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Preface

This dissertation is submitted as a partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy (PhD). This study is carried out at the Department of
Mathematics, University of Bergen. Parts of the work in the thesis have been carried
out in collaboration with the Department of Biological science, University of Bergen,
Department of Biological and Environmental Sciences, University of Gothenburg and
Department of Mathematical Sciences, Chalmers University of Technology and the
University of Gothenburg. The work is supported by the Research Council of Norway
through grant 248840, dCod 1.0, as part of the Center of Digital Life Norway.

The subject of the thesis is dynamic Modelling of biochemical reaction networks
and sampling methods for constraint-based models. Paper A and B are mathemat-
ical methodology papers where the candidate is the first author of paper A and the
second author of paper B. Papers C and D are mathematical modelling papers moti-
vated by two biological applications. The candidate is the first author of papers C and D.

Advisory committee:

• Guttorm Alendal (University of Bergen, Department of Mathematics)

• Hans Julius Skaug (University of Bergen, Department of Mathematics)

• Anders Goksøyr (University of Bergen, Department of Biological science)



Outline

This thesis consists of two parts. Part I provides the motivation and the background for
the four papers presented in part II.

Ch. 1 gives an introduction to the biological context and two applications in biology
that inspired the mathematical models in papers C and D. The structure of a general
reaction network is defined in Ch. 2. A detailed description of the constraint-based
modelling of the reaction network is presented in Ch. 3. A summary of paper A is also
given in Ch. 3. This chapter contains both deterministic and stochastic formulations of
the constraint-based model. Ch. 3 also provides a description of the sampling algorithms
associated with each formulation to study the probability distributions of the reaction
rates in the network. The kinetics functions to describe the reaction rates are presented
in Ch. 4. Each kinetics function is derived from a set of ordinary differential equations
for the concentrations in the network. A summary of paper B is also given in Ch. 4.
Using the kinetics functions to construct a dynamic model of the network leads to the
problem of parameter estimation and identifiability of the kinetic parameters. In Ch. 5
we have introduced these concepts and provided a summary of their applications in two
dynamic models of papers C and D. Ch. 5 includes also a description of the local and
global sensitivity analysis of concentrations simulated by a dynamic model to changes
in the parameter values. Finally in part I, an overview of the papers is given in Ch. 6.
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Part I

Background





Chapter 1

Introduction and Biological Motivation

Mathematical modelling of biochemical reaction networks is the main subject of this
thesis. In this chapter, we give an overview of some biological motivation and back-
ground that inspired the mathematical modelling in the thesis.

1.1 Motivation
Mathematical modelling of molecular biology has extended the traditional interaction
diagrams to mechanistic mathematical models, becoming a valuable tool in molecular
cell biology. There are different applications in biology that demonstrate how mathe-
matical modelling has been a valuable tool. Here we present a brief description of two
applications that are the motivation behind the mathematical modelling in the thesis.

1.1.1 The dCod 1.0 project
When starting my PhD, I joined the dCod 1.0 project [2], which ran from 2016 to
2020 and has been funded by the Research council of Norway through the Center
for Digital Life Norway [1]. During the work on the thesis, dCod 1.0 has been the
main scientific community and all co-authors of the papers included in the thesis are
members of this project. The main goal of the project is to create a deeper understanding
of cods’ adaptations and reactions to stressors in the environment by employing the
competencies in environmental toxicology, biology, bioinformatics and mathematics.
Studying the response of the cod liver and modelling fatty acid metabolism [4] has been
of prime interest in the dCod 1.0, where precision cod liver slices have been widely
used in the studies [8; 16; 23; 24; 105].

Yadetie et al. [104] found that the exposure of Atlantic cod (Gadus morhua) to
environmental contaminants, such as PCB153, increases the levels of enzymes involved
in the fatty acid synthesis of the cod liver. The motivation of my PhD project is to study
the influence of changes in the level of enzymes through constructing a mathematical
model of fatty acid synthesis metabolism [3]. In paper D of this thesis, a model for fatty
acid metabolism is presented. It would be of considerable interest if we were able to
validate the suggested model by using experimental data and potentially use it to predict
the behaviour of the fatty acid metabolism in cod liver under various changes in the
level of the enzymes caused by different environmental contaminants.
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1.1.2 The FORMAS project
During my PhD period, I joined the FORMAS project, which has been run by one of
the collaborators of the dCod 1.0 project in Sweden. The purpose of this project is to
develop new mathematical forecast models to obtain synergistic assessment factors that
can be applied in chemical risk assessments and biomonitoring programs.

Fish are typically exposed to mixtures of environmental pollutants in their natural
habitats. Exposure to chemical mixtures can cause different additive or non-additive
mixture effects, such as synergistic mixture effects. Two toxic chemicals that can enter
the fish body are the aromatic hydrocarbon and AhR agonist β-naphtoflavone (BNF) and
the benzimidazole and microtubule disassembling drug nocodazole (NOC). These two
chemicals have a synergistic mixture effect on AhR-CYP1A signalling, which is central
to the chemical detoxification pathway [45]. Using experimental data from a previous
study [37; 61], I have created a model in paper C to study the toxicokinetic interactions
between BNF and NOC on the AhR-CYP1A signalling pathway in fish and/or a fish
cell line.

1.2 Biochemical reaction networks and reconstruction
Knowledge about the chemical reactions that take place inside the cells of a living system
is required to study the above mentioned phenomena. The metabolism of an organism
is known as the set of all chemical reactions that are carried out by the organism.
Metabolism is typically divided into several metabolic pathways in which one chemical
is converted to another chemical through a reaction. These chemicals are known as
metabolites.

The process of identifying the set of all metabolites and reactions in the metabolism
of an organism is known as network reconstruction [68]. A genome of an organism
is the set of all the organisms’ genes from which the set of all the metabolites and
reactions can be obtained. The genome scale reconstructions of an organism is the
process of reconstructing the whole metabolism of the organism. All the available
biochemical, genetic and genomic (BiGG) information is required in a reconstruction of
a metabolic reaction network [67]. In the reconstruction process, the BiGG information
is collected and organised in a mathematical model that could serve as a platform to
answer biological questions.

The first metabolic network reconstructed was for the E.coli bacteria, with the
findings published in 1990 [68]. In 2000, Edwards and Palsson [22] published the first
genome scale reconstruction of E. coli, and this was improved by Orth et al. [64] in
2011. Orth et al. [64] attempted to model the whole metabolism, which includes 1,136
metabolites and 2,251 reactions.

Genome scale reconstruction of human metabolism is of great interest in the field
as metabolism plays a key role in many major human diseases. The first genome scale
reconstruction of the human metabolic network, Recon 1, is published in 2007 by
Duarte et al. [19], which accounts for 2,766 metabolites and 3,741 reactions. In 2013,
Thiele et al. [88] published an improved reconstruction of human metabolism, Recon
2, with a focus on the expansion of metabolic reaction coverage. Recon 2 consists of
5,063 metabolites and 7,440 reactions. Recon 3D, published in 2018, represents the
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most comprehensive human metabolic network model to date, accounting for 10,600
reactions involving 5,835 metabolites [13].

The fatty acid synthesis reaction network from the Kegg database, shown in Fig.
1.1, is an example of a reconstructed metabolic pathway for Zebrafish, which is the
most similar species to cod. In paper D, I have created a dynamic model of a reduced
version of this metabolic reaction network.

Figure 1.1: The fatty acid synthesis metabolic pathway from KEGG [3]. The relevant reactions for
Zebrafish are marked by green.

In the thesis, we assume that the metabolic network is given, and the reconstruction
process of a chemical network is not in focus.

1.2.1 Metabolites and chemical reactions
A reaction network is composed of chemical reactions that occur between metabolites.
The six chemical elements of carbon (C), oxygen (O), nitrogen (N), hydrogen (H),
phosphate (P) and sulfur (S) are the only elements that form metabolites [68, p. 155].
Below we list the chemical formulas for the metabolites considered in the mathematical
model of the fatty acid synthesis metabolic pathway [3] in paper D.

• citrate, C6H5O7
-3

• acetyl-CoA, C23H38N7O17P3S

• malonyl-CoA, C23H38N7O19P3S

• palmitoyl-CoA, C37H66N7O17P3S
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We denote the metabolites by the mathematical notation Xi as their chemical formula
is not the main focus of our mathematical modelling of a chemical reaction network.

There are only three different categories of chemical reactions that occur between
metabolites [68, p. 154]. Assume that C, P and A denote a primary metabolite, a
phosphate group and a co-factor such as ATP, respectively. The three categories of
reactions are thus:

• a reversible conservation
CP 
 PC (1.1)

• a bi-molecular association
C + P 
 CP (1.2)

• a co-factor-coupled reaction

C + AP 
 CP + A. (1.3)

A metabolite is called a reactant or substrate if it is on the left hand side of a reaction,
and it is called a product if it is on the right hand side of the reaction. As an instance,
the third category of reactions in our models is presented as

X1 + X2 
 X3 + X4. (1.4)

where Xi denotes the metabolite i.

1.3 Systems biology
To model and analyse the metabolism of a living organism requires system thinking,
modelling and simulation in biology as a data-rich field [67]. A new field known as
systems biology emerged in the late 20th century. The field has shifted the way modelling
is conducted from the component level to the system level to answer new questions that
only arise in the system level. This shift has occurred due to the ability to generate
genome-wide data sets that include the detailed list of biological components and their
interactions [47], as well as the emergence of computers with high computational
powers.

The data sets in biology are typically large and have usually been processed and anal-
ysed statistically using methods in the bioinformatics field [54]. However, knowledge
from both bioinformatics and mathematics is required to construct a biochemical reac-
tion network and build a mathematical model of the network. Systems biology studies
biological systems in a systematic way by first perturbing the systems and then moni-
toring the system response, integrating this data and finally constructing mathematical
models to describe the structure of the biological system and its response to different
perturbations [47]. COBRA 2.0 [82] and Raven 2.0 [100] are the toolboxes that have
been widely used to help with this analysis. In the thesis, we focus on the mathematical
modelling for metabolic reaction networks and the methods to analyse such models.



Chapter 2

Structure properties of reaction networks

In this chapter, we define the stoichiometric matrix S, which is the mathematical repre-
sentation of the structure of a chemical reaction network. This matrix is the central part
of the mathematical models of chemical reaction networks discussed in the next chap-
ters of this thesis. The main reference for this chapter is the textbook "Systems biology"
by Palsson [68].

2.1 The stoichiometric matrix
Metabolism is essentially a large network of coupled chemical reactions. Assume that
the chemical reaction network is composed of n irreversible reactions in which m
metabolites are involved. Any reaction Rj, j = 1, . . . , n can thus be written as

Rj :
m∑
i=1

s−
ij
Xi →

m∑
i=1

s+
ij
Xi (2.1)

where Xi is the metabolite i. The s−
ij

and s+
ij

are non-negative integers denoting the
substrate and product stoichiometric coefficients, respectively [56].

The stoichiometric matrix S = {Sij} ∈ Rm×n of the chemical reaction network is
formed by the net production of metabolite i in reaction j defined as Sij = s+

ij
− s−

ij
.

The stoichiometric matrix S is denoted as

S =


R1 ... Rn

S11 . . . S1n X1

...
. . .

...
...

Sm1 . . . Smn Xm

 (2.2)

where each column corresponds to a reaction in the network and each row corresponds
to a metabolite involved in different reactions. In the remainder, we drop the labels Xi
and Rj from the matrix S for simplicity.

In Eq. 2.1 we describe a general case where the metabolite Xi can be present in both
sides of the reaction Rj and both stoichiometric coefficients s+

ij
and s−

ij
are, in this case,

non-zero. Note that a reversible reaction is presented as two irreversible reactions in
Eq. 2.1 and that one can instead model it directly as a reversible reaction.
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In a chemical reaction network the metabolite Xi is typically present in one side
of the reaction Rj, and this leads to Sij = s+

ij
or Sij = −s−

ij
. Furthermore, a typical

metabolic pathway is an open reaction network that includes exchange reactions. We
have s+

ij
= 0 or s−

ij
= 0 for all i if the exchange reaction Rj is leaving or entering the

pathway. In a large metabolic network, a few numbers of metabolites are typically
involved in each reaction. Therefore, most of the s+

ij
and s−

ij
are zero and this makes S

a sparse matrix. In a genome scale metabolic network, the most common number of
metabolites participating in a reaction is four [68, p. 165].

The topological properties of a reaction network and its possible dynamical be-
haviours can be determined purely by the matrix S, see e.g. the PhD thesis by Håvard
G. Frøysa [30].

2.1.1 Reaction maps
The standard way of visualising the network in Eq. 2.1 is a directed graph in which the
nodes are the metabolites and the edges between the nodes are the reactions between
the metabolites. The matrix S represents this directed graph which is known as reaction
map [68].

The linear maps are networks in which all reactions have only one input and one
output. For a linear reaction map, the columns of S have only two entries corresponding
to the metabolites that the reaction connects [68, p. 165]. A simple example network
is shown in Fig. 2.1 to illustrate a linear reaction map. The network consists of four
metabolites and seven reactions. It includes a reversible reaction and a split and is open
since it has the entering reaction R1 and two leaving reactions R6 and R7.

Figure 2.1: An example reaction network consisting of a reversible reaction and a split. Each node is a
metabolite and each arrow is a reaction. The reactions are given in Eq. 2.3

.

Assuming for simplicity that all non-zero s+
ij

and s−
ij

are equal to one, the reactions
of the network can be represented on the form Eq. 2.1 as

R1 : GA X1

R2 : X1GA X2

R3 : X2GA X1

R4 : X2GA X3

R5 : X2GA X4

R6 : X3 GA

R7 : X4 GA

(2.3)
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where R1 is an entering reaction, R2, R3, R4 and R5 are the internal reactions and the
reactions R6 and R7 are the leaving reactions. The two reactions R2 and R3 form a
reversible reaction together. The 4 × 7 stoichiometrix matrix of the network is given as

S =


R1 R2 R3 R4 R5 R6 R7

1 −1 1 0 0 0 0 X1

0 1 −1 −1 −1 0 0 X2

0 0 0 1 0 −1 0 X3

0 0 0 0 1 0 −1 X4

 (2.4)

A reaction map of a network is nonlinear if it includes the reactions with more than
one input or output. One can count the number of metabolites involved in a reaction
by adding up the number of non-zero entries in the corresponding column of S [68,
p. 165]. An example network adopted from Rao et al. [76] is given in Fig. 2.2 to
illustrate a nonlinear reaction map. The network consists of four metabolites and five
reactions that interact through complexes, which are defined in the next section.

Figure 2.2: Example of a nonlinear reaction network from Rao et al.[76]. Each node is a complex
consisting of potentially several metabolites and each arrow is a reaction. The reactions are given in
Eq. 2.5.

In this network, we have more than one metabolite on each side of four reactions,
and this leads to a nonlinear reaction map. In addition, all the non-zero s+

ij
and s−

ij

are not necessarily one for this example network. The reactions of the network can be
represented on the form Eq. 2.1 as

R1 : 2X1+ X2 GA X3

R2 : X3 GA 2X1 + X2
R3 : X3 GA X1 + 2X2
R4 : X1+ 2X2 GA X4

R5 : X4 GA X3

(2.5)

where two reactionsR1 andR2 are together a reversible reaction. The network represents
a closed system as there is no reaction entering or leaving the network. The 4 × 5
stoichiometric matrix of the network becomes

S =


R1 R2 R3 R4 R5

−2 2 1 −1 0 X1

−1 1 2 −2 0 X2

1 −1 −1 0 1 X3

0 0 0 1 −1 X4

 . (2.6)
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2.2 Complex factorisation of the stoichiometric matrix
In a typical metabolic reaction network, there is more than one metabolite on either
side of a reaction, as shown in the example network of Fig. 2.2. A complex Ck is any
combination of metabolites that occur on either side of the reactions for a network [76].
In this section, we explain the complex factorisation of the stoichiometric matrix S as
this is the core concept in paper B.

A set of complexes is defined as the union of all the different left- and righthand
sides of the reactions in a network. For instance, the network in Fig. 2.2 has four
complexes shown in the boxes. The complexes corresponding to the network are

C1 : 2X1 + X2, C2 : X3, C3 : X1 + 2X2, C4 : X4 (2.7)

where two complexes C2 and C4 are composed of only one metabolite. The expression
of the complexes in terms of the metabolites is formalised by the complex stoichiometric
matrix Z = {Zik} ∈ Nm×c

0
where m is the number of metabolites and c is the number

of complexes [76]. Each column of Z corresponds to a complex, and each row is
associated with a metabolite presented in different complexes. The entry Zik is the
number of molecules of metabolite Xi presented in one unit of the complex Ck. All
entries of Z are non-negative integers since a complex cannot contain negative numbers
of metabolites. The 4×4 complex stoichiometric matrix corresponding to the complexes
of Eq. 2.7 is

Z =


C1 C2 C3 C4
2 0 1 0 X1

1 0 2 0 X2

0 1 0 0 X3

0 0 0 1 X4

 . (2.8)

The complex stoichiometric matrix Z equals the identity matrix when all complexes are
composed of only one metabolite.

Since the complexes are the left- and righthand sides of the reactions in a reaction
map, they can be considered as nodes that are connected through the reactions in
the network. Such a network is called the complex graph [76]. The reactions in a
complex graph can be rewritten such that the left- and righthand sides of all reactions
are individual complexes. The network in Fig. 2.2 is a complex directed graph and its
associated reactions can be

R1 : C1GA C2
R2 : C2GA C1
R3 : C2GA C3
R4 : C3GA C4
R5 : C4GA C2

(2.9)

where the complexes, Ck, are defined in Eq. 2.7.
A complex graph can be defined by its incidence matrix B = {Bkj} [9]. This is a

c × n matrix where c is the number of complexes and n is the number of reactions in
the network. The Bkj equals -1 if the complex Ck is consumed in reaction Rj and 1 if the
complex Ck is produced in reaction Rj, while otherwise 0. The 4 × 5 incidence matrix
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associated with the example network in Fig. 2.2 is given as

B =


R1 R2 R3 R4 R5

−1 1 0 0 0 C1
1 −1 −1 0 1 C2
0 0 1 −1 0 C3
0 0 0 1 −1 C4

 . (2.10)

Note that in Rao et al. [76] and paper B, only the internal reactions are included in the
incidence matrix B. However, it is also possible to include the exchange reactions in B.

Having the complex stoichiometric matrix Z and the incidence matrix B, the complex
factorisation of the stoichiometric matrix S in Eq. 2.2 is given by

S = ZB. (2.11)

Note that this identity holds only if the potential exchange reactions in S have been
included in B. For the matrix S in Eq. 2.6, it can be simply verified that

S = ZB =


2 0 1 0
1 0 2 0
0 1 0 0
0 0 0 1



−1 1 0 0 0
1 −1 −1 0 1
0 0 1 −1 0
0 0 0 1 −1

 . (2.12)
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Chapter 3

Dynamic modelling of metabolic reaction
networks and Monte Carlo sampling

So far we have defined the stoichiometric matrix S in Eq. 2.2, which can be used to
explore the structural behaviour of a chemical reaction network. In this chapter, we
discuss how it can be used to construct a mathematical dynamic model of a chemical
reaction network. Several modelling techniques are available for metabolic networks.
In this thesis, we discuss two widely used approaches classified as (i) constraint-based
modelling, which involves stoichiometry and (ii) mechanistic modelling, which involves
both stoichiometry and kinetic parameters. Models in the first category are known as
static models while the second category presents the dynamic models [75].

To construct a dynamic model of a metabolic reaction network, we first assume
spatial homogeneity, that is, that the metabolites are equally distributed throughout the
volume. The second assumption is the continuum hypothesis in which we assume that
there are a great many reactant molecules. This assumption allows us to approximate
the discrete changes in molecule numbers by the continuous changes in concentration
x [48, p. 19].

Assume we have a metabolic reaction network as Eq. 2.1, which consists of m
metabolites Xi and n reactions Rj. We define x =

[
x1 . . . xm

] T ∈ Rm≥0 as a vector
consisting of metabolite concentrations. The xi is the concentration of the metabolite
Xi, and it is non-negative as the concentration of a metabolite cannot be negative. Let
the vector v =

[
v1 . . . vm

] T ∈ Rn be the vector of fluxes (reaction rates) such that vj
is the flux associated with the reaction Rj. Note that if the reaction Rj is reversible, its
associated rate vj can acquire a negative value; otherwise, vj must be non-negative.

3.1 Dynamic modelling
Dynamics deals with changes i.e. the evolution in time of a system. The dynamic
quantities are assumed to be the concentration of the metabolites, x, and the fluxes, v.
It is further assumed that the metabolite concentrations, x, changes only by the fluxes,
v, and these changes satisfy the mass balance defined by matrix S. The changes in the
metabolite concentrations are then modelled by a set of ordinary differential equations

dx
dt

= Sv (3.1)



14 Dynamic modelling and Monte Carlo sampling

which is the core equation in the dynamical modelling of metabolic networks [68]. Note
that in Eq. 3.1 the reaction fluxes v have not been restricted and no assumption has been
made for them. In the next chapter, we discuss different kinetic functions v = v(x) that
define the fluxes v as a function of the metabolite concentrations x. Defining the fluxes
as a function of the metabolite concentrations, the Eq. 3.1 can be written as

dx
dt

= f(x) (3.2)

where f(x) is possibly a nonlinear function given by S and v = v(x). In this chapter,
we look at the dynamical model in the form of Eq. 3.1 and discuss some widely used
methods to analyse the fluxes in biochemical networks that are modelled through Eq.
3.1.

3.1.1 Constraint-based modelling (CBM) and flux balance
analysis (FBA)

The constraint-based modelling (CBM) approach aims to describe the potential
behaviour of an organism by enforcing the physio-chemical constraints on the
metabolic network such as mass balance, energy balance, and flux limitations
[21; 22; 29; 50; 74; 93–97]. In this type of modelling the main assumption is that
the organism reaches the steady state under any given environmental condition

Svss = 0 (3.3)

where the system is at rest and the metabolite concentrations remain constant in Eq. 3.1.
The Eq. 3.3 is a set of m algebraic equations with n number of unknown fluxes vss.
In a typical metabolic network the number of metabolites, m, is less than the number
of reactions, n, leading to multiple steady state solutions for the set of equations in Eq.
3.3. To find a single vector of fluxes vss, the feasible solution space of Eq. 3.3 should
be more constrained.

The other assumption in the CBM approach is the capacity constraint on the steady
state fluxes

vlb ≤ vss ≤ vub (3.4)

where vlb and vub are vectors of lower and upper bounds on the reaction fluxes. Note
that the value of vlb must be zero in the case of irreversible reactions. These lower and
upper bounds are experimentally available for a limited number of fluxes, and the rest
are arbitrarily set to large values. The set of constraints in Eq. 3.4 reduces the set of
feasible steady state fluxes vss; however, it is not sufficient in general to avoid multiple
steady state solutions.

Flux variability analysis (FVA) [58] is a widely used computational tool to find the
maximum and minimum attainable values of each flux that still satisfy both the steady
sate constraint in Eq. 3.3 and the capacity constraints in Eq. 3.4. In FVA, for each flux
vj (j = 1, . . . , n) two constrained optimisation problems are constructed as

max
vss

/min
vss

(vj)ss

s.t. Svss = 0
vlb ≤ vss ≤ vub.

(3.5)
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The optimisation problems can be cast as Linear Programming (LP) problems and
solved by the Simplex method [92]. An application of the FVA is to reduce the size of
the solution space by setting the upper and lower bounds in Eq. 3.4 to the minimum
and maximum flux values provided by FVA.

Flux balance analysis (FBA) [65] is a successful CBM method in which an optimality
criterion, typically based on evolutionary arguments, is introduced to identify a unique
set of flux estimations satisfying constraints in Eqs. 3.3 and 3.4. The first papers
leading up to the FBA method were published in the 1980s [28; 69; 70; 101]. In the
recent decade, the FBA has become a popular modelling approach for flux analysis of
metabolic networks, even in the genome scale [50; 65]. A reason could be that the FBA
tries to find a biologically meaningful and feasible vector of the fluxes by using a limited
amount of information about the network and providing valuable information about the
behaviour of the system.

In the FBA, the objective function to be optimised as a function of the fluxes can
take different forms depending on various biological functionalities, e.g. the maximis-
ing growth rate or ATP production of an organism [68]. A common choice of the
objective function is the biomass yield corresponding to maximising cell growth [26]
mathematically described as

n∑
j=1

cj(vj)ss = cTvss (3.6)

where the known coefficient cj determines the contribution of flux vj to the biomass
objective function. With vlb, vub and c specified, the constrained optimisation problem
can be cast as a Linear Programming (LP) problem

max
vss

cTvss

s.t. Svss = 0
vlb ≤ vss ≤ vub

(3.7)

which is a well studied optimisation problem that may be solved by the Simplex method
[92]. If vlb ≤ 0 the solutions are guaranteed to exist, and if vub is finite the solution is
guaranteed to be bounded. In the case of degeneracy, the LP problem in Eq. 3.7 will not
have a unique solution, and alternative optimal solutions (AOS) will be obtained. This
phenomenon happens often when applying FBA on genome scale metabolic networks,
and there are several approaches to addressing this. The most common one is to solve
a secondary optimisation, e.g. to minimise the total flux of the solution [68].

A challenge in FBA is to choose an appropriate objective function to reflect the most
likely physiological state of the organism. The flux solutions obtained from FBA are
also biased to the choice of the objective function [43]. There are alternative approaches
to analysing the fluxes of a metabolic network, see e.g. the textbook by Palsson [67].
One of these is to sample from the flux solution space formed by Eqs. 3.3 and 3.4,
which is explained in the next section.
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3.2 Sampling of constraint-based metabolic models
An approach to analyse the metabolic fluxes is the uniform random sampling of the
fluxes’ solution space. This method provides a statistically meaningful number of
flux solutions that are uniformly distributed over the entire feasible solution space
defined by Eqs. 3.3 and 3.4. This approach also provides an unbiased assessment
of the flux solution space for a metabolic network since it does not enforce any extra
constraints on the model. A Monte Carlo (MC) sampling algorithm is typically used for
sampling purposes. In paper A we have discussed and compared four different sampling
algorithms to sample the flux solution space at genome scale.

3.2.1 Deterministic formulation and Monte Carlo sampling
algorithms

The FBA method provides a single point estimation of the metabolic fluxes. Suppose
that we want to study the probability distribution of the fluxes and their mean value.
Typically, for metabolic networks with a large number of fluxes, the analytical form
of the joint probability density function of fluxes is unavailable. Hence, Monte Carlo
approximations are often used [53]. An MC algorithm draws a large number of flux
samples which are then used to estimate the mean flux values and marginal probability
distribution of the fluxes.

In paper A, we distinguish between a deterministic and stochastic formulation of
a given metabolic model and the associated flux measurements. The deterministic
formulation of a given metabolic network is

Svss = 0
Avss = b
vlb ≤ vss ≤ vub

(3.8)

where the steady state flux measurements are encoded in the data vector b ∈ Rn. The
matrix A ∈ Rn×n is a diagonal matrix where Ajj is one in the presence of data for
vj and otherwise zero. The deterministic formulation in Eq. 3.8 describes the exact
steady state phase of the network considering the limited capacity of the fluxes and also
integrates the available experimental values of the fluxes in the model by fixing them at
the given values.

The flux solution space of Eq. 3.8 forms a closed convex polytope P which is the
n-dimensional analogue to the three dimensional polyhedron [38]. An example network
and the concept of a metabolic model’s deterministic formulation is illustrated in Fig.
3.1 (b and c). For a more detailed description of the figure and different setups, read
about the figure in paper A.
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Figure 3.1: Fig. 1 of paper A. Different experimental setups and associated solution space and
sampling probability density function (pdf) p(v) (pink curve). (a): Example metabolic network and
corresponding mathematical model. (b): Deterministic formulation without measurements. (c) and (d):
Flux measurement of v1 (orange circle) available in deterministic setup (c) and stochastic setup (d). (e):
Relaxed steady state assumption and flux measurement of v1 in stochastic setup.

For low dimensional polytopes (n < 15) a MC rejecting sampling algorithm can
be used [102]. However, this method becomes inefficient, and advanced MC sampling
algorithms are required when the dimension of the polytope, which equals the number
of the reactions in the metabolic network, is high. The more commonly used sampling
algorithm is the Hit-and-Run (HR) [6; 90], which is a Markov Chain Monte Carlo
(MCMC) approach. The HR algorithm was applied by Almaas et al. [5] for the first time
to sample the flux solution space of the bacterium Escherichia coli metabolic network.
The HR algorithm generates a new sample by selecting a random direction. The HR has
the Markovian nature i.e. each future sample is dependent only on the current sample.
Convergence to the target distribution is guaranteed for a MCMC sampling approach,
see, for instance, [36]. The standard HR algorithm samples efficiently from the high
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dimension polytope so long as the polytope is heterogeneous in scales of the fluxes. For
a typical metabolic network, the associated polytope is narrow in some flux directions
as the orders of the flux scales’ magnitude might be very small. In the presence of
narrow corners, the HR algorithm must take small steps, which makes a full exploration
of the solution space impossible in finite time.

To address this issue, the Artificial Hit-and-Run (ACHR) [51] and optimised general
parallel sampler (OPTGP) were developed [60] based on the standard HR algorithm.
The core idea of the ACHR is to use optimal direction choices in HR (where the direction
of the next sample is chosen at random) to allow for larger steps along the elongated
directions. To do so, it estimates the centre of the solution space in a warm-up phase
and revises the estimated centre continuously with further sampling. The estimated
centre is then used to inform the direction of further sampling. The ACHR algorithm,
by choosing the optimal direction choice, requires fewer steps to explore the solution
space compared to the standard HR. The OPTGP is an improvement of the ACHR as it
generates multiple short chains from the estimated centre and picks only the last point
of the chain as a sample. In this way, it increases the randomness of exploring the
solution space. It allows also for parallel sampling, thereby generating a large number
of samples in a shorter time compared to ACHR. Both ACHR and OPTGP are, however,
non-Markovian and their convergence is not guaranteed.

Recently, rounding procedures have been proposed to remove the heterogeneity issue
of the solution space, thus a modified version of HR is used [17; 40]. The Coordinate
Hit-and-Run with rounding (CHRR) [40] is an algorithm in which first the solution
space is converted to a rounded closed convex polytope, and then a variant of the HR
algorithm is used to sample the rounded polytope. In this algorithm, the Markovian
nature of the traditional HR is preserved and convergence of the CHRR is guaranteed.

The ACHR algorithm is available in both the COnstrained Based Reconstruction
and Analysis (COBRA) toolbox [82] (in Matlab) and COBRApy (in Python) [20]. The
OPTGP is available only in the COBRApy, and CHRR is only provided in the COBRA
toolbox. In the Matlab implementations of both ACHR and CHRR, the solution space
of the CBM is first reduced using the FVA as described in Sec. 3.1.1; the sampling
algorithm is then applied to the reduced solution space.

3.2.2 Stochastic formulation and Monte Carlo sampling al-
gorithms

In the deterministic formulation given by Eq. 3.8, we do not account for the uncertainty
of the flux measurements if we fix the fluxes at their measured values, and this might
lead to overconfidence in the results. In Van den Meersche et al. [91] the uncertainties
corresponding to the experimental values are encoded in a stochastic formulation of a
metabolic network model

Svss = 0
Avss = b + &

vlb ≤ vss ≤ vub
(3.9)

where the uncertainties of the flux data are encoded thorough considering the noise term
& ∼ N(0, Σ). The diagonal matrix Σ = diag(σ1, . . . , σn) represents the variances of
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flux data. The equations in Eq. 3.9 encode an exact steady state assumption, bounded
fluxes, and flux observations with related experimental noise (Fig. 3.1 d). In Van
den Meersche et al. [91], a variant of the Metropolis algorithm [79], known as mirror
algorithm, has been used to sample from a proposed truncated multivariate normal
(TMVN) distribution. Van den Meersche et al. [91] provided a function in R [87] to
produce a set of samples of fluxes v in this framework.

Another assumption that can be relaxed in Eq. 3.9 is the exact steady state assumption
to agree with the stochastic nature of a cell. In 2016, it was shown that metabolites
can accumulate or deplete in a metabolic network [66], and recently MacGillivray et
al. [57] studied metabolic networks under the relaxed steady state assumption through
the so-called RAMP model. In 2019, Heinonen et al. [41] presented a stochastic
formulation of a metabolic network model as

Svss = 0 + #

Avss = b + &

vlb ≤ vss ≤ vub
(3.10)

where # ∼ N(0, Γ) is a vector of disturbances around the steady state assumption
Svss = 0. The equations in Eq. 3.10 encode a relaxed steady state assumption,
bounded fluxes, and flux observations with related experimental noise (Fig. 3.1 e).

In Heinonen et al. [41], a Bayesian flux model is formulated based on the Bayes rule
to study the probability distribution of the fluxes. This framework is called the Bayesian
metabolic flux analysis (BMFA). Currently available information about the fluxes are
represented as a prior probability density, p(vss). The available measurements b for
the fluxes are linked to the fluxes vss from the model via a likelihood, p(b | vss), which
is the conditional density of b given vss. The BMFA makes an inference about vss
through the posterior distribution of fluxes obtained via Bayes formula

p(vss | b) ∝ p(b | vss)p(vss). (3.11)

Applying this rule, a TMVN posterior distribution for the fluxes has been presented,
and the Gibbs algorithm [34] has been used to sample the posterior distribution. The
BMFA is implemented in the COBRA toolbox by Heinonen et al. [41].

3.2.3 A comparison of sampling algorithms in paper A
In paper A [25], both available deterministic and stochastic frameworks are reviewed
for the first time, and a rigorous comparison of the corresponding sampling algorithms
has been performed. A description of six sampling algorithms HR, ACHR, OPTGP,
CHRR, mirror and Gibbs is provided. The first four algorithms are suitable to sample the
polytope formed by the deterministic formulation in Eq. 3.8, and the last two algorithms
are appropriate to sample from the posterior distribution of the fluxes modelled by the
stochastic formulations in Eqs. 3.9 and 3.10.

The sampling algorithms ACHR, OPTGP, CHRR and Gibbs are applied on ten
genome scale metabolic networks that were obtained from the BiGG database [52].
The 20,000 samples were generated for each flux in each model, with a thinning
parameter of 1000 in each sampling algorithm. A sample generated by a MCMC



20 Dynamic modelling and Monte Carlo sampling

algorithm is guaranteed to be representative of the true flux distribution only if the
sample chain defined as v(1), . . . , v(20000) has converged (in distribution). We have
assessed the convergence of each algorithm by computing the percentage of flux chains
that passed four different convergence diagnostics: the Raftery and Lewis diagnostic
[73], Geweke test [35], IPSRF test [11] and Hellinger distance test [10]. The results
from four convergence diagnostics across four algorithms and ten models are shown in
Fig. 3.2. We see that the CHRR algorithm is the method with the least convergence
problems, while the ACHR method had convergence problems for many models.

Figure 3.2: Fig. 2 of paper A. Four convergence diagnostics across four algorithms and ten models.
The vertical axis shows the proportions of flux chains in each model rejected by the different convergence
tests: Raftery and Lewis (RL), Geweke (G), IPSRF and Hellinger distance (HD) on the horizontal axis.

Convergence for individual flux chains has also been inspected, and the result shows
that it is not necessarily the same flux chains that failed to converge according to the
different diagnostics. Therefore, it is suggested that a combination of convergence
diagnostics be applied to make a certain decision about sampling convergence.

We compared the CHRR against each of three other algorithms in terms of sample
means and standard deviations, and the result is shown in Fig. 3.3. The reason for
selecting the CHRR algorithm as the reference algorithm is that the CHRR algorithm
has a Markovian nature and its convergence is guaranteed. The Pearson correlation [18]
of the mean and the standard deviation between the two algorithms are calculated and
reported in Fig. 3.3. In general, the four algorithms returned very similar sample means
and standard deviations, as can be seen from the fact that the points in the plot lie along
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the identity line. The Gibbs sampler deviated the most from CHRR, which probably is
due to the informative prior distribution imposed on some of the models.

Figure 3.3: Fig. 3 of paper A. Scatter plot of sample means (blue) and standard deviations (green) for
ACHR, OPTGP and the Gibbs sampler (vertical axis) against CHRR (horizontal axis) for four models.
The Pearson correlation is shown on top of each scatter plot, and the values shown in parenthesis are the
proportion of removed outliers. The sample means and standard deviations marked in red correspond
to the reactions for which at least one of the two algorithms in a comparison failed the Geweke test.

We define the efficiency of each algorithm in generating independent samples per
time unit for each individual flux as

E =
ESS

Run time
(3.12)

where the effective sample size (ESS) is the number of independent draws from the flux
target distribution [33]. The sampling algorithms are compared in terms of sampling
efficiency by calculating E in Eq. 3.12. Fig. 3.4 shows the cumulative distribution
functions for the efficiency measure E of the different metabolic models separately for
each sampler. It indicates that the CHRR method outperforms the three other algorithms
by generating the highest number of independent samples per time unit for each flux.
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Figure 3.4: Fig. 6 of paper A. Assessing sampling efficiency across four algorithms and ten models. The
vertical axis shows the proportions of reactions being less than a given value of the efficiency measure
E on the horizontal axis. The ten different curves represent the ten models which are categorized in four
groups according to their number of reactions (see legend).

The mirror algorithm used by Van den Meersche et al. [91] for the stochastic
formulation in Eq. 3.9 was attempted on the ten models, but we were only able to
successfully run it for the E. coli core model. In the mirror algorithm, there is a hyper
parameter that defines the jump length in the Metropolis Hasting algorithm to propose
a new sample. A typical feature of a genome scale metabolic network is the large
variation in flux ranges. Therefore, a small jump length is needed for the fluxes with a
small range, and a large jump length is needed for the fluxes with a large range. The best
choice of jump lengths as a hyper parameter in the mirror algorithm was not trivial, as a
large step length made the sampling algorithm very inefficient and a small jump length
led to almost no movement from the initial flux vector. Thus an efficient sampling
algorithm that allows the stochastic formulation in Eq. 3.9 to be applied at the genome
scale is lacking.



Chapter 4

Kinetics and model reduction

In the papers of the thesis, we have not used the FBA approach for modelling; instead,
we have used kinetic modelling since we are interested in modelling the time-varying
changes in the metabolite concentrations vector x. To do so, we need to know the reaction
rates (fluxes), v, which depend on the metabolite concentrations and physico-chemical
conditions (e.g. temperature, pH) [48, p. 19]. It is assumed that the physico-chemical
environment is fixed, and the fluxes v can be described by a function of metabolite
concentrations x. The dynamic model in Eq. 3.1 can be rewritten as

dx
dt

= f(x), where f(x) = Sv and v = v(x). (4.1)

The function v(x) is called kinetics. The dynamical model in Eq. 4.1 is a set of ordinary
differential equations that describes the dynamical state of the metabolite concentrations
in a metabolic network. The kinetics was studied for the first time in 1864 by Cato M.
Guldberg and Peter Waage [39]. They proposed the law of mass action, which has been
used extensively to model the reaction rate of an elementary reaction [55]. The law of
mass action is that the rate of a chemical reaction is proportional to the product of the
concentration of the reactant metabolites. The law of mass action may not be applied
directly in the papers since we do not model all the intermediates and co-factors of the
chemical reactions. However, it has been used to derive several of the kinetics discussed
in the next section. The main reference for this chapter is the textbook "Mathematical
modeling in systems biology: an introduction" by Ingalls [48].

4.1 Kinetics
In the dynamical model of a reaction network, we may use different kinetics for various
reactions based on the type of reactions. In this section, we provide a detailed description
of the most common functions v(x) as the kinetics of reactions. In papers B, C and D
we have used several of them.

4.1.1 Michaelis-Menten kinetics
The majority of reactions that occur in a cell are catalysed by enzymes (known as
proteins). The enzymes typically bind to the reactants in a reaction and facilitate their
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conversion to the reaction products [48, p. 47]. An enzyme-catalysed reaction with a
single-substrate S can be written as

S + E
k1


k−1

ES
k2→ P + E (4.2)

where E is an enzyme, ES an intermediate and P a product. The kinetics of an enzyme-
catalysed reaction is often described by the Michaelis-Menten [49].

Let [S], [E], [ES] and [P] denote the concentrations of S, E, ES and P over time.
Applying the law of mass action [55], a dynamic model describing the changes in the
concentrations can be formed by a set of ordinary differential equations

d[S]
dt

= −k1[S][E] + k−1[ES] (4.3)

d[E]
dt

= −k1[S][E] + k−1[ES] + k2[ES] (4.4)

d[ES]
dt

= k1[S][E] − k−1[ES] − k2[ES] (4.5)

d[P]
dt

= k2[ES] (4.6)

where k1, k−1 and k2 are the forward rate constant, backward rate constant and catalytic
rate constant, respectively. These constants are called the kinetic parameters, and they
must be positive. Adding the Eqs. 4.4 and 4.5 corresponding to the concentrations of
E and ES we get

d

dt
([E] + [ES]) = 0 (4.7)

which implies that the total amount of the enzyme is conserved in the reaction. This
leads to a conservation law

[E] + [ES] = ET (4.8)

where ET ∈ R≥0 is the total concentration of the enzyme. In the analysis of the
system, we further applied the quasi steady state assumption for the intermediate, ES.
In the quasi steady state assumption, we assume that all dynamic reactions involving ES
occur on the fast time-scale, and the intermediate ES comes rapidly to its steady state
concentration. Applying this assumption leads to the algebraic equation

k1[S][E] − k−1[ES]qss − k2[ES]qss = 0. (4.9)

In solving this equation for [ES]qss and substituting [E] by ET − [ES]qss from Eq. 4.8
we obtain

[ES]qss =
ET[S]

k−1+k2
k1

+ [S]
. (4.10)

Inserting the expression for [ES]qss from Eq. 4.10 in Eq. 4.6, the production rate for
the product P of the chemical reaction in Eq. 4.2 becomes

d[P]
dt

=
k2ETS

k−1+k2
k1

+ S
. (4.11)
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The assumptions taken here essentially simplify the chemical reaction in Eq. 4.2 to
the reaction

S GA P. (4.12)

The flux v of this simplified reaction is given by Eq. 4.11. By defining Vmax = k2ET
and KM =

k−1+k2
k1

, the flux v form Eq. 4.11 can be rewritten as a function of the
substrate concentration [S]

v =
d[P]
dt

=
Vmax[S]
KM + [S]

. (4.13)

This reaction rate is known as the Michaelis-Menten rate law and, it is shown in Fig.
4.1.

Figure 4.1: Michaelis-Menten kinetics given by Eq. 4.13 for the single substrate reaction given by Eq.
4.12. The flux value v (vertical axis) is a function of the substrate concentration [S] (horizontal axis).
The flux v equals to Vmax/2 for [S] = KM.

The rate for the consumption of S in the model for the simplified reaction is

d[S]
dt

= −
Vmax[S]
KM + [S]

. (4.14)

In the Michaelis-Menten rate law, the enzyme information is intrinsic in the constants
Vmax and KM. The Vmax is the maximal reaction rate (flux) with the following
relationship

lim
[S]→+∞

v([S]) = Vmax (4.15)

where v([S]) is the flux given in Eq. 4.13. This implies that the flux v approaches to the
limiting rate Vmax as the substrate concentration [S] increases. The constant KM known
as the Michaelis constant is the concentration of substrate S at which the flux v is half
of Vmax. Both Michaelis-Menten kinetics parameters are shown in Fig. 4.1. The Vmax
and KM values for some reactions can be found in databases such as BRENDA [81]



26 Kinetics and model reduction

and SABIO-RK [103]. As discussed in the next chapter, the value of these parameters
should in general be estimated having the experimental data of the concentrations or the
fluxes.

Several of the reactions in the yeast glycolysis example model of paper B, and the
reactions in the fatty acid synthesis model of paper D, are modelled using the original
or slightly different version of the Michaelis-Menten kinetics.

4.1.2 Kinetics of competitive inhibition
Enzymes can be regulated by other molecules that may increase or decrease the activity
of the enzyme. The molecules that decrease the enzyme’s activity are called inhibitors.
There are three types of inhibition: competitive inhibition, non-competitive inhibition,
and uncompetitive inhibition [48, p. 55-63]. Here we describe the kinetics for a compet-
itively inhibited enzyme. A competitive inhibitor is a molecule that binds to the active
site of the enzyme and blocks the binding of the substrate to the enzyme. The reaction
scheme, including both the catalytic and inhibition processes, can be described as

S + E
k1


k−1

ES
k2→ P + E

I + E
k3


k−3

EI
(4.16)

where I is the inhibitor and EI is the enzyme-inhibitor complex. Denoting the concen-
tration of I and EI by [I] and [EI], we have

d[S]
dt

= −k1[S][E] + k−1[ES] (4.17)

d[E]
dt

= −k1[S][E] + k−1[ES] + k2[ES] − k3[I][E] + k−3[EI] (4.18)

d[ES]
dt

= k1[S][E] − k−1[ES] − k2[ES] (4.19)

d[P]
dt

= k2[ES] (4.20)

d[EI]
dt

= k3[I][E] − k−3[EI]. (4.21)

We treat the concentration [I] as a fixed quantity, and this is justified based on the
assumption that the inhibitor, I, is far more abundant than the enzyme such that the
formation of EI does not significantly change [I] [48, p. 56]. In addition, the quasi
steady state assumption is applied for the intermediate, ES, and the enzyme-inhibitor
complex, EI. In the quasi steady state assumption, we assume that all dynamic reactions
involving, for example, ES occur on a fast time scale, and the intermediate ES comes
rapidly to its steady state concentration. Following this assumption for both ES and EI,
we replace the ordinary differential equations given in Eq. 4.19 and 4.21 with algebraic
equations

k1[S][E] − k−1[ES]qss − k2[ES]qss = 0 (4.22)
k3[I][E] − k−3[EI]qss = 0. (4.23)
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Using the algebraic equations in Eqs. 4.22 and 4.23 and the conservation law [E] +
[ES]qss + [EI]qss = ET yields

[ES]qss =
ET[S]

KM +
KM[I]
Ki

+ [S]
(4.24)

where KM =
k−1+k2
k1

is the Michaelis constant and the Ki = k−3/k3 is the dissociation
constant for inhibitor binding. Inserting the expression for [ES]qss from Eq. 4.24 in Eq.
4.20, the production rate for the product P of the chemical reaction in Eq. 4.16 is

d[P]
dt

=
Vmax[S]

KM(1+
[I]
Ki
) + [S]

(4.25)

where Vmax = k2ET is the maximal reaction rate.
The obtained reaction rate essentially simplified the chemical reaction of Eq. 4.16

to the reaction given in 4.12. The flux v for the chemical reaction in Eq. 4.12 in the
presence of the inhibitor can then be rewritten as

v =
d[P]
dt

=
Vmax[S]

KM(1+
[I]
Ki
) + [S]

. (4.26)

Note that this rate is the Michaelis-Menten rate law given in Eq. 4.13 for [I] = 0. The
limiting reaction rate Vmax is not affected in competitive inhibition as shown in Fig.
4.2. Instead, the inhibitor increases the substrate concentration [S] required to reach
the half-maximal rate, as the effective Michaelis constant of the inhibited reaction is
KM(1 +

[I]
Ki
) [48]. All these properties are shown in the plot of the rate law in Fig. 4.2

for zero, low and high concentrations of the inhibitor.
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Figure 4.2: Reaction rate law in Eq. 4.26 for an enzyme catalyzed reaction in the presence of a
competitive inhibitor, I, given by Eq. 4.16. The flux value v (vertical axis) is a function of the substrate
concentration [S] (horizontal axis). The reaction rate is plotted for three different levels of the inhibitor,
and it can be seen that the effective Michaelis constant of the inhibited reaction, KM(1+

[I]
Ki
), increases

with the inhibitor concentration [I].

In paper D, some of the reactions of the fatty acid synthesis pathway are competitively
inhibited enzyme catalysed reactions, and their rates are modelled using the rate law
described by Eq. 4.26.

4.1.3 Hill kinetics
A generalised form of the Michaelis-Menten kinetics is the Hill kinetics proposed in
1910 by A.V. Hill [44] as

v =
d[P]
dt

=
Vmax[S]n

(KA)n + [S]n
(4.27)

where Vmax, KA and n are positive constants. The Hill kinetics has the same property
as the Michaelis-Menten kinetics as for all n

lim
[S]→+∞

v([S]) = Vmax. (4.28)

The constant KA takes the role of the KM in the Michaelis-Menten kinetics since for
[S] = KA we get

v(KA) =
Vmax

2
(4.29)

for all n. The dimensionless form of the Hill kinetics can be written as

v

Vmax
=

(
[S]
KA

)n

1+ (
[S]
KA

)n
. (4.30)
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This is sketched in Fig. 4.3 for four different values of n. Note that the Hill kinetics for
n = 1 gives the Michaelis-Menten kinetics.

Figure 4.3: The flux v as a function of the substrate concentration [S] for the non-dimensional Hill
kinetics given by Eq. 4.30 and four different n. The flux v equals to Vmax/2 for [S] = KA and all n.

A slightly modified version of the Hill kinetics is used to model the rate law for a
reaction in the model of paper C, which describes the interaction between the two chem-
icals β-naphthoflavone (BNF) and nocodazole (NOC) and their influence on cytochrome
P450 1A (CYP1A) enzymes. We have also applied the Hill kinetics to describe the rate
laws of several reactions in the fatty acid synthesis model of paper D.

4.1.4 Zero, first and second order kinetics
The last kinetics functions that we discuss in the thesis are the zero, first and second
order kinetics. These kinetics functions are used to model some fluxes in papers C and
D, and they are also used in the small example model in paper B. The first order kinetics
is

v = k (4.31)

where k is a constant. In this type of kinetics, the flux is a constant that does not change
with time. The first order kinetics can be used for the saturated fluxes or entering fluxes
to a reaction network from the outside. The first order kinetics can be described by

v = kx (4.32)

where k is a constant and x is the substrate concentration. In the first order kinetics,
the flux v is a linear function of the substrate concentration x. This type of kinetics
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is common to use when the substrate X is far from being saturated and the limiting
factor of the reaction. This case can be seen in Fig. 4.1 for the Michaelis-Menten
kinetics, where for low substrate concentrations the flux is a linear function of the
substrate concentrations and can be approximated by first order kinetics in the linear
regime. Using first order kinetics decreases the number of parameters as it only has one
parameter, while the Michaelis-Menten kinetics in Eq. 4.13 has two parameters.

The common form of the second order kinetics is

v = kx1x2 (4.33)

where k is a constant and x1 and x2 are the concentrations of the two substrates X1
and X2. In the second order kinetics, the flux is proportional to the product of the two
concentrations, which obeys the mass action law.

The parameters k in the Eqs. 4.31, 4.32 and 4.33 are called kinetic parameters.
In paper C, we estimate the first and second order kinetic parameters in a model of
the interaction between two chemicals BNF and NOC and their influence on CYP1A
enzymes using real data from two experiments [37; 61]. More about the parameter
estimation is provided in the next chapter.

4.2 Model reduction

The dynamic model in the form of Eq. 4.1 incorporates a high level of detail about
the chemical reaction network compared to the CBM approach discussed in chapter 3.
This type of modelling approach involves both the network stoichiometry and kinetic
parameters. The degree of the model complexity can easily increase if we model each
reaction with all its characteristics, especially when we use advanced kinetics to describe
the reaction rates. A complex model of a biochemical reaction network typically has
a large number of parameters. Moreover, a small number of the kinetic parameters
can usually be identified from the literature, while the remaining parameters should
be estimated. To do so, large datasets including the metabolite concentrations are
required, and often not all the metabolite concentrations can be measured. Therefore, it
might be beneficial to apply some model reduction techniques to reduce the model to a
simplified model that can still describe the dynamical features of the network. To avoid
oversimplification, a model reduction technique should reduce the model in a controlled
manner by requiring that the output of the reduced model and full (original) model be
sufficiently close using a defined measure.

In the dynamic model given by Eq. 4.1, the metabolite concentrations, reactions and
kinetic parameters are involved. A common model reduction technique is the model
order reduction approach, which reduces the dimension of the concentration vector x as
the state space. For a general introduction about the model order reduction approach,
see e.g. Schilders et al. [83]. In paper D, we have not included the concentration of
the co-factors and intermediates of the reactions, and this can actually be viewed as a
model order reduction. Leaving the co-factors and intermediates of the reactions out
of the model is a model order reduction discussed in Feliu and Wiuf [27]. Removing
the intermediates from the model also leads to a simplification in the reaction kinetics.
Applying simplified kinetics such as zero, first and second order kinetics, as discussed
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in Sec. 4.1.4, can also be seen as a model reduction technique that can be used to
decrease the number of kinetic parameters.

Consider we have a dynamic model of a chemical reaction network given by Eq. 4.1
and want to reduce the model complexity. There are different approaches to reducing
the complexity of the model, with the most common ones being lumping, sensitivity
analysis and timescale analysis [63; 72; 84]. Here we focus on the model reduction
approach suggested by Rao et al. [76] as paper B in the thesis is an extension of this
approach. The approach in Rao et al. [76] is applicable for a large class of the kinetics,
including the ones discussed in Sec. 4.1.

The model reduction procedure in Rao et al. [76] includes a method to reduce
the model and a measure to compare the reduced and full model. First, it specifies
a set MI of compounds that are important and should be preserved during the model
reduction. The important compounds can, for instance, be the ones that are possible to
measure experimentally. Then all the complexes (see Sec. 2.2) of the reaction network
are classified into two groups. One category contains all the complexes that include at
least one of the compounds in the set MI, and those complexes will not be subjected to
reduction. The second category is composed of the complexes considered for reduction
since they do not contain any of the important compounds in MI. The reduction is
then based on the assumption that the model reaches an asymptotically stable steady
state that can be obtained by integrating the system for a sufficient amount of time. The
complex is reduced by fixing its concentration to the corresponding steady state value of
the full model, which can be done for any number of complexes. Having the possibility
to reduce any given set of complexes, an iterative method for selecting the complexes
for reduction is presented in Rao et al. [76]. The method reduces one complex at a time
by choosing the one that leads to the smallest error defined as

IT (xr, xf) =
∑
i∈MI

1

Tn (MI)

∫ T

0

����1− xir(t)

xif(t)

����dt (4.34)

where T is the time interval, n (MI) is the number of compounds in MI, xir and xif are
the concentrations of compound number i in the reduced and full model, respectively.
The vector of the compound concentrations in the reduced and full model are denoted
by the vectors xr and xf, respectively. This error integral gives the average relative
difference between the concentration of all compounds in MI in the full and reduced
model over the given time interval [0,T]. Ultimately, the method stops when an error
threshold is reached.

The model reduction method presented in Rao et al. [76] computes the error integral
in Eq. 4.34 for a single set of parameters and does not account for parameter uncertainty.
In paper B [31] we present a new way to evaluate model reductions that takes parameter
uncertainty into account. We encode the parameter uncertainty by assuming that we
have a given number of parameter sets instead of a single parameter set. Then all
possible reduced models are obtained for all parameter sets. Based on Eq. 4.34 we
define the symmetric error measure

ET (x1, x2) =
1

2
(IT (x1, x2) + IT (x2, x1)) . (4.35)

For any two models, we can compute this measure without favouring one of them.
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Using the measure in Eq. 4.35 as the dissimilarity measure, the full (original) model
and reduced models for all the parameter sets are clustered using the single linkage
clustering. A dendrogram [46], like the ones in Fig. 4.5, is then used to visualise the
clustering results. Distribution throughout the dendrogram is then obtained for a given
reduction considering different parameter sets, and this is visualised by colouring.
Furthermore, a reduction is evaluated through the test statistics of a Kolmogorov-
Smirnov test [15] for the distribution of the reduced and full model. The reductions
with a test score lower than a threshold are considered as consistent with the full model.
Among the consistent models, the best reduced model is the one that uses the most
reduction.

Figure 4.4: Fig. 2 of paper B, the yeast glycolysis reaction network from Rao et al. [76]. The nodes are
the compounds and the arrows are the reactions. The important compounds that are not subjected to
reduction are specified by pink rectangles and the candidate compounds for reduction are specified by
the black rectangles. See the original figure in paper B for a detailed description of the figure.

The suggested method in paper B has been tested on a kinetic model of the yeast
glycolysis reaction network shown in Fig. 4.4, which is taken from Rao et al. [76].
The resulting dendrograms are shown in Fig. 4.5, where in each panel we visualise the
result for a sample of 100 parameter sets using a log-normal distribution. The reference
value of each parameter has been used as the expectation of the parameter, and the
reference value is further divided by a scaling factor to define the deviation. It can
be seen that for high parameter uncertainty (scaling 3) all 100 full models are evenly
distributed between the reduced models. This confirms that when the parameters in the
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model are highly uncertain, the model can be reduced maximally without increasing
the uncertainty in the model dynamics, whereas for low parameter uncertainty (scaling
100) all the full models are clustered tightly implying that the full model should not be
much reduced. This analysis shows that the parameter uncertainty plays an important
role in the model reduction to obtain a suitable model complexity in balance with the
parameter uncertainty.

Figure 4.5: Figure 5 of paper B. Dendrogram from single linkage clustering of all the model reductions
for the example network in Fig 4.4. The 100 parameter sets were sampled from a log-normal distribution
with the expectation equals the reference value of the parameter (denoted by ref in the plot) and the
standard deviation equals to the reference value divided by six different scaling factors given on top of
each panel. The full models are colored in red and the models where F16BP was reduced are given in
purple and all other modes are blue.

As mentioned earlier, the method by Rao et al. [76] reduces one complex at a time
in the model reduction procedure. In paper B, we further show that, for a small example
network, a smaller error might be obtained by reducing two complexes at the same time.
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Chapter 5

Parameter estimation, sensitivity and iden-
tifiability analysis

The dynamic model in Eq. 4.1 for a chemical network is constructed through defining
the kinetics v(x). Some of this kinetics are discussed in the previous chapter, where we
observed that each kinetics has one or more than one kinetic parameter. Therefore, the
dynamic model given by Eq. 4.1 is dependent on the kinetic parameters, and rewriting
the model as follows shows this dependency explicitly

dx
dt

= f(x, )) (5.1)

where ) is a vector of the kinetic parameters. The value of the kinetic parameters for
some reactions in a controlled experiment can be obtained from the BRENDA [81]
and SABIO-RK [103]. However, kinetic parameters must in general be estimated if a
dynamic model of a chemical reaction network has been made. In paper C we construct
a dynamic model of a given reaction network and estimate the kinetic parameters.

The typical experimental data is the concentration measurements for some of the
metabolites in the network. The distance between the simulated concentration of those
metabolites by the model and their experimental value is calculated using a cost function.
The cost function is a function of the parameters ) denoted by ψ()). The parameters
in the model can then be estimated by fitting the model to the data by minimisingψ()).
A common cost function ψ is a weighted sum-of-squares error [86]; however, it can
take other forms, see e.g. Zheng et al. [107]. We start the chapter by describing the
parameter estimation of a proposed model in paper C.

5.1 Parameter estimation in paper C
In paper C, we construct a dynamic model for a pathway shown in Fig. 5.1. In
this pathway, we illustrate how the chemicals β-naphthoflavone (BNF) and nocodazole
(NOC) activate the aryl hydrocarbon receptor (AhR), which results in the induction
of cytochrome P450 1A (CYP1A) enzymes’ synthesis. Both BNF and NOC bind
to the CYP1A enzymes, where BNF is metabolised by CYP1A enzymes and NOC
inhibits CYP1A enzymes. Thus, chemical NOC occupies the CYP1A enzymes in the
elimination pathway, which delays the biotransformation of BNF.
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Figure 5.1: Figure 1 of paper C. The pathway to illustrate the toxicokinetic interaction between chemical
X (β-naphthoflavone (BNF) black triangles) and chemical Y (nocodazole (NOC) black squares) and
their effect on the aryl hydrocarbon receptor (AhR) which leads to induction of the cytochrome P450 1A
(CYP1A) enzymes. For a more detailed description of the pathway see the original figure in paper C.

The reactions associated with the pathway in Fig. 5.1 can be presented in the form
of Eq. 2.1 as

R1 : BNF+ CYP1A GA CYP1A OBNF

R3 : NOC+ CYP1A GA CYP1AONOC

R2 : CYP1AOBNF GA CYP1A + BNFb
R4 : CYP1AONOC GA CYP1A + NOCb
R5 : CYP1A GA

(5.2)

where CYP1AOBNF and CYP1AONOC are the CYP1A enzymes occupied by BNF and
NOC molecules, respectively. The BNFb and NOCb are the biotransformed BNF and
NOC molecules, respectively.

A dynamic model of the chemical reactions given by Eq. 5.2 is proposed in paper
C to describe the changes in the concentrations of BNF, NOC, free CYP1A enzymes
and CYP1A enzymes occupied by BNF or NOC. Note that as the changes in the
concentrations of the biotransformed BNF and NOC were not our prime interest; we
have not included them in the model. To construct the model, we have used the mass
action law, first order kinetics and a modified version of the Hill kinetics discussed in
Sec. 4.1. See the manuscript for more about the model equations.

The data used in paper C were obtained from a previous study using PLHC-1 cells
that had been treated with the carrier vehicle and different doses of BNF (0.1 and 1
µM) and NOC (1, 10 and 25 µM), alone or mixed, and measured at five different times
(6, 12, 24, 48 and 72h) [37; 61]. The measurements for the free CYP1A enzymes
were the diagnostic ethoxyresorufin-O-deethylase (EROD) activity, which is assumed
to be proportional to the concentration of free CYP1A enzymes with a proportionality
constant equal to one. The measurements from various treatments are shown in Fig.
5.2.
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Figure 5.2: Figure 2 of paper C. Fitted values for EROD activity of free CYP1A enzymes. The solid line
shows the EROD activity simulated from the model fitted to the measured EROD activity in six different
treatments. For a detailed description of the figure and different treatments see the original figure in
paper C.

The parameters of the proposed model are estimated by fitting the simulated concen-
tration of the free CYP1A enzymes from the model against its observations represented
by EROD data (Fig 5.2). The estimated values for the parameters were those values
that minimise a squared logarithmic error (SLE) [89] between the concentration of the
free CYP1A enzymes from the model and its observations. This cost function has been
used as we did not want large errors to be significantly more penalised than small ones.

In Fig. 5.2, we see that the model captured the dynamic behaviour of the EROD
activities of the free CYP1A enzymes. The model could also describe changes in the
concentrations of BNF, NOC and CYP1A enzymes occupied by BNF or NOC qualita-
tively. We refer you to the paper C to see the plots. The model can be further refined
if the data for the concentration of more compounds in the pathway are available. This
motivates the need to design the experiments that provide time-course measurements
of the concentrations of BNF and/or NOC.

5.2 Global sensitivity analysis (GSA)
When developing a dynamical model in the form of Eq. 4.1 for a reaction network, a
real challenge could be the lack of experimental data. In this case, the value of kinetic
parameters, ) , are usually obtained from existing databases for kinetic parameters or
extracted from the literature directly. Typically, a large variation can be seen in the value
of a single parameter from different sources. Large variations in the value of parameters
might lead to significant uncertainty in the model output. The Global Sensitivity
Analysis (GSA) is a tool to describe how the uncertainty in the model parameters can
influence the uncertainty in the model output. The most influential parameters on the
model output can be identified through the GSA, and we can try to increase the accuracy



38 Parameter estimation, sensitivity and identifiability analysis

in the value of these parameters to reduce the model uncertainty. The GSA can also
provide information about the non-influential parameters on the model output to set
them at small values or simplify the model by excluding them [108]. There are various
types of methods to perform the GSA for a dynamic model, see e.g. Pianosi et al. [71].

One of the most established GSA methods is the method of Morris [62], also known
as the elementary effect test (EET) [80]. Let h()) be the function for which we assess
the GSA. In the EET, the mean of Ns local changes is taken as the measure of the global
sensitivity of h to changes in the value of ith parameter, θi, i.e.

sGi =
1

Ns

Ns∑
j=1

��EEj
��

=
1

Ns

Ns∑
j=1

�����h(θ1j, . . . , θij + ∆ji, . . . , θMj) − h(θ1j, . . . , θij, . . . , θMj)∆
j
i

����� ri,
(5.3)

where ri is a scaling factor facilitating a comparison of sensitivities across parameters
that may have different units and M is the number of parameters. The sensitivity index
sG
i

indicates the sensitivity of h to parameter θi considering the direct influence of this
parameter. The sensitivity index sG

i
can often times not be computed analytically, and it

must be approximated numerically from a sample of the parameter values and the asso-
ciated model output evaluation. Most of the GSA methods are sample-based methods
and require specification concerning the parameters’ variability space by providing an
interval for each parameter.

There are several sampling strategies that generate samples of the parameter values,
see e.g. Campolongo et al. [14]. Here we describe the radial sampling strategy briefly
as it has been used in paper D. In radial sampling 2Ns points are first sampled from the
parameter variability space using the Latin-Hypercube sampling [59]. Then this set of
samples will be divided into two sets, where one set includes Ns baseline points and the
other includes the Ns auxiliary point. Let us assume a =

[
a1 . . . aM

]
is a baseline

vector and b =
[
b1 . . . bM

]
is an auxiliary vector. The value of the first parameter

in the vector a is replaced by the corresponding value from the vector b while keeping
the rest of the parameters fixed. We repeat this for all parameters such that after each
step we go back to the original vector a and then change the value of the next parameter
[14].

A variant of GSA known as the regional sensitivity analysis (RSA) is a family
of methods aimed at identifying regions of the parameter variability space leading to
special behaviour in the model output. The idea of the RSA was first proposed by Young
et al. [106] and Spear and Hornberger [85]. The RSA method applies the All-At-a-Time
(AAT) sampling strategy by simultaneously varying the value of the parameters. To do
so, the Latin-Hypercube sampling method [59] is used. Then the generated samples are
divided into two groups depending on whether the associated model simulation exhibits
the expected behaviour. There are several ways to use those two sets of parameters and
make an inference about the regions, which gives us the desired behaviour in the model
simulations, see e.g. [71].
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5.2.1 Global sensitivity analysis in paper C
For each parameter in the model of paper C, a random sample of 1000 values was first
drawn using a log-uniform distribution on the interval from the parameter estimated
value divided by 10 to the estimated value multiplied by 10. Then we used the generated
values for each parameter to vary it while fixing the remaining parameters at their
nominal values. The model described by a set of ODEs is numerically solved for
each parameter set using the ode function in R [87]. The global sensitivity of the free
CYP1A enzymes’ EROD activity as the model output is then qualitatively inspected.
This has been done by visualising the sensitivity ranges of the EROD activities over
time according to changes in the parameter values. We found that to reduce the total
uncertainty in the model predictions for the EROD activity of CYP1A enzymes, the
parameter corresponding to the rate of CYP1A enzyme degradation should be set at a
value of high accuracy. This parameter is associated with the reaction R5 in Eq. 5.2.

5.2.2 Global sensitivity analysis in paper D
There has been limited modeling of the fatty acid synthesis pathway. However, in 2018,
Berndt et al. [7] proposed a dynamic model of the complete central metabolism of liver
cells named as HEPATOKIN1, where one of the sub-pathways is fatty acid synthesis.
The HEPATOKIN1 is constructed by applying the complex kinetics describing the
reaction rates. This led to an extensive model with 1040 kinetic parameters where 272
of them are estimated using the experimental data while all other parameters are fixed
at values obtained from the literature. In paper D, we propose a dynamic model of the
form of Eq. 4.1 for a simplified version of the fatty acid synthesis’ full pathway shown
in Fig. 1.1 [3]. The pathway is simplified by lumping the seven cyclic reactions in the
full network, and the simplified version is shown in Fig. 5.3.
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Figure 5.3: Fig. 1 of paper D. A simplified reaction network of fatty acid synthesis with regulatory
interactions (dashed lines). The metabolites are citrate, acetyl-CoA, malonyl-CoA, and palmitoyl-CoA.
The reactions between the metabolites and exchange reactions are shown by arrows. The enzymes that
catalyze the reactions are ACLY, ACC1, FAS, CPT1A and GPAT1 which are marked in blue. For a
detailed description of the figure see the original figure in paper D.

In the proposed model, we include the regulatory activities such as enzyme inhi-
bition and activation and have mostly used the Michaelis-Menten kinetics, kinetics for
competitive inhibition and Hill kinetics discussed in Sec. 4.1. The proposed model
has twenty-one parameters where fourteen of them have been set to the values obtained
from the literature and seven must be estimated from the experimental data. To do so
we require the time-course data of the concentration of the metabolites included in the
model. To our knowledge, this data is not available in the literature. Therefore, our
model is a potential model for a fatty acid synthesis network, which must be calibrated
to the data once it is available.

In paper D, we have defined the parameter variability space by considering eight
different intervals [0, 0.1], [0, 0.5], [0, 1], [0, 5], [0, 10], [0, 50], [0, 100] and [0, 500] for
all seven parameters. Trying different intervals, the RSA has been applied to identify the
parameter regions in which the associated metabolite concentrations simulated by the
model have a higher chance to reach the steady state as the desired behaviour. Based on
the RSA, we obtained the intervals from which a modeller should select the initial guess
for the parameters in the model fitting process. This will lower down the probability of
not reaching the steady state phase by the concentrations of the metabolites.

We further applied the EET method [80] to measure the sensitivity of the metabolite
concentrations simulated by the model to changes in the value of the parameters. The
sensitivity indices are computed through Eq. 5.3 and the function h is defined as the
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metabolite concentrations simulated by the model. The parameter values vary over
the intervals obtained from the RSA. By identifying the metabolites for which their
concentrations show high sensitivities to change in the value of most parameters, we
suggest an experimental design to acquire the most informative data. This data is the
concentration measurements of citrate, malonyl-CoA and palmitoyl-CoA to increase
the likelihood of gaining a unique value for most of parameters by fitting the model to
the data.

5.3 Identifiability and local sensitivity analysis

5.3.1 Structural identifiability
When doing statistical inference to estimate the model parameters, an important ques-
tion is whether the true parameter values can be determined. To answer this question,
we should first assess a model property known as the structural identifiability. This is
a property of the model alone and can in principle be assessed before collecting exper-
imental data. The models often contain parameters that are structurally unidentifiable
and none of the estimation algorithms succeeds in estimating those parameters. There-
fore, the structural identifiability of a model is essential to be assessed and avoid wasting
time and resources [98]. Estimating parameters in a model using experimental data only
makes sense if the model is structurally identifiable.

Here we use the definition of the structural identifiability presented in the study by
Villaverde et al. [99]. For a model of the form of Eq. 5.1 assume that y ∈ RNy is a
vector of the quantities that can be measured experimentally, defined as

y(t) = g(x(t), )) (5.4)

where function g maps the model variables x to the measurable output variables y
and is also a function of the parameters ) . The model parameter θi is called a struc-
turally locally identifiable parameter if for almost any parameter vector )∗, there is a
neighbourhood N()∗) in which the following holds

)̂ ∈ N()∗) and y(t, )̂) = y(t, )∗) ⇒ θ̂i = θ
∗
i . (5.5)

A model is called structurally locally identifiable if all its parameters are structurally
locally identifiable. Otherwise, it is structurally unidentifiable [99].

Similar to parameter identifiability, a state xj(τ) of the model is said to be observable
if it can be determined from the output y(t), that is, the state xj(τ) is observable if for
almost every x∗(τ) there is a neighbourhood N(x∗(τ)) in which the following holds

x̂(τ) ∈ N(x∗(τ)) and y(t, x̂(τ)) = y(t, x∗(τ)) ⇒ x̂j(τ) = x
∗
j (τ) (5.6)

where t0 ≤ τ ≤ t ≤ tf for a finite time tf. A model is called observable if all its state
variables are observable; otherwise, it is unobservable [99].

In paper D, we assess the structural identifiability of the proposed model for the fatty
acid synthesis pathway in Fig. 5.3. This has been done using a framework presented by
Villaverde et al. [99] to jointly study the state observability and parametric structural
identifiability of the model. For more on this, see the manuscript. This analysis revealed
that the experimental concentrations of at least two of the metabolites must be provided
to ensure the model observability and structural identifiability of the model parameters.
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5.3.2 Practical identifiability and local sensitivity analysis
A concept of practical or data-based identifiability has also been proposed in the lit-
erature [42; 77; 78]. A parameter θi in a dynamic model of the form of Eq. 5.1 is
practically non-identifiable if it is impossible to determine a unique value for it by fit-
ting the model to the data. For some given model, assume that the experimental values
are available for the measurable quantities in y given by Eq. 5.4. By minimising the
model predictions for vector y against its data, we can acquire the estimated parameters
)̄ .

As suggested by Gábor et al. [32], the practical identifiability of the parameters
) can be assessed in two consecutive steps. First, we calculate the sensitivities of the
measurable quantities in y to changes in the estimated parameters )̄ through calculating
the sensitivity matrix SL = {sL

ki
} with

sLki =
∂yk
∂θi

|)=)̄ , k = 1, . . . ,Ny, i = 1, . . . ,M. (5.7)

The columns of SL correspond to parameters and the rows to the measurable quantities
in y. There are several ways to define an overall scoring for individual parameters using
the sensitivity matrix SL, see e.g. Brun et al. [12]. The most common measures could
be the root mean squared sensitivity defined as

s
msqr
i

=

√√√
1

Ny

Ny∑
k=1

(sL
ki
)2, i = 1, . . . ,M (5.8)

or the mean sensitivity given by

smean
i =

1

Ny

Ny∑
k=1

sLki, i = 1, . . . ,M. (5.9)

The mean sensitivity in Eq. 5.9 provides information on the sign of the average effect a
change in a parameter has on the measurable quantities, y.

Using the root mean squared sensitivity given in Eq. 5.8, the parameters with scores
below a threshold are classified as non-identifiable parameters as they have no or very
little effect on the observed quantities [32]. This type of analysis is known as the local
sensitivity analysis (LSA) since it studies the sensitivity of the model output to the local
changes in the parameter values.

The parameters may also interfere with each other in a model. Even if a parameter
is classified as an influential parameter on the model output, it might still be non-
identifiable. This can happen as its possible effect on the output might be compensated
by changes in other parameters. This phenomenon is known as collinearity. Let us
consider a set of p parameters selected from ) and build the matrix SL

sub
from their

corresponding columns in SL. This set of parameters are said to be linearly dependent or
collinear if there exists a vector " =

[
α1 . . . αp

] T with ||"|| ≠ 0 such that SL
sub

" = 0
[12]. If this relation holds only approximately, the parameters are said to be nearly
dependent, and if it does not hold the parameters are independent.
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In paper C, we have checked both sources of practical non-identifiability using
the estimated value of the parameters. This analysis showed that the practical non-
identifiability was not an issue fitting the proposed model to the EROD activity data,
and this is a strength of the proposed model of paper C.
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Chapter 6

Overview of the papers

In this chapter, we give an overview of the papers in the thesis and their possible
connections. The main focus of papers A and B is the mathematical methodology in
systems biology, while both papers C and D focus on constructing dynamic models for
two different biological phenomena.

Paper A provides an overview of different sampling methods for metabolic network
models at the genome scale and compares those methods in terms of convergence,
efficiency, and consistency. This is the only paper in the thesis that applies the constraint-
based modelling of a metabolic reaction network. A constraint-based model is a static
model as it imposes the steady state assumption on the system. In the other three papers,
dynamic modelling of metabolic reaction networks has been used. Paper A ranked the
Coordinate Hit-and-run with rounding (CHRR) as the best sampling approach. As
future work, CHRR can be an alternative approach to study the steady state fluxes of
the reactions in the fatty acid synthesis pathway in paper D.

A framework is presented in paper B to evaluate the model reduction under the
parameter uncertainty. The method could be potentially used in paper D, e.g. by
reducing a dynamic model of the full pathway of fatty acid synthesis when the nominal
values of all parameters are available.

Paper C is a biological paper and develops a dynamic model to describe the toxi-
cokinetic interactions between the two chemicals BNF and NOC on the AhR-CYP1A
signalling pathway in fish. The model presented in paper C has the potential to be used
for other chemical mixtures. For instance, a similar synergistic mixture effect on the
CYP1A biomarker has been observed in cells exposed to the polycyclic aromatic hy-
drocarbon benspyrene in combination with an antifungal imidazole drug clotrimazole
(work in progress by Alvord, C.; Lundh, T.; Wiklander, K.; Bernhardsson, A.; Celander,
M.C.).

A dynamic model of the fatty acid synthesis pathway is proposed in paper D. The
model should be calibrated and validated once the experimental time course concentra-
tion values of some of the metabolites are available. The study suggests which steps
should be taken from a modeller’s side to gain the information needed prior to enter-
ing a dialogue with experimentalists concerning the purpose of designing experiments.
A common feature of papers C and D is that, in both, a dynamic model of the form of
Eq. 4.1 is constructed for two different reaction networks using the kinetics discussed
in Section 4.1.
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Abstract

Reaction rates (fluxes) in a metabolic network can be analyzed using constraint-based

modeling which imposes a steady state assumption on the system. In a deterministic

formulation of the problem the steady state assumption has to be fulfilled exactly, and the

observed fluxes are included in the model without accounting for experimental noise. One

can relax the steady state constraint, and also include experimental noise in the model,

through a stochastic formulation of the problem. Uniform sampling of fluxes, feasible in both

the deterministic and stochastic formulation, can provide us with statistical properties of the

metabolic network, such as marginal flux probability distributions. In this study we give an

overview of both the deterministic and stochastic formulation of the problem, and of avail-

able Monte Carlo sampling methods for sampling the corresponding solution space. We

apply the ACHR, OPTGP, CHRR and Gibbs sampling algorithms to ten metabolic networks

and evaluate their convergence, consistency and efficiency. The coordinate hit-and-run with

rounding (CHRR) is found to perform best among the algorithms suitable for the determin-

istic formulation. A desirable property of CHRR is its guaranteed distributional convergence.

Among the three other algorithms, ACHR has the largest consistency with CHRR for

genome scale models. For the stochastic formulation, the Gibbs sampler is the only method

appropriate for sampling at genome scale. However, our analysis ranks it as less efficient

than the samplers used for the deterministic formulation.

Introduction

Cell metabolism involves many chemical reactions, catalyzed by thousands of enzymes, and is

often represented as metabolic networks [1]. The dynamics of a metabolic network, consisting

of m metabolites and n reactions, can be mathematically modelled by a system of Ordinary

Differential Equations (ODEs) written in short form as

dx
dt

¼ SvðxðtÞ;α; tÞ: ð1Þ

Here, x 2 Rm is a vector containing of metabolite concentrations, α 2 Rk is a vector of

parameters, S 2 Rm�n
is the stoichiometric matrix, i.e. a matrix representation of the network,

and vðx;α; tÞ 2 Rn
are the flux rates in the n reactions [2].
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The stoichiometric matrix S is constructed so that element Sij is positive (negative) if metab-

olite i is created (consumed) by reaction j, represented by the flux rate vj, and is assumed con-

stant. A challenge is to establish models of the different flux rates, in general nonlinear in x,

and to estimate the k parameters in α through in-vivo and in-vitro experiments. The non-lin-

earity of the ODE system also makes the system susceptible to chaotic behavior, bifurcation

and sensitivity to parameter values [3].

In Flux Balance Analysis (FBA) [4] the model system is assumed to be in a steady state

dx
dt

¼ S v ¼ 0; ð2Þ

i.e. the problem goes from being a set of differential equations in x to become an algebraic

problem, with the flux rates v as unknowns. Often the flux rates are constrained with upper

and lower bounds

vlb � v � vub: ð3Þ

However, since a typical metabolic network has fewer metabolites than reactions, i.e. m <

n, the system in Eqs (2) and (3) is in general undetermined. The system might have many feasi-

ble solutions in a closed convex polytope, the n-dimensional analogue to the three dimensional

polyhedron, formed by the intersection of the kernel of S and the linear inequalities in Eq (3)

[5]. A unique solution might be found by introducing an objective function which aims to

optimize some biological functionality, for example maximizing cell growth rate or ATP pro-

duction of an organism [2]. A challenge in FBA is to choose the most appropriate objective

function.

An alternative to FBA, which avoids the need to specify an objective function, is to sample

(uniformly) from the flux polytope defined by Eqs (2) and (3). The solution space can then be

characterized statistically from the set of sampled v vectors in terms of a probability density

function (pdf), which we denote by p(v) [6]. We will distinguish between a deterministic and

stochastic formulation of given metabolic model and the associated flux measurements. The

stochastic formulation is more flexible in that it can account for measurement error and allows

relaxation of the steady state condition in Eq (2).

Fig 1 illustrates the key concepts used in this paper. The simple metabolic network consists

of a single input flux, v1, m = 1 metabolite, and a single output flux v2, i.e. n = 2 fluxes in total.

The resulting constrained steady state equation is given in Fig 1a). Panel b) shows the polytope

representing the solution space, which in this case is a line segment in the v1-v2 plane. Panel b)

also shows the uniform pdf’s p(v1) and p(v2) indicating that all flux values in the feasible inter-

vals are “equally probable”.

Fig 1 illustrates how the deterministic and stochastic frameworks differ in the way they

incorporate flux measurements. In the deterministic case (Panel c), fixing v1 experimentally

uniquely determines v2. Both pdf’s collapse to point masses, and all other a-priori feasible val-

ues have zero probability. In a stochastic framework (Panel d), on the other hand, the uncer-

tainty in the measurement of v1 can be taken into account. When this uncertainty is combined

with constraints imposed by the polytope, the resulting pdf’s p(v1) and p(v2) are non-degener-

ate as shown in Panel d), and displays the marginal likelihood of each feasible flux value.

Another limiting assumption of the deterministic formulation is the exact steady state

assumption. This assumption is not always realistic and should be relaxed to have a model

compatible with the stochastic nature of biological networks [7, 8]. In Fig 1e), we relax the

steady state assumption (2), while still incorporating the uncertain measurement v1. This leads

to wider pdf’s (Panel e versus d), and the solution polytope is not necessarily convex any more.
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For genome-scale metabolic models the dimension (n) of the polytope formed by Eqs (2)

and (3) is typically high and deterministic sampling from such polytopes is challenging [9].

Hence, Monte Carlo (MC) approximations are often used [10]. In Wiback et al. [11] a MC

rejecting sampling algorithm was used to sample low dimensional polytopes. However, this

algorithm becomes inefficient when n is large, so a more commonly used algorithm is the hit-

and-run (HR) [12, 13], which is a Markov Chain Monte Carlo (MCMC) method. Almaas et al.

[14] originally applied the HR algorithm to the bacterium Escherichia coli metabolic network.

The algorithm efficiently samples from the solution space as long as the polytope is isotropic in

scales of the fluxes, i.e. being independent on direction in the high dimensional sample space.

Fig 1. Solution space and sampling pdf p(v) (pink curve) under different experimental setups. (a): Example

metabolic network and corresponding mathematical model. (b): Deterministic formulation without measurements. (c)

and (d): Flux measurement of v1 (orange circle) available in deterministic setup (c) and stochastic setup (d). (e):

Relaxed steady state assumption and flux measurement of v1 in stochastic setup.

https://doi.org/10.1371/journal.pone.0235393.g001
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High dimensional polytopes that are very narrow in some directions are difficult to sample

properly. To cope with this anisotropy problem, the artificial centering hit-and-run (ACHR)

algorithm has been developed [15]. The ACHR algorithm and an algorithm based on ACHR,

known as optimized general parallel sampler (OPTGP) [16], are widely used to sample the

solution space of metabolic models. However, both samplers suffer from convergence prob-

lems due to the non-Markovian nature of ACHR [17]. The ACHR algorithm is implemented

in both the COnstrained Based Reconstruction and Analysis (COBRA) toolbox [18] (in

Matlab) and COBRApy (in Python). The OPTGP is available only in COBRApy. Recently,

rounding procedures have been proposed to remove the heterogeneity issue of the solution

space, and then a modified version of HR is used [17, 19]. Coordinate hit-and-run with round-

ing (CHRR) [19] is also implemented in the COBRA toolbox. The algorithms mentioned so

far are designed to sample the polytope formed by a deterministic formulation of the model

(Fig 1b and 1c). The run time and convergence of the two ACHR based algorithms and CHRR

are compared using three constraint-based models in the study by Herrmann et al. [6].

In the study by Van den Meersche et al. [20] a general framework to solve a linear inverse

problem using a MCMC algorithm is presented. The suggested framework can be used to sam-

ple the solution space of a metabolic network model which is constructed to encode an exact

steady state assumption, bounded fluxes and flux observations with related experimental noise

(Fig 1d). A function is available in the limSolve R package [21] to perform the sampling in this

framework.

Another option is to relax the steady state constraint in Eq (2) while including the flux data

and corresponding noise (Fig 1e). Considering these assumptions, a statistical model using

Bayesian framework has been introduced by Heinonen et al. [22], and a truncated multivariate

normal (TMVN) posterior distribution for the fluxes has been presented. Efficient sampling

from a truncated multivariate normal distribution is a challenging task, and often Gibbs sam-

pling is applied [23]. The Bayesian metabolic flux analysis (BMFA) is implemented in the

COBRA toolbox by Heinonen et al. [22].

To our knowledge this is the first time that both available deterministic and stochastic

frameworks are reviewed and corresponding sampling algorithms are compared to each other.

In this study we have evaluated ACHR, OPTGP and CHRR algorithms which are appropriate

for the deterministic formulation. Even if we use different criteria than the ones used by

Herrmann et al. [6] our results are in good agreement with their findings. In addition, we have

evaluated sampling algorithms xsample() and Gibbs which are related to the stochastic formu-

lation. These algorithms have not been discussed by Herrmann et al. [6].

First we give an overview of available MC sampling algorithms for the different cases pre-

sented in Fig 1, and discuss their pros and cons. Then, an assessment of algorithms in terms of

convergence, consistency and efficiency is given. We conclude the paper with a discussion on

which framework and sampling algorithm might be better to use considering restrictions in

the model and level of uncertainty for available flux measurements.

Survey of sampling algorithms

Below follows a brief description each of the algorithms included in this study, cast in a com-

mon notation. For more details the reader is referred to the background papers.

Deterministic formulation

We begin by describing the standard hit-and-run (HR) algorithm to sample from a convex set.

We then review HR related algorithms to approximate uniform sampling from a convex

PLOS ONE A comparison of Monte Carlo sampling methods for metabolic network models
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polytope, which is a convex set of points, constructed by the exact steady state in Eq (2) and

the capacity constraints in Eq (3) on metabolic fluxes.

The Hit-and-Run sampling algorithm (HR). The standard HR algorithm collects sam-

ples from a given N dimensional convex set P by choosing an arbitrary starting point v(0) 2 P,

setting a = 0 where a is the iteration number and going iteratively through three steps:

1. choosing an arbitrary direction θ(a) uniformly distributed on the boundary of the unit

sphere in RN
;

2. finding the minimum (maximum) value of l 2 R denoted by λmin (λmax) such that v(a) +

λθ(a) 2 P and choose a random step size λ(a) 2 [λmin, λmax];

3. generating a new sample v(a+1) = v(a) + λ(a) θ(a) by taking a step of size λ(a) from the current

sample v(a) in the direction θ(a) and then set a = a + 1.

The HR technique is a MCMC approach since it generates a new sample by using only the

current sample point, which is the definition of the Markov property. Convergence to the tar-

get distribution is guaranteed for a MCMC sampling approach, see for instance [24].

The simple HR algorithm performs effectively in a high dimensional space as long as the

solution space is isotropic. A bottleneck of the standard HR is the diffusion in the presence of

narrow corners in the solution space due to tightly constrained fluxes. In narrow regions HR

has to take small steps and consequently the new sample is close to the previous one. This pre-

vents the sampler to perform a full exploration of the solution space of an irregular shape in a

finite time, and is known as slow mixing.
Artificial Centering Hit-and-Run (ACHR). The artificial centering hit-and-run (ACHR)

was proposed by Kaufman et al. [15] to overcome the problem of slow mixing. In a highly het-

erogeneous solution space a uniform direction choice on the boundary of the unit sphere is a

poor choice. The core idea of the ACHR is to use optimal direction choices in HR to allow for

larger steps along the elongated directions. In each iteration the sampler tries to approximate a

center for the space by computing the mean of all the samples generated so far for each coordi-

nate. Then it chooses randomly a sample from all the samples generated and find a new direc-

tion by normalizing the difference between the selected sample and the current approximated

center. Considering an arbitrary starting point v(0) 2 P, a number of warm up samples Mwarm

� N, setting a = 0 and an initial center ĉ ¼ vð0Þ, ACHR generates samples iteratively by per-

forming four steps:

1. generate a direction: if a < Mwarm (warm up phase), select a direction θ(a) as in the stan-

dard HR approach. Otherwise (main phase) choose a number i uniformly distributed on

{0, 1, . . ., a} and compute a direction θðaÞ
¼ vðiÞ�ĉ

kvðaÞ�ĉk
;

2. choose a random step size λ(a) as in the standard HR;

3. generate a new sample v(a+1) = v(a) + λ(a) θ(a) and then set a = a + 1;

4. update the artificial center by setting ĉ ¼ aĉþvðaÞ

aþ1
.

In each iteration of ACHR in the main phase, the direction is dependent on all previous

iterates and directions and this makes the sampler a non-Markovian algorithm. Therefore it is

not guaranteed that the sequence of iterates converges toward the target distribution.

For genome scale metabolic models, this algorithm might perform slow to sample the poly-

tope formed by the solution space. To make the sampling process faster, an algorithm named

the optimized general parallel sampler (OPTGP) was proposed by Megchelenbrink et al. [16].

In this algorithm the flux through each reaction is maximized and minimized to generate the

PLOS ONE A comparison of Monte Carlo sampling methods for metabolic network models

PLOS ONE | https://doi.org/10.1371/journal.pone.0235393 July 1, 2020 5 / 24

65



2n warm-up points. From warm up points, this algorithm generates multiple short chains in

parallel using the approximated center as in ACHR and it takes only the kth point of the chain

as a sample point [16]. In the study by Megchelenbrink et al. [16] it has been shown that the

OPTGP performs more efficient than the ACHR by generating samples with higher random-

ness in a shorter time. Clearly, the ACHR is at the core of the OPTGP and this leads to a non-

Markovian algorithm. Even though both algorithms are commonly used in the literature, both

of them suffer from convergence problems [17].

Coordinate Hit-and-Run with Rounding (CHRR). As mentioned, the performance of

the HR algorithm can be strongly affected by irregularity in the shape of the polytope P repre-

senting the solution space, known as ill-conditioning. Suppose Rb is the radius of the biggest

ball that can be placed inside the polytope and Rs is the radius of the smallest ball inscribing

the polytope. The time a sampling algorithm takes to converge to the target distribution is

called the mixing time τ and in Lovász et al. [25] it has been shown that the mixing time of the

HR algorithm scales by

t ’ OðN2
R2
s

R2
b
Þ; ð4Þ

where N is the dimension of the polytope. The degree of ill-conditioning for the sampling

problem is measured by Rs/Rb, known as the sandwiching ratio of the body. This ratio depends

on the orders of magnitude of the flux scales and in genome scale problems this number can

reach 105 which indicates very high irregularity of the polytope to be sampled [17].

To reduce the sandwiching ratio and eliminate ill-conditioning, an approach is presented

in Haraldsdottir et al. [19] that consists of two steps; rounding and sampling. In the rounding

phase a maximum volume inscribed ellipsoid is built, based on the presented algorithm in

Zhang et al. [26], to match closely the heterogeneous polytope. Then the polytope is rounded

through transforming the inscribed ellipsoid to a unit ball. A variant of HR algorithm known

as coordinate hit-and-run (CHR) [27] is used to sample from the rounded polytope. In the

CHR algorithm the direction θ(a) is selected randomly along the coordinate directions instead

of picking randomly from the unit sphere in RN . Otherwise the CHR algorithm operates simi-

lar to the HR. After running the CHR algorithm the sampled points are transformed back to

the original space through an inverse transformation. Since the CHRR uses CHR Markov

chain for sampling purpose, its convergence to the target distribution is guaranteed in contrast

to ACHR based algorithms [28].

Stochastic formulation

In this part we review the studies of Van den Meersche et al. [20] and Heinonen et al. [22] in

which statistical frameworks have been proposed to analyze metabolic fluxes while integrating

flux measurements with their noise in the formulation and relaxing the steady state assump-

tion in Eq (2). To our knowledge, these two studies are the only studies presenting sampling

algorithms applicable at genome scale.

Sampling linear inverse problems (xsample()). In the deterministic formulation repre-

sented by Eqs (2) and (3) if the experimental values for some of the fluxes are available, they

are integrated in the formula by fixing the fluxes at the given values. However, we do not

account for the uncertainty of the flux measurements in the equations if we fix the fluxes at

their measured values and this might result in overconfidence in outcomes and conclusions.

In Van den Meersche et al. [20] the uncertainties corresponding to the experimental values

PLOS ONE A comparison of Monte Carlo sampling methods for metabolic network models
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were included in the Eqs (2) and (3) by adding a noise term to the algebraic equation

Av ¼ b þ �; ð5Þ

where the data vector is denoted by b and corresponding uncertainties are encoded by

� � N(0, S). The diagonal matrix S = diag(σ1, . . ., σn) represents the variances of flux data.

The matrix A is a diagonal matrix where aii is one in the presence of data for vi and otherwise

zero. The model describes the exact steady state phase of the network considering the limited

capacity of the fluxes and it also accounts for the available flux measurements with their exper-

imental noise.

Van den Meersche et al. [20] provided a function named xsample() in R [29] to produce a

set of samples of fluxes v in this framework. The function produces the samples by carrying

out a two-staged process. First the equality constraint S v = 0 is eliminated since all solutions v

for this system of equations can be written as

v ¼ Gu ð6Þ

where G 2 Rn�ðn�rsÞ is an orthonormal matrix formed by the basis for the null space of S (rs is

the rank of S). The linearly dependent variables v 2 Rn
are transformed to linearly indepen-

dent variables u 2 Rn�rs . The constraints in terms of u are

AGu ¼ b þ � ð7Þ

vlb � Gu � vub: ð8Þ

In the second stage the variables u are sampled from a proposed TMVN distribution with

probability density function

pðuÞ /

(
e�1

2
ðAGu�bÞTS�1ðAGu�bÞ if vlb � Gu � vub

0 otherwise
: ð9Þ

To sample from this distribution, the xsample() applies the Metropolis algorithm [30]. The

xsample() function in R allows to examine three different jump (proposal) algorithms. How-

ever, here we discuss only one of them named the mirror algorithm which has been found to

perform more efficient for high-dimension problems [20]. This algorithm uses the inequality

constraints in Eq (8) as reflective planes. Assume u(a) is a feasible sample and a new point will

be drawn

uðaþ1Þ

0 2 NðuðaÞ; OÞ ð10Þ

where the normal distribution is in the unrestricted space with mean u(a) and a set of fixed

standard deviations collected in the diagonal matrix O ¼ diagðo1; . . . ; on�rs
Þ. If the point

uðaþ1Þ

0 fulfills all inequalities in Eq (8), it is accepted as the point u(a+1) to be evaluated by the

acceptance ratio test in the Metropolis algorithm [40]. But if the point uðaþ1Þ

0 violates some

inequalities, it is mirrored consecutively in the hyperplane formed by violated inequalities

[20]. Then the resulting point u(a+1) satisfies all inequalities and will be evaluated through the

acceptance ratio test to be accepted or rejected.

The diagonal elements of the matrix O are the jump lengths of the Markov Chain. The

jump lengths define the step lengths taken and they determine the distance covered within

the solution space in one iteration and also the number of reflections in the solution space

PLOS ONE A comparison of Monte Carlo sampling methods for metabolic network models
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boundaries. Due to this the jump lengths have a significant influence on the efficiency of this

algorithm.

Bayesian Metabolic Flux Analysis (BMFA). So far we have considered frameworks in

which the metabolic network is constrained to the exact steady state. In 2016, it was shown

that metabolites can accumulate or deplete in a metabolic network [8] and recently MacGilliv-

ray et al. [7] studied metabolic networks under the relaxed steady state assumption through

the so-called RAMP model. They have presented an argument that the exact steady state con-

straint (Eq (2)) on the fluxes should be relaxed to be in agreement with the stochastic nature of

a cell. In 2019, a statistically relaxed steady state model was presented in Heinonen et al. [22]

Sv ¼ 0 þ β; ð11Þ

where β � N(0, Γ) is a vector of disturbances around the steady state assumption S v = 0. The

allowed variances around the steady state are collected in the diagonal matrix Γ = diag(γ) =

diag(γ1, . . ., γm). Note that by considering very small variances, γ ! 0, the model will be com-

patible with the strict steady state case.

Heinonen et al. [22] implemented Eq (11) in a Bayesian framework in which multivariate

Gaussian priors for fluxes were assumed. The prior mean for a flux was set to zero or to the

closet value to zero considering the flux upper and lower bounds. The prior variances as a

hyperparameter defines the a priori values a flux can take. A TMVN distribution TMVN(μ, C,

vlb, vub) was proposed as the target distribution from which fluxes v were sampled. For sampling

purpose, Heinonen et al. [22] used the Gibbs algorithm [31], which is a MCMC algorithm suit-

able for Bayesian models. Detailed formulas for the mean vector μ and the covariance matrix C
can be found in [22].

In Heinonen et al. [22], the flux variables v were first transformed to uncorrelated variables

~v ¼ L�1ðv � μÞ using a Cholesky decomposition of the covariance matrix C = LLT to make

the sampling process more efficient. Thereafter the problem was converted to sample ~v
from the distribution TMVNð ; I; ~v lb; ~vubÞ where I is the identity matrix, ~v lb ¼ vlb � Lμ and

~vub ¼ vub � Lμ. In the Gibbs algorithm an initial sample point ~vj
ð0Þ

is drawn from the Gaussian

prior distribution for j = 1. . .n. Then, at each iteration the algorithm cyclically (j = 1. . .n)

draws ~vj from the conditional posterior density pð~vj j ~v�jÞ, where ~v�j is a vector including all

fluxes except the flux ~vj. Using properties of the TMVN distribution, it can be shown that these

conditional distributions again are within the TMVN, and Heinonen et al. [22] has provided

closed form expressions for the upper and lower bounds ~v lb and ~vub.

A summary of the sampling algorithms and their main characteristics are presented in the

Table 1.

Experimental setup and implementation

The four sampling algorithms (ACHR, OPTGP, CHRR and Gibbs) were applied to sample

from ten metabolic models, which were obtained from the BiGG database [32]. The sampling

Table 1. A summary of sampling algorithms and their main characteristics.

Sampling algorithm Programming language Convergence guaranteed? Relevant formulation

ACHR Matlab/Python No Deterministic

OPTGP Python No Deterministic

CHRR Matlab Yes Deterministic

Gibbs/BMFA Matlab Yes Stochastic

xsample() R Yes Stochastic

https://doi.org/10.1371/journal.pone.0235393.t001
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algorithms were applied on one core model (E. coli core) and nine genome scale metabolic

models with the number of fluxes ranging from n = 95 to n = 3741. The M = 20, 000 samples

were generated for each flux in each model, with a thinning parameter of 1000 in each sam-

pling algorithm where we kept every 1000 draw from the target distribution and discarded the

rest.

The OPTGP and Gibbs algorithm sampled from the full models, while ACHR and CHRR

sampled from reduced versions of the models, obtained as follow. The upper and lower bounds

on the fluxes (vlb and vub) were changed to the minimum and maximum achievable flux values

computed through flux variability analysis [33]. Then, the model was reduced by discarding the

reactions which could not carry any flux (null reactions with maximum and minimum achiev-

able values less than a threshold). Table 2 shows summary statistics for each metabolic model,

including the number of reactions before (n) and after (nred) reduction. Also shown are AFR

values, i.e. Average Flux Range of the full models calculated by AFR ¼ 1=n
Pn

j¼1
ðvubj � vlbj Þ.

In both ACHR and CHRR the number of initial iterations that have been discarded at the

beginning of the sampling (warm up) was set to Mwarm = 20, 000. The design of the OPTGP

algorithm is such that it always generates a fixed number (2n) of warm up points. For BMFA

there is no warm up phase since its Gibbs algorithm starts out from the posteriori mode of a

truncated normal distribution.

In the BMFA framework the variances γi around the relaxed steady state condition of

Eq (11) were set to γi = 0.0001 (i = 1. . .m), as in Heinonen et al. [22]. Defining a nearly strict

steady state condition by using such small variances (γi) should not have a large impact on

generated samples by Gibbs algorithm. The average flux ranges (AFR) reported in Table 2

indicate that the models have different flux ranges and in the BMFA framework, the prior

variances for fluxes should be adjusted according to the flux ranges. For all models except

iLJ478 and iSB619, the prior variances for fluxes were set to (min(0.5(vub − vlb), 1000))2 to

cover the flux ranges. To avoid numerical instabilities in the covariance matrix for the iLJ478

and iSB619, the prior variances were set to (min(0.5(vub − vlb), 500))2 and (min(0.5(vub − vlb),

100))2, respectively.

The implementations of the ACHR and CHRR algorithms available via the sampleCbModel()
function from the COBRA toolbox (version 3.0) [18] of Matlab was used. The bmfa() from the

COBRA toolbox was applied to generate the samples based on the Gibbs algorithm used in the

BMFA. We have made a minor change in the script of the bmfa() function in order to allow the

Table 2. Constraint-based metabolic models and run times (min) for different sampling algorithms. The m, n, nred denote the number of metabolites, reactions of the

full model and of the reduced model, respectively. The AFR is the Average Flux Range of the full model. The 20, 000 samples for each flux in each metabolic model were

drawn on an Intel Core i7 at 2.5 GHz. In all sampling algorithms the thinning parameter was set to 1000.

Network Run time

Model m n nred AFR ACHR (Deterministic) OPTGP (Deterministic) CHRR (Deterministic) Gibbs/BMFA (Stochastic)

E. coli core 72 95 87 1474 68.78 min 14.81 min 6.17 min 69.96 min

iAB_RBC_283 342 469 453 1080 99.67 min 18.53 min 9.46 min 1148.50 min

iLJ478 570 652 380 1292 91.08 min 19.83 min 7.64 min 1884.00 min

iSB619 655 743 450 1267800 96.09 min 20.83 min 9.55 min 2173.50 min

iHN637 698 785 522 1257 103.38 min 22.13 min 7.85 min 2483.50 min

iAT_PLT_636 738 1008 1008 1444 132.55 min 27.56 min 13.81 min 2244.80 min

iJN746 907 1054 652 1329200 116.40 min 24.80 min 10.67 min 3179.70 min

iSDY_1059 1888 2539 1502 1248 148.64 min 40.15 min 18.40 min 17393.00 min

iJO1366 1805 2583 1687 1242 192.22 min 38.43 min 21.93 min 18177.00 min

Recon1 2766 3741 2467 1414100 308.97 min 51.71 min 36.20 min 22268.00 min

https://doi.org/10.1371/journal.pone.0235393.t002
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user to adjust the prior variations for fluxes according to the flux ranges of a metabolic model.

The samples from OPTGP algorithm were drawn using the optGPSampler() function from the

COBRA toolbox in Python (COBRApy) [34].

Three of the algorithms (ACHR, OPTGP and CHRR) were run on a computer with an Intel

Core i7 processor (2.5 GHz). The run time of the algorithms while sampling each of the ten

models were measured using tic/toc function in Matlab and time function in Python which

reports the elapsed “wall-clock” time (Table 2). Both OPTGP and CHRR were run in parallel

on four threads, while both ACHR and Gibbs were run on a single thread, since their current

implementation can not exploit parallelism. The more computationally demanding Gibbs

algorithm was run on a server with 32 Cores (2.7 GHz). A pro-rata conversion was applied in

order for its run time to be comparable to that of the three other algorithms. To this end 200

samples from the Gibbs sampler were generated on the Intel Core i7 processor, and the corre-

sponding run time formed the basis of the conversion factor.

Convergence diagnostics

The M = 20, 000 samples from each algorithm have been validated and compared in R [29].

A sample generated by a MCMC algorithm is guaranteed to be representative of the true flux

distribution only if the sample chain has converged (in distribution). It is hence customary

to apply one or more convergence diagnostics to avoid incorrect inference [6]. In the present

study we investigated and compared four different convergence diagnostics. Distributional

convergence may be assessed within a chain or across multiple chains run in parallel, started

from different values inside the solution space. Not all the implementations of the algorithms

used here allows the starting to be controlled, so we focused our comparison on single-chain

diagnostics. The diagnostics were applied separately to each flux of a model, and we have pre-

sented the proportion of converged chains as a summary statistic.

When applying a MCMC method there are three constants that must be specified. First, the

number of warm up samples, Mwarm, determines how many samples must be discarded ini-

tially before distributional convergence is achieved. Then sampling continues for M iterations,

which yields the sample v(1), . . ., v(M) that is used for inference. The third constant is the so

called “thinning” parameter, which in the current study was set to 1000 in all sampling algo-

rithms. This means that only every 1000th sample from the underlying Markov chain was

kept. The purpose is to reduce the autocorrelation. Note that autocorrelation in the chain per

se does not invalidate the inference drawn, but it reduces the information content.

Below the four diagnostic tools are reviewed briefly. For more details the reader is referred

to the background papers. We let v(1), . . ., v(M) denote the sample chain for one specific flux.

Raftery and Lewis

Based on a single chain of flux samples (pilot chain), v(1), . . ., v(M), the Raftery and Lewis diag-

nostic [35] provided an estimate of the number of iterations in the warm up phase, Mwarm, and

the required number of further iterations, Nmax, to estimate the quantile q to within a precision

of ±e with probability p. It further determined the minimum number of iterations, Nmin, that

should be run as a pilot chain assuming independent samples. Using these statistics, this

test determined a dependence factor I = (Mwarm + Nmax)/Nmin as a measure of dependency

between consecutive samples (autocorrelation). Here we considered the chains with I > 5 as

highly autocorrelated chains that were not run long enough. Here, all statistics in Raftery and

Lewis diagnostic were calculated to estimate a quantile of 0.025 to within a precision of ±0.005

with probability 0.95 using the raftery.diag() function from the CODA R package [36].
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Geweke

Geweke [37] proposed a single-chain convergence diagnostic which compares the average

value of the first and last segments of the chain v(1), . . ., v(M). Let B1 denotes the first 10% of the

samples, and B2 denotes the last 50%. The test statistic for the Geweke diagnostic is the Z-score

Z ¼
�B1 � �B2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

�B1
þ s2

�B2

q ; ð12Þ

where �B1 and �B2 are the averages of the two segments, and s2
�B1

and s2
�B2

are the associated

standard errors. If the chain has converged in distribution, �B1 and �B2 have the same expected

(mean) value. When M is sufficiently large, �B1 and �B2 will approximately be normally distrib-

uted, and Z will follow a standard normal distribution. Here, the Z-score was computed using

the geweke.diag() function from the CODA package in R [36]. The convergence criterion for

the Geweke diagnostic is |Z|�1.28.

Interval Based Scale Reduction Factor (IPSRF)

Our third convergence diagnostic is based on the Gelman-Rubin diagnostic [38]. This is

originally a multiple-chain diagnostic which compares the difference in across- and within-

chain variances. The idea is that if all chains have converged the sample variances will be

the same. The original Gelman-Rubin diagnostic assumes normality of the samples. As a

typical flux distribution is not normal for a genome scale metabolic model [6], a modified

version known as the Interval-based potential reduction factor (IPSRF) should instead be

used [39].

To apply the IPSRF diagnostic to a single chain, the first and last third of the chain can

be treated as two “parallel” chains. The resulting IPSRF value was estimated using the ipsrf()
function in the MCMC diagnostics toolbox in Matlab. The test criterion is IPSRF < 0.9 or

IPSRF > 1.1, in which case the single chain was considered to have not converged.

Hellinger distance

The Hellinger distance is a density based convergence diagnostic that can be used for a single

chain or multiple chains [40]. The basic idea is to compare the flux density estimated from the

first third segment of the chain, p1(v), with that of the last third segment, p3(v). The probability

densities p1 and p3 are calculated using the densityfun() function of the statip package in R

[41]. The Hellinger distance statistic is defined as

HDðp1; p3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

Z 1

�1

� ffiffiffiffiffiffiffiffiffiffi
p1ðvÞ

p
�

ffiffiffiffiffiffiffiffiffiffi

p3ðvÞ

q �2

dv
r

: ð13Þ

It is a proper metric, symmetric in p1 and p3. Further, it is bounded by 0 � HD � 1, where

0 indicates no divergence and 1 indicates no common support between the two distributions.

As suggested by Boone et al. [40], if the Hellinger distance between the two probability density

functions of two segments was less than 0.1 (HD � 0.1), then the chain has been considered

to have converged else not. We wrote a script in R to calculate the Hellinger distance where we

used the integral() from the pracma package [42].
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Comparison of algorithms

Correlation coefficient

The two most important statistical summaries of a sample v(1), . . ., v(M) are its mean and vari-

ance:

�v ¼
1

M

XM

l¼1

vðlÞ and s2 ¼
1

M � 1

XM

l¼1

ðvðlÞ � �vÞ
2
: ð14Þ

If two sampling algorithms yield the same flux distributions, they should give the same val-

ues of �v (and similarly for s2) for a given reaction. We compare algorithms in terms of their

Pearson correlation across reactions for both of these quantities. In term of the sample average

the Pearson correlation between Algorithm 1 and 2 is given as

r ¼

Pn
j¼1

½ð�vj;1 � ��v 1Þð�vj;2 � ��v 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
ð�vj;1 � ��v 1Þ

2
ð�vj;2 � ��v 2Þ

2
q ð15Þ

where �vj;1 is the sample average for the jth flux, and ��v1 ¼ 1

n

Pn
j¼1

�vj;1 is the across-flux average,

both for Algorithm 1 (and similar quantities for Algorithm 2). The Pearson correlation is well

suited as a measure of association because the flux average �v will be approximately normally

distributed by the central limit theorem. Further, r varies between −1 and +1. A perfect posi-

tive (linear) association is indicated by a value of + 1, while 0 represents no association [43].

We used CHRR as a reference in the comparison with the three other algorithms. Outliers

were determined in the following way, and subsequently omitted when calculating the Pearson

correlation. In the case of CHRR versus ACHR, say, a reaction was considered an outlier if the

difference �vCHRR � �vACHR exceeded 2 standard deviations (of this difference, across reactions).

A similar outlier criterion, based on sCHRR − sACHR, was applied on the sample standard devia-

tions s. The set of omitted reactions includes the outliers in both the means and the standard

deviations of the flux values. The value of the Pearson correlation, r, is calculated using the

cor() function from the stats package in R [29].

Kullback-Leibler divergence

We also compared the distributional shape resulting from different algorithms, using the Kull-

back-Leibler divergence (KLD) as a measure of dissimilarity. Let p1(v) and p2(v) denote flux

densities resulting from two algorithms, and define

KLDðp2jp1Þ ¼

Z 1

�1

ln
p1ðvÞ

p2ðvÞ

� �

p1ðvÞdv: ð16Þ

It may be shown that KLD(p2|p1)�0, and that it is zero only if p1 and p2 are identical func-

tions [44]. Note that KLD(p2|p1) is not symmetric in p1 and p2, we will refer to p1 as the refer-
ence. The CHRR will be used as the reference against the three other methods. A script has

been written in R to calculate the KLD in Eq (16). The probability densities p1 and p3 are calcu-

lated using the density() function of the stats package in R [29].

We classified the accuracy of the approximation as good agreement KLD < 0.05, medium
agreement 0.05 � KLD � 0.5 and poor match KLD > 0.5. This classification was adopted from

De Martino et al. [17].
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Effective sample size

The effective sample size (ESS) of an autocorrelated MCMC sample of size M is the equivalent

number of independent draws from the target distribution. Gelman et al. [45] defines the effec-

tive sample size (for sample mean) as

ESS ¼
M

1 þ 2
P1

k¼1
rk

; ð17Þ

where ρk is the autocorrelation at lag k. From a given sample v(1), . . ., v(M) the estimate of ρk is

given as

rk ¼
1

M�k

PM�k
l¼1

ðvðlÞ � �vÞðvðlþkÞ � �vÞ

1

M

PM
l¼1

ðvðlÞ � �vÞ
2

; ð18Þ

where �v is the mean of the samples [46]. Due to the random walk like behaviour of MCMC

algorithms, one typically has 0 � ρk � 1 which implies ESS � M. A low value of ESS/M indi-

cates that the algorithm generates highly autocorrelated samples (large ρk). The higher the

autocorrelation is, the less information about the target distribution is contained in a sample

of fixed size. Increasing the value of the thinning parameter will reduce the autocorrelation,

but this gain comes at a computational cost.

In order to compare the efficiency of two algorithms in terms of ESS, the computation time

must be taken into account since one algorithm may generate a larger number of independent

samples slowly, while another may generate highly autocorrelated samples fast. The efficiency

of each algorithm in generating independent samples per time unit for each individual flux

was measured by

E ¼
ESS

Run time
; ð19Þ

where the ESS value has been calculated with the effectiveSize() function from the CODA R

package [36] and the run time is reported in Table 2 for each algorithm across the ten models.

Results

The sampling algorithms have been compared on the ten metabolic models using the criteria

described earlier. First, the degree of convergence was investigated. Secondly, the flux densities

generated by the different algorithms were compared. Finally, the computational efficiency of

the algorithms was assessed.

We were only able to successfully apply the xsample() algorithm in one (E. coli core) out

of the ten models (details given below). Hence, the comparison of algorithms was performed

only between CHRR, ACHR, OPTGP and the Gibbs sampler.

Convergence of algorithms

For all ten models, the convergence of the generated samples was assessed (by reaction) via

the four single-chain convergence diagnostics. Fig 2 shows the percentage of reactions that

failed for each of the Raftery and Lewis diagnostic (I > 5), Geweke test (jZj>1.28), IPSRF

test (IPSRF<0.9 or IPSRF>1.1) and Hellinger distance test (HD > 0.1). In the majority of the

models, CHRR was the algorithm with the least convergence problems. All four diagnostics

agree on this, but when it comes to the ranking of ACHR, OPTGP and Gibbs sampler, the

diagnostics tell less coherent stories, so it is difficult draw general conclusions. ACHR did
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however seem to have convergence problems for many models, and the Gibbs sampler had

problems for E. coli core in particular.

We only show summaries statistics for the diagnostics. It was also possible to inspect con-

vergence for individual reactions, and when doing so we found that it is not necessarily the

same reactions that failed to converge according to the different diagnostics. Therefore a com-

bination of convergence diagnostics should be used to make a certain decision about sampling

convergence. Apparently, the IPSRF test is more liberal in accepting convergence, but it should

be noted that this conclusion is specific to our chosen settings (the default) for that diagnostic.

Comparison means and standard deviations

Fig 3 compares CHRR against each of three other algorithms in terms of sample means (�v)

and standard deviations (s) as given by Eq (14). The figure only shows four models (E. coli

core, iHN637, iAT_PLT_636 and Recon1), but plots for the remaining six models are provided

in the online Supplementary (S1 Fig).

In general, the four algorithms returned very similar sample means �v, as can be seen from

the fact that the points in the plot lie along the identity line. This is also reflected in a Pearson

correlation close to r = 1. The exception is the Gibbs sampler (versus CHRR), especially for the

Recon1 model. For this model the range of �v values was much smaller for the Gibbs sampler

than for CHRR. Note, however, that the Pearson correlation is substantial (r = 0.50), which

implies that there is still a strong linear relationship, although with slope different from 1. The

same effect, but to a much smaller degree, is also observed for the iAT_PLT_636 model. The

effect is known as “shrinkage-toward-zero”, and is caused by the prior distribution applied

to fluxes in the Gibbs algorithm. Ideally, such priors should be made “non-informative” by

choosing the prior variance sufficiently large, but in the case of Recon1 it was not possible

to make the prior cover the full flux range (AFR in Table 2) without encountering numerical

problems in the Gibbs sampler.

Fig 3 includes also the reactions for which the algorithms did not converge, but reactions

for which at least one of the two algorithms in a comparison failed the Geweke test are marked

Fig 2. Four convergence diagnostics across four algorithms and ten models. The vertical axis shows the proportions

of reactions in each model rejected by the different convergence tests: Raftery and Lewis (RL), Geweke (G), IPSRF and

Hellinger distance (HD) on the horizontal axis.

https://doi.org/10.1371/journal.pone.0235393.g002
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in red. For E. coli core there is a tendency that the largest fluxes (negative or positive) face con-

vergence problems for the Gibbs sampler, while for the other algorithms and models there is

no such clear pattern. Recall that Fig 2 summarized convergence for each algorithm separately.

The standard deviations from ACHR, OPTGP and CHRR agree well in general, i.e their

green points lie close to the identity line. For the Recon1 model, OPTGP has lower variance

than CHRR, and there is more spread (r = 0.94). The Gibbs sampler is in fairly good agreement

with CHRR, but for Recon1 its standard deviations are much smaller than those from the

Gibbs sampler. This reflects the shrinkage-toward-zero effect caused by the narrow Bayesian

priors applied in the Gibbs sampler, as discussed above. For iAT_PLT_636 the standard devia-

tions from the Gibbs sampler exceed those of CHRR, indicating that the Gibbs sampler is bet-

ter (than CHRR) able to explore the flux space for this model.

The % outliers shown on top of each plot indicates the percentage of reactions for which

large differences have been observed between the sample means or standard deviations from

two algorithms. Note that in the plots of standard deviations the reactions with the standard

deviations smaller than 99% quantile have been included.

Fig 3. Scatter plot of sample means (blue) and standard deviations s (green) for ACHR, OPTGP and the Gibbs

sampler (vertical axis) versus CHRR (horizontal axis) for four models. Sample means (�v) and standard deviations

(s) are calculated according to Eq (14). The Pearson correlation r is shown on top of each scatter plot, and the

proportion of outliers removed is given in parenthesis. The sample means and standard deviations marked in red

correspond to the reactions for which at least one of the two algorithms in a comparison failed the Geweke test. The

identity line (pink dashed) is included to ease comparison.

https://doi.org/10.1371/journal.pone.0235393.g003
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Comparison of marginal distributions

While Fig 3 compares algorithms only in terms of sample mean and standard deviation, Fig 4

compares the full distributional shape of the flux densities. The figure shows cumulative distri-

bution function of KLD (Kullback-Leibler divergence) across reactions, where CHRR is used

as the reference for each of ACHR, OPTGP and the Gibbs sampler. Only reactions for which

both algorithms in a comparison, ACHR and CHRR say, converged according to the Geweke

diagnostic are included in the figure. The KLD is affected by discrepancies in means and stan-

dard deviations, so any off-diagonal reactions in Fig 3 will result in a large KLD value. In addi-

tion, Fig 4 shows differences caused by different degree of skewness in the densities.

Before discussing the results in Fig 4, we recall the qualitative (good–medium–poor) scale of

the KL divergence (KLD). To get a visual impression of what this amounts to in a density plot,

Fig 5 shows flux densities and KLD values for the Fumarase mitochondrial reaction (v553) of

the iAT_PLT_636 model. According to this KLD scale ACHR has a good similarity to CHRR

(KLD = 0.01 < 0.05), and OPTGP has a medium similarity to CHRR (0.05 < KLD = 0.43 < 0.5)

while the Gibbs algorithm has a poor similarity to CHRR (KLD = 0.82 > 0.5). Returning to Fig

4, it is seen that almost all of the reactions of the iHN637 model are in the good category for all

three algorithms. The E. coli core model is the only model for which both the ACHR, OPTGP

and the Gibbs algorithm present good consistency with CHRR for all reactions (KLD < 0.05).

For the other eight model, however, a large proportion of the reactions are in the poor category.

Taking iAB_RBC_283 as an example, for the Gibbs sampler approximately 50% of the reactions

have KLD > 0.5. For ACHR and OPTGP the proportion with KLD > 0.5 is somewhat lower

(10-15%). In Recon1 a large proportion of the reactions are outside the range of the horizontal

axis for the Gibbs sampler, and hence do not show in the plot. These reactions are affected by

the shrinkage-towards-zero effect displayed in Fig 3.

The general message from Fig 4 is that ACHR is producing flux distributions most similar

to CHRR. This conclusion is based on the fact that its cumulative distribution curve (cyan)

lies above the two others. The latter does not preclude ACHR having a lower KLD value than

OPTGP, say, for individual reactions, but it is a statement that is valid as a summary across

all reactions. For the majority of the ten models, OPTGP was much closer to ACHR in

Fig 4. Comparison of flux densities between algorithms by model in terms of the KL divergence. Each plot shows

the cumulative distribution functions of KLD across reactions, as defined in Eq (16) with CHRR as the reference.

https://doi.org/10.1371/journal.pone.0235393.g004
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comparison to the Gibbs sampler. The only exception to this was the iSB619 model for which

the cumulative distribution function for OPTGP lies below that of Gibbs sampler. In conclu-

sion, ACHR has the highest consistency with CHRR, followed by OPTGP. The Gibbs sampler

is ranked as the least consistent method with CHRR. The latter is most likely due to the shrink-

age-towards-zero effect caused by the use of informative priors in the Gibbs sampler.

Sampling efficiency

Fig 6 compares the cumulative distribution functions for the efficiency measure E, given by Eq

(19), of the different metabolic models, separately for each sampler. Recall that for two curves

that never cross each other, such as the yellow (E. coli core) and any of the blue curves in Panel

a), the distribution of E for one model (blue) is stochastically larger than the other (yellow).

The models have been categorized in four groups based on the number of reactions:

n < 100, 100 < n < 1000, 1000 < n < 3000 and n > 3000. The yellow curve (E. coli core) has

the highest effective sample size per time unit for all four algorithms. This was expected as E.

coli core is the smallest model (n = 95 reactions). If it can be assumed that the number of

metabolites (m) is proportional to n, the computation time for the matrix vector product S v in

Eq (2) grows as n2 (ignoring that S is a sparse matrix). Assuming that the product S v consti-

tutes the main computational task of any of the sampling algorithm, we expect E will decrease

proportionally to n−2 as n increases. This theoretical expectation is confirmed, at least qualita-

tively, in Fig 6 for all four sampling algorithms. The largest model, Recon1, has very low sam-

pling efficiency.

When comparing the four algorithms, we first note that the scales on the horizontal axes

differ across panels in Fig 6. The CHRR has the highest sampling efficiency, followed by the

ACHR, then by the OPTGP, and finally by the Gibbs sampler. Note that ACHR and CHRR

sample the reduced models (of size nred), while OPTGP and Gibbs sample the full models (of

size n). We see from Table 2 that n/nred is never larger than 2, and attempting to account for

model size by multiplying the efficiency of the Gibbs sampler by 4, it is observed that the Gibbs

algorithm is still the algorithm with least efficiency.

Fig 5. Flux densities resulting from different algorithms and corresponding KLD values (relative to CHRR). The

reaction shown is the Fumarase mitochondrial reaction (v553) of the iAT_PLT_636 model.

https://doi.org/10.1371/journal.pone.0235393.g005
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To further illustrate how sampling efficiency depends on model size we computed the time

it takes to generate 100 independent (uncorrelated) samples. This was computed as 100(mean
(ESS))−1 � (Run time) = 100(mean(E))−1 where run time is provided in Table 2 and E is given

by (19), and the results are shown in Fig 7. As expected, the computation time in general

increases with model size, but there are exceptions to this (values of n in the rage 1000 to 2500

for OPTGP). These exceptions show that there are other aspects of a model than n that deter-

mines sampling efficiency. For most of the models, ACHR and the Gibbs sampler (right verti-

cal axis) are slower than OPTGP and CHRR (left axis). We observe that ACHR is the slowest

algorithm to generate 100 independent samples, closely followed by the Gibbs sampler which

we recall performs sampling on the full models.

To shed further light on differences in sampling efficiency between algorithms, we inspected

the autocorrelation functions ρk, given by Eq (18), for two individual reactions (Fig 8). Also

shown in the figure is the corresponding measure of effective sample size (ESS) defined in

Fig 6. Comparison of sampling efficiency across four algorithms and ten models. The vertical axis shows the

proportions of reactions being less than a given value of the efficiency measure E on the horizontal axis. The ten

different curves correspond to the ten models which are classified in four groups according to their number of

reactions (see legend).

https://doi.org/10.1371/journal.pone.0235393.g006
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Eq (17). The algorithms differ widely in how fast ρk decayed as a function of k, and conse-

quently, in the value of ESS. We note, however, that the numerical values shown in Fig 8 are

specific to the value of the thinning parameter (1000) used, so absolute values are not relevant.

The ACHR was the algorithm with the lowest ESS, followed by OPTGP. For the iAT_PLT_636

Fig 7. Computation time needed to generate 100 uncorrelated samples by model size (n) and algorithm. Each

value of n shown on the horizontal axis correspond to one of the ten metabolic models, and is taken from Table 2. The

left vertical axis is used for OPTGP and CHRR, while the right vertical axis belongs to ACHR and the Gibbs sampler.

https://doi.org/10.1371/journal.pone.0235393.g007

Fig 8. Autocorrelation ρk (acf) by lag for the flux v877 in the iAT_PLT_636 model (Panel a) and the flux v2277 in

the iJO1366 model (Panel b) for each sampling algorithm. These fluxes, v877 and v2277, correspond to 1D-myo-

Inositol 4-phosphate phosphohydrolase and Ribose-1,5-bisphosphokinase reactions in the iAT_PLT_636 and iJO1366,

respectively. The dotted blue lines indicate lag-wise 95% confidence intervals (CIs).

https://doi.org/10.1371/journal.pone.0235393.g008

PLOS ONE A comparison of Monte Carlo sampling methods for metabolic network models

PLOS ONE | https://doi.org/10.1371/journal.pone.0235393 July 1, 2020 19 / 24

79



model (Panel a), the Gibbs sampler yields an almost uncorrelated chain, meaning that the thin-

ning parameter could have been set to a lower number than 1000, as we currently are discarding

some useful information about the flux distributions. For iJO1366 (Panel b), CHRR had almost

no autocorrelation, while the Gibbs sampler had a substantial autocorrelation. This shows that

the details of the model plays an important role in determining which algorithms is the most

efficient in terms of generating independent samples.

Performance of xsample()
The xsample() function in R [29] was attempted on the reduced versions of the ten metabolic

models, but we were only able to successfully run it for the E. coli core model. The reason for

the problem may be the large variation in flux ranges for the nine other models. For instance,

the minimum and maximum of the flux ranges were of orders 10−6 and 103, respectively, in

the reduced version of iAB_RBC_283. The jump length is a compromise to sample over these

9 orders of magnitude in which a small jump length is needed for the fluxes with small range

and a large jump length is needed for the fluxes with large range. In the xsample() function,

the jump lengths which are the diagonal elements of the matrix O in Eq (10) were set to

0:5ðvubred � vlbredÞ in order to scale them to the range of the fluxes. However having large step

lengths made the sampling algorithm very inefficient since a lot of mirroring steps were

required and the algorithm rejected many draws in each iteration.

We also tried 0:01ðvubred � vlbredÞ for the jump lengths, and the algorithm was able to sample

all the models, albeit very slow. Checking the generated samples, we observed that since the

jump lengths were small the sampler moved barely from the initial flux vector. Due to this the

generated samples were highly autocorrelated and we have not included them in the further

analysis. So the best choice of jump lengths as a hyper parameter in the xsample() was not triv-

ial and one has to use a cluster with simply a lot of brute computing power to deal with this.

For the 20, 000 samples that were successfully obtained from the E. coli core model, apply-

ing the jump lengths 0:5ðvubred � vlbredÞ, a statistical analysis was performed similar to that above

for the other algorithms. The rates of non-convergence according to the four diagnostic tests

were: 0% (Raftery and Lewis), 18.9% (Geweke), 0% IPSRF, and 0% (Hellinger distance). These

are lower than for the other algorithms, except for the Geweke test, but still considerably lower

than the Gibbs sampler (Fig 1). However, the run time of the xsample() to generate the samples

for the E. coli core model was considerably larger than the Gibbs sampler. The scatterplots of

sample means and standard deviations against CHRR look qualitatively similar to those for the

Gibbs sampler in Fig 3.

Discussion and conclusion

In this study we have reviewed and compared five MC sampling algorithms for constraint-

based modeling of metabolic networks (Table 1). The algorithms have been classified as allow-

ing either a deterministic and stochastic formulation of the metabolic model (Fig 1). In the sto-

chastic formulation, which is the most general, the steady state assumption can be relaxed and

noisy flux observations can be incorporated in the model. However, to ensure a fair compari-

son of algorithms, all experiments were done considering no flux measurements.

We have reviewed and compared four standard convergence diagnostics that can be used

to check if the algorithms have been run for sufficiently many iterations that the samples come

from the target flux distribution. Finally, important metrics for comparing the algorithms have

been similarity of flux distributions and computational efficiency.

The algorithms have been applied to ten genome scale metabolic networks (Table 2). How-

ever, in case of the xsample() algorithm we were only able to successfully apply it to a single
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model (E.coli), so our comparison was done with only four algorithms (ACHR, OPTGP,

CHRR and the Gibbs sampler). An efficient sampling algorithm which allows the stochastic

framework of Van den Meersche et al. [20] to be applied at genome scale is thus lacking.

Comparing the algorithms in terms of convergence, the CHRR has the least convergence

problems. This result is in agreement with the findings in Herrmann et al. [6] in which three

algorithms ACHR, OPTGP and CHRR are compared in terms of convergence and run time.

We have found that the set of reactions which fail the convergence criterion is not necessarily

the same across different diagnostic tests. Also, the proportion of reactions for which a test

fails can be substantial (Fig 2). Hence, from a practical perspective it does not seem feasible to

require that all reactions have converged before the output from an algorithm can be trusted.

Instead, the focus should be on reactions of special interest, and for those reactions one can fol-

low the recommendation of Herrmann et al. [6] that the whole suite of diagnostics should be

satisfied. Further, in our comparison of algorithms in Fig 3, there seems to be good agreement

between algorithms also for reactions that have not converged.

Convergence to the target distribution is not guaranteed for ACHR and OPTGP, while for

CHRR convergence is guaranteed due to its Markovian nature. For this the other algorithms

were compared against CHRR. We found that ACHR generates the most similar (marginal)

flux distributions to that of CHRR, followed by OPTGP. The Gibbs sampler deviated most

from CHRR, which probably is due to the informative prior distribution imposed on some of

the models.

When comparing the algorithms in terms of computational efficiency, we found that the

CHRR method outperforms the three other algorithms by generating the highest number

of independent samples per time unit for each flux. The main parameter that characterize a

model is the number of reactions (n), but we have also observed that there are other aspects of

a model that affect the performance of an algorithm.

Hamiltonian Monte Carlo (HMC) [47] is another sampling technique for exploring the

posterior distribution in the Bayesian framework. In Heinonen et al. [22], the HMC was

reported to be inefficient compared to Gibbs sampler in the genome scales metabolic models.

We tried to apply HMC via the Template Model Builder (TMB) package [48] which is a statis-

tical software platform in R [29]. Using the interval based scale reduction factor (IPSRF) [39]

as the convergence criterion, we did not get reliable convergence. Most likely, the feasible trun-

cated density region for high dimension models (n > 1000) was extremely narrow causing the

HMC constantly to hit the boundaries of the polytope.

Our study ranks the CHRR as the best sampling algorithm for cases such as Fig 1b and 1c

in which the steady state assumption has to be satisfied strictly and uncertainties in the

observed flux values (if there are any) are negligible. The CHRR is currently available in

Matlab. If an open-source programming language is preferred, a good alternative is the

OPTGP, which is available in Python. For the stochastic formulation, such as Fig 1e, in which

the flux observation and their uncertainty are encoded in a model compatible with relaxed

steady state assumption, the only sampling algorithm applicable at the genome scale is the

Gibbs sampler which is currently available in Matlab. However, this algorithm performs poorly

in terms of sampling efficiency.

Supporting information

S1 Fig. Scatter plot of sample means and standard deviations. The plots are for ACHR,

OPTGP and the Gibbs sampler (vertical axis) versus CHRR (horizontal axis) for six models.

Sample means (�v) (blue) and standard deviations (s) (green) are calculated according to the

formulas in the manuscript. The Pearson correlation r is shown on top of each scatter plot,
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and the proportion of outliers removed is given in parenthesis. The sample means and stan-

dard deviations marked in red correspond to the reactions for which at least one of the two

algorithms in a comparison failed the Geweke test. The identity line (pink dashed) is included

to ease comparison.
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5. Grünbaum B, Shephard GC. Convex polytopes. Bulletin of the London Mathematical Society, 1969, 1

(3):257–300

6. Herrmann HA, Dyson BC, Vass L, Johnson GN, Schwartz JM. Flux sampling is a powerful tool to study

metabolism under changing environmental conditions. NPJ systems biology and applications, 5(1):1–

8.

7. MacGillivray M, Ko A, Gruber E, Sawyer M, Almaas E, Holder A. Robust analysis of fluxes in genome–

scale metabolic pathways. Nature Publishing Group, Scientific reports, 2017, 7(1):1–20.

8. Pakula TM, Nygren H, Barth D, Heinonen M, Castillo S, Penttilä M, Arvas M. Genome wide analysis of
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Appendix to paper A.

Fig S1. Scatter plot of sample means and standard deviations. The plots are
for ACHR, OPTGP and the Gibbs sampler (vertical axis) versus CHRR (horizontal
axis) for six models. Sample means (v̄) (blue) and standard deviations (s) (green) are
calculated according to the formulas in the manuscript. The Pearson correlation r is
shown on top of each scatter plot, and the proportion of outliers removed is given in
parenthesis. The sample means and standard deviations marked in red correspond to
the reactions for which at least one of the two algorithms in a comparison failed the
Geweke test. The identity line (pink dashed) is included to ease comparison.
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Evaluating model reduction under
parameter uncertainty
Håvard G. Frøysa*, Shirin Fallahi and Nello Blaser

Abstract

Background: The dynamics of biochemical networks can be modelled by systems of ordinary differential equations.
However, these networks are typically large and contain many parameters. Therefore model reduction procedures,
such as lumping, sensitivity analysis and time-scale separation, are used to simplify models. Although there are many
different model reduction procedures, the evaluation of reduced models is difficult and depends on the parameter
values of the full model. There is a lack of a criteria for evaluating reduced models when the model parameters are
uncertain.

Results: We developed a method to compare reduced models and select the model that results in similar dynamics
and uncertainty as the original model. We simulated different parameter sets from the assumed parameter
distributions. Then, we compared all reduced models for all parameter sets using cluster analysis. The clusters revealed
which of the reduced models that were similar to the original model in dynamics and variability. This allowed us to
select the smallest reduced model that best approximated the full model. Through examples we showed that when
parameter uncertainty was large, the model should be reduced further and when parameter uncertainty was small,
models should not be reduced much.

Conclusions: A method to compare different models under parameter uncertainty is developed. It can be applied to
any model reduction method. We also showed that the amount of parameter uncertainty influences the choice of
reduced models.

Keywords: Model reduction, Parameter uncertainty, Clustering, Systems biology

Background
Modelling of biochemical networks
Biochemical networks consist of chemical reactions
between compounds, such as enzymes and metabolites.
Through these reactions, the various compounds are con-
sumed and produced. Each of these reactions has a reac-
tion rate (flux) that typically depends on the compound
concentrations, giving a dynamical behaviour of the sys-
tem. The compound concentrations can thus be modelled
by systems of ordinary differential equations (ODEs) and
such dynamical models of biochemical networks may give
biological insight that could not be obtained by mod-
elling the compounds individually. However, the network
dynamics may be complex and difficult to model accu-
rately. The chemical reactions could possess advanced

*Correspondence: havard.froysa@uib.no
Department of Mathematics, University of Bergen, Mailbox 7803, 5020, Bergen,
Norway

kinetics such as activation and inhibition. In addition, the
dimensions of the network may be large, for example the
central energy metabolism in E. coli consists of more than
50 metabolites and 100 reactions [1].

Model reduction
The potential high complexity of the ODEs in the model
represents a major challenge in analysing the dynam-
ics of the system. Model reduction is a method for
studying biochemical networks as it aims to identify the
main components governing the dynamics of the sys-
tem. The reduced model should be simpler to analyse,
but retain the dynamical behaviour of the original model.
There are different approaches to reduce the complexity
of biochemical reaction networks, with the most com-
mon ones being lumping, sensitivity analysis and time-
scale analysis [2–4]. Lumping combines compounds with

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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similar behaviour into pseudo-compounds and consid-
ers differential equations involving these lumped pseudo-
compounds [5, 6]. By performing parameter sensitivity
analysis, the parameters with the least effect on the system
output are neglected [7, 8]. In time-scale separation, bio-
logical processes are split into fast and slow processes and
then the focus is put on the relevant time scale [9–15].
Another challenge in the analysis of complex net-

works is the lack of information on the kinetic prop-
erties of the reactions and parameter values. Reduction
approaches that are not influenced by parameter uncer-
tainty or incompleteness are called parameter indepen-
dent reduction methods. For example, some reduction
techniques based on exact lumpingmethods [5, 6] or qual-
itative reduction methods [16, 17] are parameter indepen-
dent. Such reduction methods have been used extensively
for signalling networks. For most reduction techniques,
including methods based on time-scale separation or sen-
sitivity analysis, the full parametrization of the model
is required. In parameter dependent reduction, model
parameters can play a significant role in selecting the
elements for reduction. For some biochemical networks,
the accuracy and validity of the reduced model can be
influenced by changing the range of parameters so that
the reduced model is only valid locally [3]. For reaction
networks with well separated parameter values, reduced
models capture the dynamical behaviour of the original
model with an acceptable level of accuracy for an exten-
sive range of parameter values [11, 18]. This, however, is
not the case for general networks.
While there is a large literature on model reduction

techniques, there is a lack ofmethods for evaluatingmodel
reductions. Some ad-hoc methods are the difference or
scaled difference between the full and reduced model [5,
9], an error integral [14] and a criterion based on the initial
values [10]. We are not aware of any criteria for evaluation
of model reductions that takes parameter uncertainty into
account. We present a new way to evaluate model reduc-
tions that takes parameter uncertainty into account and
show the benefit of this method on two example networks.

Methods
Mathematical framework
The state variables of the dynamical model are the con-
centrations of the compounds. These compounds occur
in different combinations on the left and right hand side
of the chemical reactions of the network, where such a
combination is called a complex [14]. For example, the
chemical reaction X1 + X2 → X3 consists of the com-
pounds X1, X2 and X3, and the complexes X1 +X2 and X3.
The complex on the left hand side of an equation being
consumed is called the substrate complex of the reaction
and the complex on the right hand side of the reaction
being produced is called the product complex. All this

information can be represented mathematically by a sto-
ichiometric matrix [1] which gives the structure of the
network.
In the notation of Rao et al. [14] the complexes are given

by a matrix Z where the columns are the non-negative
integer stoichiometric coefficients of the different com-
plexes. The internal reactions are given by the linkage
matrix B where each column corresponds to a reaction.
This column is zero except in the rows corresponding to
the substrate and product complex where it is -1 and 1,
respectively. Let xi(t) be the concentration of compound
i at time t and x(t) the corresponding vector quantity.
The dynamics of any biochemical network is given by the
system

ẋ = ZBv + Zvb (1)

of ODEs where Z and B give the network structure as
described above. The vector v provides the internal fluxes
of the network and vb the boundary fluxes, i.e. the fluxes
entering or leaving the network. As the fluxes typically are
functions of x, we restrict the internal fluxes v to the form

vj(x) = kjdj(x) exp
(
ZT
SjLn(x)

)
(2)

considered in [14] where kj is a kinetic proportionality
constant of reaction j, dj(x) is any function of x, ZSj is the
column of Z corresponding to the substrate complex of
reaction j and Ln(x) is the mapping defined by (Ln(x))i =
ln(xi). Further, let ZS be the matrix where column j is ZSj ,
i.e. the substrate complex of the reaction.
The dynamical model (1) now has the parameters kj in

addition to potential parameters in vb(x) and the func-
tions dj(x). A given set of values for such a parametriza-
tion will be called a parameter set. The unreduced model
described by (1) will be referred to as the full or original
model.

Reduction
Weuse the reduction procedure of Rao et al. [14] to reduce
the model for a given parameter set. The first step in this
procedure is to specify a set MI of compounds consid-
ered to be important in the view of experimental design,
e.g. the ones that are possible to measure. Note that the
choice of MI is subjective, but plays a major role in the
reduction as the dynamics of the compounds in MI are
the ones used to compare the different reduced models.
Then, the complexes of the network are divided into two
categories. The first category is the complexes containing
at least one of the compounds in MI. These complexes
will not be considered for reduction. The other category
is the complexes not containing any of the compounds in
MI, and these will be the complexes considered for reduc-
tion. The reduction is then based on the assumption that
the model approaches some steady state that can be found
by integrating the system for a long enough time and that
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the model is asymptotically stable around the steady state.
A complex is reduced by setting its concentration constant
equal to the corresponding steady state value of the full
model. This can be done simultaneously for any number
of complexes.
Having the possibility to reduce any given set of com-

plexes, an iterative method to choose the complexes to
be reduced is presented in Rao et al. [14]. It is a greedy
method that reduces one complex at the time, always
choosing the one yielding the smallest error as defined
below. Finally, it stops when an error threshold is reached.
However, since the reduced models are independent of

the order of reduction, we consider all possible simulta-
neous reductions of complexes. Assume now that there
are c complexes eligible for reduction. It is then possible
to reduce anywhere from 0 to c complexes, where reduc-
ing 0 gives the full model. In total there are 2c possible
reduced models for a given original model and parame-
ter set. For each of these models, the concentrations of
the compounds inMI are then used to compare the mod-
els. When having n different parameter sets for the same
original model, we perform the described reduction pro-
cedure for all the parameter sets. This yields 2c possible
reduced models for each parameter set and a total of n · 2c
different reduced models.

Comparing models
We need to be able to compare the dynamics of the dif-
ferent reduced models. In Rao et al. [14] the difference
between the original model and a given reduced model
is measured by an error integral. Let the concentration
at time t of compound number i be xir(t) and xif (t) for
the reduced and the full model, respectively. Further, let
xr and xf be the corresponding vector quantities for all
the compounds. Finally, let n (MI) be the number of com-
pounds inMI and [0,T] the time interval that we evaluate
the dynamics over. The error integral is then given by

IT
(
xr , xf

) =
∑
i∈MI

1
Tn (MI)

∫ T

0

∣∣∣∣1 − xir(t)
xif (t)

∣∣∣∣ dt (3)

which gives the average relative difference between the
full and reduced model for all the compounds inMI over
the given time interval. Note that the error integral is
non-symmetric in its arguments. However, we need to
compare any two (reduced) models without favouring one
of them. For this reason we introduce the symmetric error
measure

ET (x1, x2) = 1
2

(IT (x1, x2) + IT (x2, x1)) (4)

where x1 and x2 are the compound concentrations of any
two (reduced) models. Note that this errormeasure can be
calculated also for twomodels having different parameters
as long as they have the same setMI.

Clustering
We use single linkage clustering [19] with the symmet-
ric error as dissimilarity measure to cluster all the n · 2c
models with different parameter sets and reductions.
Single linkage clustering is an agglomerative clustering
method, which means that initially every model is in
its own cluster. The dissimilarity d(C1,C2) between two
clusters C1 and C2 is calculated as the minimal symmet-
ric error minx∈C1,y∈C2 ET (x, y). The two clusters with the
lowest dissimilarity are combined into one cluster at a
hight given by their dissimilarity. Clusters are iteratively
combined until only one cluster remains. This stepwise
process can be visualized in a dendrogram [20]. A den-
drogram provides a complete description of the single
linkage clustering. From such dendrograms it is appar-
ent which models are most similar and which models are
more different.
We then color the dendrogram according to the used

reduction. Each reduction is mapped to a color and
each leaf of the dendrogram receives the color asso-
ciated to its reduction. Model reductions that cluster
together with the original model do not change the model
behaviour, whilemodel reductions that are separated from
the original model changed the model behaviour. So if
the dendrogram separates colors, we consider the model
reduction that causes the separation to change the model
behaviour. The reduced models that are distributed in
a similar way as the original model in the dendrogram
are considered to be consistent for the given parameter
uncertainty.
In order to analytically compare the distributions of

different models in the dendrogram, we calculate the
positions in the dendrogram for each model. We then
use the test statistics of a Kolmogorov-Smirnov test [21]
between a given model and the full model as score for
the model. For a given threshold α, we say that mod-
els with a score lower than the threshold are consis-
tent with the full model at threshold α. Finally, the best
reduced model is then chosen to be the consistent model
that uses the most reductions. In the case of several
consistent models having the same number of reduc-
tions, the best model is the one with the lowest score.
For the remainder of this article we use a threshold
of α = 0.2.

Simple example
To illustrate the method, we created a small example net-
work consisting of four compounds as shown in Fig. 1.
Each compound occurs only one place in the network
and never in combination with other compounds, imply-
ing that the complexes are just the compounds. The set
MI of important compounds is chosen to be number 1
and 4 such that the intermediate compounds 2 and 3 are
considered for reduction.
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Fig. 1 Example network. Each node is a compound and each arrow a
reaction. The kj ’s are the kinetic parameters of the reactions.
Important compoundsMI and candidate compounds for reduction
are specified by pink and black rectangles, respectively. External fluxes
are indicated by blue arrows

We apply mass action kinetics. Then kj is the only
kinetic parameter of reaction j. In the notation of [14]
introduced earlier in the article, we have the matrices

Z=

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦B=

⎡
⎢⎢⎣

−1 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 1

⎤
⎥⎥⎦ZS =

⎡
⎢⎢⎣
1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

(5)

for the network. Usingmass action we have dj(x) = 1 such
that (2) becomes

vj(x) = kj exp
(
ZT
SjLn(x)

)
, j ∈ {1, 2, 3, 4} (6)

for the internal fluxes of v. The boundary fluxes are
given by

vb = [
k5 0 0 −k6x4

]T (7)

where the last entry is negative since the flux is leaving the
network.
The dynamics are now given by (1) and we have six

kinetic parameters kj associated with one of the six

fluxes each. We sampled several parameter sets, which as
expected lead to different reduction results. The parame-
ter set that was chosen as reference because it gives par-
ticularly interesting reduction results is shown in Table 1.
Then, 100 new parameter sets were sampled using this
reference set by assuming the parameters to be indepen-
dently log-normally distributed with the logarithm of the
reference values as mean on the log scale and 0.1 as log
standard deviation. We applied the reference initial values
for all of the parameter sets, and the models were then
reduced and clustered as described above.

Yeast glycolysis example
We also tested our method on a kinetic model of yeast gly-
colysis [22] shown in Fig. 2. This model was used in Rao et
al. [14] to demonstrate themodel reductionmethodwhich
ignores parameter uncertainty. The model is asymptot-
ically stable around the steady state and the governing
equations of the system can be represented in the form
of Eqs. 1 and (2) such that the reduction procedure can
be applied. The important compounds to form MI are
Glci, TRIO, BPG, PYR, AcAld and NADH. Accordingly,
the six candidates for reduction are F6P, G6P, P2G, P3G,
PEP and F16BP, which leads to a total of 26 = 64 possi-
ble reductions for a given parameter set including the full
model.
The model has 89 parameters for the different reactions

of the network. Each of these parameters should be non-
negative, and have a reference value used in [14]. To study
the effect of parameter uncertainty on the reduction we
sampled parameter sets using these reference values. We
assumed the parameters to be independently log-normally
distributed with mean equal to the reference value and
standard deviation equal to the reference value divided
by a scaling parameter. The parameters with reference
value zero were set to zero in the sampling. We sampled
100 parameter sets for each of the values 3, 5, 10, 20, 50
and 100 of the scaling parameter. For each of the param-
eter sets we performed model reduction and clustered
all the 100 · 64 = 6, 400 resulting models for each scal-
ing parameter as described above. We ended up with six
dendrograms containing 6400 models each.

Table 1 Initial values and reference kinetic parameter values for
the example network of Fig. 1

Parameter Value Initial value Value

k1 0.44 x1(0) 0.4

k2 0.03 x2(0) 0.0

k3 0.55 x3(0) 0.5

k4 0.44 x4(0) 0.4

k5 0.42

k6 0.33
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Fig. 2 Yeast glycolysis network. Each node is a compound and each arrow a reaction. Important compoundsMI and candidate compounds for
reduction are specified by pink and black rectangles, respectively. NAD indicated by a cyan rectangle is not explicitly included in the model as the
total amount of NAD and NADH is conserved. External fluxes are indicated by blue arrows. ∗, � and † show an irreversible reaction from NADH to
NAD, a reversible reaction between NADH and NAD and an irreversible reaction from NAD to NADH, respectively. As indicated in the network,
different types of these reactions bind to some of the fluxes

In order to check the sensitivity of the method to
the number of parameter sets sampled, we also sampled
1000 parameter sets for the model with scaling parame-
ter 50. For each parameter set we considered all model
reductions with a Kolmogorov-Smirnov test score below
a threshold of 0.5 for the 100 previous parameter sets. We
performed model reduction and clustering as above.
All analyses were performed in MATLAB [23]. All code

used to generate the results is available in the online
supplementary material.

Results
Simple example
For the used parameter values, the model with both com-
pounds number 2 and 3 reduced clustered together with
the original model and had a Kolmogorov-Smirnov score
of 0.17. Both the model with only compound 2 removed
and the model with only compound 3 removed had a
Kolmogorov-Smirnov score of 1.00. The models with only
compound 3 reduced were the furthest from the cluster
including the original model. Figure 3 shows the single
linkage cluster dendrogram. The behaviour changes sub-
stantially for different parameter values and parameter
uncertainties.

Yeast glycolysis example
The trajectories of the full model and all reduced mod-
els using the parameter set from [14] show no effect for
Glci, two groups for TRIO, PYR and NADH, but no clear
picture for BPG and ACALD (Fig. 4). For the reference
parameter set, we found two big clusters. The first clus-
ter contained the full models as well as all the models with
compound F16BP not reduced, and the second cluster
contained all models with F16BP reduced.
The clusterings for a distribution of parameters

depended on the parameter distribution. When the stan-
dard deviation was high, there were no clear clusters
and the full models were evenly distributed between the
reduced models (Fig. 5, top left). This means that the
uncertainty in the parameters had more effect than the
model uncertainty due to reduction. The more certain the
parameters were, the more we saw a clear picture emerge,
with all models that had compound F16BP reduced clus-
tering together and all other models forming a separate
cluster (Fig. 5, top right, bottom left). When decreasing
parameter uncertainty even further, the original models
started forming a cluster of models where both com-
pounds PEP and F16BP were not reduced (Fig. 5, bottom
right).
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Fig. 3Model clustering. Dendrogram from single linkage clustering of all model reductions with 100 parameters sets. Parameters were sampled
from a log-normal distribution with log standard deviation 0.1

In addition to finding clusters that are inconsistent with
the model uncertainty, we studied the distribution of the
reduced models in the dendrogram. In the case of large
parameter uncertainty (scaling parameters 3, 5, 10) the
distribution of the fully reduced model in the dendrogram

was similar to the distribution of the original model
(Kolmogorov-Smirnov 0.11 or smaller). In the case of rel-
atively large uncertainty (scaling parameter 20), all the
models that did not reduce F16BP were distributed sim-
ilarly to the original model (Kolmogorov-Smirnov 0.01).

Fig. 4 Yeast trajectories. TheMI states are shown for the reference parameters. Each color corresponds to a different model reduction
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Fig. 5Model clustering of F16BP reduced models. Dendrogram from single linkage clustering of all the model reductions using 100 parameters
sets. Parameters were sampled from a log-normal distribution with standard deviation as reference value divided by 3 (top left), 5 (top right), 10
(center left), 20 (center right), 50 (bottom left) and 100 (bottom right). The original models are shown in red, models where F16BP was reduced are
purple and all other models are blue

When the uncertainty was relatively low (scaling parame-
ter 50), all models with F16BP and PEP not reduced clus-
tered together with the full model (Kolmogorov-Smirnov
0.01 or 0.02). However, in the case of very low uncertainty
(scaling parameter 100) the only model whose distribu-
tion in the dendrogram was similar to the distribution
of the original model was the one where only F6P was
reduced (Kolmogorov-Smirnov 0.01). The sensitivity anal-
ysis showed that whether or not a reduction was con-
sistent for a given uncertainty did not dependent on the
number of parameter sets (Fig. 6).

Discussion
Wedeveloped a newmethod to evaluatemodel reductions
under parameter uncertainty based on the symmetric
error measure in (4). In the yeast glycolysis example we
showed that the amount of parameter uncertainty influ-
ences the model reduction. In particular, model uncer-
tainty and parameter uncertainty are positively related.
When the model parameters are uncertain, the model can
be reduced further without increasing uncertainty in the
model dynamics. We have also demonstrated empirically
that if a model can be reduced to a certain degree for a
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Fig. 6 Kolmogorov-Smirnov test scores. Kolmogorov-Smirnov test scores for all the model reductions using 100 parameters sets as well as the
sensitivity analysis with 1000 parameter sets (50L). The compounds in gray are reduced in the model of the corresponding row. Parameters were
sampled from a log-normal distribution with standard deviation as reference value divided by the scaling factor. Models that are consistent with the
original model are shown in light green and the best reduced model for each case is shown in dark green

given amount of uncertainty, then it can be reduced to
at least the same degree if the uncertainty increases. If a
model is used to analyse different scenarios, the param-
eters for all the scenarios should be considered when

reducing a model. A full model should only be reduced to
a model that is consistent for all considered scenarios. In
addition to parameter values, uncertainty in initial values
should also be considered. Our analysis shows that the
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reduction of Rao et al. [14] for the yeast model agrees with
our best reduction for a relatively high amount of uncer-
tainty, but becomes inappropriate for low or very large
uncertainty.
In the simple example we demonstrated that it is some-

times better to reduce two complexes than just one. This
also shows that even without parameter uncertainty the
iterative approach used in [14] may not find the best
reduction. Whether or not the best reduction is found
depends on the symmetric error cut-off value. In the
example, the reduced model would be found with sym-
metric error cut-off value at least 0.04, even though the
symmetric error is only 0.02. The reference values in
Table 1 for the parameters were chosen to illustrate this
behaviour.
The novelty of our approach is a new way to eval-

uate model reduction. This model reduction evaluation
criterion can be applied together with any model reduc-
tion method. Our criterion does not assume that the full
model with a given parameter set is optimal. Instead it
compares the full model with a wide range of param-
eter values to reduced models with the same range of
parameter values to find a reduced model with the same
properties, includingmodel uncertainty. A reducedmodel
with lower uncertainty in the trajectories could lead to
overconfidence in the results.
A limitation of our method is that we need to choose a

setMI of important compounds. This choice is subjective
and affects the resulting reduced model. However, there
are some natural choices for the set MI, which depend
on the model purpose. Of course MI should contain all
the compounds the study is investigating. It should also
contain all the compounds whose concentrations are mea-
sured experimentally. Another limitation of our approach
is that we have to choose the length T of the time series.
It is important that at time T the trajectories are close to
the steady state, because otherwise the error integral does
not cover the entire model dynamics. On the other hand T
should not be too large because otherwise the error inte-
gral reduces to the difference in steady states. If the model
does not approach a steady state the dissimilarity measure
we use may not be appropriate. There may also be some
scaling issues with our proposed approach. Already in the
case where we have to evaluate 64 models, we have to cal-
culate a 6400×6400matrix of dissimilaritymeasures using
100 parameter sets. For most practical examples, however,
it is possible to reduce the sample space of reductions to
a manageable size. In our sensitivity analysis with 1000
parameter sets, we have solved the issue by using the first
100 parameter sets to exclude some model reductions,
which lead to a 32, 000× 32, 000 dissimilarity matrix. The
calculation of this matrix is the computational bottleneck
of the method, but parallel computing can be applied.
Moreover, it is possible to iteratively compare only a few

models at a time. We suggest that investigators adapt
their strategies for model reduction based on model size,
complexity and choice of the set MI. The Kolmogorov-
Smirnov score leads to an automatic way of choosing
the best reduced model. However, we believe that it is
important to look at the dendrograms and not choose the
model reduction only based on the Kolmogorov-Smirnov
scores.

Conclusions
We presented a new method for evaluating models under
parameter uncertainty and applied it for comparing full
models to reduced models. We showed that multiple
reductions can result in better models than individual
reductions and that the amount of parameter uncertainty
influences the choice of reduced models.
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ABSTRACT 

Toxicokinetic interactions with catabolic cytochrome P450 (CYP) enzymes can inhibit 

chemical elimination pathways and cause synergistic mixture effects. We have created a 

mathematical bottom-up-model for a synergistic mixture effect where we fit a multi-

dimensional function to a given dataset using an auxiliary non-additive approach. The 

toxicokinetic model is based on data from a previous study in a fish cell-line, where the CYP1A 

enzyme activity was measured over time after exposure to various combinations of the aromatic 

hydrocarbon β-naphthoflavone and the azole nocodazole. To describe the toxicokinetic 

mechanisms in this pathway and how that affects the CYP1A biomarker, the model is using 

ordinary differential equations. Local sensitivity and identifiability analyses revealed that all 

the ten parameters estimated in the model were identified uniquely while fitting the model to 

the data for the CYP1A enzyme activity. The model has a good prediction power and is a 

promising tool to test the synergistic toxicokinetic interactions between different chemicals. 
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1. INTRODUCTION 

Induction of cytochrome P450 1A (CYP1A) in fish can be used as a biomarker to assess 

exposure to aromatic hydrocarbons in the aquatic environment. Induction of CYP1A is typically 

measured as increased levels of transcription (i.e. CYP1A mRNA/CYP1A protein levels), 

increased CYP1A enzyme activities or a combination of both. Aromatic hydrocarbons activate 

the aryl hydrocarbon receptor (AhR), which results in an induction of the CYP1A synthesis. 

The AhR-CYP1A signaling is central in the chemical detoxification pathway in fish.1 The 

aquatic environment is also contaminated with other anthropogenic chemicals, including 

pharmaceuticals.2,3 Some pharmaceuticals can interfere with the AhR-CYP1A signaling 

pathway. Hence, fish populations in their natural habitats are exposed to mixtures of chemicals 

that can interact with the AhR-CYP1A signaling and thereby affect the CYP1A biomarker.4 

The mixture effect of different chemicals is called an additive effect if there is no direct 

interaction between the chemicals when they exert their effects. Thus, the chemicals act 

independently of each other with similar modes-of-action (MoA) and the mixture effect can be 

explained by addition. If a mixture gives an effect higher than the additive prediction, this effect 

is called synergistic.5 There are established models to assess additive mixture effects such as 

the concentration addition, the independent action and the generalized concentration addition 

models.6 There are also models that can identify non-additive mixture effects from response 

patterns for endpoints.7-10 These models are, however, empirical models and lack a mechanistic 

basis for prediction. For this reason, there is a need for models to assess non-additive mixture 

effects in a mechanistic manner, e.g. to describe synergistic effects in fish and other vertebrates. 

Chemicals with the same or different MoA can interact with each other’s detoxification 

mechanisms and cause adverse toxicokinetic interactions. The value of integrating 

toxicokinetics, for a better mechanistic understanding to predict interactions between different 

chemicals in mixtures, has been advocated by the European Commission.11 A promising 

approach, using a mechanistic toxicokinetic and toxicodynamic model, was suggested to 

103



4 
 
 

describe synergistic mixture effects between azole fungicides and a pyrethroid insecticide in 

the invertebrate Daphnia magna. This model was based on the fact that the synergistic potential 

of adding azoles could be explained by the azoles occupying the CYP enzymes which reduces 

the biotransformation of the insecticide.12 

Azoles (e.g. clotrimazole, ketoconazole, nocodazole (NOC), omeprazole, prochloraz 

and propiconazole) have been shown to interact with the CYP system in fish and fish cells.13-21 

Most azoles act as potent inhibitors of CYP1A enzyme activities, but weak inducers of CYP1A 

transcription in fish.17-19 Previous studies in the Poeciliopsis lucida hepatocellular carcinoma 

(PLHC-1) cell line show that the benzimidazole and microtubule disassembling drug NOC 

alone acted as a potent inhibitor of the CYP1A enzyme activity, and a weak inducer of CYP1A 

expression. Compared to BNF, NOC is one order of magnitude less potent and about 50 times 

less efficient to induce CYP1A expression.20,21 However, a synergistic mixture effect with NOC 

and the prototypical AhR agonist, β-naphthoflavone (BNF), was seen as increased induction of 

CYP1A.21 Although BNF and NOC have different MoA, they seem to share a common 

elimination pathway. Thus, PLHC-1 cells exposed to NOC were more sensitive to BNF 

exposures compared to cells exposed to BNF alone.21 The synergistic mixture effect is based 

on the hypothesis that NOC occupies the CYP1A enzymes, inhibiting the CYP1A dependent 

metabolism of BNF which in turn enhances the BNF-mediated AhR-CYP1A signaling (Figure 

1). 
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Figure 1. Illustration of the pathway that the model describes. Chemical X (β-naphthoflavone 

(BNF) black triangles) and chemical Y (nocodazole (NOC) black squares) belong to different 

chemical classes, each with different modes-of-action (MoA). Induction of cytochrome P450 

1A (CYP1A) is mediated via ligand activation of the aryl hydrocarbon receptor (AhR). 

Chemical X is a strong ligand to the AhR (illustrated by a thick green arrow), which results in 

strong induction of CYP1A. Chemical Y is a weak ligand to the AhR (illustrated by a thin green 

arrow), which results in low induction of CYP1A. Both X and Y bind to the CYP1A enzymes, 

where X is metabolized by CYP1A enzymes (blue arrow) and Y inhibits CYP1A enzymes (red 

arrow). Thus, chemical Y occupies the CYP1A enzymes in the elimination pathway (the gray 

funnel shape), delaying biotransformation of chemical X which in turn results in increased 

biological half-life of chemical X. This toxicokinetic interaction between X and Y results in a 

synergistic mixture effect. The conceptual model, presented in this study, describes the 

toxicokinetic interaction between chemical X and Y in this pathway. 
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The aim of this study was to create a new conceptual toxicokinetic model to describe 

the toxicokinetic interaction between BNF and NOC, where the dominant effect of NOC is 

direct inhibition of CYP1A enzymes and the dominant effect of BNF is induction of CYP1A 

transcription via activation of AhR. This is a first attempt to create a mathematical bottom-up-

model for synergistic mixture effects where we fit a multi-dimensional function to a given 

experimental dataset from a previous study using an auxiliary non-additive model.21,22 The time 

dynamics is a key factor in the toxicokinetic interactions. We hypothesized that by constructing 

a model using ordinary differential equations (ODEs), we can describe how the concentrations 

of the chemicals change over time and their resulting effect on the CYP1A biomarker.  
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2. METHODS 

2.1 Development of the mathematical model. To describe the mixture effect on the CYP1A 

biomarker, we construct a model using a set of ODEs. The model also explains the individual 

effects of each chemical by setting the initial concentrations of the other compounds equal to 

zero. There are five concentration state variables in the equations, where	𝑋	is unbound BNF, 𝑌 

is unbound NOC, 𝐸% is free CYP1A enzymes, 𝐸&' is CYP1A enzymes occupied by BNF and 

𝐸&( is CYP1A enzymes occupied by NOC. The state variables, their initial values and the 

parameters in the model (i.e. constants) are listed with units in Table 1.  

The rate by which the unbound BNF (𝑋) is biotransformed is modeled as: 

)'(+)
)+

 = −𝑘'	. 𝐸%(𝑡) · 𝑋(𝑡) ·
𝑘𝑖
𝑛

𝑘𝑖
𝑛+𝑌(𝑡)𝑛

       (1) 

In this equation the change in numbers of unbound BNF (𝑋) molecules over time is described 

as a function of the turnover number of the CYP1A enzyme for biotransformation of BNF (𝑘') 

together with the number of molecules for free CYP1A enzymes (𝐸%), BNF (𝑋) and NOC (𝑌). 

The time unit (𝑡) is hours. A Hill function is used to describe that BNF and NOC molecules 

compete for binding to the free CYP1A enzymes. Consequently, the change in numbers of 

unbound BNF molecules is affected by the number of NOC molecules over time, which creates 

a delay in the BNF-elimination pathway. The parameters 𝑘6 and 𝑛 in the Hill function describe 

the competition between the BNF and NOC molecules for the free CYP1A enzymes. The 

parameter 𝑘6 is the concentration of NOC occupying half of the binding sites of the CYP1A 

enzymes. 

 The change in numbers of unbound NOC (𝑌) molecules over time is described by 

second-order kinetics using the turnover number of the CYP1A enzyme for biotransformation 

of NOC (𝑘(), number of molecules for free CYP1A enzymes (𝐸%) and NOC (𝑌) giving: 
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)((+)
)+

 = −𝑘(	. 𝐸%(𝑡) · 𝑌(𝑡)         (2) 

The change in numbers of free CYP1A enzymes (𝐸%) over time depends on the numbers 

of BNF (X) and NOC (Y) molecules that are occupying the CYP1A enzymes. Hence, binding 

of BNF and NOC molecules to the CYP1A enzymes result in increased numbers of occupied 

CYP1A enzymes (𝐸&' and 𝐸&() and decreased numbers of free CYP1A enzymes with the 

degradation rate constant 𝑘7. The rate of change of free CYP1A enzymes is modeled as: 

 
)89(+)
)+

 = −𝑘'. 𝐸%(𝑡) · 𝑋(𝑡) · 	
𝑘𝑖
𝑛

𝑘𝑖
𝑛+𝑌(𝑡)𝑛

−	𝑘(. 𝐸%(𝑡) · 𝑌(𝑡) + 𝑓(𝑋) + 	𝑔(𝑌) + 

	𝑘&'. 𝐸&'(𝑡) + 𝑘&(. 𝐸&((𝑡) − 𝑘7. 𝐸%(𝑡)        (3) 

 

The parameters	𝑘&' and 	𝑘&( are the biotransformation rate constants of BNF and NOC 

molecules whereas the functions 𝑓(𝑋) and 𝑔(𝑌) describe the activation of the AhR-CYP1A 

signaling by BNF and NOC, respectively. 

The activation of AhR is controlled by the number of BNF (𝑋) and NOC (𝑌) molecules 

in the cells, in particular the number of BNF molecules. This is because BNF is more than 50 

times more effective and around ten times more potent compared to NOC in activating the AhR-

CYP1A signaling.20,22 The functions 𝑓(𝑋) and 𝑔(𝑌) are therefore included to describe this 

dependency for the activation of AhR, as described in equations (4) and (5): 

 

𝑓(𝑋) = <
0																									𝑋 < 𝑐'
𝑘@'A𝑋 − 𝑐'						𝑋 ≥ 𝑐'

		         (4) 
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𝑔(𝑌) = C
0																									𝑌 < 𝑐(
𝑘@((𝑌 − 𝑐()						𝑌 ≥ 𝑐(

	         (5) 

 

The values of 𝑐' and 𝑐( are the respective threshold-concentrations of BNF and NOC required 

to activate AhR-CYP1A. Equivalently, the parameters 𝑘@' and 𝑘@( describe the rates of BNF-

induced and NOC-induced CYP1A enzymes, respectively. 

The rate of change for occupied CYP1A enzymes by BNF (𝐸&') and NOC (𝐸&() are 

modeled as: 

 

)8DE(+)
)+

 = 𝑘'. 𝐸%(𝑡) · 𝑋(𝑡) · 	
𝑘𝑖
𝑛

𝑘𝑖
𝑛+𝑌(𝑡)𝑛

− 𝑘&'. 𝐸&'(𝑡)      (6) 

)8DF(+)
)+

 = 𝑘(. 𝐸%(𝑡) · 𝑌(𝑡) − 𝑘&(. 𝐸&((𝑡)       (7) 

 

The BNF and NOC molecules that occupy CYP1A enzymes are being biotransformed by the 

CYP1A enzymes. Next, their metabolites are released from the CYP1A enzymes and the 

previously occupied CYP1A enzymes (𝐸&' and 𝐸&() become free. The biotransformation rate 

constants are 𝑘&' and 𝑘&(. The number of free CYP1A enzymes (𝐸%) consequently increases 

and are available for the next cycle of biotransformation. The CYP1A biotransformation 

reduces the numbers of BNF and NOC molecules, and when there are too few molecules to 

activate AhR, no more free CYP1A enzymes are being synthesized. The remaining CYP1A 

will be degraded and the numbers of 𝐸% will decrease. 

 

Table 1. Model parameters and their descriptions.a 

Parameter Description Unit Value  
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State 

Variables 

    

X concentrations of unbound BNF 

molecules 

µM 

 

  

Y concentrations of unbound NOC 

molecules 

µM 

 

  

Ef concentrations of free CYP1A 

enzymes (not used in model 

equations) 

µM 

 

  

Ef8G&7 EROD activity of free CYP1A 

enzymes 

pmol ∙ (min ∙ mg)-1 

 

  

EOX concentrations of CYP1A enzymes 

occupied by BNF 

µM   

EOY concentrations of CYP1A enzymes 

occupied by NOC 

µM   

t time h   

Initial values 

 

 

 

 

 

 

 

 

Constants 

 

initial concentration of BNF 

initial concentration of NOC 

initial EROD activity of free CYP1A 

enzymes 

initial concentration of CYP1A 

enzymes occupied by BNF 

initial concentration of CYP1A 

enzymes occupied by NOC 

 

µM 

µM 

pmol ∙ (min ∙ mg)-1 

 

µM 

 

µM 

 

 

0.1 and 1 

1, 10 and 25 

0 

 

0 

 

0 
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Fixed values     

γ Proportionality constant between 

EROD activity and concentration of 

free CYP1A 

min ∙ mg ∙ L-1 1  

𝑛 Hill coefficient 

 

- 4  

Estimated 

values 

    

𝑘' turnover number of the CYP1A 

enzyme for BNF 

(µM ·	h)-1 0.033 ±	0.010  

𝑘( turnover number of the CYP1A 

enzyme for NOC 

(µM ·	h)-1 0.039 ±	0.009  

𝑘6 IC50 for NOC on EROD activity µM 1.37 ±	0.049  

cX minimum concentration of BNF to 

induce EROD activity  

µM 

 

0.063 ±	0.008  

𝑐( minimum concentration of NOC to 

induce EROD activity  

µM 

 

0.542±	0.061  

𝑘@' rate of number of CYP1A enzymes 

induced by BNF 

h-1. (µM)1/2 

 

1.339±	0.060 

 

 

𝑘@( rate of number of CYP1A enzymes 

induced by NOC 

h-1 0.252 ±	0.050  

𝑘&' rate of biotransformation of BNF 

molecules 

h-1 0.375±	0.059  

𝑘&( rate of biotransformation of NOC 

molecules 

h-1 0.060 ±	0.012  
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𝑘7 rate of CYP1A enzyme degradation h-1 0.043 ±	0.003  

a The state variables are defined by the equations (4), (5) and (9)-(13) in the text. The initial 

values of the state variables are the different doses added to the cell cultures. The constants are 

the model parameters, which are either fixed or estimated. The estimated parameters are given 

as the parameter estimate ± standard error. The parameters in the model are fitted to 

experimental EROD data from a previous study where the cells were exposed to different 

mixtures of BNF and NOC in a time-course study (Table S1).21,22 

 

The measured data for the free CYP1A enzymes is the diagnostic ethoxyresorufin-O-

deethylase (EROD) activity that is assumed to be proportional to the concentration of free 

CYP1A enzymes. This assumption is justified by the fact that only free CYP1A enzymes can 

carry out the EROD activity. For this reason, we express the concentration of the free CYP1A 

enzymes as: 

𝐸%(𝑡) = 𝛾 ⋅ 𝐸%8G&7(𝑡)      (8) 

 

The parameter γ is a proportionality constant and 𝐸%8G&7(𝑡) is the EROD activity of the free 

enzymes that can be measured. The model equations then become: 

 

)'(+)
)+

 = −𝑘' ⋅ 𝛾 ⋅ 𝐸%8G&7(𝑡) · 𝑋(𝑡). 
KL
M

KL
MN((+)M

       (9) 

)((+)
)+

 = −𝑘( ⋅ 𝛾 ⋅ 𝐸%8G&7(𝑡) · 𝑌(𝑡)        (10) 

)89
OPDQ(+)

)+
 = −𝑘' ⋅ 𝐸%8G&7(𝑡) · 𝑋(𝑡) ·	 

KL
M

KL
MN((+)M

 −	𝑘( ⋅ 𝐸%8G&7(𝑡) · 𝑌(𝑡) + 
%(')
R
+

S(()
R
 + 	KDE

R
⋅ 𝐸&'(𝑡) +

	KDF
R
⋅ 𝐸&((𝑡) − 𝑘7 ⋅ 𝐸%8G&7(𝑡)     (11) 
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)8DE(+)
)+

 = 𝑘' ⋅ 𝛾 ⋅ 𝐸%8G&7(𝑡) · 𝑋(𝑡) · 
KL
M

KL
MN((+)M

 −𝑘&' ⋅ 𝐸&'(𝑡)	   (12) 

)8DF(+)
)+

 = 𝑘( ⋅ 𝛾 ⋅ 𝐸%8G&7(𝑡) · 𝑌(𝑡) − 𝑘&( ⋅ 𝐸&((𝑡).     (13) 

 

Hence, we model the EROD activity that can be compared with the data.21,22 Equation (11) is 

the rate of change in EROD activity of free CYP1A enzymes (𝐸%8G&7) over time. Note that the 

two functions 𝑓(𝑋) and 𝑔(𝑌) have not been changed and are given by equations (4) and (5). 

 

2.2 Experimental data used. The PLHC-1 is an established cell line used in aquatic toxicology 

and suggested as an useful tool for mechanistic studies of regulation and function of 

CYP1A.23,24 So far, only one CYP1A immunoreactive protein has been detected in PLHC-1 

cells treated with BNF.25 In addition, a partial CYP1A cDNA sequence was isolated from BNF 

treated PLHC-1 cells.20 The data used to estimate the parameters in the model were obtained 

from a previous study using PLHC-1 cells that had been treated with the carrier vehicle and 

different doses of BNF (0.1 and 1 µM) and NOC (1, 10 and 25 µM), alone or mixed together, 

and measured at five different times (6, 12, 24, 48 and 72h).21,22 The CYP1A-mediated EROD 

activities were analyzed in that study.21,22 Data from four biological replicates (i.e. four separate 

experiments each of which representing the mean of four technical replicates) were used during 

the parameter estimation.22 The raw data used to parameterize and validate the model are given 

in Table S1. The effects of BNF and NOC differs, with BNF 10 times more potent and 50 times 

more effective compared to NOC for activation of the AhR-CYP1A signaling.20,22 However, 

the impact of NOC is still significant since the concentration of NOC added to the cells are up 

to 250 times higher than for BNF and NOC is a potent inhibitor of the CYP1A activity.21,22 
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2.3 Parameter estimation. The model was implemented using the R software.26 The model 

has two parameters (𝑛 and 𝛾) that were fixed before the estimation procedure. The parameter 

𝑛 is the Hill coefficient and represents the inhibition of the BNF biotransformation by the NOC 

molecules. We proposed a set {2, 3, 4, 6, 10} of possible values for n and performed the 

estimation procedure for each of them. Based on this, the value of n was set to 4 since that made 

the remaining parameters best able to fit the data. The proportionality constant γ in equation (8) 

was set to 1 min ∙ mg ∙ L-1. The remaining ten parameters to be estimated are denoted by the 

vector: 

 

𝒑 = [𝑘' 𝑘( 𝑘6					𝑐'					𝑐( 𝑘@' 𝑘@(			𝑘&' 𝑘&( 𝑘7]W. 

 

The initial values for the concentrations of BNF (𝑋) and NOC (𝑌) were set to the 

concentrations that the cells have been dosed with at t = 0. For each of the six treatments used 

to develop the model, the initial values of the state variables were therefore set to:  

 
Treatment 1   Treatment 2  Treatment 3  Treatment 4 

⎣
⎢
⎢
⎢
⎢
⎡ 𝑋[

𝑌[

𝐸%8G&7
[

𝐸&'[

𝐸&([ ⎦
⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎡
0.1
0
0
0
0 ⎦
⎥
⎥
⎥
⎤
 

⎣
⎢
⎢
⎢
⎢
⎡ 𝑋[

𝑌[

𝐸%8G&7
[

𝐸&'[

𝐸&([ ⎦
⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎡
0.1
1
0
0
0 ⎦
⎥
⎥
⎥
⎤
  

⎣
⎢
⎢
⎢
⎢
⎡ 𝑋[

𝑌[

𝐸%8G&7
[

𝐸&'[

𝐸&([ ⎦
⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎡
0.1
10
0
0
0 ⎦
⎥
⎥
⎥
⎤
 

⎣
⎢
⎢
⎢
⎢
⎡ 𝑋[

𝑌[

𝐸%8G&7
[

𝐸&'[

𝐸&([ ⎦
⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎡
0.1
25
0
0
0 ⎦
⎥
⎥
⎥
⎤
  

Treatment 5   Treatment 6   

⎣
⎢
⎢
⎢
⎢
⎡ 𝑋[

𝑌[

𝐸%8G&7
[

𝐸&'[

𝐸&([ ⎦
⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎡
1
1
0
0
0⎦
⎥
⎥
⎥
⎤
 

⎣
⎢
⎢
⎢
⎢
⎡ 𝑋[

𝑌[

𝐸%8G&7
[

𝐸&'[

𝐸&([ ⎦
⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎡
1
25
0
0
0 ⎦
⎥
⎥
⎥
⎤
.       (14) 

 

To estimate the parameters in the model, the EROD data at the five time points for the 

one single treatment and the five different mixture treatments have been used. To compare the 
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simulated EROD activity of free CYP1A enzymes from the model against its observations, we 

define a cost function, cost(p), as:27 

 

cost(p)=∑ ∑ ∑ [log	((𝐸%,gh)ij8G&7 	)k6 + 1) − 	log	((𝐸%,ilmin6gio+8G&7 	)k
6,K + 1)]pq

Krs
t
krs

u
6rs .        (15) 

 

Equation (15) is the sum of squares of the logarithmic residuals of the EROD activity of free 

CYP1A enzymes from the model (𝐸%,gh)ij8G&7 ) versus its experimental value (𝐸%,ilmin6gio+8G&7 ), 

represented by EROD data. It should be noted that in the cost function one is added to the values 

of 𝐸%,gh)ij8G&7  and 𝐸%,ilmin6gio+8G&7  to avoid numerical instability. We summed over six treatments 

with four biological replicates at five time points. The estimated values for the parameters in 𝒑 

are those that minimize cost(𝒑). The modFit function from the flexible modelling environment 

(FME) package in R28 was used to perform the box constraint optimization. This method is 

appropriate to use because of non-negativity constraints on the parameters. The parameters in 

the model (i.e. constants) and their fixed or fitted values are listed in Table 1. 

 

2.4 Global Sensitivity Analysis (GSA). GSA is a tool to describe how the uncertainty in the 

model parameters can influence the uncertainty in the model output.29 GSA was performed to 

provide an overview of the sensitivity of the EROD activity of free CYP1A enzymes to 

uncertainty in the parameter values. GSA identifies the most influential parameters on the 

model output and identifies parameters that the model output is insensitive to.  

The global sensitivity of the EROD activity of free CYP1A enzymes to changes in each 

parameter (Table 1), was analyzed using experimental EROD data.21,22 The GSA was 

performed using the senseRange function from the FME package in R.28 For each of the 

parameters, a random sample of 1000 values was drawn using a log-uniform distribution on the 

interval from the estimated value divided by 10 to the estimated value multiplied by 10. By 

115



16 
 
 

using this distribution, the expected number of values in the sample below and above the 

estimated value will be equal. 

Next, the global sensitivity of the EROD activity of free CYP1A enzymes was estimated 

by varying one parameter at the time using the sample described above and fixing the remained 

parameters at their nominal values. The five coupled ODEs in equations (9)-(13) were solved 

numerically using the ode function from the deSolve package in R.30 This was carried out to 

calculate the EROD activity of free CYP1A enzymes over time for each parameter set, and for 

each of the six different treatments represented in equation (14). 

 

2.5 Local Sensitivity Analysis (LSA). A parameter is practically non-identifiable if it is not 

possible to determine a unique value for it through fitting the model to the data. The two main 

sources of practical non-identifiability were analyzed: (1) lack of influence of a parameter on 

the EROD activity of free CYP1A enzymes (𝐸%8G&7) as the measurable model output and; (2) 

interdependence among the parameters.31 

The LSA was performed to assess the sensitivity of the EROD activity of free CYP1A 

enzymes (𝐸%8G&7), as the measurable model output, with respect to small changes in the 

estimated parameters (Table 1). The sensitivity of the EROD activity of free enzymes to change 

in the parameter 𝑝j, while all other parameters were fixed at their nominal values, was computed 

at the five time points for each treatment experiment through: 

 

𝑠j = 
{89

OPDQ

{m|
 , 𝑙 = 1,… ,10.         (16) 

 

The sensitivity values were estimated numerically using the sensFun function from the FME 

package in R.28 The parameter value 𝑝j was perturbed by 1%. In order to take into account 
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changes in time and across experiments the root mean squared sensitivity was computed for 

each parameter 𝑝j: 

 

𝑠j
gÄÅn = 	Çs

o
∑ (𝑠j)Åpo
Års  , 𝑙 = 1,… , 10.       (17) 

 

This was summed over all five time points for each EROD data in the six different treatment 

experiments i.e. n=∑ ∑ 1.t
krs

u
6rs  The collinearities for all combinations of the ten parameters in 

𝒑 were tested using the Collin function from the FME package in R.28 
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3. RESULTS AND DISCUSSION 

The aim of the present study was to provide a new mathematical bottom-up model to 

describe the synergistic mixture effect between two different classes of chemicals, on a 

mechanistic level. Experimental data on CYP1A biomarker responses in PLHC-1 exposed to 

BNF and NOC alone or in binary mixtures were used. The model successfully predicts the 

changes in CYP1A-mediated EROD activities of free CYP1A enzymes over time by fitting the 

model to experimental EROD data. In addition, ten parameters could be estimated in the model. 

 

3.1 Model Predictions. The parameters in the model were first estimated using EROD data 

from six different treatment experiments.21,22 The fitted values for the EROD activity of free 

CYP1A enzymes from the model are shown in Figure 2. The optimal value of cost function in 

equation (15) was equal to 13.63. This value corresponds to the mean value of the fraction 

(𝐸%,gh)ij8G&7 + 1)/(𝐸%,ilmin6gio+8G&7 + 1) equals to 1.05, which is good since it is close to a value of 

1.00 that corresponds to a perfect fit. 

The fitted values for the number of free CYP1A enzymes in cells co-treated with 1, 10 

or 25 µM NOC, together with either 0.1 or 1 µM BNF, were in good agreement with the 

experimental data (Figure 2A-B). In addition, there is a satisfactory agreement between the fits 

for the numbers of free CYP1A enzymes over time in cells treated with 0.1 µM BNF alone and 

the experimental data21,22 (Figure 2A). Since no significant induction of CYP1A activities could 

be measured in cells treated with 1, 10 or 25 µM NOC alone (Table S3), compared to that in 

vehicle-control cells, no comparison with fitted values were made for those treatments. 

 

118 Paper C



19 
 
 

 

 

Figure 2. Fitted values for EROD activity of free CYP1A enzymes. The solid lines depict 

the EROD activity of free CYP1A enzymes from the model fitted to the experimental EROD 

data (pmol ∙ (min ∙ mg protein)-1) (Table S1). The model is described by equations (4), (5), (9)-

(13) and the parameters are listed in Table 1. The circles, triangles, squares and rhombuses 

represent EROD data from six independent experiments where the cells are exposed to: A. 

Treatment 1) 0.1 µM BNF (orange squares), Treatment 2) 0.1 µM BNF + 1 µM NOC (brown 

rhombuses), Treatment 3) 0.1 µM BNF + 10 µM NOC (pink circles) and Treatment 4) 0.1 

µM BNF + 25 µM NOC (blue triangles), B. Treatment 5) 1 µM BNF + 1 µM NOC (purple 

squares) and Treatment 6) 1 µM BNF + 25 µM NOC (green rhombuses). In all treatments, the 

EROD activities have been measured at five different time points from 6 to 72h.21,22 All 

experimental data are provided in Table S1. 

 

 

The model predicts the four concentration state variables, X, Y, EOX and EOY, over time 

(Figure 3). The model shows that increasing the concentration of NOC (at t=0) from 1 to 10 or 
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25 µM results in slower BNF biotransformation rates. In fact, the model predicts no BNF 

biotransformation during the first 5-6h in cells co-treated with 25 µM NOC and BNF (Figure 

3A). This supports our hypothesis that the presence of 25 µM NOC delays the elimination of 

BNF molecules, which means that more CYP1A enzymes are occupied by BNF after 6h 

compared to cells that have been co-exposed with a low concentration (1 µM) of NOC (Figure 

3C). The model predicts that most of the CYP1A enzymes are being occupied by NOC 

molecules in a NOC dose-dependent manner during the first 6 hours (Figure 3D). In 

accordance, the model predicts that almost no CYP1A enzymes are occupied by BNF during 

the first 6h in the presence of either 10 or 25 µM NOC. The time delay for BNF to bind to free 

CYP1A enzymes is about 5h shorter for the cells co-treated with 1 µM NOC compared to cells 

treated with 25 µM NOC (Figure 3A and 3C). We conclude that it is the delayed elimination of 

BNF by NOC inhibition of CYP1A enzymes that causes the synergistic mixture effect on the 

CYP1A mediated EROD activity. 
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Figure 3. Model predictions for four state variables. A. Model predictions of BNF (𝑋) 

concentrations; B. Model predictions of NOC (𝑌) concentrations; C. Model predictions of 

number of CYP1A enzymes occupied by BNF (𝐸&'); D. Model predictions of number of 

CYP1A enzymes occupied by BNF (𝐸&(). The plots depict the model predictions based on the 

parameters derived from the fit to experimental EROD data (Table S1) from six different 

treatment experiments: Treatment 1) 0.1 µM BNF (orange solid line), Treatment 2) 0.1 µM 

BNF + 1 µM NOC (brown solid line), Treatment 3) 0.1 µM BNF + 10 µM NOC (pink solid 
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line), Treatment 4) 0.1 µM BNF + 25 µM NOC (blue solid line), Treatment 5) 1 µM BNF + 

1 µM NOC (purple dashed line) and Treatment 6) 1 µM BNF + 25 µM NOC (green dashed 

line). The model is described by equations (4), (5) and (9)-(13) and the parameters are listed in 

Table 1. In all treatments, the EROD activities have been measured at five different time points 

from 6 to 72h.21,22 

 

 

3.2 Model Validation. The model was validated with data from a seventh experiment21,22, 

Treatment 7) 1 µM BNF + 10 µM NOC shown in Figure 4, which was not used in the 

parameter estimation procedure. 

 

Treatment 7 used for Model Validation 

⎣
⎢
⎢
⎢
⎢
⎡ 𝑋[

𝑌[

𝐸%8G&7
[

𝐸&'[

𝐸&([ ⎦
⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎡
1
10
0
0
0 ⎦
⎥
⎥
⎥
⎤
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Figure 4. Model Validation. A. The model was validated using data from an additional 

experiment, Treatment 7) 1 µM BNF + 10 µM NOC (red circles). The model prediction for 

EROD activity of free CYP1A enzymes from the model (solid red line) is compared with the 

experimental EROD data (pmol ∙ (min ∙ mg protein)-1) (Table S1).21,22 B. Model predictions of 

changes in the concentrations of BNF (𝑋), NOC (𝑌) molecules over time (top panel). Model 

predictions of the changes in numbers of CYP1A enzymes occupied by BNF (𝐸&') and NOC 

(𝐸&() over time (bottom panel). The model is described by equations (4), (5) and (9)-(13) and 

the parameters are listed in Table 1. The experimental data are provided in Table S1. 

 

 

The model prediction for the EROD activity of free CYP1A enzymes is in good 

agreement with the experimental values of EROD activities from Treatment 7 (Figure 4A). 

The model predicts how the numbers of CYP1A enzymes occupied by BNF and NOC change 

over time (Figure 4B, bottom panel). The model also predicts that BNF is not being 
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biotransformed by CYP1A enzymes during the first 5h in the presence of 10 µM NOC (Figure 

4B, top panel). 

The validation test shows that the model has good prediction power and can be used to 

test different combinations of two chemicals and their effect on the EROD activity of free 

CYP1A enzymes (Figure 4). 

 

3.3 Global Sensitivity Analysis. The ranges from the GSA for the EROD activity of free 

CYP1A enzymes are illustrated using 5-95%, 25-75% and 50% (median) quantiles (Figure 5). 

 

 

 

Figure 5. Global Sensitivity Analysis. Sensitivity range of the EROD activities22 of free 

CYP1A enzymes over time to changes in one parameter per row is illustrated. The sensitivity 

ranges are depicted by using 5-95% (light blue), 25-75% (dark blue) and 50% (red) quantiles 
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of the EROD activities of free CYP1A values (vertical axis) estimated by the model on the time 

interval from dosing (t = 0) to t=72h (horizontal axis) for six different treatments: Treatment 

1) 0.1 µM BNF; Treatment 2) 0.1 µM BNF + 1 µM NOC; Treatment 3) 0.1 µM BNF + 10 

µM NOC; Treatment 4) 0.1 µM BNF + 25 µM NOC; Treatment 5) 1 µM BNF + 1 µM NOC 

and Treatment 6) 1 µM BNF + 25 µM NOC. 

 

 

The GSA revealed a high sensitivity of the EROD activity of free CYP1A enzymes in all 

treatments to changes in the CYP1A degradation rate (𝑘7). To reduce the uncertainty in the 

model predictions, the value of 𝑘7 should therefore be estimated with low uncertainty. In 

addition, the GSA indicated that changes in the biotransformation rate of BNF (𝑘&') has no or 

insignificant individual effect on the robustness of the dynamics of free CYP1A enzymes. To 

rank the 𝑘&' as a non-influential parameter on the dynamics of free CYP1A enzymes, further 

analysis is required to calculate the joint effect of this parameter due to its interaction with the 

other parameters. This can be beneficial for model simplification, but was not the main focus 

of this study. Hence, the GSA revealed that 𝑘7 is an influential parameter. It also confirmed 

that the number of free CYP1A enzymes over time is more sensitive to the changes in the 

threshold concentration of BNF to induce EROD activity (𝑐') compared to the changes in the 

threshold concentration of NOC to induce EROD activity (𝑐() (Figure 5). 

 

3.4 Local Sensitivity Analysis and practical identifiability. The first source of practical non-

identifiability is assessed by computing the sensitivity values of 𝐸%8G&7 using equation (16). 

The LSA indicated that the three parameters	𝑘7, 𝑘' and 𝑘(, have the largest negative average 

effects on the EROD activity of free CYP1A enzymes and are followed by 𝑐', 𝑐( and 𝑘6. The 

other four parameters on average have positive effects on the EROD activity of free enzymes, 
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with 𝑘&' being the parameter with the least effect (Table 2). This is in good agreement with the 

results from the GSA (Figure 5). The sensitivity values of the ten parameters at each time point 

for the six treatments are provided in Figure S1. 

 

Table 2. Statistics of Local Sensitivity Analysis of EROD Activity of Free CYP1A 

Enzymes.b 

Parameter 𝒔𝒍
𝒎𝒔𝒒𝒓 Mean 

𝑘' 38.17 -14.61 

𝑘( 79.06 -29.28 

𝑘6 0.45 -0.17 

𝑐' 31.29 -12.19 

𝑐( 1.23 -0.47 

𝑘@' 2.67 0.94 

𝑘@( 14.69 5.32 

𝑘&' 0.08 0.01 

𝑘&( 15.12 6.20 

𝑘7 147.29 -54.59 

b The 	𝑠j
gÄÅn are the root mean squared sensitivity measures defined in equation (17) and the 

mean values are the average of the sensitivity values illustrated in Figure S1. 

 

A parameter with no or insignificant effect on the EROD activity of free CYP1A 

enzymes was classified as a practically non-identifiable parameter. It has been suggested that 

the threshold value classified as a non-identifiable parameter is four orders of magnitude lower 

than the maximum root mean squared value.31 All of the ten parameters are above this cut-off 

value of 0.014 (Table 2). Hence, all the ten model parameters have significant effects on the 
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EROD activity of free CYP1A enzymes with the experimental EROD data. This indicates a 

strength of the model since the first source of practical non-identifiability is not a problem. 

The parameters may also interfere with each other. Due to interdependence among the 

parameters, the possible effect of each parameter on the EROD activity of free CYP1A enzymes 

may be compensated by change(s) in other parameter(s), known as parameter collinearity. A 

parameter set with collinearity index above 20 is considered as a non-identifiable set.32 

The maximum values of collinearity indices for sets inholding different combinations of the 

parameters two-ten were 5.60, 8.06, 9.54, 11.58, 14.43, 15.07, 15.58, 16.50 and 17.39, 

respectively. The collinearity index for all ten parameter combinations are provided in Figure 

S2. The collinearity analysis indicated that all sets with different combinations of parameters 

had a collinearity index below 20. This led us to conclude that by using experimental EROD 

data, unique values for each of the ten parameters in the model can be estimated simultaneously. 

Moreover, non-identifiability due to collinearity between parameters is not a problem. 

Azoles have been shown to interact with CYP enzymes, including CYP1A in fish.13-18 For 

example, ketoconazole was shown to act as a potent non-competitive inhibitor of microsomal 

CYP1A activities in Atlantic cod.18 Co-exposure of ketoconazole that inhibits CYP1A and 

CYP3A enzymes resulted in increased sensitivity to ethinylestradiol exposure in rainbow 

trout.19 Synergistic effects between antifungal azoles and insecticides have earlier been 

reported. Thus, the azole prochloraz inhibited the biotransformation of a pyrethroid, resulting 

in increased insecticide toxicity in honeybees co-exposed to prochloraz.33 The azole mediated 

inhibition of CYP-dependent detoxification of pesticide was suggested being the main 

mechanism behind the synergizing effect of azoles on pesticide toxicity.12 However, the 

synergistic effect of antifungal azoles on the pyrethroid insecticide toxicity was not correlated 

to azole inhibition strength on the CYP-mediated ethoxycoumarin-O-deethylase (ECOD) 

activity in two aquatic invertebrates, implying that the mechanisms behind the synergism is 

more complex.34 There also seem to be species differences in enzyme susceptibility towards 
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azoles.35 In PLHC-1 cells, co-exposure to the azole NOC delayed the response to BNF 

exposures indicating that NOC prevents biotransformation of BNF, presumably by inhibition 

of CYP1A enzymes.21 This suggests a delayed CYP1A-mediated biotransformation of BNF in 

the presence of the NOC. Delayed biotransformation for benzo[a]pyrene was demonstrated in 

two rainbow trout cell lines (RTL-W1 and RTgutGC) co-exposed with the CYP1A (EROD) 

inhibitor α-naphthoflavone.36 Hence, inhibition of CYP metabolism can increase the biological 

half-life of aromatic hydrocarbons resulting in increased sensitivity to exposures to aromatic 

hydrocarbons. 

The synergistic mixture effect with α-cypermethrin and two azoles in Daphnia magna 

correlated with inhibition of the CYP-mediated EROD activity by prochloraz and to some 

extent with the inhibition by propiconazole. It was suggested that a toxicokinetic and 

toxicodynamic model could be a tool to test mechanisms of interactions between chemicals.12 

In the present study, we also use a toxicokinetic approach focusing on the inhibition of the 

CYP1A enzyme activity by NOC, by using a Hill function to model the competition between 

the azole NOC and the AhR agonist BNF. The time that these two chemicals are competing and 

the steepness of the rate of biotransformation of BNF depend on the Hill coefficient, which was 

fixed at a preselected value to optimize the model fit to the data.  Here, the model might not 

give a real estimation on how the biotransformation of BNF is controlled by NOC. The model 

can be further refined in future studies by including chemical data. 

The new model presented here successfully predicts the changes in EROD activities of free 

CYP1A enzymes over time by fitting the model to experimental EROD data with given 

mixtures of BNF and NOC. Ten parameters could be estimated in the model. We hypothesize 

that the synergistic effect is a result of NOC mediated inhibition of the CYP1A dependent 

clearance of BNF. Synergistic mixture effects were seen with two other azoles, clotrimazole 

and prochoraz in PLHC-1 cells. These azoles also acted as inhibitors of the EROD activities 

(having IC50 values below 10 µM). The azole omeprazole, on the other hand, did not 
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significantly inhibit EROD activities (having an IC50 value above 50 µM), and there was no 

synergistic mixture effect when BNF was mixed with omeprazole.21 This supports our 

hypothesis that inhibition of CYP1A activities triggers a synergistic mixture effect. A similar 

synergistic mixture effect on the CYP1A biomarker has been observed in cells exposed to an 

another AhR agonist, the polycyclic aromatic hydrocarbon benzo[a]pyrene, in combination 

with an antifungal imidazole drug clotrimazole (Alvord, C.; Lundh, T.; Wiklander, K.; 

Bernhardsson, A.; Celander, M.C. data not shown). Hence, the model has a potential to be used 

for other chemical mixtures.  

Sensitivity and identifiability analysis revealed that the parameter corresponding to the 

rate of CYP1A enzyme degradation is the most influential parameter on the dynamics of the 

EROD activity of free CYP1A enzymes predicted by the model. In contrast, the parameter 

related to biotransformation of BNF is the parameter with the least individual influence on this 

variable. Hence, to reduce the total uncertainty in the model predictions for the EROD activity 

of CYP1A enzymes the parameter corresponding to the rate of CYP1A enzyme degradation 

should be estimated with low uncertainty. The present study provides a new promising 

toxicokinetic model with predictive power to describe synergistic mixture effects between 

aromatic hydrocarbons and azoles. 
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TABLES: 

Table S1. Raw data for the ethoxyresorufin-O-deethylase (EROD) activity shown in Figures 

2A, 2B and 4A. All times are given in hours. Treatments are denoted by 1-7. The same 

annotation is used in the model code. Data are originally published in figures as mean values ± 

standard deviation in Gräns et al. 2015 (reference 1) and Michelová M. Master-thesis 2012 

(reference 2). 

Time EROD activity  Treatment Treatment 
(h) (pmol ∙ (min ∙ mg protein)-1)  number 

6 2.92190258 BNF 0.1 µM  1 

6 3.69454764 BNF 0.1 µM  1 

6 1.68262381 BNF 0.1 µM  1 

6 3.3423465 BNF 0.1 µM  1 

12 1.42052688 BNF 0.1 µM  1 

12 2.31785379 BNF 0.1 µM  1 

12 1.18018557 BNF 0.1 µM  1 

12 3.23571203 BNF 0.1 µM  1 

24 0.65168451 BNF 0.1 µM  1 

24 0.5054846 BNF 0.1 µM  1 

24 0.41898238 BNF 0.1 µM  1 

24 0.61937856 BNF 0.1 µM  1 

48 0.05222293 BNF 0.1 µM  1 

48 0.08032718 BNF 0.1 µM  1 

48 0.10036158 BNF 0.1 µM  1 

48 0.03061984 BNF 0.1 µM  1 

72 -0.0089312 BNF 0.1 µM  1 

72 -0.0431119 BNF 0.1 µM  1 

72 0.03056186 BNF 0.1 µM 1 

72 0.00783302 BNF 0.1 µM  1 

6 2.27896044 BNF 0.1 µM and NOC 1 µM 2 
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6 2.67142836 BNF 0.1 µM and NOC 1 µM 2 

6 2.55450885 BNF 0.1 µM and NOC 1 µM 2 

6 4.18042635 BNF 0.1 µM and NOC 1 µM 2 

12 0.593757 BNF 0.1 µM and NOC 1 µM 2 

12 0.91465491 BNF 0.1 µM and NOC 1 µM 2 

12 1.29736125 BNF 0.1 µM and NOC 1 µM 2 

12 1.69157719 BNF 0.1 µM and NOC 1 µM 2 

24 1.25667054 BNF 0.1 µM and NOC 1 µM 2 

24 1.28266786 BNF 0.1 µM and NOC 1 µM 2 

24 0.74049556 BNF 0.1 µM and NOC 1 µM 2 

24 1.32778702 BNF 0.1 µM and NOC 1 µM 2 

48 0.27140646 BNF 0.1 µM and NOC 1 µM 2 

48 0.2556882 BNF 0.1 µM and NOC 1 µM 2 

48 0.2019469 BNF 0.1 µM and NOC 1 µM 2 

48 0.21827206 BNF 0.1 µM and NOC 1 µM 2 

72 0.1852296 BNF 0.1 µM and NOC 1 µM 2 

72 0.14971151 BNF 0.1 µM and NOC 1 µM 2 

72 -0.0035442 BNF 0.1 µM and NOC 1 µM 2 

72 0.07820264 BNF 0.1 µM and NOC 1 µM 2 

6 7.36722239 BNF 0.1 µM and NOC 10 µM 3 

6 8.19225914 BNF 0.1 µM and NOC 10 µM 3 

6 6.40147279 BNF 0.1 µM and NOC 10 µM 3 

6 10.3568426 BNF 0.1 µM and NOC 10 µM 3 

12 5.79331185 BNF 0.1 µM and NOC 10 µM 3 

12 8.52501746 BNF 0.1 µM and NOC 10 µM 3 

12 6.59014412 BNF 0.1 µM and NOC 10 µM 3 

12 10.1562112 BNF 0.1 µM and NOC 10 µM 3 

24 4.31962722 BNF 0.1 µM and NOC 10 µM 3 

24 4.93575241 BNF 0.1 µM and NOC 10 µM 3 

24 9.23688221 BNF 0.1 µM and NOC 10 µM 3 

24 10.9139222 BNF 0.1 µM and NOC 10 µM 3 

48 3.528014 BNF 0.1 µM and NOC 10 µM 3 

48 1.77744018 BNF 0.1 µM and NOC 10 µM 3 
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48 4.73028336 BNF 0.1 µM and NOC 10 µM 3 

48 3.83101002 BNF 0.1 µM and NOC 10 µM 3 

72 0.61760342 BNF 0.1 µM and NOC 10 µM 3 

72 0.42778956 BNF 0.1 µM and NOC 10 µM 3 

72 1.18436321 BNF 0.1 µM and NOC 10 µM 3 

72 1.02342749 BNF 0.1 µM and NOC 10 µM 3 

6 7.71808341 BNF 0.1 µM and NOC 25 µM 4 

6 8.32716239 BNF 0.1 µM and NOC 25 µM 4 

6 7.69936717 BNF 0.1 µM and NOC 25 µM 4 

6 13.2227151 BNF 0.1 µM and NOC 25 µM 4 

12 11.8627936 BNF 0.1 µM and NOC 25 µM 4 

12 12.5949582 BNF 0.1 µM and NOC 25 µM 4 

12 9.66216727 BNF 0.1 µM and NOC 25 µM 4 

12 13.5778835 BNF 0.1 µM and NOC 25 µM 4 

24 10.1189154 BNF 0.1 µM and NOC 25 µM 4 

24 11.2275265 BNF 0.1 µM and NOC 25 µM 4 

24 14.5414457 BNF 0.1 µM and NOC 25 µM 4 

24 17.0127185 BNF 0.1 µM and NOC 25 µM 4 

48 14.2378479 BNF 0.1 µM and NOC 25 µM 4 

48 9.99436876 BNF 0.1 µM and NOC 25 µM 4 

48 10.7615408 BNF 0.1 µM and NOC 25 µM 4 

48 8.9564097 BNF 0.1 µM and NOC 25 µM 4 

72 2.44214987 BNF 0.1 µM and NOC 25 µM 4 

72 2.12808275 BNF 0.1 µM and NOC 25 µM 4 

72 2.72777848 BNF 0.1 µM and NOC 25 µM 4 

72 2.03687811 BNF 0.1 µM and NOC 25 µM 4 

6 4.25915447 BNF 1 µM and NOC 1 µM 5 

6 4.15426073 BNF 1 µM and NOC 1 µM 5 

6 4.02362663 BNF 1 µM and NOC 1 µM 5 

6 6.83484415 BNF 1 µM and NOC 1 µM 5 

12 6.33964085 BNF 1 µM and NOC 1 µM 5 

12 8.34863858 BNF 1 µM and NOC 1 µM 5 
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12 4.17620219 BNF 1 µM and NOC 1 µM 5 

12 6.38054672 BNF 1 µM and NOC 1 µM 5 

24 10.405456 BNF 1 µM and NOC 1 µM 5 

24 10.771562 BNF 1 µM and NOC 1 µM 5 

24 7.59540869 BNF 1 µM and NOC 1 µM 5 

24 8.8010075 BNF 1 µM and NOC 1 µM 5 

48 2.70204088 BNF 1 µM and NOC 1 µM 5 

48 3.27295458 BNF 1 µM and NOC 1 µM 5 

48 2.8059326 BNF 1 µM and NOC 1 µM 5 

48 1.8645738 BNF 1 µM and NOC 1 µM 5 

72 0.12598001 BNF 1 µM and NOC 1 µM 5 

72 0.19551305 BNF 1 µM and NOC 1 µM 5 

72 0.2272445 BNF 1 µM and NOC 1 µM 5 

72 0.14294592 BNF 1 µM and NOC 1 µM 5 

6 4.05958302 BNF 1 µM and NOC 25 µM 6 

6 4.73479989 BNF 1 µM and NOC 25 µM 6 

6 3.9063292 BNF 1 µM and NOC 25 µM 6 

6 8.25327557 BNF 1 µM and NOC 25 µM 6 

12 9.21418146 BNF 1 µM and NOC 25 µM 6 

12 11.803604 BNF 1 µM and NOC 25 µM 6 

12 7.6698235 BNF 1 µM and NOC 25 µM 6 

12 14.0849049 BNF 1 µM and NOC 25 µM 6 

24 12.7508499 BNF 1 µM and NOC 25 µM 6 

24 13.483253 BNF 1 µM and NOC 25 µM 6 

24 15.9410841 BNF 1 µM and NOC 25 µM 6 

24 19.4159461 BNF 1 µM and NOC 25 µM 6 

48 15.5009285 BNF 1 µM and NOC 25 µM 6 

48 11.9997667 BNF 1 µM and NOC 25 µM 6 

48 11.5037771 BNF 1 µM and NOC 25 µM 6 

48 11.6652826 BNF 1 µM and NOC 25 µM 6 

72 6.55693615 BNF 1 µM and NOC 25 µM 6 

72 5.61974464 BNF 1 µM and NOC 25 µM 6 
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72 4.64567565 BNF 1 µM and NOC 25 µM 6 

72 7.22737517 BNF 1 µM and NOC 25 µM 6 

6 4.54633972a BNF 1 µM and NOC 10 µM 7 

6 5.59647396a BNF 1 µM and NOC 10 µM 7 

6 5.1440204 a BNF 1 µM and NOC 10 µM 7 

6 9.61475399 a BNF 1 µM and NOC 10 µM 7 

12 6.26397851 a BNF 1 µM and NOC 10 µM 7 

12 8.31189843 a BNF 1 µM and NOC 10 µM 7 

12 6.94923936 a BNF 1 µM and NOC 10 µM 7 

12 12.9031626 a BNF 1 µM and NOC 10 µM 7 

24 6.41179367 a BNF 1 µM and NOC 10 µM 7 

24 7.78904675 a BNF 1 µM and NOC 10 µM 7 

24 13.1874913 a BNF 1 µM and NOC 10 µM 7 

24 15.1788122 a BNF 1 µM and NOC 10 µM 7 

48 4.5062918 a BNF 1 µM and NOC 10 µM 7 

48 2.3500834 a BNF 1 µM and NOC 10 µM 7 

48 7.08559516 a BNF 1 µM and NOC 10 µM 7 

48 5.93579771 a BNF 1 µM and NOC 10 µM 7 

72 0.66411867 a BNF 1 µM and NOC 10 µM 7 

72 0.46601484 a BNF 1 µM and NOC 10 µM 7 

72 1.65068662 a BNF 1 µM and NOC 10 µM 7 

72 3.36291459 a BNF 1 µM and NOC 10 µM 7 

a Data not included in the fit and used for validation. 
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Table S2. Raw data from a dose response experiment with β-naphthoflavone (BNF) alone on 

ethoxyresorufin-O-deethylase (EROD) activities at 24 hours. Dimethylsulphoxide (DMSO) 

was used as in vehicle-control. Six different doses of BNF was tested 0.1, 0.3, 0.9, 3, 8 and 25 

µM. The data are originally presented in a diagram as mean values ± standard deviation in 

Michelová M. Master-thesis, 2012 (reference 2). 

Time EROD activity  Treatment 
(h) (pmol ∙ (min ∙ mg protein)-1)  

24 0.046551324 DMSO 

24 0.060342951  DMSO 

24 0.039346828 DMSO 

24 

 

0.084340084 

 

DMSO 

 

24 0.670409585  BNF 0.1 µM 

24 0.674327937 BNF 0.1 µM 

24 0.684057217 BNF 0.1 µM 

24 

 

0.730882299  

 

BNF 0.1 µM 

24 2.155646156 BNF 0.3 µM 

24 2.998096302 BNF 0.3 µM 

24 6.882963038  BNF 0.3 µM 

24 

 

7.118508328 

 

BNF 0.3 µM 

24 9.826610315  BNF 0.9 µM 

24 9.640790055 BNF 0.9 µM 

24 13.20528880 BNF 0.9 µM 

24 

 

15.66574736  

 

BNF 0.9 µM 

24 10,47750098  BNF 1 µM 

24 15,75083724  BNF 1 µM 

24 11,37043434  BNF 1 µM 

24 

 

11,46827036  

 

BNF 1 µM 
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24 12.61086424 BNF 3 µM 

24 16.82920780  BNF 3 µM 

24 14.21727784  BNF 3 µM 

24 

 

14.37496398 

 

BNF 3 µM 

24 8.667026192 BNF 8 µM 

24 12.63653731 BNF 8 µM 

24 8.916652597 BNF 8 µM 

24 

 

11.58314181 

 

BNF 8 µM 

 

24 4.356204610  BNF 25 µM 

24 7.245004896 BNF 25 µM 

24 3.180976352 BNF 25 µM 

24 5.051250052 BNF 25 µM 
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Table S3. Raw data from dose response experiment with nocodazole (NOC) alone on 

ethoxyresorufin-O-deethylase (EROD) activities at 6, 12, 24, 48 and 72h. Dimethylsulphoxide 

(DMSO) was used as vehicle-control. Three different doses of NOC was tested, 1, 10 1nd 25 

µM. No significant induction of CYP1A activities could be measured in cells treated with 1, 10 

or 25 µM NOC alone compared to that in vehicle-control treated (DMSO) cells and no 

comparison with fitted values were made for those treatments. The data are originally presented 

in a diagram as mean values ± standard deviation in Michelová M. Master-thesis, 2012 

(reference 2). 

Time EROD activity  Treatment 
(h) (pmol ∙ (min ∙ mg protein)-1)  

6 0.11377082 DMSO 

6 0.25665065 DMSO 

6 0.16774007 DMSO 

6 0.01560841 DMSO 

12 0.11538702 DMSO 

12 0.1016562 DMSO 

12 0.2325335 DMSO 

12 0.09802283 DMSO 

24 -0.0063485 DMSO 

24 0.05044173 DMSO 

24 -0.0005397 DMSO 

24 -0.0105922 DMSO 

48 -0.0274927 DMSO 

48 0.03330583 DMSO 

48 0.05984807 DMSO 

48 -0.0017851 DMSO 

72 0.0029007 DMSO 

72 0.06646949 DMSO 

72 0.0272952 DMSO 

72 0.0057347 DMSO 
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6 0.02561141 NOC 1 µM 

6 0.03276828 NOC 1 µM 

6 0.07516854 NOC 1 µM 

6 0.24248221 NOC 1 µM 

12 -0.0246521 NOC 1 µM 

12 -0.0079321 NOC 1 µM 

12 0.18523452 NOC 1 µM 

12 0.18955516 NOC 1 µM 

24 0.00743391 NOC 1 µM 

24 -0.0256403 NOC 1 µM 

24 -0.0031455 NOC 1 µM 

24 0.03193376 NOC 1 µM 

48 -0.0303212 NOC 1 µM 

48 0.04061289 NOC 1 µM 

48 0.07123973 NOC 1 µM 

48 0.0127288 NOC 1 µM 

72 0.0027803 NOC 1 µM 

72 -0.0623571 NOC 1 µM 

72 0.0249061 NOC 1 µM 

72 0.0216266 NOC 1 µM 

   

6 0.0763394 NOC 10 µM 

6 0.04654934 NOC 10 µM 

6 0.26674799 NOC 10 µM 

6 0.06454803 NOC 10 µM 

12 0.07035758 NOC 10 µM 

12 0.05555987 NOC 10 µM 

12 0.17346336 NOC 10 µM 

12 0.20638625 NOC 10 µM 

24 0.0681884 NOC 10 µM 

24 -0.0734886 NOC 10 µM 

24 0.14514875 NOC 10 µM 

24 0.10303029 NOC 10 µM 
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48 0.16856512 NOC 10 µM 

48 0.10049923 NOC 10 µM 

48 0.6412272 NOC 10 µM 

48 0.08100902 NOC 10 µM 

72 0.29324048 NOC 10 µM 

72 0.0263505 NOC 10 µM 

72 0.0459174 NOC 10 µM 

72 0.03089082 NOC 10 µM 

   

6 0.00804636 NOC 25 µM 

6 -0.0439197 NOC 25 µM 

6 0.27521007 NOC 25 µM 

6 0.15776044 NOC 25 µM 

12 -0.1723871 NOC 25 µM 

12 0.06644439 NOC 25 µM 

12 0.12006505 NOC 25 µM 

12 0.06413321 NOC 25 µM 

24 -0.0644523 NOC 25 µM 

24 0.00814383 NOC 25 µM 

24 0.10558674 NOC 25 µM 

24 0.01805869 NOC 25 µM 

48 0.16261439 NOC 25 µM 

48 0.09551795 NOC 25 µM 

48 0.03861299 NOC 25 µM 

48 0.00371416 NOC 25 µM 

72 0.09099329 NOC 25 µM 

72 0.15649775 NOC 25 µM 

72 0.0309007 NOC 25 µM 

72 0.06562328 NOC 25 µM 
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FIGURES: 

Figure S1. Local Sensitivity Analysis. Effects of the ten parameters on the EROD activity of 

free CYP1A enzymes (𝐸"#$%&) as the model output. The model is described by equations (4), 

(5), (9)-(13) and the parameters are listed in Table 1. The diagram shows sensitivity of 𝐸"#$%& 

to small perturbations in the nominal values of the ten parameters. It shows that 𝑘& has the 

largest negative average effects on the 𝐸"#$%& values whereas 𝑘%( has the least positive average 

influence. 
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Figure S2. Collinearity index for all parameter combinations. The dashed red line denotes 

the threshold value of 20, for the collinearity index. All sets inholding different parameter 

combinations in the model have a collinearity index below 20. 
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