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Abstract

Seismic imaging of the subsurface is essential in both the exploration and production of

hydrocarbon reservoirs. Seismic full-waveform modelling and inversion methods can be

used to obtain high-resolution images of the elastic properties. This work aims to develop

further methods for non-linear elastic waveform inversion in anisotropic media associated

with fractures. Based on previous research, the goal is to investigate which approach is

the most reliable at estimating stiffness parameters.

In this context, the rock physics t-matrix method was used to represent the stiffness per-

turbation due to fractures in a complex porous medium. The elastodynamic wave equation

was solved using the full integral-equation solution of the Lippmann-Schwinger type. The

frequency-domain scattered wavefield was used as synthetic data, to simulate the par-

ticle displacement from a fracture-induced anisotropic medium. Elastic Full-Waveform

Inversion (FWI) makes use of all the information in the wavefield and is implemented by

using the distorted Born iterative method (DBI). The DBI method is consistent with the

Gauss-Newton iterative method and was performed using the self-adaptive regularisation

scheme. For each iteration, both the Green’s function and the sensitivity matrix were

updated for the actual medium. Two models with different geological features, i.e. the

syncline and anticline model, were used in the synthetic numerical experiments to simu-

late a fractured reservoir with transversely isotropic symmetry. Different levels of noise,

as well as source-configurations, were investigated.

For the models considered in this work, fracture-based inversion results were shown to

match the actual model better than the stiffness-based inversion. When evaluating the

results for noisy data of 40 dB SNR, it is evident that the stiffness-inversion is insuffi-

cient, particularly for the C13 parameter, when compared to fracture-inversion. On this

basis, inverting for fracture parameters is recommended when characterising a reservoir

associated with fractures. Future research is needed to identify more desirable fracture

models and more efficient calculation of the full integral-equation solution.
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Chapter 1

Introduction

1.1 Background

The ultimate goal of modern petroleum seismology is to help discover new petroleum

reservoirs and to enhance production from existing ones, through imaging of these reser-

voirs (Ikelle and Amundsen, 2005). Typically, reservoirs are assumed to be isotropic, but

more realistically, these media tend to be anisotropic or transverse isotropic (Lee et al.,

2010). Seismic anisotropy is an attractive topic and should ideally be accounted for in

heterogeneous media (Jakobsen et al., 2020b). Azimuthal anisotropy in the subsurface

may be a result of oriented fractures or stress fields (Ikelle and Amundsen, 2005).

A substantial proportion of the World’s remaining hydrocarbon reserves are associated

with naturally fractured rocks in carbonate and tight-sandstone reservoirs (Ali and Jakob-

sen, 2011a). Inversion for fracture parameters has emerged as a hot topic in recent years,

as fractures have a significant impact on seismic waves (Jakobsen et al., 2003a; Pilskog

et al., 2015) and fluid flow (Sævik et al., 2013). Fractures can lead to optimised pro-

duction and are also relevant for CO2 sequestration and geothermal energy (Batzle and

Simmons, 1976; Ali and Jakobsen, 2011b).

Estimation of physical properties of fractures at reservoir scale, from surface data, is useful

in reservoir characterisation (Zhang et al., 2017). Conventionally, P-wave Amplitude

Versus Offset and Azimuth (AVOA) has been used to characterise the subsurface fractures

(Pilskog et al., 2015). The central assumption of AVOA analysis is that the reflector is

laterally invariant (Bansal and Sen, 2010). Performing Full-Waveform Inversion (FWI)

may solve this problem, as it makes use of all the information in the wavefield.

1



Chapter 1. Introduction

1.2 Elastic Full-Waveform Inversion

Elastic waves are mechanical vibrations that can propagate in both solid and fluid media

(Royer and Dieulesaint, 1999). Changes in the elastic properties of the Earth lead to

scattering of seismic energy (Gibson and Ben-Menahem, 1991). A scattered wavefield is

the difference between the total and reference wavefield. Elastodynamic wave scattering

is based on the general principles of scattering theory and continuum mechanics of elastic

media (Snieder, 2002). The fundamental solution of the elastodynamic equation is the

Green’s function for a point source (Madariaga, 2007). Using the elastodynamic wave

equation to account for shear waves is critical to characterise reservoirs (Jakobsen et al.,

2020b).

The non-linear inverse scattering problem can be expressed as both the non-linear rela-

tionship between the physical properties, and the inclusion of multiples and reflections

that multiply reflected events (Weglein et al., 2003). The seismic FWI can be viewed as

a seismic inverse scattering problem (Huang et al., 2020b). Similar problems have been

examined in other fields, such as electromagnetics, acoustics, and quantum mechanics

(Jakobsen and Wu, 2018). An illustration of scattering is presented in Fig. 1.1, showing

first- and second-order scattering between a source and receiver.

Figure 1.1: First- and second-order scattering illustration. An explosive source (red
star) transmits seismic energy in all directions. Two arbitrary scattering points (black
rectangles) in the scattering domain (grey box), act as sources and spread the energy
towards the receiver (blue triangle). Ray paths (line with arrow) show the straight path
of the seismic wavefront.

Seismic FWI promises sharp and high-resolution images compared to those in conventional

migration velocity analysis and travel time tomography (Jakobsen et al., 2020b). The two

main methods for the inversion process are gradient-based methods (e.g. steepest descent)
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and Newton-based methods (Abubakar et al., 2011). In the Gauss-Newton approach, a

Newton-based method, the data-misfit, and sensitivity matrix are computed for each

iteration (Jakobsen and Wu, 2018).

The main challenge in FWI is the high computational cost. The sensitivity of the results

to the starting model is also a problem, but can be reduced by the use of multi-scale

regularisation methods (Virieux and Operto, 2009; Jakobsen et al., 2020b). Waveform

inversion is also not suitable for real data as it requires low frequencies (Alkhalifah and

Choi, 2012). Additional concerns include having a suitable background medium and

achieving adequate subsurface illumination (Zhang et al., 2017). Using more sources in

the experiments, can combat the latter issue.

There are many methods for seismic FWI, which can be implemented both in the time-

domain and frequency-domain. The Finite-element or the Finite Difference (FD) method

for the full wave-equation can be used (Pratt, 1999; Virieux and Operto, 2009). Using the

Born approximation and asymptotic ray theory to compute Green’s function, is another

method, called ray-Born inversion (Bansal and Sen, 2010). An FWI scheme based on the

ray-Born approximation has been employed for fractures in geologically complex areas

(Pilskog et al., 2015). The distorted Born iterative T-matrix (DBIT) method reduces the

problem to a series of linear inverse problems, using an iterative T-matrix method for

the dynamic background medium (Jakobsen and Ursin, 2015; Jakobsen and Wu, 2018;

Jakobsen et al., 2020b). The problem can also be solved without the T-matrix, using only

the distorted Born iterative method (DBI), which is employed in this work. Ideally, the

goal is to use the method that gives the sharpest image with the highest resolution.

The numerical frequency-domain implementation of these methods have significant ad-

vantages compared to the time-domain implementation (Pratt, 1999). Accurate inversion

results can often be obtained using a relatively low number of frequency components,

decreasing the computational cost (Jakobsen and Ursin, 2015).

Ultimately, the purpose of FWI in fracture-induced anisotropic media, is to reconstruct

the multiple parameters from the computed wavefield (Jakobsen et al., 2020b). There

are a couple of concerns related to multi-parameter FWI, as the inversion is non-unique

(Kamath and Tsvankin, 2014) and there are cross-talk effects (Jakobsen et al., 2017).

Inverting for fracture densities simplifies this problem, as the inversion is for only one

parameter (Pilskog et al., 2015). Fracture-based inversion is, however, very reliant on a

good representation for the fracture model and rock physics parameters.
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1.3 Objectives, Scope of Work, and Outline

1.3.1 Thesis Objectives

The main objective in this work is to develop methods for non-linear elastic waveform

inversion in the presence of fracture-induced anisotropy. This objective involves solving

the elastodynamic wave equation by using the integral-equation approach, and also to

employ the DBI method to both stiffness perturbation and fracture density inversion.

A set of secondary goals include:

• Comparing results of elastic stiffness inversion with fracture density inversion, using

the same DBI inversion method.

• Calculating frequency-domain data by using the full integral-equation solution.

• Investigating how the DBI inversion, for both stiffness perturbation and fracture

density, are affected by random noise and complex features.

• Reviewing the theoretical background of elastic waveform inversion and inversion

for fracture parameters.

• Estimating the effects of fluid-filled fractures on the elastic stiffness parameters.

1.3.2 Limitations on Scope of Work

To be able to achieve the main goals of this thesis within the permitted time, the following

restraints on the scope of work are made:

• Fractures are assumed not to affect mass density, as flat fractures have a tiny volume

(Jakobsen and Pilskog, 2016; Jakobsen et al., 2017). Therefore, mass density is fixed,

and there is no perturbation in mass density.

• 3D Green’s function has been used, although the medium is 2D. There exists a 2D

Green’s function based on the Hankel function (Červený, 2005), but it was regarded

as outside the scope of this thesis.

• For the calculation of the rock physics t-matrix for a single inclusion, only the first-

order correction is considered in modelling and inversion. The reason for this is not

to further complicate the inversion, as it is already non-linear (Pilskog et al., 2015).

• Only one phase (type) and orientation of fractures are modelled, to reduce the non-

linearity. It is assumed that the orientation of fractures is known, which is consistent

with Bansal and Sen (2010).
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1.3.3 Outline of Thesis

The following work contains six chapters, where each chapter follows a similar structure

of theory, methods and numerical results. This chapter, Chapter 1, presents the reader

with prior research on the topics of fractured reservoirs and seismic FWI. Objectives and

goals of the thesis are explained, while limitations on the scope of work are presented.

The next three chapters follow the general scientific procedure for studying the Earth

(Tarantola, 2005):

(i) Parametrisation of the model : finding model parameters whose values characterise

the system. Elastic stiffness parameters are closely related to fracture parameters

and form the basis for the models used in this thesis. This relationship is further

discussed in Chapter 2, where two different models for numerical experiments are

defined.

(ii) Forward modelling : discovery of the physical laws allowing for predicting the results

of measurements on some observable parameters. The computation of data for the

models, defined from rock physics, is discussed in Chapter 3.

(iii) Inverse modelling : use of the actual results of some measurements of the observable

parameters to gather the actual values of the model parameters. Elastic FWI is

applied in the frequency-domain to the scattering problem associated with fractures.

Inversion for the elastic stiffness perturbations are discussed in Chapter 4.

Chapter 5 presents the theory and equations from the previous chapters, and non-linear

inversion for fractures are performed based on the DBI method. The results from Chapters

4 and 5 will be discussed together with a summary of the work in Chapter 6. Finally,

concluding remarks and suggestions for future work.

Appendix A describes the rock physics G-tensor for ellipsoidal inclusions. In Appendix

B, the reference Green’s function and its derivatives are given. The leading-term Green’s

function is derived in Appendix B.1. The first-order derivative is given Appendix B.2,

while the second-order derivative is given in Appendix B.3.
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Chapter 2

Effective Elastic Properties of

Fracture-Induced Anisotropy

Rock physics is an essential topic in the parametrisation of a model, and this chapter in-

troduces the theory behind elastic properties and fractured porous media. First, the general

concepts of rock physics and elastic behaviour are established. Then, the effective medium

theory for fractured rocks are explained, and different fracture models are presented. The

important t-matrix for a single inclusion is defined for fractures, and the corresponding

stiffness matrix is derived. A discussion on how fluid saturation affect elastic stiffness

is presented. Lastly, numerical experiments and results are presented for the two models

introduced in this chapter.

2.1 Mechanical Behaviour of Rocks

For short time scales (less than 105 seconds), the mechanical behaviour of rocks is de-

scribed by the theory of elasticity (Guéguen and Palciauskas, 1994). Hooke’s law is the

linearised relation between stress, σ, and strain, ε, by the elastic stiffness constants C.

Generally, the response (strain) is proportional to the applied force (stress) (Guéguen

and Palciauskas, 1994). This relationship is quantified by the physical properties (elastic

moduli), depending on the strength of the applied stress. Hooke’s law is given by (Auld,

1990; Snieder, 2002)

σij = Cijklεkl, (2.1)

where i, j, k, l ∈ {1, 2, 3}.

The stress tensor, σ, is composed of the traction forces acting on any surface area of the

medium and the normal vector of this surface (Auld, 1990; Snieder, 2002).
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Strain, ε, is a measure of material deformation. The linearised strain-displacement relation

is given as (Auld, 1990; Guéguen and Palciauskas, 1994):

εkl =
1

2
(uk,l + ul,k) , (2.2)

where the displacement gradients are defined by uk,l and ul,k. Comma-notation is used

and can be expressed by uk,l ≡ ∂uk
∂xl

and ul,k ≡ ∂ul
∂xk

.

Elastic stiffness constants, Cijkl, have low values for easily compressed material and vice-

versa (Auld, 1990). The elasticity tensor, C, has 81 components, generally, and is a

3 × 3 × 3 × 3 tensor (Dellinger et al., 1998). However, by symmetry relations, it can be

reduced to a symmetric 6x6 matrix with 21 independent elastic parameters (Auld, 1990;

Snieder, 2002). Thus, Eq. (2.1) is more commonly written as the generalised (Voigt)

Hooke’s law:

σI = CIJεJ , (2.3)

where I, J ∈ {1, . . . , 6}.

The stiffness parameters, CIJ , can be referred to as Voigt stiffness parameters (Auld, 1990;

Jakobsen et al., 2020b). Certain problems require a specific notation, and throughout this

work, the various Voigt stiffness notations used are organised in Table 2.1.

Table 2.1: Abbreviated subscript notation compared to spatial coordinates and general
coordinate notation.

Abbreviated Spatial General

1 xx x1x1

2 yy x2x2

3 zz x3x3

4 yz x2x3

5 xz x1x3

6 xy x1x2

In this work, the elastic stiffness tensor CIJ is given by the Kelvin notation. The Kelvin

notation adds a weight to stiffness parameters, based on how many elements they rep-

resent (Dellinger et al., 1998). This only affects the diagonal elements in the case of a

transversely isotropic medium. For example, the C44 parameter corresponds to 2C2323 in

Voigt notation, and consequently, a weight of 2 is added in the Kelvin notation. For more

details, see Section 2.2.
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Compliance, S, is the inverse of stiffness and is the measure of how soft a medium is.

Hooke’s law in terms of compliance (e.g. Schoenberg and Sayers, 1995) is given by the

inverse of Eq. (2.1) as

εij = Sijklσkl, (2.4)

Interested readers may note that Brown and Korringa (1975) use the compliance tensor,

S, to extend Gassmann’s equations (Gassmann, 1951).

2.2 Seismic Anisotropy

The elastic medium is assumed to be isotropic in most applications of elasticity theory

to geophysical problems (Thomsen, 1986). An isotropic medium is characterised by only

two independent Voigt stiffness parameters, C11 and C44. Isotropic matrices are often

used for inclusion models, as one can assume that the inclusions are embedded in the

solid isotropic matrix (Jakobsen et al., 2003a). A reservoir without fractures can then

be regarded as an isotropic medium (Sayers, 2009). In isotropic media, the elastic wave

velocities are independent of the propagation direction (Sayers, 1994).

Rocks often exhibit some anisotropic behaviour from minerals and other constituents

(Guéguen and Palciauskas, 1994). A simple example of anisotropy is hexagonal symme-

try or transverse isotropy (Thomsen, 1986; Guéguen and Palciauskas, 1994; Ikelle and

Amundsen, 2005). Shale formations surrounding sedimentary reservoirs have a transverse

isotropy due to clay minerals (Jakobsen and Johansen, 2000; Jakobsen et al., 2003a). A

Vertically Transverse Isotropic (VTI) medium has a symmetric axis perpendicular to the

vertical axis, x3, while a Horizontally Transverse Isotropic (HTI) medium has a symmetry

axis perpendicular to the horizontal axis, x1. An example of VTI symmetry is thin hor-

izontal layering, where the alternating layers have different elastic properties. Similarly,

an example of HTI symmetry is vertical fractures, where fractures have distinct elastic

properties (Ikelle and Amundsen, 2005). Examples of VTI and HTI media are shown in

Figs. 2.1a and 2.1b, respectively. The light and dark grey colours in Fig. 2.1 represent

the elastic properties of the media.

Transverse isotropic media will have 5 independent Voigt stiffness parameters in 3D

(Guéguen and Palciauskas, 1994). Most commonly, a transversely isotropic stiffness ten-

sor with a vertical symmetry axis is used for fractured reservoirs (Zhang et al., 2017).

The symmetric VTI stiffness tensor that is used throughout this work, is given with the
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Kelvin notation as (Auld, 1990; Guéguen and Palciauskas, 1994)

CVTI =



C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

2C55 0 0

2C55 0

2C66


, (2.5)

where C12 = C11 − 2C66. It should be noted that the Kelvin notation adds a weight of 2,

to the lower right corner (Dellinger et al., 1998).

In 2D, however, the x2-component is regarded as zero. This simplification results in only

four non-zero independent stiffness parameters, where C12 and C66 are zero (Lee et al.,

2010; Kamath and Tsvankin, 2016).

(a) VTI model example: thin horizontal lay-
ering.

(b) HTI model example: parallel vertical
fractures.

Figure 2.1: Illustrations of VTI and HTI media from Ikelle and Amundsen (2005, p. 531
and 535). A VTI medium (left) has a vertical symmetry axis, while a HTI medium has a
horizontal symmetry axis.

The parametrisation of seismic anisotropy is an important topic. In the case of anisotropic

elastic media, perturbations in elastic stiffness parameters are used as model parameters

(Jakobsen et al., 2020b). One issue of multi-parametrisation is cross-talk which occurs
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when parameters influence each other. Using the Hessian information (Section 4.2.3) in

the inversion can reduce the effects of cross-talk (Jakobsen et al., 2020b). Not all param-

eters can be recovered when using anisotropic FWI, and elastic FWI suffers from extra

parameters (Zhang and Alkhalifah, 2019; Huang et al., 2020a). Due to the considerable

number of parameters needed to represent an elastic medium, other parameters have

been used to quantify the information. Jakobsen et al. (2017) found that using the weak

anisotropy parametrisation in waveform inversion, reduces the cross-talk effects.

In the case of weak anisotropy, three anisotropic parameters can be used instead of the

stiffness tensor (Thomsen, 1986). These simplified parameters (ε∗, γ∗, δ∗) indicate the

transverse isotropy of the medium, and is calculated from the independent stiffness pa-

rameters (Thomsen, 1986; Ali and Jakobsen, 2011a). Mensch and Rasolofosaon (1997)

have extended these dimensionless anisotropy parameters to be valid for media of arbi-

trary symmetry. These coefficients depend on the exact wave modulus, and are closely

related to the different polarisations of the P- and S-wave velocities.

In this work, stiffness perturbations are normalised to ensure that the model parameters

are of the same size (Jakobsen et al., 2020b).

2.3 Effective Medium Theory for Fractured Rocks

2.3.1 Fractured Porous Media

All macroscopic physical properties of rocks are influenced by the pore microstructure

(Guéguen and Palciauskas, 1994). Porosity, φ, is the ratio between the pore volume and

the total volume of a rock. Rocks are generally composed of many solid constituents and

cavities, with a wide range of sizes, shapes, and orientations (Jakobsen et al., 2003b).

Cavities like cracks or fractures can be seen as thin needle-shaped pores with low vol-

umes. When dealing with an elastic fractured media, it is crucial to look at the effective

properties of the medium (e.g. Hornby et al., 1994; Jakobsen et al., 2003a). Fractured

reservoirs often contain sets of fractures with different orientations (Sayers, 2009).

The terminology fracture is used in this thesis, as opposed to cracks, which can be referred

to as microcracks. Kranz (1983) argues that a microcrack and a microfracture is the same,

although in this work fractures have a slightly higher aspect ratio than microcracks. A

fracture can also be defined as a planar feature of permeability discontinuity (Sævik et al.,

2013). Faulted reservoirs can be represented by fractures or deformation bands (Ali et al.,

2011). However, in this thesis, the fractures in faults are not investigated, as they can be

regarded as bigger than “normal” fractures.

11



Chapter 2. Effective Elastic Properties of Fracture-Induced Anisotropy

Typically, seismic wavelengths are significantly longer than the length of fractures (Hud-

son, 1981; Bakulin et al., 2000). Hence, an average response of many fractures is observed

in measurements. Seismic waves propagate through two-phase media, where one phase

is the matrix, and the other phase is embedded inclusions (Kuster and Toksöz, 1974;

Guéguen and Palciauskas, 1994). In practice, a fractured medium can be replaced by an

effective medium. The effective medium acts like an anisotropic medium, if the fractures

are closely spaced and parallel (Bansal and Sen, 2010).

Two essential quantities that describe fractures are the unit-less variables; aspect ratio,

αc, and fracture density, ε. Aspect ratio is defined as αc ≡ c
a

and is the ratio between the

semi-minor axis, c, and the semi-major axis, a, of a spheroid. Fracture density is given

as ε = ξa3 and represents the number of fractures, ξ, per unit volume (Hudson, 1980;

Schoenberg and Douma, 1988; Bakulin et al., 2000). A low aspect ratio, e.g. αc ≤ 1/20,

will result in a needle-shaped fracture, as described above. An illustration of fractures is

shown in Fig. 2.2. On the left, the characteristic inclusion is given, while more realistic

fractures are presented on the right.

a

c

Figure 2.2: Fracture-illustrations. Left: inclusion with a major axis a and a minor axis
c. Right: physically reasonable horizontal fractures with a low aspect ratio. Inspired by
Shahraini et al. (2011).

When a rock is subjected to applied stress, fractures close, and the effective elastic moduli

increase (Mavko et al., 2009). The effective elastic stiffness tensor, C, can be viewed as a

function of fracture density (Ali and Jakobsen, 2011a). See Fig. 2.3 in Section 2.4 for an

example of this relationship.

2.3.2 Fracture Models

The main effective media theories for fractured rocks are parallel linear-slip interfaces

(e.g. Schoenberg and Douma, 1988; Bakulin et al., 2000; Bansal and Sen, 2010), and

penny-shaped fractures (e.g. Hudson, 1980; Bakulin et al., 2000; Jakobsen et al., 2003a;

Grechka, 2005). Bakulin et al. (2000) performed a comparison of the two models, and

found that they are quite similar.

One way to obtain effective parameters is treating fractures, regardless of their shape
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and microstructure, either as (1) infinitely thin and highly compliant (soft) layers, or (2)

planes of weakness with linear-slip boundary conditions (Bakulin et al., 2000).

In the case of parallel thin, soft layers (1) one looks at the effective compliance matrix.

Parameters for linear-slip models are normal and tangential weakness (Bansal and Sen,

2010). If the weaknesses (normal and tangential) are zero, the medium is unfractured, but

if the weaknesses approach one, it is extremely fractured (Sayers, 2009). These parameters

confirm the azimuthal anisotropy, even when the normal weakness is very low (Schoenberg

and Douma, 1988).

Hudson’s model for a fractured media is based on fractures being viewed as elliptic penny-

shaped fractures (Hudson, 1980; Hudson, 1981). An underlying assumption is that the

fractures are flat and that they can be modelled with aspect ratio αc � 1 (Schoenberg and

Douma, 1988). However, one can model non-flat ellipsoidal inclusions by using an iterative

method for incrementally increasing fracture density ε (see Nishizawa, 1982; Schoenberg

and Douma, 1988). In the case of isolated penny-shaped fractures, Bakulin et al. (2000)

found expressions for weak anisotropic coefficients in dry (or gas-filled) fractures and

fluid-filled fractures. Note that weaknesses can also be used to parametrise penny-shaped

fractures. In that case, the tangential weakness is twice the fracture density, while the

normal weakness is sensitive to fluid saturation (Bakulin et al., 2000).

One requirement for the Hudson fracture model is that both small aspect ratios and

fracture densities are assumed, for an ideal fracture shape (Hudson, 1981; Mavko et al.,

2009). Another limitation is that this fracture model is mainly appropriate for waves of

high frequency (Brown and Korringa, 1975).

The fracture model used in this thesis is based on Hudson’s model, as it is consistent

with the t-matrix representation for fractures by Jakobsen et al. (2003a). The reason

for this is that this thesis is a continuation of Pilskog et al. (2015), where this fracture

representation was used.

2.3.3 t-matrix for a Single Inclusion

In heterogeneous material, Hooke’s law of Eq. (2.3) can be written as (Guéguen and

Palciauskas, 1994; Jakobsen et al., 2003a)

σ̄ = C : ε̄, (2.6)

where σ̄ is the average stress tensor, ε̄ is the average strain tensor, and C is the effective

elastic stiffness tensor.
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For a material that is homogeneous on macroscopic scale (statistically), the effective elastic

tensor (Jakobsen et al., 2003a) is shown in Eq. (2.7) as

C = C(0) + ∆C. (2.7)

Reservoirs contain several sets of fractures with variable orientation within a given frac-

ture set, denoted by p, r (Sayers, 2009). Effects of ellipsoidal inclusions (fractures) on the

stiffness perturbation, can be approximated by the t-matrix for an inclusion, t. Pertur-

bation in the elastic tensor is given for an arbitrary inclusion type p, r (Jakobsen et al.,

2003a,b; Ali and Jakobsen, 2011b; Shahraini et al., 2011) as

∆C = C1 :
[
I2 + C−11 : C2

]−1
, (2.8)

where the first-order correction (approximation for isolated fractures) is given by

C1 =
N∑
p=1

φ(p)
c t(p), (2.9)

and the second-order correction (fracture-fracture interaction) is given as

C2 =
N∑
p=1

N∑
r=1

φ(p)
c t(p) : G

(pr)
d : t(r)φ(r)

c . (2.10)

Here, Gd is the strain Green’s tensor integrated over a characteristic spheroid (see Jakob-

sen et al., 2003a; Shahraini et al., 2011), I is the identity matrix, φc is the fracture porosity,

and t is the t-matrix of a single inclusion for a fracture set p, r. For isolated fractures of

type r, the t-matrix is given by (Jakobsen et al., 2003a; Pilskog et al., 2015)

t(r) = ∆C(r)
(
I−G(r)∆C(r)

)−1
, (2.11)

where ∆C(r) = C(r) −C(0) based on Eq. (2.7).

Following Jakobsen et al. (2003a), an expression for the effective stiffness can be rewritten

by combining Eqs. (2.7) and (2.8), to yield

C = C(0) + C1 :
[
I2 + C−11 C2

]−1
, (2.12)

where I2 denotes the second-rank identity matrix of dimensions 6× 6.

The higher-order approximation, in Eq. (2.10), does not converge and dominates the

first-order approximation, in Eq. (2.9), resulting in an increased effective moduli for
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increasing fracture density (Cheng, 1993; Jakobsen et al., 2003a). Ignoring the higher-

order corrections, in Eq. (2.10), and considering only one fracture set p = 1, yields

C = C(0) + C1, (2.13)

where C1 was given in Eq. (2.9).

If the porosities and permeabilities of the medium are sufficiently low, fractures can be

considered to be isolated (Pilskog et al., 2015). Thus, the t-matrix for a single inclusion

in Eq. (2.11) can be rewritten as (Jakobsen et al., 2003a; Jakobsen, 2004; Pilskog et al.,

2015)

t =
(
C−C(0)

)
:
[
I2 −G : (C−C(0))

]−1
, (2.14)

where G represents the constant, negative strain Green’s tensor integrated over an el-

lipsoid (Eshelby, 1957; Jakobsen et al., 2003a; Jakobsen and Johansen, 2005), given by

G(C(0), αc). See Appendix A for details on how this tensor is calculated.

The effective stiffness, C, can be set to 0, in the case of dry (empty) cavities (Ponte Castañeda

and Willis, 1995; Jakobsen, 2004). In this case, the t-matrix is simplified to

t = −C(0) :
[
I2 + G : C(0)

]−1
. (2.15)

The volume (porosity) of a thin, penny-shaped ellipsoidal fracture is defined as (Hudson,

1981; Cheng, 1993; Jakobsen et al., 2003a)

φc =
4παc

3
ε, (2.16)

where ε is the fracture density and αc is the aspect ratio of fractures.

From Eq. (2.13) and (2.16), the elastic stiffness perturbation tensor is given by

∆C =
4παc

3
tε, (2.17)

where t is a constant matrix depending on αc. Both the stiffness perturbation and fracture

density are dependent on the position, x, by ∆C = ∆C(x), and ε = ε(x). To retain a

symbolic (vector) notation, this position x is ignored for now.

This means that the effective stiffness, C, in Eq. (2.7) can be redefined, as shown in Eq.

(2.18):

C = C(0) +
4παc

3
tε. (2.18)
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Subsequently, the result of the above discussion is that a linear relationship between the

stiffness perturbation and the fracture density has been established. The expression in Eq.

(2.18) is key in the calculation of the stiffness perturbations, in Section 2.3.5. Ultimately,

the relations in Eqs. (2.17) and (2.18), are used to invert for fractures in Chapter 5.

2.3.4 Effects of Fluid Saturation

Rocks are generally saturated or partly saturated with fluids. If the fractures are filled

with fluid, the effective stiffness is equal to the fluid stiffness tensor Cf . Eq. (2.14) can

then be written as (Pilskog et al., 2015)

t =
(
Cf −C(0)

)
:
[
I2 −G : (Cf −C(0))

]−1
, (2.19)

where Cf is given below, in Eq. (2.22).

Jakobsen et al. (2003b) extended the t-matrix expression in Eq. (2.19) to fully saturated

media, with communicating pores. Saturated fractures usually communicate and are not

isolated (Jakobsen and Hudson, 2003), but in the context of this work, it is assumed

that fractures are isolated. This t-matrix could ideally be used to calculate the effect of

fluid-saturation on effective properties of a fractured porous medium, as it is Gassmann-

consistent (see Jakobsen and Pilskog, 2016). However, as the expression introduces more

parameters (e.g. viscosity and relaxation time) and thus complicates the inversion pro-

cess in Chapter 5, the well-known Gassmann equation is used instead (Gassmann, 1951;

Guéguen and Palciauskas, 1994; Bredesen et al., 2015). Gassmann’s relation is given in

Eq. (2.20) as:

Ku = Kd +

(
1− Kd

Ks

)2
φ
Kf

+ 1−φ
Ks
− Kd

K2
s

, (2.20)

where Ku is the undrained (saturated) bulk modulus, Kd is the dry bulk modulus, Ks is

the solid (mineral) bulk modulus, and φ is the porosity. The saturated (undrained) shear

modulus, µu, is the same as the dry shear modulus, µd, and therefore unaffected by fluid

saturation. The fluid bulk modulus, Kf , depends on fluid content and is given in Eq.

(2.21).

It should be noted that Brown and Korringa (1975) updated Eq. (2.20) to be valid for

generalised (anisotropic) media. Shahraini et al. (2011) used the generalised Gassmann ex-

pressions to characterise fractured (saturated) reservoirs. Similarly to above, the anisotropic

Gassmann was regarded as outside the scope of this thesis.

Gassmann’s equations assume that the moduli are unaffected by chemical reactions be-

16



Chapter 2. Effective Elastic Properties of Fracture-Induced Anisotropy

tween porous rocks and fluid. In addition, the medium is undrained rather than dry and

valid for waves of low frequency (Brown and Korringa, 1975; Berryman, 1999).

If the medium is partially saturated, Kf must be regarded as an effective fluid bulk

modulus. The original Wood’s formula (Wood, 1955) is given by

1

Kf

=
Sw
Kw

+
(1− Sw)

Kg

, (2.21)

where Sw is the water saturation, Kw is the bulk modulus of water, and Kg is the bulk

modulus for gas. Interested readers should note that Jin et al. (2018) gives an updated

formula for Kf .

The symmetric stiffness tensor for a fluid-filled medium is given by

Cf =



Kf Kf Kf 0 0 0

Kf Kf 0 0 0

Kf 0 0 0

0 0 0

0 0

0


. (2.22)

The fluid bulk modulus can be calculated by Kf = c2fρf (Mavko et al., 2009), where

cf and ρf is the velocity and density of the fluid, respectively. An example: gas has a

fluid-velocity of cf ≈ 620 m/s, and fluid density of ρf ≈ 65 kg/m3, resulting in a fluid

bulk modulus of Kf ≈ 2.5 · 107 Pa (Mavko et al., 2009; Jin et al., 2018).

2.3.5 Relationship Between Stiffness and Fracture Density

The effective stiffness, as in Eq. (2.18), depend on both fracture density and position x.

Rewriting the effective stiffness with abbreviated notation, yields

CIJ(x) = C
(0)
IJ (x) +

4π

3
αctIJε(x), (2.23)

where in the case of an isotropic reference medium, C
(0)
IJ (x) simplifies to C

(0)
IJ .

In the context of this thesis, the most relevant way to view the relationship between

elastic stiffness and fracture density, is by the stiffness perturbation defined in Eq. (2.17).

Redefining Eq. (2.17) with positions x and abbreviated notation, yields the following
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expression

∆CIJ(x) =
4π

3
αctIJε(x), (2.24)

where tIJ is dependent on the Green’s tensor GIJ , given in Appendix A. Both tIJ and GIJ

are constant for all positions x. The arbitrary position x could be any in the scattering

domain Ω.

For example, the stiffness perturbation ∆C11 for a given position x is given by Eq. (2.25).

∆C11(x) =
4π

3
αct11ε(x). (2.25)

In Algorithm 1, the procedure used in this thesis to calculate stiffness for a fractured

medium is presented.

Algorithm 1: Procedure for calculating the stiffness perturbation and effective stiff-

ness of the given fracture densities, ε, of the (geologic) model. This algorithm follows

a procedure that was introduced in Avseth et al. (2010).

Define values for velocities α and β, and density ρ in the initial background medium.

Saturate the dry medium with a fluid, Kf , by Gassmann’s relations in Eq. (2.20).

Update the effective density by ρ∗ = (1− φ)ρ+ φρf , where φ is porosity (of pores).

Use these values (Ku, µu, ρ
∗) to calculate the isotropic reference medium C(0).

Set aspect ratio αc, and define fracture density, ε, for each grid block in the model.

if dry then
Set C = 0.

else

Set C = Cf based on the Kf of the fluid. Cf is given in Eq. (2.22).

end

Calculate the rock physics G-tensor G(C(0), αc), given in Appendix A.

Determine the t-matrix t in Eq. (2.19), by C, C(0), and G.

Estimate the normalised stiffness perturbation tensor, ∆C, in Eq. (2.24).

Estimate effective stiffness, C, in Eq. (2.23).

The procedure above, Algorithm 1, is important for calculating stiffness in the numerical

experiments in Section 2.4. Each fracture density model has four corresponding effective

stiffness tensors calculated by Eq. (2.23). For the forward and inverse modelling, in

Chapters 3 and 4 respectively, the stiffness perturbation is used as the model parameter.

The computation of these stiffness perturbations are based on Eq. (2.24).
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2.4 Numerical Results and Discussion

In the first numerical experiment, effective stiffness is calculated based on changing frac-

ture density. The procedure for calculating this is given in Algorithm 1. More importantly,

the fracture density models for the syncline model (Section 2.4.1) and the anticline model

(Section 2.4.2) are explained and displayed. When considering both models in Sections

2.4.1 and 2.4.2, one observation is that fractures make the medium softer (decreasing

stiffness). This implies that C33 will decrease with increasing fracture density, whereas

C11 will barely change. The effective stiffness, as shown in Tables 2.2 and 2.3, are similar

to the stiffness perturbation models defined in Chapter 3. The main differences between

the models are further discussed in Chapters 4 and 5.

The properties of the reference medium are based on (dry) tight-gas sandstone from

Mavko et al. (2009). Velocities are α = 4670 m/s and β = 3060 m/s. The mass density

is ρ = 2510 kg/m3, and porosity is φ = 0.05. These values were used to calculate the

background stiffness tensor C(0). It should be noted that these velocities are somewhat

higher than the typical values, considering the (physical) depth of these experiments.

Lower velocities are expected for media close to the surface. However, these values have

been used to best approximate a real reservoir rock independent of depth.

In these results, fractures are gas-filled, horizontally aligned and consistent with Hudson

(1980) and Jakobsen et al. (2003a). The aspect ratio of fractures to be used is αc = 0.001,

and one type and orientation of fractures is assumed. Assuming that the saturated porous

medium is filled with fractures containing saturations of gas, the effective stiffness for

increasing fracture density can be estimated. A 3D VTI medium are characterised by five

independent elastic stiffness parameters C11, C33, C55, C66, and C13, where C12 depend

on C11 and C66. See Eq. (2.5) for the stiffness tensor.

The comparison in effective stiffness for increasing fracture density with dry, water-filled

(100% water), and gas-filled (100% gas) fractures are presented in Fig. 2.3. It can be

observed that the effective stiffness of water-filled fractures is higher than that of gas-filled

fractures. Fluid-filled fractures have a higher stiffness, as the density is increased with the

introduction of a fluid instead of a dry fracture. When the dry fractures are saturated with

a fluid, the stiffness does not change for C55 and C66. These stiffness coefficients depend

on the shear modulus, which is zero for fluids. Horizontal fractures do not (significantly)

influence parameters without the vertical component x3, i.e. C11 and C66 (Guéguen and

Palciauskas, 1994).

The difference between the first- and higher-order correction for fractures is mainly that

the first-order is linear, while the higher-order is non-linear. See Fig. 2.4 for an example
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of how stiffness changes for the corrections, depending on increasing fracture density.

The first-order correction gives a negative stiffness in C33 and C13 for a fracture density

close to 0.2, which is physically impossible. The cause for this is likely that the Hudson

model breaks down for fracture densities over 0.1, when only accounting for the first-order

correction (see Cheng, 1993; Jakobsen et al., 2003a). In the later chapters, only the first-

order correction is accounted for to avoid non-linearity when calculating the sensitivity

matrix.
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Figure 2.3: Effective stiffness values of dry (black), water-filled (blue) and gas-filled
(red) fractures. Stiffness values were calculated based on the first-order correction for
fractures, and the six coefficients correspond to a 3D VTI medium.
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Figure 2.4: Effective stiffness coefficients of the first-order correction (solid) and second-
order correction (dashed), for a 3D VTI medium.
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2.4.1 Syncline Model

The first fracture density model is a 2D syncline model, which is mainly based on Bansal

and Sen (2010) and Jakobsen and Pilskog (2016). The syncline can be described as a

trough of stratified rock. There are three layers with different fracture density in the

model. In the case of amplitude versus offset and azimuth (AVOA), this syncline makes

it fail (Bansal and Sen, 2010).

The top layer has no fracture density (ε = 0), the middle layer has a higher fracture density

(ε = 0.045), and the bottom layer has the highest fracture density (ε = 0.09). These

values are similar to those used in Bansal and Sen (2010), and give a low to moderate

fracture density according to Ali and Jakobsen (2011a). Fracture density corresponds to

the amount of fractures within an area, as described in previous sections. In Table 2.2

are the respective effective stiffness values shown for 2D VTI medium corresponding to

the model depending on the fracture densities mentioned above. In a 2D VTI model, x2

does not exist, so that the only non-zero stiffness coefficients are C11, C33, C55, and C13.

Following the procedure in Algorithm 1, Gassmann’s equations was used to saturate the

medium with gas, where a quartz and clay solid matrix of Ks = 39 GPa was assumed. In

consequence, the velocities in the gas-saturated reference medium are α = 4780 m/s and

β = 3132 m/s. Mass density was set to ρ = 2395 kg/m3, and the porosity is 0.05 (5%).

There are a total of 1025 grid blocks in the syncline model, and the number of grid

block is 41 and 25 in the x- and z-directions, respectively. The maximum offset in these

simulations, is set to 984 m, while the maximum depth is set to 600 m. A grid block of

dimension 24 m x 24 m represents each scatter point. The grid block size was chosen to

be small compared to the dominant wavelength of the S-wave, which is 313 m for waves

with a maximum frequency of 10 Hz.

Table 2.2: Effective stiffness coefficients, C∗IJ [GPa], in the syncline model corresponding
to the different fracture densities, ε [unit].

Layer ε C∗11 C∗33 C∗55 C∗13

Reference / Layer 1 0.000 54.74 54.74 47.01 7.74

Layer 2 0.045 54.46 41.33 44.37 5.85

Layer 3 0.090 54.19 27.92 41.73 3.96
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The true fracture density of the syncline model is shown in Fig. 2.5, with offset on the

x-axis, Lx, and depth on the y-axis, Lz. The fracture density of this model is of fairly

low contrast, even though the changes are notable. Note that the colour map limit values

have been increased by 25%, as values above the maximum fracture density of 0.09 are

expected in the inversion results in Section 5.3.

In Figs. 2.6, the corresponding effective stiffness values are displayed for the fracture

density model with the same colour bar range. For the effective stiffness values, the most

considerable change is in the C33 coefficient of Fig. 2.6b. This substantial change is

expected, as the vertical component is the most susceptible to changes due to horizontal

fractures. In the case of the C55 and C13 coefficients, of Figs. 2.6c and 2.6d, the stiffness

change due to fractures is less noticeable. Even though the change in C11 is minimal, as

per Table 2.2, it is still shown for completeness. These figures show the relative difference

between the effective elastic coefficients and the fracture density, corresponding to the

values in Table 2.2. A good example is the C33 coefficient, as the stiffness decreases in

Fig. 2.6b for an increase in fracture density of Fig. 2.5. Finally, the fracture model in Fig.

2.5 will be used as a reference point for the fracture density inversion results in Chapter

5, more specifically Section 5.3.1.

22



Chapter 2. Effective Elastic Properties of Fracture-Induced Anisotropy

0 200 400 600 800

L
x
 [m]

0

200

400

600

L
z
 [
m

]

0

0.02

0.04

0.06

0.08

0.1

F
ra

c
tu

re
 d

e
n

s
it
y
 [

u
n

it
]

Figure 2.5: Fracture density in the syncline model.
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(d) C∗13

Figure 2.6: Effective elastic stiffness parameters of the 2D VTI syncline model. The
colour map is the same for all parameters.
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2.4.2 Anticline Model

The second model used in this thesis is a more complex, asymmetric 2D model based

on Pilskog et al. (2015) and Jakobsen and Ursin (2015). The reason for this model,

specifically, is to test the accuracy of inversion for different parameters in the case of a

more asymmetric and complex model.

Geologically, the anticline model has tilted layers (upper and lower) with an anticline in the

middle layer. An arch-like shape is often called an anticline, and is a well-known structural

trap (Ikelle and Amundsen, 2005). The anticline in this model has a steeper slope than the

tilted layers. The top layer in the anticline model contains hardly any fractures (ε = 0.01),

while the third and largest layer contains the most fractures (ε = 0.08). Values for fracture

density used in this model, are comparable to those used in Pilskog et al. (2015). The

respective effective stiffness values for a 2D VTI medium, corresponding to the anticline

model depending on fracture density, is given in Table 2.3. The reference-layer is the

isotropic (unfractured) reference medium.

The reference medium is different in this anticline model compared to the syncline model

in Section 2.4.1, as values from Pilskog et al. (2015) were used. Initially, the values

for the velocities were α = 3700 m/s and β = 2500 m/s, while the mass density was

ρ = 2500 kg/m3. Then, Gassmann was again used to saturate the medium with gas,

where a quartz and clay solid matrix was assumed. Consequently, the properties of the

gas-saturated reference medium are α = 3882 m/s, β = 2623 m/s and ρ = 2271 kg/m3.

The total number of grid blocks in the anticline model is 1107, which is similar to the

syncline model. Consequently, the total grid dimensions of this model are 41 and 27 in

the x- and z-directions, respectively. The maximum offset is 984 m, and the maximum

depth is 648 m. Grid block size is 24 m x 24 m, based on the dominant wavelength of the

S-wave, which is 262 m. Note that the number of sources is significantly lower than for

the syncline model.

Table 2.3: Effective stiffness coefficients, C∗IJ [GPa], in the anticline model corresponding
to the different fracture densities, ε [unit].

Layer ε C∗11 C∗33 C∗55 C∗13

Reference 0.00 34.23 34.23 31.25 2.98

Layer 1 0.01 34.21 32.39 30.85 2.82

Layer 2 0.03 34.18 28.71 30.05 2.50

Layer 3 0.08 34.10 19.51 28.05 1.70

Layer 4 0.05 34.15 25.03 29.25 2.18
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The fracture density of this model is displayed in Fig. 2.7. Note that the colour map

limit values have been modified by 25%, as values outside the fracture density range of

[0.01, 0.08] are expected in the inversion results.

Effective stiffness coefficients corresponding to the fracture density model, are displayed

for this in Fig. 2.8. All these figures have the same colour bar, depending on the elastic

stiffness in GPa, and will be discussed below. For the effective stiffness values, the most

considerable change is again in the C33 coefficient of Fig. 2.8b. In the case of the C55

and C13 coefficients, of Figs. 2.8c and 2.8d, the stiffness change due to fractures is less

noticeable. As in the previous (syncline) model, the C11 change is shown for completeness.

Ultimately, this fracture density model will be used in the comparison between the final

inversion results and the true model presented in this section. This is further discussed

in Chapter 5, or more specifically Section 5.3.2.
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Figure 2.7: Fracture density of the anticline model.
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Figure 2.8: Effective elastic stiffness parameters of the 2D VTI anticline model. The
colour map is the same for all parameters.
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Chapter 3

Seismic Waveform Modelling

The forward or direct problem is one of the main topics of seismic modelling, and the

key features will be elaborated in this chapter. Calculation of observed (synthetic) data

is essential in seismic modelling. First, the main details behind the modelling theory are

explained. Then, the elastodynamic wave equation is introduced for an anisotropic media,

and the well-known Lippmann-Schwinger equation is derived. The final equation is solved

exactly, resulting in the data. Finally, numerical results are presented for the two models

referenced in the previous chapter.

3.1 Introduction

The principal aim of forward modelling is to predict the results of measurements, based

on a model (Ikelle and Amundsen, 2005; Menke, 2012). In seismic modelling of an elastic

media, this is done by solving the elastodynamic wave equation for a geologic model.

Elastodynamic refer to vector waves, with three different polarisations, and are modelled

by the use of an elastodynamic wave equation (Snieder, 2002).

A seismogram is the registration of particle displacement components at receiver positions,

for a given source-receiver configuration. Synthetic seismograms simulate the response of

a geologic model (Kelly et al., 1976). These synthetic seismograms can be compared to

real seismic data to verify the predicted model (Krebes, 2004). Carcione et al. (2002)

classifies the main methods of modelling as: direct methods, ray-tracing methods, and

integral-methods.

In direct methods, the wave equation is solved for a model which is discretised in a finite

number of closely-spaced points (Carcione et al., 2002; Ikelle and Amundsen, 2005). The

best example of a direct method is the finite difference method (FD). For a sufficient dis-
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cretisation in space and time, FD is the most accurate method for simulating elastic-wave

propagation through complex models (Ikelle and Amundsen, 2005). The main disadvan-

tage is the high cost of computational resources (Carcione et al., 2002; Krebes, 2004).

Ray-tracing (asymptotic) methods uses a high-frequency approximation to find a solu-

tion to the wave equation (Carcione et al., 2002; Červený, 2005). The travel times and

amplitudes of seismic waves are calculated along ray paths in a heterogeneous medium

(Krebes, 2004). The seismic ray method can be divided into kinematic and dynamic ray-

tracing (Červený, 2005). Ray-Born modelling has been a popular method for modelling,

as it combines asymptotic ray theory and the Born approximation for scattering problems

(Červený and Coppoli, 1992; Červený, 2005; Bansal and Sen, 2010). The main drawback

of the ray-method is the lack of accuracy near-critical offsets in addition to not accounting

for multiple scattering (Krebes, 2004; Červený, 2005).

Integral-equation methods follow Huygens’ principle, where the wavefield is a superpo-

sition of waves due to point sources (Carcione et al., 2002). Generally, these methods

are combined with the scattering theory for elastodynamic waves (Snieder, 2002). Car-

cione et al. (2002) specifies two types: domain (volume) integral-equations and boundary

integral-equations. Interested readers should note that Ursin and Tygel (1997) compared

the volume-based (domain) and surface-based (boundary) integral-methods, and found

they are related by the divergence theorem. Similar to FD, the computational complexity

poses a problem due to storing large matrices (Carcione et al., 2002). The direct scatter-

ing solution, employed in this work, is a volume-based integral-equation approach where

the inversion is for small pixels.

Jakobsen et al. (2020a) describes several advantages of the integral-equation methods

compared to the direct methods (e.g. FD). First of all, the approach is target-oriented as

the target of interest in inversion can be specified (Jakobsen and Wu, 2018; Huang et al.,

2020b). Only the area of the anomaly needs to be discretised, and the grid blocks can be

larger than in the FD approach (Chew et al., 2008; Malovichko et al., 2017). Both the

starting model sensitivity and the computational cost can be reduced by renormalisation

and domain-decomposition methods in inversion (Jakobsen and Wu, 2018; Jakobsen et al.,

2020c). The integral-equation of Lippmann-Schwinger type can be used in FWI for both

single- and multi-parameter problems (Jakobsen et al., 2020c).

Various approaches exist for solving the integral-equation, such as the Born approxima-

tion (Hudson and Heritage, 1981; Bleistein et al., 2001; Snieder, 2002), the Born series

method (Osnabrugge et al., 2016; Jakobsen et al., 2020c), T-matrix approach (Jakobsen,

2012; Jakobsen and Ursin, 2015; Jakobsen et al., 2020b), and the full-integral equation

solution (Jakobsen, 2012; Jakobsen and Ursin, 2015; Jakobsen et al., 2020b). The Born ap-
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proximation has been the most widely used, as it is quite fast, where only single scattering

is accounted for (Snieder, 2002). The Born series is an extension of the Born approxima-

tion, as it represents the first term of the series. The Born-Neumann series method has

issues of convergence, although this can be negated by preconditioning (see Osnabrugge

et al., 2016; Jakobsen et al., 2020c) or using the T-matrix (see Jakobsen, 2012). In this

work, frequency-domain seismic modelling is done by computing the exact solution to the

Lippmann-Schwinger integral-equation method (see Jakobsen et al., 2020b). Calculating

the full integral-equation solution by Gaussian elimination give very accurate results, al-

though at the cost of memory-dependency and computational complexity (Jakobsen and

Wu, 2018; Jakobsen et al., 2020a).

3.2 Integral Equation Approach

The general elastodynamic wave equation for an arbitrary anisotropic media in the fre-

quency domain is given as (Schleicher et al., 2001; Snieder, 2002; Červený, 2005; Jakobsen

et al., 2020b):

[Cijkl(x)uk,l(x)],j + ρ(x)ω2ui(x) = −fi(x), (3.1)

where the position is given by x = xi = (x1, x2, x3), the displacement gradient is given by

uk,l(x) = ∂uk
∂xl

(x), the stiffness tensor is denoted by Cijkl(x), the mass density is denoted

by ρ(x), the angular frequency is denoted by ω, the source term is denoted by fi(x) and

the components are given as i, j, k, l ∈ {1, 2, 3}. The elastic parameters Cijkl satisfy the

symmetry relations Cijkl = Cjikl = Cijlk = Cklij (Schleicher et al., 2001).

It is assumed that ui(x) is proportional to eiωt and that the medium is unbounded and

the wavefield approaches zero at infinity (Jakobsen et al., 2020b). The wavefield is only

calculated inside the scattering domain denoted Ω, where the scattering potential is non-

zero (Jakobsen and Ursin, 2015). As many of the variables depend on ω, e.g. ui(x, ω)

and fi(x, ω), the angular frequency ω will be omitted in symbols in future equations for

simplicity.

The solution to Eq. (3.1), shown in Eq. (3.2), is a point-source Green’s function (Guber-

natis et al., 1977; Červený, 2005; Madariaga, 2007).

ui(x) =

∫
dx′gij(x,x

′)fj(x), (3.2)

where the Green’s function gij(x,x
′) is defined by (Schleicher et al., 2001; Červený, 2005;
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Jakobsen et al., 2020b)

[Cijklgkn,l],j + ρ(x)ω2gin = −δinδ(x− x′). (3.3)

Here, δin is the Kronecker delta and δ(x−x′) is the Dirac delta function (Červený, 2005).

The position x′ represents a point in the scattering domain Ω. The Green’s function, g, is

useful for inversion and can be calculated by analytical formulae (Jakobsen et al., 2020b),

which is discussed later in this section.

In order to describe scattering of elastic waves, it is necessary to define a reference medium

and a perturbation of the medium. Illustrations of different media are presented in Fig.

3.1, where the reference media are shown in Figs. 3.1b and 3.1c, and actual medium is

shown in Fig. 3.1a. The unperturbed wave propagates through the background medium,

while the perturbation acts as a secondary source that generates scattered waves (Snieder,

2002). Scattering integrals contain both scattering from perturbation in the medium and

scattering from erroneousness (Červený, 2005).

Both stiffness and mass density can be decomposed to a sum of the reference, C(0) and

ρ(0), and perturbation fields, ∆C and ∆ρ. Thus,

Cijkl(x) = C
(0)
ijkl(x) + ∆Cijkl(x), (3.4)

and

ρ(x) = ρ(0)(x) + ∆ρ(x). (3.5)

The extended theory for perturbation in both stiffness and mass density is given in Jakob-

sen et al. (2020b). In this thesis, the mass density is fixed, ∆ρ(x) = 0, as fracture-

induced anisotropy is considered. This is reasonable, as the effective mass density is to a

very small extent affected by fractures (see Jakobsen and Pilskog, 2016). Consequently,

C(x) = C(0)(x) + ∆C(x), and ρ(x) = ρ(0)(x).
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(a) Actual medium (b) Reference medium 1 (c) Reference medium 2

Figure 3.1: Illustration of an actual medium with an area of perturbation in dark grey
(3.1a) and two different reference media (3.1b, 3.1c). The Green’s function of the reference
medium can either be calculated for a homogeneous medium (middle), or a heterogeneous
medium (right). The symbols at the top are: source (red ?) and receiver (blue 5).

Following the well-known derivation (see Snieder, 2002; Červený, 2005; Jakobsen et al.,

2020b), by using Eqs. (3.4) and (3.5), in Eq. (3.1), yields[(
C

(0)
ijkl(x) + ∆Cijkl(x)

)
uk,l(x)

]
,j

+ ρ(0)(x)ω2ui(x) = −fi(x). (3.6)

Moving the perturbed stiffness tensor ∆Cijkl(x) to the right side in Eq. (3.6) and treating

it as a source term leads to the expression in Eq. (3.7).[
C

(0)
ijkl(x)uk,l(x)

]
,j

+ ρ(0)(x)ω2ui(x) = −fi(x)− [∆Cijkl(x)uk,l(x)],j . (3.7)

It can be shown that the total wavefield, ui(x), can be represented by the Green’s function,

by using the representation theorem (see Snieder, 2002; Červený, 2005). Both terms on

the right hand side in Eq. (3.7) can be treated as source terms. By introducing a Green’s

function as defined in Eq. (3.3), a solution to Eq. (3.7) can be written similarly to Eq.

(3.2). Thus,

ui(x) =

∫
dx′g

(0)
ij (x,x′)fj(x

′) +

∫
dx′g

(0)
ij (x,x′) [∆Cijkl(x

′)uk,l(x
′)],j′ . (3.8)

It should be noted that the integrals are evaluated over the area where stiffness perturba-

tions are non-zero. Changing the arbitrary components (subscripts) by i→ j, j → k, k →
l, l → m in the rightmost term in Eq. (3.8), and writing the reference wavefield, u

(0)
i ,
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separately, yields

ui(x) = u
(0)
i (x) +

∫
dx′g

(0)
ij (x,x′) [∆Cjklm(x′)ul,m(x′)],k′ , (3.9)

where the reference wavefield is given by

u
(0)
i (x) =

∫
dx′g

(0)
ij (x,x′)fj(x

′). (3.10)

Applying the product rule for derivation on the integral in Eq. (3.9), letting a = g
(0)
ij (x,x′)

and b′ = [∆Cjklm(x′)ul,m(x′)],k′ , yields

∫
(a′b+ ab′) =

∫
(ab)′ , lim

x→∞

∫ +x

−x
(ab)′ = 0 (3.11)∫

(a′b+ ab′) = 0⇒
∫
ab′ = −

∫
a′b , (3.12)

assuming that the wavefield approaches zero at infinity.

By the radiation condition (Madariaga, 2007) the wavefield (integral) in Eqs. (3.9) and

(3.11), converges to zero at infinity. Consequently, the derivative can be moved from

the stiffness perturbation, ∆Cjklm, to the Green’s function, g
(0)
ij . Eq. (3.12) can then be

written explicitly with a, b inserted, as∫
g
(0)
ij (x,x′) [∆Cjklm(x′)ul,m(x′)],k′ = −

∫
g
(0)
ij,k′(x,x

′)∆Cjklm(x′)ul,m(x′). (3.13)

Using the symmetry of the strain tensor, εlm = 1
2

(ul,m + um,l), and replacing ul,m with

εlm in Eq. (3.9), yields:

ui(x) = u
(0)
i (x)−

∫
dx′g

(0)
ij,k′(x,x

′)∆Cjklm(x′)εlm(x′), (3.14)

Due to the symmetric tensors, abbreviated subscripts are preferred. To express the

Green’s function, gij,k′ , accordingly a third-rank Green’s tensor, M
(0)
ijk , is introduced. It is

defined by (Jakobsen et al., 2003a; Jakobsen and Hudson, 2003; Jakobsen et al., 2020b):

M
(0)
ijk (x,x′) = −1

2

[
g
(0)
ij,k′(x,x

′) + g
(0)
ik,j′(x,x

′)
]
. (3.15)

Replacing g
(0)
ij,k′(x,x

′) in Eq. (3.14) with M
(0)
ijk (x,x′) in Eq. (3.15), yields the final expres-
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sion of the integral equation for the wavefield:

ui(x) = u
(0)
i (x) +

∫
dx′M

(0)
ijk (x,x′)∆Cjklm(x′)εlm(x′). (3.16)

The explanation behind the result in Eq. (3.16) is that all tensors can be decomposed

into a symmetric and an anti-symmetric part (Auld, 1990; Pujol, 2003). M
(0)
ijk in Eq.

(3.15) corresponds to the symmetric part of g
(0)
ij,k′ . The anti-symmetric part of g

(0)
ij,k′ has

no contribution, as it is contracted by multiplication with ∆Cjklm, which is symmetric in

j and k.

The equation above, Eq. (3.16), is the Lippmann-Schwinger (LS) equation for elastic wave

scattering (Snieder, 2002). Spatial differentiation of Eq. (3.16) leads to the LS-equation

for the strain field (Jakobsen et al., 2020b). The strain tensor, ε, will satisfy Eq. (3.17).

εij(x) = ε
(0)
ij (x) +

∫
dx′Γ

(0)
ijkl(x,x

′)∆Cklmn(x′)εmn(x′). (3.17)

The fourth-rank Green’s tensor, Γ
(0)
ijkl, is defined by (Jakobsen et al., 2003a, 2020b):

Γ
(0)
ijkl(x,x

′) =
1

4

[
g
(0)
ij,kl′(x,x

′) + g
(0)
kj,il′(x,x

′) + g
(0)
il,kj′(x,x

′) + g
(0)
kl,ij′(x,x

′)
]
, (3.18)

where Γ
(0)
ijkl(x,x

′) represents the ij component of strain at x to the kl component of stress

at x′.

In dynamic effective medium theory, the M (0) and Γ(0) tensors can be referred to as

modified Green’s functions (Jakobsen et al., 2003a, 2020b). Both these tensors depend

on the reference Green’s function g
(0)
ij (x,x′). For an isotropic, homogeneous medium this

Green’s function is the displacement in the i direction at x due to a point force in the j

direction at x′ (Jakobsen et al., 2003a).

Expressions for the reference Green’s tensors are given in Appendix B, where the leading-

term Green’s function is given in Appendix B.1. The modified Green’s tensors, M (0) and

Γ(0), are given in Appendices B.2 and B.3, respectively.

Reference Green’s functions can be calculated either with ray theory (Červený, 2005;

Jakobsen et al., 2020b) or numerically (Kirchner and Shapiro, 2001). Green’s functions

are crucial in complicated heterogeneous media and required for direct iterative non-linear

inversion (Jakobsen et al., 2020b). The computation of these Green’s functions play a

critical role in both the exact solution in Section 3.3, and the non-linear inverse scattering

problem in Section 4.2.
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The Green’s functions have a singularity when the radial distance between two discretised

points is very low, r ≤ 1. This topic was discussed in Lee (2009) and found to be

(generally) not integrable. Therefore, this singularity must be approximated. In this

work, the singularity of both the strain and M-tensor is set to 0 for simplicity. This

approximation does not have any impact on the results, as the grid is defined in such a way

that the radial distance condition, r ≤ 1, is never met. For the Γ-tensor, corresponding

to the second derivative of the Green’s function, Jakobsen et al. (2020b) approximated

the singularity by using Eshelby’s tensor (Eshelby, 1957). This tensor is described in

Appendix A.

3.3 Exact Solution

3.3.1 Abbreviated Subscript Notation

For the symmetric tensors in Eqs. (3.16) and (3.17), the abbreviated subscript notation

in Auld (1990) can be used. This notation is simply that the repeated upper case indices

run from 1 to 6 (Jakobsen et al., 2020b). Rewriting Eq. (3.16) with abbreviated subscript

notation, jk → K and lm→ L, yields

ui(x) = u
(0)
i (x) +

∫
dx′M

(0)
iK (x,x′)∆CKL(x′)εL(x′). (3.19)

The strain tensor, ε, in Eq. (3.17), can be rewritten with abbreviated subscript notation,

by setting the indices ij → I, kl → J and mn → K. Setting the arbitrary position x to

x′ for consistency, yields the following expression for strain in the scattering point x′:

εI(x
′) = ε

(0)
I (x′) +

∫
dx′′Γ

(0)
IJ (x′,x′′)∆CJK(x′′)εK(x′′). (3.20)

where x′′ is a neighbouring scattering point and I, J,K, L ∈ {1, . . . , 6}.

3.3.2 Discretisation and Implementation

There is a need for a discrete form of the displacement in Eq. (3.19), to fully represent the

scattering domain Ω as a grid. Subsequently, the integral can be changed to summation

over N grid blocks, in Eq. (3.19), while substituting the positions x and x′ with r and

n, respectively (Jakobsen and Ursin, 2015). To reduce the amount of superscripts and
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achieve a more compact form; ũi ≡ u
(0)
i and M̃iK ≡M

(0)
iK are defined. Thus,

uri = ũri +
N∑
n=1

M̃ rn
iKδC

n
KLε

n
Lδv

n, (3.21)

where δvn denotes the volume of the grid block in the position xn. The receiver index is

set to r ∈ {1, . . . , Nr}, where Nr is the total number of receivers.

It should be noted that the upper indices (superscripts) refers to positional indices, instead

of power as in mathematics. For example, uri refers to the wavefield in the receiver of index

r, rather than the wavefield of power r.

The direct wavefield, u
(0)
i , in Eq. (3.10) can be written in discrete form as:

ũri =
N∑
n=1

G̃rn
ij f

n
j , (3.22)

where ũi ≡ u
(0)
i and G̃ij ≡ G

(0)
ij , to reduce the number of superscripts.

The source term, f , is dependent on the source pulse sω with angular frequency ω and the

source polarisation vector s. This vector can represent either a vertical source, s = [0, 0, 1],

or an explosive source, s = [1, 1, 1]. A general source term is then given by f = sωs.

The integral in Eq. (3.20) can be rewritten as a sum, where the arbitrary positions are

replaced by x′ → m and x′′ → n. Similarly as above, Γ̃IJ ≡ Γ
(0)
IJ and ε̃I ≡ ε

(0)
I are

introduced, to get a more compact form of the expression. Then, a discrete form of Eq.

(3.20) is given by Eq. (3.23) as

εmI = ε̃mI +
N∑
n=1

Γ̃mnIJ ∆Cn
JKε

n
Kδv

n, (3.23)

where m ∈ {1, . . . , N}.

It should be noted that each grid block has a centroid defined by: r = xr n = xn, and

m = xm. Each centroid xn has a volume δvn and should be chosen to be small compared to

the dominant wavelength (Jakobsen and Ursin, 2015). This grid block volume is assumed

to be constant for all grid blocks, leading to δv ≡ δvn.

Defining a scattering potential, V, by using the Kronecker delta. The Kronecker delta is

given in Eq. (A.13) and only gives a contribution when the indices are equal. Thus, the

scattering potential is given in Eq. (3.24) as

V mn
JK ≡ ∆Cn

JK

δmn
δv

, (3.24)
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which will only give a contribution when m = n, and cancel the grid volume in Eq. (3.23).

Inserting Eq. (3.24) into Eq. (3.23) and introducing another arbitrary point so that

m→ n and n→ p in the summation, leads to

εmI = ε̃mI + Γ̃mnIJ V
np
JKε

p
K , (3.25)

where Einstein’s summation convention (Einstein, 1916) was used to remove the summa-

tion.

Introducing the super-indices (combination counters) β, γ, δ, by letting m
I → β, n

J → γ

and p
K → δ. These indices have values equal to β, γ, δ ∈ {1, . . . , 6N}. Because there are

only lower indices, the reference (background) field can again be denoted by (0). The new

expression of Eq. (3.25), with super-indices is

εβ = ε
(0)
β + Γ

(0)
βγVγδεδ. (3.26)

Writing Eqs. (3.19) and (3.26) in matrix representation form, where Eq. (3.24) was

inserted for ∆C, yields

u = u(0) +M (0)V ε, (3.27)

and

ε = ε(0) + Γ(0)V ε. (3.28)

Eq. (3.28) is an integral-equation of the LS-type for the strain, ε. Interested readers should

note that in mathematics, this integral corresponds to a Fredholm integral-equation of

type II. Both M (0) and Γ(0) can be viewed as modified Green’s function by the same

terminology as in dynamic effective medium theory (Jakobsen et al., 2020b).

Eq. (3.27) can be solved by simply knowing the strain, ε. To find the strain from the

source to the scatterers, in Eq. (3.28), the strain within the scattering domain Ω needs

to be known. Solving Eq. (3.28) for ε(0) yields the following matrix equation

ε(0) = ε− Γ(0)V ε⇔ ε(0) =
[
I − Γ(0)V

]
ε, (3.29)

where I is the identity matrix of dimension 6N × 6N .

Solving Eq. (3.29) for ε, leads to the final expression for the strain tensor:

ε =
[
I − Γ(0)V

]−1
ε(0), (3.30)

which is independent of the source-receiver configuration.
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Eq. (3.30) is a well-posed problem of computational complexity O(N3) (Jakobsen, 2012).

Commonly, this problem is solved with Gaussian elimination by matrix inversion (Jakob-

sen et al., 2020b). This method has been known for quite a while to be inefficient and

not optimal (Strassen, 1969). Calculating the exact solution of Eq. (3.30) by Gaussian

elimination, is demanding in terms of computational time. A more efficient way to solve

this problem, is to solve it iteratively. Recent years has seen improvement in iterative

methods like the Krylov subspace methods (see Saad and Schultz, 1986; Van der Vorst,

1992; Saad, 2003; Ozmen, 2014; Ozmen et al., 2015). These methods were regarded as

outside the scope of this work, although they are important to consider for the purpose

of decreasing the computational cost.

3.4 Numerical Results and Discussion

The exact solutions of the LS equations are used to calculate the data of the true models,

defined in Sections 3.4.1 and 3.4.2. Eqs. (3.27) and (3.28), are solved for particle dis-

placement and strain, respectively. The data is synonymous to the scattered (perturbed)

wavefield on the right-hand side in Eq. (3.27), and is calculated sequentially with respect

to frequency. First, the data for the first frequency (3 Hz) is calculated, then for the

next frequency (5 Hz), and so forth. The frequencies that are used in this work are 3

Hz, 5 Hz, 7.5 Hz, and 10 Hz, which is the same for all models. Since the data is in the

frequency-domain, it consists of complex numbers, and can be difficult to visualise. One

approach to view this data, is to look at the real and imaginary parts of the wavefield.

Also, these data vectors can be split up into their spatial parts (x, z) to view the horizontal

and vertical perturbation at the receivers.

The second derivative of a Gaussian function is called a Ricker wavelet, and is used in

synthetic experiments to approximate the seismic source wavelet (Wang, 2015). A source

wavelet is a shape or signature of the source used in synthetic experiments, that simulates

how the signal would look in a seismic trace (Ikelle and Amundsen, 2005). The central

frequency, f0, is the most energetic frequency, corresponding to the maximum amplitude.

Expressions for the time-domain and frequency-domain Ricker wavelets (Ricker, 1953;

Wang, 2015) are given in Eq. (3.31) and (3.32).

r(τ) =

(
1− 1

2
ω2
pτ

2

)
exp

(
−1

4
ω2
pτ

2

)
, (3.31)

and

R(ω) =
2ω2

√
πω3

p

exp

(
−ω

2

ω2
p

)
, (3.32)
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where τ is the time and ω is the angular frequency. The central angular frequency can be

defined as ωp = 2πf0.
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Figure 3.2: Ricker wavelet with a central frequency of 7.5 Hz. Amplitude of the wavelet
in the time-domain (upper), and magnitude (amplitude-spectrum) of the frequency-
domain wavelet (lower).

In this work, the frequency-domain Ricker wavelet of central (peak) frequency f0 = 7.5

Hz is used. The sampling interval is set to 0.004 s, and the total (recording) time is set to

2 s. The specific central frequency was chosen to be significantly lower than the Nyquist

frequency of 125 Hz. Additionally, it is prevalent to use this exact frequency for the Ricker

wavelet (e.g. Jakobsen and Ursin, 2015; Jakobsen et al., 2020b; Huang et al., 2020a). The

Ricker wavelets, in both the time- and frequency-domain, are presented in Fig. 3.2. In

the upper figure, the time-domain wavelet is shown as the typical zero-phase pulse with a

maximum amplitude at 0.133 s. The lower figure displays the frequency-domain wavelet,

consisting of non-zero energy between 0 Hz and 22.5 Hz, with a maximum amplitude

at the central frequency, 7.5 Hz. The source vector, s, is explosive and can be written

as [1,0,1] as the medium is 2D. This source vector is important when calculating the

background strain.

A data vector shows the particle displacement of the spatial coordinates xi, at each of the

receivers r = 1, ..., Nr, for each of the sources s = 1, ..., Ns. The total number of points in

the data vector is then 3NrNs, as there are three spatial components. However, since the

model is in 2D, x2 = 0, and the only contribution is in the x1 and x3 directions, respec-

tively. This is ultimately the data that will be used in Chapter 4 and 5, by comparing

the computed data with the true (observed) data vector.
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To ensure that the numerical experiments are more realistic, it is common to add random

(Gaussian) white noise to the data (Jakobsen et al., 2020b). Signal-to-noise ratio (SNR)

is a measurement of the impact of noise on the data. Noise in dB is proportional to

percentage error, which is given by this formula:

η0 = 10−
ηdB
20 , (3.33)

where η0 is called the noise-level, corresponding to the stopping criteria (tolerance) of the

inversion for noisy data (Jakobsen and Ursin, 2015). The stopping criteria is only relevant

for the inversion, and is introduced in Section 4.2.3.

It is possible to add noise to the frequency components of the data vector (Jakobsen and

Ursin, 2015) by:

dobs = dtrue +
‖dtrue‖√

SNR
· η
‖η‖

, (3.34)

where η is the noise vector of dimension Nd × 1 and dobs ≡ δuobs.

Eq. (3.34) corresponds to an equation in Section 4.2.3, allowing for inversion in the more

realistic case of noisy data. Note that the η0 in Eq. (3.33) will be used for the stopping

criteria (tolerance) of inversion for noisy data, in Chapters 4 and 5.

The two noise-level cases considered in the models of this work are:

(i) Practically noiseless data, with an SNR of 5000 dB. The noise-level for this exper-

iment is zero, but a tolerance of 10−5 is used for the inversion in Chapters 4 and

5.

(ii) Noisy data, with an SNR of 40 dB. The data for this experiment has a noise-level

of 0.1% (10−2).

Ultimately, frequency-domain data for the two cases of noise, (i) and (ii), are calculated

for the two models referenced in Chapter 2. Data for the syncline model, defined in

Section 2.4.1, is different than for the data for the anticline model, defined in 2.4.2. Then,

in Chapters 4 and 5, these data vectors are used in the inversion for stiffness perturbation

and fracture density, respectively. Only the noiseless data are shown in the following

section, as it represents the true (observed) data for each of the models.
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3.4.1 Syncline Model

The true, syncline model for the normalised stiffness perturbations given here, as defined

in Section 2.4.1 and calculated based on the fracture density model given in Table 2.2.

There are four independent (non-zero) stiffness parameters, as the model is 2D VTI. There

are 41 receivers and 41 sources located at the top of the model (z = 0 m), between 12 m

and 972 m on the x-axis. The source and receiver configuration for the syncline model is

presented in Fig. 3.3. For this model, the sources and receivers are placed in the same

points. The large number of sources is used to get a better illumination for the accuracy

of FWI (Zhang et al., 2017).

The true syncline models in Fig. 3.4 are based on the fracture density in the original

model, in Fig. 2.5. Therefore, the normalised perturbation, δCKL, in each of the elastic

stiffness elements C11, C33, C55, and C13 will reflect that. A clear difference between the

layers in each of these parameters can be noticed. Although the change in C11 is extremely

small. Finally, the vector that comprises all these values, from the four independent

stiffness perturbation parameters, is called the model vector. This model vector is inverted

for in Chapter 4, and the stiffness perturbation figures shown in this section will be

compared to the final result of inversion in Section 4.3.1.

Frequency-domain synthetic waveform data for the syncline model are shown in Figs. 3.5

and 3.6, for the real and imaginary components, respectively. Each point corresponds to

the particle displacement registered at each of the receivers from each of the sources. The

total number of data-points are 5043, and each component contains 1681 values. The

data vectors are calculated from the maximum frequency used in modelling, 10 Hz. The

real data has a physical relevance, contrary to the imaginary data, as it is quite similar to

the amplitude of the wavefield. Both figures show spikes in the wavefield corresponding

to the different sources.
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Figure 3.3: Configuration of sources (red stars) and receivers (blue triangles) for the
syncline model. The distance between both sources and receivers is 24 m.
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(b) ∆C33
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(c) ∆C55
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(d) ∆C13

Figure 3.4: Normalised stiffness perturbation in each of the elastic parameters of a 2D
VTI medium, for the syncline model. The colour map is the same for all parameters.
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Figure 3.5: Real part of the synthetic (normalised) waveform data, corresponding to
the true syncline model. The data vector is separated into the horizontal (upper), dx, and
vertical (lower), dz, components of the particle displacement.
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Figure 3.6: Imaginary part of the synthetic (normalised) waveform data, corresponding
to the true syncline model. The data vector is separated into the horizontal (upper), dx,
and vertical (lower), dz, components of the particle displacement.
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3.4.2 Anticline Model

Similarly to above, the anticline model for normalised stiffness perturbations was defined

in Section 2.4.2. Values used in the computation of these models, are from Table 2.3, and

depend on the true fracture density model of Fig. 2.7.

A total number of 41 receivers and 11 sources are evenly distributed at the surface (z = 0

m), between 12 m and 972 m on the x-axis. Using one source per four receivers is more

realistic, although it gives a worse illumination. In Fig. 3.7, the source and receiver

configuration for the syncline model is presented, where one source is used per receiver.

The four independent stiffness parameters, for the 2D anticline model, are shown in Fig.

3.8. Fig. 3.8a, for C11, show no change in stiffness perturbation due to fractures. There

is a slight difference between each layer in Fig. 3.8c, for C55. Figs. 3.8b and 3.8d, for C33

and C13, show a similarity which is expected according to the discussion in Section 2.4.2.

It is evident that there is a moderate contrast between the layers.

Synthetic frequency-domain waveform data are displayed in Figs. 3.9 and 3.10. The data

were calculated using sources with a frequency of 10 Hz. Each component (x, z) contain

451 data points due to the number of sources and receivers. Most notably, both the real

and imaginary vector differ compared to the other model, as expected. This difference is

due to the model parameters being set up differently, in addition to the less symmetric

model. These vectors are set up the same as in the previous section, although the number

of points is lower due to fewer sources.

Ultimately, the data vectors presented in this chapter, Chapter 3, are compared to the

computed models in Chapter 4.
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Figure 3.7: Configuration of sources (red stars) and receivers (blue triangles) for the
anticline model. The distance between each receiver is 24 m, while for each source the
distance is 96 m.
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(b) ∆C33
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(c) ∆C55
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(d) ∆C13

Figure 3.8: Normalised stiffness perturbation in each of the elastic parameters of a 2D
VTI medium, for the anticline model. The colour map is the same for all parameters.
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Figure 3.9: Real part of the synthetic (normalised) waveform data, corresponding to
the true anticline model. The data vector is separated into the horizontal (upper), dx,
and vertical (lower), dz, components of the particle displacement.
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Figure 3.10: Imaginary part of the synthetic (normalised) waveform data, corresponding
to the true anticline model. The data vector is separated into the horizontal (upper), dx,
and vertical (lower), dz, components of the particle displacement.
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Chapter 4

Seismic Waveform Inversion

The non-linear inverse scattering problem, based on the already established forward mod-

elling theory, is presented and solved in this chapter. First, the general concepts of in-

version are briefly explained. Then, the distorted Born iterative (DBI) inversion method

is presented, and its implementation details are provided. The least-squares solution is

given with a regularisation term, as well as useful equations for the inversion scheme.

Some notes on the regularisation parameter are presented, and an algorithm for imple-

menting the inversion scheme. Finally, numerical results are presented for the two models

referenced in previous chapters.

4.1 General Inversion Theory

4.1.1 Linear Inversion Theory

In forward modelling, an exact solution exists if the modelling parameters are known. The

forward modelling problem for a linear system of equations can be written as (Constable

et al., 1987; Zhdanov, 2015; Aster et al., 2018)

d = Am, (4.1)

with the inverse problem being

m = A−1d. (4.2)

Here, d is the data, m is the model, and A is the (linear) forward operator. However, the

matrix A is generally not invertible. The inverse problem is to estimate a set of model

parameters, m, from the recorded data, d (Pratt, 1999). There are several reasons why

inverse problems are complicated. Aster et al. (2018) describes three main issues: the
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existence of a solution, the uniqueness of a solution, and the solution process instability.

Inverse problems are inherently ill-posed rather than well-posed (Hadamard, 1952; Zh-

danov, 2015), when the solution is non-unique or the inversion process becomes unstable

(Aster et al., 2018). An ill-posed problem can also be described as an under-determined

problem, where there are more unknowns than equations (Menke, 2012; Zhdanov, 2015).

Furthermore, predicted values cannot be equal to observed values due to measurement

uncertainties (noise) and modelisation imperfections (Tarantola, 2005).

As the forward problem is under-determined and ill-posed, Eq. (4.2) cannot solve Eq.

(4.1). The least-squares method can be employed, as the least-squares solution minimises

the sum of the errors squared (Gubbins, 2004). Eq. (4.1) can be represented for an

under-determined problem as (Zhdanov, 2015)

ATAm = ATd, (4.3)

where AT denotes the transpose of A.

The least-squares solution of Eqs. (4.1) and (4.3) is (Gubbins, 2004)

m =
(
ATA

)−1
ATd. (4.4)

The least-squares methods are popular for solving inverse problems because they lead to

the easiest computations (Menke, 2012). The linear least-squares problem is a discrete ill-

posed problem if the singular values of A go to zero, and the ratio between the maximum

and minimum non-zero singular values is large (Hansen, 1994). The robustness is a

drawback, as the methods have a keen sensitivity to a small number of outliers in a

data set (Tarantola, 2005). A widely used solution to this problem is the Tikhonov

regularisation.

In Tikhonov regularisation, the goal is to minimise the norm of the model, min ‖m‖2,
to find a good solution to the ill-posed problem (Aster et al., 2018). One option is to

express this problem as a regularised least-squares problem. An objective function for the

least-squares problem is given by (Menke, 2012; Jakobsen and Ursin, 2015; Aster et al.,

2018)

E(δm) = ‖d−Aδm‖2 + λ2 ‖δm‖2 , (4.5)

where δm = m−m0, and λ is the regularisation parameter described in Section 4.2.4.

Subsequently, the solution to the objective function in Eq. (4.5) is (Jakobsen and Ursin,
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2015; Aster et al., 2018):

m = m0 +
[
ATA + λ2I

]−1
AT δd, (4.6)

where I is the identity matrix, and the data residuals, δd, is given as (Jakobsen and Ursin,

2015)

δd = d−Am0. (4.7)

The data residuals, δd, in Eq. 4.7 will converge to zero when the model converges to the

true model, for an initial model that is close enough to the true model (Jakobsen and

Ursin, 2015). The model, m, in Eq. (4.6) can be computed for a given operator, A, and

data, d. This is further discussed and shown in Section 4.2.3.

4.1.2 Non-Linear Inversion Theory

The non-linear forward modelling problem can be written as (Tarantola, 2005; Zhdanov,

2015; Aster et al., 2018)

d = A(m), (4.8)

where A is a non-linear operator that can be found iteratively.

Non-linear inversion indicates that the forward modelling problem in Eq. (4.8) is a non-

linear system of equations (Aster et al., 2018). The need for non-linear inversion is due

to the computed seismic data, in Eq. (4.8), being non-linear functions of the model

parameters (Tarantola, 2005). Additionally, the introduction of more model parameters

lead to an increased non-linearity (Jakobsen et al., 2020b).

The most-used method for inverting non-linear problems is linearisation, which approx-

imates the non-linear problem with linear equations and methods (Gubbins, 2004). To

solve the linearised non-linear problem; a starting model is chosen, then the residuals

of the data are computed, and the minimal change in the model reducing the residuals

are found (Gubbins, 2004). One example of solving the non-linear least-squares problem,

is the Gauss-Newton method (see Pratt et al., 1998; Richter, 2016; Aster et al., 2018;

Jakobsen et al., 2020b). More details on the inversion method implementation is given in

the next section, Section 4.2.
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4.2 Non-linear Inverse Scattering Problem

4.2.1 Distorted Born Iterative Inversion Method

The non-linear, inverse scattering problem is the problem of determining the material

properties of the Earth, e.g. elastic stiffness, from seismic reflection data (Weglein et al.,

2003). It can be reduced to a series of linear inverse problems by using the distorted Born

iterative (DBI) method, which is Gauss-Newton consistent (Jakobsen et al., 2020b). It has

been shown that the DBI method converges faster than the Born Iterative (BI) method

(Chew and Wang, 1990). The DBI inversion is done by first inverting for the variation in

the updated scattering potential δV(i) of iteration i, due to a variation, δm(i+1), in the

model parameter, m(i+1) (Huang et al., 2020a). Then, the strain field, ε(i), is updated the

using the Green’s tensor Γ(0) (Jakobsen et al., 2020b). The distorted Born approximation

is defined by (Chew and Wang, 1990; Hesford and Chew, 2010; Jakobsen and Ursin, 2015;

Jakobsen and Wu, 2018; Huang et al., 2020a; Jakobsen et al., 2020b) as

δu(i) = M(i)δV(i)ε(i), (4.9)

where the displacement vector is

δu(i) = u− u(i), (4.10)

and the updated scattering potential is

δV(i) = V(i) −V(i−1). (4.11)

The scattering potential in the previous iteration, V(i−1), is assumed to be known and

approximately equivalent to the stiffness perturbation, ∆C(i−1), by Eq. (3.24). The

updated strain field in Eq. (3.28), is then given by

ε(i) = ε(0) + Γ(0)V(i)ε(i), (4.12)

with the exact solution given in Eq. (3.30). The fourth-rank Green’s tensor, Γ(0), can be

calculated with Eq. (3.18) and formulas in Appendix B.3.

In an inhomogeneous medium, the modified Green’s tensor, M(i), is updated using the ho-

mogeneous background, M(0). Expressions for calculating the reference third-rank Green’s

tensor, M(0), is given in Appendix B.2. The formula for updating M(i) each iteration, is
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given as (Huang et al., 2020a)

M(i) = M(0) + M(i)V(i)Γ(0), (4.13)

with the exact solution

M(i) = M(0)
(
I−V(i)Γ(0)

)−1
. (4.14)

Both the modified Green’s functions, M(0) and Γ(0), were defined in Section 3.2. Updating

the tensors ε(i) and M(i) in Eqs. (4.12) and (4.13), respectively, allows for estimating the

displacement vector, δu(i), in Eq. (4.9).

4.2.2 Inversion Implementation

In this section, the inversion scheme, in terms of deterministic inversion, based on the

Gauss-Newton method, is implemented (Jakobsen et al., 2020b). The Fréchet derivative

is continuous (functional) theory and gives the change in the data due to an infinitesimally

small change in the model. In this context, the sensitivity matrix can be referred to as

the discretised theory of the Fréchet derivative.

Following Jakobsen et al. (2020b), the goal is to calculate the perturbed elastic wavefield

with components, j ,at each receiver position, r. The scattered wavefield from Eq. (3.21)

is given by

δurj =
N∑
n=1

M rn
jK∆Cn

KLε
n
Lδv, (4.15)

where the index i → j was changed, to avoid confusion with iteration number i. The

expression is evaluated for each grid block’s midpoint n, and the total number of grid

blocks is N .

As mentioned in Section 3.3.2, it should be noted that the upper indices (superscripts)

refers to positional indices, instead of power as in mathematics. For example, δurj refers

to the scattered wavefield in the receiver of index r, rather than the scattered wavefield

of power r.

The elastic stiffness perturbation tensor, ∆C, must be decomposed to include the model

vector, m. One way to do this is with the B-matrix tensor field (Jakobsen et al., 2017,

2020b) given in Eq. (4.16). A general, anisotropic medium has 21 independent elastic

constants and each must be accounted for in the parameter index p of the model, m.

Thus,

∆Cn
KL =

21∑
p=1

Bn,p
KLm

n,p, (4.16)
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where p is the model parameter index corresponding to elastic coefficients in δCn
KL.

For a general VTI medium, there are five symmetric B-matrices, corresponding to each

of the independent stiffness parameters in Kelvin notation, as was described in Section

2.2. The model parameter p is related to the matrix indices KL by 1→ 11, 2→ 33, and

so forth. Based on the theory from Jakobsen et al. (2020b), they can be defined as:

B11 =



1 1 0 0 0 0

1 0 0 0 0

0 0 0 0

0 0 0

0 0

0


, B33 =



0 0 0 0 0 0

0 0 0 0 0

1 0 0 0

0 0 0

0 0

0


, B55 =



0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

2 0 0

2 0

0



B66 =



0 −2 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

2


, B13 =



0 0 1 0 0 0

0 1 0 0 0

0 0 0 0

0 0 0

0 0

0


.

If the reference elastic stiffness tensor, C
(0)
KL, is non-zero, the Voigt stiffness perturbations,

∆Cn
KL, can be normalised in each grid block n by (Jakobsen et al., 2020b)

mn,p =

(
Cn
KL − C

(0)
KL

)
C

(0)
KL

, (4.17)

where ∆Cn
KL = Cn

KL − C
(0)
KL.

The notation change of K,L → p = 1, . . . , 21 applies for a general anisotropic elastic

stiffness tensor. This means that a combination of K,L is substituted with the model

parameter index p, for a given symmetry of the medium. In this work, there are four in-

dependent (non-zero) stiffness perturbation parameters as the medium is 2D VTI. Conse-

quently, the four (arbitrary) model parameter indices p can be substituted on the following

form: KL = 11→ p = 1, KL = 33→ p = 2, KL = 55→ p = 3, and KL = 13→ p = 4.

It should be noted that these parameter indices p could have been selected in another
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fashion, as they are arbitrary.

The normalisation above, in Eq. (4.17), is an advantage of FWI, ensuring that the model

parameters are of approximately the same size (Jakobsen et al., 2020b). Thus, lowering

the contrast between the multiple parameters.

Following Jakobsen and Ursin (2015) and Jakobsen et al. (2020b), the model parameters

are found using the regularised least-squares solution. Inserting Eq. (4.16) into Eq. (4.15),

yields

δurj =
N∑
n=1

21∑
p=1

M rn
jKB

n,p
KLε

n
Lm

n,pδv, (4.18)

where Bn,p denotes the corresponding B-matrix of model parameter p in grid block n.

However, the B-matrix is constant and does not depend on the grid block n, leading to

Bp
KL = Bn,p

KL.

A sensitivity matrix, J, can be defined to represent the tensors in Eq. (4.18). Conse-

quently, the sensitivity matrix in component notation is given as (Jakobsen and Ursin,

2015)

Jrn,pj ≡M rn
jKB

p
KLε

n
Lδv, (4.19)

where Einstein’s summation convention (Einstein, 1916) is used.

A more precise name for the sensitivity matrix in Eq. (4.19) is sensitivity elements, as

it contains more dimensions (indices) than a matrix. In the following expressions, the

sensitivity elements are rearranged into a sensitivity matrix, J.

Eq. (4.18) can, by utilising the sensitivity matrix defined in Eq. (4.19), be written as

δurj =
21∑
p=1

Jrn,pj mn,p. (4.20)

To reduce the number of lower indices, a combination counter α can be introduced by
r
j → α, and runs from 1 to 3Nr. The introduction of α simplifies Eq. (4.20), and the

resulting expression is shown in Eq. (4.21).

δuα =
21∑
p=1

Jαn,pmn,p. (4.21)

The updated sensitivity matrix, corresponding to Eq. (4.21), is then given by

Jαn,p = Mαn
K Bp

KLε
n
Lδv. (4.22)
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To achieve a more compact notation, Eqs. (4.21) and (4.22) can be written symbolically

without the indices α, n. Finally, a discretised expression for the scattered wavefield, δu(i),

of each iteration, i, in vector form is reached (Jakobsen et al., 2020b) and presented in

Eq. (4.23).

δu(i) =
21∑
p=1

J(i,p)δm(i+1,p), (4.23)

where

J(i,p) = M(i)B(p)ε(i)δv. (4.24)

Here, δm(i+1,p) = m(i+1,p) −m(i,p) is the inverted (normalised) perturbation of parameter

p in iteration i.

The dimensions of the vectors and matrices are as follows (Jakobsen et al., 2020b):

dim
(
δu(i)

)
= Nd × 1, dim

(
J(i,p)

)
= Nd × N , and dim

(
δm(i+1,p)

)
= N × 1. For data

vectors, δu(i), with more than one source, the total number of points in the data vec-

tor is Nd = 3NrNs, where Ns is the number of sources. Each data point is given by a

super-index (combination counter), calculated by Eq. (4.25).

α = (i− 1)NrNs + (s− 1)Nr + r, (4.25)

where the indices i, s, r denotes the spatial, source and receiver number, respectively.

The elastic stiffness tensor for a 3D VTI medium was discussed in Section 2.2, and given

explicitly in Eq. (2.5). Consequently, there are four independent Voigt stiffness param-

eters in a 2D VTI medium. For each iteration, the data residual wavefield, sensitivity

matrix, and model perturbation in Eq. (4.23) is given by (Jakobsen et al., 2020b)

δu(i) = J(i)δm(i+1), (4.26)

where

J(i) =
[
J(i,1),J(i,2),J(i,3),J(i,4)

]
, (4.27)

and

δm(i+1) =
[
δm(i+1,1), δm(i+1,2), δm(i+1,3), δm(i+1,4)

]T
. (4.28)

Each of the normalised stiffness perturbation parameters ∆C11, ∆C33, ∆C55, and ∆C13,

correspond to the model parameters δm(i+1,1), δm(i+1,2), δm(i+1,3), and δm(i+1,3) in Eq.

(4.28). The model perturbation vector, δm(i+1), contains a total of 4N values, where the

stiffness perturbation parameters are organised one after the other.
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4.2.3 Regularised Least-Squares Solution

Given the vectors in Eqs. (4.26) - (4.28), a solution to the least-squares problem can be

found. The objective function in Eq. (4.5) can be rewritten with the iteration number i

as (Jakobsen and Ursin, 2015; Jakobsen and Wu, 2018; Jakobsen et al., 2020b)

E(δm(i+1)) =
∥∥∥δu(i)

obs − J(i)δm(i+1)
∥∥∥2 +

(
λ(i)
)2 ∥∥δm(i+1)

∥∥2 , (4.29)

where ‖‖ denote the L2-norm (length of vector in Euclidean space), and the regularisation

parameter, λ(i), is further discussed in Section 4.2.4.

A solution for the model vector, δm(i+1), that minimises Eq. (4.29) exists by Eq. (4.6).

The expression for updating the model, m, is then given by (Virieux and Operto, 2009;

Menke, 2012; Zhdanov, 2015; Jakobsen and Ursin, 2015; Jakobsen et al., 2020b)

m(i+1) = m(i) +
[
H(i) + (λ(i))2IN

]−1
G(i), (4.30)

where IN is the N × N identity matrix and λ(i) is the regularisation parameter in each

iteration. For the first iteration i = 0, the initial model (guess), m(0), is used.

The gradient vector, G(i), in Eq. (4.30) is given by (Jakobsen and Ursin, 2015; Jakobsen

et al., 2020b)

G(i) = <
[
(J(i))†δu(i)

]
, (4.31)

and the Hessian matrix, H(i), in Eq. (4.30) is given by (Pratt et al., 1998; Pan et al.,

2017; Jakobsen et al., 2020b)

H(i) = <
[
(J(i))†J(i)

]
, (4.32)

where < denotes the real values of the matrix, and † indicates the Hermitian transpose,

which is also referred to as the conjugate transpose.

In each iteration, the updated data residual, δu(i), is given by (Jakobsen and Ursin, 2015;

Jakobsen et al., 2020b)

δu(i) = δuobs − J(i)m(i), (4.33)

where the synthetic (observed) data, with noise, is given by

δuobs = Jtruemtrue + η . (4.34)

In synthetic experiments, Eq. (4.34) is used to calculate the “observed” synthetic data.

For noiseless experiments, the observed data is equal to the predicted data, and these data

are calculated by Jtruemtrue. Similarly, for noisy synthetic data, there is a contribution
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of noise in addition to the predicted data. The concept of noisy data was explained in

Section 3.4. The theory described in this section can also be used on real data. In the

case of real data, both the true model and noise contribution is assumed to be unknown.

Real data is represented in the time-domain, while the expressions above are for observed

synthetic data, which is in the frequency-domain.

Eq. (4.18) yields the scattered wavefield in each receiver position for one or more sources.

Based on the theory in Chapter 3, the seismic source pulse contains more than one fre-

quency. Thus, it is useful to calculate the wavefield sequentially for a set of frequencies

(Pratt, 1999). Consequently, the resulting model, m, from the previous frequency, can be

used as a starting model for the next frequency. This model is usually closer to the true

model, and leads to better inversion results.

When the model, m(i), in Eq. (4.33) converges to the true model, mtrue, the data residuals,

δu(i), converges to zero. To validate the convergence of the inversion process, residual data

error, εd, and model error, εm, are introduced. The residual data error is based on the

observed data, δuobs, in Eq. (4.33), while the model error is calculated based on the true

model, mtrue (Jakobsen et al., 2020b). Thus, the residual data error is given by

ε
(i)
d =

||δuobs − J(i)m(i)||
||δuobs||

, (4.35)

and the model error is given by (Jakobsen et al., 2020b)

ε(i)m =
||mtrue −m(i)||
||mtrue||

, (4.36)

where m(i) is the current model, calculated by Eq. (4.30).

The general steps of the inversion scheme, Eqs. (4.30) - (4.36), need to stop when the

inversion is considered successful. Normally, the inversion will stop when a chosen tol-

erance (stopping-criteria) η0 is met, which in theory means when the data error is lower

than the tolerance, ε
(i)
d ≤ η0 (Jakobsen et al., 2020b). This criteria is in accordance to

Morozov’s discrepancy principle described in Section 4.2.4. The tolerance can be selected

arbitrarily, and should be chosen to be as low as possible (Jakobsen et al., 2020b). In

the presence of noise, the tolerance is equal to the noise-level defined in Eq. (3.33). The

reason for this is that the residual data error will not reach a lower level due to noise.

The main procedure of the DBI inversion scheme, Eqs. (4.30) - (4.36), that was used

in this work is presented in Algorithm 2, below Section 4.2.4. It is assumed that an

isotropic background stiffness tensor C(0) is known, to normalise the model parameters in

Eq. (4.17). Each frequency used in this inversion scheme, corresponds to the frequencies
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given in Sections 3.4. In Algorithm 2, the frequency is given as angular frequency, ω, in

the outer loop. The minimum frequency used in this work, is 3 Hz, corresponding to an

angular frequency of 6π rad/s. For each frequency, observed data, δuobs, is computed,

and inversion is performed to find the best fitting model vector, m, of this frequency.

Then, this process is repeated for the next frequency, using the resulting model from the

last frequency. It should be noted that a different regularisation scheme may be used, as

well as a different method of finding the optimum starting regularisation, λ.

4.2.4 Regularisation Parameter

The generalised inverse solution in Eq. (4.4) can become unstable when its values are

singular (Aster et al., 2018). It should be noted that a matrix with singular elements is

not invertible. The Tikhonov regularisation method, as described in Section 4.1 is used

to combat this, and is represented by the regularisation parameter, λ, in Eqs. (4.29) and

(4.30). Regularising the least-squares problem with a dynamic regularisation parameter,

λ(i), is also utilised to reduce the effects of random noise (Jakobsen and Ursin, 2015).

Choosing a too small regularisation, λ, parameter can build unwanted structures, that

must be removed by additional iterations (Farquharson and Oldenburg, 2004). The iter-

ative procedure should be ended when the residual data error reaches the set noise level,

η0, by the discrepancy principle (Constable et al., 1987; Jakobsen and Wu, 2018; Jakobsen

et al., 2020b).

There exist numerous methods for finding and updating the optimal regularisation param-

eter (Jakobsen and Ursin, 2015), e.g. the L-curve method (Hansen, 2001), cooling-scheme

(Farquharson and Oldenburg, 2004; Jakobsen and Ursin, 2015), and the self-adaptive

scheme (Ciric and Qin, 1997; Jakobsen et al., 2020b).

When the residual data error, ε
(i)
d , in Eq (4.35) decreases, the regularisation parameter

should simultaneously decrease (Jakobsen and Tveit, 2018). This can be referred to

as a cooling scheme, as the parameter is “cooled” (decreased) in each iteration i. By

combining the discrepancy principle mentioned above, with a cooling scheme for updating

the regularisation parameter λ (Farquharson and Oldenburg, 2004), the regularisation

parameter is given by (Hesford and Chew, 2010; Jakobsen and Ursin, 2015)

λ(i+1) = aλ(i), (4.37)

where the constant a can be arbitrarily defined as 0.5 ≤ a ≤ 0.9. Selecting this constant

is crucial in regularisation problems, as a too high value slows the inversion process.

The self-adaptive scheme is an extension of the cooling scheme in Eq. (4.37), to make
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it probable that a global minimum is found (Jakobsen et al., 2020b). It is based on the

Levenberg-Marquardt method for regularising the non-linear least-squares problem (Ciric

and Qin, 1997; Aster et al., 2018). As long as the data error is decreasing, the given

cooling scheme in Eq. (4.37) is used. However, if the data error does not decrease, one

must reset the model and increase the regularisation parameter (Jakobsen et al., 2020b)

by

λ(i+1) = bλ(i), (4.38)

where b is a constant larger than one (e.g. 1.4).

For simple problems, the starting regularisation parameter can be chosen as λ(0) = 0.001.

However, a more precise starting value is defined by (Ciric and Qin, 1997; Lavarello and

Oelze, 2009; Jakobsen et al., 2020b)

λ(0) = 10mean(diag(H(0))), (4.39)

where mean is the mean value of the elements, diag is the diagonal, and H(0) is the Hessian

matrix given in Eq. (4.32).

One issue of the self-adaptive regularisation scheme, is that the starting value of the reg-

ularisation parameter, λ(0), can be selected to be too small (Farquharson and Oldenburg,

2004). The arbitrary value of 10, is then used to increase the starting regularisation

parameter (e.g. Jakobsen et al., 2020b).

In this work, the self-adaptive scheme, in Eqs. (4.37) and 4.38, is used to ensure a more

stable convergence for the DBI inversion.
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Algorithm 2: Algorithm for the implementation of the DBI inversion method in an

anisotropic elastic media, with references to relevant expressions. The critical scheme

for the regularisation parameter, λ, is the self-adaptive method, as described in Section

4.2.4, with constants a = 0.5 and b = 1.4. In the context of the numerical results

below, ωmin = 6π, and ωmax = 20π. This algorithm is mainly inspired by Jakobsen

et al. (2020b).

Setting up the model grid, with sources, receivers, and positions.

Define model based on initial model, m(i) = m(0), often m(0) = 0.

for ω = ωmin to ωmin do

Compute reference Green’s tensors, M(0) and Γ(0), as described in Appendix B.

Compute reference strain tensor, ε(0), by Eqs. (2.2) and (3.2).

Compute scattering potential, V, from Eq. (3.24), based on the model, m.

Calculate exact solution of M and ε, by Eqs. (4.14) and (3.30).

Calculate sensitivity matrices, J(0,p), in Eq. (4.24), by M, B(p), and ε.

Compute observed data, δuobs, by Eq. (4.34), and the true model.

Define iteration number i = 0.

Set data errors εd = 1, ε′d = 1, and tolerance η0 = 10−5 or η0 = 10−2.

while εd > η0 do
Update iteration number i = i+ 1.

Update strain tensor, ε(i), and Green’s tensor, M(i), by Eqs. (4.12) and (4.13).

Update sensitivity matrices, J(i,p), by M(i), B(p), and ε(i).

Compute gradient vector, G(i), and Hessian matrix, H(i), in Eqs. (4.31) and

(4.32), respectively.

if i = 1 then

Set initial regularisation parameter, λ(i), by Eq. (4.39).

end

Calculate updated model, m(i+1), by Eq. (4.30).

Calculate data error and model error, in Eqs. (4.35) and (4.36), for m(i+1).

if εd < ε′d then
Decrease regularisation parameter by Eq. (4.37).

Set εd = ε′d and m(i) = m(i+1).

else

Increase regularisation parameter by Eq. (4.38), and set m(i+1) = m(i).

end

end

end

59



Chapter 4. Seismic Waveform Inversion

4.3 Numerical Results and Discussion

The goal in this section is to analyse the performance of the DBI inversion method for

estimating the stiffness perturbation in fractured media. The inversion scheme, explained

in Section 4.2.3 and Algorithm 2, has been implemented by an extension of Matlab pro-

grams from Jakobsen et al. (2020b). The following frequencies were used in the sequential

inversion for frequency: 3 Hz, 5 Hz, 7.5 Hz, and 10 Hz. See Section 2.4 for more details on

the models used. The synthetic data is set up to be the same as in Chapter 3, for the two

cases: (i) noiseless (clean) data, and (ii) noisy data with an SNR of 40 dB corresponding

to a noise-level of 1% (10−2).

The stiffness perturbations that are used in these results have been normalised per Eq.

(4.17), to ensure they are somewhat similar in magnitude. The model vector, m, contains

the four independent (normalised) stiffness perturbations, for each grid cell n. It should

be noted that for these computations, there are a total of 4100 parameters (4N) in the

model vector, m.

The inversion is based on the generalised Tikhonov regularisation in Eq. (4.29), by updat-

ing the model in Eq. 4.30. The tolerance, η0, is set to 10−5 for clean (noiseless) data, while

it is set to 10−2 for noisy data (40 dB SNR). The inversion process is stopped when this

tolerance is reached, according to Morozov’s discrepancy principle as mentioned above.

The regularisation scheme is based on the self-adaptive approach (Ciric and Qin, 1997;

Jakobsen et al., 2020b), discussed in Section 4.2.4. Different constants for “cooling” and

“heating” were investigated, and the following constants gave the best results: a = 0.5

and b = 1.4.

The computation times and model errors of the respective models are summarised in

Table 4.1. Note that computation time refers to time spent performing both modelling

and DBI inversion for all frequencies.

Table 4.1: Comparison of the final model error εm [unit], and computation time τCPU

[min], for the DBI stiffness-inversion results. For the noiseless results (5000 dB SNR), the
tolerance was 10−5, while for the noisy results (40 dB SNR) it was 10−2.

Model Noise εm τCPU
1

Syncline
no 0.155 592

yes 0.355 419

Anticline
no 0.198 591

yes 0.548 345

1Computation time based on the following processor (CPU) and memory: Intel i5-8250U 1.6GHz -
1.8GHz, 8GB RAM.
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4.3.1 Syncline Model

The syncline model was defined in Section 2.4.1, and the corresponding stiffness pertur-

bation model was displayed in Section 3.4.1. There are 1025 grid blocks, in a grid of

dimension 41x25. A total of 41 sources and receivers are placed at the surface (z = 0

m), for the numerical experiments. The configuration of these sources and receivers were

shown in Fig. 3.3.

The DBI inversion results for the syncline model, for C11 and C33, are shown in Figs.

4.1a and 4.1b, respectively, and are close to the true model in Figs. 3.4a and 3.4b. As

the change in the C11 parameter is minimal, the inversion result is mainly shown for

completeness. For the C33 parameter, however, the model has been recovered well. The

layering and complex features of the true model, are represented well due to the higher

contrast, as seen in Figs. 4.1b and 4.1d. C33 is arguably the most important parameter in

the case of horizontal fractures. Figs. 4.1c and 4.1d show the inversion results for the C55

and C13 parameters, respectively. Both these inverted (normalised) stiffness perturbations

fit well with their respective true models. The absolute error of the inversion results is

shown in Fig. 4.2. Overall, the absolute error of the individual stiffness parameters is

quite low. It is safe to say that the anisotropic DBI inversion for the syncline model

corresponding to noiseless data is successful, by evaluating Figs. 4.1 and 4.2. The “stairs-

feature” of the C33 and C13 parameters, shown in Figs. 4.2b and 4.2d, is clearly difficult

in inversion.

In Fig. 4.3, the performance of the inversion in terms of error and regularisation is

displayed. Fig. 4.4 shows the final inverted model vector compared with the true and

starting model vectors. The final model error in Fig. 4.3 reaches an acceptable level,

based on the complexity of the model, and has a stable convergence, which is reasonable

for clean data. The residual data error decreases and to the tolerance (noise-level). Fig.

4.4 show that the inversion for this model is somewhat tricky, as there are many rapid

changes of stiffness. Nevertheless, the inverted model vector provides an excellent fit to

the true model vector. Total computation time was 592 minutes, and the final model

error was 0.155 (15.5%).
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The corresponding DBI inversion results of the noisy data of 40 dB SNR, are shown in

Fig. 4.5. Fig. 4.5a show that the minimum change in the C11 parameter is not visible, and

there are a few areas of wrong perturbation along the sides of the model. However, the C33

parameter in Fig. 4.5b is noticeably better than for the C11, in Fig. 4.5a. The parameters

of C55 and C13 are shown in Figs. 4.5c and 4.5d, respectively. For the C55 parameter, the

first layer and the syncline feature is visible. Similarly for the C13 parameter, the syncline

is apparent, but the lower layer is slightly wrong in comparison with the true model in

Fig. 3.4d. Absolute error of the inverted stiffness parameters are shown in Fig. 4.6. The

C13 parameters in Fig. 4.6d, specifically, has a considerably higher absolute error than

the other parameters. This result is consistent with results from similar experiments,

indicating the difficulty in inverting for the C13 stiffness (e.g. Tsvankin, 2012; Jakobsen

et al., 2017).

Similarly to above, the inversion performance is given in Fig. 4.7, while Fig. 4.8 show the

fit of the inverted model vector versus the true model. Judging the performance of the

DBI inversion for the noisy data in Fig. 4.7, it is evident that the noise introduces some

problems. The residual data error decreases monotonically to the noise-level (tolerance) of

10−2, while the model error reaches a fairly high level, compared to the noiseless inversion

of Fig. 4.3. In Fig. 4.6, absolute error estimates of the inversion results are displayed.

The main contribution to the high model error, as seen in Fig. 4.6d, is due to the C13

parameter, which is consistent with Lee et al. (2010) and Kamath and Tsvankin (2016).

For the other stiffness parameters, the results are considerably better. Total computation

time was 419 minutes, and the final model error was 0.355 (35.5%). Due to the stopping

criteria (tolerance) being lower, in the case of noisy data, the computation time is shorter.
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Figure 4.1: DBI inversion results for normalised stiffness perturbation in the syncline
model. The data used was noiseless, and the colour map is the same for all parameters.
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Figure 4.2: Absolute error of the inverted normalised stiffness perturbation in the syn-
cline model, for the noiseless data. The colour map for absolute error is the same for all
parameters.
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Figure 4.3: Performance of the DBI inversion for stiffness perturbation in the syncline
model, for the noiseless data. Model error (εm) and residual data error (εd) depend on
the iteration number. The equations for data and model error are given in Eqs. (4.35)
and (4.36). The data error converges to the noise-level (red dashed line). The last two
plots show the regularisation parameter (λ) and the frequency (f), respectively.
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Figure 4.4: Model vector of the DBI inversion result for stiffness perturbation in the
syncline model, for the noiseless data. The starting model is shown as a blue line, the
true model as a black line, and the inversion results as a red line.
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Figure 4.5: DBI inversion result for the normalised stiffness perturbation in the syncline
model, for the noisy data with an SNR of 40 dB. The colour map is the same for all
parameters.
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Figure 4.6: Absolute error of the inverted normalised stiffness perturbation in the syn-
cline model, for the noisy data of 40 dB SNR. The colour map for absolute error is the
same for all parameters.
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Figure 4.7: Performance of the DBI inversion for stiffness perturbation in the syncline
model, for noisy data of 40 dB SNR. Model error (εm) and residual data error (εd) depend
on the iteration number. The data error converges to the noise-level (red dashed line). The
last two plots show the regularisation parameter (λ) and the frequency (f), respectively.
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Figure 4.8: Model vector of the DBI inversion result for the stiffness perturbation in
the syncline model, for noisy data of 40 dB SNR. The starting model is shown as a blue
line, the true model as a black line, and the inversion results as a red line.
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4.3.2 Anticline Model

The anticline model that is used for DBI inversion in this section is based on the stiffness

perturbation model defined in Section 3.4.2. Stiffness perturbations have been normalised,

as per Eq. (4.17), and correspond to the fracture density model referenced in Section

2.4.2. In this model, there are a total of 1107 grid blocks on a grid with dimensions

41x27. Sources and receivers are placed at the surface, and the configuration is given in

Fig. 3.7. The number of sources is 11, while the number of receivers is 41 (the same as

in modelling). There are a total of 4428 parameters in the model vector (i.e. 4N).

Fig. 4.9 show the final DBI inversion result for the anticline model. The data is clean

(noiseless), and was computed for the maximum frequency of 10 Hz. The inversion results

in Fig. 4.9a and 4.9b, are successful in terms of retaining the main features of the true

models in Section 3.4.2. Specifically, in Fig. 4.9b, for the C33 parameter, the anticline

layer (in blue) is distinct and recognisable. The absolute error of the inversion results are

displayed in Fig. 4.10, where some erroneous points in the upper layer for all parameters

can be seen. These inaccuracies are the result of the low ratio between data points and

model values. The C55 and C13 parameters in Figs. 4.9c and 4.9d, respectively, show good

inversion results. For the C55 parameter, the features around the anticline layer (middle)

are a little blurry. Finally, the C13 parameter has inaccurate values below the anticline

layer and particularly in the corners, as seen in Fig. 4.10d. These figures are discussed

further, with a comparison to the fracture-based inversion results, in Chapter 6.

In Fig. 4.11, the performance of the inversion in terms of error and regularisation is

displayed, showing a reasonably successful inversion. The residual data error decreases

monotonically, for each frequency, to the noise-level (tolerance) of 10−5. The model error

reaches a reasonably low level, and the inversion process is stable. Fig. 4.12 shows the final

inverted model vector compared with the true and starting model vectors. The issues in

the parameters are apparent throughout the model vector, as there are fluctuations around

the true model. In particular, the erroneous points in the C13 parameter can be seen to

the right in the model vector (beyond point no. 4000). The total computation time was

591 minutes, and the final model error was 0.198 (19.8%) for these results. The model

error, in the anticline model, is acceptable for a multi-parameter FWI.
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The final DBI inversion results for the anticline model are displayed in Fig. 4.13, for

data containing noise with an SNR of 40 dB. It is evident that noise causes inaccuracies

in the DBI inversion. Erroneous points are visible when looking at the absolute error of

the different stiffness parameters in Fig. 4.14, especially in the C13 parameter below 200

m depth. Similarly to the noiseless results, the C11 and C33 parameters seem to provide

good matches to the true models in Section 2.4.2. These two parameters, in particular,

are considerably worse along the edges compared to the rest of the model. The inversion

results for the C55 and C13 parameters are inaccurate, and the most prominent feature of

the model is “lost”. Specifically, for the C55 parameter, it is not easy to make out a single

layer. These results are further discussed, and compared the noiseless inversion results,

in Chapter 6.

The performance of the DBI inversion for the noisy data is shown in Fig. 4.15. The

inversion is worse than previous examples. Even though the residual data error decreases

monotonically to the noise-level (tolerance) of 10−2, the final model error is on the high

side (almost 60%) even for multi-parameter FWI. In the model vector of Fig. 4.16, the

erroneous values in the C13 parameter can be seen to the right (beyond model point no.

3700) as these values diverge from the correct values. As mentioned before, in Section

4.3.1, the inversion is difficult for the C13 parameter, such that the high error is not

surprising. The total computation time was 345 minutes, and the final model error was

0.548 (54.8%) for these results.

In the case of noisy data for the anticline model, the DBI inversion breaks down and does

not succeed in resolving all the parameters. Another contribution to the overall inaccurate

results, for the anticline model, is that fewer sources, compared to in the syncline model,

were used to lower the computational cost. Using a large number of sources increases

the number of data points in the data vector, thus resulting in a better match to a large

number of parameters in the model.

The erroneous C13 parameter is a substantial contribution to the high model error in

the anticline model for the noisy data. In Fig. 4.14d, the two lower layers for C13 have

extremely high absolute error compared to the other parameters. Lee et al. (2010) found

that the C13 parameter is generally difficult to resolve in anisotropic inversion. Tsvankin

(2012) and Kamath and Tsvankin (2016) propose that this problem is due to the trade-off

between the P-wave signature of C55 and C13. Which may explain the high degree of error

in these numerical results.
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Figure 4.9: DBI inversion result for the normalised stiffness perturbation in the anticline
model, for the noiseless data. The colour map is the same for all parameters.
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Figure 4.10: Absolute error of the inverted normalised stiffness perturbation in the
anticline model, for the noiseless data. The colour map for absolute error is the same for
all parameters.
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Figure 4.11: Performance of the DBI inversion for stiffness perturbation in the anticline
model, for the noiseless data. Model error (εm) and residual data error (εd) depend on
the iteration number. The equations for data and model error are given in Eqs. (4.35)
and (4.36). The data error converges to the noise-level (red dashed line). The last two
plots show regularisation parameter (λ) and frequency (f), respectively.
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Figure 4.12: Model parameters of the DBI inversion result for the normalised stiffness
perturbation in the anticline model, for the noiseless data. The starting model is shown
as a blue line, the true model as a black line, and the inversion results as a red line.
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(d) ∆C13

Figure 4.13: DBI inversion result for the normalised stiffness perturbation in the anti-
cline model, for the noisy data with an SNR of 40 dB. The colour map is the same for all
parameters.
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Figure 4.14: Absolute error of the inverted normalised stiffness perturbation in the
anticline model, for the noisy data of 40 dB SNR. The colour map for absolute error is
the same for all parameters.
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Figure 4.15: Performance of the DBI inversion for stiffness perturbation in the anticline
model, for data with noise of 40 dB SNR. Model error (εm) and residual data error
(εd) depend on the iteration number. The data error converges to the noise-level (red
dashed line). The last two plots show regularisation parameter (λ) and frequency (f),
respectively.
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Figure 4.16: Model parameters of the DBI inversion result for the stiffness perturbation
in the anticline model, for data with noise of 40 dB SNR. The starting model is shown as
a blue line, the true model as a black line, and the inversion results as a red line.
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Chapter 5

Waveform Inversion for Fracture

Parameters

Waveform inversion for fracture parameters is done for the full solution to a Lippmann-

Schwinger integral-equation, combined with the DBI inversion method. First, the reason

behind the importance of inverting for fractures is explained. Then, the equations and

methods used to represent fractures, model fracture-induced anisotropic media, and invert

for fracture parameters are summarised. Lastly, numerical results are presented for the

two models referenced in previous chapters.

5.1 Introduction

The primary objective of this chapter is to extend the pioneering work by Jakobsen

et al. (2003a), Bansal and Sen (2010), and Pilskog et al. (2015), on seismic inversion

for fractures. Jakobsen et al. (2003a) represented fractures in a porous medium by the

t-matrix for a single inclusion. Bansal and Sen (2010) implemented an inversion scheme

for fractures based on the ray-Born approximation. Pilskog et al. (2015) extended the

inversion for fractures to FWI using the t-matrix.

Combining seismic and rock physics models, fracture parameters can be inverted for

directly (Pilskog et al., 2015). Fracture parameters only have a small range of plausible

values, and the parameters have a direct geological interpretation (Pilskog et al., 2015).

The fracture parameter in the context of this thesis, is the fracture density (e.g. Hudson,

1980; Schoenberg and Douma, 1988; Jakobsen et al., 2003a; Sayers, 2009; Bansal and Sen,

2010; Pilskog et al., 2015).
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Small-scale heterogeneities such as cracks, fractures and inclusions, can be modelled using

integral-equation methods (Carcione et al., 2002; Krebes, 2004). The integral-equation

method used in this work is based on the full integral solution of the Lippmann-Schwinger

equation (Jakobsen et al., 2020b).

In this chapter, he DBI-method for non-linear inversion in Jakobsen et al. (2020b), is used

to extend the fracture-based inversion in Bansal and Sen (2010) and Pilskog et al. (2015).

Fracture density constitutes only one model parameter, making it suitable for non-linear

inversion (Pilskog et al., 2015).

5.2 DBI Inversion for Fracture Density

Fractures can be represented by a stiffness perturbation, as seen in Section 2.3.3, with

the t-matrix for a single inclusion. If only the first-order correction is accounted for, the

expressions for stiffness perturbation can be given as in Eqs. (2.9) and (2.13). Only

one phase/type of isolated, horizontal fractures is assumed in this implementation, which

results in the t-matrix of Eq. (2.11). This t-matrix, t, is constant for all grid blocks x,

and can be calculated with the Green’s tensor in Appendix A. Fracture density, ε(x), was

defined in terms of the porosity of a fracture in Eq. (2.16). Consequently, the relationship

between stiffness perturbation and fracture density is given by

∆C(x) = tε(x), (5.1)

which corresponds to Eqs. (2.17) and (2.24) in Section 2.3.3. Note that the volume

contribution 4π
3
αc was dropped in order to write the relation on a compact form.

In Chapter 3, a solution to the elastodynamic wave equation in Eq. (3.1), was found to

be integral-equations of the Lippmann-Schwinger type (see Section 3.2). The resulting

scattered wavefield, δu, in Eq. (3.16) can be written in subscript notation (Jakobsen

et al., 2003a; Pilskog et al., 2015), and expressed by a decomposition of the stiffness

tensor in Eq. (4.18). The decomposition of the stiffness perturbation, ∆C(x), is given in

Eq. (4.16), where the B-matrix, B, and model parameter vector, m(x), was used. For a

model vector containing normalised stiffness perturbations, calculated in Eq. (4.17), the

stiffness perturbation is given by

∆C(x) = Bm(x). (5.2)
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In fracture density inversion, there is only one parameter in the model vector, such that

m(x) ≡ ε(x). Comparing Eqs. (5.1) and (5.2), it is clear that the stiffness perturbation,

∆C(x), can be expressed in the same way as in Chapter 2, and the non-linear inversion

scheme used in Chapter 4 is valid. The sensitivity matrix in Eq. (4.24) of Section 4.2.2,

can be rewritten with the t-matrix as in Eq. (5.1), instead of the B-matrix. The resulting

scattered wavefield depending on fracture density (as the model) is given in Eq. (5.3),

with iteration number i.

δu(i) = M(i)tε(i)m(i)δv, (5.3)

where ε(i) denotes the strain tensor and m(i) denotes the model, which in this case is the

fracture density.

Employing the same non-linear inversion scheme as in Section 4.2.2, Eq. (5.3) can be

represented by a sensitivity matrix similar to that in Eq. (4.24) by:

J(i) = M(i)tε(i)δv, (5.4)

where the Green’s tensor, M(i), and strain tensor, ε(i), are updated according to Eqs.

(4.12) and (4.14), respectively.

Thus, the updated scattered wavefield in each iteration is given by

δu(i) = J(i)δm(i+1), (5.5)

which is equivalent to Eq. (4.23).

The model perturbation is given by δm(i+1) = m(i+1)−m(i), where m(i+1) is the inverted

fracture density calculated in Eq. (4.30).

Interested readers should note that the theory presented above can be used to model other

effects, such as seismic attenuation and poroelastic effects (Jakobsen et al., 2003b; Pilskog

et al., 2015).

Ultimately, the DBI inversion scheme explained in Section 4.2.3 can be used to invert for

fracture density. This implementation follow Algorithm 2 closely, although the t-matrix,

t, is used instead of the B-matrix, B.

In the numerical results presented below, Section 5.3, the rock under consideration will

be fully saturated with gas. The t-matrix described above can be used to represent such

saturated fractures, which was discussed in Section 2.3.4.
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5.3 Numerical Results and Discussion

The fracture density models that were described in Chapter 2 forms the basis for the

inversion in this section. The DBI inversion is performed for fracture density, as was

discussed in Section 5.2. The t-matrix, t, is used for the relationship between fracture

density, ε, and stiffness perturbation, δC. Modelling is done according to the details pro-

vided in Section 3.4. The inversion in this chapter is based on the DBI scheme presented

in Section 4.2.3, and on Algorithm 2. For the sequential inversion concerning frequency,

the four frequencies used are: 3 Hz, 5 Hz, 7.5 Hz, and 10 Hz.

The regularisation scheme to be used in this section is based on the self-adaptive approach

(Ciric and Qin, 1997; Jakobsen et al., 2020b), discussed in Section 4.2.4. Constants for

“cooling” and “heating”, in Eqs. (4.37) and (4.38), were set to a = 0.5 and b = 1.4,

respectively. A tolerance of 10−5 is used for the noiseless data. While for the noisy data,

the tolerance is 10−2, corresponding to an SNR of 40 dB. Most variables and parameters

are kept the same as in the inversion in Chapter 4, to be able to compare the methods

in Chapter 6. Description of differences in variables and parameters will be given where

applicable.

The computation times and model errors of the respective models are summarised in

Table 5.1. Note that computation time refers to time spent performing both modelling

and DBI inversion for all frequencies.

Table 5.1: Comparison of the final model error εm [unit], and computation time τCPU

[min], for the DBI fracture-inversion results. For the noiseless results (5000 dB SNR), the
tolerance was 10−5, while for the noisy results (40 dB SNR) it was 10−2.

Model Noise εm τCPU
1

Syncline
no 0.106 379

yes 0.133 225

Anticline
no 0.095 448

yes 0.119 221

1Computation time based on the following processor (CPU) and memory: Intel i5-8250U 1.6 GHz -
1.8 GHz, 8 GB RAM.
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5.3.1 Syncline Model

In this section, fracture density inversion is executed for the syncline model described in

section 2.4.1. The modelling aspect was presented in Section 3.4.1, where the levels of

noise were described. The total number of grid blocks is 1025, and the dimension of the

grid is 41x25. Similar to numerical results, in Section 4.3.1, 41 sources and 41 receivers

are used to provide the best illumination. The number of model parameters that need to

be inverted is equal to the number of grid blocks.

The fracture density DBI inversion result for the syncline model is shown in Fig. 5.1a.

It should be noted that the colour map is the same as in the true model. The absolute

error is presented in Fig. 5.1b, where most of the grid blocks have an (absolute) error

below 0.02. The inversion is successful as it provides a remarkably close match to the true

model in Fig. 2.5. The most erroneous points are at the trough of the syncline, towards

the middle of the model (below z = 450 m, between x = 250 m and x = 750 m). There

is a clear distinction between the layers, and the syncline feature is evident.

Stiffness perturbations are displayed in Fig. 5.2, corresponding to the inverted fracture

density model in Fig. 5.1a. Comparing the inverted stiffness perturbations to the true

models in Fig. 3.4, it is clear that all parameters have been inverted correctly. The main

syncline feature is clear and visible in all the parameters, although it is quite weak in

the C11 parameter. The C33 and C13 parameters have the most significant change for

an increased fracture density, as was discussed in Section 4.3.1. The inversion process,

concerning the different iterations, is shown in Fig. 5.3, while the model vector is dis-

played presented in Fig. 5.4. The model- and data-error, in Fig. 5.3, show the stable

convergence of the DBI inversion method. The regularisation parameter is decreasing

simultaneously with the data error. Inversion for the highest frequencies (5 Hz, 7.5 Hz,

10 Hz) contribute little to decrease the model error further. Although the model error

is decreasing monotonically, one would expect the inversion for the last frequencies to

have more impact. Finally, the model vector presented in Fig. 5.4 show a precise match

between the inverted and correct model parameters. The total computation time for the

inversion in case of noiseless data was 379 minutes, while the final model error was 0.106

(10.6%).
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Similarly to Section 3.4.1, noise is added to the synthetic data to verify the inversion in

a more realistic case. The fracture density inversion result for the syncline model in the

case of noisy data, with an SNR of 40 dB, is shown in Fig. 5.5a. The computed absolute

error of the inverted fracture density is displayed in Fig. 5.5b. Compared to the noiseless

result in Fig. 5.1a, it is overall acceptable but slightly worse. The corners, as well as the

syncline feature, show more prominent erroneous grid points, as seen in Fig. 5.5b. From

the absolute error measurement, it is obvious that the noisy data somewhat hampers the

inversion method. Although assessing the results above, the DBI inversion for fractures

appear rather resistant to noise effects.

The stiffness perturbations of the C11 and C33 parameters are shown in Figs. 5.6a and

5.6b, respectively. In the presence of noise, the changes between the syncline layer and

the layer below is still barely visible in the C11 parameter. For the C33 parameter, the

contrast between the layers is visible. Overall the results of these parameters exhibit

accurate matches to the true syncline models in Section 3.4.1. Figs. 5.6c and 5.6d show

the C55 and C13 parameters, respectively. Overall, both these stiffness parameters have

been recovered by inversion, and they are very close to the noiseless results.

Furthermore, Fig. 5.7 display the DBI inversion performance, while Fig. 5.8 show the

model vector. The data error successfully converges to the noise-level of 10−2, while the

model error decreases monotonically. For the model vector, the inverted result is further

away from the true model than in the noiseless case. Most of the difficult areas in the

middle of the model, however, have been recovered successfully. Finally, in the case of

noisy data, the computation time was 225 minutes, while the final model error was 0.133

(13.3%). Due to the stopping criteria (tolerance) being lower, in the case of noisy data,

the computation time is shorter.
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(a) Inverted fracture density
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Figure 5.1: DBI inversion result for the syncline model, for the noiseless data.
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(d) ∆C13

Figure 5.2: The corresponding normalised stiffness perturbations of the syncline model,
for the noiseless data. The colour map is the same for all parameters.
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Figure 5.3: Performance of the DBI inversion for stiffness perturbation in the syncline
model, for the noiseless data. Model error (εm) and residual data error (εd) depend on
the iteration number. The equations for data and model error are given in Eqs. (4.35)
and (4.36). The data error converges to the noise-level (red dashed line). The last two
plots show regularisation parameter (λ) and frequency (f), respectively.
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Figure 5.4: Model parameters of the DBI inversion result for the normalised stiffness
perturbation in the syncline model, for the noiseless data. The starting model is shown
as a blue line, the true model as a black line, and the inversion results as a red line.
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(a) Inverted fracture density
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(b) Absolute error

Figure 5.5: DBI inversion result for the syncline model, with inverted fractured density
(left) and absolute error (right). The data is noisy with an SNR of 40dB.
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(a) ∆C11
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(b) ∆C33
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(c) ∆C55
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(d) ∆C13

Figure 5.6: The corresponding normalised stiffness perturbations of the syncline model,
for the noisy data with an SNR of 40 dB. The colour map is the same for all parameters.
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Figure 5.7: Performance of the DBI inversion for stiffness perturbation in the syncline
model, for the noisy data with an SNR of 40 dB. Model error (εm) and residual data error
(εd) depend on the iteration number. The data error converges to the noise-level (red
dashed line). The last two plots show regularisation parameter (λ) and frequency (f),
respectively.
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Figure 5.8: Model parameters of the DBI inversion result for the normalised stiffness
perturbation in the syncline model, for the noisy data with an SNR of 40 dB. The starting
model is shown as a blue line, the true model as a black line, and the inversion results as
a red line.
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5.3.2 Anticline Model

In this section, the inversion for fracture density in the anticline model case is performed.

The anticline model was presented in Section 2.4.2, and the modelling was described in

Section 3.4.2. The total number of grid blocks is 1107, and the dimension of the grid

is 41x27. It should be noted that the number of sources is 11, while the number of

receivers is 41. The reason for the reduction in the number of sources is to reduce the

computational cost and was discussed in Section 3.4.2. The number of model parameters

that are inverted is equal to the number of grid blocks.

The inverted fracture density model is presented in Fig. 5.9a, with the corresponding

absolute error in Fig. 5.9b. By comparing the inverted anticline result to the true model

in Fig. 2.7, it is quite obvious that the inversion is successful. The differences and

contrasts between the layers are clear, and the anticline layer (in orange) is well retained

after inversion. From the absolute error figure, it is evident that most of the grid blocks

have absolute errors below 0.01 (1%). The upper layer has been correctly recovered,

though some grid blocks in the anticline feature have a higher absolute error than 0.01.

The fracture density model in Fig. 5.9a combined with the t-matrix described in this

chapter, yields the normalised stiffness perturbations shown in Fig. 5.10. By comparing

these stiffness perturbations to their respective true counterparts, Fig. 3.8, a clear re-

semblance is seen. Note that the perturbation in C11 is minimal, as discussed in Section

2.4.2, and is mainly included for completeness. However, the three other parameters, C33,

C55, and C13, are almost identical to the true models in terms of the main (geological)

features. The complex features, i.e. the two tilted layers and the anticline, are easy to

make out in the stiffness perturbation models in Fig. 5.10.

The model error, data error, regularisation parameter, and frequency of this inversion is

presented in Fig. 5.11. The inversion process, as seen in the figure, is very stable, and

the model error reaches a quite low level. Each step of inversion for a specific frequency

takes almost the same number of iterations. What was observed above can also be seen in

Fig. 5.12, where the model vector comparison is displayed. Overall, the inverted fracture

density result closely matches the correct fracture density of the anticline model. The

total computation time for the inversion in case of noiseless data was 448 minutes, while

the final model error was 0.095 (9.5%).
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In the case of noisy data, with an SNR of 40 dB, the DBI fracture density inversion result

for the anticline model, is shown in Fig. 5.13a. The different layers are still clearly visible,

but more erroneous points are present in the corners. The absolute error, in Fig. 5.13b,

confirms that there is an overall higher error in the noisy case. The “stairs” feature of

the anticline is still quite difficult to recover, although the interface between the layers is

visible.

The normalised stiffness perturbations are displayed in Fig. 5.14, which depend on Fig.

5.13a. The differences between these results and the noiseless results in Fig. 5.10, are

few. The C55 parameter in Fig. 5.14c is notably worse in the upper right corner, mainly

due to the low contrast between each layer. The other parameters, especially C33 and

C13, show a correct reconstruction compared to the true models.

Fig. 5.15 show the performance of the DBI inversion for fracture density in the anticline

model. The convergence of the data error is quite fast in the noisy inversion, as the toler-

ance (noise-level) is set to 10−2. However, the model error still reaches a very acceptable

level (around 0.1). In Fig. 5.16, the inverted model vector is compared to both the start-

ing and true models. The inverted fracture density result is very similar to the correct

fracture density. There are more deviations than in the noiseless case, but overall most of

the problematic points are close to the actual value. Finally, the total computation time

for the inversion in case of noiseless data was 221 minutes, while the final model error was

0.119 (11.9%). Due to the stopping criteria (tolerance) being lower, in the case of noisy

data, the computation time is shorter.
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(a) Inverted fracture density
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(b) Absolute error

Figure 5.9: DBI inversion result for the anticline model, with inverted fractured density
(left) and absolute error (right). The data is noiseless.
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(a) ∆C11
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(b) ∆C33
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(c) ∆C55
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(d) ∆C13

Figure 5.10: The corresponding normalised stiffness perturbations of the anticline
model, for the noiseless data. The colour map is the same for all parameters.
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Figure 5.11: Performance of the DBI inversion for stiffness perturbation in the anticline
model, for the noiseless data. Model error (εm) and residual data error (εd) depend on
the iteration number. The equations for data and model error are given in Eqs. (4.35)
and (4.36). The data error converges to the noise-level (red dashed line). The last two
plots show regularisation parameter (λ) and frequency (f), respectively.
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Figure 5.12: Model parameters of the DBI inversion result for the normalised stiffness
perturbation in the anticline model, for the noiseless data. The starting model is shown
as a blue line, the true model as a black line, and the inversion results as a red line.

86



Chapter 5. Waveform Inversion for Fracture Parameters

0 200 400 600 800

L
x
 [m]

0

200

400

600

L
z
 [
m

]

0.02

0.04

0.06

0.08

0.1

F
ra

c
tu

re
 d

e
n

s
it
y
 [

u
n

it
]

(a) Inverted fracture density
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(b) Absolute error

Figure 5.13: DBI inversion result for the anticline model, with inverted fractured density
(left) and absolute error (right). The data is noisy with an SNR 40 dB.
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(b) ∆C33
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(c) ∆C55
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(d) ∆C13

Figure 5.14: The corresponding normalised stiffness perturbations of the anticline
model, for the noisy data with an SNR of 40 dB. The colour map is the same for all
parameters.

87



Chapter 5. Waveform Inversion for Fracture Parameters

5 10 15 20 25 30

0.2

0.4

0.8

m

5 10 15 20 25 30
10

-2

10
-1

d

5 10 15 20 25 30

10
-35

5 10 15 20 25 30

Iteration number

3
5

7.5
10

f 
[H

z
]

Figure 5.15: Performance of the DBI inversion for stiffness perturbation in the anticline
model, for the noisy data of 40 dB SNR. Model error (εm) and residual data error (εd)
depend on the iteration number. The data error converges to the noise-level (red dashed
line). The last two plots show regularisation parameter (λ) and frequency (f), respectively.

100 200 300 400 500 600 700 800 900 1000 1100

Model points

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

F
ra

c
tu

re
 d

e
n
s
it
y
 [
u
n
it
]

Figure 5.16: Model parameters of the DBI inversion result for the normalised stiffness
perturbation in the anticline model, for the noisy data of 40 dB SNR. The starting model
is shown as a blue line, the true model as a black line, and the inversion results as a red
line.
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5.4 Concluding Remarks

In this chapter, the DBI inversion method has successfully been applied to fracture density

FWI. Isolated, horizontal fractures were represented by the t-matrix to provide a relation-

ship between fractures and stiffness. The main points of the decomposition of the stiffness

perturbation tensor was discussed, relating the B-matrix and t-matrix. Expressions for

the scattered wavefield were presented, with an updated sensitivity matrix calculated in

each iteration. Overall, the inversion results were promising.

Two distinctive models with different source-configurations have been modelled and in-

verted for, to analyse the quality of the fracture inversion. In the syncline model results,

shown in Figs. 5.1a and 5.5a, and in the anticline model results, shown in Figs. 5.9a and

5.13a, it is evident that the DBI inversion method works well in the fracture density case.

A few erroneous values, on the edge of the syncline and anticline models, can be observed

in all of the results. However, these inaccuracies were more prominent when noise is

present. All the respective stiffness perturbations were well recovered and overall match

the true models quite closely. Interestingly, inverting for more than one frequency does

not significantly impact the model error, as seen in Figs. 5.3, 5.7, 5.11, and 5.15. Thus,

using only one frequency in both modelling and inversion could likely save computational

time while still giving acceptable results.

Assessing the above results, the DBI inversion for fractures appear somewhat resistant to

noise effects. There were few discrepancies when comparing the results with and without

noise. Also, in the presence of more complex features and less sources, the results were

still remarkable. Inverting for only parameter, e.g. fracture density, makes the inversion

process more stable, and increases the accuracy. However, the quality of fracture-inversion

will always depend on the rock physics model, and more specifically on the fracture model.
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Discussion and Conclusion

6.1 Discussion

The main objective of this work was to develop methods for non-linear elastic wave-

form inversion in the presence of fracture-induced anisotropy. Throughout this thesis, the

theoretical background for elastic FWI in anisotropic media has been explained. The elas-

todynamic wave equation was solved via an equivalent integral-equation of the Lippmann-

Schwinger type, as described in Section 3.3. Two methods, stiffness-based and fracture-

based respectively, of inverting for stiffness perturbation have been employed with the

DBI inversion scheme as described in Section 4.2. Fracture-inversion was extended to

non-linear inversion, in Chapter 5. The results indicate that fracture density inversion is

superior to stiffness-inversion.

The results for the stiffness-based DBI inversion, in Section 4.3, indicate that the in-

troduction of noise can pose problems. Figs. 4.6 and 4.14 show a substantially higher

absolute error in the presence of noise, compared to the noiseless results in Figs. 4.2 and

4.10. For the anticline model of Section 4.3.2, the inaccurate results are also a result of

the reduction in the number of sources. The results are consistent with Tsvankin (2012),

Kamath and Tsvankin (2016), and Jakobsen et al. (2017), in that inversion for the C13

stiffness parameter, as seen in Figs. 4.5d and 4.13d, is challenging. The C13 parameter,

shown in Figs. 4.6d and 4.14d, is arguably the largest contribution to the high model

error described in Table 4.1. The results for the C33 parameter, shown in Figs. 4.6b and

4.13b, show a good reconstruction of the true model. Primarily, the C33 is less affected

by cross-talk and more susceptible to change due to horizontal fractures, as discussed in

Section 2.4.1.

The results for the fracture density DBI inversion, as per Section 5.3.1, suggest that this
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approach is favourable when characterising a fractured reservoir. This is consistent with

Bansal and Sen (2010) and Pilskog et al. (2015), that found fracture-based inversion to be

highly flexible and efficient. From the stiffness perturbation results in Figs. 5.2, 5.6, 5.10,

and 5.14, the main observation is that the results are excellent, independent of both noise-

level and model type. The absolute errors of the noisy results, in Figs. 5.5b and 5.13b,

are overall low. Both computation time and model error, per Table 5.1, are relatively low

compared to the respective stiffness-inversion values in Table 4.1.

Most importantly, the fracture-based inversion seems to perform well in a more realistic

case of random noise and less sources, which is consistent with Pilskog et al. (2015). This

observation is evident when reviewing Figs. 5.9 and 5.13 for the anticline model. The

inversion process is stable, for both noiseless and noisy data, due to the single model

parameter (Pilskog et al., 2015). Inverting for a quite low number of frequencies gave

good results, which is consistent with Bansal and Sen (2010).

These results agree with prior research by Bansal and Sen (2010) and Pilskog et al. (2015),

that inversion for fractures in laterally varying fractured media achieves respectable re-

sults. The main difference compared to Bansal and Sen (2010) and Pilskog et al. (2015),

is that in this work, the DBI inversion method was applied rather than ray-Born. Solving

the non-linear inverse problem, gives a higher computational cost, although the results

are more realistic by accounting for multiple scattering. Specifically for this work, Green’s

tensors are updated to account for the actual medium as opposed to using only the back-

ground (reference) Green’s tensor as was used in Bansal and Sen (2010) and Pilskog et al.

(2015).

The main implication of the stiffness-based inversion results, discussed above, is that the

parametrisation of seismic anisotropy is crucial. Jakobsen et al. (2017) argues that the

anisotropic FWI has problems with cross-talk effects, as discussed in Section 2.2. Figs.

4.13d and 4.14d clearly show that the C13 parameter is incorrectly resolved in the DBI

inversion of Section 4.3.2, which is consistent with Kamath and Tsvankin (2016). For the

fracture-based inversion, the C13 parameter in Fig. 5.14d is considerately better than for

the stiffness-based inversion. Practically, this implies that it is better to use fracture-based

inversion for reservoirs.

One may argue that the elastic FWI that was used in this thesis, is not strictly FWI

since only parts of the wavefield frequency-content is accounted for in the computations.

According to Pratt (1999) and Bansal and Sen (2010), however, a few frequencies can

sufficiently account for the source wavelet, while providing reasonable results. Therefore,

it was considered sufficient to only use a set of four frequencies in this thesis. Based on

recent research on anisotropic elastic FWI, the terminology used in this work is consistent
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(e.g. Zhang et al., 2017; Jakobsen et al., 2020b; Huang et al., 2020a).

Due to the lack of required computational power, the models were reduced in size to

overcome memory constraints. Iterative methods, like the Born-Neumann series, could

have calculated the full integral-equation solution, in Section 3.3, more efficiently. As the

Born-Neumann series has convergence issues (Osnabrugge et al., 2016), recent research has

been done on solving the Lippmann-Schwinger scattering series by renormalisation and

homotopy methods (see Jakobsen et al., 2020a,c). Besides, as mentioned in Chapter 1, the

3D Green’s function, which is more computationally intensive, was used for 2D models.

As the modified 3D Green’s function was given explicitly in Jakobsen et al. (2020b), this

leads to the most straightforward implementation. Additionally, better results could likely

have been obtained using a broader model, according to Zhang et al. (2017).

The main limitation of fracture density inversion is the dependence on a good rock physics

model (fracture model). Fractures were horizontally aligned, see Section 2.4, which is

based on the assumption that the orientation of fractures is known. According to Sayers

(2009), fractured reservoirs contain more than one fracture orientation (type), and not

accounting for this may lead to misleading results. For the computation of stiffness

perturbations in Section 5.3.1, only the first-order correction, as per Section 2.3.3, was

used. This approximation is reasonable for fracture densities below 0.1, as stated by Cheng

(1993) and Jakobsen et al. (2003a). In principle, a different fracture model and approach,

than the t-matrix inclusion model, could have been used in this thesis. The linear-slip

theory (Schoenberg, 1980), described in Section 2.3.2, is an example of a fracture model

that has been used recently (Zhang et al., 2017).

6.2 Conclusion

By further developing methods for non-linear FWI in elastic anisotropic media, this thesis

has shown how two DBI inversion-methods for fractures can be implemented. Information

of geological interest and estimation of anisotropic permeability, that is relevant to reser-

voir characterisation, can be obtained by inverting for fracture parameters rather than

stiffness parameters. The integral-equation approach, combined with the elastic FWI for

anisotropic media provides a powerful tool for high-resolution seismic imaging.

The results indicate that the fracture-inversion is advantageous compared to stiffness-

inversion in fractured media. Four stiffness parameters can be controlled using only

one fracture parameter, reducing the complexity of multi-parameter FWI to a single-

parameter problem. Consequently, this may lead to lower computational cost and higher

accuracy.
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The research of this thesis clearly illustrates the importance of seismic anisotropy when

it comes to the characterisation of fractures, in addition to an adequate fracture model.

6.3 Future Work

To better understand the implications of these results, future research could address the

following:

• Solving Lippmann-Schwinger with Fast Fourier Transform (FFT), as was mentioned

by Huang et al. (2020a) and Jakobsen et al. (2020c).

• Using the Gassmann-consistent FWI for fracture parameters, as demonstrated by

Jakobsen and Pilskog (2016).

• Applying the theory of this work to an HTI medium with vertical fractures.

• Extending the non-linear inversion theory to permeability tensors (Jakobsen, 2006;

Shahraini et al., 2011).

FFT is an algorithm applying a fast method of the well-known discrete Fourier transform.

The Lippmann-Schwinger equation in Eq. (3.17), is a convolution in the frequency-

domain, which translates to multiplication in the Fourier domain (Jakobsen et al., 2020a).

By using the FFT algorithm, memory used can be reduced, and the implementation will

be more efficient (Jakobsen et al., 2020c).

By using the anisotropic Gassmann relations, the dry fractured medium could be saturated

with any fluid. Additionally, these fractures could be partially saturated with a fluid,

based on Jin et al. (2018).

Vertical fractures are more realistic in naturally fractured reservoirs (e.g. Schoenberg and

Sayers, 1995; Bakulin et al., 2000), and can be implemented by extending this work to

HTI media. Ideally, more than one fracture set should be modelled to represent different

shapes and orientations (Sayers, 2009).

The theory of the t-matrix for fractures, in Section 2.3.3, can be applied to permeability

tensors similarly to stiffness tensors (Jakobsen, 2006; Shahraini et al., 2011). The effective

permeability tensor quantifies the materials ability for fluid to flow (Guéguen and Palci-

auskas, 1994; Mavko et al., 2009). Permeability is related to both pores and fractures, as

connected inclusions increase permeability.

94



Appendices

95



96
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A Rock Physics G-tensor

The G-tensor of phase r, G(r), can be written as (Torquato and Haslach Jr, 2002; Jakobsen

and Johansen, 2005)

G(r) = −S(r) : S(0), (A.1)

where S(r) is the compliance tensor of the ellipsoid (Eshelby, 1957), and S(0) is the reference

compliance tensor given by S(0) =
(
C(0)

)−1
.

For an isotropic matrix with spherical inclusions of aspect ratio αc and a vertical symmetry

axis, the elliptic integral can be evaluated analytically (Jakobsen and Johansen, 2005).

Assuming only one phase of inclusions (r ≡ 1), the components of the compliance tensor,

SIJ , are given by (Torquato and Haslach Jr, 2002; Jakobsen and Johansen, 2005)

S11 = S22 =
3

8(1− ν)

α2
c

α2
c − 1

+
1

4(1− ν)

[
1− 2ν − 9

4(α2
c − 1)

]
q , (A.2)

S33 =
1

2(1− ν)

{
1− 2ν +

3α2
c − 1

α2
c − 1

−
[
1− 2ν +

3α2
c − 1

α2
c − 1

]
q

}
, (A.3)

S12 = S21 =
1

4(1− ν)

{
α2
c

2(α2
c − 1)

−
[
1− 2ν +

3

4(α2
c − 1)

]
q

}
, (A.4)

S13 = S23 =
1

2(1− ν)

{
−α2

c

α2
c − 1

+
1

2

[
3α2

c

α2
c − 1

− (1− 2ν)

]
q

}
, (A.5)

S31 = S32 =
1

2(1− ν)

{
2ν − 1− 1

α2
c − 1

+

[
1− 2ν +

3

2(α2
c − 1)

]
q

}
, (A.6)

S66 =
1

4(1− ν)

{
α2
c

2(α2
c − 1)

+

[
1− 2ν − 3

4(α2
c − 1)

]
q

}
, (A.7)

S44 = S55 =
1

4(1− ν)

{
1− 2ν − α2

c + 1

α2
c − 1

− 1

2

[
1− 2ν − 3(α2

c + 1)

α2
c − 1

]
q

}
, (A.8)

where ν is Poisson’s ratio and q is a constant. Poisson’s ratio is given by (Mavko et al.,

2009)

ν =
3κ− 2µ

2(3κ+ µ)
, (A.9)

where µ =
C

(0)
44

2
and κ = C

(0)
11 − 4

3
µ.

The constant q, in Eqs. (A.2) - (A.8), is given by (Jakobsen and Johansen, 2005)

q =
αc

(1− αc)
3
2

[
cos−1αc − αc(1− α2

c)
1
2

]
, (A.10)

when αc ≤ 1.
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In this thesis, the condition of aspect ratio being lower than one will always be satisfied.

This is due to inclusions being cracks/fractures, with an aspect ratio commonly in the

range 0.001 ≤ αc ≤ 0.05. The compliance tensor, SIJ , in this case, can be written as

(Mavko et al., 2009):

S =



S11 S12 S13 0 0 0

S12 S11 S13 0 0 0

S31 S31 S33 0 0 0

0 0 0 2S44 0 0

0 0 0 0 2S44 0

0 0 0 0 0 2S66


, (A.11)

where the Kelvin notation for compliance is used. The strain Green’s tensor can then be

calculated with Eq. (A.1).

The equations above can be simplified for spheres (spherical pores), where αc = 1 and

q = 2
3
. In consequence, the compliance tensor can be written as (Jakobsen and Johansen,

2005)

Sijkl =
5ν − 1

15(1− ν)
δijδkl +

4− 5ν

15(1− ν)
(δikδjl + δilδjk) , (A.12)

where the Kronecker-delta δkl is defined as

δkl =

0, if k 6= l

1, if k = l

 . (A.13)

Flat, compliant Hudson cracks are defined with αc → 0 and q → 0. The only non-zero

compliance tensors are given by (Jakobsen and Johansen, 2005)

S33 = 1 , (A.14)

S31 = S32 =
ν

1− ν
, (A.15)

and

S55 = S44 =
1

2
. (A.16)
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B Reference Green’s Function and Derivatives

B.1 Leading-term Green’s Function

The exact Green’s function, G, for a homogeneous and isotropic medium, can be repre-

sented by a ray series of three terms (Jakobsen et al., 2020b). This ray series has two parts,

one for P-waves and one for S-waves. The far-field approximation for P- and S-waves will

be used in this thesis, as it is the most relevant (Snieder, 2002). This approximation can

be seen as a high frequency approximation (Červený, 2005), expressed by the zero-order

term (Eisner and Pšenč́ık, 1996; Madariaga, 2007; Jakobsen et al., 2020b). Also, the far-

field approximation works well when compared to the exact Green’s function (Eisner and

Pšenč́ık, 1996).

By considering a Green’s function between a source, xs, and a receiver, xr, the Green’s

function can be represented by the contribution from both P- and S-waves. Consequently,

the homogeneous isotropic Green’s function can be written as (Eisner and Pšenč́ık, 1996;

Snieder, 2002; Červený, 2005; Madariaga, 2007; Jakobsen et al., 2020b):

Gkl(r, ω) = GP
kl(r, ω) +GS

kl(r, ω) , (B.1)

where

GP
kl(r, ω) ∼ A(r)

r

(
NkNl +

α

iωr
eJkeJl

)
, (B.2)

and

GS
kl(r, ω) ∼ B(r)

r

(
eJkeJl +

β

iωr
NkNl

)
. (B.3)

In Eqs. (B.2) and (B.3), α and β are P- and S-wave velocities, r is the source-receiver

distance, N is the normal unit vector and vectors eJk and eJl are projections of a unit

vector (Eisner and Pšenč́ık, 1996). Lower-case indices run from 1 to 3, upper-case indices

run from 1 to 2. The Einstein summation rule (Einstein, 1916) is applied. The normal-

vector can be defined as

Ni =
ni
r
, (B.4)

where r = ‖n‖ and n = xr − xs.

The terms A(r) and B(r), in Eqs. (B.2) and (B.3), are defined as

A(r) =
exp(iωr/α)

4πρα2
, (B.5)

and

B(r) =
exp(iωr/β)

4πρβ2
. (B.6)
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B.2 First-Order Spatial Derivatives of Green’s Function

P-wave

By focusing on the P-wave part, GP
kl, Eq. (B.2) can be rewritten as (Jakobsen et al.,

2020b):

GP
kl(r, ω) ∼ A(r)

r2

[
aδkl +

xkxl
r

(
1− a

r

)]
, (B.7)

where

a = α/iω , (B.8)

and the Kronecker delta, δkl, is given in Eq. (A.13).

To find the first derivative of the P-wave Green’s function, GP
kl, the following notation is

introduced to simplify Eq. (B.7):

X(r) = A(r) , Ykl(r) = aδkl +
xkxl
r

(
1− a

r

)
, Z(r) = r2 . (B.9)

This simplifies Eq. (B.7) to

GP
kl =

XYkl
Z

, (B.10)

where GP
kl depend on radial distance, r, and angular frequency, ω.

The first spatial derivative of GP
kl, can be obtained from Eq. (B.10) by differentiation:

GP
kl,i =

(X,iYkl +XYkl,i)Z −XYklZ,i
Z2

, (B.11)

where the comma notation for derivatives is defined by Gkl,i = ∂
∂xi
Gkl.

The first spatial derivatives of X, Ykl and Z are given by:

X,i = A,i = A
iωxi
αr

=
A

a

xi
r
, (B.12)

Ykl,i =
δikxl + δilxk

r

(
1− a

r

)
− xkxlxi

r3

(
1− 2

a

r

)
, (B.13)

Z,i = 2xi . (B.14)

By Madariaga (2007), the expression in Eq. (B.11) can be written as:

GP
kl,i(r, ω) =

iω

4πrρα3
Pkli exp(iωr/α) , (B.15)

where the P-wave coefficient, P , is defined as Pkli ≡ nknlni (Madariaga, 2007). The

normal unit vector, n, is given in Eq. (B.4).
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S-wave

For the S-wave part, GS
kl, Eq. (B.3) can be simplified to

GS
kl(r, ω) ∼ B(r)

r

[
δkl +

xkxl
r2

(
2b

r
− 1

)]
, (B.16)

where

b = β/iω . (B.17)

Introducing the following notation for the S-wave part:

V (r) = B(r) , Wkl(r) = δkl +
xkxl
r2

(
2b

r
− 1

)
, U(r) = r . (B.18)

Equation (B.16) can then be rewritten as

GS
kl =

VWkl

U
. (B.19)

The derivative of Eq. (B.19) is then

GS
kl,i =

(V,iWkl + VWkl,i)U − VWklU,i
U2

(B.20)

The first spatial derivatives of V , Wkl and U are given by:

V,i = B,i = B
iωxi
βr

=
B

b

xi
r
, (B.21)

Wkl,i =
δikxl + δilxk

r2

(
2b

r
− 1

)
− 2

xkxlxi
r4

(
3b

r
− 1

)
, (B.22)

U,i =
xi
r
. (B.23)

Similarly to Eq. (B.15), an expression for the S-wave part in Eq. (B.20) can be written

as

GS
kl,i(r, ω) =

iω

4πrρβ3
Skli exp(iωr/α) , (B.24)

where the S-wave coefficient, S, is defined as Skli ≡ δklni − nknlni (Madariaga, 2007).

The normal unit vector, n, is given in Eq. (B.4).
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M-tensor

The third-rank Green’s function can be referred to as the M-tensor and depends on the

first spatial derivate of the Green’s function. From Eq. (B.1), this Green’s function can

be expressed as

Gkl,i(r, ω) = GP
kl,i(r, ω) +GS

kl,i(r, ω) , (B.25)

where GP
kl,i(r, ω) and GS

kl,i(r, ω) can be calculated with Eqs. (B.15) and (B.24), respec-

tively.

The M-tensor in Eq. (3.15) can then be expressed as (Jakobsen et al., 2020b)

Mkli(r, ω) = −1

2
[Gkl,i(r, ω) +Gki,l(r, ω)] . (B.26)

B.3 Second-Order Spatial Derivatives of Green’s Function

P-wave

Continuing from the previous section, an expression for the second derivative of Green’s

function, Gkl, can be derived. Considering the P-wave part of the second spatial derivate

of GP
kl again. The derivative of Eq. (B.11) is given by

GP
kl,ij =

X,ijYkl +XYkl,ij +X,iYkl,j +X,jYkl,i
Z

− Z,ijXYkl +X,iZ,jYkl + Ykl,iZ,jX +X,jZ,iYkl + Ykl,jZ,iX

Z2
+ 2

Z,iZ,jXYkl
Z3

. (B.27)

The second spatial derivatives of X, Ykl and Z in Eq. (B.9) are given by Eqs. (B.28) -

(B.30).

X,ij = A,ij = A

[
iω

αr

(
δij −

xixj
r2

)
− ω2xixj

α2r2

]
=
A

a

[
1

r

(
δij −

xixj
r2

)
+
xixj
ar2

]
, (B.28)

Ykl,ij =
δikδjl + δilδjk

r

(
1− a

r

)
− δikxlxj + δilxjxk + δjkxlxi + δjlxkxi + δijxkxl

r3

(
1− 2

a

r

)
+
xkxlxixj

r5

(
3− 8

a

r

)
,

(B.29)

Z,ij = 2δij . (B.30)
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S-wave

For the S-wave part, GP
kl, the derivative of Eq. (B.20) is given by

GS
kl,ij =

V,ijWkl + VWkl,ij + V,iWkl,j + V,jWkl,i

U

− U,ijVWkl + V,iU,jWkl + U,jWkl,iV + V,jU,iWkl +Wkl,jU,iV

U2
+ 2

U,iU,jVWkl

U3
.

(B.31)

The second spatial derivatives of V , Wkl and U in Eq. (B.18) are given Eqs. (B.32) -

(B.34).

V,ij = B,ij = B

[
iω

βr

(
δij −

xixj
r2

)
− ω2xixj

β2r2

]
=
B

b

[
1

r

(
δij −

xixj
r2

)
+
xixj
br2

]
, (B.32)

Wkl,ij =
δikδjl + δilδjk

r2

(
2b

r
− 1

)
− 2

δikxlxj + δilxjxk + δjkxlxi + δjlxkxi + δijxkxl
r4

(
3b

r
− 1

)
+

2xkxlxixj
r6

(
15b

r
− 4

)
,

(B.33)

U,ij =
1

r

(
δij −

xixj
r2

)
. (B.34)

Γ-tensor

The fourth-rank Green’s function can be referred to as the Γ-tensor and depends on the

second spatial derivate of the Green’s function. From Eq. (B.25), this Green’s function

can be expressed as

Gkl,ij(r, ω) = GP
kl,ij(r, ω) +GS

kl,ij(r, ω) . (B.35)

The Γ-tensor in Eq. (3.18), can then be calculated by using Eq. (B.35).
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