

elimination, which consists of transforming the system to a triangular form by 

performing elementary row operations such as adding a row to another, multiplying a 

row by a scalar, and swapping positions of rows, and then finding the solution by 

back-substitution. When expressed on matrix form, this is known as the LU method 

or LU factorization, as it may be viewed as expressing  as the product of a lower-

triangular matrix  and an upper-triangular matrix , 

  (5.10) 

The system is then solved in two steps by first setting  and solving  
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  (5.11) 

for  by forward substitution and then solving 

  (5.12) 

for  by back substitution. For small matrices the LU method and variants thereof are 

widely used. Note that the borderline between small and large matrices is rather 

diffuse and has been moving with the developments in computing resources.  

5.2.2 Iterative methods 

The LU method needs  operations, and is thus generally computationally 

expensive as  grows. The situation is similar for other direct methods, so a different 

approach is needed for large systems of equations. Iterative methods compute an 

approximate solution from an initial guess and a set of rules for advancing to the next 

iteration step. Among the more basic iterative methods are the Jacobi and Gauss-

Seidel methods, which belong to the class of stationary iterative methods. In order to 

describe some more advanced iterative methods, it is useful to start out from another 

simple stationary method, the Richardson iteration, which computes the solution at 

step  using the formula  

  (5.13) 

This may be written in terms of the residual ,  

  (5.14) 

The initial guess will here be assumed to be . This does not imply any loss of 

generality, as the system of equations otherwise easily can be translated into a system 

with zero initial guess. Then, by the recursion formula,  
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(5.15) 

where  denotes a polynomial of order . In other words, the residual 

anywhere in the iteration can be expressed as a polynomial with degree 

corresponding to the iteration counter. In terms of  this relation reads 

 
 

(5.16) 

In light of this observation, it is natural to seek solutions of the type  

  (5.17) 

The space  is called the Krylov subspace of order  with respect to  and . 

When the meaning is clear from the context, the shorthand  is often used. Since 

 spans , it must contain the exact solution.  

There are different strategies that can be employed in order to find the solution using 

the Krylov subspaces. Here, we will give a brief description of some of the most 

widely used Krylov methods. For a more detailed presentation, see e.g. 

[80,103,148,176]. The vectors  do not comprise a suitable basis for 

, as for large  the last vectors tend to point more and more in the same direction, 

making them undistinguishable in finite precision at some point. An orthonormal set 

of basis vectors may be composed through the Arnoldi process [11], which employs 

either the Gram-Schmidt process or Householder transformations [87] for 

orthogonalization. Let the columns of the matrix  be the resulting orthonormal 

basis vectors. The th step of the Arnoldi process may be expressed in matrix form as  

  (5.18) 

where  is a  upper Hessenberg matrix whose elements  are 

computed in the orthogonalization process. An upper Hessenberg matrix is a matrix 
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with nonzero elements only at and above the first subdiagonal. Alternatively, one 

may write 

  (5.19) 

where  is the   matrix constructed by appending the coefficients computed 

at step  to . 

From this point, different approaches are possible, depending on the properties of the 

problem and practical constraints such as available computer memory. For symmetric 

positive definite problems, the method of choice is usually the Conjugate Gradients 

(CG) method [68,83,114]. For non-symmetric problems, there is no universally 

optimal method [125], and choosing the best method for a specific problem is not 

trivial. Numerous methods with different advantages and disadvantages exist, but 

very often the choice falls on some variant of either the Generalized Minimal 

RESidual (GMRES) method [149,177] or the Bi-Conjugate Gradients stabilized 

(BiCG-stab) method [175]. Unlike many other methods, these are applicable to 

general matrices and have proven to be efficient for large classes of systems 

[171,175]. A major difference between these two methods is that GMRES is based on 

the long-recurrence Arnoldi orthogonalization process [11], while BiCG-stab is based 

on the short recurrence Lanczos bi-orthogonalization process. The latter clearly has 

the advantage of low storage requirements, but has an irregular convergence rate. 

GMRES converges monotonically, but in its native form it requires storage of vectors 

corresponding to every iteration step throughout the iteration process.  

GMRES is, as indicated by the name, a residual-minimizing method, i.e., on step , it 

finds the vector in  that minimizes the norm of the residual, . A 

consequence of this is that in at most  steps, the exact solution is found. In this sense 

it may be argued that GMRES is a direct method, but for all practical applications the 

iteration is truncated long before reaching this point, due both to limitations in 

computational power and in attainable precision in floating point arithmetic. The 

growing memory costs at each step are usually handled by restarting the iterations 
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every  steps, denoted the GMRES( ) algorithm [148]. Restarting comes with a risk 

of stagnation, however, and the choice of , is often a matter of trial and error.  

Since the CG method is the superior method for symmetric positive definite systems, 

it is natural to attempt to bring some of the qualities over to the more general case of 

nonsymmetric systems. The Bi-Conjugate Gradient method (BiCG) is a 

generalization of CG which allows for short Lanczos-based recurrences for 

nonsymmetric systems. BiCG-stab is a faster and more robust variant of BiCG 

[71,115]. The basis vectors are here bi-orthogonal, while in CG they are orthogonal. 

Despite the improvement in robustness from BiCG to BiCG-stab, the convergence is 

not monotonical and not even guaranteed. Further enhancements aiming to remedy 

these issues have been made, see e.g. [79,159]. Another class of methods is the 

Induced Dimension Reduction (IDR) methods, which are closely related to BiCG 

methods, although developed from a different perspective [158,162,183].  

For any Krylov method it should be noted the convergence rate is sensitive to the 

condition of the system. As many relevant problems are ill-conditioned, the methods 

are rarely used without preconditioning, that is transforming the original problem to 

an equivalent one with better condition. This subject is discussed further in the next 

chapter. 

5.3 Strategies for time-dependent problems 

For time-dependent problems, there are numerous possible ways of combining 

equation formulations, discretizations, and solvers. For coupled problems, there is 

also the choice of how to handle the couplings. In this section, some strategies for 

solving the KdV equation and the coupled problem of two-phase flow in porous 

media will be discussed.  

5.3.1 Time-stepping strategy for the KdV equation 

The KdV equation (3.2) consists of a time derivative term and three terms with 

spatial derivatives. The term  can simply be omitted by assuming a moving frame 
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of reference, since it represents pure translation at constant speed. For the two 

remaining terms, the linear dispersive term  and the nonlinear term  different 

strategies are possible. The main choices are between implicit and explicit methods 

and the order of the methods. For stability, implicit methods such as the trapezoidal 

scheme are often preferred, although it means solving a linear system per time step. 

Explicit methods are cheaper per time step, but this advantage may be outweighed by 

severe time step constraints. For the linear term in the KdV equation, the trapezoidal 

rule gives a second order unconditionally stable method without introducing 

dissipation.  

Since the KdV equation contains a nonlinear term, a fully implicit treatment would 

result in a nonlinear system to solve on each time step. Thus, explicit methods such as 

the Adams-Bashforth scheme, are more common here. It should also be noted that the 

nonlinear term may be rewritten as  and that the different forms may 

have different numerical features. 

The choice of time-stepping strategy is independent from the spatial discretization 

method. The implicit-explicit approach sketched out here is applied in combination 

with a Chebyshev spectral method and a finite difference method in Paper A. 

5.3.2 IMPES 

Consider the coupled two-phase flow problem in porous media defined by Equations 

(3.15) and (3.17) with a suitable set of constitutive relations and boundary conditions. 

The elliptic pressure equation (3.17) is commonly solved implicitly, using 

saturations, constitutive relations and spatial pressure derivatives from the present 

time step. This is a natural choice, due to the lack of temporal derivatives in this 

equation. The elliptic nature of the equation also implies strong global couplings, 

which are better accounted for using an implicit method. By e.g. including 

compressibility effects, a time derivative term appears, and the equation takes a 

parabolic form. However, it is still usually near-elliptic, and an explicit method would 

require very small time steps due to the CFL criterion.  
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The hyperbolic saturation equation (3.15), on the other hand, is local of nature, which 

often allows the use of explicit methods without too severe time step restrictions. The 

CFL criterion is, however, a function of the maximum velocity in the flow field, 

which means that for parameter fields with high-permeable flow paths, the restriction 

may negate the positive effects of avoiding a large linear system solve on each time 

step. A major advantage of taking shorter time steps is that less numerical diffusion is 

introduced than with long time steps. 

Combining these approaches leads to a sequential scheme where at each time step, 

the hyperbolic equation is solved explicitly for saturation, and then the saturation 

values are inputs to the implicit solver for the elliptic equation, which provides 

pressures. The latter involves a linear system, usually solved by some Krylov method 

as described in Section 5.2.2. Fluxes are obtained by evaluating Darcy's law, 

Equation (3.14). This approach is known as the IMPES (IMplicit Pressure, Explicit 

Saturation) method [47]. 

5.3.3 Fully implicit method 

An alternative approach to IMPES is to solve both equations implicitly. This can be 

done either sequentially, known as the Sequential implicit method (SEQ) [163,182] 

or simultaneously, known as the Fully Implicit Method (FIM). The latter is by far the 

most commonly used in reservoir simulators. In this approach, the nonlinear coupled 

system is solved implicitly and simulataneously for pressures and saturations. This 

yields a nonlinear system of equations on each time step, commonly solved using 

Newton iterations. The resulting Jacobian is a nonsymmetric matrix of dimension 

. 

This method is regarded as unconditionally stable, so long time steps can be taken 

provided that the Newton iterations converge sufficiently fast. Since the method is 

significantly more expensive per time step than IMPES, it may not be optimal for 

cases where the CFL criterion in IMPES is loose. It is also known for introducing 

numerical diffusion, which may be remedied by shortening the time steps. 
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An alternative approach combining IMPES and FIM is the Adaptive Implicit Method 

(AIM), which allows for using FIM in areas where the changes in pressures and 

saturations are large, and IMPES in other areas [1,168].  

In Papers B and C the FIM strategy is applied to two-phase flow in porous media. 

5.4 Upscaling 

For problems exhibiting features occurring on different scales and it is impossible or 

impractical to resolve the finest scales, upscaling is a common strategy. This is 

indeed the case in porous media problems with realistic parameter fields, as well as in 

many other physical systems. In short, upscaling consists of representing a problem 

on a coarser resolution than it is originally stated. Upscaling has been subject to 

intense research effort for the last few decades [44,45,70,144], and covers a wide 

variety of methods.  

Two important properties to consider for two-phase flow in porous media are 

permeability and saturation. The permeability may for instance change several orders 

of magnitude over distances far smaller than the attainable grid resolution. Given a 

fine scale permeability field, a coarse field may be obtained by solving local or global 

single-phase flow problems and calibrating the results to the coarse grid. Saturations 

are generally simpler to upscale; this is typically done by taking the average value of 

the fine scale values over a coarse cell. Coarse scale relative permeabilities and 

capillary pressures may then be calculated from the coarse saturations. 

An underlying concept is the assumption of an equilibrium state with respect to a 

dominant physical process. For instance, if the time scale is long enough that the 

phases in a two-phase system separate completely due to gravity, vertically integrated 

models (VIM) is a natural upscaling [186]. This reduces the dimension of the 

problem by eliminating the vertical coordinate. If, on the other hand, capillary forces 

are the dominant cause of saturation heterogeneities, a capillary pressure based 

upscaling approach is more appropriate, see e.g. [56,143,173]. It is also possible to 
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include capillary effects such as a fringe, or a smooth transition between the separated 

phases, in the VIM framework [135]. 

A demonstration of the importance of upscaling can be found in [127], where 

vertically integrated models are reported to have CPU times orders of magnitude 

smaller than full 3D models, while providing results on the same level of accuracy or 

better. 

Upscaling is usually performed on the continuous problem; then the resulting coarse 

scale problem is discretized and solved. The related class of multiscale methods 

[23,65,101,107,129] also includes a component for downscaling, or reconstructing 

the fine-scale solution; this is discussed in the next chapter in the context of 

preconditioning. An alternative approach to upscaling on the continuous problem, 

numerical upscaling, consists of first discretizing the fine scale system and then 

upscaling. This is discussed further in the next chapter and in Paper C in the context 

of nonlinear preconditioning.  
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6. Preconditioning 

The performance of a linear solver largely depends on the condition number of the 

coefficient matrix,  

  (6.1) 

A related property is the clustering of the eigenvalues of . Systems arising from 

various physical phenomena may often be seriously ill-conditioned, resulting in slow 

convergence and inefficient solvers. This is true both for the original nonlinear 

problems and the linearized problems on each Newton step. Preconditioning the 

system means transforming it to another equivalent, but better conditioned system.  

Preconditioning is usually performed on the linear system, and may typically be 

expressed as a multiplication of the linear system with a matrix ,  

  (6.2) 

Here,  is called a preconditioner. However, the concept of preconditioning is 

readily generalizable to nonlinear systems [32]. The following section gives an 

introduction to linear preconditioning. Section 6.2 describes nonlinear 

preconditioning. 

6.1 Linear preconditioning 

The ultimate objective of a linear preconditioner is to improve the condition of the 

system, making it faster to solve using an iterative method. It is readily observed from 

equation (6.2) that the optimal preconditioner would be , but this would 

imply solving the problem completely without preconditioner. Hence, a good 

preconditioner is one that approximates  well at a small cost. There are several 

strategies for achieving this, both by pure algebraic means and by exploiting certain 

structures in the system. As the linear systems are usually solved by a Krylov method, 
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the preconditioner is often regarded as a part of the solver. Also, the matrix  is 

often replaced by a function providing the effect of multiplying it with a vector. 

Equation (6.2) demonstrates left preconditioning, which is the most common form of 

preconditioning. An alternative is right preconditioning, 

  (6.3) 

which is solved in two steps by solving the systems  and  for  

and , respectively. 

One of the simplest preconditioners is perhaps the Jacobi preconditioner, which is 

simply constructed by setting . This works well if  is sufficiently 

diagonally dominant. Another option is the incomplete LU (ILU) factorization. This 

is performed by calculating an approximate LU factorization (see Section 5.2.1) and 

setting  . The sparsity pattern is often chosen to equal that of , this is 

denoted as ILU(0). By using sparsity patterns of powers of  the accuracy of the 

approximation may be increased at the cost of execution time. Fill-ins using the 

sparsity pattern of  is denoted by ILU( . 

6.1.1 Domain decomposition methods 

Domain Decomposition (DD) methods [146,160,169] is a large class of methods 

comprising both solvers and preconditioners. As the name suggests, the domain is 

split into two or more subdomains, and the system is solved in each subdomain using 

local data on the internal boundaries. A major motivation for DD is parallel 

computing, as dividing the domain allows for distributing the computations to 

different processors. Parallel computing is crucial to solving large problems 

efficiently, and its effect on the DD field is evident from the large activity it has 

experienced since parallel computers became widely available from the 1980's. 

However, DD can be traced back to the 19th century [155]. Another motivation that 

has come up more recently is the development of multiscale methods, which have 

been shown to have similarities with DD [133].  
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Before moving on with the presentation of DD methods, it is useful to define two 

operators, namely the compression operator  and the reconstruction operator  

[62,134]. The compression takes a global fine scale property as input, and outputs a 

coarse or localized property. Subscripts are used to distinguish different operators. 

These operators should satisfy the relation 

  (6.4) 

that is, reconstructing a coarse or local property and then compressing it back to the 

should give the starting value. On the other hand, in general we have , since 

information lost in the compression operation cannot be reconstructed. These 

operators are in general nonlinear. In cases where linear operators are assumed, a 

normal typeface is used. 

Since the cost of iterative solvers typically scales with , solving several smaller 

problems once may be significantly cheaper than solving the whole problem. 

However, solving the smaller problems only once would not suffice due to the lack of 

global information, so an iterative procedure or a global coarse level solver is 

required. When DD is applied as a stand-alone linear solver, both iterations and a 

coarse level is needed. The most usual situation, however, is using DD as a 

preconditioner, since as a solver it is generally slow compared to alternatives such as 

Krylov methods. The coarse level is particularly important for elliptic problems with 

strong global couplings, as each subdomain only interacts with its immediate 

neighbours. The terms one-level and two-level DD refers to DD methods without and 

with a coarse level, respectively. A major divide between different DD methods is 

between overlapping and non-overlapping methods [19]. Overlapping methods are 

typically known as Schwarz methods and nonoverlapping methods as substructuring 

methods [18]. We will confine this presentation to Schwarz methods.  

The alternating Schwarz method was developed by H. A. Schwarz as a theoretical 

tool for solving partial differential equations on domains consisting of a finite number 

of overlapping subdomains almost one and a half century ago [155]. The convergence 

was proved in the 1950's [123], but the interest first took off in the 1980's [10] with 
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the advent of parallel computing. In Figure 6.1 a conceptual sketch of an overlapping 

DD partitioning is shown. 

The most well-known Schwarz algorithms are the Additive Schwarz (AS) [61] and 

the Multiplicative Schwarz (MS) [21] methods. The one-level AS method can be 

written out as an iterative method as 

  (6.5) 

where  are the  overlapping subdomains and used as a subscript indicates 

that only the rows and columns corresponding to this subdomain are included. The 

local coefficient matrix is defined by 

  (6.6) 

where the compression operator  is simply a restriction matrix from  to . 

Normally, the reconstruction satisfies . The  term represents local 

boundary conditions. This notation strictly denotes the whole of the domain except 

 

 

Figure 6.1: A non-overlapping (continuous lines) and an overlapping (dashed 
lines) decomposition of a rectangular domain . A subdomain  in the 
overlapping decomposition is indicated by the shaded area. In general, the 
domains and subdomains may have arbitrary shapes. 
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, but in practice only values near the boundary of the subdomain are involved. As 

indicated by the inverted local matrix in the formula, a local version of the linear 

system is solved on each subdomain on each iteration step. AS is seldom used as a 

stand-alone solver like in equation (6.5), as this method converges rather slowly. 

Rather, it is used as a preconditioner for the linear system. This corresponds to 

performing one iteration using formula (6.5), and then combining the results to a 

single preconditioning matrix, e.g. 

 
 

(6.7) 

In practice, a matrix on this form is not constructed explicitly, but the effect of 

multiplying it with a vector, typically on the form , is obtained from a 

function performing local solves and combining the results. When used in 

conjunction with a Krylov solver for linear problems arising from a Newton iteration, 

the resulting overall algorithm is known as a Newton-Krylov-Schwarz (NKS) method 

[10,31]. 

For problems with strong global couplings, such as the (near-)elliptic pressure 

equation often encountered in porous media problems, the one-level strategy has a 

major flaw in that the couplings, represented by the  term in Equation (6.7), are 

localized. Each subdomain only has direct access to information from its immediate 

neighbors, with the result that a signal needs at least as many iterations as there are 

subdomains in-between to travel from one subdomain to another. In massively 

parallel implementations, this becomes a serious problem, as scalability with respect 

to the number of subdomains is essential there. The solution is to add a coarse level, 

which acts as a global subdomain, typically with the local subdomains as coarse grid 

cells. This extension from a one-level to a two-level method is rather straightforward 

by denoting the coarse level by index 0 and starting the counter  in equations (6.5) 

and (6.7) from 0 instead of 1. Scalability issues for linear AS are addressed in Paper 

B. 
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AS is similar to the Jacobi method in the sense that it only uses information from the 

previous iteration step. Hence, it can be fully parallellized straight away. In fact, it 

can be seen as an overlapping version of the block Jacobi preconditioner [13]. 

Similarly, MS can be seen as an overlapping Gauss-Seidel preconditioner, using the 

most recent available information and thus needing a subdomain coloring strategy in 

order to be parallelizable. 

When it comes to handling the overlaps, there are several strategies available. After 

solving all the local problems (6.5) once, there are several local problem solutions 

that need to be unified to form the preconditioned global problem, and in the 

overlapping regions there are multiple solutions that are generally different. The 

simplest option is to simply add the overlapping solutions, giving the formula (6.7), 

however, this will yield non-physical solutions in the overlap. A better option is to 

weight the sum using some partition of unity, e.g. by taking the arithmetic average of 

the solutions. The RAS (restricted AS) and ASH (AS with harmonic extension) [36] 

methods takes a different approach by replacing  (RAS) or  (ASH), 

respectively, in formula (6.7) by the non-overlapping equivalents. A further 

improvement of these methods is found in the RASHO (Restricted AS with Harmonic 

Overlap) method [29].  

The theory behind AS and other domain decomposition methods is largely developed 

with symmetric positive definite elliptic problems in mind, such as single-phase flow 

in porous media. For two-phase flow, coupled elliptic-hyperbolic problems arise, and 

the hyperbolic part may need a different treatment [185]. Due to the local nature, the 

concerns about scaling with respect to number of subdomains are rather small. 

However, the overlaps could be better handled by incorporating information from the 

local flow field. By determining which subdomain is most upstream, one can choose 

to use this subdomain solution in the global solution and discard the solution from the 

more downstream subdomain. This makes sense physically as the domain of 

dependence of a purely hyperbolic equation is contained in the upstream part of the 

domain. It should be noted that for complex flow patterns e.g. due to heterogeneous 

parameter fields the upstream direction for an overlap region is not always uniquely 
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determined, so some heuristics are needed, but in total this should give a more 

physically sound overlap handling than e.g. averaging. 

The shape of the subdomains and coarse grid cells may have a large impact on the 

results. While e.g. rectangular subdomains may be convenient from a proof-of-

concept point of view, an optimal partitioning is one that honors the parameter field 

e.g. by seeking to avoid discontinuities in the parameters inside the subdomains 

[154].  

6.1.2 Multigrid and multiscale preconditioners 

Multigrid methods (MG) [81] are a class of methods that are based on the use of 

multiple grids with varying resolution to handle errors of different frequencies. As 

DD, they can be applied as stand-alone solvers or as preconditioners [13]. As solvers 

they are typically used together with a stationary iterative method such as Jacobi, 

Gauss-Seidel or SOR. Multigrid methods may be classified as geometric (GMG) or 

algebraic (AMG) [25,69,165]. AMG provides a method based solely on the 

coefficient matrix, not on the geometry of the system, and has proven to be well-

suited as a preconditioner for e.g. multiphase flow problems in porous media [166].  

Another preconditioner highly relevant for fully implicit simulations of multiphase 

flow in porous media is the Constrained Pressure Residual (CPR) method [178], 

which directly addresses the mixed nature of these problems. CPR may also be used 

in combination with AMG for fully implicit simulations [38]. Both AMG and CPR 

are two-stage preconditioners, with different techniques applied on the different 

stages. 

A class of preconditioners that is related to the upscaling concepts introduced in 

Section 5.4 is the multiscale preconditioners. While the term 'multiscale' is not 

uniquely defined, a distinguishing feature may be that while upscaling methods can 

provide a coarse scale representation of a problem, multiscale methods also has a 

downscaling component that allows for reconstructing the fine scale solution. This 

makes MSM a natural candidate for a preconditioner for problems where resolving all 

the involved scales directly is infeasible. This is the case for many different realistic 
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physical systems, including flow in porous media. A large variety of methods based 

on different equation formulations and discretizations have been developed, e.g. the 

Variational Multiscale Method (VMS)  [89–91,100], the Multiscale Finite Element 

Method (MFEM) [85,86], the Multiscale Finite Volume method [97,98,189], 

Multiscale Mortar Mixed Finite Element Method [9] and the Heterogeneous 

Multiscale Method (HMM) [62] to name a few.  

These methods may be used as preconditioners for the linear system arising from a 

discretized single-phase flow problem. It has been shown that some of these methods 

are similar to, and in special cases equivalent to, DD methods [76,130,133,153]. 

As an example of the relation between upscaling and multiscale methods, consider 

the vertically integrated models introduced in Section 5.4. While the upscaled model 

only solves the two-dimensional compressed coarse problem, it can be extended to a 

multiscale method by introducing a reconstruction  from the coarse scale to the 

three-dimensional fine scale. The key of a successful reconstruction is then to have an 

intuition about the physical distribution of properties in the vertical dimension.  

When reconstructing the fine scale saturation profile, the simplest option is to have a 

constant value corresponding to the coarse saturation along the vertical direction. 

This is non-physical as long as the assumption of gravitational equilibrium that VIM 

relies on is met. If a sharp interface is assumed, a reconstruction operator that 

distributes the fluid phases with all of the light fluid on top of the heavy fluid is 

employed. If a capillary fringe is assumed, a smoother transition taking capillary 

effects into account is applied [134]. These variations in assumed fine-scale structure 

can be expressed through the reconstruction operator alone. 

6.2 Nonlinear preconditioning 

While the preconditioning methods presented above work on and in some cases 

exploit features of the linearized system, the system that ultimately is of interest is the 

original nonlinear problem. The preconditioning efforts on each nonlinear iteration 
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step can at best increase the efficiency of that step, but not reduce the number of steps 

needed.  

Further, much of the underlying physics are lost in the linearization process. It may 

sometimes be desirable to work directly on the original nonlinear set of equations in 

order to take advantage of some of the physical features of the problem. In order to 

achieve this, different approaches may be taken. In this section we will emphasize an 

approach based on nonlinear domain decomposition (NLDD), which is also studied in 

Papers B, C and D.  

6.2.1 Nonlinear domain decomposition methods 

Nonlinear preconditioning aims to improve the condition of a nonlinear problem. A 

poorly conditioned problem is characterized by unbalanced nonlinearities between 

the different components of the problem, and the preconditioner seeks to transform 

the problem to an equivalent one with more balanced nonlinearities. Note that the 

term 'nonlinear preconditioning' may also be used to describe strategies for linear 

systems where the preconditioner itself is nonlinear, i.e. it cannot be expressed as a 

matrix , see e.g. [41]. Here, we use the term for preconditioning of nonlinear 

problems. 

A DD based framework for nonlinear preconditioning, the Additive Schwarz 

Preconditioned Inexact Newton (ASPIN) method was proposed by Cai and Keyes 

[32], and has been used in diverse applications such as computational fluid dynamics 

[32,34,92,93], image processing [190] and optimization problems related to nonlinear 

elasticity [77]. ASPIN is based on the nonlinear AS method [30,60] and the inexact 

Newton method [54]. The principle behind nonlinear AS is the same as for the 

standard linear version; the difference lies in that it is applied on a nonlinear problem 

instead of a linear problem. The following presentation is largely based on [7,32]. 

Given a generic nonlinear problem, 

  (6.8) 

ASPIN defines an equivalent preconditioned problem 
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  (6.9) 

where  is obtained by solving local nonlinear problems on the form 

  (6.10) 

The 's are the local updates to the global state , and the nonlinearly preconditioned 

residual is defined as  

 
 

(6.11) 

Here, the superscript indicates that this is a one-level preconditioner. After solving  

local nonlinear problems, a global, nonlinearly preconditioned Newton iteration step 

is performed by solving the linear system 

  (6.12) 

where  is the Jacobian of the nonlinear residual, defined as 

 
 

(6.13) 

and  

  (6.14) 

From a computational perspective, it is undesirable to evaluate this formula exactly, 

so the approximation 

  (6.15) 

is commonly done. This is based on assuming  to be close to the true solution, in 

which case the updates  are small [7,32]. The Jacobian is then expressed as 

, and the global linear problem is solved by an inexact Newton 
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method. This typically includes a post-processing step using a globalization technique 

such as linesearch [55,128], which has the effect of shortening the Newton step and 

improving the convergence. The linear solver is usually a Krylov solver, e.g. GMRES 

[149,177].  

The resulting algorithm consists of three levels of iterative methods; Global newton 

iteration (outermost), local Newton iterations for constructing the preconditioner, and 

a Krylov linear solver for solving the resulting global Jacobian system (innermost). 

For the local Newton iterations it may, depending on subdomain size, be reasonable 

to use a direct solver. This method resembles the standard NKS methods in the sense 

that the same building blocks are involved, with the main difference in how the 

Schwarz component is applied. Also, the approximate version of the Jacobian, 

, is exactly the same as the exact preconditioned Jacobian in the 

corresponding NKS method, which is beneficial from an implementational point of 

view. 

A two-level version of ASPIN was introduced in [33]. We will briefly outline the 

preconditioner presented there in the following. The coarse and fine scale problems 

are assumed to approximate each other in some sense, and the coarse scale solution 

 is assumed to be known or easily obtainable through pre-processing. The fine 

scale components of the two-scale preconditioner equal the one-level preconditioner 

presented above. The construction of the coarse scale component is somewhat more 

complex. Let  be defined as the solution of the coarse nonlinear system 

  (6.16) 

where  is the compression, or restriction, operator from fine to coarse scale. This 

may be interpreted as finding the coarse scale solution that gives the same coarse 

residual as the compressed fine scale residual of the fine scale solution . It is readily 

observed that by inserting the true fine scale solution , we can write 

  (6.17) 



 66 

that is, . By letting , where  is the reconstruction, or 

prolongation, operator from coarse to fine scale, we can write . The 

preconditioned system is then defined as 

  (6.18) 

where  

  (6.19) 

For the Jacobian, , the same type of approximation as on the fine scale is 

typically used. Following the presentation of [33], problem (6.18) is solved with 

some  as the initial guess. An modified approach, which rather uses  as the 

initial guess has been reported to perform better [111]. This implies a multiplicative 

relation between the coarse and fine levels. A different approach is to use a linear 

coarse solver. This was introduced in [92] motivated by computational savings from 

not having to solve a nonlinear coarse system. The robustness and scalability 

properties of the method were reported to be similar to the nonlinear coarse scale 

approach.  

A convergence proof of one-level ASPIN was given by An [7]. A multiplicative 

variant of one-level ASPIN (MSPIN) is presented in [67]. 

The nonlinear approach to preconditioning presented above has several interesting 

implications. One is that if the nonlinearities are localized to small parts of the 

domain, the computational effort is automatically localized to these regions, as 

subdomains with high degree of nonlinearity will require more Newton iterations 

than subdomains with low degree of nonlinearity. A consequence of this is that 

otherwise wasted operations (as in a global approach) are saved, but in order to utilize 

these savings, load balancing must be carefully considered, e.g. by designing the 

partition such that the presumably most demanding subdomains are smaller than less 

demanding ones [32].  
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Different aspects of ASPIN are treated in Papers B, C and D, with the two former 

considering two-phase flow in porous media, and the latter nonlinear elasticity. In 

Paper C ASPIN is suggested as the basis for physics-based preconditioners, linking 

numerical upscaling and preconditioning.  

6.2.2 Other approaches 

Other nonlinear DD methods include the nonlinear FETI (Finite Element Tearing and 

Interconnect) method [108,138], which belongs to the class of substructuring 

methods. An approach that is related to ASPIN is the nonlinear elimination method 

[35,94,95,180], which seeks to reduce the components in the residual vector with the 

highest magnitude in order to obtain a more well-balanced system with respect to 

nonlinearities. The nonlinear multigrid approach known as the Full Approximation 

Scheme (FAS) has been around for several decades [22,24,181] and has been widely 

used for several application fields.  

Reordering methods and methods for adaptive localization of Newton iterations have 

also been applied with success in the context of multiphase flow in porous media 

[8,113,126,187]. This type of methods could possibly be combined with ASPIN to 

further enhance performance. 
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7. Summary of papers 

Paper A 

A boundary value problem for the KdV equation: Comparison of 
finite-difference and Chebyshev methods 

Jan Ole Skogestad and Henrik Kalisch 

Published in Mathematics and Computers in Simulation, Vol 80 (1), pages 151-163, 

2009 

In this paper a comparison of two different spatial discretization methods for the 

Korteweg-de Vries equation is performed. A finite difference scheme, as presented in 

Section 4.1.1 and a spectral method based on Chebyshev polynomials, as presented in 

Section 4.1.2. 

Fourier-based spectral collocation methods have long been popular for the KdV 

equation, much due to the Fast Fourier Transform (FFT). These methods use 

trigonometric interpolating polynomials, and require periodic boundary conditions. 

For cases where periodic boundary conditions are not suitable, such as in studies of 

undular bores, other methods are required. One option is to turn to finite difference 

methods, but there also exists spectral collocation methods capable of handling non-

periodic boundary conditions. Methods using polynomial interpolating functions, 

such as Chebyshev polynomials, fall into this class, but have received less attention 

than Fourier methods and thus need more research. While the convergence rates are 

excellent, the Chebyshev methods some unattractive features, such as clustering of 

grid points near the boundaries of the domain and, as with Fourier methods, dense 

coefficient matrices.  

The major goal of this paper is to examine a Chebyshev spectral method and a finite 

difference method in order to determine which is the better choice of discretization 
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strategy in terms of computational performance for a boundary value problem for the 

standard KdV equation. 

The problem is set up with a homogeneous Dirichlet condition in each end of the 

finite domain and a homogeneous Neumann condition at the rightmost end. The 

initial condition is a single soliton. The time integration is performed by a 

combination of the implicit Crank-Nicholson (for the third order term) and the 

explicit Adams-Bashforth schemes, both of second order. Stability properties for the 

methods are discussed, and while it is noted that the time integration scheme is in 

principle unstable, the growth factor approaches 1 rapidly as the time step tends to 

zero. 

The main result is that the Chebyshev spectral method performs better, although it 

may face some stability challenges for grids of high resolution, since this will yield 

very small local grid sizes near the boundaries. 
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Paper B 

Domain decomposition strategies for nonlinear flow problems in 
porous media 

Jan Ole Skogestad, Eirik Keilegavlen and Jan M. Nordbotten 

Published in Journal of Computational Physics, Vol 234, Pages 439-451, 2013 

In this paper we study different strategies for applying domain decomposition to a 

non-linear flow problem in a porous medium. Specifically, the one-level Additive 

Schwarz (AS) method is presented as a solver and a preconditioner, applicable to 

linear or nonlinear problems. This gives four different options on how to apply AS to 

a nonlinear problem. 

The model problem is a coupled elliptic-hyperbolic problem describing flow in 

porous media. By varying parameters such as permeability and porosity, mobilities 

and viscosity ratios, a suite of seven different problems ranging from completely 

linear on a homogeneous domain to severly nonlinear on a challenging heterogeneous 

permeability field are obtained. The different AS approaches are then compared for 

fully implicit simulations the different problems. 

As excpected, preconditioners outperform solvers, both in the linear and nonlinear 

case. For the linear case this is already established in the literature, while for the 

nonlinear case such a comparison has to the authors' knowledge not been done before 

for flows in porous media. Further, the nonlinear preconditioner (ASPIN, see Section 

6.2.1), is shown to perform up to 75 % better than the linear counterpart.  

Scalability and sensitivity to simulation parameters is also discussed. It is evident that 

a coarse component is needed to account for the global couplings in the elliptic part 

of the problem both for the nonlinear and the linear preconditioners in order to reduce 

scaling effects.  
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Paper C 

Two-scale Preconditioning for Two-phase Nonlinear Flows in 
Porous Media 

Jan Ole Skogestad, Eirik Keilegavlen and Jan M. Nordbotten 

Submitted to Transport in Porous Media 

This paper presents a new framework for two-scale preconditioning allowing for 

input of physical intuition from the user. The work here is based partly on the 

foundation that was laid in Paper B, where one-level ASPIN [32] was found to be a 

competitive preconditioner for two-phase flow in porous media, and partly on 

previous work on two-level ASPIN preconditioners [33,92,93,121].  

The underlying idea of the paper is to provide a framework for bridging the gap 

between upscaling and solvers and validate its applicability as a precondtioner for 

coupled nonlinear two-phase flow problems in porous media by studying the 

scalability properties of the method. 

The proposed framework can be seen as a generalized version of the previously 

established two-level ASPIN. In previous work on two-level ASPIN, there has not 

been given much attention to the operators between the coarse and fine spaces. These 

operators, and especially the reconstruction operator from the coarse to the fine level, 

are at the core of the new framework. The reconstruction operator is allowed to be 

nonlinear, and it takes the previous fine scale state as an input, in addition to the 

coarse scale update. The latter point is important; the coarse solver only solves for 

updates to a given fine scale state, there are no explicitly represented coarse, or 

upscaled, variables such as pressures and saturations. The continuous model is 

entirely given on the fine scale. 

By exploiting the flexibility in the reconstruction operators, however, something 

reminiscent of a numerical upscaling is achieved. If a dominating physical process 

can be assumed, a reconstruction operator based on this assumption may be formed 
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and in the limiting case the coarse solver will, theoretically, produce a solution that is 

valid on the fine scale. The computational complexity in this case will in theory be 

similar to that of solving an upscaled problem as only coarse problems are solved. On 

moving away from the limit, the upscaling assumption becomes increasingly invalid, 

but this framework still provides an efficient solution strategy by using the coarse 

solves as a part of a two-level ASPIN-type preconditioner for the non-linear system. 

In order to establish this framework, we study the behavior of the method in its most 

simple form, that is, we use a standard linear reconstruction operator. For validation 

purposes, weak and strong scalability is studied. The method is found to improve 

greatly on the one-level ASPIN method, obtaining a performance virtually 

independent on the number of subdomains.  

An exception is cases with strongly channelized permeability fields, where the 

performance improves relative to the one-level method, but still depends on the 

number of subdomains. This may be explained by a non-optimal partition strategy, 

which in our tests is based on dividing the domain in uniformly sized rectangular 

subdomains. A strategy based on honoring the structure of the parameter field might 

likely produce better scalability results for these permeability fields.  

The conclusion of this study is that a two-scale preconditioning strategy with the 

potential of bridging upscaling and solvers, has been validated, thus forming a 

foundation for further studies of physics-based preconditioners. 
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Paper D 

Domain decomposition preconditioning for non-linear elasticity 
problems 

Eirik Keilegavlen, Jan Ole Skogestad and Jan M. Nordbotten 

Published in Proceedings of 11th World Congress of Computational Mechanics, 

Barcelona, 2014. 

In this paper one- and two-level ASPIN strategies is applied to nonlinear elasticity 

problems. Scalability with respect to linear and nonlinear iterations is studied for 

problems with homogeneous and heterogeneous parameter fields. Furthermore, 

together with Papers B and C, this paper also shows the independence of underlying 

discretization methods, as here, a finite element method is used, in contrast to the 

control volume and upstream differencing methods used in the other papers.   

The performances of one- and two-level ASPIN and a two-level linear DD strategy 

are compared for two different parameter fields, a homogeneous and a heterogeneous 

field. The heterogeneities consist of circular inclusions in an otherwise homogenous 

field, a choice made in order to explore effects of local nonlinearities. 

For the homogeneous problem, the two-level methods are found to scale well. The 

one-level ASPIN method, on the other hand, scales poorly. This is expected from DD 

theory, and is in line with the findings in Paper B. The local boundary conditions 

become inaccurate due to the lack of a coarse solver to handle the global nature of the 

problem. 

The effect of material heterogeneities is studied by varying the contrast in coefficients 

between the inclusion and the surrounding area. It turns out that for high contrasts, 

the one-level method performs better than the two-level method in terms of global 

and local nonlinear iterations, while the two-level method is consistently better in 

terms of linear iterations. The explanation of the comparatively weak nonlinear 

performance of the two-level method is suggested to be that the residual is confined 
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to the edge of the inclusions within each subdomain, and thus not resolvable by the 

coarse solver. Since the coarse scale operators do not adapt to the fine scale state, the 

initial guess to the local fine scale solves becomes poorer than for the one-level 

ASPIN method.  
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8. Conclusions and further work 

This work is a study of mathematical problems arising from nonlinear conservation 

laws in different physical settings, with focus on the solution strategies.  

For the KdV equation, which is well-known as a model for surface gravity waves, a 

spectral collocation method based on Chebyshev polynomials, which have been 

shown relatively little attention previously, has in Paper A been shown to be a strong 

competitor against other discretization strategies, specifically finite difference 

methods. The Chebyshev method performs better in terms of execution time as both 

the spatial grid and the time steps are refined.  

Due to the special structure of this equation, the standard procedure of linearizing 

through Newton iterations can be avoided as the nonlinearity is confined to one term 

that relatively easily may be discretized explicitly. 

In the case of multiphase flow in porous media, the complexity is higher, both in 

terms of couplings between different processes, nonlinear constitutive relations and 

multiscale phenomena. On top of this, the data describing the porous medium are 

highly uncertain. These challenges have spawned a large research effort in order to 

solve problems related to porous media flow faster and in a more robust manner. This 

includes preconditioners, linear solvers, upscaling and multiscale methods. A 

common approach is to handle the nonlinearities through a Newton iteration, and then 

focusing on solving the resulting linear systems more efficiently.  

A suggestion for future work is to put focus on solving the original nonlinear problem 

in a best possible manner, and incorporate physical information in solvers and 

preconditioners. A useful foundation for this has been found in the nonlinear 

preconditioning framework of ASPIN [32]. We have in Papers B and C demonstrated 

that this framework is well-suited and scalable for nonlinear porous media flows. In 

Paper C we also suggest modifications on the method in order to better account for 

the multiscale nature of these problems, in a way that bridges together nonlinear 

preconditioning and upscaling. In theory, this should result in a numerical upscaling 
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method in the equilibrium limit. This should fall out automatically as this limit is 

approached, in what might be called automatic upscaling. In order to establish this 

numerical upscaling framework, further work is needed in order to demonstrate the 

behavior of the method as the upscaling limit is approached for relevant cases, in 

addition to analysis and benchmarking against other methods. 

In order for the automatic numerical upscaling to work, the compression and 

reconstruction operators should be designed such that they mimic the behavior of the 

analytical upscaling process and honor the fine scale structure of the system. This is 

achieved by considering energy minimization, or assuming equilibrium, with respect 

to a dominating physical process. Then, if the assumptions are met, the reconstructed 

fine scale solution from the coarse update will be converged. Otherwise, the coarse 

solver acts as a component in a two-level ASPIN preconditioner, whose performance 

likely depends highly on how far from equilibrium the state actually is. This requires 

that the user has at least some intuition about the nature of these processes.  

The proposed framework has some similarities to the analytical VIM method 

presented in [78], where the vertical equilibrium assumption is relaxed by 

dynamically reconstructing pressures and saturations in order to increase the 

applicability range of VIM.  

A feature distinguishing our approach from regular upscaling, is that no coarse scale 

equations, nor coarse variables, need to be defined. The system is described using 

fine scale equations and variables, with the compression and reconstruction operators 

forming a coarse system, which is solved for coarse updates to the current fine scale 

state. Hence, coarse variables such as pressures and saturations are never calculated.  

Finally, one- and two-level ASPIN is demonstrated for nonlinear equilibrium 

problems in elasticity, showcasing the effect of local nonlinearities within 

subdomains and how a coarse operator should be used with care, as it may actually 

worsen the performance compared with a one-level method. Apart from this, 

scalability results are as expected both for linear and nonlinear iterations. The key to 
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success lies in careful design of the reconstruction operator, using knowledge about 

the fine scale structure of the system. 

It is important to keep in mind that while the models in Papers B-D are simplified 

with respect to realistic applications, the methods presented are derived for general 

equation forms.  

For the studies related to nonlinear preconditioning, further work includes analysis of 

the methods, investigations of the parallel performance of the methods with special 

focus on load balancing and simulations on realistic 3D reservoir models and more 

advanced elasticity problems. Another direction is the application of the ideas from 

Paper C to other physical systems. The stopping conditions for the inexact Newton 

iterations has not been a major focus in this study, but may be further investigated in 

order to optimize performance. For an a posteriori error estimation based framework 

for finding stopping criteria, see e.g. [66,174].  

ASPIN has been held up as a candidate strategy for extreme-scale [28,104] and 

multiphysics [105] simulations, together with other nonlinear strategies such as FAS, 

nonlinear elimination, and others. This is also relevant in the case of flow in porous 

media, and it is natural to consider ASPIN-based strategies in light of other available 

nonlinear strategies. 

For the KdV equation, further work may include comparison of the Chebyshev based 

collocation method with other methods, e.g. the hybrid Legendre-Petrov-Galerkin and 

Chebyshev method by Ma and Sun [120], and similar comparisons for other 

equations in the KdV family.  
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