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On the solution of the solitary wave problem

L. E. Engevik
Department of Mathematics, University of Bergen, Norway

Abstract

The solitary wave problem has been considered and a new approach
is proposed which may give some further insight concerning the se-
ries solution of this problem, especially whether it is a convergent or
an asymptotic series. The velocity potential is expressed as a surface
integral, and it is shown how the series solution emerges from this in-
tegral. A procedure is given to calculate to any order the coefficients
in the series of the surface elevation and the velocity potential, and
it is shown analytically that these series must necessarily be asymp-
totic. Some numerical results are presented in order to compare with
previously known results; the series of the surface elevation and the
velocity potential are obtained to ninth order, and since the computer
algebra system Maple has been used it is possible to give the exact
values of the coefficients in these series. The series solutions to a given
order of the surface elevation and the velocity potential are introduced
into the surface integral to obtain another approximate value of the
velocity potential which becomes different from the one given by the
series solution; these to values being compared to estimate how good
the series solution to a given order is.



1 Introduction

The steady finite solitary wave was first reported by Russel (1844), and since
the first approximate solutions given by Boussinesq (1871) and Rayleigh
(1876) there have been several attempts to improve upon the solution of
this problem. The first shallow-water theory of periodic waves was given by
Korteveg & de Vries (1895) who showed that the first approximation to the
surface profile of steadily progressing waves in shallow water was cnoidal,
and that the solitary wave was a particular limiting case, that of infinite
wave-length. So, the shallow-water wave problem has a long history with a
number of participants and with a comprehensive list of references, see for
instance the review articles by Miles (1980) and Schwartz and Fenton (1982).
In the papers of Fenton (1972, 1979) high order solitary- and cnoidal wave so-
lutions have been presented well suited for practical use. The solutions have
been obtained to ninth order; however, by comparing with ”exact” numerical
results, Cokelet (1977), and with experimental investigations, Le Méhauté,
Divoky & Lin (1968) and Iwagaki & Sakai (1970) , it is found that there is
no gain in accuracy to be had by including terms after the fifth, suggesting
that the series involved are asymptotic rather than convergent.

In this paper we present a new approach to obtain the series solution of
the solitary wave problem, and which enable us to show analytically that
the series must necessarily be asymptotic. The velocity potential is given as
a surface integral, Engevik (1986, 1991). In principal this integral can be
evaluated by using the residue theorem, and it is found that only two of the
poles of the integrand contribute to the series solution of the solitary wave
problem. It is shown how the series of the surface elevation and the velocity
potential can be obtained to any order, and we carry out the calculations to
ninth order to compare our solution of the surface profile with that of Fenton
(1972). Since we have used the computer algebra system Maple when doing
our numerical calculations, the coefficients in the series can be given their
exact values, which have not been given before. Moreover, our analysis re-
veals analytically that the series must be asymptotic rather than convergent.
Another approximate value of the velocity potential is obtained from the sur-
face integral by introducing into it the series to a given order of the surface
elevation and the velocity potential; this value being different from the one
given by the series solution. The difference between these two values of the
velocity potential can not be expected to tend to zero when the number of



terms in the series tends to infinity since, as will be shown, the series do
not converge. On the contrary we would expect this difference to reveal the
asymptotic nature of the series, i.e. for a given wave amplitude we would
expect that there is a limited number of terms which must be included in
the series to obtain a minimum value of this difference, with no improvement
by further increasing the number of terms in the series, rather the opposite.
Some numerical results are presented which seem to support this behaviour.

2 Formulation and solution

We consider waves on the free surface of a homogeneous, incompressible and
irrotational fluid of infinite horizontal extent and of finite and uniform depth.
The wave motion is assumed to be two-dimensional and to take place in the
(z*, z*)-plane, with the z*-axis in the horizontal direction and the z*-axis
directed vertically upwards. Furthermore, the wave motion is assumed to be
stationary in this frame of reference, i.e. the velocity potential ® = ®(z*, z*)
and the surface elevation z* = 7*(z*) are independent of time. The equations
governing this problem are,

V*2e =0, —d* < z* < n*(z*) (1)
3(V®)? + g =C
at 2" = 7*(z") (2)

n-V*® =0

0o

oy =0 atz*=-d", (3)
where V* = ia‘z, +Ea;2,, n= (k- 7,*'1')/,/1 + n*'2, where 7 and k are the unit
vectors in the z*- and the z*-direction respectively, and the prime denotes

o o G c 2 2 .
differentiation with respect to z*, V*? = %2’ + %2‘, and C is a constant.

(2) are the dynamic and the kinematic boundary conditions at the free sur-
face, and (3) is the boundary condition at the bottom.

We introduce the dimensionless quantities z = z*/d*, z = z*/d*, ( = n*/d*,
¢ = ®/cd* where ¢ = \/gd* into the equations (1) — (3) and get,

s , 79

522 W:—O’ -1<z<((z) (4)



0d., ,00., .
) +(—£) +2(=R

oz
at z = ((z) (3)
06 ., 09 _
0p _
5—0 at z =-1, (6)

where R is a constant, and here the prime denotes differentiation with respect
to z.

In this paper we will study the solitary wave problem, i.e. the surface wave
problem in the shallow-water limit, when the characteristic length L* in the
z*-direction is much greater than the depth d* of the water; d*/L* being of
order €. The solitary wave problem has a formal series solution of the form,

o 0]

((z) = ¥ Ajsech (ez). (7)

Jj=1

The velocity potential at the free surface, ¢,(z) = &(z,{(z)), can be ex-
pressed as,

¢s(z) = VR (a: + tanh(ez) i ezj‘lBjsechz(j_l)(ez)) : (8)

The connection between the A;’s and the B;’s is given by the equation,

(Eey = (R- 201+, Q

which is obtained from the boundary conditions at the free surface. The
solution of (4) can be expressed as a surface integral, Engevik (1986, 1991),
i.e.,

1 G
8(z,2) = 5 lim [ o5"ds, (10)
where S, is the surface lying between £ = —r and z = 7, % denotes the

derivative normal to the surface, and G(u, 7;z,2) is the Green function as
given by Engevik (1991), i.e.

Gy, T;2,2) = %ln {[(ﬂ 2+ (r=2)[(p-2)*+ (74 2+ 2)2]} .(11)

4




(11) introduced into (10) yields,

i ; () —z—¢"(w)(p—x)
a2 = 5 | [| o PO D

Cu)+2z+2—('(p)(p—z)
(r—z)? + (C(w) + 2 + 2)?

If () and ¢s(x) are known, then ¢(z, z) can be calculated, and if the series
solutions of {(z) and ¢,(z) converge, then we would expect ¢(z, z) to converge
to its exact value when the number of terms in the series is increased, which
means that the value of ¢,(z) calculated from the integral expression in (12)
should approach the value obtained from the series solution when the number
of terms in the series is increased.

The integrals in (12) can be considered as integrals along the real axis in the
complex o-plane, where o0 = u + iv; the p-axis being the real axis and the
v-axis the imaginary axis, and can in principal be evaluated by using the
residue theorem, assuming that the integrands can be continued analytically
into the complex o-plane. The integrands have poles where the following
functions have zeros,

Fy(o) =((0) — 2 +i(0 — z) |

(12)

_: és(u)

Fy(0) =((0) — z —i(0 — 7)
> (13)
F3(o)=((o)+2+2+1i(0c—1)

Fyo)=(¢(o)+2z+2—i(c—z). |

Let the zeros of F,(c),n = 1,2,3,4 in the upper half of the o-plane be
denoted by o,j, n = 1,2, 3,4, and assuming the zeros to be simple we get,

é(z, 2) Z( 1) "“Zq’)s (0nj) + — lim ( Ydo, (14)

7r T—00

where I is the semicircle with radius r lying in the upper half plane. (In
obtaining (14) we have assumed that the only singularities of the integrands
in the upper half plane are poles, which is the case if the series of ((z) and
&s(z) to a given order are used in the integrands). It is easily verified that
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¢s(0q;) as a function of z and z satisfies the Laplace equation.

We want to obtain the series solution of the solitary wave problem, and in
this connection one of the zeros of Fj(o), which is denoted by o}, and one
of the zeros of F3(0), denoted by o3, turn out to be of special interest. The
zero oyg is defined as follows: Let (z,z) be a point in the fluid just below
the free surface. We put z = {(z) — €;, where 0 < ¢; < 1, into the equation
Fi(o) =0, and find that,

010 =IE+C¥1 +i,61,

where
b (15)
a1 = —e('(2)/{1 + (('())*} + O(€d)

Ar=ea/{1+(C(2)’} + O(), )

which shows that oy lies in the upper half of the o-plane near the point
(z,0). Furthermore, 0,9 — = when ¢; — 0, i.e. when the free surface is
approached from below. F,(o) has a zero, 0%, near the point (z,0) as well,
but this zero lies in the lower half plane and is therefore not among the zeros
09;. 03 is defined to be that zero of F3(o) which is equal to o} at the bottom
where z = —1, i.e. g30(z, —1) = 010(z, —1).

We may also write ¢(z, z) as,

8(a,2) = 3l6u(ow) + dlow)] + 5 [ (-+)do, (16)

where I'; is a contour in the upper half plane which together with the real axis
constitutes a closed contour, and where we have assumed that the integrands
are analytic within and on this closed contour except for the poles at o, and
o30. ( If all the the singularities of the integrands in the upper half plane
are simple poles, (16) can be evaluated to obtain (14), but (16) also allows
the integrands to have singularties of other kinds than poles, lying outside
the closed contour). We notice that the expression %[d)s(aw) + ¢5(030)],
as a function of z and z, satisfies the Laplace equation and the boundary
condition at the bottom.



3 The series solution of the solitary wave prob-
lem

The function
#(z,2) = 3 Re{du(or0) + 61(ow)} a7)

where Re{---} denotes the real part of the expression within the brackets,
satisfies the Laplace equation and the boundary condition at the bottom,
which follows from the remark at the end of §2. If it is to be a solution of
our problem it has to satisfy the boundary conditions at the free surface as
well. At the free surface z = ((z), 010 = = and 039 = 030(z,{(z)) = 0%,
which introduce into (17) yields,

Re{¢s(z) — #5(03)} =0, (18)
where 03 is given by the equation,
C(o) + ¢(z) +2 +i(c — z)=0. (19)

From (7) and (8) it follows that, in the outskirt z > 0, {(z) and ¢,(z) can
be written as,

Gla = e2§:aj exp (—2jex)
j=1

> (20)

1=1

¢s(z) = vR (x + eibj exp (—2jex)) ,r>0.

It is easily found that ax can be expressed by 4;, j =1,2,---,k as,

 2(-1)g2; [ 2
Al -
-2j (-9 +k-1) . . :
where = _ —=— is the binomial coefficient.
k—j ) (25 = 1)!(k = 5)!
The relations between the coefficients a; and b;, j = 1,2,--- are obtained



from (9),

a
b = —
'T 2R
2p 2 4.2
b= 02 €0’ el
4R 2 2
b L a"+2+62nz+:1 (n+2—7)bb e4nz+:l'(n+2 )
n = n - - aaﬂ. -7
2T n+2| 2R 3_1] J sl j=13 J)@jnt2—;
266 n k
+f229 k+1"])a]a'k+l—]an+1 k| ,n=12,.--
k=1j=1 )

The equations (18) and (19) are to be satisfied. We introduce the expres-
sions for {(z) and ¢,(z) given by (20) into these equations, and in addition
introduce the new variables, Xy, X and Y, defined by,

Xo = exp (—2ez), and X + 1Y = exp (—2e03), (23)

which yields,

1
I = —E In X()
(24)

1 0 Y
T i= —gln (X2 +Y?) - %, where tanf = X

Then (18) becomes after having used (19),

—eZanIm{X+zY }+ZbRe{(X+zY beo_o (25)
n=1 n=1 n=1
where Im{- - -} denotes the imaginary part of the expression within the brack-
ets.

The real- and imaginary part of (19) become,

2ZanRe{(X+zY }+622anX"+2+£=0, (26)

=1 n—1 2e

0 (22)



and

=2 1. X2+Y?
2 g n
. — e =0,
e;a Im{(X +:Y)"} i n ( X2 =0
respectively.

(26) indicates that 6 should be written as,

0=—de+€Y 6,X7,

=

which introduced into (26) yields,

Y anRe{(X +iY)*} + D a. X7 + —;— > 0. X5 =0.
n=1 n=1

n=1

Moreover, it seems reasonable to express X and Y as,

X = Xy cos4e [1 +€e anXa‘]

n=1

Y = —Xjsin4e [1 +€ Y ﬁnxg]

n=1

Y
since then tan # = — becomes,

X
1+€ Y B.X¢ -
— tan 4e -l = i (—46 +€ Y 0, X5
14+ €Y an X3 n=1

n=1

which is obviously correct in the limit € — 0.

).

(27)

(28)

(29)

(30)

(31)

If we introduce the expressions for X and Y into the In-term in (27), we

obtain,

4¢ ianlm{(X +1iY)"} —In [1 + 2¢* i (cos2 (4€)ay, + sin? (46),Bn) X

n=1 n=1

+e' >N (cos2 (4€)a;0n41-j + sin® (4e)ﬂjﬂn+1_j) Xg“] =0.

n=1j=1

)

$(32)




Furthermore, if we introduce the expressions for X and Y into (25) and (29)
we see that they can be written respectively as,

o0
Y. E.X;t =0, (33)
n=0
where
Ey = Ey(ay,by,¢€) is a function of a;, by, and €, and
En = En(ala'"’an-l-l,bl,'"7bn+1aa1)"'aanaﬂla""ﬁn’6)7 n= 112,"' is a
function of a3, -, ant1, b1, bny1, Q1,0+, 0, B1, 00+, Bn and ¢,
and
o0
S FXp =0, (34)
n=1
where
F, = Fi(a1,6,,¢€) is a function of a;, 6, and ¢, and
Fn = Fn(ab"'aan’on,aly"',an—laﬂl,"'aﬁn—%e), n = 273a°" is a func-
tion of a3, -+, @n, 6n, 1, -, 01,01, -, fn—2 and e.

If we make the appropriate expansions of the terms in (31) this equation can
be written as,

(o>}

PG (35)
n=1

where

Gn = Guplag, -+, an, 01, Bn,01,-+,0h,€), n = 1,2--- is a function of
Ay, -0y O, ﬁl7"°aﬁn7 91,"'a9n and e.

Likewise, in (32) the expansion of the In-term is carried out and then this
equation can be written as,

o0
s =1 (36)
n=1
where
H, = Hy(ay, - ,an,09, -, 0, P1,"**, Bn,€), n. = 1,2,--- is a function of
@1,y Gn, Q1 Cny Br, -+, B and €.

In order for (33)—(36) to be satisfied, then,

== (et
(37)
Fn=0-, Gn,=0, H,,=0, n=12---,
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which can be solved successively in the following way:
First we solve the equation,

EO(a'la bl, 6) =0 ’ (38)
into which we introduce b, given by (22) and then we find that this equation
is satisfied if,

tan 2e¢
2

which is equal to Stokes’ result (see Lamb, p. 425).
Secondly we solve the equations,

Ei(a1,a2,b1,by,01,81,€) =0 )

R =

(39)

Fl(a1,01,e) =1()
> (40)
Gi(ay, f1,61,€) =0

Hl(a'lvaly /3176) =0.

/

The last three of these equations can be solved to give 6;, a; and £, in terms
of a; and e. These expressions for a; and 3, together with b; and b, given by
(22) are introduced into the first of the equations in (40), which then yields
a, in terms of a; and e.

After n steps we end up with the following set of equations to be solved,

3\
En(al';'”,an+1?b1"”7bn+l7al,'")aﬂdﬂl,“'aﬁn,e)=O

Fn(ala"')a"nson,ala'"1an—1’/317"'1ﬂn—21€) =0
L (41)
Gn(ah'")anaﬂla“'7ﬁn7017"'7011’6)=0

Hn(al,"'aanyalv'"’annBl,“')ﬂn,e)=07 )

from which a,4; is obtained in terms of a; and e, after having used the
expressions for b;, j =1,---,n + 1 given by (22).
We can use this to calculate the coefficients of the series in (7). We know that
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the b;’s can be expressed by the a;’s, see (22), and moreover, the a;’s can be
expressed by the A;’s, see (21). Therefore (40) and (41) can be written as,

EI(A],A2,01, ﬁhe) =0 )
Fl(Alael)e) =0,

Gi(ai, B1,01,€) =0

Hy(Ay,a1,b1,€) =0,

J

and

En(Als"'7An+17ala"',arnﬁl""aﬁn)e)=0 :
Fn(Ah"'7An70n,alv°"aan—l’ﬂly"",@n—%e) =0

Gn(ala'”’anaﬁl’ : 1ﬂn)017 : n’e)—o r

Hn(Ala"',An,alv'"’anaﬂh"',ﬁnae)=0'

Into these equations we introduce,

(o] )

00
An = Z Anjfz(j_l) ’ 0,, = Z Hnjez(j_l)
i=1 /

00 00
23 j—1
Qn = Z Qnj€ 7, Ba= Zﬂnjez(J ) )
Jj=1 J=1

and make a series expansxon in powers of € to obtam

/

2j+2 i 2j+1
E, ZeanJ » B = Efmf] ; Zg €
Jj=1 Jj=1
o0
_ 2j+2 _
Hn—ZhnjeJ S — D
j=1

In order for the equations in (42) and (43) to be satisfied, then,

elj=0; fl.’i=0’ glj=07 h1j=0, .]:172’

enj=01 fnjzoa gnjzoa h'nj=07 n=23,---,5=12,---

12
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(43)

(44)

(45)

. (46)



The first step is to solve,

fmu=0, gu=0, h;=0
(47)
enn =0,
which gives Aj;.
The next step is to solve,
fiz=0, g2=0, h;p=0)]
faa=0, gu=0, hy=0
> (48)
f22=0, 922=0, h22=0
e2=0, e3=0, )
which yields A;5 and Aj;.
After n steps the following set of equations has to be solved,
f1n=0’ g1n=0, h1n=0 )
.f2n=0a gzn=0, hzn"—:o
fjn=0’ gjn=0, hjnZO
f(n—l)n =0, 9(n-1)n = 0, h(n—l)n =0
f(49)
fnl=0, gn1=0, hn1=0
fr2=0, gn2 =0, hna =0
fnn=0) gnnzo, hnn=0
ein =0, en-1=0, -, €jn41-55=0, ---, €1 =0, }

and then Ajn, Asn-1), -+, An-1)2 and A, are found.
In the next section we present the results of our calculations carried out to
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ninth order, i.e. n = 9. Using Maple the exact values of the coefficients in
the series of the surface elevation and the velocity potential are found which
have not been given before.

However, the main question here is whether the series given by (7) con-
verges for some values of € < ¢y, where ¢y > 0, or whether it is an asymptotic
series. Our procedure to obtain the A;;’s enable us to give an answer to this
question, and it is shown that the series expansion in (7) must necessarily be
asymptotic. The reason is as follows:

The coefficient of X in (25), which has previously been denoted by E,_,, is
found to be,

E,.1= — ea,Im{exp(—4ine)} + b, [Re{exp (—4ine)} — 1]

ot I(alv"',an—hbla“'7bn—laa1a'"7an—l9ﬂl,"')ﬂn—l7€),

where I is a function of a;, b;, o, B;, 7 =1,2,---,n—1, and €.
E,_; must be put equal to zero as remarked previously, and introducing b,
and R, given by (22) and (39) respectively, into E,_; we find that,

sin (2€)

== it n—vb,"'abn—-, y " &n-1,M1,"" " Mn-1, 751
an 42 sin (2ne)K (e, 1) 1(a1,++,@n-1, b1 1,01 Qn-1, b1 Bn-1,€),(51)
where o e
K(e,n) = sm2(6 2 cos (2ne)—Mcos(26),

and I, is a function of a;, b;, a;, B, j =1,2,---,n—1, and e. Moreover, the
a;’s, the b;’s, the o;’s and the ;’s can be expressed in terms of a; and e, as
shown previously, so I; can be given in terms of a; and e.

It is found that I, is of order ¢! when € tends to zero, so a,, has no singularity
at € = 0, see Appendix. However, a, has singularities where sin (2ne) and
K (e,n) have zeros, with the exception for € = 0, unless I; is proportional to
both sin (2ne€) and K (€, n), which is not likely to be the case as far as we can
see, see Appendix. The first zero of sin (2ne¢), after the zero at € = 0, is given

by 21 Also, when n > 1 the zeros of K(€,n) are given approximately by
n
the equation,

tan-y = v, where v = 2ne, (52)

14
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the first zero of which, after the zero at v = 0, is 7y; = 4.49340-- -, i.e. the
first zero of K (e, n), after € = 0, is therefore L in the limit when n — oo.

Now, if we make a series expansion of a, givennby (51) in powers of €, which
we have to do in order to find the A,’s of the series in (7), there are the two
possibilities: either the series expansion of I; in power of € is an asymptotic
series, and then the series of a, is an asymptotic series as well, or the series
expansion of I; converges for € < €y, where ¢y > 0, and then the power series
of a,, will converge within a circle of radius equal to the distance from € = 0
to the nearest singular point of a,, which will tend to zero in the limit when
n — oo as shown above. Consequently, in any case, the series expansion of
¢(z) in powers of € as given by (7) is an asymptotic series.

4 Numerical results

We have solved the equations (47), (48) and so on up to n = 9 to obtain the

Aij’s, i.e. we have calculated the coefficients of the series,
g . . )
((z) = ¥ Ajsech¥ (ex), where
j=1
. (53)
10—

Aj= Z 62(k-1)Ajk, j=1,---,9.

/
In our calculations we have used Maple and then the coefficients can be given

their exact values,
4 8 2 8 4 286768 6 40845656 115645861712 10
Al = -+ = —€ €
3 9 9 212625 4465125 3683728125
50138662476592 ,, B 179856500412’73504614

558698765625 75424333359375

_ 392860880150492515192

634695765219140625
4 , 39512 4864852 o 19627352 8

135° 30375 +4465125 +111628125

_ 6290407694632 ,, _ 5999593092750064 ,, _ 24910021814691580388 ,,
T 1160374359375 226273000078125 261345315090234375

4
A2= -3-—

15



404
A =

4928 ,

5348372

109335056 5 12817076066392

135 © 30375

893025 ©
16571007563968576 |,

37209375 1160374359375
69487088742189349508 |,

T T226273000078125
3546716

23156

6012292052

261345315090234375
4768292900528

3375

1488375

38494939178392 &

334884375
468262544797273532 1,

386791453125

2793493828125
709078936

1775756

9679456114453125

14168470980848 o 807343086171872 6

99225

66976875

232074871875 45254600015625

_ 1140547457786321636 B

92269063018046875
6950577231308 2

3284536868

2077562845996192 ,

66976875

~ 165767765625

9050020003125

7388466006999452828 5

37335045012890625
2567593068748

74878609460176 &2

21474508214603549948 ,

18418640625
59427891023108

430996190625

37335045012890625

762981724372609244

143665396875

70534877118487724

A9=

58663370390625

1583911000546875

Instead of € as the expansion parameter we may use the wave amplitude a.
Then we have to expand € in a series in powers of a, i.e.,

3 S
- -\/2—_(1 (1 i Za]dj) :
j=1

where

5 71
d1="—, dy =

8 T 128

2295736286537

6 = 3673686016000

3

7= -

(54)

7606868327
12615680000

_97977609247836695759
® = 139893963489280000000’

100627 16259737
179200’ 28672000’

352070152840157
524812288000000 ’

5 = —

4:_'

16



which introduced into the series for {(z) given by (53) yields,

9 3
= a’Ajsech¥ (ex), where
i=1

b (55)
I U
Aj = Z ak-lAjka .7__— 1,27"'19,
k=1 p,
where
- 3 .5, 8209, 364671 ,
Av= 1=70+59 = 5000%  196000"
+78263417033 ¢ _ 4595761996453 , 6012057610748687 4
22638000000 980980000000 © " 971170200000000
L. 3_1 +11641 , _ 2920931 48824563 ,
27 4 80 3000 392000
_ 3094446826693 ; 15837237746581 ; _ 823567885217539153 ,
135828000000 420420000000 © ~ 13596382800000000
i o1 112393 2001361 , 130700377 ; 4635672338551 ,
3T 80 24000 156800 67914000000
_ 1639571505368813 ; _7337762410742701999
11771760000000 27192765600000000
i 17367 _ 17906339 2358279061 , 1059219997801 4
4 —

8000 1568000a+ 58800000 90552000000

3548497975278001 ot 12909766370832092947

N 11771760000000 18128510400000000
; 1331817 2674426609 26185456824781 o2

As = 313600 94080000 * " "217324800000
3874470304190711 ,  26496135954083452807 |,

9417408000000 e 21754212480000000 ¢
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;821134217  22060716178577 334383022700383 ,

As = 51080000 ~ 310462000000 ° " T941720800000 “
_ 6146113078456594781 ,
4439635200000000
. _ 041898267187 3871575861419  63588950416860407731 ,
7= 734496000000 215255040000 62154892800000000
4. _ 4856972755777 _ 2374720426192371311
8 —

358758400000 5273748480000000

A= 158703473516597379
® T 1757916160000000

The exact values of the coefficients in the series above have not been given
before. If the coefficients in (54) and (55) are evaluated we find them to be
equal to those obtained by Fenton (1972), so our procedure leads to the same
series solutions as does Fenton’s procedure.

In the investigation to follow we need the expression for the velocity potential
at the free surface as well. We write,

5 )
iR (1 + zeszech?f(ex)) . where

Jj=1

> (56)
10—j

Dj= 3 e* Dy, j=1,--,9,

k=1 )

and when the A;;’s are known then the D;;’s can be obtained from (9). From
(56) it follows that,

9
¢s(z) = VR (a: + Ze2j_leJ2j(ex)) : (57)
7=1
where Jpj(ex) , j=1,---,9, can be obtained from the recurrence formula,
e e S T e (58)
’ 25 —1 2j —1°97
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Then,

9 3\
és(z) = VR <x + tanh(ez) > er"lBjsechz(j"l)(ez)> , where
g=il
0 (59)
10—j
B;=) é* VB, j=1,---,9.
We find that,
o _4_16, 128, 110336, 350881792, 2902269952 ,,
T3 27 2025 70875 66976875 200930625

| 190772707131392 ,, _ 7518671353348096 ,,
5028288890625 75424333359375

_+11877781553162910433286m
4442870356533984375

20 716 , 31336 , 87715444

24703972168 8

T97 20255 T 42525° 66976875
_ 2366146649864 ,, _ 251787271080944 ,,

11051184375
6638309874823850012 (4

718326984375 75424333359375
428 357064 80488316 A 408218824

4442870356533984375"
75326553748568 g

T925  212625° 22325625 136434375

225
15434929402096 ,, 111430712923522805356612
888574071306796875

430996100625
103830490228 , _

15084866671875

78163942611152 5

270868 26212316 2
11051184375

T 70875 13395375
_ 458224766353432 , _ 134991807220145080276
4442870356533984375

17405615390625
33118825530184 o

5028288890625

20356549591328 5

133058068 10062684448 2
13395375 2210236875 1005657778125

i
i
1 _ 418736380254523244
} 6582030157828125
1
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19438910108 2248320278236 2 _ 530362195822912

LS 736745625 430996190625 5028288800625
10874124467019102484
126939153043828125
B — _ 5334696263064 . 248453358808 , _ 217223196572709871972
[ 718326984375 | 83960296875 634695765219140625
- 465528827570284 N 617652508221145588 ,
A 2154980953125 ' 11539923003984375
B — 17237031652480284388
= 26926487009296875

If the amplitude a is used as the expansion parameter instead of €, we can
introduce € given by (54) into (59) to obtain,

)

¢s(z) = VR (:c + M Za’B sech?U~ 1)(ezc)) , where

€
(60)
10—j

Bj=zak-l-B‘t‘ik7 j=1,"',9,
|

k=1 /

and where € is given by (54).
We get,
~ 11 16 , 4129 2 2899517 6666571 & — 1545131983 ot

Bi= -1+ 50— 5:0"+ 5500 ~ aai0000° T 9240000° ~ 2122312500°

+542258478911 7 3653264197023601
679140000000 4444971300000000"

B _i+ 357a 8819 oo 22585483 & 44744683 o+ 205051074301 o
2 12~ 400 5600 8820000 11550000 36036000000

143469677983249 6 329244359157695959 o
17657640000000 28892313450000000
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By= -

321 416309 16381013 42 1877930689 39394059988483 o

400 * 168000 ~ 2940000 i 161700000 © ~ 1765764000000
41432045299 & — 805933747166634521
1027353600 11556925380000000

67717 78770341 14972870699 e 319029708033769 o

" 56000 + 14112000~ 862400000 7063056000000

821068054363797 7959611893440750281

7847840000000 + 35559770400000000

33264517 14407679921 9328271484409 o2 922680256799297 &

14112000 + 1034880000 © 176576400000 + 5650444800000

_ 1361212578419884793 ,

A=

3081846768000000
4859727527  27867325963391  8859386104171501

~ 1034880000 * 807206400000 ~  56504448000000

3714327357805899041 ,

6603957360000000
13336740657661  200734356601637  40330633634975339407

T 1345344000000 2306304000000 © ~  88052764800000000 °

116382206892571  8464102699184855797

~ 5381376000000 * 38423024640000000

4309257913120071097

~89653724160000000

We may obtain
the integral in (12) if we introduce into it the series solutions of {(z) and
¢s(z) to a given order n. In our calculations we let n vary from 1 to 9. Now,
letting z — (~(z
the integral is found and it can be compared with the value of the velocity
potential given by the series expansion, (59) or (60). We define the quantity,

57 (z) — 65 (2)

an approximate value of the velocity potential ¢(z, z) from

) the value of the velocity potential at the surface given by

7 61
¢:er ( )
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where ¢%¢"(z) and ¢'"(x) are the velocity potentials given by the series so-
lution and the integral respectively,

int _ i : im r ser C(ﬂ) — 2 C,(ﬂ')(y’ - IL‘)
¢ (z) = o [hm {z_{(_(z) % (k) (i =22 % C(n) = 2)° dp

(62)

+ —rr ¢§er(ﬂ)4(u) + C(Z) o2 C (lu')(l‘l’ — x)d[t}] )

(b —2)? + (¢(w) + () +2)?

As indicated in (62) care must be taken when going to the limit z — (7 (z)
in the first integral. As pointed out earlier, when z is below and close to the
surface, oy¢ is in the upper half of the o-plane and close to z, and 0% is in
the lower half plane close to z, and both tend to z when z — (~(z). With
this in mind and by applying Plemelj’s formula (see Muskhelishvili (1946))
we find that,

1 . T ser C(ﬂ) — 2= C/ (ﬂ')()u’ - .’II) —
E;&%du;%(”(u—mtu«m—zvm‘"

C(p) = ¢(z) = ¢ () (- x)dp
(b= + () — ¢(=))

1 ser 1 " ser
6@ + o= [ &)

which is used in (62) to obtain ¢™(z).

As we have shown the series of {(z) and ¢;(z) are not convergent, and there-
fore it can not be expected that A will tend to zero when n tends to infinity.
For a given wave amplitude there is likely to be some limited number of terms
to be included in the series to obtain the minimum value of A, and increas-
ing the number of terms beyond this limit will give no further improvement,
rather the opposite.

In the tables 1 — 5, A has been calculated for different values of z letting the
order n and the wave amplitude a vary.

The tables 1 —5 show that for the amplitudes 0.2, 0.3 and 0.4, A is decreasing
essentially when the order of the series is increased, indicating that the series
solution is improved when the number of terms of the series is increased.
Also, when a = 0.5 and 0.6 there seems to be an improvement of the series
solution if more terms are included in the series, although not so marked as
when a = 0.2, 0.3 and 0.4. In all these cases there seems to be a general
feature that there is only a small gain to be had in the accuracy going beyond
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the sixth order. When the amplitude is 0.7 or 0.8 we see that there is hardly
any improvement at all when including more than four terms in the series.
These results seem to reflect the asymptotic nature of the series.

5 Conclusion

The velocity potential has been expressed as a surface integral, and can be
obtained if the surface elevation and the velocity potential at the free surface
are known. In principal the integral can be evaluated by using the residue
theorem, and it is shown that only two of the poles of the integrand contribute
to the well-known series solution of the solitary wave problem, i.e. the veloc-
ity potential can be expressed as simple as ¢(z, 2) = %Re{tbs(am) + @5(030) },
where ¢,(z) is the expression of the velocity potential at the free surface,
and o9 and o3 are specified zeros of the functions Fj(o) and F3(o) given
by (13). A procedure is given to obtain the series solution to any order,
and which enable us to show analytically that the series is asymptotic rather
than convergent. The coefficients in the series of the surface elevation and
the velocity potential have been calculated to ninth order, and their exact
values are given. If these expressions for the surface elevation and the veloc-
ity potential are introduced into the surface integral, another approximate
value of the velocity potential can be calculated which can be compared with
the value obtained from the series expression of the velocity potential. This
has been done for different values of z and by varying the wave amplitude
a and the order n of the series. It is found that if a < 0.6, then the series
solution is improved by increasing the order of the series, although the gen-
eral feature is that there seems to be little gain to be had in the accuracy
including more than six terms in the series. When a = 0.7 or 0.8 there is
hardly any improvement going beyond the fourth order.
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n\a 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 —3.8x107° | —1.1x107% | —2.5x10~2 | —5.0x1072? [ —=9.6x10~2 | —1.9x10~ T | —3.8x10~!
2 8.0x10~* | 2.5x1073 | 5.6x10~3 | 1.0x10~% | 1.6x1072 | 2.4x10~2 | 3.2x1072
3 —1.7x10™* | —9.1x10~* | —3.1x107° | —8.5x1072 | —2.1x107% | —5.2x10~2 | —1.3x10 !
4 2.8x107° 1.7x10~* 5.8x10~* 1.3x10~3 | 2.3x10~° 3.0x1073 1.1x1073
5 —6.2x107° | —6.8x107> | —3.7x10~* | —1.4x1073 | —4.6x1073 | —1.4x10~2 | —4.7x10~2
6 6.4x10~7 | 7.0x107® | 1.7x10~> | —9.6x10~> | —9.9x10~* | —5.0x10~3 [ —1.9x10~2
7 ~3.2x10~7 | —5.0x107° | —3.7x10~> | —1.7x10~* [ —6.2x10~* | —2.3x10~3 | —1.2x10~2
8 —1.1x10~7 | —=1.0x10"® | —1.6x10~° [ —1.8x10~* [ —=1.3x1073 | —6.8x10~3 | —2.9x10~2
9 —1.3x10~" | —6.8x10~" | 2.0x107° | 6.3x10— | 5.7x10~* | 3.1x10-3 | 8.3x10°3

Table 1: A calculated for z = 0.3 and for different values of the order n and
the amplitude a.

n\a 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 —3.8x1073 | —1.1x107%2 | —2.5x10~2 | —5.0x1072 | —9.4x10~2 | —1.8x10~1 | —=3.4x10°!
2 7.8x10~* | 2.5x1073 | 5.5x10~3 | 1.0x107%2 | 1.6x10~2 | 2.4x10~2 | 3.2x10~2
3 —1.6x10~* [ —8.7x10~* | —2.9x1073 | —7.8x10~3 | —=1.9x10~2 | —4.3x10~2 | —9.8x10~2
4 2.6x10™> | 1.6x10~* | 5.5x10~* | 1.3x10~3 | 2.6x10~3 | 4.0x10~3 | 4.3x1073
5 —5.9x107% | —6.3x107° | —3.3x10~% | —1.2x1073 | —=3.7x10~3 | —1.0x10~2 | —2.9x10~2
6 6.2x10~" | 7.2x10~° | 2.6x10™° | —1.2x107% | —4.1x10~% | —2.4x103 | —9.6x10~3
7 —3.0x10~" | —4.5x10~° | —3.1x10~ | —1.3x10~* [ —4.1x10~* | —1.2x10~3 | =5.1x103
8 —9.7x107% | —6.6x10~7 | —9.1x107% | —1.0x10~* | —7.2x10~% | =3.6x10~3 | —1.4x102
9 —1.1x10~" | —6.6x10~7 | —2.2x10~" | 3.1x10~° | 3.0x10~% | 1.6x10~3 | 3.0x10°3

Table 2: A calculated for z = 0.5 and for different values of the order n and
the amplitude a.
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n\a 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 —4.0x1073 | —1.1x107% | —2.5x1072 | —4.8x10~%2 | —8.5x10~2 | —1.4x10~1 | —2.4x107!
2 6.7x10~% | 2.2x1073 | 4.9x10~3 | 9.4x10~3 | 1.6x1072 | 2.4x10~2 | 3.3x10°?
3 —1.4x10~% | —6.9x10~* | —2.2x103 | —5.4x10~3 | —1.2x1072 | —2.3x10~2 | —4.3x10~2
4 2.0x1075 | 1.2x107% | 4.4x10~* | 1.2x1073 | 2.9x10~3 | 6.0x103 | 1.1x10°2
5 —4.6x107° [ —4.2x107° [ —1.9x10~* | —6.1x10~%* | —1.6x10~3 | —4.1x10~3 | —1.0x10~2
6 5.8x10~7 | 7.9x10~® | 4.7x10~° | 1.9x10~* | 6.2x10~% | 1.8x10~3 | 4.1x1073
7 —2.0x1077 | —2.9x10°% | —1.9x107° | —8.2x10~° | =3.1x10~* | —1.3x10~3 | —5.7x103
8 —3.4x10"% | 4.4x10~7 | 6.7x107® | 4.7x10~° | 2.4x10~* | 9.7x10~% | 3.0x10~3
9 —6.2x107% | —6.0x10~" | —7.2x107% | —6.7x10~> | —4.6x10~% | —2.5x10~3 | —1.2x102

Table 3: A calculated for z = 1.0 and for different values of the order n and
the amplitude a.

n\a 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 —4.9x10~%* [ —8.9x10~* | —1.4x10~3 | —1.9x10~3 [ —2.5x10~3 | —3.2x10~3 | —3.9x103
2 1.0x10~% | 3.0x10~% | 6.4x10~* | 1.2x10~3 | 2.0x10~3 | 3.3x10~3 | 5.0x10°3
3 —1.4x10° | —5.8x10~> | —1.6x10~% | —3.4x10~% | —6.3x10~* | —1.0x10~3 | —1.6x103
4 3.2x10% | 2.0x10™> | 7.1x10™> | 1.9x10~* | 4.5x10~* | 9.4x10~* | 1.9x10°3
5 —6.3x10~7 | —=5.7x107% | —2.7x10~° | —8.9x10°5 | —2.4x10~% | —=5.3x10~* | —1.0x10~3
6 1.4x10~" | 1.9x107° | 1.2x10~> | 5.0x10~> | 1.6x10~* | 4.5x10~* | 1.1x1073
7 —3.0x107% | —6.0x10~" | —4.9x107° | —2.5x10~> | —9.7x107> | —2.9x10~* | —7.4x10~*
8 6.8x107% | 2.0x1077 | 2.2x10°® | 1.4x107° | 6.5x10~° | 2.4x10~% | 7.8x10~*
9 —1.4x107° | —6.5x107% | —9.5x10~" | —7.6x10~® | —4.1x10~% | —1.7x10~* | —5.6x10~*

Table 4: A calculated for z = 10.0 and for different values of the order n and
the amplitude a.
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n\a 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 —4.4x107% | —8.1x107% [ —1.2x10"% [ —1.7x10~° | —2.3x10™° | —2.9x10~° | —3.5x10~°
2 8.8x10~ 2.6x107° 5.6x107° | 1.0x107> | 1.8x10=> | 2.8x10~° | 4.4x10~°
3 —1.2x10~" | —4.9x10~" | —1.4x107°% | —3.0x107° | —5.6x107°% [ —9.3x10~% | —1.4x10~°
4 2.5x10~° 1.6x10~1 5.8x10~7 | 1.6x10~® | 3.8x10~° | 7.9x10~® | 1.5x10°°
5 —4.6x107° | —4.3x107% | —2.1x10~" | —7.3x10~" | —2.0x10~°® | —4.5x10~% | —8.8x10~°
6 1.0x10~° 1.4x10°8 9.1x10~% | 3.9x10~7 | 1.3x107° | 3.6x10~%® | 8.9x10°°
7 —2.0x10710 [ —4.2x10° | —3.6x10~% [ —=1.9x10~7 [ —=7.5x10~7 | —2.3x10~% | —6.1x10~°
8 4.4x10~ 11 1.4x1079 1.6x108% | 1.0x10~7 | 4.9x10~7 | 1.8x10~% | 5.8x10°°
9 —8.9x10~2 | —4.2x1071% | —6.4x10~° | —5.3x10~% | —3.0x10~7 | —1.3x10~% [ —4.4x10~°

Table 5: A calculated for z = 100.0 and for different values of the order n
and the amplitude a.
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A Appendix

From the equations (25), (29), (31) and (32) we get,

4ne) — 1 4ne) — 1)
[esin(4n6) + cos(dne) — 1 a, + 2 (cos(4ne) [Z ajQn_j + -

2Rn " T 4R, (64)
+P(e) + Q(e) =
where,
Ele)= 2R [Z a; [cos(4¢€) cos(4(j — 1)€)an—; — sin(4e) sin(4(j — 1)€)Bn—j] + - - J ,
and,
Qe)=¢€ [Z ja; [cos(4€) sin(4(j — 1)€)an—j + sin(4e) cos(4(j — 1)€)Bn—j] + - - } ,
0, = —2(cos(4ne) + l)a, + - - -, (65)
e
ap — B = Sin(86) O iy (66)
—2esin(4ne)a, = ay cos(4€) + B, sin®(4e) + - - - . (67)

In these equations and in the following the dots - - - denote a sum of terms of
the form €e"g,(€e) where n > 2.
The equations (65) — (67) can be solved with respect to oy, and £, to give,

[sin(4(n + 1)€) + sin(4¢€)] an + - - - , (68)

€
cos(4e)

= [cos(4(n + 1)€) + cos(4€)] an + - -, (69)

2¢
sin(4e)
which introduced into the expressions for P(€) and Q(e) yields,

Blc= —% %__: [sin(4ne) + sin(4j€)] ajan—; + - |, (70)

j=1
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n—1
Q(e) = 2¢* | D [cos(4ne) + cos(4je€)] jajan_j + - --| . (71)
=1
Now, from (21) it follows that,
aj = (-1Y"Yja; +---, (72)

which yields,

(‘1)"‘1% 3
Ea]an_] z]n 7) - (n —n)+...’(73)
" (_l)na2
Z]a’Ja‘"—J =(-1) ZJ (n—j)+ et (nf = n?) 4 (74)
n—1
> ajan_jsin(4je) = (—1)"a Z](n ) sin(4j€) + -
=1 =1
! = » (75)
(_—I)E%— [sin2(2ne) /2 — sin®(2ne) sin®(e) — n sin(4ne) sin(2e¢) /4] + -
sin3(2e) ’
n-—1 3
)" ja;an—; cos(4je) = (—1)"a Z 7“(n — j) cos(4j€) + -
=1 =1
1
%)— [sm (2ne) sin®(2€)/2 — 3sin®(2ne)/4 + nsin(4ne) sin(4e) /4 (76)
— n® cos(4ne) sin®(2¢)/ 4] - |
It follows from (64) that I;, which is defined by (51), can be written as,
I, = 62(ios(;1;+—1‘ [z ajan_j + - -| + P(e) + Q(e€) . (77)

When € = I then the coefficients of €? and € in the expression for I; are both
zero, but the coefficient of €* is not. This follows from the equations (70),
(71), (75) and (76). Moreover, it follows that neither of these coefficients has
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the same zeros as the function K(e,n), except for the zero at e = 0.
When the expressions (73) — (76) are taken into account we can write,

n? — ne) — n3 — n) sin(4ne
,1:(_1)%;[62 {( B () 1)}_63 {( i

sin?(2ne)/2 — sin®(2ne) sin®(e) — nsin(4ne) sin(2¢) /4
* Rsin3(2¢) }

et { (n* — n?) cos(4ne) N sin?(2ne) sin?(2¢) — 3sin?(2ne)/2

6 sin(2¢)

n sin(4ne) sin(4€) /2 — n? cos(4ne) sin®(2¢) /2
+ sin?(2e) }] i

As is seen from (78) the term which has been found in the expression for I
is proportional to a?. This is the only term in the expression for I; which is
proportional to a?; the terms that have been left out are proportional to ak,
with the exponent k greater than two.

a, is given by (51) and by introducing the expression for I; given by (78)
and by making an expansion about € = 0 in powers of € we get,

B sin(2¢)
4€? sin(2ne) K (e, n)

e L=(-D"a}Y cjed +---, (79)
Jj=1

where the terms that have been left out are proportional to a¥, with the
exponent k greater than two, as mentioned previously. It follows from what
oo

has been said above that the series Y c;e’ will converge for € < =, and we
J=1

see that the radius of convergence of this series tends to zero when n — ooc.

In conclusion: the calculations carried out in this appendix show that it is

reasonable to expect that the series of {(z) given by (7) will be an asymptotic

series.

29

)

, (78)




References

[1] Cokelet, E. D. 1977 Steep gravity waves in water of arbitrary uniform
depth. Phil. Trans. R. Soc. A 286, 183-230.

[2] Boussinesq, M. J. 1871 Théorie de I'instrumescence liquide appelée onde
solitaire ou translation se propageant dans un canal rectangulaire.Acad.
Sci. Paris, Comptes Rendues 72, 755-759.

[3] Engevik, L. E. 1987 A new approximate solution to the surface wave
problem. Applied Ocean Research 9, 104-113.

[4] Engevik, L. E. 1991 A note on the wave field in the surface zone.
Rep. No. 91, Dept. Appl. Maths, Univ. Bergen, Norway.

[5] Fenton, J. D. 1972 A ninth-order solution for solitary wave. J. Fluid
Mech. 53, 257-271.

[6] Fenton, J. D. 1979 A high-order cnoidal wave theory. J. Fluid Mech. 94,
129-161.

[7) Iwagaki, Y & Sakai, T. 1970 Horizontal water particle velocity of finite
amplitude waves. Proc. 12th Conf. Coastal Engng. 1, 309-325.

[8] Korteweg, D. J. & de Vries, G. 1895 On the change of form of long waves
advancing in a rectangular canal and on a new type of long stationary
wave. Phil. Mag. 39, 422-443.

[9] Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.

[10] Le Méhauté, B., Divoky, D. & Lin, A. 1968 Shallow water waves: a com-
parison of theories and experiments. Proc. 11th Conf. Coastal Engng. 1,
86-107.

[11] Miles, J. W. 1980 Solitary waves. Ann. Rev. Fluid Mech. 12, 11-43.

[12] Muskhelishvili, N. I. 1946 Singular integral equations. P. Noordhoff LTD,
Groningen, Holland.

[13] Rayleigh, Lord 1876 On waves. Phil. Mag. 1, 257-279. (Sci. Papers, 1
251-271, Cambridge University Press.)

30



[14] Russel, J. S. 1844 Report on Waves. British Association Reports.

[15] Schwartz, L. W. and Fenton, J. D. 1982 Strongly nonlinear waves. Ann.
Rev. Fluid Mech. 14, 39-60.

31






Depotbi bloi ket

| Illl\\\l\\\lll\\||l|ll\\\\ll|\l

78sd 20







