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On the solution of the solitary wave problem

L. E. Engevik
Department of Mathematics, University of Bergen, Norway

Abstract

The solitary wave problem has been considered and a new approach
is proposed which may give some further insight concerning the se
ries solution of this problem, especially whether it is a convergent or
an asymptotic series. The velocity potential is expressed as a surface
integral, and it is shown how the series solution emerges from this in
tegral. A procedure is given to calculate to any order the coefficients
in the series of the surface elevation and the velocity potential, and
it is shown analytically that these series must necessarily be asymp
totic. Some numerical results are presented in order to compare with
previously known results; the series of the surface elevation and the
velocity potential are obtained to ninth order, and since the computer
algebra system Maple has been used it is possible to give the exact
values of the coefficients in these series. The series solutions to a given
order of the surface elevation and the velocity potential are introduced
into the surface integral to obtain another approximate value of the
velocity potential which becomes different from the one given by the
series solution; these to values being compared to estimate how good
the series solution to a given order is.
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1 Introduction

The steady finite solitary wave was first reported by Russel (1844), and since
the first approximate solutions given by Boussinesq (1871) and Rayleigh
(1876) there have been several attempts to improve upon the solution of
this problem. The first shallow-water theory of periodic waves was given by
Korteveg & de Vries (1895) who showed that the first approximation to the
surface profile of steadily progressing waves in shallow water was cnoidal,
and that the solitary wave was a particular limiting case, that of infinite
wave-length. So, the shallow-water wave problem has a long history with a
number of participants and with a comprehensive list of references, see for
instance the review articles by Miles (1980) and Schwartz and Fenton (1982).
In the papers of Fenton (1972, 1979) high order solitary- and cnoidal wave so
lutions have been presented well suited for practical use. The solutions have
been obtained to ninth order; however, by comparing with "exact" numerical
results, Cokelet (1977), and with experimental investigations, Le Méhauté,
Divoky & Lin (1968) and Iwagaki & Sakai (1970) , it is found that there is
no gain in accuracy to be had by including terms after the fifth, suggesting
that the series involved are asymptotic rather than convergent.
In this paper wc present a new approach to obtain the series solution of
the solitary wave problem, and which enable us to show analytically that
the series must necessarily be asymptotic. The velocity potential is given as
a surface integral, Engevik (1986, 1991). In principal this integral can be
evaluated by using the residue theorem, and it is found that only two of the
poles of the integrand contribute to the series solution of the solitary wave
problem. It is shown how the series of the surface elevation and the velocity
potential can be obtained to any order, and wc carry out the calculations to
ninth order to compare our solution of the surface profile with that of Fenton
(1972). Since wc have used the computer algebra system Maple when doing
our numerical calculations, the coefficients in the series can be given their
exact values, which have not been given before. Moreover, our analysis re
veals analytically that the series must be asymptotic rather than convergent.
Another approximate value of the velocity potential is obtained from the sur
face integral by introducing into it the series to a given order of the surface
elevation and the velocity potential; this value being different from the one
given by the series solution. The difference between these two values of the
velocity potential can not be expected to tend to zero when the number of



3

terms in the series tends to infinity since, as will be shown, the series do
not converge. On the contrary wc would expect this difference to reveal the
asymptotic nature of the series, i.e. for a given wave amplitude wc would
expect that there is a limited number of terms which must be included in
the series to obtain a minimum value of this difference, with no improvement
by further increasing the number of terms in the series, rather the opposite.
Some numerical results are presented which seem to support this behaviour.

2 Formulation and solution

Wc consider waves on the free surface of a homogeneous, incompressible and
irrotational fluid of infinite horizontal extent and of finite and uniform depth.
The wave motion is assumed to be two-dimensional and to take place in the
{x*, z*)-plane, with the x*-axis in the horizontal direction and the z*-axis
directed vertically upwards. Furthermore, the wave motion is assumed to be
stationary in this frame of reference, i.e. the velocity potential $ = ${x*, z*)
and the surface elevation z* = rj*{x*) are independent of time. The equations
governing this problem are,

(1)

(2)

(3)

where V* = i-jjp + k-jjp , ra ={k — rj*'i)/^l + rf' 2 , where i and k are the unit
vectors in the x*- and the z*-direction respectively, and the prime denotes
differentiation with respect to x*, V*2 = + and C is a constant.
(2) are the dynamic and the kinematic boundary conditions at the free sur
face, and (3) is the boundary condition at the bottom.

(4)

V*2 $ =0 , -d* <z*< rf{x*)

I (V*s) 2 + grf = C ,
 aX z* =rf{x*)

n - V*s = 0

<9$
-r— = 0 at z* = -d*

Wc introduce the dimensionless quantities x = x*/d*, z = z*/d*, £ = ra*/d*,
<j> = $/cd* where c = y/gd* into the equations (1) — (3) and get,

d2 é d2 é
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(g)2 + (g)2 +2c=*-

2 -'«- '
(5)

(6)

where i? is a constant, and here the prime denotes differentiation with respect
to x.
In this paper wc will study the solitary wave problem, i.e. the surface wave
problem in the shallow-water limit, when the characteristic length L* in the
a:*-direction is much greater than the depth d* of the water; d*/L* being of
order e. The solitary wave problem has a formal series solution of the form,

The velocity potential at the free surface, <t>B {x) — <j>{x,Ct {x)), can be ex
pressed as,

(8)

The connection between the A/s and the Bj's is given by the equation

which is obtained from the boundary conditions at the free surface. The
solution of (4) can be expressed as a surface integral, Engevik (1986, 1991),
i.e.,

where Sr is the surface lying between x = —r and x = r, •§- denotes the
derivative normal to the surface, and G{pb,r;x,z) is the Green function as
given by Engevik (1991), i.e.

(10)

at z = ({x)

då
-J- = o at z = -1 ,

oo
CW = E t2jAjSech2j {ex) . (7)

3=l

<j)s {x) =VR(x + tainHex)Ye2j- IBjsech2iJ-l\ex))

(^)2 = (.R-2C)(i + C'2 ), (9)

<KX * z) =—- lim / <t>s -^-ds ,2ir r->°° JSr on

G(fi,T;x,z) = ±\n{[(n-x)2 + (T-z)2][(tl,-x)2 +(T+ z + 2)2]}.(n)
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(11) introduced into (10) yields,

(12)

If C(x) and øs (x) are known, then ø(x, 2:) can be calculated, and if the series
solutions of ({x) and 4>s {x) converge, then wc would expect <j>{x, z) to converge
to its exact value when the number of terms in the series is increased, which
means that the value of (j)s {x) calculated from the integral expression in (12)
should approach the value obtained from the series solution when the number
of terms in the series is increased.
The integrals in (12) can be considered as integrals along the real axis in the
complex a-plane, where o = /x + iv; the /x-axis being the real axis and the
j/-axis the imaginary axis, and can in principal be evaluated by using the
residue theorem, assuming that the integrands can be continued analytically
into the complex cr-plane. The integrands have poles where the following
functions have zeros,

(13)

Let the zeros of Fn {cr), ra = 1,2,3,4 in the upper half of the cr-plane be
denoted by onj, ra = 1, 2, 3, 4, and assuming the zeros to be simple wc get,

(14)

where T is the semicircle with radius r lying in the upper half plane. (In
obtaining (14) wc have assumed that the only singularities of the integrands
in the upper half plane are poles, which is the case if the series of ({x) and
((>s {x) to a given order are used in the integrands). It is easily verified that

<f>(x,z) =— hm / MMt xo T 777 \ x2 dP2tt r-oo y_r fø _xy +(ffø) - z) 2
>

Fi(a) = CW - z + iip - x)

F2 {o-) = ({*)- z - i{a -x)

Fs{o-) = C{o~) + z + 2 + i(a - x)

F4 {o~) = ({a) +z+ 2 - i{a -x)

«*.*) = \ É(-i)"+1 E^Ki) + i "ss, /(• • •)<**.Z n=l j Z7r -T
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<f>s{o~nj) as a function of x and z satisfies the Laplace equation.
Wc want to obtain the series solution of the solitary wave problem, and in
this connection one of the zeros of Fi{cr), which is denoted by criO , and one
of the zeros of F3 {cr), denoted by cr30 , turn out to be of special interest. The
zero crio is defined as follows: Let {x, z) be a point in the fluid just below
the free surface. Wc put z = £(x) - el} where o<ei<C 1, into the equation
Fi {a) — 0, and find that,

(15)

which shows that o~io hes in the upper half of the cr-plane near the point
{x,O). Furthermore, aio —> x when ei — 0, i.e. when the free surface is
approached from below. F2 {a) has a zero, a2O , near the point (x, 0) as well,
but this zero lies in the lower half plane and is therefore not among the zeros
&2j' Ø3O is defined to be that zero of Fzip) which is equal to cio at the bottom
where z = —1, i.e. øzo{x, —1) = cr10 (x, —1).

(16)

where Ti is a contour in the upper half plane which together with the real axis
constitutes a closed contour, and where wc have assumed that the integrands
are analytic within and on this closed contour except for the poles at crio and
a3O • ( If all the the singularities of the integrands in the upper half plane
are simple poles, (16) can be evaluated to obtain (14), but (16) also allows
the integrands to have singularties of other kinds than poles, lying outside
the closed contour). Wc notice that the expression J[<^s (cr10 ) + fa(a&)],
as a function of x and z, satisfies the Laplace equation and the boundary
condition at the bottom.

o~io — x 4- ai -I- i(3i ,

where

«i = -«iC(*)/{l + (CW)2 } + O(ef)

A = «,/{l + (CW)2} + 0(e\) ,

Wc may also write </){x, z) as,

1 1 / 
<l>(x,z) = -[(j)s {o-io) -r (M°3o)] + 2^y (•••)dcr
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3 The series solution of the solitary wave prob
lem

The function

(17)

where Re{- • •} denotes the real part of the expression within the brackets,
satisfies the Laplace equation and the boundary condition at the bottom,
which follows from the remark at the end of §2. If it is to be a solution of
our problem it has to satisfy the boundary conditions at the free surface as
well. At the free surface z = ({x), ai0
which introduce into (17) yields,

(18)

where a^0 ls given by the equation,

(19)

From (7) and (8) it follows that, in the
be written as,

(20)

It is easily found that a* can be expressed by Aj, j = 1, 2, •• • , k as,

(21)

( _2i \ i-l)k~j {j +k - 1)!
where I , .1= —. -rrr, rrr- is the binomial coefficient.

\ k ~J J {23 - l)\{k - 3)\
The relations between the coefficients aj and bj, j = 1,2, ••• are obtained

<j>{x,z) = -Re{(f)s {<Tio) + (/>s {o-3o)},

= x and cr30 = o-3o{x,C{x)) = a|0 ,

Re{(f)a {x) - øs (<730 )} = 0,

C(a) + C(x) + 2 +i{cr - x) = 0.

outskirt x > 0, £(x) and <f>s {x) can

oo
C(x) = e2 Y a3 exv(-2J€X)

3=l

<f)s {x) =VRlx + ee Vj exP ( — 2Jex) I,x > 0 .
V 3=l J J

«* = E^-,,22i ( fe"^)^>
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from (9),

The equations (18) and (19) are to be satisfied. Wc introduce the expres
sions for ({x) and (j>s {x) given by (20) into these equations, and in addition
introduce the new variables, Xq, X and Y, defined by,

(23)

(24)

where Im{- • •} denotes the imaginary part of the expression within the brack
ets.
The real- and imaginary part of (19) become,

(26)

bl = 2R

n ,2/, 2 A n 2a 2 e Or e a x
b2= 4R + ~2—r

1 a n+l n+l
bn+2 = —-Z -Tyn +f? Y ti71 +2 ~ J) b3°n+2-j ~^Y H7l +2 ~ J)a3 an+2-j

ra -i- z Ln j_l j=l

e\ 6 n k
+~5~ EEi(fe +1 " j)ajak+i-jan+i-k ,ra = 1, 2,

n k=lj=l

Xq — exp (— 2ex) , and X + iV = exp (— 2eø30 ) ,

which yields,

x = — —-liiXq2e

o-L = -—ln {X2 + Y2 ) -%— , where tanØ =— .M 4e v ' 2e X >

Then (18) becomes after håving used (19),
oo oo oo

-e E anlm{{X + iV)n} + E KRe{{X + iV)n} -VW = 0 , (25)n=l n=l n=l

oo oo n
e2 Y anße{{X + iV)n} +e2E <*«*? +2+- = 0 ,n=l n=l C
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and

(27)

(26) indicates that 0 should be written as,

(28)

which introduced into (26) yields,

(29)

and Y as,

(30)

since then tanØ

— tan 4e (31)

which is obviously correct in the limit e —* 0.
If wc introduce the expressions for X and Y into the ln-term in (27), wc
obtain,

oo -i y 2i y 2
e2 Y "nlm{{X + iV)n } -i ln (^s—) =0 ,n=l 4C A 0

respectively.

0 = -4e + e3 Y enXS,n=l

oo oo 1 oo
E anße{(X + iY)"} + £ «-A? + r E 4.*0 = ° •n=l n=l Z n=l

Moreover, it seems reasonable to express X
OO "In

X = Xo cos4e l + c 2E Q!nA'0n
n=l

oo
y = -Xo sin4e 1 +e2£ Åi*o

n=l

' = — becomes,X
oo

l+e2 EA.X0" „
§ =tan -4e + e3 E o»*o" >

l + e2 E<*»*o" V "=1 '
n=l

sly correct in the limit e —* 0.

oo oo

4e3 Yanlm{{X + iV)n} -ln 1 + 2e2 E (cos2 {4e)an + sin2 (4e)/?n) X0nn=l L n=l

oo n

+e4E E (cos2 (4e)ajan+i-j + sin2 (^JftA+i-i) *on+l0n+1 = 0
n=l j=l



10

Furthermore, if wc introduce the expressions for X and Y into (25) and (29)
wc see that they can be written respectively as,

(33)

(34)

Fn = Fn(ai, •• • , an , Øn , «i, •• * , On-i, Pi, •• • , Æn-2, e), ra = 2, 3, ••• is a func
tion of Oi, •• • , a„, Øn , ai, •• • , an-i, Pi,---, Pn-2 and e.
If wc make the appropriate expansions of the terms in (31) this equation can
be written as,

(35)

di, - - - , an , Pi, • • • , pn , Øi, -- • ,Øn and e.
Likewise, in (32) the expansion of the ln-term is carried out and then this
equation can be written as

(36)

ai,--,an , ai,---,an , Pi,---,Pn and e
In order for (33)— (36) to be satisfied, then,

(37)

oo
E EnXS+1 = 0 ,n=o

where
Eo = Fo (ai, 61, e) is a function of ai, 61, and e, and
En = F„(ai, • • • , an+i, bi,--, bn+i,ai, - - - , an , Pi, - • • , pn , e), ra = 1, 2, ••• is a
function of Oi, •• • , an+i, bi, •• • , bn+i, ax ,- - - ,an , Pi,- - - ,pn and e,
and

n=l

where
Fi = Fi (ai, Øi, e) is a function of ai, Øi and e, and

E Gnxs = 0n=l
where

Gn = Gn ipLi,'",OLn ,Pi,'",pn,Øi,"',9n ,e), ra = 1,2- •• is a function of

oo
E#n*„" = 0,n=l

where
Hn = Hn {a,i,--- ,an ,ai,--- ,an ,Pi,--- ,Pn,t), ra = 1,2, ••• is a function of

Fn = 0, ra = 0,1,

Fn =0, Gn =0, Hn =0, ra = 1,2,
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which can be solved successively in the following way:
First we solve the equation,

(38)

into which we introduce bi given by (22) and then we find that this equation
is satisfied if,

_ tan 2e
(39)

which is equal to Stokes' result (see Lamb, p. 425).
Secondly wc solve the equations,

(40)

The last three of these equations can be solved to give Bi, ai and ft in terms
of ai and e. These expressions for «i and fa together with bi and b2 given by
(22) are introduced into the first of the equations in (40), which then yields
a2 in terms of ai and e.
After ra steps we end up with the following set of equations to be solved,

We can use this to calculate the coefficients of the series in (7). We know that

Eo {ai,bi,e) = 0,

Ei{ai,a2 ,bi,b2 ,ai, pi,e) = 0

Fi(ai,Øi,e) = 0

Gi{ai,pi,Øi,e) = 0

Hi{ai,ai,Pi,e) = 0.

Alter ra steps wc ena up witn tne ioiiowmg set oi equations to oe soivea,

En (ai, • -, On+i, bi,--, bn+i, ai,---,an,Pi,"-,pn,t) = 0 '

F„(ai, "-,an , Øn , Oii,---, OLn-i, Pi,---, Pn-2, e) = 0
(41)

<3„(a:i, •• • ,OLn, Pi, -• • , Pn, Oi, -• • , 9n , e) = 0

Hn {ai, -- - ,an ,ai,- - - ,an , Pi,- - , Pn,t) =0 ,

from which an+i is obtained in terms of a x and e, after håving used the
expressions for bj, j = 1, •• • , n + 1 given by (22).
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the bj J s can be expressed by the a/s, see (22), and moreover, the a/s can be
expressed by the Aj's, see (21). Therefore (40) and (41) can be written as,

(42)

and

(43)

Into these equations wc introduce,

(44)

In order for the equations in (42) and (43) to be satisfied, then,

Ei{Ai,A2 ,ai,Pi,e) = 0

Fi{Ai,Øi,e) = 0,

Gi{au Pi,Øi,e)=o

Hi{Ai,au Pi,e) = 0,

En {Ai, •-, An+i, ai,---,an ,Pi,---,pn,e) = 0

Fn {Ai, ••-,An ,Øn,OLi,---, an_i, Pi,---, Pn-2, e) = 0

Gn ipLi, -',an ,PI,-'-,Pn,01,-'-,Øn,e) = 0

Hn {Ai, -- - , An , oli, -- - , an , Pi, -- - , pn , e) =0 .

OO OO "
An = VAnje2«- 1) , 0„ = E^20_1)

3=l j=l

OO OO
an = Y<*nj*2J , Pn = YPnJ*2(J- l) >

3=l 3=l

and make a series expansion in powers of e to obtain,OO OO OO
En = Y 2j+2 ,Fn = Y fn,<?j-2 ,Gn = Y 9n,&+1 and

3=l 3=l 3=l

Hn = Y hn3<?J+2 > n=1,2,--- .
3=l

eij =0, fij =0, gij =0, hij=o, i = 1,2, •• (45)

enj =0, fnj =0, gnj =0, hnj =o,ra = 2,3, ••, i = 1, 2, -- - . (46)
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The first step is to solve,

(47)

which gives An.
The next step is to solve,

(48)

which yields .Al2and A2i.
After ra steps the following set of equations has to be solved,

(49)

and then Ain , •  ', and Ani are found.
In the next section wc present the results of our calculations carried out to

/ii =0 , gn =0 , hv =0 ,

/i2= 0 , øi2 = 0 , hv = 0

/21 =0 , 021 =0 , hn = 0

Jr22 =0 , 022 =0 , h22 = 0

ei2=0 , e2 i =0 ,

/ln = 0 , Øln = 0 , hin = 0

/2n =0 , 02„ =0 , h2n = 0

fjn = 0 , Øjn = 0 , hjn = 0

/(n-l)n =0 , Ø(n-l)n =0 , /l(n-l)n = 0

/ni =0 , 0„i =0 , hnl = 0

/n2=0 , Øn2 =0 , /ln2= 0

Inn = 0 , Ønn = 0 , /l„„ = 0

ein =0 , e 2 =0 , •• • , ej(n+i-j) =0 , •• • , e„i =0 ,
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ninth order, i.e. ra = 9. Using Maple the exact values of the coefficients in
the series of the surface elevation and the velocity potential are found which
have not been given before.

However, the main question here is whether the series given by (7) con
verges for some values of e < co? where e 0 > 0, or whether it is an asymptotic
series. Our procedure to obtain the A^s enable us to give an answer to this
question, and it is shown that the series expansion in (7) must necessarily be
asymptotic. The reason is as follows:
The coefficient of X£ in (25), which has previously been denoted by Fn_i, is
found to be,

where Jis a function of aj, bj, aj, Pj, j = 1, 2,  • • , ra —1, and e.
Fn_i must be put equal to zero as remarked previously, and introducing 6n
and R, given by (22) and (39) respectively, into Fn_i wc find that,

where
_„ x sin(2e) /n . sin(2rae) ,n .
K{e, ra) = — ^—L cos (2rae) cos (2e) ,2e 2rae
and li is a function of aj, bj, aj, pj, j — 1, 2, •• • , ra —1, and e. Moreover, the
a/s, the &j's, the a/s and the Pjs> can be expressed in terms of ai and e, as
shown previously, so li can be given in terms of ai and e.
It is found that li is of order e 4 when e tends to zero, so an has no singularity
at e = 0, see Appendix. However, an has singularities where sin (2rae) and
K{e, ra) have zeros, with the exception for e = 0, unless li is proportional to
both sin (2rae) and K{e, ra), which is not likely to be the case as far as wc can
see, see Appendix. The first zero of sin (2rae), after the zero at e = 0, is given
by — . Also, when ra 1 the zeros of K{e, ra) are given approximately by2ra
the equation,

(52)

.(50)
Fn_i = — ean/m{exp (—Aine)} +bn [Re{exp (—4me)} —1]

+ /(ai, •• • , an_i, bw-, bn-i,ai, -•-, an_i, Pi,--, Pn-i, e) ,

tan 7= 7, where 7 = 2rae ,

sin 2e
•n —

~4e2 sm(2ne)K{e,n)
h(a>l,--', fln-l, 61, '' ' , 6n-l» «i, '' " 1 <*„-!, Pl,'-', Pn-l, f) ,(51
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the first zero of which, after the zero at 7 = 0, is 71 = 4.49340 • • •, i.e. the
7i

first zero of K{e, ra), after e = 0, is therefore — in the limit when ra —> 00.2ra
Now, if wc make a series expansion of an given by (51) in powers of e, which
wc have to do in order to find the A,'s of the series in (7), there are the two
possibilities: either the series expansion of /x in power of e is an asymptotic
series, and then the series of an is an asymptotic series as well, or the series
expansion of /i converges for e < cO,e O , where e 0 >0, and then the power series
of an will converge within a circle of radius equal to the distance from e= 0
to the nearest singular point of an , which will tend to zero in the limit when
ra — 00 as shown above. Consequently, in any case, the series expansion of
C(x) in powers of e as given by (7) is an asymptotic series.

4 Numerical results

Wc have solved the equations (47), (48) and so on up to ra = 9 to obtain the
Aij 's, i.e. wc have calculated the coefficients of the series,the coefficients of the series

(53)

In our calculations wc have used Maple and then the coefficients can be given
their exact values,

9
C(x) = Y €2jAjsech2^ {ex) , where

3=l

10-j
Ai =£^*-1Uit) j = 1,-,9.fc=l

392860880150492515192 16
634695765219140625 €

4 _£_ 2 39512 4 4864852 6 19627352 8
2 " 3 135 C + 30375 € + 4465125 C + 111628125 €

1 —
** O o ° 4
o + «C2 +

558698765625 75424333359375

1160374359375 226273000078125 261345315090234375
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1140547457786321636 8
52269063018046875 €

7388466006999452828 6
+ 37335045012890625 €

Instead of e as the expansion parameter wc may use the wave amplitude a.
Then wc have to expand e in a series in powers of a, i.e.,

38494939178392 8 _ 468262544797273532 10
+ 2793493828125 * ~ 9679456114453125 €

70534877118487724
9 " 58663370390625

* = (i + I>3<*;) > (54)
where

3 = 135 30375 C 893025 € 37209375 € 1160374359375

226273000078125 261345315090234375

 4

 5 99225 66976875 € 232074871875 45254600015625

6 —
-77i

7 =

8 —

do —- 1
2 128' 3 = "179200 ' 4 ~ 28672000 '

d5 =

6 — 016000 '
<L7 = 1 * =24 12
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which introduced into the series for ({x) given by (53) yields,

(55)

where

3874470304190711 3 26496135954083452807 4
9417408000000 ° + 21754212480000000 °

9
C(x) ~y^ ajÅjSech2j {ex) , where

3=l

10-j
4;= E flfc_l A7^ i = 1,2,..-,9,*=1

3 5 2 8209 3 364671 4 75679523 5Ar = 1 a+ -a a 6 H a4a 51 4 8 6000 196000 29400000

78263417033 6 4595761996453 7 6012057610748687 8
+ 22638000000° ~ 980980000000° + 971170200000000°

3 151 11641 2 2920931 3 48824563 4
Ai = a-\ a a -\ a

2 4 80 3000 392000 3675000

1639571505368813 5 7337762410742701999 6
11771760000000 ° + 27192765600000000 °

135828000000 " 420420000000
-a -

-13596382800000000°

3

A a3u =
OtOtJ I ZJ I Xiii I OVJKJI

11771760000000
V

18128510400000000
-å

A

45 = 313600 94080000
-a

217324800000



18

6146113078456594781 3
4439635200000000

The exact values of the coefficients in the series above have not been given
before. If the coefficients in (54) and (55) are evaluated wc find them to be
equal to those obtained by Fenton (1972), so our procedure leads to the same
series solutions as does Fenton's procedure.
In the investigation to follow wc need the expression for the velocity potential
at the free surface as well. Wc write,

(56)

and when the Aik& are known then the Di^s can be obtained from (9)
(56) it follows that,

From

(57)

where J2j{ex) ,j = 1,- - - ,9, can be obtained from the recurrence formula,

(58)

14856972755777 2374720426192371311
8 ~ 358758400000 5273748480000000 °

158703473516597379

9 " 1757916160000000

°^ =YR ( 1 + Ye2WjSech2i{ex) j , where

10—j
Z)J =£e2<*-1»i)it , i = 1,-",9,k=l

<f>s {x) =VRf x + 2j- 1 DJ J2 j

1 27 — 2
Jqj(v) = ——-tanh{u)sech2j~2 {u) 4- ——-J2j_ 2 {u) .

£3 1 47 1

A

*6 = 94080000 310464000000
-a

941740800000

A

47 =
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Then

= YR [x + tanh{ex)Y e2J ~lB3s^h2U-I) {ex) ] , where4>s{x)

(59)

Bi

B 2

Bz

B 4

B 5

418736389254523244 8
6582030157828125 €

10—j
Bj = £ Sk~»Bjk , i-l, — , 9.k=l

Wc find that,

4_16 2 _128_ 4 110336 6 350881792 8 2902269952 10
~3~27 e + 2025 e + 70875 6 + 66976875 € + 200930625 €

190772707131392 12 7518671353348096 14
+ 5028288890625 € + 75424333359375 *

1187778155316291043328 16
+ 4442870356533984375 €

15434929402096 10 111430712923522805356 12
+ 430996190625 € + 888574071306796875 €

" 2025 6
9 UJ.OUU a

€ ~
42525 " 66976875 € ~~ 11051184375

718326984375 75424333359375 4442870356533984375

428 357064 80488316 A 408218824 fi 75326553748568 ,
225 212625 22325625 136434375 15084866671875

70875 13395375 11051184375 5028288890625

17405615390625 4442870356533984375
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19874124467019102484 6
126939153043828125 €

If the amplitude a is used as the expansion parameter instead of e, wc can
introduce e given by (54) into (59) to obtain,

(60)

and where e is given by (54).
Wc get,

143469677983249 6 329244359157695959 7
17657640000000° + 28892313450000000°

465528827570284 617652508221145588 2
8 " ~ 2154980953125 + 11539923003984375 €

17237031652480284388
9 " 26926487009296875

4>.{x) = Vr(x+ tanh^ Ya^BjSech2^- l\ex)\ , where

10-j
Bj= VaY ak~ lB~Jk, j = 1,--,9,

k=i

6 = " 736745625 ' 430996190625 C 5028288890625

7 — 718326984375 83960296875 634695765219140625

a4 a5 oo ai = 441 122 12

a7 a8
4444

'2 = 1 a a a3 a4 a5
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821068054363797 4 7959611893440750281 5
7847840000000 ° + 35559770400000000 °

1361212578419884793 4a
3081846768000000

3714327357805899041 3
+ 6603957360000000 °

Wc may obtain an approximate value of the velocity potential <j>{x, z) from
the integral in (12) if wc introduce into it the series solutions of ({x) and
<f>s {x) to a given order ra. In our calculations wc let ra vary from Ito 9. Now,
letting z —> (~{x) the value of the velocity potential at the surface given by
the integral is found and it can be compared with the value of the velocity
potential given by the series expansion, (59) or (60). Wc define the quantity,

~ 4309257913120071097

9 " 89653724160000000

f(y. (ai)

*3 =
321

~400 4
416309

\ a-
-168000

16381013 2a 2 -+2940000
1877930689 3

*" 161700000°
39394059988483
1765764000000°

H432045299 5 _
1027353600°

805933747166634521 ,
11556925380000000°

19029708033769
'4 = 14112000°

a56000 862400000 70

33264517
14112000 "*"

14407679921
" 1034880000 a ~

9328271484409 2
176576400000° +

92268025679929
5650444800000

922680256799297
5 =

5938 104171501 2
6 = 807206400000

-a
1034880000

633634975339407
7 = 2306304000000

-a
1345344000000

'8 = ~ 5381376000000 38423024640000000
-a



(62)

(63)
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where <t>sser {x) and <^nt (:r) are the velocity potentials given by the series so
lution and the integral respectively,

As indicated in (62) care must be tåken when going to the limit z —* £~{x)
in the first integral. As pointed out earlier, when z is below and close to the
surface, aio is in the upper half of the <7-plane and close to x, and <f2o is in
the lower half plane close to x, and both tend to x when z—> C~(x)- With
this in mind and by applying Plemelj's formula (see Muskhelishvili (1946))
wc find that,

As we have shown the series of £{x) and (f)s {x) are not convergent, and there
fore it can not be expected that A will tend to zero when ra tends to infinity.
For a given wave amplitude there is likely to be some limited number of terms
to be included in the series to obtain the minimum value of A, and increas
ing the number of terms beyond this limit will give no further improvement,
rather the opposite.
In the tables 1 — 5, A has been calculated for different values of x letting the
order ra and the wave amplitude a vary.
The tables 1 — 5 show that for the amplitudes 0.2, 0.3 and 0.4, A is decreasing
essentially when the order of the series is increased, indicating that the series
solution is improved when the number of terms of the series is increased.
Also, when a = 0.5 and 0.6 there seems to be an improvement of the series
solution if more terms are included in the series, although not so marked as
when a = 0.2, 0.3 and 0.4. In all these cases there seems to be a general
feature that there is only a small gain to be had in the accuracy going beyond

w = j-f lim f lim r^^y^rty?1 "^ *
Ys KJ 27T [r-+<x>\z-+<;-(x)J-r Ys V^ (/X - x)2 + (C(m) " <*) 2

r / .aCw+c(x)+2-c, u)(^-x) j y

icated in (62) care must be tåken when going to the fimit z — £"(2
first integral. As Dointed out earlier, when z is below and close to th

2* ~<-(x) [7-, V' w (jt - x)2 + (CM - *)2 *

2*- w + sFy> (/*-*)' + (CM -«*))'*"
which is used in (62) to obtain <f>lsnt {x).
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the sixth order. When the amplitude is 0.7 or 0.8 wc see that there is hardly
any improvement at all when including more than four terms in the series.
These results seem to reflect the asymptotic nature of the series.

5 Conclusion

The velocity potential has been expressed as a surface integral, and can be
obtained if the surface elevation and the velocity potential at the free surface
are known. In principal the integral can be evaluated by using the residue
theorem, and it is shown that only two of the poles of the integrand contribute
to the well-known series solution of the solitary wave problem, i.e. the veloc
ity potential can be expressed as simple as <j){x, z) = \Re{<f>s {aio) + ø«(cr3o)},
where <f>a {x) is the expression of the velocity potential at the free surface,
and (7io and cr30 are specified zeros of the functions Fi{a) and F3 {a) given
by (13). A procedure is given to obtain the series solution to any order,
and which enable us to show analytically that the series is asymptotic rather
than convergent. The coefficients in the series of the surface elevation and
the velocity potential have been calculated to ninth order, and their exact
values are given. If these expressions for the surface elevation and the veloc
ity potential are introduced into the surface integral, another approximate
value of the velocity potential can be calculated which can be compared with
the value obtained from the series expression of the velocity potential. This
has been done for different values of x and by varying the wave amplitude
a and the order ra of the series. It is found that if a < 0.6, then the series
solution is improved by increasing the order of the series, although the gen
eral feature is that there seems to be little gain to be had in the accuracy
including more than six terms in the series. When a = 0.7 or 0.8 there is
hardly any improvement going beyond the fourth order.
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Table 1: A calculated for x = 0.3 and for different values of the order ra and
the amplitude a.

Table 2: A calculated for x = 0.5 and for different values of the order ra and
the amplitude a.

n\a 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3.8x10" -1.1x10" -2.5x10" -5.0x10" -9.6x10" -1.9x10" -3.8x10"
8.0x10" 2.5x10" 5.6x10" 1.0x10" 1.6x10- -2.4x10" 3.2x10"

-1.7x10- --9.1x10" -3.1x10" -8.5x10" -2.1x10" -5.2x10" -1.3x10"
2.8x10" 1.7x10" 5.8x10" 1.3x10" 2.3x10" 3.0x10" I.lxlo-

--6.2x10" -6.8x10" -3.7x10" -1.4x10" -4.6x10" -1.4x10" -4.7x10"
6.4x10" 7.0x10" 1.7x10" -9.6x10" -9.9x10" -5.0x10" -1.9x10"

-3.2x10" -5.0x10" -3.7x10" -1.7x10" -6.2x10" -2.3x10" -1.2x10"
-1.1x10" -1.0x10" -1.6x10" -I.Bxlo- --1.3x10" -6.8x10- --2.9x10"
-1.3x10" -6.8x10" 2.0x10" 6.3x10" 5.7x10" 3.1x10- -8.3x10"

n\a 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-3.8x10" -1.1x10" -2.5x10" -5.0x10" -9.4x10" -1.8x10" -3.4x10"
7.8x10" 2.5x10" 5.5x10" 1.0x10" 1.6x10" 2.4x10" 3.2x10"

-1.6x10" -8.7x10" -2.9x10" -7.8x10" -1.9x10" -4.3x10" -9.8x10"
2.6x10" 1.6x10" 5.5x10" 1.3x10" 2.6x10" 4.0x10" 4.3x10"

-5.9x10" -6.3x10" -3.3x10" -1.2x10" -3.7x10" -1.0x10" -2.9x10"
6.2x10" 7.2x10" 2.6x10" -1.2x10" -4.1x10" -2.4x10" -9.6x10-

--3.0x10" -4.5x10" -3.1x10" -1.3x10" -4.1x10" -1.2x10" -5.1x10"
-9.7x10" -6.6x10" -9.1x10" -1.0x10" -7.2x10" -3.6x10" -1.4x10"
-1.1x10" -6.6x10" -2.2x10" 3.1x10" 3.0x10" 1.6x10" 3.0x10"
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Table 3: A calculated for x = 1.0 and for different values of the order ra and
the amplitude a.

Table 4: A calculated for x = 10.0 and for different values of the order ra and
the amplitude a.

n\a 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-4.0x10" -1.1x10" -2.5x10" -4.8x10" -8.5x10" -1.4x10" -2.4x10"
6.7x10" 2.2x10" 4.9x10" 9.4x10" 1.6x10" 2.4x10" 3.3x10"

-1.4x10" -6.9x10" -2.2x10" -5.4x10" -1.2x10" -2.3x10" -4.3x10"
2.0x10" 1.2x10" 4.4x10" 1.2x10" 2.9x10" 6.0x10" 1.1x10"

-4.6x10" -4.2x10" -1.9x10" -6.1x10" -1.6x10" -4.1x10" -1.0x10"
5.8x10" 7.9x10" 4.7x10" 1.9x10"4 6.2x10" 1.8x10" 4.1x10"

-2.0x10" -2.9x10" -1.9x10" -8.2x10" -3.1x10" -1.3x10" -5.7x10"
-3.4x10" 4.4x10" 6.7x10" 4.7x10" 2.4x10" 9.7x10" 3.0x10"
-6.2x10" -6.0x10" -7.2x10" -6.7x10" -4.6x10" -2.5x10" -1.2x10"

n\a 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-4.9x10" -8.9x10" -1.4x10" -1.9x10" -2.5x10" -3.2x10" -3.9x10"
1.0x10" 3.0x10" 6.4x10" 1.2x10" 2.0x10" 3.3x10" 5.0x10"

-1.4x10" -5.8x10" -1.6x10" -3.4x10" -6.3x10" -1.0x10" -1.6x10"
3.2x10" 2.0x10" 7.1x10" 1.9x10" 4.5x10" 9.4x10" 1.9x10"

-6.3x10" -5.7x10" -2.7x10" -8.9x10" -2.4x10" -5.3x10" -1.0x10"
1.4x10" 1.9x10" 1.2x10" 5.0x10" 1.6x10" 4.5x10" 1.1x10"

-3.0x10" -6.0x10" -4.9x10" -2.5x10" -9.7x10" -2.9x10" -7.4x10-
-6.8x10" 2.0x10" 2.2x10" 1.4x10- -6.5x10" 2.4x10" 7.8x10"

-1.4x10" -6.5x10" -9.5x10" -7.6x10" -4.1x10" -1.7x10" -5.6x10"
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Table 5: A calculated for x = 100.0 and for different values of the order ra
and the amplitude a.

n\a 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-4.4x10" -8.1x10" -1.2x10- --1.7x10" -2.3x10" -2.9x10" -3.5x10"
8.8x10" 2.6x10" 5.6x10" 1.0x10" 1.8x10" 2.8x10" 4.4x10"

-1.2x10" -4.9x10" -1.4x10" -3.0x10" -5.6x10" -9.3x10" -1.4x10"
2.5x10" 1.6x10" 5.8x10" 1.6x10" 3.8x10" 7.9x10" 1.5x10-

--4.6x10" -4.3x10" -2.1x10" -7.3x10" -2.0x10" -4.5x10" -8.8x10"
1.0x10" 1.4x10" 9.1x10" 3.9x10" 1.3x10" 3.6x10" 8.9x10"

-2.0x10" -4.2x10" -3.6x10" -1.9x10- --7.5x10" -2.3x10" -6.1x10"
4.4x10" 1.4x10" 1.6x10" 1.0x10" 4.9x10" 1.8x10" 5.8x10"

-8.9x10" -4.2x10" -6.4x10" -5.3x10" -3.0x10" -1.3x10" -4.4x10"
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A Appendix

(65)

(66)

(67)

In these equations and in the following the dots • • • denote a sum of terms of
the form engn (e) where ra > 2.
The equations (65) — (67) can be solved with respect to an and pn to give,

(68)

(69)

which introduced into the expressions for P{e) and Q{e) yields,

(70)

From the equations (25), (29), (31) and (32) wc get,

. cos(4rae) —il 2 (cos(4rae) —1) "^J

esm(4n£) + 2fe ja„ + e |g a^.j +• -j (64)
+F(e) + Q(e)=o,

where,
€2 I"71" 1

P(e) = Y, ai [cos(4e) cos(4(j - l)e)a„_j - sin(4e) sin(4(j - l)e)Pn-j] +
2it [y=i

and,
|"n-l

<2(<o =e3 £ i°i [cos(4e) sin(4o" - lje)^...,- + sin(4e) cos(4o' - l)e)/5n_i] +
3=l

Øn = -2(cos(4rae) + l)g„ +

2e
OLn - Pn= .,0 x#n +

sm(Be)

— 2esin(4rae)gn = an cos2 (4e) +pn sin2 (4e) +

2e
an = 77-T [sin(4(ra 4- l)e) + sin(4e)] an +cos(4e)

2e
Pn = -^TTT [cos(4(ra + l)e) + cos(4e)] an +sin(4e)

£3 n-l
P{e) =-— Y [sin(4rae) + sin(4je)] a 5an-j +

R 3=l



(75)

(76)
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(71)

Now, from (21) it follows that,

(72)

which yields,

It follows from (64) that Ix , which is defined by (51), can be written as,

(77)

When e = then the coefficients of e 2 and e 3 in the expression for h are both
zero, but the coefficient of e 4 is not. This follows from the equations (70),
(71), (75) and (76). Moreover, it follows that neither of these coefficients has

n-l
Q{e) = 2e4 Y l>os(4rae) + cos(4je)] fajan-j -r -- •

.3=l

aj = (-ly-^oi +

2a^-j = (-ira2 £ j(n -i)+  • = (r>3 -n)+• • • , (73)3=l 3=l

2W*»-; = (-l)%J2i2(»-i)+"- = M?^ ("4 -n2)+---,(74)i=i i=i "
n—l n—l
Y Wn-j sin(4je) = (-l)ng? Y J(n ~i) sin(4.7<0 +
3=l j=l

i—l)na2
V . 3 , I [sin2 (2rae)/2 - sin2 (2ne)sin2 (e) - rasin(4rae)sin(26)/4] +

n—l n-l
Y Ja-jO-n-j cos(4je) = (-l)ng? Y f(n ~i) cos(4je) +
3=l 3=l

i-lYa? r
\ / ? [sin2 (2rae)sin2 (2e)/2 - 3sin2 (2rae)/4 + rasin(4rae)sin(4e)/4

- ra2 cos(4rae)sin2 (2e)/4J +

,(cos(4ne)-l) „, . nt .
h= € 4R2n EVH +- +P(«) + «(«).J=l
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the same zeros as the function K{e, ra), except for the zero at e = 0.
When the expressions (73) — (76) are tåken into account wc can write,

As is seen from (78) the term which has been found in the expression for li
is proportional to a 2. This is the only term in the expression for li which is
proportional to a\; the terms that have been left out are proportional to a\,
with the exponent k greater than two.
an is given by (51) and by introducing the expression for li given by (78)
and by making an expansion about e = 0 in powers of e wc get,

(79)

where the terms that have been left out are proportional to a\, with the
exponent k greater than two, as mentioned previously. It follows from whatoo
has been said above that the series Yc3 eJ w^ converge for e < and wc

3=l
see that the radius of convergence of this series tends to zero when ra — 00.
In conclusion: the calculations carried out in this appendix show that it is
reasonable to expect that the series of ({x) given by (7) will be an asymptotic
series.

2[ 2 f ("2 - l)(cos(4w6) -1) 1 3 f(n3 -w)sin(4ne)
/, - (-1) a, I I-<f I —

sin2 (2rae)/2 - sin2 (2rae) sin2 (e) - rasin(4rae) sin(2e)/4 1
+ Æsin3 (2e) J

4 f (ra4 - ra2 ) cos(4rae) sin2 (2ra€)sin2 (26) - 3sin2 (2rae)/2
+C { 6 + sin4 (2e)

rasin(4rae) sin(4e)/2 — ra2 cos(4rae) sin2 (2e)/2 1
+ sin4 (2e) jj +

sin(2e) _ , n ,„ 2^ , ,
"" - " 4e2 Sin(2ne)K(e,n) h = ("^g** +
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