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Abstract Weundertake a formal derivation of a linear poro-thermo-elastic systemwithin the
framework of quasi-static deformation. This work is based upon the well-known derivation
of the quasi-static poroelastic equations (also known as the Biot consolidation model) by
homogenization of the fluid-structure interaction at the microscale. We now include energy,
which is coupled to the fluid-structure model by using linear thermoelasticity, with the full
system transformed to a Lagrangian coordinate system. The resulting upscaled system is sim-
ilar to the linear poroelastic equations, but with an added conservation of energy equation,
fully coupled to the momentum and mass conservation equations. In the end, we obtain a
system of equations on the macroscale accounting for the effects of mechanical deformation,
heat transfer, and fluid flow within a fully saturated porous material, wherein the coefficients
can be explicitly defined in terms of the microstructure of the material. For the heat trans-
fer we consider two different scaling regimes, one where the Péclet number is small, and
another where it is unity. We also establish the symmetry and positivity for the homogenized
coefficients.
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1 Introduction

The theory of consolidation of soils goes back to the work of Terzaghi (1944) and Biot
(1941, 1972, 1977), and since then numerous authors have contributed to the field, extending
the models to different situations and providing more rigorous results for the equations.
Today, this field is better known as ‘poroelasticity’, and is of great importance in a range of
different engineering disciplines, such as reservoir engineering and biomechanics. Notable
contributions are Burridge and Keller (1981), where a formal upscaling leading to the quasi-
static Biot-model was undertaken, and the book Sanchez-Palencia (1980) where a rigorous
derivation can be found. In Clopeau et al. (2001) and Gilbert andMikelić (2000) the rigorous
derivation of a dynamic Biot-model corresponding to different choices of scalings of the
microstructure is undertaken, and in Ferrin and Mikelić (2003) the case of an inviscid fluid
filling the pore space is treated. In Lévy (1979) elastic wave propagation is considered.
Additional cases and results can also be found in the references of these works.

The motivation for the present article is to better understand how thermal stresses in
the solid structure of a porous medium are influenced by the forces exerted on the pore
walls by the fluid. We consider a porous medium on the macroscopic scale such that the
continuum hypothesis is valid, and derive the pointwise continuum model by upscaling the
fluid-structure interaction at the microscopic scale where the complex geometry is resolved.
We shall focus on a natural system, such as the subsurface, where flow velocity, mechanical
strain, and temperature changes are small. This also allows for linearization of the constitutive
laws of thermoelasticity, as well as linearization of the fluid-structure coupling conditions.
Topics such as nonlinear deformation and high flow rates are beyond the scope of this article.
Previously, the homogenization of a similar model problem was undertaken by Lee and
Mei (1997), but with a different scaling, and with the fine-scale model defined in terms
of Eulerian coordinates. This approach leads to relatively strict conditions on the allowable
deformations. It also makes a direct comparison of models difficult. In Bringedal et al. (2016)
a formal upscaling of non-isothermal reactive flow in porous media was undertaken, but the
solid matrix was assumed rigid. In Eden and Muntean (2017) homogenization of a fully
coupled thermoelasticity problem was undertaken, but not in the context of fluid-structure
interaction. In the book Coussy (1995) there is also a section on linear thermo-poroelasticity,
where the macroscale equations are derived using principles from continuum mechanics
and thermodynamics. While finalizing this work, we have been made aware that a similar
derivation has been undertaken simultaneously by the authors van Duijn et al. Their work is
currently under review and exists as a preprint (Van Duijn et al. 2017).

Our microscale model consists of a fluid-structure interaction model, and energy con-
servation for both phases (the solid and fluid), where we scale the fluid-structure equations
corresponding to the biphasic macroscopic behavior of the system (i.e., fluid pressure in
balance with the normal forces coming from the solid matrix, and small viscous forces in the
fluid). A rigorous study of this situation in the isothermal case can be found in Clopeau et al.
(2001). Different scalings are of course possible, and for different values of the reference
quantities, the homogenization process may result in vastly different macroscale models.
A discussion around the characterization of the behavior of porous media according to the
values of such reference quantities can be found in Auriault (1991). Regarding the energy
conservation, we consider two different scaling regimes; one corresponding to a Péclet num-
ber of order one, giving a (nonlinear) convective term in the upscaled energy conservation
equation, and one corresponding to a small Péclet number, resulting in no convective term,
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Upscaling of the Coupling of Hydromechanical and Thermal… 139

giving a fully linear upscaled system. Depending on the flow rate and the thermal conductive
properties of the fluid, both may be relevant.

The upscaling procedure is done via the formal two-scale asymptotic expansionmethod of
homogenization.This is awell-known technique for qualitatively assessing the structure of the
upscaled equations. For a detailed explanation of this method we refer to the books Hornung
(2012) and Cioranescu and Donato (2000). For an accurate physical model, the values of the
homogenized coefficients should be confirmed by experiments, as the asymptotic expansion
method only provides formulas for these in the case of simple microscale geometries. Our
justification for the upscaled model comes from the similarity with the isothermal poroelastic
equations, and the analogy to the thermoelasticity equations in mechanics.

2 The Pore-Scale Model

2.1 Notation

A short remark on the notation used in this article is in order. We denote by : the scalar
product of two second-order tensors, i.e., A : B = ∑3

i, j=1 Ai j Bi j , and by ⊗ the vector outer
product, which given two vectors produce a second-order tensor, i.e., (u⊗v)i j = uiv j . Note
also that we shall reserve the use of bold fonts for tensors of second order or more.

2.2 Presentation of the Equations

In this and the next section we present the governing equations to be used throughout the
rest of this article. This will include a brief discussion of the constitutive relations of linear
thermoelasticity for an anisotropic solid, relevant for the present work. For a detailed deriva-
tion of the equations of linear thermoelasticity, we refer to the book Silhavy (2013). We also
mention Pabst (2005) where a more compact presentation is given.

Our physical domain is Ω = (0, L)3, which consists of a solid skeleton, Ωs , and a fluid
filled void space,Ω f , where the internal boundary between the solid and void parts is denoted
by Γ , i.e., in the reference configuration we have: Ω = Ωs ∪ Ω f ∪ Γ where Ωs ∩ Ω f = ∅,
and Γ = ∂Ωs ∩ ∂Ω f . We let J = (0, Tend] be the time interval, where Tend > 0 is the final
time. We denote by x = (x1, x2, x3) the coordinates of the reference configuration, and by t
the time coordinate.

We let w be the displacement vector of the solid, defined on the reference configuration,
and assume it can be decomposed as w(x, t) = ŵ(x, t) + w0(t), where ŵ corresponds
to the local deformation, and w0 corresponds to a rigid body motion. We let the v be the
flow velocity of the fluid, defined on the current configuration, which we then can write as

v(x + ŵ, t) = v̂(x + ŵ, t) + dw0

dt
(t), using the reference coordinates.

Given a body force b, the linear momentum balance for an elastic solid is given by

ρs
∂2w

∂t2
− ∇ · σ = b in Ωs × J, (1)

where ρs is the solid density. In the non-isothermal case, the constitutive equation for the
stress is

σ = σ (F, Ts), (2)

where Ts is the temperature distribution of the solid, and F is the deformation gradient.
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140 M. K. Brun et al.

Denoting by cs the specific heat capacity of the solid, the conservation of energy is given
by

ρscs
∂Ts
∂t

= σ : e(∂tw) − ∇ · hs, (3)

where hs is the heat flux within the solid.
In the pore space, the flow is governed by the Navier–Stokes equations

ρ f

(
∂v

∂t
+ v · ∇v

)

− ∇ p + μΔv = b, in Ω f (t) × J, (4)

with the mass conservation

∇ · v = 0, in Ω f (t) × J, (5)

where ρ f is the fluid density, p is the fluid pressure, and μ is the fluid viscosity.
Since there is no heat generation from dissipative effects in the fluid, we use a simple

convection-diffusion equation for the energy conservation

ρ f c f

(
∂T f

∂t
+ v · ∇T f

)

− ∇ · h f = 0, in Ω f (t) × J, (6)

where T f is the temperature distribution of the fluid, c f is the specific heat capacity of the
fluid, and h f is the heat flux within the fluid.

We now turn to the fluid-structure coupling conditions at the internal interface and denote
by ν the outward unit normal field of Ω f (i.e., pointing into the solid).

By Newton’s third law we must have a balance of normal forces coming from both sides

(pI + 2μ e(v)) |x+ŵν = σ ν, on Γ × J, (7)

where I denotes the 3 × 3 identity tensor.
The no-flow condition at the internal interface now takes the form

v|x+ŵ = ∂tw, on Γ × J. (8)

Finally, continuity of heat flux and continuity of temperature at the internal interface gives
(due to our assumption of the two phases being in local thermodynamic equilibrium)

h f |x+ŵ · ν = hs · ν, on Γ × J, (9)

and
T f |x+ŵ = Ts, on Γ × J. (10)

2.3 Constitutive Equations

We let (F0, θ0) denote the reference values of the deformation gradient and the temperature of
the medium (considered here to be uniform, i.e., constant), and assume that for all t ∈ J the
deviations from this reference state are small. Within this framework, a physical linearization
of the constitutive equations is justified (see Pabst (2005) for more details). The deformation
gradientF, however, is still a nonlinearmeasure of deformation; hence, we assume in addition
that the displacement gradients, or more precisely the local deformations, ŵ, are small such
that F can be considered approximately identity. This amounts to a geometric linearization
of the kinematic measures, and consequently, the first Piola–Kirchoff stress and the Cauchy
stress tensors coincide. The strains in the solid are therefore given by the symmetric gradient
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of the displacements, i.e., e(w) = 1
2 (∇w + (∇w)T ). The constitutive equation for the stress,

Eq. (2) then takes the form

σ (w, Ts) = Ce(w) − M(Ts − θ0), (11)

which is a generalized Hooke’s law, extended to include thermal effects. The stiffness tensor
of the material (or more precisely, the referential tensor of isothermal elasticities) is given
by C = (Ci jkl)

3
i, j,k,l=1, which satisfies Ci jkl = Ckli j = C jikl = Ci jlk , and the thermal

stress tensor (or the referential coefficient of thermal stress) is M = (Mi j )
3
i, j=1, satisfying

Mi j = Mji . In order to have symmetric positive definite coefficients in the upscaled problem,
the same must be true for C and M, i.e.,

Ce : e > 0,∀ e ∈ R
3×3 \ {0}, and Mx · x > 0,∀ x ∈ R

3 \ {0}. (12)

Further, we assume the heat fluxes within the solid and the fluid obey Fourier’s law of
heat conduction, i.e.,

hs = −Ks ∇Ts and h f = −K f ∇T f , (13)

where Ks = (Ks
i j )

3
i, j=1 and K f = (K f

i j )
3
i, j=1 are the thermal conductivity tensors of the

solid and fluid, respectively, which are assumed to be both symmetric and positive definite,
i.e., Ks, f

i j = Ks, f
j i , and Ks, f x · x > 0,∀ x ∈ R

3 \ {0}.
Within this completely linearized framework (physically and geometrically), the densities,

ρs and ρ f , are constants taking the values of the reference densities. We assume in addition
that the fluid viscosity, μ, is a constant.

We note that in a consistent linear theory, the material coefficients cannot depend on the
current temperature, but only on the (uniform) reference temperature, θ0.

2.4 The Domain

Before undertaking the scaling analysis,weprovide amore detailed description of the domain,
specifically that it ismade up of a periodic repetition of a single pore, such that the geometry of
the whole solid skeleton is determined by the geometry inside a singe microscopic cell. This
is a valid assumption since we are modeling a fine grained porous media with microstructure
on a scale much smaller than the continuum scale of interest. Thus, although the material
is heterogenous on the microscale, it appears locally homogenous on the macroscale. We
follow Allaire (1989) in this description.

Let l be a typical pore size, and let L be the size of the macroscale domain, and define as
usual ε = l/L . We let Ωε = 1

L Ω be the dimensionless domain, which now is Ωε = (0, 1)3,
such that Ωε

s and Ωε
f are the corresponding dimensionless solid and void parts, respectively,

and Γ ε is the corresponding dimensionless internal interface. We continue with the notation
J for the time interval; keeping in mind time is now also dimensionless.

Let Y = (0, 1)3 be the rescaled unit cube in R
3, consisting of a solid part, Ys ⊂ Ȳ , which

is a closed subset of strictly positive measure, and a void space, Y f = Y \ Ys , which is an
open and connected subset of strictly positive measure. We let now Γ = ∂Ys ∩ ∂Y f denote
the internal interface of the unit pore cell, and assume the configuration is such that Γ is a
smooth surface.Wemake a periodic repetition of Ys overR

3, and set Y ε
s,k = ε(Ys +k), where

k ∈ Z
3. Let K = {k ∈ Z

3 : Y ε
s,k ⊂ Ω̄ε}, such that Ω̄ε

s = ⋃
k∈K Y ε

s,k is the solid skeleton,
and Ωε

f = Ωε \ Ωε
s is the fluid filled void space. The fluid/solid internal interface can now

be written Γ ε = ∂Ωε
s \ ∂Ωε. By construction, both Ωε

s and Ωε
f are now connected sets of

strictly positive measure, and Γ ε is a smooth surface.
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142 M. K. Brun et al.

Fig. 1 Example of geometry inside unit cell. (Picture from Mikelić and Wheeler 2012)

The epsilon-superscript on Ωε implies the implicit dependence of the domain on both
length scales, l and L , but later when we impose the homogenization ansatz, we separate
these two scales, and let the size of the domain become arbitrarily large (that is, we let ε → 0).
Then, behind each infinitesimal point x (seen from the macro scale) there is a pore cell with
its own geometry which can only be seen by the fast variable y. When this scale separation
is done, we shall denote the macro scale domain simply by Ω , which is no longer possible
to separate into solid and void parts because the porous structure is now seen as a single
(fictitious) uniform material. An example of a pore cell geometry which satisfies the above
assumptions is shown in Fig. 1.

2.5 Scaling Analysis

In this section, we introduce dimensionless variables and scale the system according to the
quasi-static biphasic macroscale behavior (see Auriault (1991) for more details). In short,
this means the fluid pressure should be of the same order as the normal stress coming from
the elastic matrix and that the viscous forces are small.

Themodeling of fluid and elastic solid structure interaction is in general challenging, since
for an elastic solid Lagrangian coordinates are the preferred reference frame, while for the
fluid it is the Eulerian one. Thus, when coupling the two processes at the mutual interface,
one needs to take into account the movement of the interface itself, as seen in Sect. 2.2. For
more details on this type of modeling we refer to Iliev et al. (2008). In the present work we
shall avoid this difficulty by linearizing the fluid-structure coupling conditions, and thereby
transform the fluid problem into Lagrangian coordinates based on the material deformation.

We let l = 10−5 m and L = 10m, which results in ε = l/L = 10−6. With a slight abuse
of notation we write now the dimensional variables with a tilde, and the new dimensionless
quantities in the same way as before

123



Upscaling of the Coupling of Hydromechanical and Thermal… 143

Table 1 Reference values. Source https://www.engineeringtoolbox.com

Quantity Value Unit

Material stiffness (Young’s modulus) Cref = 4 × 1010 N/m2

Fluid density ρ f = 103 kg/m3

Solid grain density ρs = 2.65 × 103 kg/m3

Fluid viscosity μref = 10−3 Pa·s
Thermal stress coefficient Mref = 4 × 105 N/m2K

Solid grain specific heat cs = 920 J/kgK

Fluid specific heat c f = 4182 J/kgK

Thermal conductivity solid grain Ks
ref = 1.7 W/mK

Thermal conductivity fluid K f
ref = 0.58 W/mK

x̃ = Lx, t̃ = τ t, ˜̂w = lŵ, w̃0 = Wrefw0, ˜̂v = Vrefv,

T̃s = TdiffTs, T̃ f = TdiffT f , p̃ = Pref p, μ̃ = μrefμ,

C̃ = Cref C, M̃ = MrefM, K̃ f = K f
refK f , K̃s = Ks

refKs,

where we choose the time scale, τ = L
Vref

, as the characteristic transport time. As we con-

sider a system in equilibrium with only natural convection, we set τ = 104 s, which is the
time it takes a fluid particle to traverse the distance L . This gives the reference velocity as
Vref = 10−3 m/s. This is a realistic value, as flow velocities coming from natural convec-
tion in a geological permeable layer can be as low as 1m/year Wood and Hewett (1982).
We let the size of the rigid displacements be Wref = 1m, while the local deformation is no
larger than the pore size. We set the characteristic temperature as the maximum difference
between the reference temperature and the current temperature as Tdiff = 10K. Linearizing
the fluid/solid coupling conditions then amounts to discarding terms of ŵ · ∇v and ŵ · ∇T f

and higher order ones (this can be seen by expanding the fluid side about x + ŵ = x).
Thus, since the spatial differential operators are acting with respect to the scale L , we are
introducing errors of the order εVref = 10−9 m/s and εTdiff = 10−5 K, which we deem
negligible.

The table below shows reference values for the coefficients, in the case of water and
sandstone at room temperature (we note that some are only approximate, but good enough
for our purposes, as we are only interested in identifying terms which differ by an order of ε

or more) (Table 1).
The balance of contact forces at the interface, Eq. (7), in dimensionless variables reads
(

−Pref pI + Vrefμref

L
2μ e(v)

)

ν = (CrefεCe(w) − MrefTdiffM Ts)ν, on Γ ε × J. (14)

Due to the biphasic scaling regime, we have Pref ∼ Crefε ∼ MrefTdiff ∼ 105N/m2.
Dividing by this factor, we get Vrefμref

LPref
∼ O(ε2) in front of the viscous term. Thus, we can

simplify the above equation and get the dimensionless form of Eq. (7) as
(
pI + 2με2 e(v)

)
ν = (Ce(w) − M Ts)) ν, on Γ ε × J. (15)
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The momentum equation for the solid (1) in dimensionless form is

ρs

τ 2

(

l
∂2ŵ

∂t2
+ Wref

d2w0

dt2

)

− 1

L
∇ · (CrefεCe(w) − MrefTdiffM Ts) = b, on Γ ε × J.

(16)

Multiplying with L
Pref

, we get a new dimensionless body force (still denoted b) and the

dimensionless constants ρs l L
τ 2Pref

∼ O(ε2) and ρsWrefL
τ 2Pref

∼ O(ε) multiplying the acceleration
terms. Thus, we discard these and get the dimensionless form of Eq. (1) as

− ∇ · (Ce(w) − M Ts) = b, on Γ ε × J. (17)

The dimensionless form of the momentum equation for the fluid, (4), is

ρ f
L

τ 2

(
∂v̂

∂t
+ v̂ · ∇v̂

)

+ ρ f
Wref

τ 2

(
d2w0

dt2
+ dw0

dt
· ∇v̂

)

− Pref
L

∇ p + Vrefμref

L2 μΔv = b, in Ωε
f × J.

(18)

Multiplying by L
Pref

, we again get a new dimensionless body force (still denoted by b)

and the dimensionless constants
ρ f L2

τ 2Pref
∼ O(ε) and

ρ f WrefL
τ 2Pref

∼ O(ε) multiplying the inertial

terms. Multiplying the viscous term we have Vrefμref
LPref

∼ O(ε2). Thus, we discard the inertial
terms and get the dimensionless form of Eq. (4) as

− ∇ · (pI − 2με2 e(v)) = b, in Ωε
f × J. (19)

The mass conservation equation for the fluid, Eq. (5) and the no-flow condition at the
boundary, Eq. (8), in dimensionless variables are

∇ · v = 0, in Ωε
f × J, (20)

and
v = ∂tw, on Γ ε × J, (21)

respectively.
We now turn to the energy conservation equations. The one for the fluid, Eq. (6), in

dimensionless variables reads as

ρ f c f

(
1

τD

∂T f

∂t
+ 1

L

(

Vrefv̂ + Wref

τ

dw0

dt

)

· ∇T f

)

− K f
ref

L2 ∇ · (K f ∇T f ) = 0, in Ωε
f × J,

(22)
where τD = τ/ε is the characteristic heat diffusion time. Multiplying by L2

K f
ref

, we get the

Péclet number in front of the convective term,which in this case is given by Pe = c f ρ f VrefL

K f
ref

∼
c f ρ f WrefL

τK f
ref

∼ O(1), meaning heat is transportedwithin the fluid by convection and diffusion at

an approximately equal rate. In the following, we shall also look at the case Pe = O(ε), such
that heat is mainly transported within the fluid through diffusion. This could be realized,
e.g., in a system with a lower flow velocity or a fluid with a higher thermal conductivity.
However, when we undertake the upscaling procedure, it will become clear that this choice
can be seen just as a special case of the more general Pe ∼ O(1). In the concluding section
we will however present the homogenized model corresponding to both choices of scaling.
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In front of the time derivative term, we get the dimensionless constant
ρ f c f L2

τDK f
ref

∼ O(ε). Thus,

we discard this term and get the dimensionless form of Eq. (6) as

v · ∇T f − ∇ · (K f ∇T f ) = 0, in Ωε
f × J. (23)

In the dissipative term of the energy conservation equation for the solid, Eq. (3), we neglect
the contribution from the mechanical stress (which is second order in the gradient of w), and
assume the heat generation from the thermal stress can be approximated by using a constant
value for the temperature difference, i.e., −M(Ts − θ0) : e(∂tw) ≈ −TdiffM : e(∂tw) (see,
e.g., Kupradze et al. 1979). Thus, we get Eq. (3) in dimensionless variables as

ρscs
1

τD

∂Ts
∂t

+ Mrefl

τ L
M : e(∂tw) − Ks

ref

L2 ∇ · (Ks ∇Ts) = 0, in Ωε
s × J. (24)

We multiply by L2

Ks
ref
, and get the dimensionless constants, ρs cs L2

τDKs
ref

∼ O(ε), multiplying the

time derivative term, and Mrefl L
τKs

ref
∼ O(1), multiplying the dissipative term. Thus, we discard

the time derivative term and can write Eq. (24) as

M : e(∂tw) − ∇ · (Ks ∇Ts) = 0, in Ωε
s × J. (25)

The reference values of the thermal conductivities of the two phases can be regarded as
approximately the same order (i.e., K f

ref ∼ Ks
ref), and we therefore write the dimensionless

form of Eqs. (9) and (10) as

K f ∇T f · ν = Ks ∇Ts · ν, on Γ ε × J, (26)

and
T f = Ts, on Γ ε × J, (27)

respectively.

2.6 The Complete Dimensionless Pore-Scale Model

For convenience, we summarize the dimensionless equations at the microscale below:

− ∇ · (Ce(wε) − M T ε
s ) = b, in Ωε

s × J, (28a)

− ∇ · (pεI − 2με2 e(vε)) = b, in Ωε
f × J, (28b)

∇ · vε = 0, in Ωε
f × J, (28c)

(−pεI + 2με2 e(vε))ν = (Ce(wε) − M T ε
s )ν, on Γ ε × J, (28d)

vε = ∂tw
ε, on Γ ε × J, (28e)

M : e(∂twε) − ∇ · (Ks ∇T ε
s ) = 0, in Ωε

s × J, (28f)

vε · ∇T ε
f − ∇ · (K f ∇T ε

f ) = 0, in Ωε
f × J, (28g)

K f ∇T ε
f · ν = Ks ∇T ε

s · ν, on Γ ε × J, (28h)

T ε
s = T ε

f , on Γ ε × J. (28i)

We impose periodic boundary conditions on the outer boundary (i.e., ∂Ωε) and omit initial
conditions since they are not important for the homogenization procedure. Note also that we
have included an epsilon-superscript on the dependent variables to emphasize the implicit
dependence on both the slow and fast scales.

123



146 M. K. Brun et al.

Finally, we mention that the upscaling of Eqs. (28a) (without the thermal stress term),
(28b), (28c), (28d), and (28e), leads to the quasi-static poroelastic equations as described in,
e.g., Biot (1941) and Coussy (1995).

3 Two-Scale Asymptotic Expansions

3.1 Homogenization Ansatz

We now undertake the separation of scales and introduce the homogenization ansatz for the
unknowns

vε(x, t) = v0(x, y, t) + εv1(x, y, t) + ε2v2(x, y, t) + · · · ,

wε(x, t) = w0(x, y, t) + εw1(x, y, t) + ε2w2(x, y, t) + · · · ,

T ε
f (x, t) = T 0

f (x, y, t) + εT 1
f (x, y, t) + ε2T 2

f (x, y, t) + · · · ,

T ε
s (x, t) = T 0

s (x, y, t) + εT 1
s (x, y, t) + ε2T 2

s (x, y, t) + · · · ,

pε(x, t) = p0(x, y, t) + εp1(x, y, t) + ε2 p2(x, y, t) + · · · .

Note that we now have an added dependence on the spatial variable y ∈ Y , in which
all terms of the above expansions are Y -periodic due to the scaling and the periodic
arrangement of the porous structure. This is the key step in the two-scale asymptotic
expansion method of homogenization. For a detailed review of this method and its appli-
cations to porous media, we refer to the books Hornung (2012) and Cioranescu and Donato
(2000).

Since y = x/ε, we reformulate the differential operators according to the chain rule, i.e.,
∇ = ∇x + ε−1∇y, and e(·) = ex (·) + ε−1 ey(·).

We now insert the asymptotic expansions into the governing equations and discard all
therms of O(ε) or higher. We furthermore assume that the governing equations of the last
section are applicable in the product domain. We start with Eq. (28a) for the elastic solid
structure

b = − ε−2∇y · (Cey(w0))

− ε−1 [∇y · (
C

(
ex (w0) + ey(w1)

) − M T 0
s

) + ∇x · (
Cey(w0)

)]

− ε0
[∇y · (

C
(
ex (w1) + ey(w2)

) − M T 1
s

)

+∇x · (
C

(
ex (w0) + ey(w1)

) − M T 0
s

)]

+ O(ε), in Ω × Ys × J,

(29)

The conservation of momentum and mass for the fluid, Eqs. (28b) and (28c), yields

b = ε−1∇y p
0 + ε0

[∇x p
0 + ∇y p

1 − μΔyv
0] + O(ε), in Ω × Y f × J, (30)

and
0 = ε−1∇y · v0 + ε0

[∇x · v0 + ∇y · v1
] + O(ε), in Ω × Y f × J. (31)

At the internal interface, continuity of contact forces and continuity of displacement
velocity, Eqs. (28d) and (28e), gives

0 = ε−1 Cey(w0)ν

+ ε0
[
C(ex (w0) + ey(w1)) − M T 0

s + p0I
]
ν
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+ ε1
[
C(ex (w1) + ey(w2)) − M T 1

s + p1I − 2 ey(v0)
]
ν

+O(ε2), on Ω × Γ × J, (32)

and
0 = (v0 − ∂tw

0) + ε(v1 − ∂tw
1) + O(ε2) on Ω × Γ × J. (33)

The energy conservation equations for the solid and fluid, Eqs. (28f) and (28g), yields

0 = − ε−2∇y · (Ks ∇yT
0
s )

+ ε−1 [
M : ey(∂tw0) − ∇y · (

Ks(∇x T
0
s + ∇yT

1
s )

) − ∇x · (
Ks ∇yT

0
s

)]

+ ε0
[
M : (

ex (∂tw0) + ey(∂tw1)
) − ∇x · (

Ks(∇x T
0
s + ∇yT

1
s )

)

−∇y · (
Ks(∇x T

1
s + ∇yT

2
s )

)] + O(ε), in Ω × Ys × J,

(34)

and

0 = − ε−2∇y · (K f ∇yT
0
f )

+ ε−1
[
v0 · ∇yT

0
f − ∇y ·

(
K f (∇x T

0
f + ∇yT

1
f )

)
− ∇x · (K f ∇yT

0
f )

]

+ ε0
[
∂t u

0 · ∇x T
0
f − ∇x ·

(
K f (∇x T

0
f + ∇yT

1
f )

)
+ v0 · ∇yT

1
f

+ v1 · ∇yT
0
f − ∇y ·

(
K f (∇x T

1
f + ∇yT

2
f )

)]
+ O(ε), in Ω × Ys × J.

(35)

At the internal interface, continuity of energy and temperature, Eqs. (28h) and (28i), gives

0 =ε−1
[
K f ∇yT

0
f − Ks ∇yT

0
s

]
· ν

+ ε0
[
K f (∇x T

0
f + ∇yT

1
f ) − Ks(∇x T

0
s + ∇yT

1
s )

]
· ν

+ ε1
[
K f (∇x T

1
f + ∇yT

2
f ) − Ks(∇x T

1
s + ∇yT

2
s )

]
· ν

+ O(ε2), on Ω × Γ × J,

(36)

and
(T 0

s − T 0
f ) + ε(Ts − T 1

f ) + O(ε2) = 0 on Ω × Γ × J. (37)

It is evident from the above equations that at the lowest order, the displacement, pressure,
and temperature has no y-dependence, so we write

p0(x, y, t) = p0(x, t), in Ω × J, (38a)

w0(x, y, t) = w0(x, t), in Ω × J, (38b)

T 0
s (x, y) = T 0

f (x, y) = T 0(x, t), in Ω × J. (38c)

However, as seen from Eqs. (30) and (31), at the lowest order, there is still a y-dependence
in the fluid velocity.

3.2 The Flow

We now consider Eq. (30) at order O(ε0), Eq. (31) at order O(ε−1), and the boundary
condition, Eq. (33) at order O(ε0), which gives the problem

∇x p
0 − μΔyv

0 = b − ∇y p
1, in Y f ,

∇y · v0 = 0, in Y f ,
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v0 = ∂tw
0, on Γ,

v0(x, ·, t) and p1(x, ·, t) are Y -periodic, ∀(x, t) ∈ Ω × J.

Note that since ∇yv
0 = 0 for y ∈ Y f , we have: ∇y · 2 ey(v0) = Δyv

0. By defining
q = v0 − ∂tw

0, we can rewrite the above problem as

∇x p
0 − μΔyq = b − ∇y p

1, in Y f , (39a)

∇y · q = 0, in Y f , (39b)

q = 0, on Γ, (39c)

q(x, ·, t) and p1(x, ·, t) are Y -periodic, ∀(x, t) ∈ Ω × J, (39d)

which is the well-known cell problem in the homogenization of the filtration through rigid
porous media, see, e.g., Hornung (2012) pp. 16–18. By using the identities b = ∑3

j=1 b j e j ,

and∇x p0 = ∑3
j=1

∂p

∂x j
e j , where b j is the j’th component of the body force, and {e j } j=1,2,3

the canonical basis of R
3, we can solve for q and p1 as follows

q(x, y, t) = 1

μ

3∑

j=1

Λ j (y)

(

b j (x, t) − ∂p0

∂x j
(x, t)

)

, (40)

p1(x, y, t) =
3∑

j=1

Π j (y)

(

b j (x, t) − ∂p0

∂x j
(x, t)

)

, (41)

whereΛ j andΠ j (Λ j (y) ∈ R
3,Π j (y) ∈ R), are determined by the following cell problems

(for j = 1, 2, 3)

− ΔyΛ
j + ∇yΠ

j = e j , in Y f , (42a)

∇y · Λ j = 0, in Y f , (42b)

Λ j = 0, on Γ, (42c)

Λ j and Π j are Y -periodic. (42d)

We integrate over Y f and obtain the Darcy flux

qD(x, t) :=
∫

Y f

q(x, y, t)dy = − 1

μ
KH (∇x p

0(x, t) − b(x, t)), (43)

where the effective coefficient, KH , (known as the permeability tensor) is given by:

(
KH

)

i j
=

∫

Y f

(Λ j (y))idy, i, j = 1, 2, 3. (44)

We get a similar expression for the average of v0

∫

Y f

v0(x, y, t)dy = ∂tw
0(x, t)|Y f | − 1

μ
KH (∇x p

0(x, t) − b(x, t)). (45)

It can be shown that the tensorKH is symmetric and positive definite. We refer to Mikelić
(1994) for a proof.
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By using the expressions for q0 and p1, we also obtain the following which will be useful
later

(
2μ ey(v0) − p1I

) · ν =
3∑

j=1

(2 ey(Λ j ) − Π j I)
(

b j − ∂p0

∂x j

)

· ν on Ω × Γ × J. (46)

3.3 Momentum Conservation

From Eqs. (29) and (32) at order O(ε−1) we obtain

∇y · (C(ex (w0) + ey(w1)) − M T 0) = 0, in Ω × Ys × J (47a)

(C(ex (w0) + ey(w1)) − M T 0)ν = −p0 I ν, on Ω × Γ × J, (47b)

w1(x, ·, t) is Y -periodic, ∀(x, t) ∈ Ω × J. (47c)

Using the tensor outer product (denoted “⊗”), we now make use of the following identity

ex (w0) =
3∑

i, j=1

1

2

∂w0
i

∂x j
(ei ⊗ e j + e j ⊗ ei ),

such that we can use
∂w0

i

∂x j
as scalars in the expression for w1

w1(x, y, t) =
3∑

i, j=1

∂w0
i

∂x j
(x, t)Ui j (y) + T 0(x, t)V (y) + p0(x, t)W (y), (48)

where the functions Ui j , V , and W , (Ui j (y), V (y),W (y) ∈ R
3), are determined by the

following cell problems (for i, j = 1, 2, 3)

∇y ·
(
Cey(Ui j )

)
= 0, in Ys, (49a)

C
(

ey(Ui j ) + ei ⊗ e j + e j ⊗ ei
2

)

ν = 0, on Γ, (49b)

Ui j is Y -periodic, (49c)

and

∇y · (
Cey(V )

) = 0, in Ys, (50a)

Cey(V )ν = M ν, on Γ, (50b)

V is Y -periodic, (50c)

and

∇y · (
Cey(W )

) = 0, in Ys, (51a)

Cey(W )ν = −Iν, on Γ, (51b)

W is Y -periodic. (51c)

We now continue with the solid at orderO(ε0), where we make use of the expression (46)
from the last section. We thus obtain the following problem
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∇x · (C(ex (w0) + ey(w1)) − M T 0) + b = −∇y · (C(ex (w1) + ey(w2)) − M T 1
s ), in Ω × Ys × J,

(C(ex (w1) + ey(w2)) − M T 1
s )ν =

3∑

j=1

(2 ey(Λ j ) − Π j I)
(

b j − ∂p0

∂x j

)

ν, on Ω × Γ × J,

w2(x, ·, t) is Y -periodic, ∀(x, t) ∈ Ω × J.

Integrating the right hand side of the first equation over Ys , using also Eq. (42a), yields

−
∫

Ys
∇y · (C(ex (w1) + ey(w2)) − M T 1

s )dy =
∫

Γ

(C(ex (w1) + ey(w2)) − M T 1
s )νdsy

=
3∑

j=1

∫

Y f

∇yΠ
j − ΔyΛ

jdy

(
∂p0

∂x j
− b j

)

=
3∑

j=1

∫

Y f

e jdy

(
∂p0

∂x j
− b j

)

= (∇x p
0 − b)|Y f |.

Using the expression for w1, Eq. (48), we get for the left hand side

b|Ys | + ∇x ·
∫

Ys
(C(ex (w0) + ey(w1)) − M T 0)dy

= b|Ys | + ∇x ·
(

p0
∫

Ys
Cey(W )dy

)

+ ∇x ·
(

T 0
∫

Ys
Cey(V ) − M dy

)

+ ∇x ·
⎛

⎝
3∑

i, j=1

∂w0
i

∂x j

∫

Ys
C

(

ey(Ui j ) + ei ⊗ e j + e j ⊗ ei
2

)

dy

⎞

⎠ .

Putting the two sides together gives the upscaled momentum equation

− ∇x ·
(
AH ex (w0) − (|Y f | I−BH )p0 − (|Ys |M−UH )T 0

)
= b, in Ω × J, (52)

where (for i, j, k, l,= 1, 2, 3)

(AH )i jkl =
∫

Ys

(

C
(

ey(Ui j (y)) + ei ⊗ e j + e j ⊗ ei
2

))

kl
dy, (53)

(BH )i j =
∫

Ys

(
Cey(W (y))

)
i j dy, (54)

(UH )i j =
∫

Ys

(
Cey(V (y))

)
i j dy. (55)

The effective tensorsAH andBH are symmetric and positive definite.We refer to Sanchez-
Palencia (1980) for a proof. That UH is symmetric and positive definite is shown the same
way as for BH , except that it now relies on the same properties forM.
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3.4 Mass Conservation

In order to derive the upscaled mass conservation equation, we take terms of O(ε0) from
Eq. (31), together with O(ε1) terms from the boundary condition (33), and obtain the fol-
lowing problem

∇y · v1 = −∇x · v0, in Ω × Y f × J, (56a)

v1 = ∂tw
1, on Ω × Γ × J, (56b)

v1(x, ·, t) is Y -periodic, ∀(x, t) ∈ Ω × J. (56c)

Integrating the left hand side of the first equation over Y f , and using the expression for
w1, Eq. (48), yields

∫

Y f

∇y · v1dy = −
∫

Ys
∇y · ∂tw

1dy

= −∂t

⎛

⎝
3∑

i, j=1

∂w0
i

∂x j

∫

Ys
∇y ·Ui jdy + T 0

∫

Ys
∇y · V dy + p0

∫

Ys
∇y · Wdy

⎞

⎠

= −DH : ex (∂tw0) − ∂t T
0EH + ∂t p

0GH ,

where

DH
i j =

∫

Ys
∇y ·Ui jdy,

EH =
∫

Ys
∇y · V dy,

GH = −
∫

Ys
∇y · Wdy.

Integrating the right hand side of (56a) over Y f , and using the expression for the average
of v0, Eq. (45), yields

−∇x ·
(∫

Y f

v0dy

)

= −∇x · (
∂tw

0|Y f | + qD
)
.

Putting the two sides together, we obtain the upscaled mass conservation equation

DH : ex (∂tw0) + ∂t T
0EH − ∂t p

0GH = ∇x · (
∂tw

0|Y f | + qD
)
. (57)

By testing with W in the cell problems (50) it is easily shown that GH > 0, i.e.,

GH = −
∫

Ys
∇y · Wdy =

∫

Ys
Cey(W ) : ey(W )dy > 0 (58)

The identification DH = BH is shown by testing first with Ui j in the cell problem (50)
to obtain

DH
i j =

∫

Ys
∇y ·Ui jdy = −

∫

Ys
Cey(W ) : ey(Ui j )dy, (59)

and on the other hand, by testing with W in cell problem (49)

BH
i j =

∫

Ys
(Cey(W ))i jdy = −

∫

Ys
Cey(Ui j ) : ey(W )dy. (60)

123



152 M. K. Brun et al.

Using this, we can rewrite Eq. (57) as

∂t

(
p0GH − T 0EH

)
+ ∇x ·

(
(|Y f | I−BH )∂tw

0 + qD
)

= 0. (61)

3.5 Energy Conservation

In this section we derive the upscaled energy conservation equation.
We consider the terms of order O(ε−1) from Eqs. (34), (35) and (36), and obtain the

following problem

∇y ·
(
K f

(
∇x T

0 + ∇yT
1
f

))
= 0, in Ω × Y f × J, (62a)

∇y · (
Ks

(∇x T
0 + ∇yT

1
s

)) = 0, in Ω × Ys × J, (62b)

K f

(
∇x T

0 + ∇yT
1
f

)
· ν = Ks

(∇x T
0 + ∇yT

1
s

) · ν, on Ω × Γ × J, (62c)

T 1
f = T 1

s on Ω × Γ × J, (62d)

T 1
f (x, ·, t) and T 1

s (x, ·, t) are Y -periodic, ∀(x, t) ∈ Ω × J. (62e)

Using the identity ∇x T 0 = ∑3
j=1

∂T 0

∂x j
e j , we can solve for T 1

f and T 1
s as

T 1
f (x, y, t) =

3∑

j=1

∂T 0(x, t)

∂x j
θ
j
f (y) and T 1

s (x, y, t) =
3∑

j=1

∂T 0(x, t)

∂x j
θ
j
s (y), (63)

where θ
j
f and θ

j
s (θ j

f (y), θ
j
s (y) ∈ R) are determined by (for j = 1, 2, 3)

∇y · (K f ∇yθ
j
f ) = 0, in Y f ,

∇y · (Ks ∇yθ
j
s ) = 0, in Ys,

K f (e j + ∇yθ
j
f ) · ν = Ks(e j + ∇yθ

j
s ) · ν, on Γ,

θ
j
f = θ

j
s , on Γ,

θ
j
f and θ

j
s are Y -periodic.

By defining

θ j (y) =
{

θ
j
f (y), if y ∈ Y f ,

θ
j
s (y), if y ∈ Ys,

(64)

due to the boundary condition, and using the properties of Ks and K f , we can write the
more convenient problem

Δyθ
j = 0, in Ys ∪ Y f , (65a)

(
e j + ∇yθ

j
)

· ν = 0, on Γ, (65b)

θ j is Y -periodic. (65c)
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Continuing to the next order, O(ε0), we obtain the problem

v0 · ∇x T
0 + v0 · ∇yT

1
f − ∇x ·

(
K f

(
∇x T

0 + ∇yT
1
f

))

= ∇y ·
(
K f

(
∇x T

1
f + ∇yT

2
f

))
, in Ω × Y f × J,

M : (
ex

(
∂tw

0) + ey
(
∂tw

1)) − ∇x · (
Ks

(∇x T
0 + ∇yT

1
s

))

= ∇y · (
Ks

(∇x T
1
s + ∇yT

2
s

))
, in Ω × Ys × J,

K f

(
∇x T

1
f + ∇yT

2
f

)
· ν = Ks

(∇x T
1
s + ∇yT

2
s

) · ν, on Ω × Γ × J,

T 2
f = T 2

s on Ω × Γ × J,

T 2
f (x, ·, t) and T 2

s (x, ·, t) are Y -periodic, ∀(x, t) ∈ Ω × J.

Integrating the first equation over Y f , and using the expressions for T 1
f and the average

of v0, Eqs. (63) and (45), together with the boundary conditions (62d) and (39a) yields

∫

Γ

K f

(
∇x T

1
f + ∇yT

2
f

)
· νds

=
(
|Y f |∂tw0 + q

)
· ∇x T

0 +
∫

Y f

v0 · ∇yT
1
f dy − ∇x ·

(∫

Y f

K f

(
∇x T

0 + ∇yT
1
f

)
dy

)

= qD · ∇x T
0 + ∂tw

0 ·
3∑

j=1

∂T 0

∂x j

∫

Y f

e j + ∇yθ
j
f dy − ∇x ·

⎛

⎝
3∑

j=1

∂T 0

∂x j

∫

Y f

K f

(
e j + ∇yθ

j
f

)
dy

⎞

⎠ .

Integrating the second equation overYs , using also the expressions for T 1
s andw1, Eqs. (63)

and (48), yields

∫

Γ

Ks

(
∇x T

1
f + ∇yT

2
f

)
· νds

= ∇x ·
(∫

Ys
Ks

(∇x T
0 + ∇yT

1
s

)
dy

)

− |Ys |M : ex
(
∂tw

0) −
∫

Ys
M : ey

(
∂tw

1) dy

= ∇x ·
⎛

⎝
3∑

j=1

∂T 0

∂x j

∫

Ys
Ks

(
e j + ∇yθ

j
s

)
dy

⎞

⎠ − |Ys |M : ex
(
∂tw

0)

− ex
(
∂tw

0) :
3∑

i, j=1

∫

Ys
M : ey

(
Ui j

)
dy − ∂t T

0
∫

Ys
M : ey(V )dy − ∂t p

0
∫

Ys
M : ey(W )dy.

Since the left hand sides of the two above equations are equal, we put them together and
obtain the upscaled energy conservation equation

∂t T
0MH + ∂t p

0NH + ∂tw
0 · Ξ H ∇x T

0 + qD · ∇x T
0

+ ∇x ·
(
(RH + |Ys |M)∂tw

0 − ΘH ∇x T
0
)

= 0
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where (for i, j = 1, 2, 3)

(ΘH )i j =
∫

Y f

(
K f (e j + ∇yθ

j
f )

)

i
dy +

∫

Ys

(
Ks(e j + ∇yθ

j
s )

)

i
dy,

(Ξ H )i j =
∫

Y f

(e j + ∇yθ
j
f )idy,

(RH )i j =
∫

Ys
M : ey(Ui j )dy,

MH =
∫

Ys
M : ey(V )dy,

NH =
∫

Ys
M : ey(W )dy.

Again, some properties of the coefficients can be established. By testing with V in the cell
problems (50) we obtain

MH =
∫

Ys
M : ey(V )dy =

∫

Ys
Cey(V ) : ey(V )dy > 0. (66)

The identification RH = −UH can also be shown by testing first with Ui j in the cell
problem (50) to obtain

(RH )i j =
∫

Ys
M : ey(Ui j )dy =

∫

Ys
Cey(V ) : ey(Ui j )dy, (67)

and then with V in the cell problem (49)

(UH )i j =
∫

Ys

(
Cey(V )

)
i j dy = −

∫

Ys
Cey(Ui j ) : ey(V )dy. (68)

Further, we can also show NH = −EH , by testing first with V in the cell problem (51)

EH =
∫

Ys
∇y · V dy = −

∫

Ys
Cey(W ) : ey(V )dy, (69)

and with W in the cell problem (51)

NH =
∫

Ys
M : ey(W )dy =

∫

Ys
Cey(V ) : ey(W )dy. (70)

Lemma 1 ΘH and Ξ H are symmetric and positive definite.

Proof Test with θ i in the j’th cell problem (65), and by θ j in the i’th problem to obtain
∫

Y f

K f

(
e j + ∇yθ

j
)

· ∇yθ
idy =

∫

Y f

K f

(
ei + ∇yθ

i
)

· ∇yθ
jdy = 0,

and ∫

Ys
Ks

(
e j + ∇yθ

j
)

· ∇yθ
idy =

∫

Ys
Ks

(
ei + ∇yθ

i
)

· ∇yθ
jdy = 0.

Thus, we can write ΘH as:

(ΘH )i j =
∫

Y f

K f

(
e j + ∇yθ

j
)

·
(
ei + ∇yθ

i
)
dy+

∫

Ys
Ks

(
e j + ∇yθ

j
)

·
(
ei + ∇yθ

i
)
dy,
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and it follows thatΘH is symmetric. For the positive definiteness, observe that for nonnegative
α1,2,3 ∈ R not all equal to zero we have

3∑

i, j=1

(ΘH )i jαiα j =
3∑

i, j=1

∫

Y f

K f ∇y

(
α j (y j + θ j )

)
· ∇y

(
αi (yi + θ i )

)
dy

+
3∑

i, j=1

∫

Ys
Ks ∇y

(
α j (y j + θ j )

)
· ∇y

(
αi (yi + θ i )

)
dy > 0.

That Ξ H is symmetric and positive definite is shown in the same way. �

We can now rewrite the upscaled energy conservation equation as

∂t (T
0MH−p0EH )+(Ξ H ∂tw

0+qD)·∇x T
0+∇x ·

(
(|Ys |M−UH )∂tw

0 − ΘH ∇x T
0
)

= 0.

(71)

4 Summary

4.1 The Upscaled Quasi-static Thermo-poroelastic System

We now summarize the upscaled equations derived in the previous sections. We omit all
superscripts in the variables, subscripts in the differential operators (with the understanding
they are now all taken with respect to the slow variable x), and introduce a more familiar
notation for the coefficients, similar to what is commonly used in the literature on the quasi-
static poroelastic equations:

α := (|Y f | I−BH ), β := (|Y f |M−UH ), A := AH

K := KH , Θ := ΘH , Ξ := Ξ H ,

c0 := GH , a0 := MH , b0 := EH ,

whereα is the Biot–Willis constant, c0 is the specific storage coefficient, andA is the effective
elastic moduli, containing the elastic coefficients of the porous medium.

Thus, we write the upscaled system as:

qD = − 1

μ
K(∇ p − b), in Ω × J,

(72a)

− ∇ · (Ae(w) − α p − β T ) = b, in Ω × J,
(72b)

∂t (c0 p − b0T + ∇ · α w) + ∇ · qD = 0, in Ω × J,
(72c)

∂t (a0T − b0 p + ∇ · β w) + (Ξ ∂tw + qD) · ∇T − ∇ · (Θ ∇T ) = 0, in Ω × J.
(72d)

Compared to the linear poroelastic equations, we see that the stress in the momentum
Eq. (72b) nowhas an additional linear dependency on the temperature of themedium, i.e.,σ =
σ (w, p, T ) = Ae(w)−α p−β T . This is completely analogous to the linear thermoelastic
equations in mechanics, see, e.g., Pabst (2005). The homogenized tensor β can be interpreted
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as an upscaled thermal stress coefficient, giving the induced thermal stress coming from a unit
temperature gradient. In the mass conservation Eq. (72c) we see that the porosity (denoted by
η) is also linearly dependent on the temperature, i.e., η = η(w, p, T ) = c0 p−b0T +∇ ·α w.
In other words, the amount of fluid that can be injected into an arbitrary fixed control volume
is now given by: c0 p − b0T , where the homogenized coefficient b0 can be interpreted as a
thermal expansion coefficient.

It remains to discuss the energy conservation Eq. (72d). If we had used the different
scaling corresponding to a small Péclet number, i.e., Pe ∼ O(ε), the dimensionless energy
conservation equation for the fluid at the microscale, Eq. (28g), would take the form:

ε

(
∂T ε

f

∂t
+ ∂t u

ε · ∇T ε
f

)

− ∇ ·
(
K f ∇T ε

f

)
= 0, in Ωε

f × J. (73)

Then, after separating the scales, the terms: ε(
∂T ε

f
∂t + ∂t uε · ∇T ε

f ) give no contribution to

theO(ε−1)-problem, and for theO(ε0)-problem, we only retain the term: ∂t u0 ·∇yT 0, which
is evidently equal to zero. Thus, the upscaled energy conservation equation corresponding to
a small Péclet number is:

∂t (a0T − b0 p + ∇ · β w) − ∇ · (Θ ∇T ) = 0, in Ω × J, (74)

and we have a fully linear upscaled system.
Denoting by: ξ = ξ(w, p, T ) = a0T − b0 p + ∇ · β w, the energy present in some

arbitrary control volume, we see from Eq. (72d) that the rate of change of energy present,
∂tξ , is balanced by the net energy flux into the same control volume, either by conduction:
−∇ · (Θ ∇T ), or convection: (Ξ ∂tw + qD) · ∇T . We see also from Eq. (73) that in the
case of a small Péclet number, the rate of change in energy present is balanced only by
the conduction. The homogenized tensors Θ and Ξ can be interpreted as a kind of upscaled
thermal conductivities, while a0 gives the energy present by a unit temperature rate of change.

An important property of the linear poroelastic equations is that the Biot–Willis coefficient
appears both in front of the pressure term in themomentumEq. (72b) (i.e.,α p), and in front of
the volumetric term in the mass conservation Eq. (72c) (i.e.,∇ ·α w). As described in Coussy
(1995) p. 75, a similar situation is expected with the temperature term in the momentum
equation and the volumetric term in the energy equation. As we see from Eqs. (72b) and
(72d), this is indeed the case, as the thermal stress coefficient, β, appears in both places.
Another interesting fact is the coefficient b0 which appear both in front of the temperature
term in the mass conservation Eq. (72c) and in front of the pressure term in the energy
Eq. (72d). This is indeed also the case in Coussy (1995), where they refer to the coefficient
b0 as the “volumetric thermal dilation coefficient related to the porosity.”

In the article Lee and Mei (1997), the allowable deformations at the microscale are much
smaller than the microscale length (i.e., l), which makes a direct comparison of our models
difficult. However, we note that also here there is a linear dependency on temperature in the
upscaled solid stress, and thus, Eq. (72c) matches that of Lee and Mei (1997). Our energy
equations differ significantly, on the other hand, as in Lee and Mei (1997) there appears no
pressure term.

4.2 Conclusions

We have presented a formal upscaling of the microscale thermal fluid-structure problem in
porous media, leading to thermal Biot equations at the macroscale. This derivation gives a
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precise understanding of the coupling terms at the macroscale and forms a justification for
heuristically derived models.

The most important limitation of the formal approach taken herein is the use of a perfectly
periodic geometry. This limitation will not affect the applicability of the results to some
human-made porous media, but will invalidate the approach for natural porous media. How-
ever, it has been shown for similar problems that the periodicity assumption can be relaxed,
and we expect that these results would be possible to extend to the present setting. As such
we expect the structure of the equations summarized in the preceding section to be valid also
for non-periodic porous media, at least when there is some uniformity on the sizes of the
solid grains.

All homogenization results are based on a series of “smallness” assumptions. We empha-
size the important understanding that the results presented herein are based on ε being “small,”
but not tending to zero. This distinction is important, since some of the parameters defined
in the homogenization procedure (such as i.e., permeability) may depend on ε, depending
on the choice of characteristic macroscopic length scales. A further comment in this regard
is that the Lagrangian formulation used herein implies that we only assume that the strain is
small, and not that the displacement itself is small. Alternatively, if an Eulerian framework
was used, it would be necessary to assume that the displacement is small relative to the
microscale, which would preclude meaningful macroscopic deformations.

In this work we have chosen to a large extent to linearize the governing equations already
at the microscale. This in part explains the linear structure of the majority of terms on
the macroscale. Nonlinear constitutive relationships could be accommodated at the cost of
technical and notational complexity, varying from relatively straight-forward (i.e., nonlinear
constitutive laws for fluid density) to complex (nonlinear elastic or plastic constitutive laws
for material deformation).
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