
Chaoran Fan

Improving Interaction in Visual
Analytics using Machine
Learning

2021

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway

at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d)

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Chaoran Fan

Improving Interaction in Visual
Analytics using Machine Learning

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 05.11.2021

The material in this publication is covered by the provisions of the Copyright Act.

Print: Skipnes Kommunikasjon / University of Bergen

© Copyright Chaoran Fan

Name: Chaoran Fan

Title: Improving Interaction in Visual Analytics using Machine Learning

Year: 2021

Scientific environment

The work presented in this thesis was conducted as a part of my PhD studies at the De-
partment of Informatics, University of Bergen. In addition, I have been enrolled in the
ICT Research School at the Department of Informatics, University of Bergen. During
the research on my thesis, parts of my work have been done in the context of CEDAS,
Center for Data Science, at the University of Bergen and the Computer Graphics and
Visualization group (CGV) at the Delft University of Technology.

Research School In
Information and Communication Technology

ICT

Acknowledgements

Time flies, there are so many thanks I would like to say to people who helped and
accompanied me in the past 4.5 years.

First and foremost, I would like to express my deep gratitude to my advisor Prof.
Helwig Hauser for the constant support during my PhD study. He has offered me valu-
able ideas, guidance and suggestions with his profound knowledge and rich research
experience. In my eyes, he is an encyclopedia and it is always beneficial and enjoyable
to talk with him. In addition, I do appreciate his patience and painstaking efforts to help
me revise and polish paper drafts for the past few years. Truly, I could not imagine that
the completion of the present thesis is possible without his tremendous assistance, he
always let me feel that I am not alone in my Ph.D journey. I am also very thankful to my
co-supervisor Krešimir Matković, whose incisive comments and valuable suggestions
have greatly improved my submissions.

My appreciation also extends to my lovely colleagues in Bergen Visualization
group: Andreas Lind, Eric Mörth, Fabian Bolte, Fourough Gharbalchi, Ivan Kolesar,
Jan Byška, Julius Parulek, Juraj Pálenik, Laura Garrison and Oli, M. Eduard Gröller,
Noeska Smit, Sergej Stoppel, Sherin Sugathan, Stefan Bruckner, Thomas Trautner,
Veronika Šoltészová, Yngve Sekse Kristiansen, Åsmund Birkeland. We come from
different countries with different cultural backgrounds, the talks with you made me a
growth of knowledge and greatly broadened my horizon. I do enjoy the time that we
have meals together and share our life and experience, treating each other just like a
whole family. I am so grateful to have you working around me in the office.

My thanks are also due to my friends who I spent the most time with in my spare
time: Aksel Heitman Olsen, Bowen Sun, Chengcheng Wang, Dan Zhang, Guyu Peng,
Hua Dong, Hui Huang, Jie Liu, Junjie Cai, Kui Xiang, Kaiqing Yang, Miao Teng,
Morten Meland, Rui Li, Runxi Niu, Sisi Zheng, Shihao Wei, Tsai-Ming Lu, Wanmei
Zhang, Xianglian Hu, Xiaoshuang Li, Xiaokang Zhang, Xiaozheng Liu, Xi Lan, Yue-
jia Wang, Yue Gao, Yufei Yuan. We travel, cook, drink, game, play sports and talk
together, those beautiful memories I will never forget.

In addition, I also want to thank everyone I met during the 1 year exchange in Com-
puter Graphics and Visualization group at TU Delft: Ahmad Nasikun, Anna Vilanova,
Changgong Zhang, Christopher Brandt, Elmar Eisemann, Jerry Guo, Jingtang Liao,
Klaus Hildebrandt, Leonardo Scandolo, Markus Billeter, Nestor Salamon, Nicola Pez-
zotti, Niels de Hoon, Peiteng Shi, Rafael Bidarra, Thomas Höllt, Thomas Kroes, Tim-
othy R. Kol, Victor Petitjean. I often miss about the carefree life there where the tulips
were in full bloom and the sails of the windmill were wheeling round.

Special thanks should go to my family, I am indebted to my beloved parents for
their encouragement and unconditional support.

Above ground, thanks fate, lets us be acquainted in the boundless crowds.

Abstract

Interaction is one of the most fundamental components in visual analytical systems,
which transforms people from mere viewers to active participants in the process of an-
alyzing and understanding data. Therefore, fast and accurate interaction techniques are
key to establishing a successful human-computer dialogue, enabling a smooth visual
data exploration. Machine learning is a branch of artificial intelligence that provides
systems the ability to automatically learn and improve from experience without being
explicitly programmed. It has been utilized in a wide variety of fields, where it is not
straightforward to develop a conventional algorithm for effectively performing a task.
Inspired by this, we see the opportunity to improve the current interactions in visual
analytics by using machine learning methods.

In this thesis, we address the need for interaction techniques that are both fast, en-
abling a fluid interaction in visual data exploration and analysis, and also accurate, i.e.,
enabling the user to effectively select specific data subsets. First, we present a new,
fast and accurate brushing technique for scatterplots, based on the Mahalanobis brush,
which we have optimized using data from a user study. Further, we present a new
solution for a near-perfect sketch-based brushing technique, where we exploit a con-
volutional neural network (CNN) for estimating the intended data selection from a fast
and simple click-and-drag interaction and from the data distribution in the visualiza-
tion. Next, we propose an innovative framework which offers the user opportunities to
improve the brushing technique while using it. We tested this framework with CNN-
based brushing and the result shows that the underlying model can be refined (better
performance in terms of accuracy) and personalized by very little time of retraining.
Besides, in order to investigate to which degree the human should be involved into the
model design and how good the empirical model can be with a more careful design, we
extended our Mahalanobis brush (the best current empirical model in terms of accu-
racy for brushing points in a scatterplot) by further incorporating the data distribution
information, captured by kernel density estimation (KDE). Based on this work, we then
provide a detailed comparison between empirical modeling and implicit modeling by
machine learning (deep learning). Lastly, we introduce a new, machine learning based
approach that enables the fast and accurate querying of time series data based on a swift
sketching interaction. To achieve this, we build upon existing LSTM technology (long
short-term memory) to encode both the sketch and the time series data in two networks
with shared parameters.

All the proposed interaction techniques in this thesis were demonstrated by appli-
cation examples and evaluated via user studies. The integration of machine learning
knowledge into visualization opens further possible research directions.

List of papers

This thesis is based on the following publications:

(A) Chaoran Fan and Helwig Hauser. User-study based optimization of fast and
accurate Mahalanobis brushing in scatterplots. In Proc. Vision, Modeling, and
Visualization (VMV 2017), pages 77–84, 2017.

(B) Chaoran Fan and Helwig Hauser. Fast and Accurate CNN-based Brushing in
Scatterplots. Computer Graphics Forum (Eurovis 2018), 37 (3): 111–120, 2018.

(C) Chaoran Fan and Helwig Hauser. Personalized Sketch-Based Brushing in
Scatterplots. IEEE Computer Graphics and Applications, 39 (4): 28–39, 2019.

(D) Chaoran Fan and Helwig Hauser. On sketch-based selections from scatter-
plots using KDE, compared to Mahalanobis and CNN brushing. IEEE Com-
puter Graphics and Applications, 41 (5): 67–78, 2021.

(E) Chaoran Fan, Krešimir Matković and Helwig Hauser. Sketch-based fast and
accurate querying of time series using parameter-sharing LSTM networks.
IEEE Transaction on Visualization and Computer Graphics, Early Access, 2020.

The following paper is also related to this thesis:

(1) Chaoran Fan and Helwig Hauser. On KDE-based brushing in scatterplots and
how it compares to CNN-based brushing. In Proc. Machine Learning Methods
in Visualisation for Big Data (MLVis 2019), 2019.

All the related publications from A to E were written during the Ph.D. studies and the
author of the thesis is the main author of them. All papers were written in collaboration
with Helwig Hauser, who is the main supervisor of the main author. He contributed
with guidance, advice and fruitful discussion to the realization and publication of the
scientific work. Paper E was co-authored with Krešimir Matković, who is the co-
supervisor of the thesis author and he provided some valuable suggestions to improve
the paper.

Contents

Scientific environment i

Acknowledgements iii

Abstract v

List of papers vii

I Overview 1

1 Introduction 3
1.1 Problem Statement . 4
1.2 Scope and Contributions . 5
1.3 Thesis Structure . 6

2 Related work 7
2.1 Integrating machine learning into visual analytics 7

2.1.1 Traditional machine learning for visualization 8
2.1.2 Deep learning for visualization 11
2.1.3 Machine learning frameworks 12

2.2 Brushing techniques . 13
2.3 Time series data analysis . 15

2.3.1 Time series data similarity . 15
2.3.2 Visual query system for time series data 15

3 Contributions 19
3.1 Improving brushing by machine learning 19

3.1.1 New Mahalanobis brush . 19
3.1.2 CNN-based brush . 23
3.1.3 Personalized CNN-based brush 26
3.1.4 KDE-based brush . 28

3.2 Improving sketch-based visual querying of time series by machine
learning . 31

4 Evaluation and demonstration 35
4.1 New Mahalanobis brushing in scatterplots 35

4.1.1 Good case analysis . 37

x CONTENTS

4.1.2 Bad cases . 37
4.2 CNN-based brushing in scatterplots 39

4.2.1 Good cases . 40
4.2.2 Worst cases . 42

4.3 Personalized CNN-based brushing in scatterplots 42
4.4 On KDE-based brush, compared to Mahalanobis and CNN-based brush 46
4.5 LSTM-based visual query system . 51

5 Conclusion and Future Work 55

II Included papers 57

A User-study based optimization of fast and accurate Mahalanobis brushing
in scatterplots 59
A.1 Introduction . 60
A.2 Related Work . 61

A.2.1 Brushing techniques . 61
A.2.2 Optimization based on user data 62

A.3 The principal approach . 62
A.4 Fast and accurate brushing in scatterplots 63

A.4.1 Mahalanobis distance computation 65
A.4.2 Weighted covariance matrix 66
A.4.3 Selecting a data subset using a selector 66

A.5 User study . 67
A.5.1 Study datasets . 67
A.5.2 User study process . 68

A.6 Optimization . 69
A.7 Detailed discussion of accuracy . 70

A.7.1 Good case analysis . 72
A.7.2 Bad cases . 72

A.8 Discussion, conclusion, and future work 73

B Fast and accurate CNN-based brushing in scatterplots 75
B.1 Introduction . 76
B.2 Related work . 77

B.2.1 Brushing techniques . 77
B.2.2 CNNs and visualization . 78

B.3 The principal approach . 78
B.4 The new brushing technique . 80

B.4.1 Technique at large . 80
B.4.2 Computing the input to the CNN 81
B.4.3 CNN design . 82
B.4.4 Interpreting the output of the CNN 83

B.5 Training the CNN . 83
B.5.1 Computing the reference output 84
B.5.2 Training details . 85

CONTENTS xi

B.6 Evaluation . 87
B.6.1 Examples of good cases . 88
B.6.2 Worst cases . 88

B.7 User studies . 89
B.8 Modeling the variation in sketching 91
B.9 Conclusion and future work . 92

C Personalized sketch-based brushing in scatterplots 93
C.1 Introduction . 94
C.2 Related work . 95

C.2.1 Brushing techniques . 95
C.2.2 CNN, transfer learning and active learning 96

C.3 The principal approach . 97
C.3.1 Training dataset replacement 99

C.4 Retraining the CNN . 101
C.4.1 Training details . 101

C.5 User study . 102
C.5.1 Study datasets . 102
C.5.2 Study process . 102

C.6 Evaluation . 104
C.7 Conclusion and future work . 106

D On sketch-based selections from scatterplots using KDE, compared to Ma-
halanobis and CNN brushing 109
D.1 Introduction . 110
D.2 Related work . 111
D.3 KDE brushing in scatterplots . 113

D.3.1 Mahalanobis distance computation 114
D.3.2 Density estimation . 114
D.3.3 Selecting a data subset using clustering 116
D.3.4 Optimizing the kernel size . 117

D.4 Data for parameter optimization . 117
D.5 Optimization . 118
D.6 Evaluation . 119

D.6.1 Accuracy . 119
D.6.2 Efficiency . 122
D.6.3 Generality . 123
D.6.4 Interpretability . 124
D.6.5 Summary . 125

D.7 Conclusion and future work . 125
D.8 Acknowledgements . 126

E Sketch-based fast and accurate querying of time series using parameter-
sharing LSTM networks 127
E.1 Introduction . 128
E.2 Related work . 129

E.2.1 Time series data similarity . 129

xii CONTENTS

E.2.2 Visual query systems . 129
E.2.3 Deep learning for visualization 131

E.3 The principal approach . 131
E.4 Technique in detail . 134

E.4.1 Scaling and smoothing the data 134
E.4.2 Recurrent neural network (RNN) 134
E.4.3 Network design . 136
E.4.4 Training the network . 137
E.4.5 Training data augmentation 137
E.4.6 Training details . 140

E.5 User studies . 141
E.5.1 User study for base training data 142
E.5.2 Studying the variation of sketches 143
E.5.3 Evaluation user study . 143

E.6 Evaluation results . 145
E.7 Limitations and future work . 147
E.8 Conclusion . 147

Bibliography 149

0

Part I

Overview

0

1

Chapter 1

Introduction

With the advance of new data acquisition and generation technologies, our society is be-
coming increasingly information-driven. Thus, understanding the information in large
and complex data sets has been in the focus of several research fields such as statistics,
data mining, machine learning, and visualization. The first three fields predominantly
rely on computational power while visualization is dependent mainly on our human
perceptual and cognitive capabilities for extracting information. Visualization is a pop-
ular way to explore and communicate data via the use of interactive visual encodings.
The purpose of visualization is to help people better understand the data. For exam-
ple, plotting a graph instead of inspecting a table with numbers is one of the simplest
examples of an effective visualization solution.

Visual analytics is an emerging field for dealing with the complexity of an ever in-
creasing information space by combining the processing power and storage capacity
of computers with the intellectual strengths of humans through interactive visual in-
terfaces. It is a powerful tool for problems where the size and complexity of the data
requires human input along with machine analysis. In visual analytics, a tight feedback
loop of computation/visualization and user interaction is commonly used to facilitate
knowledge discovery in complex datasets. Humans are engaged with analysis mod-
els through interactive visualization with the underlying data, making them capable of
applying domain knowledge to iteratively refine models. This user-in-the-loop method-
ology allows the user to explore deeper into the data to continuously build and apply
knowledge.

Machine learning is a pervasive science which we use dozens of times each day
without realizing it. The main goal of machine learning is to provide a system that
can automatically obtain deep insights, recognize unknown patterns, and create high
performing predictive models from data without being explicitly programmed. In the
past decade, many machine learning-based applications have appeared in our daily life,
such as self-driving cars, speech recognition and translation, web search and even the
human genome project. Inspired by the great success, making use of machine learning
to achieve more efficient and effective visual analytics solutions is becoming a new
trend recently.

1 4 Introduction

1.1 Problem Statement

Interaction between humans and computers is at the heart of modern visual analytics. It
enables user to develop and understand relationships within datasets through foraging
and synthesis.

As we know, machine learning has been applied to a wide range of fields and
achieved a remarkable success over the years. Inspired by this, the research presented
in this thesis is to exploit machine leaning to improve the traditional interaction tech-
niques in visual analytics. More specifically, we are aiming to develop advanced inter-
action mechanisms that incorporate the power of machine learning-based methods to
make the data exploration more efficient and effective.

In this thesis, we focus on improving two commonly used interaction techniques in
visual analytics—brushing and sketch-based visual querying. Generally, for designing
a interaction technique, two particularly important criteria should be taken into account:

• efficiency—is the interaction fast enough (including the interaction and all com-
putation) to enable a fluid data exploration/analysis [20, 98]?

• accuracy—how accurately does the interaction lead to a result, which the user
wished to achieve?

Linking and brushing is a prevalent interaction technique for data exploration and
analysis in coordinated multiple views. The concept was first defined by Becker and
Cleveland [2] as an interactive method for selecting data points in a visualization by
drawing simple geometries onto it. A key functionality in coordinated multiple views
is that brushing leads to a consistent highlighting of the selected data in all linked views.
This results in the most common form of focus+context visualization [35], enabling the
fast and effective exploration of data relations, which are too challenging to show in just
one view.

Despite the rich variation of existing brushing tools, we rarely see a solution that
combines both criteria really well: Many brushing techniques are indeed fast, as click-
ing on one point, for example, or drawing simple geometries—also sketched brushes
are fast, requiring only a simple gesture as interaction and thus enabling a swift user–
computer dialogue during the exploration/analysis [8]. A common disadvantage of fast
techniques, however, is that it can be difficult to accurately brush a particular data sub-
set according to the user’s intention.

On the other hand, we certainly find brushing techniques, that are straight-forward
for accurately selecting subsets of interest, such as lassoing and the logical combination
of simple brushes. This benefit of being accurate, however, commonly comes at the cost
of reduced efficiency—specifying a lasso, for example, easily becomes a unit task by
itself [8], potentially interrupting the exploration/analysis process. In our work, we aim
to integrate both criteria in one technique as good as possible to improve the current
brushing techniques.
A visual query system is designed to find patterns of interest in data as it is easier
for human users to visually describe patterns than to express them textually or pro-
grammatically. For the exploration of large time series data, it is almost impossible for
the analysts to visually identify specific patterns efficiently. To overcome this issue,

11.2 Scope and Contributions 5

a visual query system is commonly used to bridge the gap between the user and the
computer, in which the metaphor of freehand sketching is frequently employed as an
efficient means of visual communication. Often, a carefully designed empirical model
is adopted for estimating the similarity relation between the sketching interaction and
the intended pattern selection. However, the often resulting non-optimal efficiency and
low accuracy lead to the limited deployment of sketch-based visual query systems for
real-world visual analytics problems.

More specifically in terms of the efficiency, most of these empirical methods are
based on local characteristics and a sliding window is used to compute the best match
or similarity ranking, which easily leads to a time-consuming procedure and makes
the interactive exploration a tedious task. On the other hand, sketches are artistic de-
pictions from humans. Due to the ambiguity and distortion existing in sketches, the
empirical model is usually far from being stable to interpret their underlying semantics
conveyed by the user. In this situation, the matching algorithms may fail to produce
good similarity rankings when "goodness" is directly evaluated by the user [71].

Overall, to improve the current sketch-based querying, we see two main directions.
First, in order to realize a fluent data exploration, we aim at a faster computation of
the matching procedure. Second, we have to develop a better model which is able
to understand the meaning of the user sketch, making the querying result as close as
possible to the user’s real desire.

1.2 Scope and Contributions

In this thesis, we make several serious attempts to take advantage of machine learning
in order to improve interaction in visual analytics. The research presented in this thesis
is motivated by successful machine learning-based applications in a wide range of fields
as well as the challenges arising from model design for visualization techniques. More
specifically, the main contributions of this thesis can be summarized as follows:

1. We present a new Mahalanobis brush, which we have extended and further opti-
mized using data from a user study with 50 participants. This attempt contributes
an improvement to a central procedure in many modern visual analytics solutions,
i.e., to brushing (scatterplots). The user study-based optimization of visualization
parameters is too little seen in the visualization literature. We could demonstrate
quantitatively that we significantly improve the accuracy of the original Maha-
lanobis brushing while still using a very fast interaction technique.

2. By exploiting deep learning, we present a CNN-based technique for brushing in
scatterplots, which provides a solution that is able to brush also nonlinear shapes
of data subsets and significantly reduces the error rate when compared to our
improved Mahalanobis brush. To the best of our knowledge, this is the first study
to report the successful application of a structured regression model, realized by
a convolutional neural network, to improve a central user interaction technique in
visual analytics.

3. In order to optimize a brush tool for every single user, we present a personal-
ized CNN-based brushing solution which takes the user in the loop to iteratively

1 6 Introduction

refine the brushing model with additional data that the user provides while us-
ing the brushing technique. By refining a first general model for estimating data
selections from simple click-and-drag interactions incrementally with the addi-
tional data from a particular user and leveraging the existing parameterization,
we achieve a solution which is able to turn the general model based on people’s
average brushing preference to a tailored model for the specific user. In addition,
the retraining time cost is largely reduced, thus only a short break is needed if the
users want to improve their brushing models.

4. To investigate how much an empirical model can be furher improved with a more
sophisticated design and whether it can outperform the deep learning approach,
we present our attempt to construct a best-possible empirical model by further
extending the Mahalanobis brush, incorporating kernel density estimation (KDE)
with the goal to figure out the influence of human expertise during model design.
The main contribution of this work includes our extension of the empirical model
for brushing points in a scatterplot and a threefold comparison between empir-
ical brushing models (Mahalanobis brushing and KDE brushing) and our deep
learning-based brushing model (CNN brushing) as well as an according discus-
sion.

5. We present an LSTM-based solution to improve visual querying of time series
data in visual analytics. More specially, we make use of the long short-term
memory (LSTM) to encode the user sketch and the time series data respectively
in two networks with sharing parameters in order to learn the similarity function
between them for matching purpose. To the best of our knowledge, this is the first
time that deep learning is used to learn the matching relation between a human
sketch and time series data, outperforming two state-of-the-art models (Qetch and
DTW) in terms of accuracy and efficiency.

1.3 Thesis Structure

This thesis is composed of two main parts. The first part provides an overview of the
research carried out within the course of this thesis. The second part contains individual
publications, presented verbatim with only adjusted formatting to fit the layout of this
thesis. Furthermore, the bibliographies of the individual publications and Part I were
merged to a single unified bibliography.

The first part, namely the overview, is structured as follows: After the introduction
(Chapter 1), a structured overview of related work is presented in Chapter 2, in which
we discuss previous research work concerned with machine learning methods utilized
in visualization as well as work on brushing techniques and visual query systems. In
Chapter 3, the contributions of this thesis are outlined in more detail (for get more
details, we refer to the paper in Part II). We evaluate the proposed ideas and methods
in Chapter 4. Finally, we conclude the first part of this thesis in Chapter 5.

The second part of the thesis consists of five papers, providing further details on the
contributions of this PhD work.

22

Chapter 2

Related work

During the last few years, substantial work has been done to integrate machine learn-
ing into visual analytics, leveraging the strengths from both sides to help users extract
valuable information from the data. In this chapter, we outline the state of the art
of the combination between machine learning and visualization. Then, we provide an
overview of a central interaction technique used in visual analytics—brushing. Further-
more, we review the visual query systems for time series data as well as the relevant
pattern matching algorithms.

2.1 Integrating machine learning into visual analytics

Visual analytics (VA) is a process which incorporates automatic and visual analysis
methods with a tight coupling through human interaction in order to discover knowl-
edge from data. Visual analytics can be seen as an integral approach combining visual-
ization, human factors, and data analysis, where the user plays an important role in the
communication between the human and the computer, as well as in the decision-making
process. Figure 2.1 shows an overview of the different stages (represented by rectan-
gles) and their transitions (arrows) in visual analytics process [50]. First, the typically
heterogeneous data has to be preprocessed and transformed to suitable representations
for further exploration via data cleaning, normalization, grouping and so on. After-
wards, visual or automatic analysis methods are applied and the analyst is allowed to
evaluate and refine the models by interaction with the visualization (for example using
zooming in on different data areas or considering different visual views on the data).
The whole process can lead to a continuous refinement and verification of preliminary
results and knowledge (insightful information) can be gained as a feedback to support
the future analysis.

In the data-driven era, data is becoming more complicated and difficult as scales
increase, driving the need for systems that enable to draw valid conclusions from data
while maintaining trustworthy and interpretable results. Machine learning is a method
of data analysis that automates analytical model building. It is a branch of artificial
intelligence based on the idea that systems can learn from data, identify patterns and
make decisions with minimal human intervention. As the focus of machine learning
and visualization is on algorithms and interfaces/interaction respectively, making use
of the complementing strengths from both communities is becoming a trend to address
the current challenges in visual data exploration. Over the years, much work has been

2

8 Related work

Data

Visualization

Model

Knowledge

Mapping

User interaction

Refinement

Data mining

Model

Building

Model

Visualization

Feedback

Transformation

Figure 2.1: Overview of the visual analytics process [50].

done to integrate machine learning into visual analytics, in which the utilized machine
learning methods can be roughly classified into two types: traditional machine learning
and deep learning. In the following, we review important works in both categories as
well as the popular machine learning frameworks applied in visual analytics.

2.1.1 Traditional machine learning for visualization

Fundamentally, traditional machine learning is using algorithms to extract information
from raw data and represent it by constructing a certain type of model. The traditional
machine learning community has achieved conspicuous progress in various kinds of
tasks (such as clustering, regression or classification) over the past decades by bringing
in the knowledge from statistics, data analysis and processing. As machine learning
and visualization have the same goal, which is to help people get insight from the data,
we have seen a mentionable number of work combining traditional machine learning
with visual analytics solutions. Endert et al. [21] summarized the conventional machine
learning techniques that have been integrated into VA applications, dividing them into
4 categories:

Dimension reduction—the analyst can use it to compress a large set of features
into a new feature space of lower dimensionality without losing the most important
information. This way, conventional visualization methods for moderate dimentional-
ity can be employed. Williams and Munzner presented MDSteer (shown in Figure 2.2
(A)) [106] which is a steerable multidimensional scaling (MDS) system that can pro-
gressively compute an MDS layout and handle huge datasets. To achieve this, the
high dimentional points are projected into a hierarchical decomposition of rectangular
screen-space regions. Then the system allows user to interactively steer the compu-
tation to the regions where more precision is needed. Another classical example is

2

2.1 Integrating machine learning into visual analytics 9

A B

C D

Figure 2.2: Examples of traditional machine learning methods utilized in visual analytics solu-
tions: (A) MDSteer, a system enables the user to steer the computation to where it is needed for
dimension reduction [106]. (B) Interactive system for allowing the user to refine the cluster-
ing criteria [99]. (C) Baobabview, enables the interactive construction and analysis of decision
trees [100]. (D) An example of a visual analytics application which allows the user to refine
the regression models by integrating domain knowledge [75].

iPCA (interactive PCA) [47] that visualizes the results of principle component anal-
ysis using multiple coordinated views (data view, correlation view, eigenvector view
and projection view) and a rich set of user interactions, in order to assist the user in
better understanding and utilizing PCA. User interactions in one view are immediately
reflected in the others so that the user can easily identify a data item or a data dimen-
sion in the original data space and its counterpart in eigenspace. In addition, Johansson
and Johansson [48] presented a visually guided system that allows the user to interac-
tively reduce the data dimensionality with the help of user-defined and weighted quality
metrics.

Clustering—A task of dividing the data into groups such that data in the same
group are more similar to other data in the same group and dissimilar to the data in
other groups. Rasmussen and Karypis [85] presented gCLUTO, which is an early ex-
ample where multiple clustering algorithms are integrated to facilitate clustering-driven
analysis of large datasets. The user can find clusters based on a number of analysis, re-
porting, and visualization tools, and the clustering results with different characteristics
can be visually inspected. Turkay et al. [99] presented an interactive system (shown

2

10 Related work

in Figure 2.2 (B)) that addresses both the generation and evaluation stages within the
clustering process and provides interactive control to users to refine grouping criteria
through investigations of measures of clustering quality. In addition, Hossain et al. [43]
made use of a scattergather technique and iteratively introduce grouping constraints by
breaking up or merging clusters and the results are user-optimized through interaction.

Classification, which is to identify the category a new observation belongs to, based
on a training set of data containing observations whose category membership is known.
van den Elzen and van Wijk [100] developed a system (shown in Figure 2.2 (C)) for
the interactive construction and analysis of decision trees that takes advantage of the
specific knowledge from the domain experts. More specially, the domain experts are
supported to grow, prune (reducing search space), optimize and analyze decision trees.
Krause et al. [58] focused on the feature selection within predictive model building
process and presented a system that enables the analysts to interactively decide which
particular features should be taken into account for a classification model. Moreover,
Behrisch et al. [3] introduced a feedback-driven view exploration framework by inte-
grating the users’ relevance feedback which is approximated by a classification system.
In the presented system, an iterative dialogue between the user and the algorithm is
built, in which users communicate known/expected/wrong classification results back to
the algorithm and the model then can iteratively learn the users’ preference and find
new interesting views to recommend.

Regression/correlation analysis methods are commonly used to investigate rela-
tions between features in the data and to understand/generate causal links to explain
phenomena. Mühlbacher and Piringer [75] presented a framework (shown in Fig-
ure 2.2 (D)) which integrates domain knowledge to improve the process of building
regression models. The framework is a combination of visualizing relationship struc-
tures in a qualitative analysis and a quantification of relevance for ranking any number
of features. Malik et al. [70] developed a visual analytics solution for interactive auto-
correlation, which enables users to discover correlations and explore potentially causal
or predictive links at different spatiotemporal aggregation levels among the datasets.
Matković et al. [73] realized a successful prototyping environment that tightly couples
steering loop, integrating new simulation technology and interactive visualization for
designing an injection system. The control variables of the simulation can be visually
explored by the expert and then the simulation models can be assessed whether they are
feasible or needed to be refined. A regression model is incorporated within this process
to further optimize the simulation results based on users’ interactive inputs.

The literature mentioned above introduces two types of user involvement in the
combination of machine learning and visual analytics: (1.) the parameters and the set-
tings of an algorithm are explicitly modified by the user via interaction and the users are
allowed to steer the computational domain to which the algorithm is applied. (2.) users
can apply their relevant knowledge to instruct or correct the algorithm to meet their ex-
pectation via directly communicating with the output. While progress has been made
on incorporating machine learning into visual analytics to improve sensemaking and
knowledge discovery, the smart and effective combination of these two fields are still
under-explored, for example, decomposing the tasks for human and machine in a bal-
anced way.

2

2.1 Integrating machine learning into visual analytics 11

2.1.2 Deep learning for visualization

Deep learning (DL) is a subfield of machine learning, in which computational mod-
els with multiple processing layers are adopted to extract features from raw data and
to discover the hierarchical representations needed for different kinds of tasks. In re-
cent years, deep learning methods have been achieving breakthroughs in various major
artificial intelligence tasks, especially image processing and natural language process-
ing, attracting a lot of attention. In these tasks, deep neural networks reached a level
of accuracy comparable to or even better than humans’ performance. In general, the
techniques used in deep learning can be categorized by their architecture, such as deep
neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural net-
works (RNNs) and deep belief networks (DBNs). Among them, CNNs and RNNs are
the most widely used and have achieved numerous state-of-the-art results.

A convolutional neural network (CNN) is a deep learning architecture, which is in-
spired by the connectivity pattern between neurons and their organization in the visual
cortex [45]. The concept of a neocognitron, proposed by Fukushima [28], is widely
considered a as the fundamental basis of modern CNNs. LeCun et al. [61, 62] estab-
lished the framework of CNNs by developing a multi-layer artificial neural network
called LeNet-5, which was applied successfully to image classification problems. With
the emergence of big data and the development of according computing infrastruc-
ture, the structure of some CNNs has become very deep. A solution by Krizhevsky et
al. [59] was able to classify about 1.2 million images into 1000 classes, i.e., a record-
breaking result in the ImageNet Large Scale Visual Recognition Challenge. Often, the
impressive success of image processing CNNs is attributed to their ability to learn rich
mid-level image patterns as opposed to hand-designed low-level features used in more
traditional methods.

Recurrent Neural Networks (RNNs) are another special type of network with a loop,
which are usually used for handling sequential data. A standard RNN is an extension
of the traditional feedforward neural network which is able to store relevant parts of
the input and use this information to predict the output in the future. Although vanilla
RNN performs well in capturing nonlinearity in time series problems, it was observed
that backpropagation dynamics caused the gradients in an RNN to either vanish or ex-
plode while training to capture the long-term dependencies [4]. To overcome this issue,
the advanced version of RNN—LSTM (long short-term memory) [39] was proposed
by Hochreiter and Schmidhuber to address the difficulties of training RNNs [4]. More
specifically, LSTM units include a “memory cell” at each time step, which can choose
to read from, write to, or reset the cell using explicit gating mechanisms. This architec-
ture lets them capture potential longer-term dependencies.

Understanding deep neural networks is challenging due to their complicated inner
workings. In the visualization area, research focuses mostly on helping with the design,
training, diagnosis and refinement of deep learning models [41, 66, 109] (one example
shown in Figure 2.3 (A)). Work that applies deep learning to solve visualization tasks
is still rare. Han et al. [33] presented FlowNet, an approach based on an autoencoder
for improving the clustering and selection of streamlines and stream surfaces (shown
in Figure 2.3 (C)). Kim and Günther [53] proposed a robust reference frame extraction
method based on convolutional neural network (CNN) that is able to extract a steady
reference frame from a given unsteady 2D vector field. Wang et al. [103] proposed

2

12 Related work

 A B

C

Figure 2.3: Examples of deep learning knowledge used in visualization: (A) CNNVis, a
visual analytics approach to understanding and diagnosing convolutional neural networks
(CNNs) [66]. (B) Lassonet: lasso-selection of 3D point clouds based on deep neural net-
works [10]. (C) FlowNet, a deep learning framework for clustering and selection of stream-
lines and stream surfaces [33].

an LSTM-based approach to facilitate the network exploration by directly mapping
network structures to graph drawings. Hu et al. [44] introduced VizML that predicts
visualization design choices from a large corpus of datasets using neural networks.
Data2Vis [14] made use of recurrent neural networks to generate Vega-lite visualiza-
tion specifications from JSON-encoded datasets. To improve the interaction technique
in visual analytics, Chen et al. [10] developed a learning-based approach of lasso se-
lection for 3D point clouds. In this approach, the lasso selection is modelled as a latent
mapping from viewpoint and lasso to point cloud regions (shown in Figure 2.3 (B)).

The limited deployment of DL-based systems for real-world visual analytics so-
lutions are likely based on three reasons: (1.) Understanding and explaining a deep
neural network is challenging due to its complex “black box” nature. (2.) Usually,
high accuracy of DL-based prediction requires large amounts of training data, which
often is very difficult to acquire. (3.) There is no established common understanding of
how to determine the right DL solution as knowledge of topology, training method and
required hyperparameters. Consequently, it is often difficult to efficiently make good
use of deep learning—especially, when non-standard tasks are to be supported.

2.1.3 Machine learning frameworks

As we know, we humans are able to learn and apply relevant knowledge from previous
learning when encountering new tasks. Most of traditional machine learning algorithms

2

2.2 Brushing techniques 13

are designed to address single tasks. In contrast, transfer learning offers the opportunity
to bring the power of state-of-the-art models to new domains where insufficient data
and time/cost constraints might otherwise prevent their use [81]. Transfer learning with
CNNs has been also explored and demonstrates that the intermediate activations learned
with deep CNNs pre-trained on large datasets such as ImageNet and GoogLeNet, can
be transferred to many other recognition tasks with limited training data [93].

In general, labeling the datasets is an important prerequisite for machine learning
tasks. Active learning (AL) is a special type of semi-supervised machine learning and
able to interactively queries the user to obtain the label information for new data. As
labeling manually is expensive and time-consuming, AL has been successfully applied
to the situations where abundant data are unlabeled. The goal of AL is to improve the
training performance of a classifier at the lowest possible annotation cost by intelli-
gently picking the best examples to label. In order to combine the potentials of humans
and machines to make labeling more efficient, Bernard et al. [5] proposed a visual-
interactive labeling framework which enables users play an active role in the process of
labeling.

2.2 Brushing techniques

Brushing is one of the most important interactions in visual analytics, where elements
are selected (and highlighted) in one display, and concurrently the same information is
also highlighted in any other linked display. Figure 2.4 shows an example of linking
and brushing, where the rectangular brush on the left leads to the highlighting in two
separate views on the right, solving the problem of showing data relations in just one
view. Many techniques for brushing have been developed, each with its own strengths
and weaknesses—for example, in terms of their ease of use and the degree of control
that the user has and variants can be categorized into:
• brushing using simple geometries—the most commonly used brushing solutions

include rectangular or circular brushing on scatterplots, line-brushing on data
graphs [56], etc.

• lassoing—the user selects subsets by drawing a geometrically detailed lasso
around the target group of item representations.

• logical combinations of simple brushes—the user makes use of multiple brushes
and combines them using logical operators to refine the data selection [17, 72].

• sketch-based brushing—the user sketches a shape onto a visualization and a se-
lection heuristic is used to determine which data are selected [22, 76, 84].

Brushing is intrinsically based on the interaction between the user and the system, often
a combination of mouse/cursor motions and button clicks. Less usual methods, based
on eye/head tracking, for example, or gestures in a virtual reality environment, have
also been proposed [107].

Brushing in scatterplots is often based on the use of simple geometric shapes such
as a rectangle or circle. Alternatively, users can use a lasso to specify the selection more
accurately. Several extensions to simple brushing have been published, including tech-
niques to formulate more complex brushes by combining multiple brushes using logical

2

14 Related work

Linking and brushing

• Linking and brushing is useful for interactive visual

data exploration and analysis.

[Doleisch & Hauser, '02]

(brushed view)

(linked views)

Figure 2.4: Example of linking and brushing in visualization [18]. With the rectangular brush
(on the left), we get corresponding highlighting in two other visualizations (on the right).

operators. Martin and Ward [72], for example, enable the user to configure composite
brushes by applying logical combinations of brushes, including unions, intersections,
negations, and exclusive or operations.

In addition, advanced brushing mechanisms have been integrated into visualization
solutions, which offer interactive formula editor and execute additional functions to
specialize the behavior of a brush. For example, Hauser et al. [36] developed angular
brushing of parallel coordinates to select only data points whose representation on the
display form lines with angles similar to that specified in the brush. In this way, data
points that are well correlated with each other between a given pair of dimensions can
be readily isolated.

Koytek et al. [57] created MyBrush, which extended the popular brushing and link-
ing technique by incorporating personal agency. It offers users the flexibility to con-
figure the source, link, and target of multiple brushes. Hurter et al. [46] developed a
semantic lens which selects a specific spatial and attribute-related data range and it is
applicable for scenarios requiring a mixed selection of the zones of interest.

Similarity brushing [76, 80] is a typical example of sketch-based brushing, which
is based on a fast and simple sketching interaction—the user uses a swift and approxi-
mate gesture (for example, drawing an approximate shape that the data should follow)
and then a similarity measure (target function) is defined to identify, which data items
actually are brushed. This way, the interaction is fast, but likely not 100% accurate.

Recently, the Mahalanobis brush was presented as an interesting alternative for
brushing scatterplots [84]. The user simply clicks into the center of a coherent data
subset to be selected. The link between the interaction and the actual selection is re-
alized on the basis of an analysis of the underlying data (a local covariance matrix
indicates the overall shape and orientation of the data to be brushed, forming then the
basis for a local Mahalanobis metric, which is then used as a distance measure to select
the data). While this technique is giving quite good results, it still has limitations, in-
cluding a non-optimized selection of the local context for the Mahalanobis computation
and one off-screen parameter for the brush size.

Although various brushing techniques have been introduced over the years and ap-

2

2.3 Time series data analysis 15

plied to different visual analytical tasks, it is rare to see the work which incorporates
user’s perspective into brushing model building and optimization. In our eyes, the user
interaction logs contain rich information about how they use the technique and the in-
terest of the datasets they explore. Therefore, we see this as a highly interesting chance
for relevant innovation.

2.3 Time series data analysis

A time series is a series of data points indexed in time. Time series are usually visual-
ized via line charts and widely used in any domain which involves temporal measure-
ments such as applied science and engineering, economics, statistics, etc. In order to
extract meaningful statistics and understand the underlying context of the time series,
various methods are incorporated in time series data analysis. In our work, we focus on
the time series matching which is one of the most important tasks in time series analy-
sis. In general, time series matching refers to a scenario that a user enters a time series
and the system finds “similar” time series. In the following, we provide a brief intro-
duction to common time series similarity matching algorithms, followed by a detailed
overview of prior work related to visual query systems for time series data.

2.3.1 Time series data similarity

In the visualization and data-mining literature, the Euclidean distance (ED) and Dy-
namic Time Warping (DTW) are the most commonly used distance measures. Squared
ED is defined as the sum of the squared differences of values between two time se-
ries at n sampled points. The basic ED can be improved with data normalization, often
z-normalization, which considers the variation of similar patterns in amplitude and y-
offset [30]. However, since distances are computed point-wise and the mapping of a
query point to a data point is fixed, ED is sensitive to noise and local time misalign-
ments.

DTW overcomes ED’s inability to handle local time misalignments (or warps) by
allowing the horizontal stretching or compression of a time series when searching for
similar ones. Therefore, DTW is considered to yield better fits for shape matching,
especially when the similar shapes are not aligned along time.

For matching the pattern between the sketched query and the time series data, both
ED and DTW require a sliding window with size equals to the query length to compute
the similarity along time. In addition, Ding et al. [16] conclude in their survey that
on small datasets, DTW can be significantly more accurate than ED, but the relatively
simple and straightforward ED can be competitive with the DTW when the size of the
dataset increases.

2.3.2 Visual query system for time series data

In visual query systems, the visual components are used to drive the formation of
queries. TimeSearcher [37] is a pioneering information visualization tool based on the
use of timeboxes to query time series data (shown in Figure 2.5 (A)). To use the time-
boxes, the analyst is asked to draw a rectangular region which can specify the extent

2

16 Related work

A B

Figure 2.5: Examples of visual query systems. (A) TimeSearcher, an interactive temporal
query system based on timeboxes [37]. (B) Querylines, a flexible visual query tool that allows
users to form queries consisting of soft constraints and preferences [89].

of time points on the horizontal axis and the range of values on the vertical axis. The
time series data then can be highlighted while passed through by the timeboxes. Later,
some extended versions have been proposed to improve the basic timeboxes by incor-
porating the variable (fuzziness in the boundaries) [51], angular queries and slopes to
search ranges of differentials [38] and supporting more flexibility with options to adjust
the query [7]. Overall, timeboxes are powerful value-based widgets and widely used in
many visual query systems. However, it is troublesome to specify a shape-based query,
for example, a head-and-shoulders pattern with timeboxes.

The Querylines system [89] is another typical type of a filter-based approach to
visual querying (shown in Figure 2.5 (B)). It offers the user the opportunity to specify
the constraints by using line segments. The analyst can qualify these line segments as
hard or soft constraints based on their preference. If the query gets over-constrained,
feedback from the system enables the users to quickly and continuously refine their
query specification.

An alternative technique for constructing visual queries is to identify the most com-
mon shapes such as spikes, sinks, rise, drop, plateau and valley, then build queries using
these basic shapes as pattern templates [32].

The concept of a sketch-based visual query system was first proposed by Watten-
berg [104]. In the system, the analyst can sketch an approximate pattern on the same
display where also the data is visualized for searching similar patterns and the simi-
larity to the time series data is calculated as simple Euclidean distance. The system is
straightforward for the user to use, but the quality of query result relies strongly on lit-
tle scaling errors and well defined time and amplitude ranges of the sketch, which is
not easy for the user to handle.

To improve the flexibility and tolerance in their sketch-based visual query system,
Holz and Feiner [42] provided a relaxed selection technique which allows the user to
implicitly indicate a level of similarity that can vary across a search patterns during

2

2.3 Time series data analysis 17

sketching. Specifically, the mouse speed is used to inform the tolerance of points spa-
tially and temporally in the sketched query.

In order to know the human visual perception between their sketches and the corre-
sponding patterns in their mind, Eichmann and Zgraggen made a comparison of rank-
ings of pattern matches produced by algorithms against human-annotated results [19].
They found that human annotated rankings can differ drastically from algorithmically
generated rankings and concluded that the meaning of sketching is too diverse to be
captured in one algorithm or metric.

As a multitude of queries can be targeted by the same sketch, Correll and Gle-
icher [13] investigated these ambiguities of sketch-based query system in time series
data and define a set of “invariants", enabling the user to choose the properties of data
to ignore while sketching. In addition, they adapted different matching algorithms to
support different invariants correspondingly. The main drawback of this approach is
that it is not easy and straight forward for the user to think about the invariant while
doing the data exploration which may not be suitable for non-experts.

Muthumanickam et al. [78] outlined important perceptual features for effective
shape matching and define a grammar to express time series approximately by consid-
ering the data as a combination of basic elementary shapes positioned across different
amplitudes. These basic shapes are represented by using a ratio value and then a sym-
bolic approximation can be achieved by performing binning on ratio values. However,
the major problem of this method is the limited query expressiveness, along with the
black-box nature of query execution with each shape often having its own processing
or matching steps.

Research on human visual perception suggests that humans mentally decompose
complex shapes into visually salient parts such as piecewise upward or downward lines,
peaks and troughs [40, 52, 55]. Based on this research, Mannino and Abouzied pre-
sented Qetch [71], a tool where users freely sketch patterns on a scale-less canvas to
query time series data and get rid of specifying query length or amplitude. To achieve
this, the curvature was used to segment the time series data and the sketch, and the
matching was then based on the segments rather than time slices. The proposed match-
ing algorithm was based on the local distortion and the shape errors, which they iden-
tified from a user study by analyzing the human sketch and their sketching goal. This
method claims its advantage (dealing with the scale-less sketch) over the traditional
matching algorithms—ED and DTW. However, the query result is very sensitive to the
smoothing level of the time series data as the query length is based on the salient parts
(constructed by extrema and inflection points) of the data. In addition, the use of a slid-
ing window to do the computation in different level of smoothing is too time-consuming
for a large amount of time series data.

Prior work in visual query system research suggests a strong need for modeling
technology which is able to properly capture the semantics of user’s sketching inten-
tion for querying time series data. While a lot effort has been invested, all the current
methods mentioned above are not good enough to achieve a satisfactory result and
enable a real-time interaction at the same time. Inspired by the remarkable success
achieved by deep learning, we see an opportunity to take advantage of the deep learn-
ing knowledge to improve the current situation and contribute a new way to cover the
missing solutions in this field.

2

33
Chapter 3

Contributions

In this chapter, we outline the contributions of the research done during this PhD
project. First, we introduce the use of machine learning methods to improve brushing
in visual analytics. More specially, we exploit traditional machine learning and develop
an improved Mahalanobis brush and a new KDE-based brush. In addition, we make
use of deep learning and implement CNN-based brush and its improved version—a
personalized CNN-based brush. Based on this, we also make a quantitative compari-
son between the empirical brushing models (Mahalanobis brush and KDE-based brush)
and deep learning-based brushing (CNN-based brush) in order to investigate the human
influence in the model design. Furthermore, we pay attention to visual query systems
and present an application based on the LSTM network to improve the accuracy and
efficiency of sketch-based querying of time series data. Related evaluation and demon-
stration cases are presented in Chapter 4.

3.1 Improving brushing by machine learning

Linking and brushing is a central and well-established interaction technique for relat-
ing data aspects across coordinated multiple views [77, 87]. In our research, we have
studied the question of how close we can get to successfully integrating efficiency and
accuracy in one technique. In the following, we present the solutions we have achieved
based on different machine learning models (we chose the example of brushing in scat-
terplots as our study case—we think, however, that our principle approach is extensible
to other views and according brushes).

3.1.1 New Mahalanobis brush

Our first solution is an extended version of the previously published Mahalanobis
brush [84], which we have extended and further optimized using data from a user study
with 50 participants. In order to get as close as possible to our goal (fast and accurate),
we used the following principal approach (also illustrated in Figure 3.1):

In order to be fast, any technique which requires the user to do multiple basic in-
teractions in order to define just one brush (like a lasso, for example) is excluded. We
also wished that the users could get rid of off-screen parameters adjustment as it can
potentially interrupt their explorative/analyical procedure.

3

20 Contributions

Sketching
interaction

User study
(user’s selection goals

and interaction)

Heuristic
procedure which
is parameterized

optimization

Subset
selection

Figure 3.1: Illustration of our principal approach: To be fast, we use sketching as interaction;
to derive which data to actually brush, we use a heuristic with parameters that we optimize
using data from a user study.

In order to be accurate, we aimed to outperform the use of simple geometries—
mostly due to their limited abilities to accurately select specific data subsets, in par-
ticular in “crowded” regions of a data visualization. Accordingly, we concluded that a
sketching interaction, combined with a carefully modeled selection heuristic, would be
the right principal approach in our case.

Typically, the heuristic, which determines the data subset to be brushed, based on
a simple sketching interaction, is parameterized and different parameters will lead to
different brushing results, even when the user interaction (the sketch) is exactly the
same. As our goal was to develop a technique, which does not require any adjustment
of technique parameters by the user such that the user can focus on the fast and accurate
interaction with the data, we therefore optimize the relevant parameters of our selection
heuristic based on the data acquired from a user study (including the information of
which dataset subset did the users actually wish to brush and the according gestures
would the users do). This optimization procedure is done only once, which means that
for any new selection with our technique, using the same optimized parameters, we
then also expect a similar accuracy as achieved during training.

Figure 3.2 provides an overview of the new Mahalanobis brushing algorithm. We
use a simple click-and-drag interaction for sketching the data subset to brush (click
into the middle of the targeted data subset and drag the pointer to the boundary of the
subset). The click-point s and the end-point e of this interaction provides us a first
hint concerning the size of the data subset (scaled by parameter α), which the user
wishes to brush. Similarly to the original Mahalanobis brushing technique [84], we
also consider a circular data subset, centered around the click-point s of the interaction,
and estimate the shape and orientation of the data in this region by looking at the local
covariance information. As an improvement, we then start an iteration (influenced by
parameter β—jittering size to avoid a singular covariance matrix), until convergence,

3

3.1 Improving brushing by machine learning 21

6

User interaction/sketching

(click and drag)

Brushing data points based on Mahalanobis

distance from the click point

Iterative refinement until the data sample converges.

(influenced by jittering size β)

α and β are optimized

by the user study data

A circular area scaled by α is

determined by the interaction

Initial Mahalanobis distance computation

Figure 3.2: Overview of our fast and accurate brushing technique: the user clicks into the mid-
dle of the data subset to be selected and drags the pointer to the border of the subset (sketching
interaction); iteratively, a selection of points around the click-point is chosen, based on lo-
cal covariance information, until convergence; a selection is made based on the Mahalanobis
distance from the click-point. Two parameters, α and β , related to the sample size, before
iterating, and to some jittering, stabilizing the technique, influence the performance and we
optimize them using our user study.

that refines this data subset selection, based on the local covariance information. After
convergence, we eventually make a selection of data points, based on the Mahalanobis
distance, taking the local covariance information into account.

Since the Mahalanobis distance is a central concept in our technique, be briefly
review it first. The Mahalanobis distance is introduced by P. C. Mahalanobis [69] and
based on the correlation between data variables. The Mahalanobis distance between
vectors a and b can be defined as

dΣ(a,b) =
√
(a−b)>Σ−1 (a−b) (3.1)

where Σ is the covariance matrix of the sample (its diagonal elements consist of the
variance of each variable and the off-diagonals are the mutual covariances). The lo-
cation of equal Mahalanobis distances forms an ellipse around the sample mean (in
2D).

As our technique is based on using the local covariance structure of a data subset
around the click-point s, it is important to determine, which data subset should be used
for this computation and we do this in two steps.

Initially, we consider a circular area with radius α ·dE(s,e), where α is a weighting
factor and dE(s,e) is the Euclidean distance between s and e. All data points within this
circle are used to compute the first instance of the local covariance information, Σ1.

3

22 Contributions

Figure 3.3: Selecting data points, based on the local, weighted covariance information: s and
e denote the start- and end-points of the click-and-drag interaction; the ellipses illustrate Σw.
m lies on the Mahalanobis ellipse which acts as the eventual selector.

Next, we consider all points within a Mahalanobis ellipse, based on Σ1 and sized
according to dΣ1(s,e). Usually, this leads to a new data subset, which is similar to the
data subset as determined by the initial circle, but more closely following the underlying
data structure. To obtain an even better sample, we refine the sample iteratively by
replacing it with the points in the Mahalanobis ellipse that is updated every iteration
according to the covariance of the samples in last iteration. While this process usually
converges quite quickly, we observe that it sometimes can lead to small fluctuations,
including/excluding a few data points in consecutive iterations.

In order to stabilize and secure the convergence of the covariance matrix optimiza-
tion, we enable the partial consideration of data points for the computation, leading to a
solution that is based on the weighted covariance matrix [31]. During the iteration, the
weight of each point is updated and the points that are stable in the Mahalanobis ellipse
are assigned a higher weight than less stable points. This minimizes the inaccuracy
caused by the initial samples, resulting in a more reasonable converged covariance ma-
trix. More details of this procedure (weight function design, singular matrix handling,
etc.) are described in Paper A (A.4.2).

The selector used to determine the actually brushed data points is based on the
weighted covariance matrix Σw: We use the Mahalanobis ellipse, according to Σw,
that corresponds to point m = s+α(e− s) (s and e are the start and end point of the
interaction respectively). Accordingly, the set of all brushed points is defined as

{xi | dΣw(s,xi)≤ dΣw(s,m)} (3.2)

Figure 3.3 shows contours of the selector, selecting all green points within the Maha-
lanobis ellipse, which corresponds to click-point s and location m.

As described so far, our brushing model has two not-yet-optimized parameters: α

(size of the initial selection, determining the context of the local data shape analysis)
and β (jittering size). In order to achieve an as accurate as possible brushing result, we
conducted a user study to get information about how users would use our technique to
brush and what they actually wanted to select from the dataset (ground truth). In the
user study, we collected 600 selections, of which we randomly chose 400 as training

3

3.1 Improving brushing by machine learning 23

Our Principal approach

Sketching interaction

(I)

User study

(user’s selection goals

and interaction)

Convolutional

neural network

Subset selection

(S)

Training

offline done once

Data visualization

(V)

Figure 3.4: Illustration of our principal approach: To be fast, we use sketching as interaction;
to estimate which data to actually brush, we use a CNN trained with data from two user studies.

data, leaving 200 selections for the validation. Based on this information, we then did
an optimization of α and β : the Dice coefficient is used as a cost function to compare
the similarity between the selection goal by the user and the corresponding results by
our technique (see Paper A (A.6)). After the parameter optimization, we obtained the
optimal value of α and β for our brushing technique. Based on this, we did a quantita-
tive accuracy comparison with the previously published Mahalanobis brush [84] using
the interaction information from our user study (illustrated in section 4.1).

In this work, we have described and exercised an approach, which is all-too-little
seen in the visualization literature, i.e., a user study-based optimization of visualization
parameters. We see the potential that this work can motivate others to follow a similar
approach in their visualization research, i.e., to take advantage of the user interaction
information to do an automatic optimization of visualization parameters.

3.1.2 CNN-based brush

Recently, deep learning based methods especially convolutional neural networks
(CNN), which exploit the deep architecture to learn the hierarchical discriminative fea-
tures, have been utilized successfully in a wide range of fields such as natural language
processing, object detection and image processing. As brushing is mainly used to se-
lect some coherent and structured subsets, which is similar to detect the distinguishing
patterns in image analysis, we are inspired to make use of the CNN knowledge and
develop a new CNN-based technique for brushing in scatterplots. To achieve this, we
used the following approach (also illustrated in Figure 3.4):

Usually, users brush subsets, which are spatially coherent in the visualization. Thus,
we assume that we can estimate the brushing goal from both the actual brushing interac-
tion and the data distribution in the visualization near the interaction. In our approach,
we aimed to create a computational link between the fast and simple interaction and
the selection of a non-trivially delimited subset, estimating the visual structure that the

3

24 Contributions

user identified as the brushing target. More specifically, we deemed the combination
of an basic sketching interaction I, indicating the location, size, and orientation of the
subset to brush, with a computational estimation function S, determining which subset
to actually select, based on its visualization V near sketch I, to be a useful framework
for modeling our solution. In previous work [76, 84] and the new Mahalanobis brush
introduced above, the estimation function S was carefully modeled according to mean-
ingful heuristics, based, for example, on a geometric similarity function in visualization
space.

Since S amounts to interpreting the data visualization in terms of which spatially
coherent subset best possibly relates to the sketching interaction, we found it promising
to exploit CNN for our solution. We expected that the increased flexibility of this
approach also helps to overcome limitations of brushing nonlinear structures and data
subsets, in particular in “crowded” regions of a visualization. Thus, we constructed our
solution around a convolutional neural network (CNN) and the training data is from
two user studies.

The first user study we used is introduced above for optimizing the parameters of
Mahalanobis brush, providing information about both the brushing goals (which dataset
subset did the users wish to brush) and the according interaction (which gesture would
the user do to actually select the targeted data subset) from 50 users. In the second user
study (details are in section B.7), we examined the variation information of the user’s
interaction in order to use this for modeling an extension of the training data for the
CNN.

Figure 3.5 provides an overview of our new brushing algorithm. Since our goal is to
estimate the selection information S from both the input sketch I as well as from the data
visualization V , we need to efficiently and effectively consider these two heterogeneous
parts of input information. As a result, we handle I and V individually, using the CNN
only for the interpretation of V . The critical input from I (click-and-drag sketch), i.e.,
the click point s (center of the interaction) as well as the length r and the angle φ

of the drag component, is first used to locate, scale, and orient the receptive field of
the CNN. This way, we "normalize" the network’s operation with respect to I by a
simple linear transformation such that we can easily "undo" this normalization after
the network’s estimation process. Accordingly, the network’s task is then to interpret
the 2D data distribution in the appropriately located, scaled, and rotated region of the
visualization. In order to predict which data subset to select, we model this step as an
image processing operation: on the input side, we let the network see a 2D histogram
of the data in the targeted area; on the output side we expect a measure p per bin of the
histogram, indicating a "degree of selection" such that a simple thresholding at p = 0.5
can identify the region within the target area corresponding to the selected data subset.
We carefully experimented with many different layouts/settings of the CNN model,
varying the size and number of the convolution filters, the number of convolutional and
fully-connected layers, and the number of neurons in the fully-connected layers. As a
result, we found a model which fits our scenario well. In our design, we deviate from
the conventional CNN layout by replacing the last layer (classifier) with a structured
regression layer to encode the output information from which the actual data subset
selection can be derived in a subsequent step.

Altogether, we propose a model with two convolutional (C), two max-pooling (M),
and two fully-connected layers (F). Figure 3.6 shows this architecture and the associ-

3

3.1 Improving brushing by machine learning 25Overview of our brushing technique

User interaction/sketching

(click and drag)

Selected data points

Degree of selection per histogram bin

Data histogram in target region

Offline trained CNN

Figure 3.5: Overview of our fast and accurate brushing technique: For sketching, the user
clicks into the middle of the data subset to be selected and drags the pointer to the border of
the subset; The CNN then sees the data distribution near the interaction as a 2D histogram.
It delivers a degree-of-selection value per histogram bin, from which we can compute, which
data subset is selected.

Input Output
15×15×1 15×15×1

C M C M F F F

.

.

.
.
.
.

64 64

.

.

.

225

11×11×16

6×6×16 4×4×16 2×2×16

Figure 3.6: The proposed CNN model. C, M and F represent the convolutional layers, max-
pooling layers, and fully connected layers, respectively. The purple arrows from the last
layer illustrate the association between the final layer’s outputs and histogram-aligned grid
of degree-of-selection values.

ation between the last layer and the histogram-aligned grid of p-values. In detail, our
model is configured as Input(15×15×1), C(11×11×16), M(6×6×16), C(4×4×16),
M(2×2×16), F(64), F(64), and F(225). The sizes of the C and M layers are defined as
width×height×depth, where width×height determines the extent of each feature map
and depth represents the number of maps (filters). The details about the training pa-
rameters setting, data preprocessing and training data synthesis are illustrated in Paper
B (B.5,B.8). To evaluate the proposed CNN-based brush, we did a quantitative accu-
racy and efficiency (computation cost) comparison with Mahalanobis brush using the

3

26 Contributions

User 2 User 3

User 1

Figure 3.7: Illustration of the core idea: the general model (red star) is progressively refined
and getting closer and closer to a single user model in the high dimensional parameter space
(here 2D in this illustration).

user study data (details are in section 4.2).
In this work, we demonstrate how deep learning can be used to further improve the

central operation of brushing in visual analytics. By learning the relation between the
data subset to be selected and a click-and-drag sketch by the user to do the selection,
we contribute an innovative application of a structured regression model, realized by
a convolutional neural network, to improve brushing in scatterplots. Based on this
successful attempt, we believe that it can be beneficial a lot for experts in visualization
to incorporate the advances in deep learning into visualization tasks.

3.1.3 Personalized CNN-based brush

As mentioned above, our CNN-based brush for scatterplots achieves the highest accu-
racy compared to all current sketch-based methods with a fast interaction. While this
method has made great progress in learning the user’s mind while brushing, it suffers
from two limitations: First, the model is trained off-line once by the data from different
users and what the model learns is the average brushing preference across several users,
leading to a general model which is obviously not optimized to every single user. Sec-
ond, while it of course is possible to retrain a new model for a single user from scratch,
this procedure is time-consuming and requires sufficient training data which is difficult
to get from a single user.

To address the limitations of this CNN-based brushing solution, we propose an in-
novative framework which is able to iteratively refine the brushing model for a single
user with additional data that he/she provides while using the brushing technique. This
idea is inspired by active learning (AL), which is a special case of semi-supervised

3

3.1 Improving brushing by machine learning 27

Database from 50 users

CNN (Sg)

training

CNN (S1)

CNN (S2)

CNN (S3)

CNN (S4)

CNN (S5)

Single user

fine-tuning

fine-tuning

fine-tuning

fine-tuning

fine-tuning

1st round (Sg)

2nd round (S1)

3rd round (S2)

4th round (S3)

5th round (S4)

Sketching interaction

(I)

Data visualization

(V)

Figure 3.8: Principal approach: the general model is fine-tuned during continued use by new
data from a specific user.

machine learning that can incrementally improve the existing model by interactively
querying the user for additional input. In addition, we exploit knowledge from transfer
learning and leverage the parameterization of a well-trained model instead of learning
the user’s brushing behavior from scratch, largely reducing the time cost of the retrain-
ing procedure while maintaining a focus on avoiding overfitting.

The overall goal of our research was to improve the general CNN-based brushing
model [23] and to make it suitable for those users whose brushing preference is deviat-
ing from the average. The schematic in Figure 3.7 shows the core idea of our proposed
framework where the general model is indicated by a red star. To find the optimized
model for a single user, we take advantage of the well-trained general model as an ini-
tial point in the model’s high dimensional parameter space and progressively adapt it
step by step to a personalized model. In this way, the prior parameterization is taken
into account and we can get rid of the costly general (global) search in the parameter
space, largely reducing the time spent and making the results more stable.

Figure 3.8 provides an overview of the proposed framework to illustrate our adaptive
brushing model. In the following, we first describe the initial CNN model we used,
before we then describe the construction of our solution in detail.

Following the basic definition of the general CNN-based brushing technique men-
tioned above, we keep using click-and-drag as the sketching interaction I and a com-
putational function for estimating the brushing result, denoted as S, which is based on
the visualization V near sketch I. The general model Sg based on the CNN is trained
off-line once by 500 basic selections (augmented to 8000 in actual training via sam-
pling natural variation of user interactions) from 50 different users (the data is obtained

3

28 Contributions

via a user study described in section 4.1).
In our proposed framework, we establish an interactive scenario to improve the

brushing accuracy for a single analyst during data exploration, where the user can ac-
tively give some new input when he/she does not like the result generated by the current
brushing model. This additional data is used to gradually adapt the general model to
a personalized one and we expect, with more data from the user, the brushing result is
more accurate for this user.

For learning a single user’s brushing behavior, we choose to leverage the existing
CNN parametrization of the general model instead of retraining a model from scratch.
This is because the data used for training the general model is from 50 different users
and it is not practical to get a similar size data from a single user. To avoid the overfitting
issue caused by the limited new data, the new data is chosen to replace the most similar
data in the original dataset, composing a new training dataset rather than treating the
additional data individually.

Our retraining procedure is based on the transfer learning. Transfer learning strate-
gies depend on various factors, but the two most important ones are the size of the new
dataset (relatively small or big), and its similarity to the original dataset. As we apply
the replacement on the old data, the new training data is the same size and of high sim-
ilarity (90%) to the old training data. Therefore, we can fine-tune the weights of the
pre-trained current network via backpropagation with less of a chance to be overfitted.

The original data for training the CNN-based brushing model is based on 500 selec-
tions. In order to find the appropriate data to be replaced among the 500, we formulate a
similarity metric based on the extracted features of the input data. The reason for pick-
ing up the most similar cases to be replaced is—we hope the retrained model learns
the user’s specific brushing preference and also keeps itself as general as possible at
the same time. Therefore, the similar cases from the original data can be considered
as replicated data which should be replaced. The algorithm for the dataset replacement
is based on 18 indicators and the details of the computation are explained in Paper C
(C.3.1).

To evaluate this framework, we organized a user study where a single user is asked
to participate the model refinement procedure 5 times, and each time the user needs
to provide 10% additional data by doing brushing in new datasets. Then this user’s
personal brushing preference data can be contributed to updating the current model in
retraining. The details are in section 4.3.

In this work, we present a user-centric framework which allows the user to itera-
tively improve a brushing technique in scatterplots while using it. The main contribu-
tion of this work is that we achieve a solution which is able to turn the general model
based on people’s average brushing preference to a tailored model for the specific user
with a very short time training cost (≈3mins) by leveraging the existing paremeteriza-
tion.

3.1.4 KDE-based brush

As mentioned above, Mahalanobis brush and CNN-based brush are two principally dif-
ferent approaches which can be categorized as empirical modeling (based on reasoning)
and implicit modeling (based on deep learning) respectively. Since CNN brushing re-
sulted in much higher accuracy, and since Mahalanobis brushing is not really based

3

3.1 Improving brushing by machine learning 29

Figure 3.9: Overview of our KDE-based brushing technique: the user clicks into the middle
of the data subset to be selected and drags the pointer to the border of the subset (sketching
interaction); then a selection of points around the click-point is determined, based on the KDE
values of the data. Two parameters, α and β , related to the sample size, and the size of the KDE
bandwidth, influence the results and we optimize them using a user study (50 participants).

on any advanced distance metric – it’s “just” linear, after all –, we were interested in
studying to which degree empirical modeling can compete with machine learning in
this context.

To find out, we report our attempt to construct a best-possible empirical model
by further extending the Mahalanobis brush, incorporating kernel density estimation
(KDE) [82], and informing a clustering step that returns one of the clusters as the data
selection. The reasons for choosing KDE are based on three assumptions: (1.) Actual
data-driven density information, captured by KDE, may improve the brushing results
(over the simple assumption of a linear model as in Mahalanobis brushing). (2.) A
non-linear model may be able to select also non-linear shapes. (3.) The modes of a 2D
KDE, at the right scale, could represent clusters of data points to be selected. In the
following, we will have a short introduction of our KDE-based brushing model design.

Figure 3.9 shows an overview of the new, KDE-based brushing technique. We
keep the simple click-and-drag interaction for sketching the data subset (click into the
middle of the targeted data subset and drag the pointer to the outer boundary of the
subset). The click-point s and the end-point e of the drag-interaction provide us with
a first hint concerning the size of the data subset, which the user wishes to brush.
Similarly to the Mahalanobis brush, we first consider a circular data subset (scaled
by parameter α which needs to be optimized), centered around the start-point of the
interaction, and estimate the shape and orientation of the data in this region by looking
at the local covariance information. We then start a short iteration that refines this
data subset selection, based on the local covariance information. This process is same
as the Mahalanobis brush, the details of which have been introduced above. After
a sufficiently close convergence of this iteration, we make a selection of data points,

3

30 Contributions

A B C

Figure 3.10: A: KDE of a dataset (relatively small kernel). B: Clustering related to the modes
of the KDE, indicated by the small blue triangles. C: The one cluster, which corresponds to
the KDE mode near to s determines, which data points are selected (indicated as green points).

based on a kernel density estimation of the data, using the local covariance information
as a basis for specifying the kernel.

Kernel density estimation (KDE) is a popular method for data analysis in the field
of statistics, which was introduced by Rosenblatt [88] and Parzen [82]. It is a non-
parametric way to estimate the probability density function of a random variable. KDE
can be used, for example, to make inferences about data, based on a finite sample.

Assuming that {xi}1≤i≤n are n samples of d-dimensional vectors drawn from a com-
mon distribution, described by a particular density function, then KDE can be used to
estimate this density function as

fH(x) =
1
n

n

∑
i=1

KH(x−xi) (3.3)

with H being the d× d kernel matrix (symmetric and positive definite). The choice
of matrix H is the single most important factor affecting the main characteristics of
fH [102]. Since we wish to consider the local data distribution when modeling an ap-
propriate kernel matrix H, we can make direct use of the converged covariance matrix
Σw (introduced in section 3.1.1), leading to the following (anisotropic) kernel func-
tion [96]

KH(x) =
e−

1
2 x>Σ−1

w x√
(2π)d|Σw|

(3.4)

In order to realize an appropriate scaling of our kernel, we make use of an eigende-
composition of Σw = VΛV> with eigenvectors V and eigenvalues Λ. This leads to the
following, scaled versions of |H|− 1

2 and H−
1
2 :

|H|−
1
2 = |βφΛ|−

1
2 & H−

1
2 = V(βφΛ)−

1
2 V> (3.5)

Used with an isotropic kernel function K(x) = (2π)−
d
2 e−

1
2 x>x, this amounts to a KDE

with an accordingly scaled kernel matrix. We find the best possible scaling of H by

3

3.2 Improving sketch-based visual querying of time series by machine learning 31

choosing the two scaling parameters φ and β based on two separate solutions: On the
one hand, we use a data-driven approach to determine φ (see Paper D, D.3.4). On the
other hand, we optimize β as a general parameter using the data from the user study.
The details of our optimization procedure regarding α and β are in D.5.

The selector used for selecting the data subset is based on a clustering process. The
modes of the KDE represent groups of data items (at the scale determined by the size
of H). We use clustering (each mode leading to one cluster) to identify the one group
of data items, which is associated with the click-and-drag interaction, and select it.

For clustering, we use a watershed algorithm [6, 26, 27, 79]: Starting with the mode
with the highest KDE value, we iteratively include neighboring locations into the cor-
responding cluster, lowering the KDE threshold for doing so iteratively. For every new
threshold, we either join a neighboring location to an existing cluster, or create a new
one, if the new location is not adjacent to an existing cluster. Figure 3.10 (B) shows
an according clustering result for a KDE with a relatively small kernel (shown in Fig-
ure 3.10 (A)) – the different clusters are shown in different colors and the correspond-
ing KDE modes are located by small blue triangles. Figure 3.10 (C) shows an example
of how data points are then selected (the points in the same cluster, corresponding to
click-point s, are selected and highlighted in green).

To evaluate the KDE-based brush and understand the difference between empirical
modeling and implicit modeling (deep learning), we did an in-depth comparison be-
tween the Mahalanobis brush, the CNN-based brush, and the KDE brush in terms of
accuracy, efficiency, generality and interpretability, using the interaction information
from two user studies (mentioned in section 4.1 and 4.4 respectively). The details of
the comparison are in section 4.4.

The main contribution of this paper includes our extension of the empirical model
for brushing points in a scatterplot, and a thorough comparison between the Maha-
lanobis brush, the CNN-based brush, and the KDE brush with the goal to investigate
the influence of human expertise during model design.

3.2 Improving sketch-based visual querying of time series by ma-
chine learning

Time series are sequences of data points listed in time order. A time series query refers
to finding from a set of time series that satisfy a given search criteria. In general, it is
easier to visually describe patterns in time series data than to express them textually
or procedurally. Therefore, visual query systems are a convenient user interface with
freehand sketching as an efficient means for visual communication.

As the current visual query systems for time series data suffer from the most impor-
tant efficiency and accuracy problems, the overall goal of our research was to achieve a
solution with a fast interaction and an accurate query result. In addition, our solution is
designed to be friendly to non-expert users and easy to use with minimal training. Fig-
ure 3.11 shows an illustration of the principal approach. To achieve a swift interaction,
we enable freehand sketching as the querying input. Our goal is to find a similarity
function (S) which is capable of interpreting the relation between the imperfect human
sketching interaction (I) and the matching goal within the time series data (V) as ac-

3

32 Contributions

Figure 3.11: Illustration of our principal approach: users specify the scale of the time series
patterns of interest by zooming, panning or smoothing, then freely sketch an approximate pat-
tern on the sketching panel. Then a similarity rank between the user sketch and the processed
time series data is computed by the proposed parameter sharing LSTM networks. The network
is trained only once offline based on user study data.

curately as possible. In addition, we are aiming at a real-time system involving user
interaction, which means that the computational cost should also be minimal.

As discussed before, all existing empirical models are not really good at estimating
the semantics of a human sketch. Thus, we found it promising to exploit the recent
successes of deep learning in similarity comparison for our solution. As a result, we
found that recurrent neural networks (RNNs) can be a reasonable way to encode time
series data and do the matching computation for two reasons: 1. RNNs have a memory
which allows the model to store information about its past computations. This enables
RNNs to exhibit dynamic temporal behavior which is naturally fitting to sequential
data like time series data. 2. An advanced version of RNN—Long short-term memory
(LSTM), can be trained to remember the information from a specific length of past
times steps (details are in E.4.2). This mechanism can be used to mimic a sliding
window while doing the matching computation along the time series data. At the same
time, it avoids reading the same data repeatedly, leading to a relatively low computation
cost.

To construct the network structure, we used a pair of LSTM networks with shared
parameters to encode the sketch and the time series data, respectively. The sharing
of the network parameters was beneficial because of the high similarity between the
sketch and the time series in structure. The reduced overall number of parameters ac-
celerates the training procedure and minimizes overfitting. This design is inspired by
the “Siamese” network-based solution for sentence similarity [74]. Figure 3.12 pro-
vides an overview of our proposed network structure for the user sketch and time series
data similarity learning and the detailed description of our network is given in sec-
tion E.4.3 of Paper E. To train this network, we collected training data from two user
studies. For the first user study (details are in E.5.1), we gathered the ground truth
about how different users sketch patterns and how they rate similarities based on their

3

3.2 Improving sketch-based visual querying of time series by machine learning 33

data sketch 1
exp(- h - h)

h0 h10 h20 h0 h1000

LSTMdata LSTMsketch

Similarity∈[0,1]

Parameter sharing network

LSTMdata=LSTMsketch

Lead data Sketch data Time series data

Figure 3.12: The entire structure of our proposed network: the time series data (colored in
green) with its lead data (colored in purple) on the left and the sketch data (colored in blue)
are encoded by two LSTM networks respectively. This network is trained against a distance
metric based on the Manhattan distance and the two LSTM networks share their parameters.

visual perception of their sketches and several clips of the time series data that we of-
fered. In the second user study (details are in E.5.2), we examined the variation of the
user’s sketches in order to use this for modeling an extension of the training data for a
more stable training, the according training data augmentation procedure is elaborated
in E.4.5. In the following, we introduce four basic steps of the data exploration work-
flow and the user interface of our proposed sketching query system for the four steps is
shown in Figure 3.13 .

Step 1. Data preprocessing. For most time series data, smoothing is necessary to
capture the key patterns of the data, while leaving out noise and micro-patterns. In our
design, cubic splines are used to smooth the data. Instead of asking the user to specify
the smoothing level, we offer a default smoothing level after loading the dataset based
on the number of salient parts. We count the salient parts by segmenting the time series
data at extrema and inflection points. To obtain the default smoothing level for each
dataset, we adjust the smoothing level until we are satisfied with the number of salient
parts that were enough to represent the time series data in advance and this smoothing
level is then chosen as the default smoothing setting in the beginning.

Step 2. Interactive Scaling and Smoothing. Choosing a scale (and a smoothing
level) for data exploration is a crucial user-side task – meaningful questions may be
asked about time series data at multiple scales, depending on the user task. Instead
of iterating through all possible scales and smoothing levels while matching, we allow
the user to interact with the data via zooming and panning (and/or adjusting a slider to
specify the targeted scale and smoothing level), after initially estimating a proper scale
automatically.

Step 3. Sketching. After the user specifies the scale and smoothing of the data,
a square sketch panel is provided for the user to do free sketching. The empty sketch
panel is located on the center of the canvas which can assist the user to sketch with a

3

34 Contributions

Users can change the degree of smoothing

Users choose a dataset to visualize with a default smoothing level

Users can explore all the sorted matching results in terms of similarity

Query

Step 1

Step 2

Step 3

Step 4

Users can explore all the sorted matching

results by using the provided sliding bar

Zooming/panning/adjust

the smoothing of the data Sketching panel is provided

and located in the center

The best match (colored in green) is shown

immediately and aligned with the sketch

Figure 3.13: The interface of our proposed sketching query system for time series data is
shown on the left. Data exploration is done as: Users choose the data to visualize and interact
with the data to specify the desired scale and smoothing by zooming and panning. Then our
system allows the users to freely draw a sketch. Based on this, a matching rank is computed
and users can explore all results.

similar scale by referring to the scaled time series data in the background. Sketches are
slightly smoothed in order to remove hand jitter and the query length is determined by
the sketch length.

Step 4. Query and explore the matching results. The proposed parameter sharing
LSTM networks then execute the matching computation and an ordered set of similar-
ities between the sketch and the time series data is obtained. The best match is im-
mediately highlighted in green color after the computation and the time series data is
then shifted by aligning the best matching part with the sketch. Moreover, a slider is
provided to explore all the other results from the ranked list of matching results.

Overall, the main contributions of our work are:

• A data-driven method for the sketch-based querying of time series data. To
the best of our knowledge, this is the first time that deep learning is used to learn
the matching relation between a human sketch and time series data, outperform-
ing two state-of-the-art models in terms of accuracy and efficiency (illustrated in
section 4.5).

• A sketch-based querying system. We present a prototype of a sketch-based
querying system for time series data. We offer the user an opportunity to use a
freehand sketch to explore the time series data interactively without the need to
set any offline parameter.

44

Chapter 4

Evaluation and demonstration

In order to demonstrate the usefulness of our proposed techniques, we have developed
a set of prototypes to evaluate and illustrate the utility of our contributions. Follow-
ing the order of the techniques presented in Chapter 3, we demonstrate results for the
new Mahalanobis brushing first, followed by CNN-based brushing and personalized
CNN-based brushing. Thereafter, we present a comparison of empirical brushing mod-
els and deep learning methods, including KDE-based brushing. In the end, we present
the LSTM-based visual query system for time series data, where the model is evalu-
ated directly by the user in a real application and compared with two state-of-the-art
models—DTW and Qetch algorithm. More details of the demonstration can be found
in related papers, which are attached as Part II of this thesis.

4.1 New Mahalanobis brushing in scatterplots

To test our proposed approach, we developed a prototype, which is implemented in Pro-
cessing. Processing is a Java-based visual programming language, which is frequently
used for the electronic arts, new media art, and in the visual design communities.

For the evaluation, we compared our model with a previously published Maha-
lanobis brushing technique [84] in terms of accuracy, and with manual Lasso regarding
the time spent, based on the user study data. In the following, a short introduction is
given about the user study we did before we go through the details of the evaluation.

In the user study, 50 individuals, all students or employees from the University of
Bergen, Norway, participated in our study. Each one was asked to do 12 selections.
In every case, a particular scatterplot (one out of six) and a particular request (choose
a large cluster/a small cluster/an elongated cluster) were given. We formulated two
questions for each dataset in advance based on our perception of the datasets (Figure 4.1
shows an overview of the user study data). Then the participant was instructed to
choose a target data subset to select (ground truth, reported by the participants using
a lasso tool), then also providing the corresponding click-and-drag interaction, which
this participant would use to select the target group. We recorded all points selected by
the lasso (the brushing goal), the sketching interaction (i.e., the start point and the end
point of our new brushing technique), and the time spent on the interaction (excluding
thinking time) during both of these two techniques. Accordingly, we collected 600
selections (including 252400 points), of which we randomly chose 400 as training data,
leaving 200 selections for the validation.

4

36 Evaluation and demonstration

䄀   䈀   䌀

䐀   䔀   䘀

Figure 4.1: Overview of the six datasets that we used in the user study: A–D show Boston
housing data (with as different scagnostics as possible); E shows Gaussian clusters and F
shows non-linear path-based spectral clusters (as a particuarly difficult case).

Based on this, we did a quantitative accuracy comparison with the previously pub-
lished Mahalanobis brush [84] using the interaction information from our user study.
Figure 4.2 shows a Venn-diagram-like visualization of this comparison in terms of true
positives, false positives, etc.

The area surrounded by the dashed line represents the user goal, accumulated over
all selections. The area surrounded by a solid line represents the brushing results by our
technique while the dotted line surrounds the results by the old Mahalanobis technique.
The area size is proportional to the numbers of brushed data points.

We calculated the percentages of how many data points fall in each of the eight
possible overlap regions between the user’s goal, our brushing, and the original brush
after accumulating over all cases (the all-negative region corresponding to the overall
context of points outside of all selections was left out from the visualization). The
colors used in this visualization correspond also to the colors of points in the other
scatterplots in this discussion section:

• least interesting are yellow points (both brushing technique succeed to select the
point correctly (both true positive), purple points (both brushing techniques fail
to select), and pink points (both techniques select falsely).

• more interesting are green points (the new technique succeeds, while the original
fails), blue points (the original technique selected falsely, while the new one does
not), orange points (the new technique fails to select, while the original did),
and red points (the new technique selects falsely, while the original did not)—

4

4.1 New Mahalanobis brushing in scatterplots 37

FN (both), –, 4.83%; purple

TP (both), +, 66.91%; yellow TP (new),
++,
15.69%;
green

TN (new),
++,

3.23%;
blue FN (new), – –, 2.3%; orange

FP (both), –, 6.46%; pink

FP (new), – –, 0.57%; red

Figure 4.2: Statistics of the comparison between our technique (solid line) and the original
Mahalanobis brushing (dotted line), based on the user’s goal (dashed line).

assuming the perspective of this work, green and blue points are very good (better
than the original)!

Based on the percentages as presented in Figure 4.2, we can calculate the overall ac-
curacy for the original technique to be ≈65% and for the new technique to be ≈92%
(the very positive areas, green and blue, are significantly larger than the very negative
results, orange and red). In addition, we also did a case study by looking at few repre-
sentative good and bad cases in terms of the performance when compared with the old
Mahalanobis brush and the ground truth.

4.1.1 Good case analysis

Figure 4.3 shows a typical situation—our method performs very well, based on the
weighted covariance information, but the original Mahalanobis brush results in a clearly
worse selection (note the many blue points, i.e., points, which the original technique
falsely selects, while the new technique does not).

4.1.2 Bad cases

Figure 4.4 (left) shows a scatterplot with statistical information for each selection result
(with respect to the ratio of false negatives to our brushing result and false positives to
the goal). Most results lie in the bottom-left corner (the good corner), only a few
results show significant numbers of false negatives / false positives. We choose six
cases, highlighted by red points in the scatterplot for a detailed analysis, shown also in
detail on the right in Figure 4.4:

Case 1: Details of the user’s interaction have a big influence when selecting very
small subsets (here, the start point of the user interaction deviates a bit from the center
point of the target cluster, leading to a bad performance in this case).

4

38 Evaluation and demonstration

Figure 4.3: An example of a good match between the user’s goal and the new brushing tech-
nique.

                               ㈀                              ㌀

 㐀                              㔀                              㘀

㔀

㈀
㘀

㌀ 㐀

Figure 4.4: Left: A visualization of how certain selected cases from the user study deviated in
terms of accuracy. Right: Six (relatively extreme) cases of suboptimal matches between the
user’s goal and the new brushing technique (details in the text).

4

4.2 CNN-based brushing in scatterplots 39

Table 4.1: Statistics of the cross validation and training times

Group (validation)
Size factor of training data
1 4 16

G1 95.73% 96.33% 96.65%
G2 96.43% 97.74% 97.72%
G3 98.39% 98.50% 98.60%
G4 97.11% 97.13% 97.24%
G5 95.00% 96.02% 96.82%
G6 95.37% 97.17% 97.46%

Mean 96.34% 97.15% 97.42%
Variance 1.3 ·10−4 6.9 ·10−5 4.1 ·10−5

Time ≈5mins ≈20mins ≈80mins

Case 2: Here, the new technique is too conservative and selects too few points (the
old technique tends to select more circular regions).

Case 3: For scatterplots with linear structures that also are close to each other, our
technique selects wider clusters than what users seemingly wish (in this data, several
users wished to select individual “lines” of data points).

Case 4: Here, we think that it is close to impossible to correctly predict the user
goal computationally.

Cases 5 and 6: In both cases, the user wished to select the outer ring—something,
which is by design impossible with our (linear) selection technique (the click-and-drag
interaction gives too little information to correctly select such “advanced” clusters).

In conclusion, we could demonstrate, quantitatively, that we significantly improve
the accuracy of Mahalanobis brushing from ≈65% to ≈92%, while still using a very
fast interaction technique (click-and-drag, the average time spent is only 41% of Lasso
in our user study). In addition, in terms of efficiency, it only costs 20ms for the com-
putation of brushing 2000 points, which enables the user obtain the brushing result in
real time.

4.2 CNN-based brushing in scatterplots

We implemented the network and executed its training in Keras [11] which provides
useful GPU acceleration. For the training and testing, we used a PC with an Intel Xeon
E5-1650 CPU and an NVIDIA GeForce GTX 1080 GPU. The details of the parameter
setting (regularizer, filters, dropout and so on) for the network are explained in Paper B
(B.5.2).

For evaluating the new method—CNN-based brush, we used k-fold cross-validation [54].
In our evaluation, we set k = 6 and split the original 600 selections (from the user study
presented in section 4.1) into six evenly sized groups Gi. For training the network, we
use five groups as such (500 selections), or the extended training sets (see section B.8
for the data synthesis) with 2000 (size factor=4) or 8000 (size factor=16) selections,
respectively.

Table 4.1 shows the results of the cross validation in terms of accuracy for the three
training set sizes. With the extended training data, the trained model is more stable and

4

40 Evaluation and demonstration

has a higher accuracy. We also see that the performance of our model, when using the
16 times larger training set, is only slightly better as when trained with the four times
bigger training set, with an overall accuracy 97.42%.

Based on the trained CNN model, we did a quantitative accuracy comparison with
the new Mahalanobis brush using the 600 selections. For each point in each of the
cases, we test whether the Mahalanobis brush selects it, whether our new technique
selects it, and whether it should be selected (ground truth), looking at 252,400 points
altogether. We use different colors (an accordingly colored Venn diagram is embedded
in Figures 4.5 as color legend) in the visualization to represent the comparison result:

• yellow points (both brushing techniques succeed to select the point correctly; both
true positive), purple points (both brushing techniques fail to select, i.e., both false
negative), and pink points (both techniques select falsely; both false positive)—
purple and pink points (both techniques fail) amount to about 4.57% of all cases,
where at least one technique fails.

• green points (the CNN-based brush succeeds, while the Mahalanobis fails) and
blue points (the original method selected falsely, while the new one does not)—
these points represent the cases, where our new technique improves the so far
best results and≈89.3% of all cases, where at least one method fails, fall into this
category!

• orange points (the CNN-based brush fails to select, while the Mahalanobis did)
and red points (the new method selects falsely, while the old did not)—these
points represent cases, where the CNN-based brush is worse than the Maha-
lanobis brush (only about 6.13% of all cases, where at least one method fails,
amount to this category).

In total, when using the dice coefficient [15] to assess how well both techniques
agree with the ground truth, we get excellent 99% for our new technique, as compared
to 91% for the Mahalanobis brush. In terms of efficiency, the new technique is similarly
fast as the previous Mahalanobis brush for small subsets; when brushing 2000 points,
for example, it takes around 20ms. But when it comes to larger datasets, our method
takes only 180ms when brushing 1 million points, while the Mahalanobis brush takes
very long 110s for 100000 points, which is orders of magnitude too slow for a fluid
interaction with large data. We also did a case analysis to look at the good and bad
cases respectively.

4.2.1 Good cases

Figure 4.5 shows two typical situations, when our method performs very well, while
the Mahalanobis brush results in a worse selection. On the left of Figure 4.5 we see
many green points which the Mahalanobis brush would need to select, but actually does
not, while our technique selects them correctly. Besides, we see many blue points on
the right of Figure 4.5: by design, the Mahalanobis brush brushes an elliptical area that
more often than the CNN has troubles in selecting elongated, skinny groups.

4

4.2 CNN-based brushing in scatterplots 41

Figure 4.5: Two typical examples of a good match between the user’s goal and the CNN-based
brushing technique.

䄀   䈀   䌀

Figure 4.6: Three (most extreme) cases of suboptimal matches between the user’s goal and the
new brushing technique.

4

42 Evaluation and demonstration

4.2.2 Worst cases

The worst cases, shown in Figure 4.6, are selected based on the ratio of false negatives
to our brushing result (FN/ours) and false positives to the goal (FP/goal). Comparably
large values in either of these measures identify our worst cases.

Case A, highest value of FN/ours: our technique has a problem to differentiate
whether the user’s goal is a circular region or an elongated group in some very similar
regions.

Case B, highest value of FP/goal: the user’s interaction has a big influence when
selecting very small subsets (here, the start point of the user interaction deviates a bit
from the center point of the target cluster, leading to a bad performance in this case).

Case C: Actually, this is not a very bad example, but we chose to show it here,
because it performs relatively badly both in FP/goal and FN/ours (a relatively bad case
that isn’t really bad, after all).

To further substantiate the evaluation of our approach, we organized a new user
study and invited ten users to test our CNN model on new data. In this study, we fol-
lowed the previously established procedure of the user study mentioned in section 4.1,
but provided 6 completely new datasets for the users to brush, which were not used in
any way in the construction or training of our model. We got 120 new selections from
this user study and the average accuracy is≈95.3%, providing further evidence that our
model is good at capturing relevant features of the user’s brushing preference, rather
than being biased by the training data.

4.3 Personalized CNN-based brushing in scatterplots

As users have their own brushing preference, it is important to explore how the user
uses our brushing tool and test whether it is possible to allow the model to be cus-
tomized. To evaluate our proposed framework with the CNN brushing for a single
user, we developed a prototype with its interface written in Python and the CNN-based
brushing model implemented in Keras. To gather the data for evaluation, we conducted
a user study to collect the user’s brushing data and then retrained the model to better fit
it to a single user. In our user study, eight users were invited, all students or employees
(seven from Delft University of Technology and one from the University of Bergen).

The user study was set up in two parts. In the first part, a scatterplot was provided
to the users and then they could freely use the click-and-drag interaction to brush some
data subset of their choice. In the second part, the brushing result based on the current
CNN model was shown to the users immediately after they finished the interaction.
Then they could think about whether the results were what they wanted originally. If
not, they could use a lasso to do corrections (add and delete points, or directly specify
the goal) until they were satisfied with the results. For a specific scatterplot, every user
had to do 5 selections including the correction, if needed, before they would click the
"next" button to switch to another scatterplot.

In order to investigate the influence of the retrained model based on the user’s new
brushing data, we asked each user to participate in the user study for 5 rounds and each
scatterplot from 25 datasets showed up twice in total but in different rounds. For each
round, the user needed to finish 5 selections in 10 different scatterplots, and these data
were then applied to retrain a new, adapted brushing model which was then used for the

4

4.3 Personalized CNN-based brushing in scatterplots 43

General model Our iterative model

100

98

96

94

92

90

88

Figure 4.7: Boxplots of the brushing accuracy over rounds based on the general model (left)
and our iterative model (right). The dash line and solid line in the box show the mean and
median respectively.

next round. In the first round of the study, we directly used the already trained CNN
brushing model (introduced in section 4.2) as the initial brushing model. Then this
model will be retrained by the data obtained from the first round of the study. During
the user study, the brushing results generated by the current model and the user’s real
goal and interaction were recorded.

For evaluating our proposed iterative model, we did a quantitative accuracy com-
parison with the general CNN-based brush mentioned above. Figure 4.7 is a statisti-
cal comparison with boxplots. The left five boxplots and right five boxplots show the
brushing accuracy of 8 users in all five rounds based on the general model (left) and our
iterative model (right) respectively. The accuracy of our iterative model in each round
is calculated based on the retrained model from the last round. In the first round of the
user study, the user’s brushing results are computed by the general model without opti-
mization based on the new data, thus the difference between the general model and our
iterative model appears from the 2nd round to the 5th round. The dashed line in the box
is the mean, if we compare the accuracy by pairs in terms of the round, we can see after
iterative retraining, our model performs better than the general one (with higher median
and mean). Besides, the size of the boxes on the right are smaller than the correspond-
ing one on the left, this indicates our model has less variance and becomes more stable.
Figure 4.8 shows an accuracy comparison with line plots, between the general model

(top) and our iterative model (bottom). By looking at the accuracy variation altogether,
we can obviously see a rising trend of accuracy over rounds on the bottom side while
the accuracy of the general model is more distributed (no special trend except a decline
from round 1 to round 2) on the top. This shows a strong indication that with addi-
tional data for retraining the model, it is able to gradually learn the brushing preference
of a single user, which leads to a more personalized model from the general model. In

4

44 Evaluation and demonstration

100

100

98

98

96

96

94

94

92

92

90

90

user1
user2
user3
user4
user5
user6
user7

round 1 round 2 round 3 round 4 round 5

round 1 round 2 round 3 round 4 round 5

user8

88

88

Figure 4.8: Line plots of the brushing accuracy over 5 rounds of 8 users based on the general
model (top) and our iterative model (bottom).

Round 4 Round 5

Figure 4.9: Worst performing cases of user 5 in round 4 (left) and round 5 (right).

addition, we also see an outlier (user 5) with a sharp accuracy decrease in the last two
rounds. To investigate the reasons behind, we pick the 6 worst performing cases from
user 5 in the 4th and 5th round and list them in Figure 4.9. The brushing results are
compared to the user goal (encoded by color). The true positives (correctly brushed),
true negatives (correctly not brushed), false positives (falsely brushed) and the false
negatives (falsely left out) are colored in yellow, white, pink and purple, accordingly.
We can see that the user tried to select a complicated spiral shape and this kind of se-
lection does not exist in previous rounds, being almost impossible for the network to
predict at first time. For the relatively low accuracy (actually 90.36% is still very good)

4

4.3 Personalized CNN-based brushing in scatterplots 45

A B

Figure 4.10: Vector similarity comparison of the CNN model parameters in each round of each
user. Matrix A: angle between vectors. Matrix B: absolute length differences.

in round 5, as there are only 3 spiral-like cases from round 4 which contribute to the
network retraining, so it is difficult to tweak the model to learn it.

During the retraining procedure in each round, the parameters of the network are
updated. To understand what the network learns for each user and the relation between
different user models, we extract the parameters of the CNN model in each round of
each user, composing a vector with 35233 dimensions separately, which is denoted
as vmn, where m is the user ID and n is round number. In Figure 4.10, we compute
the angle and absolute length differences to measure the similarities between these 40
different vectors, which are shown in two matrices with green (low) to red (high) as the
color legend. In both matrix A and B, we see the outlier model in round 4 (v54) and
round 5 (v55) of user 5 also have big difference with other users in this comparison.
In addition, in matrix A, the angle between intra-user vectors are clearly smaller than
inter-user’s—this indicates that the model indeed approaches different user point in the
parameter space. For matrix B, we see a clear pattern that the diagonals right next to the
main diagonal are also very close to 0. This gives a strong impression that the model
indeed adapts in small steps over the five rounds. In summary, the visualization of the
CNN model parameters shows clear evidence that the iterative model learns reasonable
parameters while being adapted instead of randomly search in the parameter space.

Overall, based on the quantitative performance of our iterative model in comparison
to the general model, with the retraining procedure over time, we can see that the
results in terms of accuracy show a clear rising trend compared to the general model:
from 92.09% to 92.99% (+0.9%, with 10% new data), 93.72% to 95.09% (+1.37%,
with 20% new data), 94.41% to 96.29% (+1.88%, with 30% new data) and 94.33% to
96.92% (+2.59%, with 40% new data). We assume the accuracy improvement can be
even better with more user input. A practical advantage is that the retraining time cost
is reduced to 4% of training a general model from scratch.

4

46 Evaluation and demonstration

4.4 On KDE-based brush, compared to Mahalanobis and CNN-based
brush

The KDE-based brushing model was implemented in Processing and we obtained the
optimized parameter α (initial selection, determining the context of local data shape
analysis; too small values of α lead to underselection while too large values to overse-
lection) and β (overall scaling parameter, influencing the kernel size) after a optimiza-
tion process (Details are introduced in D.5). Using the optimized parameters, we did
an in-depth comparison between the Mahalanobis brush, the CNN-based brush, and the
KDE brush, using the interaction information from the user study data (introduced in
section 4.1).

Table 4.2 shows quantitative evaluation results for the three brushing techniques,
according to a number of different measures [83]:

• TP: true positives (correctly brushed), total number and in percent

• FP: false positives (falsely brushed), total number and in percent

• TN: true negatives (correctly left out), total number and in percent

• FN: false negatives (falsely left out), total number and in percent

• Accuracy: correctly brushed or left out, compared to all, TP+TN
all (the higher, the

better)

• Recall: how much of the goal is brushed, TP
TP+FN (the higher, the less “under-

brushing”)

• FPR (fall-out): how much of the non-goal is brushed, FP
FP+TN (the lower, the

fewer FP)

• FOR (false omissions): how much non-brushed is goal, FN
FN+TN (the lower, the

fewer omission.)

• TS (threat score): how much of ∪(brush,goal) is TP, TP
TP+FP+FN (the higher, the

better)

• Precision: how much of the brush is goal, TP
TP+FP (the higher, the less “overbrush-

ing”)

• F1 score: combination of precision and recall (harmonic mean), 2TP
2TP+FP+FN (the

higher, the better)

• MCC (Matthews correlation coefficient): measuring the quality of binary clas-
sification,

TP·TN−FP·FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(the higher, the better)

According to the quantitative evaluation in the top part of Table 4.2, CNN-based brush
performs best with respect to TP, FP, TN, and FN. When comparing the two empirical
models, KDE-based brush results in more TP than Mahalanobis brush (and in fewer
FN), while it leads to more FP and fewer TN. This could indicate that KDE-based
brush is better at recognizing the user’s brushing goal, but at the cost of more false
negatives (overbrushing). By looking at the bottom part of Table 4.2, showing eight

4

4.4 On KDE-based brush, compared to Mahalanobis and CNN-based brush 47

Table 4.2: Quantitative evaluation of the three brushing techniques, based on several measures
and computed for all 600 selections

TP TP (%) FP FP (%) TN TN (%) FN FN (%)
Mah. 50 737 20.10% 5 189 2.06% 191 682 75.94% 4 792 1.90%
KDE 52 436 20.77% 9 583 3.80% 187 288 74.20% 3 093 1.23%
CNN 55 321 21.92% 929 0.37% 195 942 77.63% 208 0.08%

accuracy recall FPR FOR TS precision F1 MCC
Mah. 96.05% 91.37% 2.64% 2.44% 83.56% 90.72% 91.04% 88.51%
KDE 94.98% 94.43% 4.87% 1.62% 80.53% 84.55% 89.22% 86.18%
CNN 99.55% 99.63% 0.47% 0.11% 97.99% 98.35% 98.98% 98.70%

Goal KDE Mah CNN

TP(KDE) TP(Mah) TP(CNN) TN(KDE) TN(Mah) TN(CNN) FP(KDE) FP(Mah) FP(CNN) FN(KDE) FN(Mah) FN(CNN) FP(Mah) TN(CNN) FP(KDE) TN(all)

TN(KDE) FP(all) TN(Mah) FP(CNN)

FN(KDE) TP(all) FN(Mah) TP(CNN)

TP(Mah) FN(CNN) TP(KDE) FN(all)

Filled: TP Empty: TN Smile: succeed Frown: fail

A B

0.012 0.007

0.54

0.006 0.11

1.71
1.85

0.21
0.13

0.63

0.014

1.3

0%

0.5%

1%

1.5%

2%

Prevalence

Figure 4.11: A three-way comparison of four sets (A): actual goal (green), Mahalanobis
brush (violet), KDE brush (orange), CNN brush (pink). The cases of all techniques correctly
brush the goal (19.45% of all), all techniques leave out the non-goal correctly (73.86%), all
techniques select falsely (0.12%) and all techniques fail to select (0.05%) are not shown,
focusing on those cases, where at least one technique has a problem (FP or FN) and at least
one technique succeeds (TP or TN); Venn diagram, illustrating the relation between the sets
(B).

4

48 Evaluation and demonstration

different measures for judging the quality of the classification, CNN-based brush also
outperforms the two empirical models (in all measures). Comparing the two empirical
models, KDE-based brush seems to be better than Mahalanobis brush in recall (how
much of the goal is brushed) and in the false omission rate (how much of the non-
brushed view is actually goal), while Mahalanobis brush appears to be better in all
other six measures.

In addition to comparing each method with the goal, we also did a threefold compar-
ison to see the relation of the four related sets (actual goal, brushed by the Mahalanobis
brush, the KDE brush, and the CNN brush), shown in Figure 4.11 (A). The Venn dia-
gram in Figure 4.11 (B) is an illustration of the threefold comparison: the thick green
line surrounds the actual goal, the dashed violet line surrounds all that’s brushed by the
Mahalanobis brush, the dashed orange line surrounds what the KDE brush selects, and
the dashed pink link surrounds, what the CNN brush selects (in the shown schematic,
the areas do not correspond to the proportions of the respective cases).

For each point in the 600 cases from the user study [22] – 252 400 points, alto-
gether – we check whether it belongs to the brushing goal (green), whether the Maha-
lanobis brush selects it (violet), whether the KDE brush selects it (orange), and whether
the CNN brush selects it (pink), leading to 24 = 16 possible situations per point. The
relative prevalence of these situations is shown in Fig. 4.11 (A), leaving out the dom-
inating “good” cases of all techniques brush a goal point, TP(all), 19.45% of all, all
techniques leave out a non-goal point, TN(all), 73.86%, all techniques select falsely,
0.12% of all cases, and all techniques fail to select, 0.05% of all cases, emphasizing the
situations, where at least one brushing technique has a problem (FP or FN) and at least
one technique succeeds (TP or TN). The label of each situation indicates its characteris-
tics – if one technique has a problem, then this is indicated (for ex., “FN(Mah): 1.30%”
indicates the situation, when only the Mahalanobis brush fails to select a goal point);
when two techniques have a problem, the opposite is done (for ex., “TN(Mah): 0.11%”
indicates the situation, when only Mahalanobis brushing leaves out a non-goal point,
while both other techniques incorrectly select it). As an additional mark in Fig. 4.11
(A), a combination of emojis is used to indicate the situation: a frowny indicates a prob-
lem (color: technique, filled: FP, empty: FN), while a smiley shows that the technique
succeeded (filled: TP, empty: TN). Below, we briefly address all cases:

• TP(all), TN(all): in most cases, all three techniques do the right thing (select a
goal point, or leave a non-goal point out): 19.45% are consistently selected goal
points, 73.86% are consistently left-out non-goal points – altogether, 93.31% of
all cases are “good” in general!

• FN(KDE), FN(Mah), FN(CNN): the indicated brush is the only one to not select
a goal point; of these, the case where the Mahalanobis brush underbrushes is
most prevalent (1.30%, as compared to 0.63% and 0.014% of underbrushing by
the KDE-based brush and CNN-based brush respectively).

• FP(KDE), FP(Mah), FP(CNN): the indicated brush is the only one to falsely
select a non-goal point; of these, clearly the case where the KDE-based brush
overbrushes is most prevalent (1.85%, as compared to 0.21% (Mah) and 0.13%
(CNN)).

• TP(KDE), TP(Mah), TP(CNN): the one indicated brush (Mahalanobis, KDE,

4

4.4 On KDE-based brush, compared to Mahalanobis and CNN-based brush 49

G H I

J K L

Figure 4.12: Overview of the six datasets in the follow-up user study.

CNN) succeeds to select the goal, while the two others fail; of these three, clearly
the case where only the CNN-based brush succeeds is most prevalent (0.54%, as
compared to 0.012% (KDE) and 0.007% (Mah)).

• TN(KDE), TN(Mah), TN(CNN): the one indicated brush succeeds in not select-
ing a non-goal point, while the other two select it falsely; of these, also the case
where only the CNN-based brush is right is most prevalent (1.71%, as compared
to 0.11% (Mah) and 0.006% (KDE)).

• FP(all), FN(all): in these rare cases, all the three techniques do the wrong thing
(select falsely or fail to select), amounting to 0.12% and 0.05%, respectively.

To further substantiate the evaluation of the three techniques, we also tested the three
methods on new data from another user study, which has not been used for training of
the models. This user study used six completely new datasets (shown in Figure 4.12:
G is compound data [108], H is personal hiking data, I is aggregation data [29], J is the
omnipresent Iris data, K is R15 data [101], L are three spirals [9]) and 10 users provided
12 selections each, leading to 120 selections in total. The corresponding quantitative
comparison is shown in Table 4.3 and Figure 4.13, considering 86 700 points in total.

Comparing the quantitative evaluation based on the two user studies, we see that
CNN-based brush produces many more FP in the follow-up study (0.37%→ 1.48%),
leading also to a higher fall-out value (0.47% → 1.91%). Mahalanobis brush and
KDE-based brush produce much less FN in the follow-up study (1.90%→ 0.28% and
1.23% → 0.35%, respectively), while CNN produces more FN (0.08% → 0.15%).
With respect to the other measures, KDE’s threat score got better in the follow-up
study (80.53% → 89.75%) and became more similar to the others. Mahalanobis’s
threat score improved also (83.56%→ 91.39%), while CNN’s threat score worsened
(97.99% → 93.10%). Besides that, Mahalanobis’ recall got better in the follow-up
study (91.37%→ 98.75%) and became more similar to the others (all methods are very
good). CNN’s precision and accuracy went down in the follow-up study (98.35%

4

50 Evaluation and demonstration

Table 4.3: Quantitative evaluation of the three brushing techniques, based on several measures
and computed for all 120 selections from the new user study:

TP TP (%) FP FP (%) TN TN (%) FN FN (%)
Mah. 18 989 21.90% 1 549 1.79% 65 921 76.03% 241 0.28%
KDE 18 927 21.83% 1 859 2.14% 65 611 75.68% 303 0.35%
CNN 19 100 22.03% 1 286 1.48% 66 184 76.34% 130 0.15%

accuracy recall FPR FOR TS precision F1 MCC
Mah. 97.94% 98.75% 2.30% 0.36% 91.39% 92.46% 95.50% 94.25%
KDE 97.51% 98.42% 2.76% 0.46% 89.75% 91.06% 94.60% 93.10%
CNN 98.37% 99.32% 1.91% 0.20% 93.10% 93.69% 96.43% 95.44%

Goal KDE Mah CNN

TP(KDE) TP(Mah) TP(CNN) TN(KDE) TN(Mah) TN(CNN) FP(KDE) FP(Mah) FP(CNN) FN(KDE) FN(Mah) FN(CNN)

Filled: TP Empty: TN Smile: succeed Frown: fail

0%

0.5%

0.014

0.42

0.005 0.021

0.08

0.46

0.37
0.41

0.15
0.18

0.1
0.051

Prevalence

Figure 4.13: Threefold comparison between the Mahalanobis brush, KDE brush and the CNN
brush based on the user’s goal from a follow-up user study (details in the text). Note that all
relative prevalences are below 0.5%.

→ 93.69%, 99.55% → 98.37%) and became more similar to the others. In addition,
the FPR and FOR of KDE-based brush are both largely reduced (4.87% → 2.76%,
1.62%→ 0.46%), becoming more similar to the other two methods. In terms of the F1
score and MCC, both Mahalanobis brush and KDE-based brush improved (91.04%→
95.50%, 88.51% → 94.25%; 89.22% → 94.60%, 86.18% → 93.10%), while CNN’s
measures worsened (98.98%→ 96.43%, 98.70%→ 95.44%).

For the threefold comparison, we see a performance decline of CNN-based brush in
all TP(CNN) (0.54%→ 0.08%), TN(CNN) (1.71%→ 0.46%), FP(CNN) (0.13%→
0.15%) and FN(CNN) (0.014%→ 0.051%). For the empirical models, KDE achieves
better results in all TP(KDE) (0.012% → 0.014%), TN(KDE) (0.006% → 0.021%),
FP(KDE) (1.85% → 0.37%) and FN(KDE) (0.63% → 0.18%), while Mahalanobis
brushing performs better in TN(Mah) (0.11% → 0.42%), and FN(Mah) (1.30% →
0.10%) but worse in TP(Mah) (0.007%→ 0.005%), and FP(Mah) (0.21%→ 0.41%).

While almost all measures got better for both Mahalanobis brush and for KDE-
based brush in the second user study, they all got worse for CNN-based brush – at least
a bit. It is important to see, however, that CNN-based brush still outperformed both
other methods in all indicators (even though they are much more similar in the follow-
up study). This could reveal one important disadvantage of the CNN brush, namely
that it is less general, when compared with the empirical models.

4

4.5 LSTM-based visual query system 51

Additionally, based on the comparison between KDE-based brush and Mahalanobis
brushing, we could not see that KDE-based brush would outperform Mahalanobis
brush, after all. This assumption was originally made, because we thought that more
carefully considering the local data distribution should help to further improve the tech-
nique’s accuracy (as a nonlinear method, KDE-based brush should have better abilities
to adapt to nonlinear structures in the data). So far, we cannot rule out that we have
overlooked another limitation when realizing the KDE-based approach – either a con-
ceptual one, or a limitation of our implementation. Accordingly, we see it still possible
that another solution could achieve a further improved accuracy.

As another point of this discussion, we note that empirical modeling comes with the
advantage of an explainable result (for example, we know how different values of α

and β influence the results), while the excellent performance of the DL model comes at
the cost of a poor interpretability (including some uncertainty concerning the stability
of its predictive power, see section D.6.4). This comparison leads to the interesting
question of how much accuracy we are willing to sacrifice for a good interpretability.

4.5 LSTM-based visual query system

The prototype of our proposed visual query system was implemented in Python with the
network training based on Keras. To evaluate the accuracy of our proposed matching
model, the most direct way is to ask users to tell us whether the matching result is good
or not. As a baseline for comparison, we chose two state-of-the-art techniques—the
recently published Qetch algorithm [71] and DTW. The well-established DTW metric
was chosen as one of the best options for distance measures in time series data [16],
while the authors of Qetch claimed its strength over DTW for freehand sketch and
matching for high-level task (in terms of time spent). In this user study, the users were
asked to rate the matching results computed by Qetch, DTW, and our new method,
leading to a quantitative, comparative evaluation reflecting the user’s perspective.

For the user study, 10 users were invited. For each user, 8 new time series data (with
lengths ranging from 40 to 1440, none of them used for training before) were provided
in sequence to test the generality of the proposed model. The procedure of this user
study consisted of two steps:

1. To start, a dataset with a useful default smoothing level (see above) was presented
to the user. For each dataset, the user could interact with the interface and specify the
targeted scale of the visualization by zooming with the mouse. In addition, users could
also adjust the smoothing level by using a slider.

2. Then, the user was asked to sketch a pattern he/she wanted to look up from
the time series data on the sketching panel. Based on the user’ sketch, we computed
the three best matching results from our new model, the Qetch algorithm, and using
DTW, respectively. Then, we showed these three results (in random order and without
telling which is which) to the user and asked them to rate the similarity between their
sketch and these three results separately. As Qetch and DTW are highly competitive
matching algorithms, capturing the difference between good and very good results re-
quires more detail, so we offered a once refined nine-points range (also from 0 to 1,
s = 0,0.125,0.25,0.375...1.0) for rating instead of the courser five-points Likert scale,
delivering the required details for a proper comparison.

4

52 Evaluation and demonstration

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Series1

Time step

Time step=20

IQ
R

35%
42%

72%

54%

23%
25%

58%

26%

47%
37%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

30

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10

win lose same imp

17%

2% 5%

25%

-5%

4% 7% 7% 3% 1%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

30

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10

win lose same imp

A B

C

Figure 4.14: A: comparison between our method and the Qetch algorithm. B: comparison
between our method and DTW. Green bars show how often our technique was preferred (red:
how often Qetch/DTW was preferred; blue: tied) and the purple line indicates per user the
improvement as achieved by our method (positive: average improvement due to our method).
C: IQR values showing output variation between different time series from the 1st time step to
the 60th, indicating the change of variation over time.

During this study, we recorded the similarity rating from each user for a subsequent
quantitative analysis (see below). For each data, the user sketched four times and did
four sets (our method, Qetch, and DTW) rating. Accordingly, we collected altogether
320 sets of rating results from 10 users. In addition, the time cost of computation were
recorded for comparing efficiency, also. Before the user study started, every users was
offered a training session to get familiar with the interface and the interaction of the
user study.

Figure 4.14 (A) and Figure 4.14 (B) are statistical comparisons based on the rating
results (32 pairs from each user) from the user study. The results are shown as bars
(how often one technique was preferred) and as a line graph (average improvement).
Green bars show (per user) the number of times that our method was rated with a
higher similarity than Qetch (A) or DTW (B), while red bars represents the contrary
and the tied rating is represented as blue bars. Further, we also compute the average
improvement (denoted as imp) of our method as compared with Qetch/DTW in terms

4

4.5 LSTM-based visual query system 53

of the similarity value: imp =
sour−sqetch

sqetch
or sour−sdtw

sdtw
(sour, sqetch, and sdtw denote the

average similarity rating of our method, the Qetch algorithm, and DTW, respectively)
and show it (also per user) as line graph in purple.

By looking at the bar graph in Figure 4.14 (A), we clearly see that all users pre-
ferred our matching over the Qetch algorithm and that our method was preferred about
2.5 so often as the other way around (193:77). The line graph shows that all average
improvements are positive, providing a clear evidence that our method is closer to the
user’s perception in terms of similarity. More specifically, the average improvement is
≈42% as s̄our=0.64 and s̄qetch = 0.45, where s̄our and s̄qetch are the average similarity
values of our method as compared to the Qetch algorithm. Based on this evaluation,
we are confident to conclude that in general our method performs significantly better
than the Qetch algorithm, when the matching results are directly judged by the users.

By looking at the chart in Figure 4.14 (B), 7 out of 10 users preferred our technique
over DTW according to the bar graph, while the average improvements are positive (in
our favor) for 9 out of 10 users, when looking at the line graph. The overall ratio of users
preferring our method over DTM is around 1.2 (115:93) and the average improvement
for each user is ≈7% with s̄dtw = 0.6 (s̄dtw is the average similarity of DTW rated by
all the users). Overall, and even though the improvement numbers are clearly smaller
than in the comparison with Qetch, this suggests that our method is slightly better than
DTW in terms of accuracy (at least not wrose) when evaluated directly from the user’s
perception.

Furthermore, and since a swift user–computer dialogue in visual query systems is
highly dependent on the efficiency of the involved interactions, we also compared the
computation cost of the three methods. According to the user study, the average com-
putation costs of our method, Qetch, and DTW, are 33ms, 132ms and 3.6s, respectively.
Based on this data, we see clearly that our method is the most efficient one due to its
linear complexity, while DTW is the slowest and unable to achieve a real-time interac-
tion.

Besides the quantitative evaluation in terms of accuracy and efficiency, we also
examined the output of each step of the LSTM network to check whether the network
learns meaningful information. The reason for doing this was that the network was
implicitly taught to only remember the information of a specific length of previous time
steps (we set this to 40 in our experiment) with a goal to mimic a sliding window for
matching. To investigate whether the network has successfully achieved this important
feature, we collect the output (namely the hidden state h) of each time step of several
time series data with different left lead data and compute the output variations over the
time steps to analyze whether the network is able to discard long term dependencies.
The details are illustrated below.

In our training, the time series data clips were sampled at 40 points with synthesized
lead data “on the left” at 20 points. For looking into the information as learned by the
network, we did an experiment that generated 20 time series snippets with length 60
(denoted as Gi, i ∈ {1, . . . ,20}), where the trailing 40 entries for each time series were
the same, but the first 20 varied according to our synthesis procedure. As a reference,
we have another time series (denoted as re f) that has the same last 40 entries but with
a real lead data that is different from all synthesized lead data Gi. We then iterated the
time series and the reference time series over the 60 time steps by using the already

4

54 Evaluation and demonstration

trained model and obtained a set of outputs with format 20×1×60×20 and 1×60×20.
We then computed the cosine similarity between all outputs of Gi and re f per time step,
leading to a set of 20 cosine similarities. We compute the inter-quartile range (IQR),
i.e., the difference between the 75%- and the 25%-percentile, as a robust indicator of
the variation over the time steps.

After iterating over all the time steps from 1 to 60, we have 60 IQR values which
represent the output variations over the 60 time steps and this information is shown in
Figure 4.14 (C). As we mentioned, from the 1st time step to 20th time step, the network
output corresponds to lead data – since all of the lead data was randomly synthesized
the variation during this period is fluctuating at a relatively high level. After time step
20, however, we see a decline of the IQR values, correlated with the networking reading
actual time series data. Towards the 60th time step, the IQR values approach 0, which
meets our expectation that the output at the last time step almost only represents the
information of the previous 40 time steps. In summary, this statistics gives us a strong
indication that the LSTM network has been successfully trained to understand that only
the information from a certain length of the previous time steps should be taken into
account in each time step.

Overall, we can demonstrate, quantitatively, and in comparison with the recently
published Qetch algorithm as well as the classical distance measure DTW, that our
LSTM-based solution leads to an improvement in terms of the overall similarity (≈42%
to Qetch and ≈7% to DTW), rated by users in a user study, while enabling a fast
interaction (≈4 times faster than Qetch and ≈100 times faster than DTW).

In this chapter, we demonstrate how machine learning can be used to improve the
user interaction in visual analytics by making use of the user’s interaction data. To
briefly summarize: the Mahalanobis brush and the KDE-based brush are empirically
constructed by conventional machine learning algorithms and optimized by user study
data, with the advantage of a better interpretability and stability of the results. While the
CNN-based brush and the LSTM-based time series matching algorithm are implicitly
modeled, based on user study data, achieving the best performance in terms of accuracy
and efficiency, but with the disadvantage of being a “black box” mechanism. The
quantitative results deliver a positive signal that the collaboration between ML and VA
can be beneficial and promising to drive innovations. In addition, we hope our work
can motivate people to pay more attention to the user feedback as this valuable data can
be collected to optimize the existing models or even create new effective models.

55

Chapter 5

Conclusion and Future Work

Fast and accurate interaction techniques are critical for data analysts to achieve a
seamless and intuitive visual communication with the visual analytical systems. More
specifically, the analyst should be able to fully focus on the task at hand instead of be-
ing distracted by overly technical or complex user interaction. This practical demand
drives the need for smart interaction tools which can intelligently take user’s feedback
into consideration and then require as little user input as possible after a proper learning
procedure.

In this thesis, we demonstrate how machine learning can be utilized to further im-
prove central interaction techniques in visual analytics. By learning the relation be-
tween the data subset to be selected and a swift sketch by the user to do the selection,
we achieve multiple solutions, which are fast and also very accurate. Moreover, we
also discuss the accuracy, practicability, robustness and interpretability between em-
pirical modeling and deep learning-based modeling by taking the brushing techniques
we implemented together as an example, in order to investigate the human influence in
model design. This comparison also bring up an interesting debate about how to trade
off different strengths when choosing/designing a model.

Based on our observation, there is a mentionable amount of work which has been
done to integrate machine learning knowledge to visualization tasks. However, this
combination targeted for improving user interaction is still rare to see. In addition,
we notice that only a small subset of ML techniques are incorporated in visualization
solutions and that the visualization community is relatively slow in catching up with
advanced ML techniques. We hope the work done in this thesis can inspire people to
increase more awareness and interest in the ML domain and motivate others to follow
a similar approach in their visualization research, i.e., to do an automatic optimization
of visualization parameters, based on data from a corresponding user study.

In the future, we see several opportunities to further extend our work, including
• allowing the user to improve the interaction technique instantaneously while us-

ing it.

• taking innovative advantage of both sides—empirical modeling and machine
learning. For example, to automatically learn the kernel size or to design the
deep learning input on the basis of the KDE.

• possible improvements of the additional training data synthesis as it plays a cru-
cial role for the learning process. One possible way is to use the generative adver-
sarial network (GAN), which has been successfully applied in image generation

5

56 Conclusion and Future Work

and synthesis. We assume it can synthesize more realistic variations of the user
interaction.

• the extension of our principal approach to other interactions in visual analytics.

5

Part II

Included papers

5

AA

Paper A

User-study based optimization
of fast and accurate Mahalanobis brushing in
scatterplots

Chaoran Fan and Helwig Hauser

University of Bergen, Norway

Abstract

Brushing is at the heart of most modern visual analytics solutions with co-
ordinated, multiple views and effective brushing is crucial for swift and effi-
cient processes in data exploration and analysis. Given a certain data subset
that the user wishes to brush in a data visualization, traditional brushes are
usually either accurate (like the lasso) or fast (e.g., a simple geometry like a
rectangle or circle). In this paper, we now present a new, fast and accurate
brushing technique for scatterplots, based on the Mahalanobis brush, which
we have extended and then optimized using data from a user study. We
explain the principal, sketch-based model of our new brushing technique
(based on a simple click-and-drag interaction), the details of the user study
and the related parameter optimization, as well as a quantitative evaluation,
considering efficiency, accuracy, and also a comparison with the original
Mahalanobis brush.

This article was published in Proc. Vision, Modeling, and Visualization (VMV 2017), pages 77–84, 2017

A

60 Fast and accurate Mahalanobis brushing in scatterplots

A.1 Introduction

In interactive visual data exploration and analysis, linking and brushing is a central
and well-established interaction technique for relating data aspects across coordinated
multiple views [77, 87]. The principles of brushing were first described by Becker and
Cleveland [2], who defined brushing as an interactive method for painting a group or
subsets of points with a square, circle, or a polygon, i.e., the brush. A key functionality
in standard instances of coordinated multiple views is that brushing leads to a consistent
highlighting of the selected data in all linked views, for example, by coloring them
consistently. This amounts to one important form of focus+context visualization [35],
enabling the fast and effective exploration of data relations, which are too challenging
to show in just one view.

As popular and common as linking & brushing has become in modern visual an-
alytics solutions, already many different techniques for brushing have been realized,
including many variants from the following categories:

• brushing using simple geometries—examples of this most common approach in-
clude the rectangular or circular brushing on scatterplots, line-brushing on data
graphs [56], etc.

• lassoing—the user selects data subsets by drawing a geometrically detailed lasso
around a target group of item representations

• logical combinations of simple brushes—the user refines the data selection by
using multiple brushes and combining them using logical operators [17, 72]

• sketch-based brushing—the user sketches a shape onto a visualization and some
selection heuristic is used, usually exploiting a related similarity function, to de-
termine which data are actually selected [76]

Each brushing technique can be discussed in terms of its advantages and disadvantages
and two criteria are particularly important:

• efficiency—how fast is the brushing interaction; does it enable a fluid data explo-
ration/analysis [20, 98]?

• accuracy—does the brushing interaction lead to a selection of exactly the data
subset, which the user wished to select?

In many cases, there is an unfortunate competition between these criteria: Many brush-
ing techniques are indeed fast—we think of a brushing technique to be fast, if only one
click (or only very few atomic interactions of that kind) are needed to actually specify
the brush, leading to a swift user–computer dialogue during the data exploration/anal-
ysis [8]. Classical examples include the use of simple brushing geometries (rectangles,
circles, etc.) as well as sketched brushes, where only a quick gesture is used for brush-
ing. A common disadvantage of all these fast techniques is that it can be difficult to
accurately brush a particular data subset.

On the other hand, we certainly find brushing techniques that are fully accurate—
likely with lassoing being the most prominent example besides others such as the log-
ical combination of simple brushes. With these techniques, it is straight-forward to
select subsets of interest accurately. This benefit, however, comes at the price of being

A

A.2 Related Work 61

slower, in general—specifying a lasso, point by point, for example, easily becomes a
unit task by itself [8], potentially interrupting the exploration/analysis process.

In our research, we have studied the question of how close one can get to suc-
cessfully integrating both criteria in one technique and in the following we present
a successful solution (we chose the example of brushing in scatterplots as our study
case—we think, however, that our principle approach is extensible to other views and
according brushes). Our solution is based on an extended version of the previously pub-
lished Mahalanobis brush [84], which we have extended and further optimized using
data from a user study with 50 participants. Our quantitative evaluation shows that we
significantly improved the brushing accuracy from≈65% (original Mahalanobis brush)
to ≈92% (our new technique). Our technique is as fast as a simple click-and-drag
interaction—the original Mahalanobis brush required only one location (one click), but
depended, in addition, on an off-screen size parameter (overall brush size).

Since brushing is central in most modern visual analytics systems, we see our re-
search very relevant—optimizing at the heart of a common procedure has the strong
potential of significant impact.

A.2 Related Work

In the following, we review a few pieces of important related work, before going into
detail with respect to our new brushing technique. We first review, in short, some
critical works concerning brushing for visual analytics, before we then discuss related
work concerning the optimization of interaction techniques.

A.2.1 Brushing techniques

Many variations of brushing have been proposed over the years, each with its own
strengths and weaknesses—for example, in terms of their ease of use and the degree of
control which the user has. Brushing is intrinsically based on the interaction between
the user and the system, often a combination of mouse/cursor motions and button clicks.
Less usual methods, based on eye/head tracking, for example, or gestures in a virtual
reality environment, have also been proposed [107].

Brushing in scatterplots is often based on the use of simple geometric shapes such
as a rectangle or circle to select the data items, or using a lasso to specify the brush
region more accurately.

Several extensions to simple brushing have been published, including techniques
to formulate more complex brushes by combining multiple brushes using logical op-
erators. Martin and Ward [72], for example, allow the user to configure composite
brushes by applying logical combinations of brushes, including unions, intersections,
negations, and exclusive or operations.

Similarity brushing [76, 80] is an interesting alternative in that it is based on a
fast and simple sketching interaction—the user uses a swift and approximate gesture
(for example, drawing an approximate shape that the data should follow) and then a
similarity measure is used to identify, which data items actually are brushed by such an
advanced brush. This way, the interaction is fast, but likely not 100% accurate.

A

62 Fast and accurate Mahalanobis brushing in scatterplots

Recently, the Mahalanobis brush was presented as an interesting alternative for
brushing scatterplots [84]. The user uses a simple interaction (like a simple click into
the center of some coherent data subset to be selected) for brushing the data. The link
between the interaction and the actual selection is realized on the basis of a simple anal-
ysis of the underlying data (a local covariance matrix indicates the overall shape and
orientation of the data to be brushed, forming then the basis for a local Mahalanobis
metric, which is then used as a distance measure to select the data).

While this technique is already giving quite good results, it still has certain limi-
tations, including: a non-optimized selection of the local context for the Mahalanobis
computation (improved in our solution), at least one off-screen parameter for the brush
size (no free parameter in our solution), and empirical parameters (we use the data from
a user study to optimize the relevant parameters).

A.2.2 Optimization based on user data

Obviously, the user plays a key role during all sorts of interaction. Thus, efforts have
been invested to take the user behavior into account, when improving the performance
of interaction techniques.

The design of adaptive user interfaces, for example, is one of the most classical
examples in this respect, enabling the interface to recognize user action plans by tracing
and analyzing the user’s action sequences [60, 65].

Lieberman et al. [63] developed the “Let’s Browse” application to assist the user
browsing websites by tracking the user’s behavior and predicting items of interest, ac-
cordingly.

In the mobile phone architecture design area, Shye et al. [95] developed a logger
application for mobile phones and released it “into the wild” to collect the traces of real
users. Then, they used these traces for characterizing the power consumption on the
mobile phones, eventually leading to the development of applications that optimize the
consumption of battery power.

Considering visualization research, in particular, we cannot find a lot of related
work (in terms of optimizing interaction techniques, based on user data). Instead, we
see this as a highly interesting chance for interesting and relevant innovation.

A.3 The principal approach

The overall goal of our research was to devise a brushing technique, which is both fast
and accurate. In order to get as close as possible to both goals, we used the following
principal approach (also illustrated in Fig. A.1):

In order to be fast, we excluded techniques that would require the user to do multiple
basic interactions in order to define just one brush (like a lasso, for example). We also
wished that the users would not have to adjust any off-screen parameters, potentially
interrupting their explorative/analyical procedure.

In order to be accurate, we decided to raise our expectations over the use of sim-
ple geometries—mostly due to their limited abilities to accurately select specific data
subsets, in particular in “crowded” regions of a data visualization. Accordingly, we

A

A.4 Fast and accurate brushing in scatterplots 63

Sketching
interaction

User study
(user’s selection goals

and interaction)

Heuristic
procedure which
is parameterized

optimization

Subset
selection

Figure A.1: Illustration of our principal approach: To be fast, we use sketching as interaction;
to derive which data to actually brush, we use a heuristic with parameters that we optimize
using data from a user study.

concluded that a sketching interaction, combined with a carefully modeled selection
heuristic, would be the right principal approach in our case.

Typically, the heuristic, which determines the data subset to be brushed, based on
a simple sketching interaction, is parameterized and different parameters will lead to
different brushing results, even when the user interaction (the sketch) is exactly the
same. One opportunity is, of course, to expose these parameters in the user interface,
requiring the user to adjust parameters in order to achieve an expected result. Clearly,
this is not, what we need. Instead, our goal was a technique, which does not require
any adjustment of technique parameters by the user such that the user can concentrate
on the fast and accurate interaction with the data.

In order to optimize the performance of our selection heuristic, we therefore con-
ducted a user study with 50 participants, in which we collected information about both
the brushing goals (which dataset subset did user wish to brush) as well as the associ-
ated interaction (which click-and-drag gesture would the user do to actually selected the
targeted data subset). A subset of the acquired information from this user study (train-
ing data) was then used to optimize the relevant parameters of our selection heuristic.

A.4 Fast and accurate brushing in scatterplots

Figure A.2 provides an overview of the new brushing algorithm. We use a simple click-
and-drag interaction for sketching the data subset to brush (click into the middle of the
targeted data subset and drag the pointer to the boundary of the subset). The start-
and end-point of this interaction provides us with a first hint concerning the size of
the data subset, which the user wishes to brush. Similarly to the original Mahalanobis
brushing technique [84], we also consider a circular data subset, centered around the
start-point of the interaction, and estimate the shape and orientation of the data in this

A

64 Fast and accurate Mahalanobis brushing in scatterplots

6

User interaction/sketching

(click and drag)

Brushing data points based on Mahalanobis

distance from the click point

Iterative refinement until the data sample converges.

(influenced by jittering size β)

α and β are optimized

by the user study data

A circular area scaled by α is

determined by the interaction

Initial Mahalanobis distance computation

Figure A.2: Overview of our fast and accurate brushing technique: the user clicks into the mid-
dle of the data subset to be selected and drags the pointer to the border of the subset (sketching
interaction); iteratively, a selection of points around the click-point is chosen, based on lo-
cal covariance information, until convergence; a selection is made based on the Mahalanobis
distance from the click-point. Two parameters, α and β , related to the sample size, before
iterating, and to some jittering, stabilizing the technique, influence the performance and we
optimize them using our user study.

region by looking at the local covariance information. As an improvement, we then
start an iteration, until convergence, that refines this data subset selection, based on
the local covariance information. After convergence, we eventually make a selection of
data points, based on the Mahalanobis distance, taking the local covariance information
into account. In the following, we go into more details with respect to the individual
components of our solution.

Since the Mahalanobis distance, introduced by P. C. Mahalanobis in 1936[69], is
central in our technique, we briefly review it here. It is based on the correlation between
data variables and helps with the identification and analysis of patterns in the data. It
is unit-less and scale-invariant, which is a useful way for determining the similarity of
an unknown sample to a known one. It differs from the Euclidean distance in that it
measures with respect to the available data. Mathematically, the Mahalanobis distance
between vectors a and b is defined by

dΣ(a,b) =
√
(a−b)>Σ−1 (a−b) (A.1)

where Σ is the covariance matrix of the sample (its diagonal elements consist of the
variance of each variable and the off-diagonals are the mutual covariances). The lo-
cation of equal Mahalanobis distances forms an ellipse around the sample mean (in
2D).

The click-and-drag interaction, which we use to sketch the data subset to be se-
lected, provides two locations that subsequently are essential as input to our technique,

A

A.4 Fast and accurate brushing in scatterplots 65

i.e., the click-point s = (sx,sy)
> and the end-point of the drag-interaction e = (ex,ey)

>.

Figure A.3: Illustration of the convergence process: Initially, points in a circular neighborhood
(red points on the left) are used to compute Σ1 (illustrated by the ellipse); this leads to a
new selection (red points in the 2nd panel) and the computation of Σ2; the ellipse in panel #3
illustrates Σ10 and the one on the right Σ100 (converged). Shades of red show points which are
weighted, accordingly.

A.4.1 Mahalanobis distance computation

Our technique is based on the approach to only consider the local covariance structure
of a data subset around the click-point s. It is an important part of our overall approach
to determine, which data subset should be used for this computation. In our technique,
we do two steps to get these sample points.

Initially, we consider a circular area with the radius α ·dE(s,e), where α is a weight-
ing factor and dE(s,e) is the Euclidean distance between s and e. All points within this
circle are used to compute the first instance of the local covariance information, Σ1.

Next, we consider all points within a Mahalanobis ellipse, based on Σ1 and sized
according to dΣ(s,e). This usually leads to a new data subset, which is similar but still
different from the data subset as determined by the initial circle. Usually, this new sub-
set is already a better approximation of the data subset to be brushed. To obtain an
even more reasonable sample, we refine the sample iteratively by replacing them with
the points in the Mahalanobis ellipse which is updated every iteration according to the
samples in last iteration. Most often, we observe a quick convergence of this process.
However, it can happen, that small fluctuations appear, for example, between two se-
lections that replace each other, iteratively. Therefore, we stabilize the convergence by
enabling the partial consideration of data points around the click-point, leading to a
solution that is then based on a weighted covariance matrix[31].

A

66 Fast and accurate Mahalanobis brushing in scatterplots

A.4.2 Weighted covariance matrix

In a weighted sample, each vector xi is assigned a weight ωi ≥ 0. Without any loss of
generality, we assume normalized weights:

∑ωi = 1 (A.2)

Then the weighted mean vector x̄ is given by

x̄ = ∑ωi xi (A.3)

and the elements Σ jk of the weighted covariance matrix Σ are

Σ jk =
1

1−∑ω2
i
∑

i
ωi(xi j− x̄ j)(xik− x̄k) (A.4)

In our solution, we use an impact factor εi,0 = ε = 0.95 that we apply to all the initial
samples (as well as 0 to the remaining points). During the iteration, we update the
impact factor for the points in the current Mahalanobis ellipse as follows:

εi,n = εi,n−1 + ε
n+1 (A.5)

where n is the number of the iteration.
In order to obtain the weights, we normalize the impact factors:

ωi =
εi,n

∑ j ε j,n
(A.6)

The above described mechanism achieves the following: with more iterations (growing
n), the relative update of the impact factors (after normalization) decreases increas-
ingly (the powers of εn+1 drop below 1/3 already after 20 iterations), suppressing any
possible fluctuations and securing convergence at a high-quality result.

We considered to also optimize the value of ε , but found this unnecessary, because
its specification could be determined by the number of iterations, which seemed to be
more than sufficient to guarantee a good result (20 iterations is on the safe side). After
convergence, the points with a positive impact factor are used to calculate the final,
weighted covariance matrix Σ.

Figure A.3 shows the weights by using different shades of red. We can clearly see
that the points which are stable in the Mahalanobis ellipse are shown in darker red.

In certain situations, the covariance matrix can be singular, also (in particular, when
all sample points are along a line) and no 2D Mahalanobis distance can be computed in
such a case. We thus add a small jittering (scaled according to β) to the sample points
to avoid this situation. The random jitter used in our work is based on a Gaussian
distribution with the mean of 0 and the standard deviation of 1 pixel.

A.4.3 Selecting a data subset using a selector

Based on the converged covariance matrix, a selector is used to determine the actually
brushed data points. The selector is also based on the weighted covariance matrix

A

A.5 User study 67

Figure A.4: Selecting data points, based on the local, weighted covariance information: s and
e denote the start- and end-points of the click-and-drag interaction; the ellipses illustrate Σn.
m lies on the Mahalanobis ellipse which acts as the eventual selector.

Σn: We use the Mahalanobis ellipse, according to Σn, that corresponds to point m =
s+α(e− s). Accordingly, the set of all brushed points is defined as

{xi | dΣn(s,xi)≤ dΣn(s,m)} (A.7)

Figure A.4 shows contours of the selector, selecting all green points based on s and m
(all points within the Mahalanobis ellipse, which corresponds to location m).

A.5 User study

The new brushing technique has two not-yet-optimized parameters: α (the size of the
circular area determining the initial sample, influencing also the selector) and β (jit-
tering size). In order to achieve as accurate as possible brushing, we conducted a user
study to get information about how users would use our technique to brush and what
they actually wanted to select from the dataset (ground truth). Based on this informa-
tion, we then did an optimization of α and β . In the following, we provide details about
this user study.

A.5.1 Study datasets

In our user study, we used six representative datasets as shown in Figure A.5. In order
to use as representative datasets as possible, we looked at a variety of sample data and
according scagnostics. Scagnostics is short for Scatterplot Diagnostics, first mentioned
by John and Paul Tukey [97] to help characterize scatterplots and find interesting struc-
tures according to density, skewness, shape, outliers, etc. Wilkinson et al. [105] revived
the topic and implemented concrete measures in the R package scagnostics. We wished
to choose sample datasets with mutually as different as possible scagnostics, aiming at

A

68 Fast and accurate Mahalanobis brushing in scatterplots

䄀   䈀   䌀

䐀   䔀   䘀

Figure A.5: Overview of the six datasets that we used in the user study: A–D show Boston
housing data (with as different scagnostics as possible); E shows Gaussian clusters and F
shows path-based spectral clusters (as a particuarly difficult case).

a healthy spread of scatterplots of different type. Accordingly, we chose four scatter-
plots (A, B, C, D) from the Boston Housing data [34], which consists of 14 variables
and 91 different scatterplots, that had maximally different scagnostics from each other.
We then complemented this set of four datasets with two additional ones: E shows
Gauss-type clusters (standard case) and F is a path-based spectral clustering dataset
(particularly difficult case due to the bent, elongated outer cluster).

A.5.2 User study process

Our user study consisted of three parts:
In the first part, all users were asked to look at a scatterplot. Then they were in-

structed to choose a particular data subset according to a question that was posted along
with the scatterplot—we used one out of three questions in any case: choose a large
cluster, choose a small cluster, and choose an elongated cluster.

Then, the users were asked to use a lasso to accurately select the points which they
had choosen in the first step. This was done in order to record the user’s brushing goal
(later used as ground truth during the optimization).

In the last step, the users were required to use our new technique to select the same
points which they had already selected in the second step. To do so, the users had to
click on the center of the points to choose and then drag the pointer, while holding
down the button of the mouse to the border of the points, and then release to finish the
selection.

A

A.6 Optimization 69

넃㴀　⸀㐀                            넃㴀⸀　㔀                          넃㴀⸀㌀ 
Figure A.6: Demonstration of the influence of different values of α: too small values of α will
underselect, while too large values will overselect.

In the user study, we recorded all points selected by the lasso (the brushing goal), the
sketching interaction (i.e., the start point and the end point of our new brushing tech-
nique), and the time spent on the interaction(think time is not included) during both of
these two techniques. 50 individuals, all students or employees from the University of
Bergen, Norway, participated in our study. Each one was asked to do 12 selections (six
different datasets and two different questions each). We formulated two questions for
each dataset in advance based on our perception of the datasets. Before the users were
doing their selections, we presented our new Mahalanobis brushing in a training ses-
sion, where we showed the main features by examples of brushing a test dataset. These
sessions took approximately 10 minutes and the participants were free to interrupt for
questions and to take over the software to experiment with the new brushing technique
until they were comfortable to do the study.

A.6 Optimization

Figure A.6 demonstrates the influence of α on brushing results compared to the user
goal (encoded by color). The true positives (correctly brushed), true negatives (cor-
rectly not brushed), false positives (falsely brushed) and the false negatives (falsely left
out) are colored in yellow, white, pink and purple, accordingly. The green line is the di-
ameter of the circular area determined by the user sketch. We can easily see that there
are more false negatives when α is too small (left). Conversely, more false positives
appear when the value of α is too big (right). Concerning β , we need a sufficiently
large β (to avoid a singular covariance matrix), while also β is bound to be small: with
steadily increasing values of β , the structure of the brushed data gets increasingly di-
luted (for really large values of β , the Mahalanobis distance basically degenerates to
Eucledian distances.

In the user study we collected 600 selections, of which we randomly chose 400
as training data, leaving 200 selections for the validation. In order to compare the
similarity between the selection goal by the user and the corresponding results by our
technique, we used the Dice coefficient as a cost function. The Dice coefficient is a
similarity measure related to the Jaccard index, developed by Lee Raymond Dice [15].
For sets X and Y, and the estimated parameters α and β , the coefficient can be defined

A

70 Fast and accurate Mahalanobis brushing in scatterplots

FN (both), –, 4.83%; purple

TP (both), +, 66.91%; yellow TP (new),
++,
15.69%;
green

TN (new),
++,

3.23%;
blue FN (new), – –, 2.3%; orange

FP (both), –, 6.46%; pink

FP (new), – –, 0.57%; red

Figure A.7: Statistics of the comparison between our technique and the original Mahalanobis
brushing based on the user’s goal (details in the text).

as

s(α,β) =
2 |X ∩Y |
|X |+ |Y |

where |X | and |Y | are the cardinalities of the two sets. In our data training, X is the result
of our brushing technique and Y is the user goal. In the case of optimal agreement, i.e.,
X=Y, s(α,β) equals 1, while in the case, where X and Y do not overlap, s(α,β) = 0.

After collecting the ground truth (lasso data) from the user study as well as the click-
and release-points from the sketching interaction, we were able to conduct a numeric
optimization of α and β according to the following procedure, not involving the users
anymore: Based on a particular choice of α and β , we execute our selection heuris-
tic, using the datasets from the user study and the recorded interaction data, leading
to a particular X(α ,β)—this was then straight-forward to compare to Y (always the
same, of course), leading to s(α,β), accordingly. We started with a large matrix of sys-
tematically different combinations of the two parameters, covering a domain, which for
sure was big enough. Inspecting the s-values for all these combination lead us to further
examining a more detailed subset of the parameter space (basically, we refined our opti-
mization hierarchically, doing the refinement manually). Eventually, we ended up with
the following optimal values for both parameters when obtaining a highest overall ac-
curacy of 400 training selections: α = 1.05 and β = 11 (wrt. a view size of 800×800).

A.7 Detailed discussion of accuracy

After the parameter optimization, we obtained the optimal value of α and β for our
brushing technique (α = 1.05 & β = 11). Based on this, we did a quantitative accuracy
comparison with the previously published Mahalanobis brush [84] using the interaction

A

A.7 Detailed discussion of accuracy 71

                               ㈀                              ㌀

 㐀                              㔀                              㘀

㔀

㈀
㘀

㌀ 㐀

Figure A.8: Left: A visualization of how certain selected cases from the user study deviated in
terms of accuracy. Right: Six (most extreme) cases of suboptimal matches between the user’s
goal and the new brushing technique (details in the text).

information from our user study. Figure A.7 shows a Venn-diagram-like visualization
of this comparison.

The area surrounded by the dashed line represents the user goal, accumulated over
all selections. The area surrounded by a solid line represents the brushing results by our
technique while the dotted line surrounds the results by the old Mahalanobis technique.
Same areas correspond to same numbers of brushed data points.

We calculated the percentages of how many data points fall in each of the eight
possible overlap regions between the user’s goal, our brushing, and the original brush
after accumulating over all cases (the all-negative region corresponding to the overall
context of points outside of all selections was left out from the visualization). The
colors used in this visualization correspond also to the colors of points in the other
scatterplots in this discussion section:

• least interesting are yellow points (both brushing technique succeed to select the
point correctly (both true positive), purple points (both brushing techniques fail
to select), and pink points (both techniques select falsely).

• more interesting are green points (the new technique succeeds, while the original
fails), blue points (the original technique selected falsely, while the new one does
not), orange points (the new technique fails to select, while the original did),
and red points (the new technique selects falsely, while the original did not)—
assuming the perspective of this paper, green and blue points are very good (better
than the original)!

Based on the percentages as presented in Fig. A.7, we can calculate the overall accuracy
for the original technique to be ≈65% and for the new technique to be ≈92% (the very
positive areas, green and blue, are significantly larger than the very negative results,
orange and red). Next, a few cases are discussed in detail.

A

72 Fast and accurate Mahalanobis brushing in scatterplots

Figure A.9: An example of a good match between the user’s goal and the new brushing tech-
nique.

A.7.1 Good case analysis

Figure A.9 shows a typical situation—our method performs very well, based on the
weighted covariance information, but the original Mahalanobis brush results in a clearly
worse selection (note the many blue points, i.e., points, which the original technique
falsely selects, while the new technique does not).

A.7.2 Bad cases

Figure A.8 (left) shows a scatterplot with statistical information for each selection result
(with respect to the ratio of false negatives to our brushing result and false positives to
the goal). Most results lie in the bottom-left corner (the good corner), only a few
results show significant numbers of false negatives / false positives. We choose six
cases, highlighted by red points in the scatterplot for a detailed analysis, shown also in
detail on the right in Figure A.8:

Case 1: Details of the user’s interaction have a big influence when selecting very
small subsets (here, the start point of the user interaction deviates a bit from the center
point of the target cluster, leading to a bad performance in this case).

Case 2: Here, the new technique is too conservative and selects to few points (the
old technique tends to select more circular regions).

Case 3: For scatterplots with linear structures that also are close to each other, our
techniques selects wider clusters than what users seemingly wish (in this data, several
users wished to select individual “lines” of data points).

Case 4: Here, we think that it is close to impossible to correctly predict the user
goal computationally.

Cases 5 and 6: In both cases, the user wished to select the outer ring—something,
which is by design impossible with our (linear) selection technique (the click-and-drag
interaction gives too little information to correctly select such “advanced” clusters).

A

A.8 Discussion, conclusion, and future work 73

A.8 Discussion, conclusion, and future work

In this paper, we have made a serious attempt to contribute an improvement to a central
procedure in many modern visual analytics solutions, i.e., to brushing (scatterplots).
We have described and exercised an approach, which is all-too-little seen in the visual-
ization literature, i.e., a user study based optimization of visualization parameters (here
the crucial parameters of the new interaction technique). We could demonstrate, quan-
titatively, that we significantly improve the accuracy of Mahalanobis brushing from
≈65% to ≈92%, while still using a very fast interaction technique (click-and-drag, the
average time spent is only 41% of Lasso in our user study).

After the completion of this study, we now also have a better understanding of
the influence of the two optimized parameters, α and β , which consequently could
lead to a further improved approach. With respect to α (scaling parameter for the
selection), we clearly see the need for an optimization as we performed it, but it may be
advisable to search for an improvement of the actual optimization technique in order
to compensate the stochastic influence of the jittering on the results (without having
worked through the complete cycle yet, we see indications that one should arrive at a
very similar, optimal value of α). With respect to β (amount of jittering), we found out
that β really needs to become substantially large (like 100, or so), before a measurable
negative impact is clearly detectable—as long as a small, non-zero value of β avoids
the singularity of the covariance matrix, the results are good.

In terms of efficiency, it only costs 20ms for the computation of brushing 2000
points, which enables the user obtain the brushing result in real time. We see the poten-
tial that this work can motivate others to follow a similar approach in their visualiza-
tion research, i.e., to do an automatic optimization of visualization parameters, based
on data from a corresponding user study.

Certainly, we see several opportunities for future work, including

• extending our principal approach to other views and according brushes

• further improving the selection heuristic by including kernel density estimation
to even better delineate the sample for computing the selection [82, 88]

Acknowledgements

We thank the participants of our user study. We are also grateful to Krešimir Matković
for valuable exchange related to the original Mahalanobis brush [84].

A

BB

Paper B

Fast and accurate CNN-based brushing
in scatterplots

Chaoran Fan and Helwig Hauser

University of Bergen, Norway

Abstract

Brushing plays a central role in most modern visual analytics solutions and
effective and efficient techniques for data selection are key to establishing a
successful human-computer dialogue. With this paper, we address the need
for brushing techniques that are both fast, enabling a fluid interaction in vi-
sual data exploration and analysis, and also accurate, i.e., enabling the user
to effectively select specific data subsets, even when their geometric delim-
ination is non-trivial. We present a new solution for a near-perfect sketch-
based brushing technique, where we exploit a convolutional neural network
(CNN) for estimating the intended data selection from a fast and simple
click-and-drag interaction and from the data distribution in the visualiza-
tion. Our key contributions include a drastically reduced error rate—now
below 3%, i.e., less than half of the so far best accuracy—and an extension
to a larger variety of selected data subsets, going beyond previous limita-
tions due to linear estimation models.

This article was published in Computer Graphics Forum (Eurovis 2018), 37(3): 111–120, 2018

B

76 Fast and accurate CNN-based brushing in scatterplots

B.1 Introduction

Linking and brushing is useful for interactive visual data exploration and analysis in
coordinated multiple views [77, 87]. Already 30 years ago, Becker and Cleveland [2]
defined brushing as an interactive method for selecting data points in a visualization by
drawing simple geometries onto it. A key functionality in coordinated multiple views is
that brushing leads to a consistent highlighting of the selected data in all linked views.
This results in the most common form of focus+context visualization [35], enabling
the fast and effective exploration of data relations, which are too challenging to show
in just one view. Many techniques for brushing have been developed and variants can
be categorized into:

• brushing using simple geometries—the most commonly used brushing solutions
include the rectangular or circular brushing on scatterplots, line-brushing on data
graphs [56], etc.

• lassoing—the user selects subsets by drawing a geometrically detailed lasso
around the target group of item representations

• logical combinations of simple brushes—the user makes use of multiple brushes
and combines them using logical operators to refine the data selection [17, 72]

• sketch-based brushing—the user sketches a shape onto a visualization and a se-
lection heuristic is used to determine which data are selected [22, 76, 84]

For designing a brushing technique, two particularly important criteria should be taken
into account:

• efficiency—is the brushing is fast enough (including the interaction and all com-
putation) to enable a fluid data exploration/analysis [20, 98]?

• accuracy—does the brushing interaction lead to a selection of exactly the data
subset, which the user wished to select in the view (we refer to the most com-
mon form of brushing, where data points are selected due to their location in the
visualization)?

Despite the rich variation of existing brushing tools, we rarely see a solution that com-
bines both criteria really well: Many brushing techniques are indeed fast, as clicking on
one point, for example, or drawing simple geometries—also sketched brushes are fast,
requiring only a simple gesture as interaction and thus enabling a swift user–computer
dialogue during the exploration/analysis [8]. A common disadvantage of fast tech-
niques, however, is that it can be difficult to accurately brush a particular data subset.

On the other hand, we certainly find brushing techniques, that are straight-forward
for accurately selecting subsets of interest, such as lassoing and the logical combina-
tion of simple brushes. This benefit, however, comes at the price of being slower—
specifying a lasso, for example, easily becomes a unit task by itself [8], potentially
interrupting the exploration/analysis process. In our work, we aim to integrate both
criteria in one technique as good as possible.

Recently, deep learning methods, especially convolutional neural networks (CNN),
have been used very successfully in a wide range of fields including natural language
processing [49, 94], object detection [86] and image classification [59]. As brushing

B

B.2 Related work 77

is mainly used to select spatially coherent data subsets, which is related to detecting
patterns in images, we see the potential of exploiting deep learning to improve brushing
even further.

Inspired by the impressive performance of CNNs in image processing, we devel-
oped a new CNN-based technique for brushing in scatterplots (we chose brushing in
scatterplots as our study case, assuming that this approach is extensible to other views
and according brushes, as well). Our quantitative evaluation shows that we reduce the
brushing error rate from about 8% (Mahalanobis brush [22]) to about 2.5%. We also
build on a fast and simple click-and-drag interaction, but provide a solution which is
much faster and also more flexible in terms of which data subsets can be selected (not
limited due to a linear model). Since brushing is central in most modern visual analytics
systems, we see this result as potentially very relevant.

This paper is organized as follows: After reviewing related work (Sect. B.2), we
first describe our principal approach (Sect. B.3), before we then present our technique
in detail (Sect. B.4). The network training and evaluation are presented in sections B.5
and B.6, before we present details about our user studies (Sect. B.7) and the model of
natural variation among click-and-drag sketches for brushing (Sect. B.8). We conclude
and address future work in section B.9.

B.2 Related work

In the following, we first review some critical works concerning brushing for visual
analytics, before we then discuss related work concerning applications of convolutional
neural network.

B.2.1 Brushing techniques

Many variations of brushing have been proposed, each with its own strengths and
weaknesses—for example, in terms of their ease of use and the degree of control that
the user has. Brushing is intrinsically based on the interaction between the user and the
system, often a combination of mouse/cursor motions and clicks. Less usual methods,
based on eye/head tracking, for example, or gestures in a virtual reality environment,
have also been proposed [107].

Brushing in scatterplots is often based on the use of simple geometric shapes such
as a rectangle or circle. Alternatively, users can use a lasso to specify the selection more
accurately. Several extensions to simple brushing have been published, including tech-
niques to formulate more complex brushes by combining multiple brushes using logical
operators. Martin and Ward [72], for example, enable the user to configure composite
brushes by applying logical combinations of brushes, including unions, intersections,
negations, and exclusive or operations.

Koytek et al. [57] created MyBrush, which extended the popular brushing and link-
ing technique by incorporating personal agency. It offers users the flexibility to con-
figure the source, link, and target of multiple brushes. Hurter et al. [46] developed a
semantic lens which selects a specific spatial and attribute-related data range and it is
applicable for scenarios requiring a mixed selection of the zones of interest.

B

78 Fast and accurate CNN-based brushing in scatterplots

Similarity brushing [76, 80] is a typical example of sketch-based brushing, which
is based on a fast and simple sketching interaction—the user uses a swift and approxi-
mate gesture (for example, drawing an approximate shape that the data should follow)
and then a similarity measure (target function) is defined to identify, which data items
actually are brushed. This way, the interaction is fast, but likely not 100% accurate.

Recently, the Mahalanobis brush was presented as an interesting alternative for
brushing scatterplots [84]. The user simply clicks into the center of a coherent data
subset to be selected. The link between the interaction and the actual selection is re-
alized on the basis of an analysis of the underlying data (a local covariance matrix
indicates the overall shape and orientation of the data to be brushed, forming then the
basis for a local Mahalanobis metric, which is then used as a distance measure to select
the data).

While this technique is giving quite good results, it still has limitations, including
a non-optimized selection of the local context for the Mahalanobis computation and
one off-screen parameter for the brush size. Fan and Hauser [22] extended the Maha-
lanobis brush and improved the accuracy by optimizing the parameters based on a user
study and getting rid of the off-line parameter. However, this improved solution is still
linear and has difficulties with complex structures that would require a more flexible
approach. Also, it is not really real-time for large datasets.

B.2.2 CNNs and visualization

A convolutional neural network (CNN) is a deep learning architecture, which is in-
spired by the connectivity pattern between neurons and their organization in the visual
cortex [45]. The concept of a neocognitron, proposed by Fukushima [28], is widely
considered a fundamental basis of modern CNNs. LeCun et al. [61, 62] established
the framework of CNNs by developing a multi-layer artificial neural network called
LeNet-5, which was applied successfully to image classification problems. With the
emergence of big data and the development of computing infrastructure, the structure
of some CNNs has become very deep. A solution by Krizhevsky et al. [59] was able to
classify about 1.2 million images into 1000 classes, i.e., a record-breaking result in the
ImageNet Large Scale Visual Recognition Challenge. Often, the impressive success of
image processing CNNs is attributed to their ability to learn rich mid-level image pat-
terns as opposed to hand-designed low-level features used in more traditional methods.

Considering an increasing number of successful applications of CNNs in many
fields, we would expect according approaches also in visualization. While several
interesting works look into the opportunity of visualization helping with the design,
training, and analysis of CNNs [109], we do not yet see a mentionable number of vi-
sualization solutions that exploit CNNs, in particular not in interaction techniques in
visualization. With our work, we also hope to inspire interesting new research in this
direction.

B.3 The principal approach

The overall goal of our research was to devise a brushing technique, which is both fast
and accurate. In order to get as close as possible to both requirements, we used the

B

B.3 The principal approach 79

Our Principal approach

Sketching interaction

(I)

User study

(user’s selection goals

and interaction)

Convolutional

neural network

Subset selection

(S)

Training

offline done once

Data visualization

(V)

Figure B.1: Illustration of our principal approach: To be fast, we use sketching as interaction;
to estimate which data to actually brush, we use a CNN trained with data from two user studies.

following approach (also illustrated in Figure B.1):
In order to achieve a fast interaction and a fluid exploration, we excluded any tech-

nique that would require the user to do multiple basic interactions in order to define
just one brush (like a lasso, for example). To be as accurate as possible, we had to go
beyond simple geometries with their limited abilities to accurately select data subsets,
in particular in “crowded” regions of a visualization. Therefore, we needed a compu-
tational link between the fast and simple interaction and the selection of a non-trivially
delimited subset, estimating the visual structure that the user identified as the brushing
target. Usually, users brush subsets, which are spatially coherent in the visualization.
Thus, we assume that we can estimate the brushing goal from both the actual brushing
interaction and the data distribution in the visualization near the interaction.

Following successful previous work [22, 76, 84], we deemed the combination of
an basic sketching interaction I, indicating the location, size, and orientation of the
subset to brush, with a computational estimation function S, determining which subset
to actually select, based on its visualization V near sketch I, to be a useful framework
for modeling our solution. In previous work [22, 76, 84], the estimation function S
was carefully modeled according to meaningful heuristics, based, for example, on a
geometric similarity function in visualization space.

Since S amounts to interpreting the data visualization in terms of which spatially
coherent subset best possibly relates to the sketching interaction, we found it promis-
ing to exploit recent successes of deep learning in image processing for our solution.
We expected that the increased flexibility of this approach also helps to overcome lim-
itations in previous work with respect to the variety of shapes that such an interaction
can address—all solutions S for sketch-based brushing of scatterplots, so far [22, 84],
are limited to brushing structures that are described by linear models.

We also wished that the users would not have to adjust any off-screen parameters,
interrupting their exploration/analysis (such that they can benefit from a fluid interac-
tion with the data). Thus, we constructed our solution around a convolutional neural

B

80 Fast and accurate CNN-based brushing in scatterplotsOverview of our brushing technique

User interaction/sketching

(click and drag)

Selected data points

Degree of selection per histogram bin

Data histogram in target region

Offline trained CNN

Figure B.2: Overview of our fast and accurate brushing technique: For sketching, the user
clicks into the middle of the data subset to be selected and drags the pointer to the border of
the subset; The CNN then sees the data distribution near the interaction as a 2D histogram.
It delivers a degree-of-selection value per histogram bin, from which we can compute, which
data subset is selected.

network (CNN) that we trained with data from two user studies.
The first user study, presented in more detail in another recent publication [22], pro-

vided information about both the brushing goals (which dataset subset did the users
wish to brush) and the according interaction (which gesture would the user do to actu-
ally select the targeted data subset). In the second user study, presented further back in
this paper, we examined the variation information of the user’s interaction in order to
use this for modeling an extension of the training data for the CNN.

B.4 The new brushing technique

Figure B.2 provides an overview of our new brushing algorithm. In the following,
we first describe the overall construction of our solution, before we then describe the
individual components in detail.

B.4.1 Technique at large

Since we aim at estimating the selection information S from both the input sketch I as
well as from the data visualization V , we need to efficiently and effectively consider
these two heterogeneous parts of input information. For mainly two reasons, we han-
dle I and V individually, using the CNN only for the interpretation of V . The critical

B

B.4 The new brushing technique 81

input from the click-and-drag sketch, i.e., the click point c (center of the interaction) as
well as the length r and the angle φ of the drag component, is first used to locate, scale,
and orient the receptive field of the CNN. This way, we "normalize" the network’s oper-
ation with respect to I by a simple linear transformation such that we can easily "undo"
this normalization after the network’s estimation process. Accordingly, the network’s
task is then to interpret the 2D data distribution in the appropriately located, scaled, and
rotated region of the visualization. In order to predict which data subset to select, we
model this step as an image processing operation: on the input side, we let the network
see a 2D histogram of the data in the targeted area; on the output side we expect a mea-
sure p per bin of the histogram, indicating a "degree of selection" such that a simple
thresholding at p = 0.5 can identify the region within the target area corresponding to
the selected data subset.

A B C

Figure B.3: Computing the input to the CNN: A, a square area is specified by the interaction
(red line segment); B, after rotating to the horizontal; C, histogram of the local data distribution
(CNN input).

B.4.2 Computing the input to the CNN

The interaction I by the user amounts to a line in the scatterplot. To focus on the related,
local visualization V near I, we use a square area including the user’s brushing goal,
with side length 2 ·r ·ω and r being the length of I. To choose ω , we balance two goals:
On the one hand, we need to make the receptive field of the network large enough to
indeed see the data subset, which is targeted by the user as the brushing goal. On the
other hand, this area should be not bigger than necessary in order to optimize the CNN
results with respect to the resolution of the input histogram. Examining the user study
data [22], we found ω = 1.5 to be a useful compromise. Figure B.3A shows the square
area of the local visualization V related to I (red line segment).

In order to let the CNN see a normalized input (independent of I) as well as to inter-
pret its output efficiently, the square area is rotated by −φ into a horizontal orientation
as shown in Figure B.3B. To make use of the local data distribution, we divide the
square into a grid with a specific resolution (15 by 15 in our experiments) and com-
pute a histogram by counting how many data points show up in each bin of the grid,
denoted by Ci j where i, j ∈ [1,15]. We then normalize the value of each bin into [0,1]

B

82 Fast and accurate CNN-based brushing in scatterplots

Input Output
15×15×1 15×15×1

C M C M F F F

.

.

.
.
.
.

64 64

.

.

.

225

11×11×16

6×6×16 4×4×16 2×2×16

Figure B.4: The proposed CNN model. C, M and F represent the convolutional layers, max-
pooling layers, and fully connected layers, respectively. The purple arrows from the last
layer illustrate the association between the final layer’s outputs and histogram-aligned grid
of degree-of-selection values.

Figure B.5: Visualization of the weights of 8 selected neurons among 64 in the second fully
connected layer of the CNN.

by Ci j/max(Ci j). Figure B.3C shows a visualization of the network input with darker
bin colors representing larger Ci j values.

B.4.3 CNN design

A typical image processing CNN is composed of convolutional, pooling and dense lay-
ers [61]. The purpose of convolutional layers is to extract patterns in local regions of
the input images. Pooling layers are also referred to as a downsampling layers, with
maxpooling being the most popular choice. This serves two main purposes. First, the
number of parameters gets limited, reducing both the computation cost and overfitting.
Second, the network can this way "see" on different scales, including also larger struc-
tures (earlier layers usually see smaller structures with subsequent layers then focussing
on larger patterns). Fully connected layers then connect every neuron in one layer to
every neuron in the next layer. This is typically used in the last stages of the CNN.

For CNN design, the two most important goals are to avoid both overfitting and
underfitting. Overfitting refers to when a model is overly tuned to the training data so
that it does not generalize well. And if the model is too simple, with too few parameters,
then this leads to underfitting, i.e., bad results (low accuracy, etc.).

We carefully experimented with many different layouts/settings of the CNN model,
varying the size and number of the convolution filters, the number of convolutional and
fully-connected layers, and the number of neurons in the fully-connected layers. As a
result, we found a model which fits our scenario well. In our design, we deviate from
the conventional CNN layout by replacing the last layer (classifier) with a structured

B

B.5 Training the CNN 83

regression layer to encode the output information from which the actual data subset
selection can be derived in a subsequent step.

Altogether, we propose a model with two convolutional (C), two max-pooling (M),
and two fully-connected layers (F). Figure B.4 shows this architecture and the associ-
ation between the last layer and the histogram-aligned grid of p-values. In detail, our
model is configured as Input(15×15×1), C(11×11×16), M(6×6×16), C(4×4×16),
M(2×2×16), F(64), F(64), and F(225). The sizes of the C and M layers are defined as
width×height×depth, where width×height determines the extent of each feature map
and depth represents the number of maps (filters).

The activation function of the last F layer (regression) is chosen to be a sigmoid
function so that the output values are from [0,1]. To reduce the likelihood of vanishing
gradients, ReLu is used for all the other F and C layers. The filter size is chosen to be
5×5 for the first C layer and 3×3 for the second one. The max pooling layer uses a
window of size 2×2 with a stride of 2 in each direction.

In order to check that we have chosen a reasonable number of parameters and a
useful structure, avoid overfitting as well as underfitting, we have also visualized the
weights of the neurons in the second fully connected layer, the output of which are
used to compose the overall results. The weights are useful to visualize, because
well-trained networks usually display nice and smooth filters without any noisy pat-
terns [109]. Noisy patterns can be an indicator of a network that has not been trained
for long enough, or possibly a very low regularization strength that may have led to
overfitting. Figure B.5 shows a weights visualization of 8 selected neurons among 64
in the second fully connected layer, showing that our model learns meaningful struc-
tures and patterns.

B.4.4 Interpreting the output of the CNN

The output of the CNN is a grid comprised of degree-of-selection values p per his-
togram bin and we threshold this information at p = 0.5 to locate the selected data
subset (Fig. B.6). We use the Marching Squares algorithm [68] with a threshold of 0.5
to generate the selection contour based on the two-dimensional network output and all
points in the selection contour are selected to be the brushing result. Instead, one could
also use the p values directly and select all data points that fall into a bin with p > 0.5.
Since this would correspond to an unnatural selection contour, we prefer the smoother
results as provided by the Marching Squares.

B.5 Training the CNN

We define the training data as (xi ∈ Tin,yi ∈ Tout)
N
i=1 with pairs of input and expected

output (N is the number of the training samples). We optimize the parameters of the
network based on the training data using the mean-squared error as a loss function. The
method of computing the network input xi (appropriately located, scaled, and rotated
histograms) has been described in section B.4.2. In the following, we explain the design
of the reference output yi, which the model is trained against, and the implementation
of the CNN.

B

84 Fast and accurate CNN-based brushing in scatterplots

Figure B.6: Left: output of the CNN. Right: the points colored in green are the brushing result
(inside the Marching Squares contour, surrounding the pink area).

B.5.1 Computing the reference output

For training the CNN, the information of the user goal (data items to select), which we
have from the first user study, needs to be given to the training in an appropriate form
that is compatible with the output layer of the CNN. For the specific square area that
we consider for xi, we know which points are the user’s goal from the user study. On
the left side of Figure B.7, for example, the yellow points are the user’s brushing goal
and the red points are not to be selected.

To extract the information that is needed for the CNN training, we convert this bi-
nary select-vs.-disregard information from the user study into an image of the same
resolution as the CNN input, using an adapted form of the K-nearest neighbors algo-
rithm [1]. For each bin of the grid, we estimate the degree-of-selection value p, that we
then want the network to learn, by considering all data points in the bin and, if needed,
nearby points. Further points are included from near to far, if there are less than K
points in the center bin, stopping when at least K points are found. We give less weight
to more distant points, based on the Euclidean distance dk between the bin, where the
point is located, and the center bin. We then estimate the degree-of-selection by

p =
∑k ik/(1+dk)

∑k 1/(1+dk)
(B.1)

where p ∈ [0,1], k being the index of the points in the search area, and ik = 1 if the
point is a user goal, otherwise ik = 0.

In general, the user goal is confined to the inside of the target area. Thus we ensure
that the border bins have small values. Accordingly, we stop the search procedure,
when an outside bin of the grid is searched. If the number of points found so far is then
less than K, we synthesize the missing points right outside of the grid, and these points
are labeled as not being a user goal.

A visualization of one according reference output is on the right of Figure B.7: the
darker a bin is colored, the smaller the corresponding p value is. Even though also
other methods for estimating p come to mind, we found that this simple approach gave

B

B.5 Training the CNN 85

Figure B.7: Left: binary select (yellow) vs. disregard (red) information from the user study.
Right: the image-based reference output computed with an adapted nearest neighbor algo-
rithm.

very good results—most likely due to well-behaved data from the user study (all of the
user goals from the study lead to selection geometries with substantially smooth bound-
aries). In our research, we experimented with different values of K and validated them
against the user study data—we found that K = 3 achieved the smoothest boundaries
that successfully separate the user goal.

B.5.2 Training details

Usually, high accuracy cannot be achieved unless enough training samples are pro-
vided. It is labor-intensive and time-consuming to invite a large number of users to
provide large amounts of user data. Instead, we follow a common strategy and syn-
thesize additional training data [59] from the already acquired training set based on a
second user study that we did with the goal to study the variation of the user’s interac-
tion (in our sketch-based brushing context). We assumed that there would be a certain
amount of natural variation in the users’ sketching interaction (in terms of where ex-
actly they click and how far and in which direction they drag). In the user study, we
thus measured this variation, and modeled it in a statistically best-possible way, and
then synthesized additional interaction sketches according to the resulting models as
additional training data for the CNN. On the left of Figure B.8, we see several user in-
teractions from the second user study that we used for the variation analysis, and on
the right are correspondingly modeled synthetic variations, confirming that our model
leads to meaningful new training data. More details about this user study and the mod-
eling procedure are provided in sections B.7 and B.8, respectively.

We then used three datasets of different sizes to train the CNN and compared their
performances. The smallest dataset consists of 500 (xi,yi)-pairs, based on 500 selec-
tions from the first user study. The larger and the largest training sets were generated
by synthesizing additional 1500 and 7500 (xi,yi)-pairs, respectively.

We implemented the network and executed its training in Keras [11] which provides
useful GPU acceleration. For the training and testing, we used a PC with an Intel Xeon
E5-1650 CPU and an NVIDIA GeForce GTX 1080 GPU. We used regularizers in the

B

86 Fast and accurate CNN-based brushing in scatterplots

Figure B.8: Left: Two cases from the second user study, 10 interactions for a specific brush-
ing target in each case. Right: 15 modeled interactions per case (semi-transparent) with the
original user interaction shown as solid line.

convolutional layers and a dropout function with a drop rate of 0.2 to avoid overfitting.
As the output of our model is related to a degree-of-selection instead of a binary matrix,
an L2 regularizer is more suitable in our model, resulting in less sparse output as when
using an L1 regularizer. The learning rate was set to be 10−3 and in order to obtain
a good convergence towards a high-quality optimum, we ran 10000 epochs for the
training with a full batch.

Table B.1: Statistics of the cross validation and training times

Group (validation)
Size factor of training data
1 4 16

G1 95.73% 96.33% 96.65%
G2 96.43% 97.74% 97.72%
G3 98.39% 98.50% 98.60%
G4 97.11% 97.13% 97.24%
G5 95.00% 96.02% 96.82%
G6 95.37% 97.17% 97.46%

Mean 96.34% 97.15% 97.42%
Variance 1.3 ·10−4 6.9 ·10−5 4.1 ·10−5

Time ≈5mins ≈20mins ≈80mins

B

B.6 Evaluation 87

B.6 Evaluation

For evaluating the new method, and in particular the trained CNN, we used k-fold cross-
validation [54]. In k-fold cross-validation, the original sample is randomly partitioned
into k equal sized sets. In each of the k folds, a single set is retained as the validation
data for testing the model, and the remaining k− 1 sets are used as training data. The
cross-validation process is then repeated k times, with each of the k sets used exactly
once for validation. The results from all k folds are then averaged to assess the model.
In our evaluation, we set k = 6 and split the original 600 selections (from the first user
study) into six evenly sized groups Gi. For training the network, we use five groups
as such (500 selections), or the extended training sets (see section B.5.2) with 2000 or
8000 selections, respectively.

Table B.1 shows the results of the cross validation in terms of accuracy for the three
training set sizes. With the extended training data, the trained model is more stable and
has a higher accuracy. We also see that the performance of our model, when using the
16 times larger training set, is only slightly better as when trained with the four times
bigger training set, with an overall accuracy 97.42%.

Based on the trained CNN model, we did a quantitative accuracy comparison with
the previously published new Mahalanobis brush [22] using the same 600 selections
as presented in their user study. For each point in each of the cases, we test whether
the Mahalanobis brush selects it, whether our new technique selects it, and whether it
should be selected (ground truth), looking at 252,400 points altogether. We use differ-
ent colors in the visualization to represent the comparison result:

• yellow points (both brushing techniques succeed to select the point correctly; both
true positive), purple points (both brushing techniques fail to select, i.e., both false
negative), and pink points (both techniques select falsely; both false positive)—
purple and pink points (both techniques fail) amount to about 4.57% of all cases,
where at least one technique fails.

• green points (the new technique succeeds, while the old fails) and blue points
(the original method selected falsely, while the new one does not)—these points
represent the cases, where our new technique improves the so far best results and
≈89.3% of all cases, where at least one method fails, fall into this category!

• orange points (the new method fails to select, while the old did) and red points
(the new method selects falsely, while the old did not)—these points represent
cases, where the new technique is worse than the one (only about 6.13% of all
cases, where at least one method fails, amount to this category).

To make this color-coding easier to follow, an accordingly colored Venn diagram is
embedded in Figures B.9 and B.10 as color legend. The dashed circle on top represents
the user goal (ground truth). The solid circle represents the brushing results by our
new technique, while the dotted one surrounds the brushing results by the previously
published Mahalanobis technique. We note that in the shown schematic, the areas do
not correspond to the proportions of the respective cases—it’s just a color legend.

In total, when using the dice coefficient [15] to assess how well both techniques
agree with the ground truth, we get excellent 99% for our new technique, as compared
to 91% for the reference method [22]. In terms of efficiency, the new technique is

B

88 Fast and accurate CNN-based brushing in scatterplots

Figure B.9: Two typical examples of a good match between the user’s goal and the CNN-based
brushing technique.

similarly fast as the previous Mahalanobis brush for small subsets; when brushing 2000
points, for example, it takes around 20ms. But when it comes to larger datasets, our
method takes only 180ms when brushing 1 million points, while the Mahalanobis brush
takes very long 110s for 100000 points, which is orders of magnitude too slow for a
fluid interaction with large data.

To further substantiate the evaluation of our new approach, we organized a new user
study and invited ten users to test our CNN model on new data. In this study, we fol-
lowed the established procedure of the first user study [22], but provided 6 completely
new datasets (D7–D12 in the supplementary video) for the users to brush, which were
not used in any way in the construction or training of our model. We got 120 new se-
lections from this user study and the average accuracy is ≈95.3%, providing further
evidence that our model is good at capturing relevant features of the user’s brushing
preference, rather than being biased by the training data.

B.6.1 Examples of good cases

Figure B.9 shows two typical situations, when our method performs very well, while
the Mahalanobis brush [22] results in a worse selection. On the left of Figure B.9 we
see many green points which the Mahalanobis brush would need to select, but actually
does not, while our technique selects them correctly. Besides, we see many blue points
on the right of Figure B.9: by design, the Mahalanobis brush brushes an elliptical area
that more often than the CNN has troubles in selecting elongated, skinny groups.

B.6.2 Worst cases

We also did a worst case analysis, shown in Figure B.10, which we selected based on
the ratio of false negatives to our brushing result (FN/ours) and false positives to the

B

B.7 User studies 89

䄀   䈀   䌀

Figure B.10: Three (most extreme) cases of suboptimal matches between the user’s goal and
the new brushing technique.

goal (FP/goal). Comparably large values in either of these measures identify our worst
cases.

Case A, highest value of FN/ours: our technique has a problem to differentiate
whether the user’s goal is a circular region or an elongated group in some very similar
regions.

Case B, highest value of FP/goal: the user’s interaction has a big influence when
selecting very small subsets (here, the start point of the user interaction deviates a bit
from the center point of the target cluster, leading to a bad performance in this case).

Case C: Actually, this is not a very bad example, but we chose to show it here,
because it performs relatively badly both in FP/goal and FN/ours (a worst case that
isn’t really bad, after all).

B.7 User studies

As the user plays a central role in brushing, we conducted a new user study to explore
how the user uses our brushing tool in practice and analyzed the natural variation of the
sketching interaction in order to prepare the synthesis of additional data for the training
of the CNN. This new user study can be seen as a follow-up user study, based on the
user study done earlier [22] (called the first user study in this paper). In the following,
we first describe, what data we used from the earlier published user study, before then
going into details about our new user study.

The previously published user study (50 participants) provided the following data
which we also used for this work: Given a particular scatterplot (one out of six) and
a particular request (one out of three), the study participant chose a target data subset
to select (ground truth, reported by the participants using a lasso tool) and then also
provided the corresponding click-and-drag interaction, which this participant would
use to select the target group.

Naturally, for each user goal, the interaction done by the user will be at least a bit
different every time. In order to understand the natural variation of the user’s sketching
interaction, when having the same brushing operation in mind, and to model this vari-
ation to enable the synthesis of additional data for the training of the CNN, we did this
follow-up user study based on the first user study. In the new study, 10 individuals, all

B

90 Fast and accurate CNN-based brushing in scatterplots

Table B.2: Best-fit modeling of the observed variation in the executed sketches, when intending
to brush the same data subset

Variance Cases Best-fit Probability Density Function

var(r)
mean(r) all

Burr
mode=0.30682

k = 1.0164
α = 1.9863

β = 0.53886 f (x) =
αk(x

β
)α−1

β (1+(x
β
)α)k+1

var(φ) S∪B

Burr
mode=0.00112

k = 0.31523
α = 1.6348

β = 0.00191 f (x) =
αk(x

β
)α−1

β (1+(x
β
)α)k+1

var(φ) E

Lognormal
mode=3.211E-5

σ = 1.8456

µ =−6.9401 f (x) = exp(− 1
2 (

lnx−µ

σ
)2)

xσ
√

2π

var(c) all

Log-logistic
mode=-0.0241

α = 3.7167
β = 0.08711

γ =−0.09919 f (x) =
(α/β)(x−γ

β
)α−1

(1+(x−γ

β
)α)2

B

B.8 Modeling the variation in sketching 91

students or employees from the Delft University of Technology, participated. We used
100 representative selections from the 600 selections in the first user study. For each
user, 10 different selections were displayed only showing the user goal information.

The second user study then consisted of two parts: In the first part, the users were
asked to look at the points, which they should brush, using the user goal information
from the first study for each case. Then, the users were required to use our new tech-
nique to select the target points. To do so, the users had to click into the center of the
target points and then drag the pointer, while holding down the button of the mouse, to
the border of the target group (and then release to finish the selection). The users were
asked to repeat this interaction 10 times in each case. The user interaction (the start
point and end point) was recorded. This resulted in 1000 interactions which we then
studied in a variation analysis.

Before the start of the study, we presented our new brushing in a training session,
where we showed the new technique by brushing a test dataset. These sessions took
approximately 10 minutes and the participants were free to interrupt for questions and
to take over the software to experiment with the new brushing technique until they were
comfortable to do the study.

As mentioned, we also performed a third study to collect additional evidence about
whether the learned model would generalize to new data and new users, basically fol-
lowing the design of the first one [22]. We provided six completely new datasets and
invited ten new users. In the supplementary material, we include more details about
this third study and detailed information about the achieved accuracy.

B.8 Modeling the variation in sketching

In order to make the CNN training as successful as possible, we extended the training
data with synthetic interaction data based on the second user study. In our observation,
the variation of the user interaction consists of three parts that meaningfully are mod-
eled separately: the start point of the interaction (denoted by c), as well as the length r
and the angle φ of the drag-component.

If a user brushes a big group, the potential variation of the length of the drag-
component will be larger than when brushing a small group. Therefore, when consid-
ering the variation of interaction length r, we normalize by the mean of the interaction
length. Further, the users’ interaction has much less angle variation when they brush an
elongated, anisotropic group, compared with brushing more isotropic subsets. Our user
study cases are related to a specific question, which was used to instruct the users be-
fore brushing. The questions "select a small cluster" (S) and "select a big cluster" (B)
are used to expect a rather isotropic data subset from the user and the anisotropic cases
are more related to the "select an elongated group" (E) question. Therefore, we com-
pute the variation of angles separately according to the two different types of cases. We
used the statistical tool EasyFit [91] to analyze which distribution fits our variation data
best and the resulting function details (probability density functions) and their specific
parameters are listed in Table B.2.

For synthesizing new training data, given a user interaction I with c= (cx,cy), r, and
φ , we compute a new user interaction I′ based on random samples from the accordingly
fitted PDFs. The entries in the first column of Table B.2 describe the random samples

B

92 Fast and accurate CNN-based brushing in scatterplots

which we are drawing from the corresponding PDFs (with "var" referring to variance).

The new I′ is then given by c′, r′, and φ ′ according to r′ = r±
√

var(r)
mean(r) · r and φ ′ = φ±√

var(φ). To compute c′, the sampling result var(c) is considered to be an intermediate
variation as the variation of the start point c is also related to the size of the brushing
goal. Therefore, we normalized for this relation before fitting the PDFs. As a result, we
need to "undo" this normalization after sampling the PDF and get c′ = c± (var(c)+
0.1) ·(v+20)/10, where v is the standard deviation of the user goal (in x or y direction,
respectively).

B.9 Conclusion and future work

With this paper, we demonstrate how deep learning can be used to further improve the
central operation of brushing in visual analytics. By learning the relation between the
data subset to be selected and a click-and-drag sketch by the user to do the selection,
we achieve a solution, which is both very fast and also very accurate. To the best of
our knowledge, this is the first study to report the successful application of a structured
regression model, realized by a convolutional neural network, to improve a central user
interaction in visual analytics—in our case brushing in scatterplots. We demonstrate,
quantitatively, and in comparison with the previously published Mahalanobis brush,
that our CNN-based solution leads to a significant reduction of the error rate (from
≈8% to ≈2.5%), while enabling very fast interaction. In the future, we see several
opportunities to further extend our work, including

• the design of a brushing tool which is tailored for a single user, using an appro-
priate method to learn a user’s particular brushing behavior over time

• research possible improvements of both the network input (using a different
method for capturing the data distribution, like KDE) and the reference output
(alternative ways to estimate p from the binary user goal information)

• the extension of our principal approach to other views and according brushes

Acknowledgements

We thank the participants of the user studies and TU Delft for the hardware support (a
fast graphics card). We are also grateful to E. Gröller and A. Lundervold for fruitful
discussions about the CNN design. In addition, we highly appreciate the help of N.
Pezzotti and A. Vilanova with optimizing the CNN architecture.

CC

Paper C

Personalized sketch-based brushing in
scatterplots

Chaoran Fan and Helwig Hauser

University of Bergen, Norway

Abstract

Brushing is at the heart of most modern visual analytics solutions and ef-
fective and efficient brushing is crucial for successful interactive data ex-
ploration and analysis. As the user plays a central role in brushing, several
data-driven brushing tools have been designed that are based on predicting
the user’s brushing goal. All of these general brushing models learn the
users’ average brushing preference, which is not optimal for every single
user. In this paper, we propose an innovative framework which offers the
user opportunities to improve the brushing technique while using it. We re-
alized this framework with a CNN-based brushing technique and the result
shows that with additional data from a particular user, the model can be re-
fined (better performance in terms of accuracy), eventually converging to a
personalized model based on a moderate amount of retraining.

This article was published in IEEE Computer Graphics and Applications, 39 (4): 28–39, 2019.

C

94 Personalized sketch-based brushing in scatterplots

C.1 Introduction

Nowadays, linking and brushing is becoming a prevalent interaction technique for data
exploration and analysis in coordinated multiple views [87], widely integrated into
many visualization tools such as Tableau and D3.js. Becker and Cleveland [2] were
the first to describe the basic principles of brushing, which is interactively painting the
visualization of subset of data points with usually simple geometries. In coordinated
multiple views, the selected data are consistently highlighted in all linked views after
brushing. This amounts to the most common form of focus+context visualization [35],
enabling a fast and effective exploration of data relations, which are too challenging to
show in just one view.

Due to the importance and prevalence of brushing in visualization solutions, many
efforts have been invested in the improvement of brushing technique and brushing vari-
ants can be categorized into:

• brushing using simple geometries—the most commonly used brushing solutions
include the rectangular or circular brushing on scatterplots, line-brushing on data
graphs, etc.

• lassoing—the user draws a detailed shape around the target group of item repre-
sentations to select the subset

• logical combinations of simple brushes—the user refines the data selection by
making use of multiple brushes and combining them with logical operators [17,
72]

• sketch-based brushing—a sketch is drawn by the user onto a visualization and a
selection heuristic is used to determine which data are selected [22, 76, 84]

Each brushing technique can be discussed in terms of pros and cons, by two particular
important criteria:

• efficiency—whether the brushing is fast enough (including the interaction and all
computation) to enable a fluid data exploration/analysis [20]?

• accuracy—does the brushing interaction lead to a selection of exactly the data
subset, which the user wished to select in the view?

Despite the large variation of existing brushing tools, we rarely see a solution that com-
bines both criteria really well: Many brushing techniques are indeed fast, as clicking on
individual points, for example, or drawing simple geometries—also sketched brushes
are fast, requiring only a simple gesture as interaction and thus enabling a swift user-
computer dialogue during the exploration/analysis [8]. A common disadvantage of fast
techniques, however, is that it can be difficult to accurately brush a particular data sub-
set. On the other hand, we certainly find brushing techniques, that are straight-forward
for accurately selecting subsets of interest, such as lassoing and the logical combina-
tion of simple brushes. This benefit, however, comes often at the price of the solution
being slower—specifying a lasso, for example, easily becomes a unit task by itself [8],
potentially interrupting the exploration/analysis process.

Recently, deep learning methods have become the state-of-the-art in a wide range of
fields, including natural language processing, object detection and image classification.

C

C.2 Related work 95

Inspired by this, we have recently developed a CNN-based brushing technique for scat-
terplots and achieved the best accuracy compared to previously existing sketch-based
methods with a fast interaction[23]. Although this method has made great progress in
learning the user’s intention while brushing, it suffers from two limitations: First, the
model is trained off-line once by the data from different users and what the model learns
is the average brushing preference across the users, leading to a general model which
is obviously not optimized to every single user. Second, while it of course is possible
to retrain a new model for a single user from scratch, this procedure is time-consuming
and requires sufficient training data which is difficult to get from a single user in a short
time.

To address the limitations of this CNN-based brushing solution, we here propose an
innovative framework which is able to iteratively refine the brushing model for a single
user with additional data that he/she provides while using the brushing technique. This
idea is inspired by active learning (AL), which is a special case of semi-supervised
machine learning that can incrementally improve the existing model by interactively
querying the user for additional input. In addition, we exploit knowledge from transfer
learning and leverage the parameterization of a well-trained model instead of learning
the user’s brushing behavior from scratch, largely reducing the time cost of the retrain-
ing procedure while maintaining a focus on avoiding overfitting.

To evaluate the usability of our proposed framework, we experimented with the
previously published CNN-based brush in scatterplots to see relevant differences in
comparison. Our quantitative evaluation shows that the iterative model based on our
proposed framework achieves better accuracy and becomes a customized model for a
single user as compared with the general model, and the time cost for the retraining
procedure is only 3 minutes, which is efficient and acceptable for most data analysts to
improve their brushing method even during a short break only.

C.2 Related work

In the following, we first review some critical works concerning brushing for visual
analytics, before we then discuss related work concerning applications of convolutional
neural networks, transfer learning and active learning.

C.2.1 Brushing techniques

Brushing is intrinsically based on the interaction between the user and the system, often
a combination of mouse/cursor motions and clicks. Many variations of brushing have
been proposed, each with its own strengths and weaknesses—for example, in terms of
their ease of use and the degree of control that the user has. Brushing in scatterplots
is often based on the use of simple geometric shapes such as a rectangle or circle.
Alternatively, users can use a lasso to specify the selection more accurately.

Several extensions to simple brushing have been published, including techniques
to formulate more complex brushes by combining multiple brushes using logical op-
erators. Martin and Ward [72], for example, enable the user to configure composite
brushes by applying logical combinations of brushes, including unions, intersections,
negations, and exclusive or operations.

C

96 Personalized sketch-based brushing in scatterplots

Similarity brushing [80] is a typical example of sketch-based brushing, which is
based on a fast and simple sketching interaction—the user uses a swift and approxi-
mate gesture (for example, drawing an approximate shape that the data should follow)
and then a similarity measure (target function) is defined to identify, which data items
actually are brushed. This way, the interaction is fast, but likely not 100% accurate.

Recently, the Mahalanobis brush was presented as an interesting alternative for
brushing scatterplots [84]. The user simply clicks into the center of a coherent data
subset to be selected. The link between the interaction and the actual selection is re-
alized on the basis of an analysis of the underlying data (a local covariance matrix
indicates the overall shape and orientation of the data to be brushed, forming the basis
for a local Mahalanobis metric, which is then used as a distance measure to select the
data).

While this technique is giving quite good results, it still has limitations, including
a non-optimized selection of the local context for the Mahalanobis computation and
one off-screen parameter for the brush size. As a follow-up work, we extended the
Mahalanobis brush and improved the accuracy by optimizing the parameters based on
a user study and getting rid of the off-line parameter [22]. However, this improved
solution is still linear and has difficulties with complex structures that would require a
more flexible approach. Also, it is not really real-time for large datasets.

Later, we exploited deep learning and developed a CNN-based brushing in scatter-
plots [23]. This model achieves state-of-art accuracy while—–as a general model—–it
only learns the average behavior from different users, and thus is not able to match
every single user’s brushing preferences in an optimal way.

Koytek et al. [57] created MyBrush, which extended the popular brushing and link-
ing technique by incorporating personal agency. It offers users the flexibility to config-
ure the source, link, and target of multiple brushes, which is able to adapt brushing and
linking to preferences and needs. However, the user needs to spend some time to figure
out all the possibilities of the configuration initially, and the brushing tool they provide
is not based on a data-driven method which cannot be improved while being used.

C.2.2 CNN, transfer learning and active learning

A convolutional neural network (CNN) is a deep learning architecture, which is in-
spired by the connectivity pattern between neurons and their organization in the visual
cortex [45]. The concept of a neocognitron, proposed by Fukushima [28], is widely
considered as fundamental basis of modern CNNs. LeCun et al. [62] established the
framework of CNNs by developing a multilayer artificial neural network called LeNet-
5, which was applied successfully to image classification problems. With the emer-
gence of big data and the development of computing infrastructure, the structure of
some CNNs has become very deep. A solution by Krizhevsky et al. [59] was able to
classify about 1.2 million images into 1000 classes, i.e., a record-breaking result in the
ImageNet Large Scale Visual Recognition Challenge. Often, the impressive success of
image processing CNNs is attributed to their ability to learn rich mid-level image pat-
terns as opposed to hand-designed low-level features used in more traditional methods.

As humans we can learn and apply relevant knowledge from previous learning when
encountering new tasks. Most of traditional machine learning algorithms are designed
to address single tasks. In contrast, transfer learning allows us to bring the power of

C

C.3 The principal approach 97

User 2 User 3

User 1

Figure C.1: Illustration of the core idea: the general model (red star) is progressively refined
and getting closer and closer to a single user model in the high dimensional parameter space
(here 2D in this illustration).

state-of-the-art models to new domains where insufficient data and time/cost constraints
might otherwise prevent their use [81]. Transfer learning with CNNs has been also
explored and demonstrates that the intermediate activations learned with pretrained
deep CNNs on large datasets such as ImageNet and GoogLeNet, can be transferred to
many other recognition tasks with limited training data.

Active learning (AL) is a special type of semi-supervised machine learning which
incorporates the user into the loop to query label information. As labeling manually
is expensive and time-consuming, AL has been successfully applied to the situations
where large portions of data are unlabeled. The goal of AL is to improve the train-
ing performance of a classifier at the lowest possible annotation cost by intelligently
picking the best examples to label [92].

While an increasing number of successful applications of deep learning methods
are recognized in many fields, we do not yet see a mentionable number of visualization
solutions, particularly in improving interaction techniques. With our work, benefit-
ting from ML, we also hope to inspire interesting new research in this very interesting
direction.

C.3 The principal approach

The overall goal of our research was to improve the general CNN-based brushing
model [23] and to make it suitable for those users whose brushing preference is de-
viating from the average. The schematic in Figure C.1 shows the core idea of our
proposed framework where the general model is indicated by a red star. To find the op-

C

98 Personalized sketch-based brushing in scatterplots

timized model for a single user, we take advantage of the well-trained general model
as an initial point in the model’s high dimensional parameter space and progressively
adapt it to a personalized model. In this way, the prior parameterization is taken into
account and we can get rid of the costly general (global) search in the parameter space,
largely reducing the time spent and making the results more stable.

Figure C.2 provides an overview of the proposed framework to illustrate our adap-
tive brushing model. In the following, we first describe the initial model we used from
the earlier published paper [23], before we then describe the construction of our solu-
tion in detail.

Following the basic definition of the general CNN-based brushing technique [23],
we use click-and-drag as the sketching interaction I and a computational function for
estimating the brushing result, denoted as S, which is based on the visualization V near
sketch I. The CNN structure is built with two convolutional layers, two max pooling
layers and three fully connected layers. The input of the CNN is a histogram-like image
that is based on the interaction I and the local visualization V near I, while the output of
the network is also an image, of same resolution as the input, which contains a degree-
of-selection information extracted from the ground truth (users’ brushing goal). The
general model Sg is trained off-line once based on 500 basic selections (augmented to
8000 in actual training via sampling the natural variation of user interactions), provided
by the previously published user study where 50 different users were invited [23]. In the
user study [23], a particular scatterplot (one out of six) and a particular request (one out
of three) were given, and the participant chose a target data subset to select as ground
truth by using a lasso tool, and then also provided the corresponding click-and-drag
interaction that this participant would use to select the target group.

In our proposed framework, we establish an interactive scenario to improve the
brushing accuracy for a single analyst during data exploration, where the user can ac-
tively give some new input when he/she does not like the result generated by the current
brushing model. This additional data is used to gradually adapt the general model to
a personalized one and we see that with more data from the user, the brushing re-
sult is more accurate for this user. To evaluate this framework, we organized a user
study where single users were asked to participate in the model refinement procedure 5
times, and each time the user provided 10% new data by brushing new datasets. Then
this user’s personal brushing preference data contributed to updating the current model
in retraining. The design of the user study intended to simulate a daily process of the
data analyst while using the brushing tool during 5 working days. The time spent for
participating in one round of the user study was around 20mins, which was comfort-
able for most users. We saw that 10% new data could be obtained in this time period
and this amount of new data was reasonably enough to see the incremental effect of the
retraining.

For learning a single user’s brushing preference, we chose to leverage the existing
CNN parametrization of the general model instead of retraining a model from scratch.
This is because the data used for training the general model is from 50 different users
and it is not practical to get a similar size data from a single user. To avoid overfitting
by limited new data, the new data is chosen to replace the most similar data in the
original dataset, composing a new training dataset rather than treating the additional
data individually. Picking the most similar cases to be replaced is based on two reasons:
1. We aimed at the retrained model to learn the user’s specific brushing preference and

C

C.3 The principal approach 99

Database from 50 users

CNN (Sg)

training

CNN (S1)

CNN (S2)

CNN (S3)

CNN (S4)

CNN (S5)

Single user

fine-tuning

fine-tuning

fine-tuning

fine-tuning

fine-tuning

1st round (Sg)

2nd round (S1)

3rd round (S2)

4th round (S3)

5th round (S4)

Sketching interaction

(I)

Data visualization

(V)

Figure C.2: Principal approach: the general model is fine-tuned during continued use by new
data from a specific user.

also keep itself as general as possible (with respect to cases not yet seen by the new
user) at the same time. Therefore, the similar cases from the original data can be
considered as replicated data which should be replaced. 2. Instead of adding the new
data to the retraining dataset, the data replacement strategy accelerates the convergence
during retraining.

Our retraining procedure is also based on transfer learning. Transfer learning strate-
gies depend on various factors, but the two most important ones are the size of the new
dataset (relatively small or big), and its similarity to the original dataset. As we replace
old data, the new training data is the same size and of high similarity (90%) to the old
training data. Therefore, we can fine-tune the weights of the pretrained current net-
work via backpropagation with less of a chance to be overfitted. In the following, we
introduce the algorithm for the dataset replacement in detail.

C.3.1 Training dataset replacement

The original data for training the CNN-based brushing model from our previous
work [23] is based on 500 selections and the training data can be defined as (xi ∈
Tin,yi ∈ Tout)

N
i=1 with pairs of input and expected output (N is the number of the train-

ing samples). In order to find the appropriate data to be replaced among the 500, we
formulate a similarity metric based on the extracted features of the input data.

Figure C.3 shows the procedure of CNN input generation. The histogram-like image
data used as input for training the network is converted from the local data visualiza-
tion V and the related interaction I, the features we compute are mostly based on the

C

100 Personalized sketch-based brushing in scatterplots

whole scatterplot

I
V

Vn

user goal (g)

Input for training

(Tin)

Nearest not a goal point (p)

Figure C.3: Illustration of CNN input computation: Left, a square area is specified by the
interaction (red line segment); Middle, after rotating to the horizontal; Right, histogram of the
local data distribution (CNN input).

local visualization V after normalization (Vn) with respect to the interaction I by a lin-
ear transformation. Moreover, to represent the features, we have the number of points
within Vn denoted as nv and the number of user goal points and all points in scatterplot
are denoted as ng and nc respectively. Besides, the area of Vn is represented as sv while
the area of the scatterplot canvas is sc.

To extract important and meaningful features from Vn, the size of the user’s brushing
goal is obviously needed to be considered. We measure the influence of user goal size
by calculating the ratios of the user goal size to all the points within Vn and the user goal
size to all the points in the scatterplot, which can be denoted as fpR =

ng
nv

and fgR =
ng
nc

respectively.
To know whether the user focuses on a small or large area, we can compute the ratio

of areas of Vn to the whole canvas of the scatterplot. This can be denoted by faR = sv
sc

.
The geometrical shape of the user goal is another important feature which needs to

be taken into account. We estimate this by finding the nearest point (denoted by p, not
a user goal) to the start point (denoted by c) of I, then compute the ratio fnR = dE(p,c)

r ,
where dE(p,c) is the Euclidean distance between p and c, and r is the length of I.

As we know, the eigenvectors indicate the direction of points which are stretched
by the transformation and the corresponding eigenvalue is the factor by which it is
stretched. Therefore, the ratio of the eigenvalues is a proper way to measure the isotropy
and anisotropy of the user goal, which can be defined as feR = e1

e2
,e1 < e2, where the

eigenvalues e1 and e2 are computed by eigendecomposition of the covariance matrix of
the user goal.

In addition, we compute scagnostics to characterize the Vn. Scagnostics is short
for Scatterplot Diagnostics, first mentioned by John and Paul Tukey [97] to identify
interesting structures according to density, skewness, shape, outliers, etc. The nine
Scagnostics measures are defined as foutlier, fskewed , fclumpy, fsparse, fstriated , fconvex,
fskinny, fstringy and fmonotonic respectively and we use fsg as a shorthand of these 9 fea-
tures together.

C

C.4 Retraining the CNN 101

Lastly, we look at the density of the histogram-like image (Tin) as it represents the
data distribution. The value of each bin in Tin is normalized into [0,1], we compute 4 in-
dicators by counting the percentage of the value of each bin in [0,0.25] (fq1), (0.25,0.5]
(fq2), (0.5,0.75] (fq3) and (0.75,1] (fq4) respectively.

Overall, we use 18 different indicators to represent the user’s selection. To prepro-
cess the indicators for an efficient comparison, we use principal component analysis
(PCA) to reduce the dimension from 18 to 8 while keeping 92% variance of the orig-
inal dataset. The dissimilarity function which is used to pick the most similar case
among the old data, can be defined as, can be defined as

dis(inew, in) = dE(fpca(inew), fpca(in)) (C.1)

where inew and in are the original features of new data and old data, respectively. dE
represents the Euclidean distance and fpca are the features after PCA, n ∈[1,500]. The
most similar case has the minimum value in terms of the dissimilarity function.

C.4 Retraining the CNN

Usually, high accuracy cannot be achieved unless enough training samples are pro-
vided. As we replaced the old data by the new data, so the selection samples in the
retraining data are still 500, which are not enough for retraining. Therefore, we syn-
thesize 7500 additional training data from the already acquired training set based on
the user’s natural interaction variation. This data augmentation method is illustrated in
our previously published paper [23]. Then we optimize the parameters of the network
based on the training data (N=8000) using the mean-squared error as a loss function.
In the following, we will illustrate the details of retraining the CNN.

C.4.1 Training details

In practice, it is rare to train an entire CNN from scratch with random initialization.
This is because it is relatively difficult to have a dataset of sufficient size that is required
for the depth of the network. Therefore, it is very often still beneficial to initialize with
weights from a pretrained model.

Since the initial model is quite general and capturing the common brushing prefer-
ence, we choose to fine-tune the network to make the initial model adapt well to the
target dataset. As the CNN features are more generic in early layers (such as edges
or local shapes) and later layers of the CNN become progressively more specific to
the details of the information contained in the target dataset, an effective way for fine-
tuning the pretrained parameters is to make the learning process happen only in the
fully-connected layers, and keep the parameters of the convolutional layers frozen. To
validate this approach, we also recomputed the brushing accuracy based on retraining
the whole network and found that the results were worse (about 5%) than freezing the
early layers of the network, which supports that our retraining strategy is appropriate.

In our user study, we iteratively retrain the model based on the pretrained model
5 times. We start the retraining after the first round of the user study, where we used
the general model from our previously published paper [23] as a starting point for
optimization towards to single user’s tailored model.

C

102 Personalized sketch-based brushing in scatterplots

Interaction

(click and drag)
CNN Brushing results

corrected by lasso

Add

Delete

Redo

Record

satisfied?

YES

NO

Figure C.4: Pipeline of the user study. The user brushes on the scatterplot based on the trained
CNN model, and if he/she is not satisfied with the results, a lasso is offered to do corrections.
In the end, the user’s brushing goal, interaction and the brushing result are recorded.

For the experiment, we retrained the network in Keras with Tensorflow as the back-
end, which provides useful GPU acceleration and coding flexibility. For the training
and testing, we used a PC with an Intel Xeon E5-1650 CPU and an NVIDIA GeForce
GTX 1080 GPU. During fine-tuning, as we expect the weights of the pretrained CNN
to be relatively good, the learning rate was set to be 5× 10−4, which is half of the
learning rate for training the initial model. In this way, the model will not be distorted
too quickly and too much. And as we can make use of the existing parameterization,
thus we only need 2000 epochs instead of 10000 (training from scratch) to obtain a
good convergence towards a high-quality state. As a result, the retraining procedure for
fine-tuning a model once only takes 3 minutes.

C.5 User study

As users have their own brushing preference, it is important to explore how the user uses
our brushing tool and test whether it is possible to allow the model to be customized.
To evaluate our proposed framework with the CNN-based brushing for a single user,
we conducted a user study to collect the user’s brushing data and then retrained the
model to better fit a single user. In our user study, 8 users are invited who are students
or employees (7 are from Delft University of Technology and 1 is from University of
Bergen).

C.5.1 Study datasets

During the user study, we provided 25 different datasets for the user to brush, which
all were not used for constructing the general model [23]. Besides, the users were
encouraged to bring their own datasets to replace the provided datasets.

C.5.2 Study process

Our user study consisted of two parts:
In the first part, a scatterplot was provided to the users and then they could freely

use the click-and-drag interaction to brush some data subset of their choice.

C

C.5 User study 103

General model Our iterative model

100

98

96

94

92

90

88

Figure C.5: Boxplots of the brushing accuracy over rounds based on the general model (left)
and our iterative model (right). The dash line and solid line in the box show the mean and
median respectively.

In the second part, the brushing result based on the current CNN model was shown
to the users immediately after they finished the interaction. Then they could think about
whether the results were what they wanted originally. If not, they could use a lasso to do
corrections (add and delete points, or directly specify the goal) until they were satisfied
with the results. For a specific scatterplot, every user had to do 5 selections including
the correction, if needed, before they would click the "next" button to switch to another
scatterplot.

In order to investigate the influence of the retrained model based on the user’s new
brushing data, we asked each user to participate in the user study for 5 rounds and each
scatterplot from 25 datasets showed up twice in total but in different rounds. For each
round, the user needed to finish 5 selections in 10 different scatterplots, and these data
were then applied to retrain a new, adapted brushing model which was then used for
the next round. In the first round of the study, we directly used the already trained
model from our previously published paper [23] as the initial brushing model. Then
this model will be retrained by the data obtained from the first round of the study.

As the retraining procedure takes approximately 3 minutes, the users finished a
full user study (5 rounds) in 5 discontinuous time periods. During the user study, the
brushing results generated by the current model and the user’s real goal and interaction
were recorded. The pipeline of the user study is shown in Figure C.4.

Before the start of the user study (only for the first time when the user joins), we
presented our brushing technique in a training session, where we showed how the tech-
nique works and the interface operation in a test dataset. This session took approxi-
mately 10 minutes for each participant and the participants were free to interrupt for
questions and to take over the software to experiment with the brushing technique (e.g.
the click-and-drag interaction and correcting the results by lasso) until they felt ready

C

104 Personalized sketch-based brushing in scatterplots

100

100

98

98

96

96

94

94

92

92

90

90

user1
user2
user3
user4
user5
user6
user7

round 1 round 2 round 3 round 4 round 5

round 1 round 2 round 3 round 4 round 5

user8

88

88

Figure C.6: Line plots of the brushing accuracy over 5 rounds of 8 users based on the general
model (top) and our iterative model (bottom).

to do the study.

C.6 Evaluation

For evaluating our proposed iterative model, we did a quantitative accuracy comparison
with the previously published general model [23]. Figure C.5 is a statistical comparison
with boxplots. The left five boxplots and right five boxplots show the brushing accuracy
of 8 users in all five rounds based on the general model (left) and our iterative model
(right) respectively. The accuracy of our iterative model in each round is calculated
based on the retrained model from the last round. In the first round of the user study, the
user’s brushing results are computed by the general model without optimization based
on the new data, thus the difference between the general model and our iterative model
appears from the 2nd round to the 5th round. The dashed line in the box is the mean,
if we compare the accuracy by pairs in terms of the round, we can see after iterative
retraining, our model performs better than the general one (with higher median and
mean). Besides, the size of the boxes on the right are smaller than the corresponding
one on the left, this indicates our model has less variance and becomes more stable.
Figure C.6 shows an accuracy comparison with line plots, between the general model

C

C.6 Evaluation 105

Round 4 Round 5

Figure C.7: Worst performing cases of user 5 in round 4 (left) and round 5 (right).

A B

Figure C.8: Vector similarity comparison of the CNN model parameters in each round of each
user. Matrix A: angle between vectors. Matrix B: absolute length differences.

(top) and our iterative model (bottom). By looking at the accuracy variation altogether,
we can obviously see a rising trend of accuracy over rounds on the bottom side while
the accuracy of the general model is more distributed (no special trend except a decline
from round 1 to round 2) on the top. This shows a strong indication that with additional
data for retraining the model, it is able to gradually learn the brushing preference of
a single user, which leads to a more personalized model from the general model. In
addition, we also see an outlier (user 5) with a sharp accuracy decrease in the last two
rounds. To investigate the reasons behind, we pick the 6 worst performing cases from
user 5 in the 4th and 5th round and list them in Figure C.7. The brushing results are
compared to the user goal (encoded by color). The true positives (correctly brushed),
true negatives (correctly not brushed), false positives (falsely brushed) and the false
negatives (falsely left out) are colored in yellow, white, pink and purple, accordingly.
We can see that the user tried to select a complicated spiral shape and this kind of
selection does not exist in previous rounds, being almost impossible for the network to
predict at first time. For the relatively low accuracy (actually 90.36% is still very good)
in round 5, as there are only 3 spiral-like cases from round 4 which contribute to the
network retraining, so it is difficult to tweak the model to learn it.

During the retraining procedure in each round, the parameters of the network are
updated. To understand what the network learns for each user and the relation between
different user models, we extract the parameters of the CNN model in each round of

C

106 Personalized sketch-based brushing in scatterplots

each user, composing a vector with 35233 dimensions, which is denoted as vmn, where
m is the user ID and n is round number. In Figure C.8, we compute the angle and
absolute length differences to measure the similarities between these 40 different vec-
tors, which are shown in two matrices with green (low value) to red (high value) as
the color legend. In both matrix A and B, we see the outlier model in round 4 (v54)
and round 5 (v55) of user 5 also have big difference with other users in this compari-
son. In addition, in matrix A, the angle between intra-user vectors are clearly smaller
than inter-user’s—this indicates that the model indeed approaches different user point
in the parameter space. For matrix B, we see a clear pattern that the diagonals right
next to the main diagonal are also very close to 0. This gives a strong impression that
the model indeed adapts in small steps over the five rounds. In summary, the visualiza-
tion of the CNN model parameters shows clear evidence that our iterative model learns
reasonable parameters while being adapted instead of random search in the parameter
space.

C.7 Conclusion and future work

In this paper, we present a user-centric framework which takes the user in the loop to
iteratively improve a brushing technique in scatterplots. By refining a general model for
estimating data selections from simple click-and-drag interactions incrementally with
the additional data from a single user and leveraging the existing parameterization, we
achieve a solution which is able to turn the general model based on people’s average
brushing preference to a tailored model for the specific user with a very short time
training cost (≈3mins). In addition, we examined the quantitative performance of our
iterative model in comparison to the general model, with the retraining procedure over
time, the results show a clear improving trend compared to the general model: from
92.09% to 92.99% (+0.9%, with 10% new data), 93.72% to 95.09% (+1.37%, with 20%
new data), 94.41% to 96.29% (+1.88%, with 30% new data) and 94.33% to 96.92%
(+2.59%, with 40% new data). We assume the accuracy improvement can be even
better with more user input and the most practical thing is that the retraining time cost
is reduced to 4% of training a general model from scratch.

In the current version of the data replacement algorithm, we entirely replace the
most similar cases in the original dataset by the new data from the user. We also did a
follow-up experiment to investigate the influence of an alternative replacement rule: we
checked the dissimilarity value of the replaced cases and found that 80% of the replaced
cases have a dissimilarity value less than 0.5. Based on this statistics, we recomputed
the replacement with the most similar case replaced only if the dissimilarity value is
less than 0.5 (threshold), in this way, we can keep 20% of the (relatively different) old
data which otherwise would have been replaced also. The result shows, however, that
the model accuracy is almost the same as before. Still we see the potential to find an
optimal threshold to improve the model in the future.

In addition, we see several other opportunities to further extend our work, including
• the current retraining procedure is off-line, the ultimate goal is to make it real-

time

• give users more flexibility to configure the brushing tool and even involve them
to the brushing tool design

C

C.7 Conclusion and future work 107

• explore other deep learning methods such as RNN and GAN to learn user’s brush-
ing behavior

• the extension of our principal approach to other views and according brushes

We hope that this work can inspire further related research, especially in visualiza-
tion to offer the opportunity for users to improve the data-driven approach by their own
knowledge and behavior.

C

DD

Paper D

On sketch-based selections from scatterplots
using KDE, compared to Mahalanobis and CNN
brushing

Chaoran Fan and Helwig Hauser

University of Bergen, Norway

Abstract

Fast and accurate brushing is crucial in visual data exploration and sketch-
based solutions are successful methods. In this paper, we detail a solution,
based on kernel density estimation (KDE), which computes a data subset
selection in a scatterplot from a simple click-and-drag interaction. We ex-
plain, how this technique relates to two alternative approaches, i.e., Maha-
lanobis brushing and CNN brushing. To study this relation, we conducted
two user studies and present both a quantitative three-fold comparison as
well as additional details about the prevalence of all possible cases in that
each technique succeeds / fails. With this, we also provide a comparison be-
tween empirical modeling and implicit modeling by deep learning in terms
of accuracy, efficiency, generality and interpretability.

This article was published in IEEE Computer Graphics and Applications, 41 (5): 67–78, 2021

D

110 KDE-based brushing, compared with Mahalanobis and CNN brushing

D.1 Introduction

Linking and brushing is a widely adopted interaction technique for visual data explo-
ration in coordinated multiple views [87]. Over 30 years ago, Becker and Cleveland [2]
defined brushing as an interactive method to select data points by using simple ge-
ometries on a data visualization such as a square, circle, or a polygon. In coordinated
multiple views, brushing usually leads to a consistent highlighting of the selected data
in all linked views, amounting to an important form of focus+context visualization [35].

Since brushing is central to visual analytics, a substantial amount of research has
been devoted to it. The many available forms of brushing can be categorized into four
different types:
• simple geometries—this is the most common category, including the rectangular

brush on scatterplots, line brushing on data graphs, etc.

• lassoing—the user selects a data subset by drawing a geometrically detailed lasso
around the subset’s visualization in a view.

• logical combinations of simple brushes—the user refines the data selection itera-
tively by using multiple brushes and combining them using logical operators such
as AND and OR.

• sketch-based brushing—the user sketches a shape onto a visualization and a se-
lection heuristic is used (often based on a similarity measure) to determine which
data are selected.

To evaluate a brushing technique, the following two criteria are of particular impor-
tance:
• efficiency—how fast is the brushing algorithm and how much time does the users

spend on the selection process; is the interaction fluid?

• accuracy—to which degree does the interaction lead to an accurate selection of
the data subset as the user actually intended to select?

Clicking on a mark in a visualization to select the corresponding data point, for exam-
ple, is highly efficient for selecting individual data points. High accuracy is possible,
when using a geometrically detailed lasso to select data points in a scatterplot. In many
cases, it is not trivial, or possible, to optimize for both criteria concurrently.

Many brushing techniques are indeed fast—we think of brushing to be fast, if only
one click or only very few atomic interactions are needed to specify the brush, lead-
ing to a swift user–computer dialogue during exploration / analysis. The use of simple
brushing geometries (rectangle, circle, etc.) and sketch-based brushes, where only a
quick gesture is used for brushing, are examples of fast techniques. A common dis-
advantage of these methods is, however, that it can be difficult to accurately brush a
targeted data subset.

Certainly, we also have brushing techniques that are accurate—likely with lasso-
ing and the logical combination of simple brushes being the most prominent exam-
ples. With such a technique, it is straight-forward to accurately select a subset of inter-
est. This benefit of being accurate, however, commonly comes at the cost of reduced
efficiency—specifying a lasso point-by-point, for example, easily becomes a lengthy
unit task by itself, interrupting the data exploration process.

D

D.2 Related work 111

To optimize both criteria for one technique as much as possible, data-driven meth-
ods are an interesting option. One typical kind of such a solution is based on sketch-
based user interaction. The sketching of a simple shape, for example a line segment
by a click-and-drag interaction, is complemented with a heuristic that estimates the ac-
tual data selection from the sketch. To achieve high accuracy, the parameters of such a
technique can be optimized on the basis of data from a user study [22, 23].

The Mahalanobis brush [22, 84] is an example of a data-driven technique, using lo-
cal covariance information as basis for a Mahalanobis metric which determines which
points are closest to the sketch. The parameters of Mahalanobis brushing can be opti-
mized based on data from a user study [22]. Quantitative evaluation shows that it can
achieve ≈92% of accuracy, based on a fast click-and-drag interaction. Inspired by the
success of machine learning, a brushing technique based on deep learning (DL) with a
convolutional neural network (CNN) was developed [23] and achieved a substantially
improved accuracy (≈97%). Both the interaction as well as the data visualization were
represented as images to subject them as input to the CNN, and letting the network
learn the model based on data from a user study.

With Mahalanobis brushing [22] and CNN brushing [23], two principally different
approaches are given, i.e., representing the principles of empirical modeling (based
on reasoning) vs. implicit modeling (based on deep learning). Since CNN brushing
resulted in a significantly higher accuracy [23], and since Mahalanobis brushing is not
based on any advanced distance metric, we were interested in studying to which degree
empirical modeling can in fact compete with deep learning in this context.

In this paper, we now provide details of our attempt to construct an improved em-
pirical model by further extending the Mahalanobis brush, incorporating kernel density
estimation (KDE) [82], to inform a clustering step which then returns one of the clusters
as the data selection [24]. Additionally, we contribute an in-depth, three-fold compari-
son between the Mahalanobis brush, the CNN brush, and the new KDE brush.

D.2 Related work

Selecting data subsets by brushing is one of the most common types of interaction in
visual analytics, where often data points are selected in one display, while the same
information is highlighted in linked views (linking and brushing) [87].

Often, a combination of mouse motions and button clicks are used to realize brush-
ing [72]. Less common methods are based on eye / head tracking or gestures, as for
example in virtual reality [107].

Several extensions to simple brushing have been proposed, including techniques
to formulate complex brushes by combining simple brushes using logical operators,
including the union, intersection, and negation of brushes, and enabling the user to
iteratively refine the data selection.

Furthermore, brushes are often adapted to interact with a particular aspect of the vi-
sualization mapping. Hauser et al. [36], for example, developed angular brushing on
parallel coordinates to select data points, whose representation include lines with a par-
ticular angle. MyBrush was suggested by Koytek et al. [57] in order to extend brushing
and linking by incorporating personal agency, allowing to configure the source, link,
and target of multiple brushes.

D

112 KDE-based brushing, compared with Mahalanobis and CNN brushing

Sketching is a natural and intuitive way for users to identify data subsets of interest
in a visualization. Similarity brushing [76] is an example of sketch-based brushing,
which is based on a fast and simple sketching interaction—the user performs a swift
and approximate gesture (for example, drawing an approximate shape that the data
should follow) and then a similarity measure is used to identify, which data items are
actually selected. The main advantage of sketch-based brushing is the fast interaction,
which, however, is not perfectly accurate, usually.

As another sketch-based solution, the Mahalanobis brush was presented as an inter-
esting option for brushing scatterplots [84]. In this technique, a simple sketch (a click
near the center of the data subset that should be selected) is used to brush the data. The
link between the interaction and the actual selection is computed on the basis of the un-
derlying data (local covariance information is used to determine the overall shape and
orientation of the selection): all data points near the click-point, measured according to
a local Mahalanobis metric, are selected.

While this technique is giving good results (≈65% accuracy [22]), it still has lim-
itations, including a non-optimized selection of the local context for the Mahalanobis
computation and one off-screen parameter for the brush size. To improve the accuracy
of this approach, the Mahalanobis brush was extended by optimizing its parameters us-
ing data from a user study and getting rid of the off-line parameter [22]. In terms of
efficiency, the average interaction (click-and-drag) time spent for the new Mahalanobis
brushing is only 41% of Lasso [22]. However, this improved solution is still linear and
has therefore difficulties with complex structures that would require a more flexible
approach.

Inspired by the success of deep learning in a wide range of applications, especially
in image processing, we then developed CNN brushing [23], using deep learning to es-
tablish the link between the user sketch and the actual data selection, achieving very
high accuracy. However, as a general model, it learns the “average behavior” from
different users, and thus is not able to match every single user’s brushing preferences
100%. To address this issue, we further improved CNN brushing and achieved a solu-
tion which is able to turn the general model into a tailored model for a specific user [25].
To achieve this, we take the user into the loop to iteratively refine the brushing model
with additional data which the user provides while using the brushing technique.

Despite the opportunity to achieve really good results with the help of deep learn-
ing, related approaches to solve interactive visualization tasks are still rare. The lim-
ited utilization of deep learning for visual analytics solutions is likely based on three
reasons: (1.) Understanding a deep learning based model is challenging due to its
“black box” nature. (2.) Usually, high accuracy of DL-based prediction requires large
amounts of training data, which often is difficult to acquire. (3.) There is no estab-
lished common understanding of how to determine the right DL solution as knowledge
of topology, training method and required hyperparameters. Consequently, it is often
difficult to efficiently make good use of deep learning—especially, when non-standard
tasks are to be supported.

D

D.3 KDE brushing in scatterplots 113

Figure D.1: Overview of KDE brushing: the user clicks into the middle of the subset to
be selected and drags the pointer to the border of the subset (sketching interaction); then a
selection of points around the click-point is determined, based on the estimated density of the
data; two parameters, α and β , related to the sample size and the size of the KDE bandwidth,
influence the results and we optimize them based on a user study with 50 participants.

D.3 KDE brushing in scatterplots

Fig. D.1 shows an overview of the new KDE-based brushing technique. We keep the
simple click-and-drag interaction for sketching the target data subset: click into the
middle of the subset and drag the pointer swiftly to the outer boundary of it. The click
point s=(sx,sy)

> and the end point e=(ex,ey)
> of the drag interaction indicate the size

of the target subset that the user wishes to select. As with the Mahalanobis brush [22],
we first consider a circular subset, centered around s, and estimate the shape and ori-
entation of the data in this region by looking at the local covariance information. We
then start a short iteration to refine this data subset selection, based on the local covari-
ance information—ideally, we would like to directly use the resulting user selection as
the data subset, of course, amounting to a chicken-and-egg type of problem, since the
eventual selection is not known in advance. After a sufficiently close convergence of
this iteration, we make a selection of data points, based on a kernel density estimation
(KDE), using the local covariance information as a basis for specifying the kernel. The
choice of KDE is based on three assumptions: (1.) Data-driven density information,
captured by KDE, should improve results over the linear model in Mahalanobis brush-
ing. (2.) A non-linear model should be suited to select general shapes. (3.) The modes
(local maximum points) of a 2D KDE, at the right scale, can represent clusters of data
points, corresponding to selection targets. In the following, we provide more details
about the individual components of this approach.

D

114 KDE-based brushing, compared with Mahalanobis and CNN brushing

D.3.1 Mahalanobis distance computation

Since the Mahalanobis distance is central to KDE brushing, we briefly review it first.
Introduced by Mahalanobis in 1936 [69], it is based on the correlation between data
variables to help with the identification and analysis of multivariate patterns. It is unit-
less and scale-invariant, which is a useful way for determining the similarity of an
unknown sample to a known one. It differs from the Euclidean distance, which mea-
sures the distance with the available data. The Mahalanobis distance between vectors
a and b is defined by

dΣ(a,b) =
√
(a−b)>Σ−1 (a−b) (D.1)

where Σ is the covariance matrix of the sample. The locations of equal Mahalanobis
distance from a central reference vector x form an ellipse around x in 2D.

In our proposed KDE brushing, the local covariance structure of a data subset
around the click-point s is used as the basis of the kernel specification. Therefore,
it is an important part of our approach to determine, which data subset should be used
for this computation. We perform this in two steps.

Initially, we consider a circular area with radius α ·dE(s,e), where α is a weighting
factor and dE(s,e) is the Euclidean distance between s and e. All data points within this
circle are used to compute the first instance of the local covariance information, Σ1.

Next, we consider all points in a Mahalanobis ellipse, based on Σ1 and sized to
dΣ1(s,e). Usually, this leads to a new subset, which is similar to the initial one, but
fitting the underlying data structure more closely. To obtain an even better sample,
we refine the sample iteratively by replacing it with the points in the Mahalanobis
ellipse that is updated every iteration according to the covariance of the samples in last
iteration.

While this process usually converges quickly, we observed that it sometimes can
lead to small fluctuations, including and excluding a few points in consecutive itera-
tions. To stabilize the convergence of the covariance matrix optimization, we enable
the partial consideration of data points during the computation, leading to a solution
that is based on the weighted covariance matrix. The elements σ jk of the weighted
covariance matrix Σw can be defined as:

σ jk =
∑i ωi(xi j− x̄ j)(xik− x̄k)

1−∑i ω
2
i

(D.2)

where ωi is the normalized weight (ωi ≥ 0) for vector xi in a weighted sample with
∑i ωi = 1 and x̄ being the weighted mean vector, given by ∑i ωi xi. During the iteration,
the weight of each point is updated and the points that are stable in the Mahalanobis
ellipse are assigned a higher weight than less stable points. This process results in a
well-converged covariance matrix after a few interations. More details of this procedure
(weight function design, singular matrix handling, etc.) are described in an earlier
publication [22].

D.3.2 Density estimation

Kernel density estimation (KDE) is a popular method for data analysis [82]. It is a
non-parametric way to estimate the probability density function of a random variable.

D

D.3 KDE brushing in scatterplots 115

8H 19H

39H 65H

Figure D.2: Changing the kernel size in KDE: bigger kernels, i.e., larger |H|, bring forth larger
structures in the data, while smaller kernels represent details.

KDE can be used, for example, to make inferences about data, based on a finite sample,
without imposing any a priori structure on the data.

Given that {xi}1≤i≤n are n samples of d-dimensional vectors from a common distri-
bution, KDE can be used to estimate their density as

fH(x) =
1
n

n

∑
i=1

KH · (x − xi) (D.3)

with H being a d×d bandwidth matrix (symmetric and positive definite). The choice
of matrix H is the most important factor, critically affecting the characteristics of fH.
Fig. D.2 shows four results from 2D KDE with increasing determinant of H, where fH
reveals details for small |H|, while larger data structures dominate for larger |H|.

KH(x) = |H|−
1
2 K(H−

1
2 x) is the kernel function, with K(x) being a symmetric multi-

variate density function with K(x)≥ 0 and
∫

K(x)dx= 1. A variety of kernels has been
studied, including the uniform kernel, the triangle, normal / Gaussian, and Epanech-
nikov kernel, as well as others. The choice of the kernel function is actually not as
important as the choice of the size (and shape) of H. Being interested in the local mode
of the data distribution, we use the normal kernel for KDE brushing.

To consider the local data distribution, when modeling kernel matrix H, we make
direct use of the converged covariance matrix Σw, leading to the following anisotropic

D

116 KDE-based brushing, compared with Mahalanobis and CNN brushing

A B C

Figure D.3: A: KDE of a dataset (relatively small kernel). B: Clustering related to the modes
of the KDE, indicated by the small blue triangles. C: The one cluster, which corresponds to
the KDE mode near to s determines, which data points are selected (indicated as green points).

kernel function:

KH(x) =
e−

1
2 x>Σ−1

w x√
(2π)d|Σw|

(D.4)

To realize an proper scaling of the kernel, we use the eigendecomposition of Σw =
VΛV> with eigenvectors V and eigenvalues Λii. This leads to the scaled versions of
|H|− 1

2 = |βφΛ|−
1
2 and H−

1
2 = V(βφΛ)−

1
2 V>.

Used with an isotropic kernel function K(x) = (2π)−
d
2 e−

1
2 x>x, this corresponds to

KDE with an accordingly scaled kernel matrix. We optimize the scaling of H by choos-
ing the two scaling parameters φ and β by two separate methods: On the one hand,
we use a data-driven approach to determine φ . On the other hand, we optimize β as a
tuning parameter using the data from the user study.

D.3.3 Selecting a data subset using clustering

The modes of KDE represent groups of data items (at the scale determined by |H|).
We use clustering (each mode leading to one cluster) to identify the one group of data
items, which is associated with the click-and-drag interaction, and select it.

The clustering is applied to a grid-based canvas where each grid has its KDE value.
During the clustering, we use a simple watershed algorithm [26]: Starting with the
mode with the highest KDE value, we iteratively include neighboring locations into the
corresponding cluster, lowering the threshold iteratively. In every step, we either join a
neighboring location to an existing cluster, or create a new cluster, if the new location
is not adjacent to an existing cluster. In addition, for the clustering, we only apply

D

D.4 Data for parameter optimization 117

the algorithm to the points in a square area with center being the start point s and side
length being 2 · r ·ω (r is the length of interaction). Examining the user study data, we
found ω = 1.5 to be a reasonable value that the corresponding square area can cover
all the user goals. Fig. D.3B shows an according clustering result for a KDE with a
relatively small kernel (shown in Fig. D.3A) where the different clusters are shown in
different colors and the corresponding KDE modes are located by small blue triangles.
Fig. D.3C shows an example of how data points are then selected (the points in the
same cluster, corresponding to click-point s, are selected and highlighted in green).

D.3.4 Optimizing the kernel size

The number of modes of a KDE is strongly related to the kernel size: the bigger the
kernel, the fewer modes. Thus, there is a strong relation between the size of the kernel
and the size of the cluster, which is used to select the data points. In the following, we
describe a data-driven approach to determining an appropriate scaling factor φ .

Since we aim at a KDE that provides one cluster with the targeted data points, we
optimize the size of the bandwidth kernel so that the size of the resulting cluster matches
the size of the Mahalanobis ellipse around s and through e as closely as possible—as
a measure of comparison, we are using the dice coefficient between the Mahalanobis
ellipse E and the KDE cluster C(φ):

s(φ) =
2 |E∩C(φ)|
|E|+ |C(φ)|

(D.5)

where |E| and |C(φ)| are the sizes of the Mahalanobis ellipse and the KDE cluster,
respectively (evaluated grid-based). In our experiment, the searching domain for φ was
[1
10 , 3].

The example in Fig. D.4 illustrates the influence of different kernel sizes (sensitivity
wrt. β) on the resulting selection. True positives (correctly selected), true negatives
(correctly omitted), false positives (falsely selected), and false negatives are colored in
yellow, white, pink, and purple, respectively. There are more false negatives when the
kernel size is too small (Fig. D.4, left) with a low similarity between the gray KDE
cluster and the Mahalanobis ellipse. More false positives appear when the kernel size
is too big (Fig. D.4, right).

D.4 Data for parameter optimization

KDE brushing, as described so far, has two not-yet-optimized parameters: α (size of
the initial selection, determining the context of the local data shape analysis) and β

(overall scaling parameter on top of φ , influencing the kernel size). To achieve an as
accurate as possible brushing result, we need information about how users would use
our technique to brush and what they actually intend to select as ground truth. As the
interaction and brushing targets are the same as with Mahalanobis brushing [22], we
can use the same user study data to optimize α and β .

In the user study [22], six diverse datasets were used. To select these datasets, we
examined their scagnostics [97], aiming at a good spread of scatterplots with varying
characteristics. Scagnostics are useful to characterize scatterplots and help with the

D

118 KDE-based brushing, compared with Mahalanobis and CNN brushing

Ours Goal

Goal Ours

Figure D.4: Clustering based on different kernel sizes. Left: too small kernel, s(φ) = 0.63;
Middle: the optimal size of the kernel, s(φ) = 0.72; Right: too big kernel, s(φ) = 0.64.

identification of relevant structures due to density, skewness, shape, outliers, etc. For
the user study, four scatterplots were chosen from Boston Housing data with 14 vari-
ables and 91 different scatterplots, so that their scagnostics were maximally different
from each other [22]. The other two datasets were one with Gaussian clusters and one
with path-based spectral clusters (difficult due to the bent, elongated outer cluster).

For the study, 50 participants were asked to do 12 selections each. In every case, one
scatterplot (of the six) and a rather general request (“choose a large cluster”, “choose
a small cluster”, or “choose an elongated cluster”) were given to cover a reasonable
variety of cases. The actual choice of what to select was left to the user. Including a
request to select an elongated cluster, was also to provoke non-trivial cases, as common
in real-world applications, on top of the more simple standard cases.

During the study, the user was instructed to select a target subset (as ground truth,
reported by the participants using a lasso tool), before then also providing the corre-
sponding click-and-drag interaction that this participant would use to select the target
group. Accordingly, 600 brushing cases were collected from the user study (the details
are attached in the supplementary material), of which we used 400 for the optimization
(see below).

D.5 Optimization

To better understand the result of this parameter optimization, we also investigated
the influence of parameter α with respect to the resulting selection (see Fig. D.5). The
green line is the diameter of the circular area determined by the user sketch. We see that
there are more false negatives (colored in purple as underselection) when α is too small.
Conversely, more false positives (colored in pink when overselecting) appear, when the
value of α is too big. The influence of the kernel size (scaled by β) is demonstrated in
Fig. D.4. We found that α and β were the most critical parameters to optimize in our
technique.

Of the 600 selections from the user study [22], we randomly chose 400 as training
data. As a measure for how well the selection S(α,β) agrees with the user goal G, we

D

D.6 Evaluation 119

Figure D.5: The influence of different values of α: too small values lead to underselection
(left; false negatives in purple), too large values lead to overselection (right; false positives in
pink).

computed the dice coefficient for these two sets:

s(α,β) =
2|G∩S(α,β)|
|G|+ |S(α,β)|

(D.6)

If the computed selection S(α,β) matches the user goal G perfectly, s(α,β) = 1; in
the case of a complete mismatch, s(α,β) = 0.

Having collected the ground truth (lasso data) from the study and the click-and-
release-points of the sketching interaction, we were able to conduct an optimization of
α and β according to the following procedure (not involving users): Based on vary-
ing choices of α and β , we could execute our selection heuristic, using the datasets
from the user study and the recorded interaction data, leading to a particular S(α,β)
per case—it was then straight-forward to compare S(α,β) to G as collected during
the user study, leading to a corresponding accuracy s(α,β). We started with a large
matrix of different combinations of the two parameters, covering domain [1

10 , 10] that
was certainly big enough. Inspecting the s-values for all these cases lead us to further
examining a more detailed subset of the parameter space (basically, we refined our opti-
mization hierarchically, doing the refinement manually). Eventually, we ended up with
the following (near-optimal) values for both parameters: α = 1.05 and β = 1.05. The
optimization was done offline once.

D.6 Evaluation

Using the optimized parameters, we did an in-depth comparison in terms of accu-
racy, efficiency, generality and interpretability between the Mahalanobis brush [22],
the CNN brush [23], and the KDE brush, using the interaction information from the
user study [22] considering 252 400 points in all 600 selections.

D.6.1 Accuracy

Table D.1 shows quantitative evaluation results for the three brushing techniques, ac-
cording to a number of different measures [83]:

D

120 KDE-based brushing, compared with Mahalanobis and CNN brushing

Table D.1: Quantitative evaluation of the three brushing techniques, based on a dozen mea-
sures, computed for all 600 selections from the original user study [22] (emphasizing the best
result in bold):

TP TP (%) FP FP (%) TN TN (%) FN FN (%)
Mahalanobis 50 737 20.10% 5 189 2.06% 191 682 75.94% 4 792 1.90%

KDE 52 436 20.77% 9 583 3.80% 187 288 74.20% 3 093 1.23%
CNN 55 321 21.92% 929 0.37% 195 942 77.63% 208 0.08%

accuracy recall FPR FOR TS precision F1 MCC
Mahalanobis 96.05% 91.37% 2.64% 2.44% 83.56% 90.72% 91.04% 88.51%

KDE 94.98% 94.43% 4.87% 1.62% 80.53% 84.55% 89.22% 86.18%
CNN 99.55% 99.63% 0.47% 0.11% 97.99% 98.35% 98.98% 98.70%

• TP: true positives (correctly selected points), total number and in percent

• FP: false positives (falsely selected points), total number and in percent

• TN: true negatives (correctly left out points), total number and in percent

• FN: false negatives (falsely left out points), total number and in percent

• Accuracy: correctly selected or left out, relative to all, (TP+TN)/all (the higher,
the better)

• Recall: how much of the goal is selected, TP/(TP+FN) (higher↔ less under-
brushing)

• FPR (fall-out): how much of the non-goal is selected, FP/(FP+TN) (lower↔
fewer FP)

• FOR (false omissions): how much of the non-brushed was goal, FN/(FN+TN)
(lower↔ fewer omissions)

• TS (threat score): how much of brush∪goal is TP, TP/(TP+FP+FN) (higher
↔ better)

• Precision: how much of the selection is goal, TP/(TP+FP) (higher ↔ less
overbrushing)

• F1 score: harmonic mean (precision, recall), 2TP/(2TP+FP+FN) (higher↔
better)

• MCC (Matthews correlation coefficient): measuring the quality of binary clas-
sification (the higher, the better), (TP ·TN − FP ·FN)/√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

According to the quantitative evaluation in the top part of Table D.1, CNN brushing
performs best with respect to TP, FP, TN, and FN. When comparing the two empirical
models, KDE brushing gives more TP than Mahalanobis brushing and fewer FN, while
it leads to more FP and fewer TN. This could indicate that KDE brushing is better at
recognizing the user’s brushing goal, but at the cost of more false negatives (some
overbrushing).

D

D.6 Evaluation 121

Goal KDE Mah CNN

TP(KDE) TP(Mah) TP(CNN) TN(KDE) TN(Mah) TN(CNN) FP(KDE) FP(Mah) FP(CNN) FN(KDE) FN(Mah) FN(CNN) FP(Mah) TN(CNN) FP(KDE) TN(all)

TN(KDE) FP(all) TN(Mah) FP(CNN)

FN(KDE) TP(all) FN(Mah) TP(CNN)

TP(Mah) FN(CNN) TP(KDE) FN(all)

Filled: TP Empty: TN Smile: succeed Frown: fail

A B

0.012 0.007

0.54

0.006 0.11

1.71
1.85

0.21
0.13

0.63

0.014

1.3

0%

0.5%

1%

1.5%

2%

Prevalence

Figure D.6: A three-way comparison of four sets (A): actual goal (green), Mahalanobis
brush (violet), KDE brush (orange), CNN brush (pink). The cases of all techniques correctly
brush the goal (19.45% of all), all techniques leave out the non-goal correctly (73.86%), all
techniques select falsely (0.12%) and all techniques fail to select (0.05%) are not shown,
focusing on those cases, where at least one technique has a problem (FP or FN) and at least
one technique succeeds (TP or TN); Venn diagram, illustrating the relation between the sets
(B).

By looking at the bottom part of Table D.1, showing eight different measures for
judging the quality of the classification, CNN brushing also outperforms the two em-
pirical models in all measures. Comparing the two empirical models, KDE brushing
seems to outperform Mahalanobis brushing in recall (how much of the goal is brushed)
and in the false omission rate (how much of the non-brushed view is actually goal),
while Mahalanobis brushing appears to be better in all other six measures.

In addition to comparing each method with the goal, we also did a threefold compar-
ison to see the relation of the four related sets (actual goal, brushed by the Mahalanobis
brush, the KDE brush, and the CNN brush), shown in Fig. D.6A. The Venn diagram in
Fig. D.6B is an illustration of the threefold comparison: the thick green line surrounds
the actual goal, the dashed violet line surrounds all that’s brushed by the Mahalanobis
brush, the dashed orange line surrounds what the KDE brush selects, and the dashed
pink link surrounds, what the CNN brush selects (in the shown schematic, the areas do
not correspond to the proportions of the respective cases).

For each point in the 600 cases from the user study [22] – 252 400 points, alto-
gether – we check whether it belongs to the brushing goal (green), whether the Maha-
lanobis brush selects it (violet), whether the KDE brush selects it (orange), and whether
the CNN brush selects it (pink), leading to 24 = 16 possible situations per point. The
relative prevalence of these situations is shown in Fig. D.6A, leaving out the dominating
“good” cases of all techniques brush a goal point, TP(all), 19.45% of all, all techniques
leave out a non-goal point, TN(all), 73.86%, all techniques select falsely, 0.12% of all
cases, and all techniques fail to select, 0.05% of all cases, emphasizing the situations,
where at least one brushing technique has a problem (FP or FN) and at least one tech-
nique succeeds (TP or TN). The label of each situation indicates its characteristics – if
one technique has a problem, then this is indicated (for ex., “FN(Mah): 1.30%” indi-
cates the situation, when only the Mahalanobis brush fails to select a goal point); when

D

122 KDE-based brushing, compared with Mahalanobis and CNN brushing

two techniques have a problem, the opposite is done (for ex., “TN(Mah): 0.11%” indi-
cates the situation, when only Mahalanobis brushing leaves out a non-goal point, while
both other techniques incorrectly select it). As an additional mark in Fig. D.6A, a com-
bination of emojis is used to indicate the situation: a frowny indicates a problem (color:
technique, filled: FP, empty: FN), while a smiley shows that the technique succeeded
(filled: TP, empty: TN). Below, we briefly address all cases:

• TP(all), TN(all): in most cases, all three techniques do the right thing, i.e., select
a goal point or leave out a non-goal point: 19.45% are consistently well-selected
goal points, 73.86% are consistently left-out non-goal points; thus, altogether,
93.31% of all cases are “good” for all three techniques!

• FN(KDE), FN(Mah.), FN(CNN): the indicated brush is the only one failing to
select a goal point; of these, the case where the Mahalanobis brush underselects
is most prevalent: 1.30%, compared to 0.63% and 0.014% of underbrushing by
the KDE and CNN brushes.

• FP(KDE), FP(Mah.), FP(CNN): the indicated brush is the only to falsely select
a non-goal point; of these, clearly the case where the KDE brush overbrushes is
most prevalent: 1.85%, compared to 0.21% (Mah.) and 0.13% (CNN).

• TP(KDE), TP(Mah.), TP(CNN): the indicated brush succeeds to select the goal,
while the other two fail; of these three, clearly the case where only the CNN brush
succeeds is most prevalent: 0.54%, compared to 0.012% (KDE) and 0.007%
(Mah).

• TN(KDE), TN(Mah.), TN(CNN): the indicated brush succeeds in not selecting a
non-goal point, while the other two select it falsely; of these, also the case where
only the CNN brush is right is most prevalent: 1.71%, compared to 0.11% (Mah)
and 0.006% (KDE).

• FP(all), FN(all): in these rare cases, all three techniques do the wrong thing
(select falsely or fail to select), amounting to 0.12% and 0.05%, respectively.

D.6.2 Efficiency

We evaluate the actual efficiency of sketch-based brushing in two ways: the time users
spend on the interaction and the computation cost of the method. The three methods
adopt the same click-and-drag interaction and the average time spent is around 41%
of using a lasso [22]. In terms of computation cost, CNN brushing and Mahalanobis
brushing are similarly fast for small subsets. It takes, for example, around 20ms when
brushing 2000 points, while the computation cost for KDE brushing is around 110ms.
In the case of larger datasets, the CNN brush takes only 180ms when brushing one
million points, while Mahalanobis brushing and KDE brushing take comparably long
110s and 300s for 100 000 points, respectively, which is too slow for a fluid interac-
tion. Accordingly, all three methods enable a smooth and fluid interaction for small
datasets while Mahalanobis brushing and KDE brushing are too slow for large data
(>≈ 100 000 points).

D

D.6 Evaluation 123

Table D.2: Quantitative evaluation of the three brushing techniques, based on a dozen mea-
sures, computed for all 120 selections from the new user study [23] (emphasizing the best
result in bold):

TP TP (%) FP FP (%) TN TN (%) FN FN (%)
Mahalanobis 18 989 21.90% 1 549 1.79% 65 921 76.03% 241 0.28%

KDE 18 927 21.83% 1 859 2.14% 65 611 75.68% 303 0.35%
CNN 19 100 22.03% 1 286 1.48% 66 184 76.34% 130 0.15%

accuracy recall FPR FOR TS precision F1 MCC
Mahalanobis 97.94% 98.75% 2.30% 0.36% 91.39% 92.46% 95.50% 94.25%

KDE 97.51% 98.42% 2.76% 0.46% 89.75% 91.06% 94.60% 93.10%
CNN 98.37% 99.32% 1.91% 0.20% 93.10% 93.69% 96.43% 95.44%

Goal KDE Mah CNN

TP(KDE) TP(Mah) TP(CNN) TN(KDE) TN(Mah) TN(CNN) FP(KDE) FP(Mah) FP(CNN) FN(KDE) FN(Mah) FN(CNN)

Filled: TP Empty: TN Smile: succeed Frown: fail

0%

0.5%

0.014

0.42

0.005 0.021

0.08

0.46

0.37
0.41

0.15
0.18

0.1
0.051

Prevalence

Figure D.7: Threefold comparison between the Mahalanobis brush, KDE brush and the CNN
brush based on the user’s goal from a follow-up user study (details in the text). Note that all
relative prevalences are below 0.5%.

D.6.3 Generality

Generality is used to describe a model’s ability to react to new and previously unseen
data. To further substantiate the evaluation of the three techniques in terms of general-
ity, we also tested the three methods on new data from another user study [23], which
has not been used for training of the models at all. This user study used six new datasets
(including compound data, personal hiking data, aggregation data, the omnipresent Iris
data, R15 data and spirals shape data) and 10 users provided 12 selections each, lead-
ing to 120 selections in total (details in the supplementary material). The corresponding
quantitative comparison is shown in Table D.2 and Fig. D.7, considering 86 700 points
in total.

Comparing the quantitative evaluation based on the two user studies, we see that
CNN brushing produces many more FP in the follow-up study (0.37%→ 1.48%), lead-
ing also to a higher fall-out value (0.47%→ 1.91%). Mahalanobis brushing and KDE
brushing produce much fewer FN in the follow-up study (1.9%→ 0.28% and 1.23%→
0.35%, respectively), while CNN produces more FN (0.08%→ 0.15%). With respect
to the other measures, KDE’s threat score got better in the follow-up study (80.53%

D

124 KDE-based brushing, compared with Mahalanobis and CNN brushing

→ 89.75%) and became more similar to the others. Mahalanobis’ threat score im-
proved also (83.56% → 91.39%), while CNN’s threat score worsened (97.99% →
93.1%). Besides that, Mahalanobis’ recall got better in the follow-up study (91.37%
→ 98.75%) and became more similar to the others (all methods are very good). CNN’s
precision and accuracy went down in the follow-up study (98.35%→ 93.69%, 99.55%
→ 98.37%) and became more similar to the others. In addition, the FPR and FOR of
KDE brushing are both largely reduced (4.87%→ 2.76%, 1.62%→ 0.46%), becoming
more similar to the other two methods. In terms of the F1 score and MCC, both Maha-
lanobis and KDE brushing improved (91.04%→ 95.5%, 88.51%→ 94.25%; 89.22%
→ 94.6%, 86.18% → 93.1%), while CNN brushing got worse (98.98% → 96.43%,
98.7%→ 95.44%).

For the threefold comparison, we see a performance decline of CNN brushing in
TP(CNN) (0.54% → 0.08%), TN(CNN) (1.71% → 0.46%), FP(CNN) (0.13% →
0.15%) and FN(CNN) (0.14% → 0.51%). For the empirical models, KDE is bet-
ter in TP(KDE) (0.12% → 0.14%), TN(KDE) (0.06% → 0.21%), FP(KDE) (1.85%
→ 0.37%) and FN(KDE) (0.63% → 0.18%), while Mahalanobis brushing is better
in TN(Mah) (0.11% → 0.42%), and FN(Mah) (1.3% → 0.1%) but not in TP(Mah)
(0.07%→ 0.05%), and FP(Mah) (0.21%→ 0.41%).

While almost all measures got better for both Mahalanobis brushing and for KDE
brushing in the second user study, they all got worse for CNN brushing – at least a bit. It
is important to see, however, that CNN brushing still outperformed both other methods
in all indicators (even though they are much more similar in the follow-up study). This
could reveal one disadvantage of the CNN brush, namely that it is less general, when
compared with the empirical models.

D.6.4 Interpretability

Interpretability refers to how much a human can understand the model’s process and
result. Although the three brushing methods achieve all good results (>90% accuracy)
in two studies, we were curious to see how the methods perform in particularly difficult
cases (for example, when brushing the large ring shapes in the original study or the
spiral shapes in the follow-up study). Therefore, we had a closer look at special cases
and found that the average accuracy for brushing the ring shapes are around 53%, 51%
and 95% for KDE brushing, Mahalanobis brushing and CNN brushing, respectively,
while they achieve 54%, 50% and 41% accuracy when selecting the spiral shapes. We
can see that KDE brushing is slightly better than Mahalanobis brushing in these cases
due to its nonlinear model while the performance of CNN brushing falls in the follow-
up cases, possibly because of issues related to overfitting.

In addition to the “bad cases” analysis, we observed that some prediction results of
CNN brushing are unreasonable. CNN brushing can, for example, accurately find the
border of a cluster while some scattered points inside the cluster are not selected. This
situation is not possible in Mahalanobis brushing and KDE brushing, representing an
increased uncertainty and low interpretability of the DL-based model.

D

D.7 Conclusion and future work 125

D.6.5 Summary

In general, we could not see that KDE brushing would significantly outperform Ma-
halanobis brushing based on the comparison between KDE brushing and Mahalanobis
brushing, even though we see slightly better results for KDE brushing in the follow-
up study and in some nonlinear-shape cases. An according assumption was originally
made, because we thought that more carefully considering the local data distribution
should help to further improve the technique’s accuracy (as a nonlinear method, KDE
brushing should have much better abilities to adapt to nonlinear structures in the data).
So far, we cannot rule out that we have overlooked another limitation when realizing
the KDE-based approach – either a conceptual one, or a limitation of our implementa-
tion. Accordingly, we see it still possible that another solution could achieve a further
improved accuracy. To outperform CNN brushing, however, seems like a tall order.

We note that empirical modeling comes with the advantage of an explainable result
(for example, we know how different values of α and β influence the results), while the
excellent performance of the DL-based model comes at the cost of a poor interpretabil-
ity (including some uncertainty concerning the stability of its predictive power). This
comparison leads to the interesting question of how much accuracy we are willing to
sacrifice for a good interpretability.

D.7 Conclusion and future work

In this paper, we presented our attempt to improve Mahalanobis brushing by incorpo-
rating kernel density estimation to increase its accuracy. Although more information
is taken into account for modeling the KDE-based model, we have not seen a signif-
icant improvement compared to the simpler Mahalanobis brush. Based on this result,
we think that the increased cost of incorporating KDE could have come with an over-
design issue. When compared with deep learning, we found that its black-box nature
results in a questionable interpretability (but with excellent accuracy), whereas the re-
sults based on the empirical model are explainable (even though not as good as the ones
based on the learned model). Considering its reduced robustness, the DL-based method
appears to be (a bit) less stable and a bit more unpredictable, even though it does have
the best performance, after all. It is unclear, however, how to weigh in all factors, when
comparing the overall performance for model selection.

In the future, we see several opportunities to further extend our work, including:

• Combining advantages of both sides, i.e., empirical modeling and deep learning.
We imagine, for example, to automatically learn the kernel size or to design the
deep learning input on the basis of the KDE.

• Investigating more closely, why KDE brushing did not outperform the Maha-
lanobis brush, and make a new attempt to further improve it.

• A sensitivity study with respect to the (optimized) parameters of the empirical
models.

• Exploring other machine learning approaches to develop a new brushing tech-
nique which outperforms CNN brushing.

D

126 KDE-based brushing, compared with Mahalanobis and CNN brushing

We hope, also, that this work can inspire further related research, especially in visual-
ization for model design and model selection.

D.8 Acknowledgements

We thank the participants in the user studies for helping with our research. Parts of
this work have been done in the context of CEDAS, Center for Data Science, at the
University of Bergen, Norway.

EE

Paper E

Sketch-based fast and accurate querying of time
series using parameter-sharing LSTM networks

Chaoran Fan1, Krešimir Matković2 and Helwig Hauser1

1 University of Bergen, Norway
2 VRVis Research Center, Austria

Abstract

Sketching is one common approach to query time series data for patterns of
interest. Most existing solutions for matching the data with the interaction
are based on an empirically modeled similarity function between the user’s
sketch and the time series data with limited efficiency and accuracy. In this
paper, we introduce a machine learning based solution for fast and accurate
querying of time series data based on a swift sketching interaction. We build
on existing LSTM technology (long short-term memory) to encode both the
sketch and the time series data in a network with shared parameters. We use
data from a user study to let the network learn a proper similarity function.
We focus our approach on perceived similarities and achieve that the learned
model also includes a user-side aspect. To the best of our knowledge, this is
the first data-driven solution for querying time series data in visual analytics.
Besides evaluating the accuracy and efficiency directly in a quantitative way,
we also compare our solution to the recently published Qetch algorithm as
well as the commonly used dynamic time warping (DTW) algorithm.

This article was published in IEEE Transaction On Visualization and Computer Graphics, Early Access,
2020

E

128 Sketch-based querying of time series data based on LSTM networks

E.1 Introduction

In the emerging era of big data, extensive time series data are common in a large variety
of application domains. The visualization of such data is often cluttered, especially
when the trend is non-periodic and the data size is large. In the exploration of long
time series data, it is often hard for the analysts to visually identify specific patterns
efficiently. To overcome this issue, the topic of finding relevant parts of time series data
has become popular in recent research.

In general, it is easier to visually describe patterns in time series data than to express
them textually or procedurally. Therefore, visual query systems are a convenient user
interface with freehand sketching as an efficient means for visual communication. The
use of sketching enables the analyst to convey complex free-form patterns of interest,
which are matched against the data to identify subsets of interest.

For matching sketches and data, usually a carefully designed, empirical model is
adopted to estimating the similarity between the sketch and the time series data. Of-
ten, this approach comes with non-optimal efficiency and accuracy, having so far also
resulted in a limited deployment of sketch-based visual query systems for real-world vi-
sual analytics applications. More specifically in terms of their limited efficiency, most
of these empirical methods are based on local characteristics and a sliding window (of
the same length as the sketching query) that is used to compute the best match or a sim-
ilarity ranking, generally leading to a time-consuming comparison procedure that can
hamper the interactive exploration. On the other hand, sketches are artistic expressions
and due to ambiguity and inaccuracies in sketches, an empirical model is often quite far
from robustly representing the underlying ideas and expectations of the user. This can
lead to matching algorithms that fail to produce good similarity rankings, especially
when “goodness” is evaluated by humans [71].

To improve sketch-based querying, we see two main directions. First, in order to se-
cure a fluid data exploration, we aim at a fast computation of the matching procedure.
Second, we need a better understanding of the user’s intention given her/his sketch—
only this way we can make the querying result as close as possible to what the user
really needs. Due to great recent success, deep learning in computer vision [86], image
classification [59], and natural language processing [74, 94] has attracted a lot of atten-
tion. As pattern matching in time series data is somehow similar to detecting patterns
in images, we expected that deep learning would boost the performance of matching
solutions.

In this paper, we now show a successful exploitation of the long short-term mem-
ory (LSTM) architecture [4] to encode the sketch and the time series data respectively
in two networks with shared parameters. In principle, two LSTM networks with dif-
ferent parameters could be used to learn the representation of the sketch and the time
series data. In our design, the two networks share the same parameters and this param-
eter sharing helps with accelerating training and limiting overfitting. The networks are
trained based on perceived similarities from a user study. This way, we integrate the
user’s perception into the learned model. As no existing model is capable of fully cap-
turing the complex semantics of a user’s sketch, we saw a great potential to improve
the situation by learning the matching model directly from users. We demonstrate the
effectiveness of our method in comparison with two state-of-the-art matching models—
the recently presented Qetch algorithm [71] and the seminal DTW technique (dynamic

E

E.2 Related work 129

time warping) [90].
Overall, the main contributions of our paper are:

• A data-driven method for sketch-based querying of time series data. To the
best of our knowledge, this is the first time that deep learning is used to learn the
matching relation between a human sketch and time series data, outperforming
two state-of-the-art models in terms of accuracy and efficiency.

• A sketch-based querying system for time series data. We present a prototype
of a sketch-based querying system for time series data. We offer the user an
opportunity to use a freehand sketch to explore the time series data interactively
without the need to set any offline parameter.

E.2 Related work

Sketching is a natural and expressive type of interaction, which has been frequently
used in the visualization area, especially as a brushing technique [22–25, 80] and in
visual query systems [13, 42, 71, 78, 104].

In the following, we provide a brief introduction to common time series similarity
matching algorithms, followed by a detailed overview of prior work related to visual
query systems for time series data and visualization applications based on deep learning
knowledge.

E.2.1 Time series data similarity

Among a variety of similarity measures, the Euclidean distance (ED) and dynamic time
warping (DTW) [90] are the most commonly used measures with the squared ED being
the sum of the point-wise squared differences of the two time series. The basic ED can
be improved by data normalization, often standardization, which considers the variation
of similar patterns in amplitude and y-offset[30]. Since ED is computed point-wise and
the mapping of a query point to a data point is fixed, it is sensitive to noise and local
time misalignments.

DTW overcomes ED’s inability to handle local time misalignments (or warps) by
allowing horizontal stretching (or compression) of a time series when searching for
similar data subsets. Therefore, DTW is considered to yield better fits for shape match-
ing, especially when the similar shapes are not aligned along time.

For matching a sketched query and time series data, both ED and DTW require
a sliding window of size equal to the query length to compute the similarities over
time. In their survey, Ding et al. [16] conclude that there is no distance measure that
is systematically better than DTW, while the relatively simple and straight-forward ED
can be computationally competitive with DTW, when the size of the data increases.

E.2.2 Visual query systems

In visual query systems, visual interface components are used to formulate the user’s
queries. TimeSearcher [37] was a pioneering information visualization tool using time-
boxes to query time series data. The analyst draws a rectangular region to indicate time

E

130 Sketch-based querying of time series data based on LSTM networks

points of interest on the time axis and the range of interesting values on the value axis.
Time series data is then highlighted while passing through the timeboxes. Later, ex-
tended versions have been proposed to improve the basic timeboxes by incorporating
the variable (fuzziness in the boundaries) [51], angular queries and slopes to search
ranges of differentials [38] and supporting more flexibility with options to adjust the
query [7]. Overall, timeboxes are powerful value-based widgets and they are used in
several visual query systems. Still, it is far from straight-forward to specify a shape-
based query with timeboxes, for example, a head-and-shoulders pattern.

The Querylines system [89] realizes a filter-based approach to visual querying. It
offers the user the opportunity to specify constraints by using line segments. The ana-
lyst can qualify these line segments as hard or soft constraints based on their preference.
If the query gets over-constrained, feedback from the system enables the users to refine
the query specification.

An alternative technique for constructing visual queries is to first identify common
shapes such as a spike, sink, rise, drop, plateau, and valley, and then build queries using
these basic shapes as pattern templates [32].

The concept of a sketch-based visual query system was first proposed by Watten-
berg [104]. In his approach, the analyst sketches an approximate pattern on the same
display where also the data is visualized for searching similar patterns. The similar-
ity to the time series data is calculated as simple ED. The system is straight-forward
to use, but the quality of matching relies strongly on details and well-defined time and
amplitude ranges of the sketch, which is in general not easy for the user to handle.

To improve the flexibility and tolerance in their sketch-based visual query system,
Holz and Feiner [42] provided a relaxed selection technique which allows the user
to implicitly indicate a level of similarity that can vary across search patterns during
sketching. Specifically, the mouse speed is used to inform the system about the spatial
and temporal tolerance of points in the sketched query.

In order to study the human perception of correspondence between sketches and
time series patterns, Eichmann and Zgraggen presented a comparison of rankings of
computed pattern matches with human-annotated results [19]. They found that human-
annotated rankings can differ drastically from algorithmically generated rankings and
concluded that the meaning of sketching is too diverse to be captured in one algorithm
or metric.

As a multitude of queries can be targeted by the same sketch, Correll and Gle-
icher [13] investigate the ambiguities of sketch-based query systems in time series data
and define a set of “invariants”, enabling the user to choose the properties of data to
ignore while sketching. In addition, they adapt different matching algorithms to sup-
port different invariants. The main drawback of this approach is that it is not easy and
straight-forward for the user to think about the invariants while doing data exploration.

Muthumanickam et al. [78] outline important perceptual features for effective shape
matching and define a grammar to express time series data approximately by consid-
ering the data as a combination of basic elementary shapes positioned across different
amplitudes. These basic shapes are represented by using a ratio value and then a sym-
bolic approximation can be achieved by performing binning on ratio values. The major
problem of this method is the limited query expressiveness, along with the black-box
nature of query execution with each shape often having its own processing or matching
steps.

E

E.3 The principal approach 131

Research on visual perception suggests that we mentally decompose complex
shapes into salient parts such as piece-wise upward or downward lines, peaks and
troughs [40, 52, 55]. Based on this research, Mannino and Abouzied present
Qetch [71], a tool where users freely sketch patterns on a scale-less canvas to query
time series data and get rid of specifying query length or amplitude. This method
claims its advantage (dealing with the scale-less sketch) over the traditional matching
algorithms—ED and DTW. However, in our observation, the query result is very sen-
sitive to the smoothing level of the time series data as the query length is based on the
salient parts (constructed by extrema and inflection points) of the data.

E.2.3 Deep learning for visualization

In recent years, deep learning has become popular due to its successful application to a
wide range of fields, especially in image processing and natural language processing. In
the visualization area, according research focuses on helping with the design, training,
diagnosis and refinement of deep learning models [41, 67, 109]. Using deep learning
for solving visualization tasks, however, is still rare.

Han et al. [33] presented FlowNet, an approach based on an autoencoder, for im-
proving clustering and the selection of streamlines and stream surfaces. Kim and Gun-
ther [53] extract a robust reference frame based on a convolutional neural network
(CNN) that is able to yield a steady reference frame for a given unsteady 2D vector
field. Hu et al. [44] introduced VizML that predicts visualization design choices from
a large corpus of datasets using neural networks. Data2Vis [14] makes use of recurrent
neural networks to generate Vega-lite visualization specifications from JSON-encoded
datasets.

Further, we see visualization solutions that leverage deep learning to improve tech-
niques in visual analytics, for example interaction techniques. Fan and Hauser [23]
exploited a CNN and modeled sketch-based brushing in scatterplots to predict the se-
lected points. This method achieves state-of-art accuracy while providing a fast inter-
action. The model is trained on data from different users in a user study, leading to a
general model that is thus not optimized to every single user. To address this issue, they
presented a personalized CNN-based brushing technique that is able to iteratively re-
fine the brushing model for a single user with additional data that he/she provides while
using the brushing technique [25].

More recently, Chen et al. [10] developed a learning-based approach to realize a
lasso selection of 3D points by modelling the selection as a latent mapping from view-
point and lasso to point cloud regions.

E.3 The principal approach

The overall goal of our research was to design a visual query system for time series
data with a fast interaction and an accurate query result in order to solve efficiency and
accuracy problems of existing solutions. Also, the system was expected to be friendly
to the non-expert and easy to use with limited training. Figure E.1 shows an illustration
of the principal approach. To achieve a swift interaction, we use freehand sketching
as the querying input and a similarity function S that is capable of interpreting the

E

132 Sketch-based querying of time series data based on LSTM networks

Figure E.1: Illustration of our principal approach: users specify the targeted scale of the time
series data by zooming, panning or smoothing, then freely sketch an approximate pattern on
the sketching panel. Then a similarity rank between the user sketch and the processed time
series data is computed by the proposed parameter sharing LSTM networks. The network is
trained only once offline based on user study data.

relation between the human sketch I and the matching goal in the time series data V
as accurately as possible. Further, we aimed at a real-time system, meaning that the
computational cost should be minimal, as well.

Based on our understanding that all empirical models have their limitation at esti-
mating the intended meaning of a human sketch, we found it promising to exploit learn
the needed similarity measure directly from users. Recurrent neural networks (RNNs)
are a straight-forward solution for encoding time series data and to do the matching for
two reasons: 1., RNNs have a memory which allows the model to keep information
about its past computations. This enables RNNs to have dynamic temporal behavior,
which naturally fits to sequential data like time series data. 2., An advanced version
of RNNs, LSTM networks (long short-term memory), can be trained to remember the
information from a specific length of past times steps. This mechanism can be used
to mimic a sliding window while doing the matching computation along the time se-
ries data. At the same time, it avoids reading the same data repeatedly, leading to a
relatively low computation cost.

To construct the network structure, we used a pair of LSTM networks with shared
parameters to encode the sketch and the time series data, respectively. The sharing of
the network parameters was beneficial because of the high similarity between the sketch
and the time series. The thereby reduced overall number of parameters accelerates the
training procedure and helps with preventing overfitting. This design is inspired by the
“Siamese” network-based solution for sentence similarity [74]. Detailed description of
our network is given in section E.4.3.

To train this pair of networks, we collected data from two user studies. For the first
user study, we gathered the ground truth about how different users sketch patterns and

E

E.3 The principal approach 133

Users can change the degree of smoothing

Users choose a dataset to visualize with a default smoothing level

Users can explore all the sorted matching results in terms of similarity

Query

Step 1

Step 2

Step 3

Step 4

Users can explore all the sorted matching

results by using the provided sliding bar

Zooming/panning/adjust

the smoothing of the data Sketching panel is provided

and located in the center

The best match (colored in green) is shown

immediately and aligned with the sketch

Figure E.2: The interface of our sketching system for time series data. To explore, users
choose data first and interact with the data then to specify the scale of interest by zooming and
panning. Then the user sketches a pattern of interest. A matching rank is computed and results
are explored.

how they rate similarities based on their visual perception of correspondences between
their sketches and several clips of the time series data that we offered. In the second
user study, we examined the variation of the user’s sketches in order to use this for
modeling an extension of the training data for a more stable training.

In the following, we introduce the four basic steps of our data exploration workflow
(technical details are provided in section E.4.1). Figure E.2 illustrates the user interface
of our proposed sketching system and the four steps to data exploration.

Step 1: Data Preprocessing. For most time series data, some smoothing is nec-
essary to capture the key patterns of interest, leaving out noise and patterns on other
scales. In our design, cubic splines are used to smooth the data. Instead of asking the
user to specify the smoothing level, we offer a default smoothing level after loading the
dataset.

Step 2: Interactive Scaling and Smoothing. Choosing a scale (and a smoothing
level) for data exploration is a crucial user-side task – meaningful questions may be
asked about time series data at multiple scales, depending on the user task. Instead
of iterating through all possible scales and smoothing levels while matching, we allow
the user to interact with the data via zooming and panning (and/or adjusting a slider to
specify the targeted scale and smoothing level), after initially estimating a proper scale
automatically.

Step 3: Sketching. Once the scale and smoothing is determined, a sketch panel is
provided for the user to do free-hand sketching. The empty sketch panel is located at
the center of the canvas to let the user sketch at the targeted scale, visually referring to
the scaled time series data in the background. Sketches are then slightly smoothed in
order to remove hand jitter and the query length is determined by the sketch length.

Step 4: Query and explore the matching results. The two parameter-sharing

E

134 Sketch-based querying of time series data based on LSTM networks

LSTM networks are then executed to obtain an ordered set of similarities between the
sketch and subsets of the time series data. The best match is immediately highlighted in
green after the computation and the corresponding time series data is shifted by aligning
the best matching part with the sketch. Moreover, a slider is provided to explore all the
other results from the ranked list of matching results.

E.4 Technique in detail

In the following, we first go through the details of scaling and smoothing before we then
describe the specification of the used RNN and the design of the proposed network.

E.4.1 Scaling and smoothing the data

As we mentioned, a default smoothing level (denoted by k0) is computed for the data
after loading, based on the number of salient parts (denoted by Ns). We count the salient
parts by segmenting the time series data at extrema and inflection points. To obtain the
default smoothing level for each dataset, we adjust the smoothing level until we are
satisfied with the number of salient parts that were enough to represent the time series
data in advance and this smoothing level is then chosen as the default smoothing setting
in the beginning.

To represent the scale of the data, we use z with z = 1 in the beginning. We assume
that the user wants to see more details when zooming in (and vice versa when zooming
out). To automatically adjust the smoothing level during zooming, a linear function is
used to adapt the smoothing according to the (logarithm of the) scale: k(z)= k0−a · lnz,
where a is a coefficient that we obtained via a simple regression procedure. Specifically,
we used that the levels of details are related to the number of salient parts. A correctly
chosen a should lead to a stable number of salient parts while zooming in or out. To
achieve this, we randomly choose 10 points in the time series data for a specific value
of a and then compute the number of salient parts with 10 different scales. The results
were used to fit a linear function with h as the coefficient (Ns = h · lnz + d). This
procedure was repeated several times by trying different values of a. This way, we
identified a well-working a by finding h which was closest to 0. In our work (10
different datasets), the value of a varied from 50 to 1371, while k0 ranged from 9054
to 549923. Doing this offline in advance (finding a and k0 for each dataset), we can
minimize the operations that the users have to do and help them focus on the pattern
searching in the time series data. To increase the flexibility, the user can also use a slider
to adjust the smoothing level, if they are not satisfied with the suggested smoothing
level.

E.4.2 Recurrent neural network (RNN)

An RNN is an extension of the traditional feed-forward neural network which is able to
store relevant parts of the input and use this information to predict future outputs. More
formally, at time step t, the memory cell’s current hidden state ht , preserved by the
RNN structure, is a function of the input at the current time step (Xt) and the hidden
state at the last time step (ht−1). The RNN updates its current state by computing

E

E.4 Technique in detail 135

Ct-1

ht-1

Ct

Xt

Forget gate Output gate Input gate tanh

tanh ht

Yt

o(t) f(t) i(t)

(ht)

Figure E.3: Complete structure of the LSTM cell, which can process data sequentially and
keep its hidden state through time.

ht = φ(ht−1,Xt), where φ is a nonlinear function such as the composition of a logistic
sigmoid with an affine transformation. Optionally, the output at time step t, denoted
by Yt is a function of the previous state and the current input, and it is the same as the
hidden state ht for basic cells.

Although a basic RNN performs well in capturing nonlinearity in time series data, it
was observed that back-propagation dynamics caused the gradients in an RNN to either
vanish or explode while training to capture the long-term dependencies [4].

To overcome this disadvantage, the LSTM (long short-term memory) architec-
ture [39] was proposed by Hochreiter and Schmidhuber. As shown in Figure E.3, in
addition to the hidden state vector ht , LSTMs also maintain a memory cell ct at time t.
At each time step, the LSTM can choose to read from, write to, or reset the cell using
explicit gating mechanisms. The memory cell ct is updated by partially forgetting the
existing memory and adding new memory content:

ct = f (t)⊗ ct−1 + i(t)⊗ tanh(WcXt +Ucht−1 +bc) (E.1)

where the forget gate f (t) controls the extent to which the existing memory should be
erased while the input gate i(t) is used to decide the degree to which the new memory
content is added. The two gates are computed respectively by

f (t) = σ(W f Xt +U f ht−1 +b f) (E.2)

i(t) = σ(WiXt +Uiht−1 +bi) (E.3)

Moreover, the output gate o(t) controls the exposure of the memory content and it is
computed by

o(t) = σ(WoXt +Uoht−1 +bo) (E.4)

As a last step, the output of the LSTM unit (Yt(= ht)) at time step t is be obtained by

ht = o(t) tanh(ct) (E.5)

E

136 Sketch-based querying of time series data based on LSTM networks

data sketch 1
exp(- h - h)

h0 h10 h20 h0 h1000

LSTMdata LSTMsketch

Similarity∈[0,1]

Parameter sharing network

LSTMdata=LSTMsketch

Lead data Sketch data Time series data

Figure E.4: The structure of our proposed double network: the time series data (green) with
lead data (purple) on the left and the sketch (blue) are encoded by the two parameter-sharing
LSTM networks, which are trained against a distance metric based on the Manhattan distance.

In all of the above, operator ⊗ is the Hadamard product (entry-wise product). Xt ∈
Rd, f (t), i(t),o(t),ht ,ct ∈ Rh. The weight matrices W ∈ Rh×d and U ∈ Rh×h and the
bias vector b ∈ Rh are learned during training. The dimensions d and h correspond to
the number of input features and the number of hidden units, respectively.

Instead of overwriting its content at each time step, an LSTM unit is able to de-
cide whether to store or retrieve the existing memory via the introduced gates. The
activations of these gates are based on the sigmoid function and hence range smoothly
from 0 to 1 (not at the least to keep the model differentiable). Intuitively, if the LSTM
unit detects an important feature from an input sequence at an early stage, it carries
this information (the existence of the feature) over multiple steps, capturing potential
long-distance dependencies.

E.4.3 Network design

Figure E.4 provides an overview of our proposed network structure for estimating the
similarity between the user’s sketch and the time series data, composed of two LSTM
networks: LST Mdata and LST Msketch, sharing their parameters.

In each time step, the hidden state (h) has to be carried as an input to the next
time step. For the similarity computation, we only consider the final representation
of both the time series data and the sketch, encoded as hdata and hsketch, respectively.
To compute the similarity between these two vectors, we use a metric based on the
Manhattan distance, which can be defined as exp(−‖hdata−hsketch‖1) ∈ [0,1]. The
reason to choose an L1 norm for the similarity computation is that an L2 norm can lead
to undesirable plateaus in the overall objective function due to vanishing gradients of
the Euclidean distance [12]. During the training, the network learns how the predicted
similarity between hdata and hsketch deviates from the user-annotated ground truth.

In order to compute the similarities along the time series data, we mimic a sliding

E

E.4 Technique in detail 137

window by making use of the special feature of the LSTM network that in each time
step it can choose to forget a part of the information extracted from the previous time
steps. In the training, which we explain in more detail further below, the network is
trained to force the output of each time step to represent the information only for a spe-
cific number (L) of previous time steps. Figure E.4 shows a typical example, where the
sketch data is sampled as 21 “blue” points, determining the size of the sliding window
(L = 21). Therefore, after a proper training, hdata only contains the information of the
21 “green” points and the influence of the previous 10 “purple” points are forgotten. As
the output of each time step can be trained to contain the information of a certain pre-
vious time steps, our method only needs to iterate the data once and then interpret the
output of each time step for the matching computation, which is much more efficient
than the traditional sliding window, which needs to access a data point several times
while moving.

E.4.4 Training the network

We define the training data as ([Li,Ri] ∈ Tin,yi ∈ Tout)
N
i=1 as pairs of input and expected

output (N is the number of training samples). Li contains the time series data and its
synthesized left lead data while Ri is the corresponding user sketch. The reference
output yi is the human annotated similarity between Li and Ri, which the model is
trained against. We optimize the parameters of the network based on the training data
using the mean-squared error as a loss function.

During training, no hyper-parameter explicitly “tells” the network to learn the infor-
mation from a certain length of previous time steps in each time step. The mechanism
for the LSTM to forget earlier data is when the network finds that the information car-
ried by certain previous time steps is important, while the information before that is
not. To teach the network to “understand” this, we add some synthesized data of half
the length of the query to the left of the time series data (for example the purple points
in Figure E.4). The synthesized data is chosen from other parts of the same data, where
the clip of the time series data is extracted from and then smoothly connected to the
left of the time series data. For one pair of time series data and a sketch, we add 10 dif-
ferent synthesized lead data to the left of the time series data, which has been tested to
make sure that the network can recognize the real data and force itself to forget the in-
fluence of the synthesized data. In this way, the network is trained to only remember
a specific length of earlier data in each time step. Based on this, we can compute the
similarity rank along the time series data while reading the time series only once.

High accuracy cannot be achieved without providing enough training data. It is
labor-intensive and time-consuming to invite a large number of users to provide a large
amount of user data. Instead, we follow a common strategy and synthesize additional
training data from the already acquired training set by modeling the natural variation
of user sketches. In the following, we describe how we synthesize the left lead data of
the time series data and the variation of user sketches in detail.

E.4.5 Training data augmentation

In addition to the training data that we acquired by a user study, we employ two strate-
gies to augment the training data: First, we synthesize lead data ahead of the actual

E

138 Sketch-based querying of time series data based on LSTM networks

Figure E.5: Lead data synthesis. Left: time series data (orange) with actual lead data (red),
and the user’s sketch (purple). New lead data (black) is randomly chosen. Middle: the new
lead data is smoothly attached (green) to the time series data (orange) by interpolation. Right:
ten instances of synthesized lead data.

time series training data in order to teach the network the actual query length. Second,
we generate variants of the sketch, based on a second user study that informed us about
the natural variation of the user’s sketching interaction.

Lead data synthesis

To preserve the character of the time series data, we initialize the newly synthesized
lead data with randomly chosen snippets from the original time series data connected
them to the left of the time series training data. Figure E.5 shows the whole procedure
of lead data synthesis: The user’s sketch is shown in purple and the corresponding time
series data clip in orange with its actual lead data in red (denoted as r(t)). New lead
data (black, denoted as b(t)) is chosen randomly from the time series data, forming the
basis of the newly synthesized lead data.

To start, we randomly choose another part of the original time series data (with the
targeted length). We do so to maintain the overall character of the time series data when
synthesizing new lead data. Obviously, this usually leads to a non-smooth connection
with the actual time series data (illustrated on the left in Figure E.5).

To achieve a natural, smooth concatenation, we designed a simple, fifth-order poly-
nomial weighting function w(t) to merge r(t) and b(t) by convex combination. We
set up w(t) to fulfill six constraints: w(0) = 0, w(1) = 1, w′(0) = w′(1) = 0, and
w′′(0) = w′′(1) = 0, leading to

w(t) = 6 t5−15 t4 +10 t3 . (E.6)

Given that we wish to adapt the last n+1 values of the randomly chosen new lead data
b(t) (of length m) to smoothly connect to the following time series data, we compute

bnew[i] = (1−w(t))b[i]+w(t)r[i] (E.7)

for t = i−(m−n)
n and i ∈ [m−n,m], keeping bnew[i] = b[i] for i < m−n. Adapted bnew[i]

then smoothly connects to the following time series data in i = m.
In our experiment, the randomly chosen part is sampled into m = 20 points and the

last n = 8 points are merged with the real lead data. In the middle of Figure E.5, r is

E

E.4 Technique in detail 139

Bg

A

B

θ

X

Y
dx

dy

Figure E.6: Sketch synthesis. Left: illustration of the modeling base between two consecutive
points A and B in the sketch and the corresponding goal point Bg. Right: 9 modeled interactions
(colored in green) according to the specific querying target (orange curve) and the original user
sketch (purple curve).

shown in red, b in black, and bnew in green. On the right of the Figure E.5, 10 different
pieces of lead data are generated for one pair of sketch and time series data, all smoothly
connected to the time series data (orange). This approach leads to a good variation of
synthesized lead data, mimicking plausible cases for all time series data that we worked
with. Synthesizing ten instances of substantially varying lead data allows the LSTM
to learn that only the actual time series data (orange) is to be taken into account when
matching with the sketch.

Sketch synthesis

Clearly, there is a certain amount of natural variation in the users’ sketching interaction
(even if intended, they would not repeat the same sketch twice – at least not exactly).
In order to achieve a stable training result and to reduce overfitting as much as possible,
we synthesize additional sketches based on the natural variation of human sketches. To
collect information about natural sketch variation, we organized a user study in which
we asked the users to repeat the same sketch several times for a specific matching goal.
The details of this user study are presented in section E.5.2.

Figure E.6 is an illustration of how we consider the variation of sketches based
on the user study, also showing nine sample synthesis results according to the fitted
model. As the user sketch is recorded as discrete points, the variation is modeled point-
wise and consists of two parts that are meaningfully modeled separately: the horizontal
displacement dx and the vertical displacement dy. A and B are two consecutive points
of the user sketch, while Bg is the corresponding goal point which is located in the time
series data (the point which the user aimed for). The distance dy is the vertical point-
wise displacement between the user sketch and the goal. θ is the angle between ABg
and AB.

By examining the user study data, we found that θ is strongly correlated with dy,
meaning that larger angles lead also to larger vertical displacements. Based on this ob-

E

140 Sketch-based querying of time series data based on LSTM networks

servation, we use a cubic polynomial model m1(θ) to fit the relation between θ and dy.
As m1 represents the central tendency, we can compute the absolute difference between
m1(θ) and dy to model deviation information. Also here, we use a cubic polynomial
to fit the relation between this difference and θ as m2(θ). Eventually, we can sample
dy from a normal distribution N(m1(θ),m2(θ)) with m1(θ) as the mean and m2(θ) as
the standard deviation. Additionally, we compute the horizontal difference dx between
two consecutive points for distribution fitting from the user study data. We found that
the average of dx is around 1.5 pixels, which is too small and detailed to observe any
variation. Thus, we consider a larger interval by taking every 10 points into account in-
stead of every point, which we think is more reasonable for distribution fitting. Based
on the statistical data we gathered, we used the statistical tool EasyFit [91] to analyze
which distribution fits our variation data best. As a result, the variance of dx (denoted
as var(dx)) follows a logarithmic distribution f (x) = −αx

x ln(1−α) with α = 0.8525.
For synthesizing a new sketch, given a user sketch I and the querying target G,

we compute a new user interaction I′ based on random samples from the fitted PDFs.
We start from the first point in I, denoted by I1. We then have I′1 = I1 and θ1 as the
angle between I1I2 and I1I′2. Based on this, we can synthesize the next point I′2 with
I′2x = I′1x+dx1 and for I′2y we have I′2y = G2y−dy1 when G2y > I2y while I′2y = G2y+dy1

when G2y < I2y. For sampling, dxi is sampled from the logarithmic distribution f (x)
and dyi is sampled from the normal distribution N((m1(θ1),m2(θ1))) respectively. All
subsequent points of the new sketch I′ are estimated in the same way.

On the right of Figure E.6, nine user interactions (purple) from the second user study
are shown that we used for studying the variation of sketches and the correspondingly
modelled synthetic variations are shown in green, confirming that our model is able to
generate meaningful and realistically looking sketching variations.

E.4.6 Training details

The original training data collected from the first user study consists of 2200 pairs of
sketches and time series data with similarity ratings by the users. We extended this data
by synthesizing ten pieces of lead data for each time series data and adding four mod-
eled sketches for each actually recorded sketch, resulting in 110 000 pairs of ([Li,Ri],yi)
as the training data. As the queries were supposed to match independently of their hor-
izontal and vertical position, we preprocessed the input data ([Li,Ri]) by removing the
x-coordinate and replacing the y-coordinate by its first derivative. For our research, we
implemented the network and executed the training in Keras with Tensorflow as the
backend, providing powerful GPU acceleration and convenient coding flexibility. For
training and testing, we used a PC with an Intel Xeon E5-1650 CPU and an NVIDIA
GeForce GTX 1080 GPU. There are two main hyper-parameters of the network to be
set: time step (i.e., sliding window length) and cell size (i.e., output dimension). As
the sketching panel in our experiment is 200×200 pixels, we experimented with dif-
ferent values of the sampling frequency and found that 40 (sampling interval up to 5
pixels) is sufficient to represent the details of a sketch. Therefore, we set the time steps
of the LST Mdata to 60 and the one of LST Msketch to 40, which means that the length
of the sliding window that we mimic is 40 (L=40). The hidden feature of the LSTM
cell was set to be of size 20. Besides, a dropout function with a drop rate of 0.2 (com-

E

E.5 User studies 141

Candidates computation

(20 candidates per sketch)

 Similarity rating

(Likert scale)

Step 1 Step 2 Step 3

Step 4

Looking at a goal to be selected

(10 times per user)

Sketching

(5 times per user)

Sketching it
 Similarity rating

(5-level Likert scale)

Figure E.7: Pipeline of the first user study. After sketching a pattern, we offer 20 candidates
(computed by ED) per sketch and ask the user to rate similarity between them. Then, in order
to enforce some high similarity data, we offer 10 target time series clips and ask the user to do
the sketching aiming for them. In total, we can get 110 pairs of user sketches and time series
data per user with corresponding similarity ratings.

mon value) was used to limit overfitting. We optimized the parameters (1760 in total)
of the network based on the training data using the mean-squared error as a loss func-
tion. The Adam optimizer was used during the optimization and the learning rate was
set to 10−3. In total, we ran 2000 epochs for the training with a full batch.

E.5 User studies

Since the user plays a key role in visual query systems and to meet the user’s expecta-
tion as close as possible regarding the matching, we conducted a user study to investi-
gate how users sketch patterns and how they rate the similarities between their sketches
and corresponding time series data. We then used this information to train our double
network. Further, we also conducted a follow-up user study to explore how the user
uses our sketching query in practice and analyzed the natural variation of their sketch-
ing interactions in order to prepare for the synthesis of additional data for a more stable
training. Eventually, to evaluate our model, we also organized a third user study, in
which we asked the users to rate the results from our model in comparison to the Qetch
algorithm as well as to the DTW algorithm. Below, we provide more details about the
three user studies.

E

142 Sketch-based querying of time series data based on LSTM networks

E.5.1 User study for base training data

For the first user study, 10 different time series data with length ranges from 91 to 4774
were prepared as a basis. All of these data were carefully chosen in advance from
datasets in finance, industry, medicine, and the labor market, with a healthy spread
of characteristics (covering important and common patterns: head-and-shoulder, sharp
rises/dips, upward or downward slopes, peaks and troughs, etc.). For each dataset, 5
new variants were produced based on 5 different scales and these 50 new time series
data were used for the user study. The procedure of the first user study consists of four
steps, illustrated in Figure E.7:

1. First, an empty canvas (900×400 pixels) was shown to the user and at the same
time the user was asked to think about a pattern he/she wanted to look up from an
instance of time series data. Then the user used the mouse to sketch this pattern on
the sketch panel (200×200 pixels, located in the middle of the canvas). The reason for
choosing a mouse as the input device was that we wanted as general as possible results
and pen-based input is not generally available to many users.

2. Based on the user’s sketch, we computed similarities by using a simple ED
matching rule and a sliding window with step length of 20 pixels, over all the 50 vari-
ants of the prepared time series data, yielding a ranked list of matches. We then chose
20 candidates evenly from the matching results based on their similarity rank. The 20
candidates were distributed evenly around 0%, 25%, 50%, 75%, and 100%, where 0%
means the most dissimilar and 100% amounting to the best match. The purpose of this
procedure was to achieve training data within a healthy range of similarities so that the
network could learn the similarity function properly.

3. In the next step, the user was asked to rate the similarities between their sketch
and the 20 candidates we offered, one by one. The similarity rating was acquired on
the Likert scale [64], which is commonly used to collect respondents’ attitudes and
opinions. We asked the users to choose their rating from five options: no match (s = 0),
bad match (s = 0.25), half good / half bad match (s = 0.5), good match (s = 0.75),
and excellent match (s = 1). All users were clearly informed about the correspondence
between the similarities and the five rating options in the tutorial section of the user
study. For the whole study, each user had to do five sketches and for each sketch he/she
rated the similarity against 20 candidates based on their visual perception. In total, 100
pairs of time series data and sketch with rated similarities were recorded per user.

4. In the second step, we used simple ED to do an initial selection of candidates for
rating, aiming at training data with balanced similarities. The actual situation, however,
turned out to be so that only for very few candidates our users were satisfied enough to
rate them as good match or even as excellent match. Therefore, in the fourth stage of
this study, instead of asking the users to sketch a pattern in their mind, we showed them
10 additional candidates in sequence, asking them to sketch while aiming at the shown
curve. Then, we asked them to rate how satisfied they were with their own drawing,
again using the Likert scale. This way, we got some additional pairs of data with highly
rated similarity, making sure that our training data covers a health range in terms of
similarity.

In the first user study, 20 users were invited to participate, all students or employees
from the University of Bergen, and in total 2200 pairs of data with perceived simi-
larities were collected for training (the details of the collected pairs are shown in the

E

E.5 User studies 143

supplementary material). Before the user study, every user was given a training session
to get familiar with the interface and the mouse operations for sketching. In addition,
we showed them 10 typical patterns in time series data such as rounded-bottom, head-
and-shoulders, sharp rise and down, falling peaks, and so on. This procedure is to help
those users, who were unfamiliar with time series data, to do the sketching meaning-
fully. During the training session, we answered any questions they had about the tool
until they were ready for the study.

E.5.2 Studying the variation of sketches

Naturally, for the same matching goal, the sketch done by the user will be a bit differ-
ent every time. In order to understand the natural variation of the user’s sketches, when
having the same matching goal and sketch operation in mind, and to model this varia-
tion for synthesizing additional data for the training, we did this follow-up user study
based on the first user study. In the second study, 10 individuals, all students or employ-
ees from the University of Bergen, participated. We chose 100 representative clips of
the time series data from the first user study. These 100 clips have an even distribution
in terms of shapes and frequency, which forms a healthy base to investigate the varia-
tion of human sketches. For each user, 10 different time series clips were displayed as
the matching goal for sketching. The second user study then consisted of two parts:

In the first part, the users were asked to look at a clip of the time series data that we
provided. Then, the users were required to draw a sketch with the goal to match the
shown clip. The users were asked to repeat this interaction 12 times in each case. The
traces of all sketches were recorded during the study. Altogether, 1200 sketches were
collected and used for modeling the variation among sketches.

E.5.3 Evaluation user study

In order to evaluate our new model, learned by the double network, we conducted
a third user study, asking users to tell whether the computed matching results were
considered good, or not. As a baseline for comparison, we chose two state-of-the-art
techniques, i.e., DTW and the recently published Qetch algorithm [71]. The well-
established DTW metric was chosen as one of the best options for distance measures
in time series data [16], while the authors of Qetch claimed its strength over DTW for
freehand sketch and matching for high-level task (in terms of time spent). In this user
study, the users were asked to rate the matching results computed by Qetch, DTW, and
our new method, leading to a quantitative, comparative evaluation reflecting the user’s
perspective.

For this evaluation study, 10 users were invited. For each user, 8 new time series
data (with lengths ranging from 40 to 1440, none of them used for training before) were
provided in sequence to test the generality of the proposed model. The procedure of
this user study consisted of two steps:

1. To start, a dataset with a useful default smoothing level (see above) was presented
to the user. For each dataset, the user could interact with the interface and specify the
targeted scale of the visualization by zooming with the mouse. In addition, users could
also adjust the smoothing level by using a slider.

E

144 Sketch-based querying of time series data based on LSTM networks

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Series1

Time step

Time step=20

IQ
R

35%
42%

72%

54%

23%
25%

58%

26%

47%
37%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

30

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10

win lose same imp

17%

2% 5%

25%

-5%

4% 7% 7% 3% 1%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

30

user 1 user 2 user 3 user 4 user 5 user 6 user 7 user 8 user 9 user 10

win lose same imp

A B

C

Figure E.8: A: comparison between our method and the Qetch algorithm. B: comparison
between our method and DTW. Green bars show how often our technique was preferred (red:
how often Qetch/DTW was preferred; blue: tied) and the purple line indicates per user the
improvement as achieved by our method (positive: average improvement due to our method).
C: IQR values showing output variation between different time series from the 1st time step to
the 60th, indicating the change of variation over time.

E

E.6 Evaluation results 145

2. Then, the user was asked to sketch a pattern he/she wanted to look up from
the time series data on the sketching panel. Based on the user’ sketch, we computed
the three best matching results from our new model, the Qetch algorithm, and using
DTW, respectively. Then, we showed these three results (in random order and without
telling which is which) to the user and asked them to rate the similarity between their
sketch and these three results separately. As Qetch and DTW are highly competitive
matching algorithms, capturing the difference between good and very good results re-
quires more detail, so we offered a once refined nine-points range (also from 0 to 1,
s = 0,0.125,0.25,0.375...1.0) for rating instead of the courser five-points Likert scale,
delivering the required details for a proper comparison.

During this study, we recorded the similarity rating from each user for a subsequent
quantitative analysis (see below). For each data, the user sketched four times and did
four sets (our method, Qetch, and DTW) rating. Accordingly, we collected altogether
320 sets of rating results from 10 users. In addition, the time cost of computation were
recorded for comparing efficiency, also. Before the user study started, every users was
offered a training session to get familiar with the interface and the interaction of the
user study.

E.6 Evaluation results

For evaluating our matching model, we did a quantitative comparison with Qetch and
DTW – shown in Figure E.8A and Figure E.8B respectively. The results (32 pairs from
each user in the third study) are shown as bars (how often one technique was preferred)
and as a line graph (average improvement). Green bars show (per user) the number
of times that our method was rated with a higher similarity than Qetch (A) or DTW
(B), while red bars represents the contrary (blue bars a tied rating). Further, we also
compute the average improvement (denoted as imp) of our method as compared with
Qetch/DTW in terms of the similarity value: imp =

sour−sqetch
sqetch

or sour−sdtw
sdtw

(sour, sqetch,
and sdtw denote the average similarity rating of our method, the Qetch algorithm, and
DTW, respectively) and show it (also per user) as line graph in purple.

By looking at the bar graph in Figure E.8A, we clearly see that all users preferred
our matching over the Qetch algorithm and that our method was preferred about 2.5 so
often as the other way around (193:77). The line graph shows that all average improve-
ments are positive, providing a clear evidence that our method is closer to the user’s
perception in terms of similarity. More specifically, the average improvement is ≈42%
as s̄our=0.64 and s̄qetch = 0.45, where s̄our and s̄qetch are the average similarity values
of our method as compared to the Qetch algorithm. Based on this evaluation, we are
confident to conclude that in general our method performs significantly better than the
Qetch algorithm, when the matching results are directly judged by the users.

By looking at the chart in Figure E.8B, 7 out of 10 users preferred our technique over
DTW according to the bar graph, while the average improvements are positive (in our
favor) for 9 out of 10 users, when looking at the line graph. The overall ratio of users
preferring our method over DTM is around 1.2 (115:93) and the average improvement
for each user is ≈7% with s̄dtw = 0.6 (s̄dtw is the average similarity of DTW rated by
all the users). Overall, and even though the improvement numbers are clearly smaller
than in the comparison with Qetch, this suggests that our method is slightly better than

E

146 Sketch-based querying of time series data based on LSTM networks

DTW in terms of accuracy (at least not worse) when evaluated directly from the user’s
perception. The details of all user ratings are in the supplementary material.

Furthermore, and since a swift user–computer dialogue in visual query systems is
highly dependent on the efficiency of the involved interactions, we also compared the
computation cost of the three methods. According to the user study, the average com-
putation costs of our method, Qetch, and DTW, are 33ms, 132ms and 3.6s, respectively.
Based on this data, we see clearly that our method is the most efficient one due to its
linear complexity, while DTW is the slowest and unable to achieve a real-time interac-
tion.

Besides the quantitative evaluation in terms of accuracy and efficiency, we also
examined the output of each step of the LSTM network to check whether the network
learns meaningful information. The reason for doing this was that the network was
implicitly taught to only remember the information of a specific length of previous time
steps (we set this to 40 in our experiment) with a goal to mimic a sliding window for
matching. To investigate whether the network has successfully achieved this important
feature, we collect the output (namely the hidden state h) of each time step of several
time series data with different left lead data and compute the output variations over the
time steps to analyze whether the network is able to discard long term dependencies.
The details are illustrated below.

In our training, the time series data clips were sampled at 40 points with synthesized
lead data “on the left” at 20 points. For looking into the information as learned by the
network, we did an experiment that generated 20 time series snippets with length 60
(denoted as Gi, i ∈ {1, . . . ,20}), where the trailing 40 entries for each time series were
the same, but the first 20 varied according to our synthesis procedure. As a reference,
we have another time series (denoted as re f) that has the same last 40 entries but with
a real lead data that is different from all synthesized lead data Gi. We then iterated the
time series and the reference time series over the 60 time steps by using the already
trained model and obtained a set of outputs with format 20×1×60×20 and 1×60×20.
We then computed the cosine similarity between all outputs of Gi and re f per time step,
leading to a set of 20 cosine similarities. We compute the inter-quartile range (IQR),
i.e., the difference between the 75%- and the 25%-percentile, as a robust indicator of
the variation over the time steps.

After iterating over all the time steps from 1 to 60, we have 60 IQR values which
represent the output variations over the 60 time steps and this information is shown in
Figure E.8C. As we mentioned, from the 1st time step to 20th time step, the network
output corresponds to lead data – since all of the lead data was randomly synthesized
the variation during this period is fluctuating at a relatively high level. After time step
20, however, we see a decline of the IQR values, correlated with the networking reading
actual time series data. Towards the 60th time step, the IQR values approach 0, which
meets our expectation that the output at the last time step almost only represents the
information of the previous 40 time steps. In summary, this statistics gives us a strong
indication that the LSTM network has been successfully trained to understand that only
the information from a certain length of the previous time steps should be taken into
account in each time step.

E

E.7 Limitations and future work 147

E.7 Limitations and future work

Although our new model demonstrated its accuracy and efficiency over two state-of-
the-art methods, there are still three limitations: 1. It cannot be excluded that scenarios
exist that are not covered by the model due to limited training data. This is in gen-
eral a known problem of deep learning approaches – high prediction accuracy requires
tremendous amount of training data which is often not easy to obtain. 2. Deep learning
models lack sufficient interpretability due to their black-box nature, especially when
compared with the carefully crafted empirical models. 3. Using a fixed query size is
not as flexible as the Qetch approach, which matches based on the salient parts in the
time series data.

In the future, we see several opportunities to further extend our work, including:
• Further improving the synthesis of additional training data as this plays a cru-

cial role for the learning process. One possible way may be to use a generative
adversarial network (GAN) – similar to other successful applications in image
generation and synthesis. We hypothesize that a GAN could synthesize more re-
alistic variations of the user’s sketch.

• The design of a matching algorithm, which is tailored for a particular user, using
an appropriate method to learn this user’s particular sketching behavior over time,
would be interesting, as well.

E.8 Conclusion

In this paper, we have demonstrated how deep learning can be used to further improve
a visual query system for exploring time series data in visual analytics. By learning
the relation between the time series clip to be selected and a free-hand user sketch, we
achieve a solution, which is both fast and accurate. To the best of our knowledge, this
is the first study to report the successful application of a matching model, realized by a
pair of parameter-sharing LSTM networks, to improve an important human interaction
scenario in visual analytics. We demonstrate, quantitatively, and in comparison with
the recently published Qetch algorithm as well as the classical distance measure DTW,
that our LSTM-based solution leads to an improvement in terms of the overall similarity
(≈42% to Qetch and≈7% to DTW), rated by users in a user study, while enabling a fast
interaction (≈4 times faster than Qetch and ≈100 times faster than DTW). The code
of our prototype is available via github.com/reddestrabbit/LSTM-based-visual-query-
system.git.

Acknowledgments

We thank all participants of the three user studies for taking their valuable time to sup-
port this research. We also thank the reviewers of an earlier version of this paper for
their valuable input. Parts of this work were done in the context of CEDAS, UiB’s
Center for Data Science. VRVis is funded by BMVIT, BMDW, Styria, SFG and Vi-
enna Business Agency in the scope of COMET - Competence Centers for Excellent
Technologies (854174) which is managed by FFG.

E

E

Bibliography

[1] ALTMAN, N. S. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician 46, 3 (1992), 175–185. B.5.1

[2] BECKER, R. A., AND CLEVELAND, W. S. Brushing scatterplots. Technomet-
rics 29, 2 (1987), 127–142. 1.1, A.1, B.1, C.1, D.1

[3] BEHRISCH, M., KORKMAZ, F., SHAO, L., AND SCHRECK, T. Feedback-
driven interactive exploration of large multidimensional data supported by vi-
sual classifier. In IEEE Conference on Visual Analytics Science and Technology
(VAST) (2014), pp. 43–52. 2.1.1

[4] BENGIO, Y., SIMARD, P., AND FRASCONI, P. Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural Networks 5,
2 (1994), 157–166. 2.1.2, E.1, E.4.2

[5] BERNARD, J., ZEPPELZAUER, M., SEDLMAIR, M., AND AIGNER, W. VIAL:
a unified process for visual interactive labeling. The Visual Computer 34, 9
(2018), 1189–1207. 2.1.3

[6] BEUCHER, S., AND MEYER, F. The morphological approach to segmentation:
the watershed transformation. Optical Engineering 34 (1992), 433–433. 3.1.4

[7] BUONO, P., ARIS, A., PLAISANT, C., KHELLA, A., AND SHNEIDERMAN,
B. Interactive pattern search in time series. In Visualization and Data Analysis
(2005), vol. 5669, pp. 175–187. 2.3.2, E.2.2

[8] CARD, S. K., ROBERTSON, G. G., AND MACKINLAY, J. D. The information
visualizer, an information workspace. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (1991), pp. 181–186. 1.1, A.1, B.1,
C.1

[9] CHANG, H., AND YEUNG, D.-Y. Robust path-based spectral clustering. Pattern
Recognition 41, 1 (2008), 191–203. 4.4

[10] CHEN, Z., ZENG, W., YANG, Z., YU, L., FU, C.-W., AND QU, H. LassoNet:
Deep lasso-selection of 3D point clouds. IEEE Transactions on Visualization
and Computer Graphics 26, 1 (2019), 195–204. 2.3, 2.1.2, E.2.3

[11] CHOLLET, F., ET AL. Keras, 2015. 4.2, B.5.2

E

150 BIBLIOGRAPHY

[12] CHOPRA, S., HADSELL, R., LECUN, Y., ET AL. Learning a similarity metric
discriminatively, with application to face verification. In Conference on Com-
puter Vision and Pattern Recognition (2005), pp. 539–546. E.4.3

[13] CORRELL, M., AND GLEICHER, M. The semantics of sketch: Flexibility in vi-
sual query systems for time series data. In IEEE Conference on Visual Analytics
Science and Technology (VAST) (2016), pp. 131–140. 2.3.2, E.2, E.2.2

[14] DIBIA, V., AND DEMIRALP, Ç. Data2vis: Automatic generation of data visual-
izations using sequence-to-sequence recurrent neural networks. IEEE Computer
Graphics and Applications 39, 5 (2019), 33–46. 2.1.2, E.2.3

[15] DICE, L. R. Measures of the amount of ecologic association between species.
Ecology 26, 3 (1945), 297–302. 4.2, A.6, B.6

[16] DING, H., TRAJCEVSKI, G., SCHEUERMANN, P., WANG, X., AND KEOGH,
E. Querying and mining of time series data: experimental comparison of rep-
resentations and distance measures. Proceedings of the VLDB Endowment 1, 2
(2008), 1542–1552. 2.3.1, 4.5, E.2.1, E.5.3

[17] DOLEISCH, H., GASSER, M., AND HAUSER, H. Interactive feature specifica-
tion for focus+context visualization of complex simulation data. In Proceedings
of the Symposium on Data Visualisation (2003), pp. 239–248. 2.2, A.1, B.1, C.1

[18] DOLEISCH, H., HAUSER, H., AND HAUSER, M. Smooth brushing for fo-
cus+context visualization of simulation data in 3D. Journal of WSCG 1 (2002),
147–154. 2.4

[19] EICHMANN, P., AND ZGRAGGEN, E. Evaluating subjective accuracy in time
series pattern-matching using human-annotated rankings. In Proceedings of the
20th International Conference on Intelligent User Interfaces (2015), pp. 28–37.
2.3.2, E.2.2

[20] ELMQVIST, N., VANDE MOERE, A., JETTER, H.-C., CERNEA, D., REIT-
ERER, H., AND JANKUN-KELLY, T. J. Fluid interaction for information visual-
ization. Information Visualization 10, 4 (2011), 327–340. 1.1, A.1, B.1, C.1

[21] ENDERT, A., RIBARSKY, W., TURKAY, C., WONG, B. W., NABNEY, I.,
BLANCO, I. D., AND ROSSI, F. The state of the art in integrating machine
learning into visual analytics. In Computer Graphics Forum (2017), vol. 36,
pp. 458–486. 2.1.1

[22] FAN, C., AND HAUSER, H. User-study based optimization of fast and accurate
mahalanobis brushing in scatterplots. In Proceedings of the Conference on Vi-
sion, Modeling and Visualization (2017), pp. 77–84. 2.2, 4.4, B.1, B.2.1, B.3,
B.4.2, B.6, B.6.1, B.7, C.1, C.2.1, D.1, D.2, D.3, D.3.1, D.4, D.5, D.6, D.1,
D.6.1, D.6.2, E.2

[23] FAN, C., AND HAUSER, H. Fast and accurate cnn-based brushing in scatter-
plots. In Computer Graphics Forum (2018), vol. 37, pp. 111–120. 3.1.3, C.1,
C.2.1, C.3, C.3.1, C.4, C.4.1, C.5.1, C.5.2, C.6, D.1, D.2, D.6, D.2, D.6.3, E.2.3

E

BIBLIOGRAPHY 151

[24] FAN, C., AND HAUSER, H. On KDE-based brushing in scatterplots and how it
compares to CNN-based brushing. In Machine Learning Methods in Visualisa-
tion for Big Data (2019), The Eurographics Association. D.1

[25] FAN, C., AND HAUSER, H. Personalized sketch-based brushing in scatterplots.
IEEE Computer Graphics and Applications 39, 4 (2019), 28–39. D.2, E.2, E.2.3

[26] FLOREK, M., AND HAUSER, H. Quantitative data visualization with interac-
tive kde surfaces. In Proceedings of the 26th Spring Conference on Computer
Graphics (2010), pp. 33–42. 3.1.4, D.3.3

[27] FLOREK, M., AND HAUSER, H. Interactive bivariate mode trees for visual
structure analysis. In Proceedings of the 27th Spring Conference on Computer
Graphics (2011), pp. 95–102. 3.1.4

[28] FUKUSHIMA, K., AND MIYAKE, S. Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition. In Competition
and Cooperation in Neural Nets. Springer, 1982, pp. 267–285. 2.1.2, B.2.2,
C.2.2

[29] GIONIS, A., MANNILA, H., AND TSAPARAS, P. Clustering aggregation. ACM
Transactions on Knowledge Discovery from Data (TKDD) 1, 1 (2007), 4. 4.4

[30] GOLDIN, D. Q., AND KANELLAKIS, P. C. On similarity queries for time-series
data: constraint specification and implementation. In International Conference
on Principles and Practice of Constraint Programming (1995), pp. 137–153.
2.3.1, E.2.1

[31] GOUGH, B. GNU scientific library reference manual. Network Theory Ltd.,
2009. 3.1.1, A.4.1

[32] GREGORY, M., AND SHNEIDERMAN, B. Shape identification in temporal data
sets. In Expanding the Frontiers of Visual Analytics and Visualization. Springer,
2012, pp. 305–321. 2.3.2, E.2.2

[33] HAN, J., TAO, J., AND WANG, C. FlowNet: A deep learning framework for
clustering and selection of streamlines and stream surfaces. IEEE Transactions
on Visualization and Computer Graphics 26, 4 (2020), 1732–1744. 2.1.2, 2.3,
E.2.3

[34] HARRISON, D., AND RUBINFELD, D. L. Hedonic housing prices and the de-
mand for clean air. Journal of Environmental Economics and Management 5, 1
(1978), 81–102. A.5.1

[35] HAUSER, H. Generalizing focus+context visualization. In Scientific Visualiza-
tion: The Visual Extraction of Knowledge from Data. Springer, 2005, pp. 305–
327. 1.1, A.1, B.1, C.1, D.1

[36] HAUSER, H., LEDERMANN, F., AND DOLEISCH, H. Angular brushing of ex-
tended parallel coordinates. In IEEE Symposium on Information Visualization
(2002), pp. 127–130. 2.2, D.2

E

152 BIBLIOGRAPHY

[37] HOCHHEISER, H., AND SHNEIDERMAN, B. Visual queries for finding patterns
in time series data. University of Maryland, Computer Science Dept. Tech Re-
port, CS-TR 4365 (2002). 2.3.2, 2.5, E.2.2

[38] HOCHHEISER, H., AND SHNEIDERMAN, B. Dynamic query tools for time
series data sets: timebox widgets for interactive exploration. Information Visu-
alization 3, 1 (2004), 1–18. 2.3.2, E.2.2

[39] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural
Computation 9, 8 (1997), 1735–1780. 2.1.2, E.4.2

[40] HOFFMAN, D. D., AND SINGH, M. Salience of visual parts. Cognition 63, 1
(1997), 29–78. 2.3.2, E.2.2

[41] HOHMAN, F., KAHNG, M., PIENTA, R., AND CHAU, D. H. Visual analytics in
deep learning: An interrogative survey for the next frontiers. IEEE Transactions
on Visualization and Computer Graphics 25, 8 (2018), 2674–2693. 2.1.2, E.2.3

[42] HOLZ, C., AND FEINER, S. Relaxed selection techniques for querying time-
series graphs. In Proceedings of the 22nd annual ACM Symposium on User
Interface Software and Technology (2009), pp. 213–222. 2.3.2, E.2, E.2.2

[43] HOSSAIN, M. S., OJILI, P. K. R., GRIMM, C., MÜLLER, R., WATSON, L. T.,
AND RAMAKRISHNAN, N. Scatter/gather clustering: Flexibly incorporating
user feedback to steer clustering results. IEEE Transactions on Visualization
and Computer Graphics 18, 12 (2012), 2829–2838. 2.1.1

[44] HU, K., BAKKER, M. A., LI, S., KRASKA, T., AND HIDALGO, C. Vizml: A
machine learning approach to visualization recommendation. In Proceedings of
the Conference on Human Factors in Computing Systems (CHI) (2019), pp. 1–
12. 2.1.2, E.2.3

[45] HUBEL, D. H., AND WIESEL, T. N. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of Physiology 160,
1 (1962), 106–154. 2.1.2, B.2.2, C.2.2

[46] HURTER, C., TELEA, A., AND ERSOY, O. Moleview: An attribute and
structure-based semantic lens for large element-based plots. IEEE Transactions
on Visualization and Computer Graphics 17, 12 (2011), 2600–2609. 2.2, B.2.1

[47] JEONG, D. H., ZIEMKIEWICZ, C., FISHER, B., RIBARSKY, W., AND CHANG,
R. iPCA: An interactive system for PCA-based visual analytics. In Computer
Graphics Forum (2009), vol. 28, pp. 767–774. 2.1.1

[48] JOHANSSON, S., AND JOHANSSON, J. Interactive dimensionality reduction
through user-defined combinations of quality metrics. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 993–1000. 2.1.1

[49] KALCHBRENNER, N., GREFENSTETTE, E., AND BLUNSOM, P. A convolu-
tional neural network for modelling sentences. arXiv preprint arXiv:1404.2188
(2014). B.1

E

BIBLIOGRAPHY 153

[50] KEIM, D., ANDRIENKO, G., FEKETE, J.-D., GÖRG, C., KOHLHAMMER, J.,
AND MELANÇON, G. Visual analytics: Definition, process, and challenges. In
Information visualization. Springer, 2008, pp. 154–175. 2.1, 2.1

[51] KEOGH, E., HOCHHEISER, H., AND SHNEIDERMAN, B. An augmented vi-
sual query mechanism for finding patterns in time series data. In International
Conference on Flexible Query Answering Systems (2002), pp. 240–250. 2.3.2,
E.2.2

[52] KEOGH, E., AND SMYTH, P. A probabilistic approach to fast pattern matching
in time series databases. In Proceedings of the Third International Conference
on Knowledge Discovery and Data Mining (KDD) (1997), pp. 24–30. 2.3.2,
E.2.2

[53] KIM, B., AND GÜNTHER, T. Robust reference frame extraction from unsteady
2d vector fields with convolutional neural networks. In Computer Graphics Fo-
rum (2019), vol. 38, pp. 285–295. 2.1.2, E.2.3

[54] KOHAVI, R., ET AL. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In the 14th International Joint Conference on
Artificial Intelligence (1995), vol. 14, pp. 1137–1145. 4.2, B.6

[55] KONG, N., AND AGRAWALA, M. Perceptual interpretation of ink annotations
on line charts. In Proceedings of the 22nd annual ACM Symposium on User
Interface Software and Technology (2009), pp. 233–236. 2.3.2, E.2.2

[56] KONYHA, Z., MATKOVIĆ, K., GRAČANIN, D., JELOVIĆ, M., AND HAUSER,
H. Interactive visual analysis of families of function graphs. IEEE Transactions
on Visualization and Computer Graphics 12, 6 (2006), 1373–1385. 2.2, A.1, B.1

[57] KOYTEK, P., PERIN, C., VERMEULEN, J., ANDRÉ, E., AND CARPENDALE,
S. MyBrush: Brushing and linking with personal agency. IEEE Transactions on
Visualization and Computer Graphics 24, 1 (2017), 605–615. 2.2, B.2.1, C.2.1,
D.2

[58] KRAUSE, J., PERER, A., AND BERTINI, E. Infuse: interactive feature selec-
tion for predictive modeling of high dimensional data. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (2014), 1614–1623. 2.1.1

[59] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in Neural Informa-
tion Processing Systems (2012), pp. 1097–1105. 2.1.2, B.1, B.2.2, B.5.2, C.2.2,
E.1

[60] LANGLEY, P. Machine learning for adaptive user interfaces. In Annual Confer-
ence on Artificial Intelligence (1997), pp. 53–62. A.2.2

[61] LECUN, Y., BOSER, B. E., DENKER, J. S., HENDERSON, D., HOWARD,
R. E., HUBBARD, W. E., AND JACKEL, L. D. Handwritten digit recognition
with a back-propagation network. In Advances in Neural Information Processing
Systems (1990), pp. 396–404. 2.1.2, B.2.2, B.4.3

E

154 BIBLIOGRAPHY

[62] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based
learning applied to document recognition. Proceedings of the IEEE 86, 11
(1998), 2278–2324. 2.1.2, B.2.2, C.2.2

[63] LIEBERMAN, H., VAN DYKE, N., AND VIVACQUA, A. Let’s browse: a col-
laborative browsing agent. Knowledge-Based Systems 12, 8 (1999), 427–431.
A.2.2

[64] LIKERT, R. A technique for the measurement of attitudes. Archives of psychol-
ogy (1932). E.5.1

[65] LIU, J., WONG, C. K., AND HUI, K. K. An adaptive user interface based on
personalized learning. IEEE Intelligent Systems 18, 2 (2003), 52–57. A.2.2

[66] LIU, M., SHI, J., LI, Z., LI, C., ZHU, J., AND LIU, S. Towards better analysis
of deep convolutional neural networks. IEEE Transactions on Visualization and
Computer Graphics 23, 1 (2016), 91–100. 2.1.2, 2.3

[67] LIU, S., WANG, X., LIU, M., AND ZHU, J. Towards better analysis of machine
learning models: A visual analytics perspective. Visual Informatics 1, 1 (2017),
48–56. E.2.3

[68] LORENSEN, W. E., AND CLINE, H. E. Marching cubes: A high resolution 3D
surface construction algorithm. In ACM SIGGRAPH Computer Graphics (1987),
vol. 21, pp. 163–169. B.4.4

[69] MAHALANOBIS, P. C. On the generalised distance in statistics. In Proceedings
National Institute of Science, India (1936), vol. 2, pp. 49–55. 3.1.1, A.4, D.3.1

[70] MALIK, A., MACIEJEWSKI, R., ELMQVIST, N., JANG, Y., EBERT, D. S., AND
HUANG, W. A correlative analysis process in a visual analytics environment.
In 2012 IEEE Conference on Visual Analytics Science and Technology (VAST)
(2012), pp. 33–42. 2.1.1

[71] MANNINO, M., AND ABOUZIED, A. Expressive time series querying with
hand-drawn scale-free sketches. In Proceedings of the Conference on Human
Factors in Computing Systems (CHI) (2018), pp. 1–13. 1.1, 2.3.2, 4.5, E.1, E.2,
E.2.2, E.5.3

[72] MARTIN, A. R., AND WARD, M. O. High dimensional brushing for interactive
exploration of multivariate data. In Proceedings of the 6th Conference on Visual-
ization (1995), IEEE Computer Society, pp. 271–278. 2.2, 2.2, A.1, A.2.1, B.1,
B.2.1, C.1, C.2.1, D.2

[73] MATKOVIC, K., GRACANIN, D., JELOVIC, M., AND HAUSER, H. Interactive
visual steering-rapid visual prototyping of a common rail injection system. IEEE
Transactions on Visualization and Computer Graphics 14, 6 (2008), 1699–1706.
2.1.1

[74] MUELLER, J., AND THYAGARAJAN, A. Siamese recurrent architectures for
learning sentence similarity. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence (2016), p. 2786–2792. 3.2, E.1, E.3

E

BIBLIOGRAPHY 155

[75] MÜHLBACHER, T., AND PIRINGER, H. A partition-based framework for build-
ing and validating regression models. IEEE Transactions on Visualization and
Computer Graphics 19, 12 (2013), 1962–1971. 2.2, 2.1.1

[76] MUIGG, P., KEHRER, J., OELTZE, S., PIRINGER, H., DOLEISCH, H., PREIM,
B., AND HAUSER, H. A four-level focus+context approach to interactive visual
analysis of temporal features in large scientific data. Computer Graphics Forum
27, 3 (2008), 775–782. 2.2, 2.2, 3.1.2, A.1, A.2.1, B.1, B.2.1, B.3, C.1, D.2

[77] MUNZNER, T. Visualization Analysis & Design. CRC Press, 2014. 3.1, A.1,
B.1

[78] MUTHUMANICKAM, P. K., VROTSOU, K., COOPER, M., AND JOHANSSON, J.
Shape grammar extraction for efficient query-by-sketch pattern matching in long
time series. In IEEE Conference on Visual Analytics Science and Technology
(VAST) (2016), pp. 121–130. 2.3.2, E.2, E.2.2

[79] NOVOTNÝ, M., AND HAUSER, H. Outlier-preserving focus+ context visualiza-
tion in parallel coordinates. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (2006), 893–900. 3.1.4

[80] NOVOTNỲ, M., AND HAUSER, H. Similarity brushing for exploring multidi-
mensional relations. In Journal of WSCG (2006), vol. 14, pp. 105–112. 2.2,
A.2.1, B.2.1, C.2.1, E.2

[81] PAN, S. J., AND YANG, Q. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering 22, 10 (2010), 1345–1359. 2.1.3, C.2.2

[82] PARZEN, E. On estimation of a probability density function and mode. The
annals of mathematical statistics 33, 3 (1962), 1065–1076. 3.1.4, 3.1.4, A.8,
D.1, D.3.2

[83] POWERS, D. M. Evaluation: From precision, recall and f-measure to roc, in-
formedness, markedness correlation. J. Mach. Learn. Technol 2 (01 2011),
2229–3981. 4.4, D.6.1

[84] RADOŠ, S., SPLECHTNA, R., MATKOVIĆ, K., ÐURAS, M., GRÖLLER, E.,
AND HAUSER, H. Towards quantitative visual analytics with structured brushing
and linked statistics. In Computer Graphics Forum (2016), vol. 35, pp. 251–260.
2.2, 2.2, 3.1.1, 3.1.1, 3.1.1, 3.1.2, 4.1, 4.1, A.1, A.2.1, A.4, A.7, A.8, B.1, B.2.1,
B.3, C.1, C.2.1, D.1, D.2

[85] RASMUSSEN, M., AND KARYPIS, G. gCLUTO: An interactive clustering, vi-
sualization, and analysis system. UMN-CS TR-04 21, 7 (2004). 2.1.1

[86] REN, S., HE, K., GIRSHICK, R., AND SUN, J. Faster R-CNN: Towards real-
time object detection with region proposal networks. In Advances in Neural
Information Processing Systems (2015), pp. 91–99. B.1, E.1

E

156 BIBLIOGRAPHY

[87] ROBERTS, J. C. State of the art: Coordinated & multiple views in exploratory
visualization. In Fifth International Conference on Coordinated and Multiple
Views in Exploratory Visualization (2007), pp. 61–71. 3.1, A.1, B.1, C.1, D.1,
D.2

[88] ROSENBLATT, M., ET AL. Remarks on some nonparametric estimates of a
density function. The Annals of Mathematical Statistics 27, 3 (1956), 832–837.
3.1.4, A.8

[89] RYALL, K., LESH, N., LANNING, T., LEIGH, D., MIYASHITA, H., AND
MAKINO, S. Querylines: approximate query for visual browsing. In Extended
Abstracts on Human Factors in Computing Systems (CHI) (2005), pp. 1765–
1768. 2.5, 2.3.2, E.2.2

[90] SAKOE, H., AND CHIBA, S. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing 26, 1 (1978), 43–49. E.1, E.2.1

[91] SCHITTKOWSKI, K. Easy-fit: a software system for data fitting in dynamical
systems. Structural and Multidisciplinary Optimization 23, 2 (2002), 153–169.
B.8, E.4.5

[92] SETTLES, B. Active learning literature survey. Tech. rep., University of
Wisconsin-Madison Department of Computer Sciences, 2009. C.2.2

[93] SHARIF RAZAVIAN, A., AZIZPOUR, H., SULLIVAN, J., AND CARLSSON, S.
CNN features off-the-shelf: an astounding baseline for recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
workshops (2014), pp. 806–813. 2.1.3

[94] SHEN, Y., HE, X., GAO, J., DENG, L., AND MESNIL, G. Learning semantic
representations using convolutional neural networks for web search. In Proceed-
ings of the 23rd International Conference on World Wide Web (2014), pp. 373–
374. B.1, E.1

[95] SHYE, A., SCHOLBROCK, B., AND MEMIK, G. Into the wild: studying real
user activity patterns to guide power optimizations for mobile architectures. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (2009), pp. 168–178. A.2.2

[96] TONG, Y. L. The multivariate normal distribution. Springer Science & Business
Media, 2012. 3.1.4

[97] TUKEY, J. W., AND TUKEY, P. A. Computer graphics and exploratory data
analysis: An introduction. The Collected Works of John W. Tukey: Graphics:
1965-1985 5 (1988), 419. A.5.1, C.3.1, D.4

[98] TURKAY, C., KAYA, E., BALCISOY, S., AND HAUSER, H. Designing pro-
gressive and interactive analytics processes for high-dimensional data analysis.
IEEE Transactions on Visualization and Computer Graphics 23, 1 (2017), 131–
140. 1.1, A.1, B.1

E

BIBLIOGRAPHY 157

[99] TURKAY, C., PARULEK, J., REUTER, N., AND HAUSER, H. Integrating cluster
formation and cluster evaluation in interactive visual analysis. In Proceedings of
the 27th Spring Conference on Computer Graphics (2011), pp. 77–86. 2.2, 2.1.1

[100] VAN DEN ELZEN, S., AND VAN WIJK, J. J. Baobabview: Interactive con-
struction and analysis of decision trees. In IEEE Conference on Visual Analytics
Science and Technology (VAST) (2011), pp. 151–160. 2.2, 2.1.1

[101] VEENMAN, C. J., REINDERS, M. J. T., AND BACKER, E. A maximum vari-
ance cluster algorithm. IEEE Transactions on Pattern Analysis and Machine
Intelligence 24, 9 (2002), 1273–1280. 4.4

[102] WAND, M., AND JONES, M. Kernel smoothing, 1995. 3.1.4

[103] WANG, Y., JIN, Z., WANG, Q., CUI, W., MA, T., AND QU, H. Deepdrawing:
A deep learning approach to graph drawing. IEEE Transactions on Visualization
and Computer Graphics 26, 1 (2019), 676–686. 2.1.2

[104] WATTENBERG, M. Sketching a graph to query a time-series database. In
Extended Abstracts on Human factors in Computing Systems (CHI) (2001),
pp. 381–382. 2.3.2, E.2, E.2.2

[105] WILKINSON, L., ANAND, A., AND GROSSMAN, R. Graph-theoretic scagnos-
tics. In IEEE Symposium on Information Visualization (2005), IEEE, pp. 157–
164. A.5.1

[106] WILLIAMS, M., AND MUNZNER, T. Steerable, progressive multidimensional
scaling. In IEEE Symposium on Information Visualization (2004), pp. 57–64.
2.1.1, 2.2

[107] YANG, M.-H., AND AHUJA, N. Face detection and gesture recognition for
human-computer interaction, vol. 1. Springer Science & Business Media, 2001.
2.2, A.2.1, B.2.1, D.2

[108] ZAHN, C. T. Graph-theoretical methods for detecting and describing gestalt
clusters. IEEE Transactions on Computers 100, 1 (1971), 68–86. 4.4

[109] ZEILER, M. D., AND FERGUS, R. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision (2014), pp. 818–833.
2.1.2, B.2.2, B.4.3, E.2.3

Graphic design: Com
m

unication Division, UiB / Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230846124 (print)
9788230856437 (PDF)

	101661 Chaoran Fan_Elektronisk
	101661 Chaoran Fan_korrekturfil
	101661 Chaoran Fan_innmat
	101661 Chaoran FanElektronsk_bakside
	101661 Chaoran FanElektronsk_bakside

