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AN OPERATOR SPLITTING METHOD
FOR CONVECTION-DIFFUSION EQUATIONS

KENNETH HVISTENDAHL KARLSEN
NILs HENRIK RISEBRO

ABSTRACT. We present a semi-discrete method for constructing approximate solutions to the initial value problem
for the m-dimensional convection-diffusion equation u¢ + V - f(u) = eAu. The method is based on the use of operator
splitting to isolate the convection part and the diffusion part of the equation. In the case m > 1, dimensional splitting
is used to reduce the m-dimensional convection problem to a series of one-dimensional problems. We show that the
method produces a compact sequence of approximate solutions. Finally, a fully discrete method is analyzed, and
demonstrated in the case of one and two space dimensions.

1. Introduction. In this paper we present an operator splitting method for the scalar convection-diffusion
equation

m m
(1.1) ut+2fi(u)zizazuziz“ u(Z1,...,Zm,0) = (Z1,...,Zm).
i=1 1=1

For brevity of notation, we shall write this equation as
us + V- f(u) = eAu, u(x,0) = up(x),

where x = (z1,...,Zm), f(u) = (f1 (u),..., fm (w)), V = (8/8z1,... ,08/0zy), and A = 3 1» | 6?/0z2.

Equations such as (1.1) arise in a variety of applications, ranging from models of turbulence [1], via traffic
flow [17], to two phase flow in porous media [19]. Equation (1.1) can also be viewed as a model problem for a
system of convection-diffusion equations, such as three phase flow in porous media [23], or the Navier-Stokes
equations.

Of particular importance is the case where convection dominates diffusion, i.e., € is small compared with
other scales in (1.1). This is often the case in models of two phase flow in oil reservoirs. Accurate numerical
simulation of such models are consequently often complicated by both unphysical oscillations and numerical
diffusion. The operator splitting approach presented here is especially well suited to the case where ¢ < 1.

The quasi-linear parabolic equation (1.1) was first properly analyzed by Oleinik in [18], where she proved
existence of a unique classical solution, and also that weak solutions to (1.1) coincide with classical solutions.

Operator splitting, or fractional steps, methods have been extensively used in connection with conservation
laws, starting with Godunov [10], who used this method to study gas dynamics. Operator splitting (dimensional
splitting) for a scalar conservation law in several space dimensions was studied by Crandall and Majda in [2],
where they analyzed both semi-discrete and discrete methods, and showed the convergence of the dimensional
splitting for several numerical schemes. Holden and Risebro [12] studied dimensional splitting coupled with
front tracking, and convergence rates for dimensional splitting methods were obtained in [22] and [14].

If ¢ < 1, then (1.1) is “almost hyperbolic”, and it is natural to exploit this when constructing numerical
methods. This approach has indeed been taken by several authors, we only mention Douglas and Russel [5],
[21], [8], Espedal and Ewing [6], [7], and more recently Dahle [4]. In [21] a characteristic element method is
used to solve the hyperbolic part of (1.1). In [5], error estimates are obtained for a linear version of (1.1).

The splitting method analyzed in this paper can be summarized as follows: Let v(x,t) = S(t)vo be the unique
entropy satisfying solution to

v+ V-f(v) =0, v(x,0) = vo(x),

and let w(x,t) = H(t)wo be the solution of
wy = eAw, w(x,0) = wo(x).
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2 KARLSEN, RISEBRO

Operator splitting is based on the following approximation
(1.2) u(x, nAt) =~ [H(At)S(AL)]™ uo(x).

Here we study the convergence properties as the time step At — 0. In applications, the exact solution operators
S(t) and H(t) are replaced by approximations. We use one-dimensional front tracking as defined by Dafermos
[3], see also [11], as an approximate solution operator for the hyperbolic part if m = 1. If m > 1, we use the
dimensional splitting method described in [12] as an approximate solution operator for the hyperbolic part.
In both one and several space dimensions a finite element method is used as an approximate operator for the
diffusion part. We also establish convergence of the approximate solutions in the fully discrete case.

The rest of this paper is organized as follows: In section 2 we obtain compactness of the sequence of approx-
imate solutions generated by (1.2), and show that any convergent subsequence converges to the unique solution
of (1.1). In section 3, we show the same if the exact solution operators are replaced by the approximations
mentioned above. In section 4 we study applications of the method in one and two space dimensions, and
present tentative convergence rates based on the numerical examples.

2. The semi-discrete method. In this section we shall describe the operator splitting of (1.1), that is, we
will obtain the solution of (1.1) through a composition of the solution operator to a hyperbolic equation and to
a parabolic equation.

We study (1.1) for x = (21,...,Zm) € R™, where m > 1. Let therefore f(u) = (f1 (u), ..., fm (u)), where
u is a scalar. Furthermore, let S(t) be the operator which takes an initial function o (x) to the entropy weak
solution at time ¢t of

(2.1) v+ V-f(v)=v + Zm: fi(v)z, =0, v(x,0) = vo(x),

=1

that is, we write the (weak) solution v(x,t) as S(t)vo (x). We shall also need the solution operator taking the
initial data vo(x) to the entropy weak solution at time ¢ of the one dimensional conservation law

(2.2) v+ fi(v)z; =0,  v(x,0) = vo(x).

This operator we denote S¥i(t). Note that in (2.2), z;, j # i, act only as parameters. Following Kruzkov [15],
we know that (2.1) has a unique entropy weak solution if f is Lipschitz continuous, and the initial data are in
Lo, [ B.V.. Here, B.V. denotes the space of functions with bounded total variation. Similarly, let H(t) be the
solution operator (at time t) for the parabolic equation

(2.3) wy=eAw=c¢ Zw,‘.n, w(x,0) = wo(x).

: =1
Now fix T > 0 and At > 0, and let N be such that NAt = T. Let u°(x) = uo(x), and define {u"(x)}f:,=1
inductively by

(2.4) u"(x) = [H(ADSI™ (AL) ... 87 (At)] u™(x),

forn=0,...,N — 1. Observe that by the results in [2], S(At) = [S/=(At)...ST1(A1)].

We will now show that the sequence {u™} is compact in L!°¢. To accomplish this we use a technique introduced
by Oleinik [18]. This approach is now standard in the theory of conservation laws, and involves proving a priori
uniform L, B.V., and L;(x) Lipschitz in time, bounds on the sequence.

To simplify the notation we define

SE =TS sl
We also note that if wo(x) is bounded, then the solution of (2.3) is given by convolution with the “heat kernel”
K(x,t), where
—|x?
(4met)m/2 Sk [ 4et

K(x,t) = ]:k(zl,t)...k(:zm,t)

with k(z,t) given by
_.2
k(z,t) = —1 exp = )
Vdret 4et

i.e., we can write

(23) MO ()= [ K ey, t)unly)dy.
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Lemma 2.1. Forn=0,...,N,
(2.6) [[u™[loo < [tto]loo-
Proof. This follows from the fact that both ST and H obey a maximum principle similar to (2.6). O
Lemma 2.2. Forn=0,...,N,

(2:7) T.V.(u™) < T.V.(up) .

Proof. Recall that for a function g(z) its total variation is defined by

T.V.(g) = lim sup /R lg(= + h’)l ~ o)l 4

and for a function g(x) of several variables
T.V.(9) = Z/ T.V...(g)d™ !z,
= JRm-1

where T.V.,,(g) denotes the total variation of g with respect to the ith variable. We have that T.V. (§%i(t)vo) <
T.V.(vo) and that
(185 (tyvo — S (#)doll1 < [lwo — Boll1-

These two facts imply, see [12], that
T.V. (S*(t)vo) < T.V.(w).

The lemma will follow by induction if we can show that
(2.8) T.V.(H(t)wo) < T.V. (wy).

Let e; denote the unit vector in the ith direction. We calculate

lim sup/ ulEsie R oo ) dz; = lim sup/ K(y,t) [wo (x + he: — y) — wo(x — y)| dy dz;
h—0 R h h—0 RJR™ h
S K(y7 t)TV::. (’Ulo) dy = T-V'I.' ('LU()) 0
R™ :

Hence, (2.8) holds. O

Lemma 2.3. There is a constant C, independent of n and At, such that
(2.9) [lu™t? —u™||; < CVAL

forall0<n<N-1.
Proof. We have that S/ obeys a stronger condition than (2.9), namely

(2.10) /R |87 (t + At)v(x) — ST (t)v(x)|dz; < C1AL.

From this it follows that
(2.11) [|SF(t + At)v — ST(t)wo|l1 < CoAL.

To conclude with (2.9), we have to derive a similar result for H. From the representation w = K * wo we have
that
Wez, (X, 1) = (K( )z * Wog, ) (X)-

Using the bound

Cs
K:z- '»t S_y
1K (0l < 22
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where Cj is a constant depending on T and €, we obtain

Z ”w::.':z:.'Hl < %TV (wo) -

=il

Thus we have the following estimate

t+At
/ wt dt
t

/... |lw(x,t + At) — w(x,t)|dx = /

R™

t+At ™
dx<e [ Y lumnlidt < CaVER
t i=1

The desired estimate now follows, since

™! —u™ly = ||H(AH)ST(At)u™ — u”||x
< ||H(At)ST(At)u™ — ST(At)u"|; + |IST(At)u™ — vy
< CyV AL+ CoAt.

This concludes the proof of the lemma. O

In order to investigate the convergence of the sequence {u™}, we need to work with functions that are not
only defined for each t = nAt, but in the entire interval [0,T]. To do this we define

Qjn =N+
48 m+1

for j=0,...,m+1, and _
u™(x) = ST (At)... ST (At)u(x)

for i =1,...,m. Let now the sequence {ua;} be defined by
(x.2) { Sfi((m+1)(t—ai—1n))u"1"(x), fort € [ai—1 nAt,a;nAt),
uat(x,t) =
at H((m+1)(t - amn)) u™"(x), for t € [am nAt, amt1,nAL).

This method of extending {u"} to a function defined for all ¢t was first used by Crandall and Majda in [2].
Regarding {ua¢} we have the following lemma.

Lemma 2.4. For any sequence {At} tending to zero, there ezists a subsequence {At;} and a function u such
that as j — 00, uay, — u in LP¢ (R™ x [0,T]).

Proof. By lemma 2.1 and 2.2 the sequence {ua:} is uniformly bounded and has uniformly bounded total
variation. We can therefore use Helly’s theorem to conclude that a subsequence {ua:;} converges in L; on
bounded boxes [—r,7]™ for each fixed ¢. Since r is arbitrary, we can apply this argument a countable number of
times to conclude that there is a further subsequence, again denoted by {uay, }, such that {ua¢,(:,t)} converges
in L°¢ (R™) for each fixed t. By a diagonalization we can have such a convergence for a dense countable subset
{t:} in [0,T)]. Now, for some t & {t;}, let {tx} C {t;} such that t; — t. We compute

/ ] [uae(x,t) — uay; (x,t)| dx < / luat, (x,t) — uag, (x,tx)| dx
[-r,r]™

[=r,r]™

+‘/[ ] [uae (%, te) — uae; (X, t)| dx

+/ |uA,,. (x,t) — uay; (x,t)| dx
[=rr]™

=0 (It - t'?) +/[

—r,rj™

IuAti (X, tk) — uat; (x7tk)| dx,

which vanishes as i, j, and k become large. Thus {uas,(-,t)} is a Cauchy sequence in L{°¢ (R™) for all ¢ € [0, T},
and, therefore, {uay,(,t)} converges in L{°® (R™) uniformly in ¢ for t € [0, T]. We denote the limit by u. This
concludes the proof of the lemma. 0O

Next, we justify the term “approximate solution” by showing:
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Theorem 2.5. Assume that ug is in Lo, N B.V., and that f(u) is Lipschitz continuous. Then, for any sequence
{At} tending to zero, there exists a subsequence {At;} such that the corresponding subsequence {uas, } converges
to a solution of the initial value problem

ur+ V-f(u) =eAu, u(x,0) = uo(x).

Remark. With a solution of (1.1) we understand a function u(x,¢) which is twice continuously differentiable
in x and once in t such that the differential equation is satisfied in the classical sense for ¢ > 0. Moreover, the
initial data should be assumed in the weak sense. It is well-known that such a solution exists, cf. [18], [16], [15].

Proof. From lemma 2.4 we have convergence of the sequence {u;} (= { UAL, }) to u. We continue by showing
that u is indeed a weak solution to (1.1). To this end define the functional

g¢
Lo(u) = /R ) /0 (ude + £(u) - Vb + culg) dt dx + /R uo(x)(x,0) dx,

for ¢ € C2 (R™ x [0,7T)). If L4(u) = 0 for all such ¢, then u is a weak solution. But we have more, for following
[18], we have that a weak solution to (1.1), is, in fact, a classical solution possessing the necessary smoothness
for t > 0. Therefore it suffices to show that L4(u) = 0, where u = lim; u;, for a proper set of test functions ¢.

Let now
L B =17
v;"(t) = ST ("

We also define a new test function ¢ by

B, 0 = ¢ (x, ;n_t-i_-—i) :

Then we have

a.-,..At_.,- 1
ey [ f N ((m - 1) wih + f (uj)a&z..) dt dx =

At i . X _
— 1_ 1 / / (v;'"(x, T)¢r (X, 7 + (m + 1)ai—1,nAt;) + fi(v;™ (X, 7))@z, (X, 7 + (m + 1)a,-_1,nAtJ-)) drdx
mJo
1

Tm+l

/ (uj (%, @i,nAt) ¢ (X, @i n Atj) — uj (X, @im1,nAL) @ (X, ai—1,nAL;)) dx.
Rm

Similarly, we have

! am+1,nAL; 1
(2.13) /m /ammAtj ((m) u;jpr + EUJ‘A(b) dtdx =

1
e (uj (X, @mt+1,nAt;) @ (X, @mt1,0AL;) — Uj (X, @ nAL;) @ (X, am nAL;)) dx.
If we sum (2.12) over 2 = 1,...,m and add the result to (2.13), and finally sum over n = 0,..., N — 1, the

resulting equality takes the form
C¢ (u,) =5+ 5,

where
N-1 (n+1)At; Qm+1,nAL;
Li=e) / / ujA¢dt — (m + 1) ujAgdt | dx,
n=0 YR™ nAt; am,nAt;
and

nAt; ai—1,nAt;

N-1 m (n+1)At; ain Aty
= E/ > (/ fi (uj) ¢z, dt — (m + 1) fi (uj) 6z, dt) dx.
n=0 YR™ j=;

We now write I; as I; = a + b, where a and b are given by

(n+1)At; ) Am+1,nAt;
(/ A¢dt — (m+1) Ag¢adt | uj(x,nAt;)dx,
nAt,- am,,.Ai,'

N-1 (n+1)At; am+1,nAL;
b=¢ Z / (/ (u;(t) — uj(nlt;)) Agpdt — (m + 1) (uj(t) — uj(nAt;)) Ag dt) dx.

Al,‘ am,n At"
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Assuming for the moment that ¢ € C3(R™ x [0,7]), we may write
Ap(x,t) = Ag(x,nAt;) + O(t — nAt;)

for t > nAt;. Using this it is not difficult to see that |a| = O(At;), and using the L, continuity in time (Lemma
2.3), we obtain that |b| = O(y/At;). Hence, |I;| = O(,/At;). Similarly, |I;| = O(,/At;), and consequently,

ILo (uj) | = O(V/AL;).

Letting j — oo, we have that L, (u) = 0 for all ¢ € C3(R™ x [0,T]). A straightforward approximation argument
shows this also to hold for all suitable ¢. This concludes the proof of Theorem 2.5. O

Remark. Since the solution of (1.1) is unique, it follows that the whole sequence {ua:} converges, and not
just some subsequence {uay, }.

3. A discrete method. In this section we present a numerical method implementing the ideas of the operator
splitting described earlier. Here the solution operator for the hyperbolic part of the equation is replaced by
a solution generated by front tracking, and the solution operator for the diffusion part is replaced by a finite
element method.

Front tracking is inherently a numerical method for one-dimensional conservation laws, in several dimensions
we use the dimensional splitting described in [12] as the approximation to S. Let S, denote the approximate
solution operator associated with (2.1), i.e.,

Sn(t)vo(x)

is the result of using front tracking, possibly coupled with dimensional splitting, for a single timestep of length
t, on the piecewise constant function vy(x). We have that S,(t)vo(x) is a piecewise constant function of x (on a
fixed grid if m > 1). Here 7 is a parameter measuring the discretization used in front tracking. If m = 1, then
1 = 6 with 6 denoting the distance between the interpolation points used when approximating the flux function
f with a piecewise linear function. If m > 1, then n = (6, Ax) = (6, Az, ...,Az,,), where Az; denotes the grid
spacing in the ith direction. For a detailed description of the front tracking method for scalar conservation laws
in one dimension, we refer the reader to [11], and for a description of the dimensional splitting method to [12].

We shall use a finite element method for the solution of (2.3), with elements determined by the discontinuities
in S, (t)vo(x). Let Hax(t) denote the operator which takes an initial function '

M
= 2 a;pi(x)

to the approximate solution of (2.3) obtained by the element method using basis functions ¢;(x),i=1,..., M.
We assume that these basis functions are associated with Ax such that M — oo as Ax — 0. The approximate
solution is then written as

Hax(t)wo(x) = Za,(t)(p,

where a;(t) is the solution of the following system of ordinary differential equations:

(3-0) Zdal(t) (‘Pu‘PJ)'*‘Z(V‘PuV‘PJ)a:(t) —0 .7': 11"'an

i=1 i=1

where (-, -) denotes inner product in L. For a description of finite element methods for problems such as (2.3),
see [13]. Standard theory for parabolic equations, see e.g. [20, Ch. 10], says that Hax(-)wo is a continuous
function of ¢ taking values in L,. If we use a suitable numerical scheme when integrating (3.0), and if wy is
bounded, then also Hax(t)wo will be a bounded function for all ¢, independently of M. We restrict ourselves
to some bounded (rectangular) domain € in R™, therefore Hax(-)wp is a continuous function of ¢ taking values
in L;, and we have the following estimate:

(3.1) [IHax(t)wo — woll1 < A(t),

where h(t) is some continuous function with ~(0) = 0.
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As mentioned above, we shall restrict ourselves to a bounded rectangular domain 2 in R™, z; € [a;,b;]. To
do this, we ought to impose boundary values, but for ease of presentation we shall make these as simple as
possible. If m = 1, we shall require the solution to satisfy

(3.2a) u(a,t) = uq, u(b,t) = wuy,
where u, and u; are constants. If m > 1, we require the solution to satisfy
(3.2b) ulon = ¢,

where c is some constant, and we observe that there is no loss of generality in choosing ¢ = 0.
Now we can describe the numerical approximation. Let § and Az;, i = 1,...,m, be small numbers, and let
ug(x) be a function which is constant in each grid block,

{x=(z;,. Tmliai PR AT = xo < a; + (£ LV Az i =1 o)
where n; = 0,..., M;, and a; + M;Azx; = b;. We choose this function such that

(3.3) 7];1_{1}) ||’U,?) == 'U,Ulll —10)

For t = nAt we define uJ}(x) as
(3.4) TS = [HAX(At)S,,(At)]"_u?,(x).

Here, the case m = 1 needs special mention. In this case S, does not give a result that is constant on a fixed
grid. Therefore, to ensure convergence of Ha,, we have to add grid points whenever the spacing between two
discontinuities become larger than C Az for some fixed constant C. In the computations presented in section
4, weuse C = 1.

By mimicking the proofs of Lemma 2.1 to Lemma 2.3, and using the remarks above, it is straightforward to
prove:

Lemma 3.1. Let up(x) be defined by (3.4), then for all m,n =0, . .oy N,

llupllo < M,
(3.5) T.V.(u]) < M,
lupt — up|ly < MA(|At(m = n))),

where M is some number independent of n, m, n and At, and iz(s) is a continuous function with h(0) = 0.

An immediate consequence of this lemma is that our numerical method, (3.4), converges as n and At tend
to zero. Furthermore, we can also mimic the arguments used in proving Theorem 2.5 to show:

Theorem 3.2. Assume that ug is in Lo N B.V., and that f(u) is Lipschitz continuous. Let u, a¢(x,t) be given
by (3.4) for t = nAt, and the analog of ua+(x,t) (the semi-discrete method) for t # nAt. Then

u(x,t) = n,gﬂo Up,at(X, 1)
is the unique solution to the initial value problem
uy + V- f(u) = eAu, u(x,0) = ug(x).
Remark. In the implementation presented in section 4, we have used Strang splitting
up(x) = [Hax (At/2) Sy (At)Hax(At/2)]" ug(x)
instead of (3.4). It is clear that convergence and Theorem 3.2 hold for this construction as well. Furthermore,

it should be noted that if Ha, is chosen properly, our discrete method (3.4) is unconditionally stable in the
sense that the time step is not limited by the space discretization.
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4. Some numerical experiments. In this section we shall present an implementation of the operating
splitting algorithm presented in the last section in the case of one and two space dimensions. In particular, we
will try to numerically determine a convergence rate of this method. To do this we shall measure the error at
a fixed time T (in the experiments below we use T = 1). Since the convergence results above were formulated
in L;, we measure the error in a relative L, - norm, i.e.,

o Iy = D)l
G

where u, is some reference solution. If we have no exact solution available, then we have used a solution
calculated with a very fine discretization. We shall in the following adopt the notation x = (z,y), f = (f,9),
and Ax = (Az, Ay).

When trying to determine the convergence rate in the one-dimensional case we assume that the error is of
the form

E =~ C [Az® + AtF],

for some constant C independent of Az and At. In our experiments we perform two kinds of computations:
One is to test the spatial convergence rate, where we fix a small At and observe the convergence order a with
respect to Az. The other is to test the temporal convergence rate with respect to At. Here we fix a small Az
and observe 3. We use least-squares fit to obtain the exponents a and f.

In the two-dimensional case we shall assume that the error is of the form F ~ CAz® with Ay = Az, and
relate the time step At to space discretization Az through the CFL number; (At/Az) max (|| f']|cos ||9'l|o0)-
The reason for doing so is that we want to explore, in addition to the convergence rate, large time step behavior
of the method. Our method is unconditionally stable in the sense that there is no CFL number restriction on
the discretization parameters in order to obtain convergence, therefore it is interesting to see whether the error
increases if larger time steps are taken. We will present L; - errors and convergence rates for three different
CFL numbers, namely, 1, 2 and 4.

In one dimension, front tracking for a scalar conservation law has two discretization parameters; the distance
between the (linear) interpolation points used when approximating the flux function, and the initial discretiza-
tion used when approximating the initial function. Furthermore, the operator splitting needs two additional
parameters, namely the timestep At and the size of the support of the basis functions. In one dimension we
have used piecewise linear basis functions of the sort

0 i1 67 < g
pi(r)=4q 1 ifz=uz;
0 if$21j+1.

Here, the numbers {z;} are given as the position of the jth front from the left, or, if the spacing between adjacent
fronts is greater than Az, then z;4; = z; + Az, where Az is the dizcretization used when approximating the
initial function uq. That is, we use

(4.0) ug(z) =ugla+ (j +1/2)Az) forz € (a+ jAz,a+ (j + 1)Az].

We set the distance between the interpolation points in the flux function to 0.1 for all computations in one
dimension and 0.01 for the computations in two dimensions. In two dimensions, the approximation, u?’(z, y), of
the initial data is given by the two-dimensional analoug of (4.0). Furthermore, the finite element method uses
a standard uniform triangulation of 2, and piecewise linear basis functions given by

1 iffi="7
(N;) =
#i(N:) {0 if i # j,
where N; is some node in the triangulation.
When integrating (3.0) numerically, for stability reasons, we have set the matrix {(¢:,¢;)} equal to the
identity matrix, a technique known as lumping, see [9]. The integration of (3.0) is done by Euler’s backward
method. This might seem as a restriction on the order of the splitting method, but as the numerical convergence

orders obtained here are all well below 1, we believe this not to be so.

Example 1 (one-dimensional test case). Our first example will be the solution of Burgers’ equation in one
space dimension,

1
(4.1) ug + (§u2> = EUgy.
z
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This equation has a time independent solution given by

T
42 e h(—),
(42) u(z,t) = - tanh (=

so that it is well suited as a test case.

In Figure 4.1. we show all discontinuities in the approximated solution in the (z,t) plane for ¢ in the interval
[0,1]. This computation was done with ¢ = 0.1, Az = 0.05 and At = 0.1. Note how the discontinuities
“converge” towards the steepest place in the exact solution at £ = 0.

1.00 > L
B
067 — |
|
033 i
T : i §
033 033 14

T

T

0.00

-1.00 00

Figure 4.1. Discontinuities in the (z,t) plane.

In the left column of Figure 4.2 we show the numerical convergence rates obtained with Ar = 278, with
computational domain [-1,1], and boundary data given by (4.2). These rates were obtained using At =
271,...,278. The figure shows the logarithm of the error versus the logarithm of At. The straight lines are
obtained from standard linear regression. In the right column we show numerical convergence rates in Az. Here
At =278 and Az =271,...,27% The three rows of the figure correspond to € = 0.1, ¢ = 0.01 and & = 0.001.

2 T T T = T S T T T T T

€

1 1 L

L L 4 L fi

. 5 ) L
6 -5 -4 -3 -2 =) 0 -6 -5 -4 -3 -2 -1 0

Figure 4.2. Numerical convergence rates in At (left) and Az (right), with uo given by (4.2).

The computations above correspond to the case where the conservation law would have a shock solution, we
can do a similar analysis in the case where the conservation law has a rarefaction wave solution. Also in this
case, via the Hopf-Cole transform, we have an explicit solution. Now we have initial data

-1 forz <0

&8 uo(z) = { 1 for z > 0,
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and the solution is
gl lg(znt)
g(_13, t) + g(:L‘, t)

2

u(z,t) =

where g is given by

The computational domain is the interval [—1,1], and the boundary values are g(F1,t). In Figure 4.3 we show
the numerical convergence rates in At and Ar for this “rarefaction case”. The most notable feature of these
computations is the poor convergence rate in At. In the “visual norm” the approximate solution is reasonably
close to the true solution even for large At (see Figure 4.4), so we believe that this poor convergence rate is due
to the error made by approximating with a piecewise constant function.

0 T T T T T 5
o o
COISkR epsilon=0.1, order=0.2 o 1
o or ]
) |E o (o) 4
15 L n L L "
-6 5 -4 -3 2 1 0 -6 0
1 T T T T —r 4
o
or 1 2r 7
epsilon=0.01, order=0.2
=115 o ° o o ] ok J
2 L s L " L 2 L 1 o " ot
-6 -5 -4 -3 2 -1 0 6 -5 -4 -3 2 -1 0
T T T T T 4 T T T = A
-0.5 epsilon=0.001, order=0.0 5
o 2+ o <
° o
e} o or epsilon=0.001, order=0.8
o
o o
1 L L " s s 2 s n L n s
-6 -5 -4 -3 2 -1 0 -6 -5 -4 -3 2 -1 0

Figure 4.3. Example 1; Numerical convergence rates in At (left) and Az (right), with ug given by (4.3)

i 1 1

-

1.10

0.37 -

037 7

LN

-1.10 T T T T T
-1.00 033 033 1.00 -1.00 033 033 1.00

Figure 4.4. Exact solutions (dotted line) versus approximate solutions (piecewise constant) from Example 1. The shock case (left)
and the rarefaction case (right) are both calculated with Az = 0.01, At = 0.5, and € = 0.01.

Examples 2 (two-dimensional test case). We consider the equation
ug + (u+ (u—0.25)%); — (u+u?)y = e(uzz + uyy),

with initial data given by

1 for (z — 0.25)? + (y — 2.25)2 < 0.5
0 otherwise.

uo(z,y) = {

1.10

- - ‘ - 037

e - -0.37

-1.10
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The computational domain is [—2, 5] x [-2, 5], and we calculate approximate solutions for Az = 7-274,... ,7-278,
Boundary values are set to zero, which is consistent with the initial data. Figure 4.5 shows “log-log plots” of
the error and numerical convergence rates in Az for € = 0.1, 0.01 and CFL numbers 1, 2, and 4. See Figure 4.7
for a picture of an approximate solution. We observe that the error and the convergence rates are more or less
independent of the choice of the CFL number, and, consequently, large time steps can be taken without loosing
accuracy.

T T T = —r 0 T T T T T T
epsilon=0.1, CFL=1, order=0.9 epsilon=0.01, CFL=1, order=0.8 A )
ol 1Ll / -
[¢)
_ . L L ! " s iy n n L n L n
-4 -3.5 -3 -2.5 -2 =115 -1 -05 -4 -35 -3 -2.5 -2 -1.5 -1 -0.5
0 T T T 0 T T T T -
epsilon=0.1, CFL=2, order=1.1 epsilon=0.01, CFL=2, order=0.9 o
-2} 4 -2} 4
o
- L L s o n iy N L s L L s
-4 -35 -3 -25 -2 -1.5 -1 -05 -4 -35 -3 -2.5 -2 -1.5 -1 -0.5
0 T T —
epsilon=0.1, CFL=4, order=1.2 0
-2 4
-2+ 4
-4t 4
- i . ) L e A _4
-4 -3.5 -3 -2.5 -2 -1.5 -1 -05 -4 -0.5

Figure 4.5. Example 2; Numerical convergence rates in Az for different values of the CFL number.

Example 3 (two-dimensional test case). We now present an example where we generate approximate
solutions to the equation

ut + f(u)z + g(u)y = €(uzz + uyy),
with initial data

(z.9) { 1 for 2 +y? < 0.5
up(z,y) =
R 0 otherwise,
and
2
u
9(u) = u? 4+ (1-u)?’

fu) = g(u)(1 - 5(1 - w)?).

The flux functions f and g are both “S-shaped” with f(0) = g(0) = 0 and f(1) = g(1) = 1. This problem is
motivated from two-phase flow in porous media with a gravitation pull in the z-direction. The computational
domain is [-3,3] x [-3, 3], and approximate solutions are computed for Az = 6-27%,... ,6-28. Boundary
values are again put equal to zero. We use the same values as in the previous example for the viscosity constant
€ and the CFL number. The results are presented in Figure 4.6 (see also Figure 4.7), and we observe again that
the accuracy is uncorrelated to the CFL number. Finally, let us also mention (without “log-log plots”) that
the convergence rate in At for both the two-dimensional examples seems to be well below 1, which is consistent
with the observations in Example 1.

In closing, we would like to mention that we plan to continue the study of convergence rates, this time in a
more theoretical setting, in a forthcoming paper.
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Figure 4.6. Example 3; Numerical convergence rates in Az for different values of the CFL number.
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