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ABSTRACT 

Assay interference caused by small molecules continues to pose a significant challenge for early 

drug discovery. A number of rule-based and similarity-based approaches have been derived that 

allow the flagging of potentially “badly behaving compounds”, “bad actors” or “nuisance 

compounds”. These compounds are typically aggregators, reactive compounds and/or pan-assay 



interference compounds (PAINS), and many of them are frequent hitters. Hit Dexter is a recently 

introduced machine learning approach that predicts frequent hitters independent of the 

underlying physicochemical mechanisms (including also the binding of compounds based on 

"privileged scaffolds" to multiple binding sites). Here we report on the development of a second 

generation of machine learning models which now cover both primary screening assays and 

confirmatory dose-response assays. Protein sequence clustering was newly introduced to 

minimize the overrepresentation of structurally and functionally related proteins. The models 

correctly classified compounds of large independent test sets as (highly) promiscuous or non-

promiscuous with Matthews correlation coefficient (MCC) values of up to 0.64 and area under 

the receiver operating characteristic curve (AUC) values of up to 0.96. The models were also 

utilized to characterize sets of compounds with specific biological and physicochemical 

properties, such as dark chemical matter, aggregators, compounds from a high-throughput 

screening library, drug-like compounds, approved drugs, potential PAINS and natural products. 

Among the most interesting outcomes is that the new Hit Dexter models predict the presence of 

large fractions of (highly) promiscuous compounds among approved drugs. Importantly, 

predictions of the individual Hit Dexter models are generally in good agreement and consistent 

with those of Badapple, an established statistical model for the prediction of frequent hitters. The 

new Hit Dexter 2.0 web service, available at http://hitdexter2.zbh.uni-hamburg.de, not only 

provides user-friendly access to all machine learning models presented in this work but also to 

similarity-based methods for the prediction of aggregators and dark chemical matter as well as a 

comprehensive collection of available rule sets for flagging frequent hitters and compounds 

including undesired substructures. 



INTRODUCTION 

Biochemical assays are a core component of early drug discovery.1–3 Some small molecules 

however can pose significant challenges to biochemical assays as they may trigger false 

outcomes. Whereas false negative results may lead to a loss of valuable bioactive compounds, 

false positive outcomes can, if they remain undetected, tie up and consume significant resources 

and time without prospect of success. In the worst case, these “badly behaving compounds”, 

“bad actors” or “nuisance compounds” get reported as bioactive compounds and pollute the 

medicinal chemistry and chemical biology literature. Once published, invalid assay outcomes 

may propagate and trigger follow-up studies based on false grounds, which hampers the global 

drug discovery effort. 

Nuisance compounds (Figure 1) include compounds that can form colloidal aggregates,4,5 

compounds with reactive groups,6 and pan assay interference compounds (PAINS).7 Note that 

the PAINS substructures by design do not cover aggregators because they were derived from the 

outcomes of high-throughput screening campaigns run in the presence of a detergent and casein 

in order to minimize phenomena related to aggregate formation. They also do not cover many 

types of reactive compounds because compounds with reactive functional groups had been 

removed from the screening library prior to assaying.7 

The different types of badly behaving compounds discussed so far involve no definite assertions 

about the frequency by which they cause assay interference. Rather than interfering with all 

different kinds of assays they trigger false outcomes only under specific (and by far not all) 

conditions. However, a tendency of badly behaving compounds to have higher hit rates is 

apparent. 



Compounds for which a higher than expected hit rate is recorded in historical assay data are 

referred to as “frequent hitters”.8 Many of these compounds are aggregators, reactive compounds 

or PAINS, but importantly, a significant proportion of frequent hitters are true promiscuous 

compounds. True promiscuity is often related to “privileged scaffolds”9 or “master key 

compounds”,10 which have the ability to bind to multiple binding sites. True promiscuous 

compounds are not necessarily nuisance compounds. In fact, they can be valuable in the context 

of drug repurposing and polypharmacology.11,12 

Computational methods for predicting nuisance compounds and frequent hitters are still in an 

early stage of development.13 The most established approaches for identifying problematic 

compounds are rule-based methods, which flag compounds containing substructures that have 

been linked to assay interference. In recent years, the 480 patterns encoding substructures 

derived from PAINS have become not only one of the best known but also one of the most 

misused rule sets in medicinal chemistry. All too often, the limitations of the PAINS concept, 

most of which have been pointed out clearly by its inventors, are not paid the necessary 

attention.14,15 Further approaches for the prediction of nuisance compounds and frequent hitters 

include similarity-based approaches, statistical and machine learning approaches, an overview of 

which is provided in ref 13. 

An important statistical approach for the prediction of frequent hitters is Badapple,16 which 

performs a hierarchical scaffold analysis to derive a promiscuity score (“pScore”). The pScore 

corresponds to the likelihood of a compound based on a specific scaffold being promiscuous. 

Badapple was derived from a large public data set of more than 430k compounds measured in a 

total of more than 800 different assays.  



We recently reported two machine learning models for the prediction of frequent hitters which 

are accessible via a free web service called “Hit Dexter”.17 Hit Dexter was developed with the 

idea of creating a reliable model for the prediction of frequent hitters independent of the 

underlying physicochemical mechanisms (including also the binding of compounds based on 

"privileged scaffolds" to multiple binding sites). Such a model could advice scientists for which 

compounds to exercise extra caution with positive assay readouts. The initial Hit Dexter models 

were trained on more than 235k compounds measured in at least 50 different confirmatory dose-

response assays (CDRAs). They reached a high level of accuracy on independent test data, with 

Matthews correlation coefficients18 (MCCs) of up to 0.67 and area under the receiver operating 

characteristic curve (AUC) values of up to 0.96. 

Here we report on the development of a second generation of machine learning models for the 

prediction of frequent hitters, which are accessible via the new Hit Dexter 2.0 web service.19 The 

models are a result of several major refinements and extensions of the data collection, data 

processing and modeling procedures. For example, a clustering approach was introduced in order 

to avoid an overrepresentation of structurally and functionally related proteins such as protein 

kinases. Hit Dexter 2.0 also includes models trained on data measured with primary screening 

assays (PSAs). In contrast to CDRAs, PSAs are primarily high-throughput screening assays 

measuring single-dose inhibition. The inclusion of these models in Hit Dexter 2.0 will allow a 

better representation of assays employed for primary screening. 

In addition to method and model refinement, we also report on comprehensive tests of Hit 

Dexter 2.0 with various types of compounds, including dark chemical matter (DCM),20 approved 

drugs and natural products. Last but not least, we present a direct comparison of Hit Dexter 2.0 

with Badapple and introduce the new Hit Dexter 2.0 web service. 



 

Figure 1. Schematic overview of key concepts and terms used in the context of assay 

interference and small-molecule drug discovery. Note that by design PAINS exclude aggregators 

and many types of reactive compounds. However, overlaps between the different types of 

compounds other than those depicted in this scheme certainly exist. 

RESULTS AND DISCUSSION 

Data Set Compilation and Analysis 

Two large data sets were compiled from PubChem Bioassay,21,22 one consisting of 803 898 

compounds measured in 931 PSAs and the other one consisting of 468 258 compounds measured 

in 2273 CDRAs. During data preprocessing, filtering in particular, 20 921 and 18 003 

compounds were removed from the PSA and CDRA data sets, respectively (Table 1).  



 

Table 1. Number of Compounds Removed During Filtering and Quality Checks. 

Reason for removal PSA data set [cpds] CDRA data set [cpds] 

Invalid SMILES notation 1 3 

Salt filter with ambiguous 

outcomea 

770 231 

Molecular weight outside the 

range of 200 to 900 Da 

11 231 10 815 

Elements other than H, B, C, 

N, O, F, Si, P, S, Cl, Se, Br 

and I 

116 175 

Duplicate moleculesb 8460 5171 

Rejected during quality 

checksc 

343 1608 

Sum 20 921 18 003 

 

a Multi-component compounds for which the main component could not be unequivocally 

defined (see Methods and ref 17 for detail). 

b Identified based on canonicalized SMILES. Associated data were merged as outlined in ref 17. 

This led to the effective reduction of the number of compounds as reported in the table. 



c Compounds with conflicting data (e.g. activity data). See Methods and ref 17 for detail). 

 

Following this procedure, the proteins covered by the PSA and CDRA data sets were clustered 

based on sequence similarity: The 429 proteins covered by the PSA data set were assigned to 388 

unique protein clusters, and the 712 proteins covered by the CDRA data set were assigned to 537 

unique protein clusters (see Methods for detail).  

The definition of whether a compound is (highly) promiscuous or not is based on the active-to-

tested ratio (ATR), which is calculated according to Equation 1: 

 

!"#	 = 	 !",      (1) 

 

where A is the number of protein clusters for which a compound was measured as active on at 

least one protein of that cluster, and T is the total number of protein clusters a compound was 

measured on. 

The ideal data set to derive ATRs from would consist of a large number of compounds measured 

on a large number of protein clusters. Obviously, with the available data a compromise needs to 

be found between the number of instances available for training and testing the models (i.e. size 

of the data set in terms of the number of compounds) and the minimum number of protein 

clusters for which activity data are recorded for the individual compounds. 

Figure 2 shows the relationship between data set size and the minimum number of protein 

clusters for which assay results have been recorded. For example, the processed data set includes 

362k compounds which have been measured with PSAs representing at least 50 different protein 



clusters. Likewise, 327k compounds are represented by the respective data collected from 

CDRAs. One of the most obvious differences between the PSA and CDRA data sets is that for 

the vast majority of compounds of the PSA data set measured data are available for 150 and 

more protein clusters, whereas for the CDRA data set a steep decline in the number of 

compounds for which measured data are available for 70 and more protein clusters is observed. 

We explored the use of data sets containing all compounds for which bioactivity data has been 

recorded for at least 20, 50 and (only for PSAs) 100 protein clusters (data not shown). In 

agreement with previous results,17 we found the data sets containing all compounds for which 

bioactivity data has been recorded for at least 50 protein clusters to be highly diverse and most 

suitable for modeling. We refer to these data sets as the PSA50 and CDRA50 data sets. 

 



Figure 2. Data set size (number of compounds) as a function of the minimum number of protein 

clusters for which measured data are available. The rectangles mark the PSA20/CDRA20, 

PSA50/CDRA50 and PSA100/CDRA100 data sets. 

 

Next, all compounds were assigned a promiscuity label based on their ATR: “NP” for non-

promiscuous compounds, “P” for promiscuous compounds and “HP” for highly promiscuous 

compounds. Note that, according to the definitions of promiscuity summarized in Table 2, highly 

promiscuous compounds are a subset of promiscuous compounds. 

Suitable cutoffs for the assignment of promiscuity labels were calculated for the PSA50 and 

CDRA50 data sets according to the definitions derived as part of our previous work (recited in 

Table 2, column “threshold definition”).17 According to these definitions, any compounds with 

an ATR greater than 0.024 for PSAs and 0.043 for CDRAs were labeled promiscuous, 

accounting for 11% and 13% of all compounds, respectively. These proportions of promiscuous 

compounds are in good agreement e.g. with the findings of a recent study from 

GlaxoSmithKline, which reported a fraction of 13% of all compounds as "noisy",23 and higher 

than the averaged incidence of frequent hitters reported for the AstraZeneca screening library 

(which is 6%).24 The mean ATRs for the PSA and CDRA data sets were 0.008 and 0.015, 

respectively (see Table 2 for more detail). These mean ATRs correspond well to the findings of 

other studies, such as that on the AstraZeneca compound collection, which reported an overall hit 

rate of 1.53%.24  



 

Table 2. Composition of the Data Sets Used for Model Training and Validation. 

Assigned 

promiscuity 

class 

Number of unique compounds in Threshold 

definitiona 

Threshold value 

  PSA50 CDRA50  PSA50b CDRA50b 

Non-

promiscuous 

(NP) 

Total: 

Training set: 

Test setc: 

 

247 110 

222 272 

24 881 

 

234 811 

211 264 

23 574 

 

ATR < 

ATRmean 

0.008 0.015 

Promiscuous 

(P) 

Total: 

Training set: 

Test setc: 

 

29 042 

26 117 

2 930 

 

33 982 

30 478 

3 507 

 

ATR > 

ATRmean + 

1σd 

0.024 0.043 

Highly 

promiscuous 

(HP) - a 

subset of 

compounds 

labeled P 

Total: 

Training set: 

Test setc: 

 

6 625 

5 956 

670 

 

6 246 

5 609 

637 

 

ATR > 

ATRmean + 

3σd 

0.054 0.100 

a Derived as part of our previous work.17 Compounds with ATRs between ATRmean and ATRmean 

+ 1σ were not assigned a promiscuity label and removed from all data sets. 



b ATR threshold values calculated for the individual data sets according to the ATR threshold 

definition. 

c Independent test set obtained by random split of the curated data set prior to model 

development. 

d Standard deviation. 

 

CDRAs tend to have higher hit rates than PSAs. This is observed in the ATR distributions 

reported in Figure 3 and also reflected in the higher mean ATR for CDRAs (Table 2). The 

differences in hit rates can be explained by the fact that CDRAs are often used to measure 

compounds which have previously been reported as active by a PSA and are hence more likely to 

also show activity in CDRAs than a random set of screening compounds.  

 

 

Figure 3. ATR distributions calculated for the (A) PSA50 and (B) CDRA50 data sets. The 

vertical lines mark the cutoffs applied for the assignment of promiscuity labels. Any compounds 

below the green line were labeled “NP”, any above the yellow line “P”, and any above the red 

line “HP”. 

  



Comparison of the Chemical Space of the PSA and CDRA Data Sets 

The chemical space of the individual data sets used for modeling was determined and compared 

using (i) principal component analysis (PCA) on 44 physically meaningful 2D descriptors 

computed with MOE25 (listed in Table S1 of ref. 17) and (ii) pairwise similarity analysis based on 

the Tanimoto coefficient calculated from Morgan2 fingerprints.26,27 

In a first experiment, we analyzed whether the reduction of the PSA and CDRA data sets to 

subsets of compounds annotated with measured data for at least 50 protein clusters leads to a 

substantial loss of coverage. As shown by the PCA scatter plots and histograms reported in 

Figure 4, the chemical space of compounds covered by the PSA50 and CDRA50 data sets is–to a 

large extent–comparable with that of the PSA0 and CDRA0 data sets, respectively. Only about 

11% of all compounds of the PSA0 data set and about 9% of all compounds of the CDRA0 data 

set have a maximum Tanimoto coefficient of less than 0.5 measured against any compounds 

present in the PSA50 and CDRA50 data sets, respectively. In other words, this means that by 

constraining the data used for model development to compounds for which measured data has 

been recorded for at least 50 protein clusters does not lead to a substantial reduction of chemical 

space coverage as compared to the complete (processed) PubChem Bioassay data sets. 



 

Figure 4. Comparison of the chemical space of the (A, B) PSA0 and PSA50 data sets and (C, D) 

CDRA0 and CDRA50 data sets. The PCA scatter plots are based on the first against the second 

component and derived from 44 physicochemically meaningful 2D descriptors calculated with 

MOE (see Table S1 in ref. 17). PCA was performed on the full dataset. For the sake of clarity, 

only a randomly selected 1% of all data points are shown. The axis labels report the percentage 

of the total variance explained by the respective principal component. The histograms show the 

proportion of compounds of the (B) PSA0 or (D) CDRA0 data set represented by compounds of 

the (B) PSA50 or (D) CDRA50 data set at a given minimum similarity (Tanimoto coefficient 

calculated from Morgan2 fingerprints). 

 



Following the same protocol, we also compared the chemical space covered by the PSA50 and 

CDRA50 data sets. As shown in Figure 5A and D, no substantial differences in coverage 

between the two data sets are apparent from the PCA and pairwise similarity analysis. Last but 

not least we compared the PSA50 and CDRA50 data sets to the complete ChEMBL database.28,29 

The ChEMBL database was prepared following the identical data preprocessing protocol 

(without considering any biological data) and consists of about 1.5 million compounds. From 

this comparison it can be seen that chemical space of the ChEMBL database is wider than that of 

the PSA50 and CDRA50 data sets (Figure 5B, C, E and F). This is an expected result, since the 

ChEMBL database contains substantially more compounds from a large number of diverse 

sources. Nevertheless, the plots also show that approximately 50% of all ChEMBL compounds 

are well represented by the PSA50 and CDRA50 data sets. 

Model Development 

Prior to model development, the PSA50 and CDRA50 data sets were randomly split into a 

training and a test set with a ratio of 9:1. In contrast to our previous work,17 an additional data 

preprocessing step was implemented which checks for the presence of any compounds with 

distinct canonicalized SMILES but identical Morgan2 fingerprints (as in the case of 

stereoisomers, for example) because this can lead to inconsistent predictions. In order to address 

these issues, any instances with identical Morgan2 fingerprints were merged if their promiscuity 

labels were identical. If their labels differed, all instances with identical Morgan2 fingerprints 

were removed from the training data. Table 3 lists the number of compounds removed from the 

training and test sets as part of this process. 

For assays of both screening stages (i.e. PSAs and CDRAs), two binary classifiers were 

developed: one to distinguish promiscuous from non-promiscuous compounds (P-NP classifier) 



and another one to distinguish highly promiscuous from non-promiscuous compounds (HP-NP 

classifier). An overview of the size of the training and test set is reported in Table 2. 

As a first step in the model building process, the most suitable machine learning algorithm and 

descriptor set were identified. In addition to the extra tree classifiers (ETC) and random forest 

classifiers (RFC) explored in our previous work,17 we also tested several meta classifiers such as 

the AdaBoost Classifier30,31 and Bagging Classifier,32,33 both in combination with the ETC and 

RFC. With respect to descriptors, we explored all 206 2D descriptors available in MOE, 

Morgan2 fingerprints (1024 bit), and MACCS keys (166 bits). 

 

 

Figure 5. Comparison of the chemical space of the PSA50, CDRA50 and ChEMBL data sets in 

the (A, B, C) MOE 2D descriptor space and (D, E, F) Morgan2 fingerprint space. The PCAs 

were performed on the full datasets. For the sake of clarity, only a randomly selected 1% of all 

data points are shown. The axis labels report the percentage of the total variance explained by the 



respective principal component. The histograms show the proportion of compounds of the 

specified data sets represented by the (D, E) PSA50 and (D, F) CDRA50 data at a given 

minimum similarity (Tanimoto coefficient calculated from Morgan2 fingerprints). 

 

Table 3. Number of Compounds Filtered Due to Duplicate Morgan2 Fingerprints. 

Data set 

No. of compounds merged 

due to identical fingerprints 

and promiscuity labels 

No. of compounds with 

identical fingerprints 

removed due to contradicting 

promiscuity labels 

PSA50 training set 2 522 303 

PSA50 test set 41 8 

CDRA50 training set 1 664 281 

CDRA50 test set 26 4 

 

The various combinations of machine learning algorithms and descriptors were tested with 10-

fold cross-validation (see Methods for more detail). The performance of the individual classifiers 

was compared based on the MCC, which quantifies the correlation between the predictions and 

their true value by taking into account the true positive, false positive, true negative and true 

positive predictions. MCC values range from -1 to +1, where a value of +1 indicates perfect 

prediction, a value of 0 a performance equal to random prediction, and a value of -1 total 

disagreement of the prediction. In addition, we generated receiver operating characteristic (ROC) 

curves and calculated the area under the ROC curves (AUCs). By considering these three 



components, a solid understanding of the goodness of the models can be obtained: Whereas the 

MCC quantifies the capability of a model to correctly classify a compound of interest, ROC 

curves and (to some extent also) AUC values quantify a model’s ability to identify (highly) 

promiscuous compounds by assigning them high probabilities as compared to non-promiscuous 

compounds (i.e., ranking (highly) promiscuous compounds early in a list). 

For all data sets the best performance during 10-fold cross-validation was obtained by ETCs in 

combination with Morgan2 fingerprints (MCC values between 0.56 and 0.58). These 

observations are consistent with the observations made during our previous work.17 

Following these experiments, the hyperparameters (Table 4) for the ETCs (in combination with 

Morgan2 fingerprints) were optimized, again with 10-fold cross-validation and with MCC as 

performance measure. Optimization of the hyperparameters did not yield substantial 

improvements of the models. The most suitable settings for the number of estimators and the 

maximum fraction of features considered per split were 100 and 0.2, respectively. Classifiers 

using these hyperparameters obtained MCC values between 0.57 and 0.60 and AUC values 

between 0.91 and 0.96 during 10-fold cross-validation (Figure 6). The final models (with 

optimized parameters) were built on the complete training sets balanced with the synthetic 

minority oversampling technique (SMOTE).34 



Table 4. Hyperparameters Optimized by Grid Search.a 

Parameter Option 

Number of estimators 

(estimators)b 

10c,50,100,150,200,250,300,400,500,600 

Maximum fraction of features 

considered per split 

(max_features)b 

sqrtc, 0.2, 0.4, 0.6, 0.8, noned 

a Bold numbers indicate settings used for the production of the final models. 

b Parameter name in the scikit-learn35 implementation. 

c Default value. 

d All features are used. 

 



 

Figure 6. ROC curves obtained during 10-fold cross-validation for the selected models (i.e. ETC 

in combination with Morgan2 fingerprints; n_estimators = 100; max_features = 0.2). (A) HP-NP 

classifier for PSAs, (B) P-NP classifier for PSAs, (C) HP-NP classifier for CDRAs, (D) P-NP 

classifier for CDRAs. 

 

Model Evaluation on Independent Test Data 

The final models (ETC; Morgan2 fingerprints; SMOTE for balancing the training data; 

n_estimators = 100; max_features = 0.2), referred to as Hit Dexter 2.0 models, were tested on an 

independent test set (Table 2) derived by random split of the preprocessed PSA50/CDRA50 data 

sets prior to model building. The MCC values obtained by the four classifiers (i.e. HP-NP and P-



NP classifiers, trained on PSA or CDRA data) for the independent test set was between 0.60 and 

0.64 (Figure 7A), whereas their AUC values ranged from 0.91 to 0.96. Both HP-NP classifiers 

performed on average slightly better than the P-NP classifiers. This is expected because the 

margin between the cutoffs utilized to assign compounds to either of the two promiscuity classes 

is larger for the HP-NP classifier.  

The robustness of the Hit Dexter 2.0 models was further probed by iteratively removing 

compounds from the test set that are similar to any of the compounds in the training data. More 

specifically, the maximum allowed similarity between the compounds of the test set and any 

compounds in the training set (measured as Tanimoto coefficient calculated from Morgan2 

fingerprints) was reduced by 0.02 during each iteration (Figure 8). For example, for the subset of 

test compounds with a maximum Tanimoto coefficient of 0.8, MCC values of 0.55 to 0.58 were 

obtained, whereas AUC values were between 0.90 and 0.95 (Figure 7B). For the subset of test 

compounds with a maximum Tanimoto coefficient of 0.7, MCC values were between 0.44 and 

0.50, and AUC values between 0.87 and 0.92 (Figure 7C). Decent performance was observed for 

subsets of test compounds with a maximum Tanimoto coefficient as low as 0.6 (MCC values 

between 0.34 and 0.42; AUC values between 0.82 and 0.88). Overall, the MCC values obtained 

for the initial Hit Dexter models17 are slightly higher than those obtained for Hit Dexter 2.0. This 

may be a result of the protein clustering procedure, as compounds active on several related 

proteins (which therefore may contain characteristic structural patterns that can be more easily 

recognized by machine learning algorithm) may no longer be part of the P (and HP) data set. 

 



 

Figure 7. ROC curves obtained for the four classifiers on the independent test set (A) and 

subsets thereof, consisting of compounds with a maximum Tanimoto coefficient of (B) 0.8 or (C) 

0.7 measured against any compound of the training set. MCC and AUC values are also reported. 

. 

 

 

Figure 8. Classification performance (measured as MCC values) as a function of the maximum 

molecular similarity (Tanimoto coefficient calculated from Morgan2 fingerprints) between any 

pair of training and test compounds. 

 



Application of Hit Dexter 2.0 to different data sets 

In order to obtain a better understanding of the scope and limitations of Hit Dexter 2.0, we 

analyzed its predictions for a number of data sets with distinct characteristics:  

 

● The dark chemical matter (DCM) data set:20 a library of compounds which have been 

tested in at least one hundred different biochemical assays and have never shown activity. 

This data set originates from Novartis and PubChem assay data collected for 140k 

compounds (all size indications in this list referring to the unprocessed data sets). 

● The aggregators data set:36 a set of 12.6k compounds known to form colloidal aggregates. 

This library serves as data resource for Aggregator Advisor.37 

● The Enamine HTS Collection:38 Enamine is a leading provider of screening compounds 

and screening blocks. The Enamine HTS collection was selected as a representative 

library widely used in high-throughput screening. It contains 1.9 million compounds. 

● The ChEMBL database:29 a curated chemical database of 1.7 million (mainly) drug-like 

compounds, richly annotated with measured bioactivity data. 

● The approved drugs subset of DrugBank:39 a set of 2158 drugs approved in at least one 

jurisdiction, at some point in time. 

● A “potential PAINS” data set: a subset of 51.7k compounds of the Enamine HTS 

Collection that match PAINS patterns (see Methods for detail). 

● A natural products data set: a comprehensive set of 208k known natural products 

compiled from 18 different sources as part of our previous work.40 

The chemical structures included in these data sets were prepared following the identical 

procedure employed for preprocessing the Hit Dexter 2.0 training data. Any compounds present 



in the training data were removed from the individual data sets. The size of the filtered data sets 

is listed in Table 5. 

In the previous section we showed that Hit Dexter 2.0 performs well on compounds represented 

by at least one instance in the training data with a minimum fingerprint-based Tanimoto 

coefficient of 0.6 (Figure 8). Considering this threshold, a large proportion of synthetic 

compounds is covered well by the training data (Figure S1). Taking the PSA50 training set of the 

P-NP classifier as an example, almost all DCM compounds, more than 80% of all aggregators 

and approximately 60% of all approved drugs are represented by at least one instance in the 

training data with a Tanimoto coefficient of 0.6 or higher. The percentage of compounds from 

ChEMBL and the Enamine HTS collection covered at this level of (minimum) similarity is about 

40%. In contrast to synthetic compounds, only for approximately 15% of all natural products the 

maximum pairwise similarity (measured as Tanimoto coefficient based on Morgan2 fingerprints) 

with all instances of the training data is 0.6 or higher (Figure 9).  

 



Table 5. Agreement of Predictions of the PSA and CDRA Classifiers. 

 

Data set 

No. of cpds 

in the HP-

NP data set 

No. of 

compounds 

(%) predicted 

as HP by the 

PSA HP-NP 

classifier 

No. of 

compounds 

(%) predicted 

as HP by the 

CDRA HP-

NP classifier 

Agreement of 

predictions 

[%] 

No. of 

compounds 

in the P-NP 

data set 

No. of 

compounds 

(%) predicted 

P by the PSA 

P-NP 

classifier 

No. of 

compounds 

(%) predicted 

P by the CDRA 

P-NP classifier 

Agreement of 

predictions 

[%] 

DCM 11 116 79 (0.7) 69 (0.6) 26.5 10 944 306 (2.8) 361 (3.3) 19.1 

Aggregators 5786 225 (3.9) 272 (4.7) 34.0 4183 514 (12.3) 596 (14.3) 37.6 

Enamine HTS 

collection 
1 856 964 5883 (0.3) 7961 (0.4) 33.2 1 853 518 31 068 (1.7) 46 190 (2.5) 38.1 

ChEMBL 1 194 343 27 643 (2.3) 26 447 (2.2) 37.0 1 166 478 88527 (7.6) 95 031 (8.2) 46.0 

Approved Drugs 972 48 (4.9) 58 (6.0) 39.5 813 93 (11.4) 102 (12.6) 36.4 

Potential PAINS 49 498 1670 (3.4) 2246 (4.5) 45.9 49 044 4867 (9.9) 6925 (14.1) 50.2 



Natural Products 167 873 8010 (4.8) 7919 (4.7) 36.4 167 557 24 046 (14.4) 22 641 (13.5) 57,0 

BADAPPLE_NP 110 624 1575 (1.4) 1873 (1.7) 32.0 108 620 7239 (6.7) 9853 (9.1) 42.4 

BADAPPLE_P 346 82 (23.7) 87 (25.1) 55.1 330 170 (51.5) 203 (61.5) 69.6 

BADAPPLE_HP 104 53 (51.0) 52 (50.0) 75.0 98 66 (67.4) 70 (71.4) 88.9 

 



 

Figure 9. Example of the distribution of maximum pairwise similarities (Tanimoto coefficient 

calculated from Morgan2 fingerprints) between the training set (in this case, the PSA50 training 

set of the P-NP classifier) and the natural products data set. 

 

Considering the limited prediction accuracy of the classifiers below a Tanimoto coefficient of 0.6 

(Figure 8), the distance to the nearest neighbor(s) in the training data should be closely 

monitored. Therefore, in the following sections, in addition to the percentages of compounds 

referring to the complete, processed data sets, we report in brackets the percentages of 

compounds referring to the respective subsets consisting exclusively of compounds with a 

minimum Tanimoto coefficient of 0.6. In other words, the percentages reported in brackets are 

likely more accurate, but they are based on less-representative subsets. Predictions on the data 

sets listed above are reported in Figures 10 and 11. From the graphs obtained for the DCM data 

set (Figure 10A) it can be seen that any of the four models (i.e. HP-NP and P-NP classifiers, each 

for PSAs and CDRAs) classify at least 96% [96%] of all compounds of the DCM data set as non-

promiscuous (both HP-NP classifiers obtained 99% [99%] correct classifications). This is an 

encouraging result since any of these compounds have been tested in a large number of assays 

and have never shown activity, for which reason they are unlikely frequent hitters (note that all 



reported numbers are based on a decision threshold of 0.5, which is the default value). In contrast 

to the observations made for the DCM data set, a substantial number of compounds of the 

aggregators data set (approximately 15% [18%]) are predicted as promiscuous and 

approximately 4% [5%] as highly promiscuous (with classifiers derived from assays of either 

screening stage (Figure 10B). This again is a plausible result because aggregators are known to 

cause false positive assay readouts under, importantly, specific assay conditions. It is hence 

expected that not all known aggregators will be flagged by Hit Dexter 2.0. The distribution of 

class probabilities among compounds from the Enamine HTS Collection is similar to that of the 

DCM data set (Figure 10C). This suggests that the Enamine HTS Collection is a well-curated 

screening library. For the ChEMBL database, the distributions of class probabilities are located 

somewhere in between those of the DCM data set and the aggregators data set (Figure 10D), 

meaning that there is a relevant fraction of compounds predicted as promiscuous (approximately 

8% [17%]) or highly promiscuous (approximately 2% [6%]). The results obtained for the 

approved drugs data set may seem surprising: Hit Dexter 2.0 predicts approximately 13% [26%] 

of approved drugs as promiscuous and 6% [12%] as highly promiscuous (Figure 10E), which is 

generally even higher than the rates predicted for aggregators. Several approved drugs are known 

to form colloidal aggregates under specific assay conditions. However, a substantial part of the 

predicted frequent hitter behavior is likely linked to true promiscuity. Given the challenges 

involved in designing selective small molecules, this is not only plausible but also forms the 

basis for drug repurposing and polypharmacology. Note that the percentages of compounds 

predicted as (highly) promiscuous differ substantially between the (processed) approved drugs 

data set and the respective subset of compounds well-represented by the training data. These 

differences are plausible because of substantial differences in the composition of the two data 



sets: the processed approved drugs data set consists of around one thousand compounds, and the 

subset consists of only approximately three hundred compounds. 

Interestingly, the distributions of class probabilities for approved drugs are even slightly steeper 

than those calculated for potential PAINS (Figure 10F). This supports the case that compounds 

matching PAINS patterns are not necessarily frequent hitters. 

 

 

Figure 10. Distribution of class probabilities predicted with classifiers derived from PSA and 

CDRA data for (A) dark chemical matter, (B) known aggregators, (C) screening compounds 

from the Enamine HTS Collection, (D) the ChEMBL database, (E) approved drugs from 

DrugBank and (F) subset of compounds of the Enamine HTS collection that match at least one 

PAINS pattern. 

 



Last but not least we utilized Hit Dexter 2.0 to predict the promiscuity of 208k natural products. 

Natural products can be challenging to screen in vitro and it is known that several classes of 

natural products are prone to interfere with biochemical assays for different reasons.41 This is 

reflected by the predictions of Hit Dexter 2.0. The class probability distribution curves (in 

particular of those of the P-NP classifiers) show a steeper increase than for any other investigated 

data set (Figure 11A). Particularly noticeable is the high percentage of (highly) promiscuous 

compounds among flavonoids (the natural product classes were assigned with an automated 

approach presented previously),40 with approximately 65% [73%] of all flavonoids predicted as 

promiscuous and 20% [31%] as highly promiscuous (Figure 10B). Among the investigated 

flavonoid subclasses (anthocyanidins, chalcones, flavandioles, flavanoles, flavanones, 

flavanonoles, flavones, flavonoles and isoflavones), chalcones showed the highest rates of highly 

promiscuous (~42% [50%]) and promiscuous (~85% [86%]) compounds (Figure 11C; note that 

anthocyanidins are not represented in sufficient numbers in the data set that would allow to draw 

definite conclusions on their hit rates in assays). In contrast to the observations with flavonoids, 

Hit Dexter 2.0 reports less than 2% [9%] of all basic alkaloids (see ref 40 for the exact 

definition) as highly promiscuous and less than 6% [21%] as promiscuous (Figure 10D; note that 

the subset of compounds covered by the training data according to the above-mentioned criterion 

is just 10%). 

Flavonoids have been reported in the literature to exhibit bioactivity on a large number of 

different proteins.41 For example, according to a recent analysis,41 by the year 2016 more than 

680 distinct activities had been reported for quercetin, which is one of the most widely 

distributed flavonoids in nature but also a known aggregator and PAINS. For this particular 

flavonoid, PubChem Bioassay currently lists conclusive testing results of more than one 



thousand distinct assays, with quercetin reported as active in close to one out of two of these 

assay outcomes.  

Whereas the health-promoting benefits of quercetin and other flavonoids are undisputed, it is 

reasonable to assume that many of the recorded activities are likely a result of assay interference. 

It is important to reemphasize at this occasion that the potential of a compound to interfere with 

assays does not per se lower its value as a bioactive compound, but it may make the rational 

optimization of its activity a difficult or, in some cases, even impossible task. 

 

 



Figure 11. Distribution of class probabilities obtained with classifiers trained on PSA and CDRA 

data for (A) all natural products, (B) flavonoids, (C) chalcones and (D) basic alkaloids. 

 

Exploration of the Badapple Data Sets with Hit Dexter 2.0 

In contrast to Hit Dexter 2.0, which is trained on complete molecular structures, the Badapple 

model is derived from molecular scaffolds, each of which was assigned a promiscuity score. In 

order explore to what extent predictions of Hit Dexter 2.0 based on molecular scaffolds are in 

agreement with Badapple (and the underlying data sets), we compiled sets of 142 468 non-

promiscuous scaffolds ("BADAPPLE_NP"), 610 promiscuous scaffolds ("BADAPPLE_P") and 

231 highly promiscuous scaffolds ("BADAPPLE_HP") from the Badapple data sets (published 

in ref 16).  

As shown in Figure 12, Hit Dexter 2.0 is able to recognize compound promiscuity based on 

molecular scaffolds even though it was trained on complete molecular structures. Hit Dexter 2.0 

correctly predicted the vast majority (91 to 99% [90 to 99%]) of non-promiscuous scaffolds 

(Figure 12A). Both P-NP classifiers detected about 57% [72%] of all promiscuous scaffolds as 

such (Figure 12B), and both HP-NP classifiers predicted around 50% [79%] of the highly 

promiscuous scaffolds as such (Figure 12C). This can be considered a good agreement for two 

reasons: First, Hit Dexter 2.0 and Badapple use distinct thresholds for labeling compounds, and 

second, the BADAPPLE_HP and BADAPPLE_P data sets are small in size and contain only 300 

and 100 scaffolds (after preprocessing and removal of duplicates), respectively. 

 



 

Figure 12. Hit Dexter 2.0 predictions of scaffold promiscuity for the (A) BADAPPLE_NP, (B) 

BADAPPLE_P and (C) BADAPPLE_HP data sets. 

 

Comparison of the PSA and CDRA Models 

As shown in the previous section, the overall behavior and performance of the PSA and CDRA 

models are comparable. In particular, the numbers of compounds assigned by the different 

models to one of the three promiscuity classes are similar. One interesting aspect to investigate is 

the agreement between predictions of the PSA and CDRA classifiers. Table 5 provides an 

overview of this for each of the above-mentioned data sets. Taking the Approved Drugs subset of 

DrugBank as an example, the PSA and CDRA models predicted 48 compounds (~5%) and 58 

compounds (~6%) of this data set as highly promiscuous. The agreement between both 

predictions (defined as the fraction of compounds predicted as highly promiscuous by both 

classifiers as compared to those predicted as highly promiscuous by either classifier) was 

approximately 40%. Given the fact that only a small number of compounds was predicted as 

highly promiscuous, this can be considered a good agreement. For the BADAPPLE_HP data set, 

which consists entirely of highly promiscuous scaffolds, the agreement between the predictions 

made by the PSA HP-NP and CDRA HP-NP classifiers was 75%. Nevertheless, both classifiers 



have different sensitivity and for this reason the use of both predictors in parallel is 

recommended. 

Hit Dexter 2.0 Web Service 

The previously introduced Hit Dexter web service17 was extended substantially. In addition to all 

models described in this work, we also implemented capabilities to predict aggregators and DCM 

based on molecular similarity, and to flag nuisance and undesired compounds based on several 

established collections of SMARTS patterns:  

● The “hard filters” rule set developed at Glaxo Wellcome,42 consisting of 55 patterns of 

undesired functional groups.  

● A rule set developed at the University of Dundee,43 consisting of 105 patterns of 

unwanted functional groups and substructures that likely cause interference with HTS 

assays. 

● The “HTS deck filters” rule set developed at Bristol-Meyers Squibb,44 consisting of 180 

patterns of unwanted functional groups derived from intuition and experience. 

● The SureChEMBL rule set of ToxAlert,45 consisting of 166 patterns of toxicophores. 

● The “excluded functionality filters” rule set of the NIH Molecular Libraries Small 

Molecule Repository,46 consisting of 116 patterns for removing unwanted functional 

groups. 

● The “Lint” rule set developed at Pfizer,47 consisting 57 patterns of problematic functional 

groups during drug optimization. 

● The PAINS set of substructures linked to assay interference,7 consisting of 480 patterns. 

Note that the original PAINS patterns were encoded by Sybyl line notation7 whereas the 



Hit Dexter 2.0 web service utilizes SMARTS patterns in combination with the 

substructure search implemented in RDKit.48 This may lead to differing results in some 

cases. 

● A set of 28 substructures derived from undesirable compounds. This is a subset of rules 

recently introduced by investigators from GlaxoSmithKline. The 28 substructures are 

listed in Table S2 of ref 23 (value “remove” in column “GSK Recommendation”). 

Search queries can either be sketched with the JSME Molecule Editor,49 pasted as individual 

SMILES or uploaded as a list of SMILES. Predictions are presented as a heat map (Figure 13) 

and include the results from all the machine learning models, similarity-based and rule-based 

approaches. Importantly, also the distance to the nearest neighbor in the training data is reported, 

which gives an indication of the reliability of predictions. A column with comments summarizes 

the conclusions that may be drawn from the predictions. We believe that these comments will be 

helpful in particular to occasional users of Hit Dexter 2.0. 

The processing of a single compound takes few seconds. Predictions for 1000 compounds take 

approximately 4 hours. The authors plan to increase the capacity of the web service should the 

need arise. 

 



Figure 13. Example of a heat map generated with the Hit Dexter 2.0 web service for three query 

compounds. 

 

CONCLUSIONS 

In this work we report on the second generation of machine learning models for the prediction of 

frequent hitters independent of the underlying physicochemical mechanisms, including the 

binding of compounds based on "privileged scaffolds" or of “master key compounds” to multiple 

binding sites. These models are, among others, accessible via the Hit Dexter 2.0 web service.19 

In addition to a number of refinements of the data preparation and modeling strategy, substantial 

improvements presented in this work include the implementation of a protein clustering method 

in order to avoid an overrepresentation of structurally and functionally related proteins in the 

training data, and the utilization of PSA data, in addition to CDRA data, for machine learning. 

During comprehensive tests on independent data, models based on either PSA or CDRA data 

were shown to predict frequent hitters with high accuracy and robustness. While predictions 

from both model types were generally in good agreement, the parallel use of both types of 

classifiers can support the interpretation of results and is recommended. 

Hit Dexter 2.0 was used for profiling compounds with specific biological and physicochemical 

properties, such as dark chemical matter, aggregators, compounds from a high-throughput 

screening library, drug-like compounds, approved drugs, potential PAINS and natural products. 

The predictions obtained with Hit Dexter 2.0 confirm common observations and knowledge but 

also led to some less anticipated observations, such as the high fraction of frequent hitters 

predicted among approved drugs. A further encouraging observation made was the good 



agreement between predictions of Hit Dexter 2.0 and the Badapple data sets of molecular 

scaffolds and their observed promiscuity. 

Since its initial launch in late 2017, the Hit Dexter web service has evolved from a small web 

presence with rudimentary features into a one-stop shop for the interrogation of compounds 

regarding their likelihood to exhibit frequent hitter behavior and/or interfere with biochemical 

assays, and their general desirability in the context of drug discovery. More specifically, the new 

Hit Dexter 2.0 web service provides user-friendly access to machine learning approaches for the 

prediction of compound promiscuity, similarity-based methods for the prediction of aggregators 

and dark chemical matter, and a comprehensive collection of established and new rule sets for 

flagging frequent hitters and compounds with undesired substructures. 

We believe that Hit Dexter 2.0 will enable investigators to make better-informed decisions 

during hit triage and follow-up. However, the models should not be used as the sole basis for the 

acceptance or rejection of hits. 

METHODS 

Data sets 

Activity data measured for chemical substances (substance type = ”chemical”) on single protein 

targets (target = ”single” and target type = ”Protein Targets”) in 932 primary screening assays 

(screening stage = ”primary screening”) and 2266 confirmatory dose-response assays (screening 

stage = ”confirmatory, dose-response”) were separately downloaded from the PubChem 

Bioassay database21,22,50 via the PUG REST interface.51 The download of BioAssay record AID 

1224865 failed permanently and was therefore not considered in this work. The SMILES 



notations for all 803 898 compounds of the primary screening assays (PSAs) and all 468 260 

compounds of the confirmatory dose-response assays (CDRAs) were retrieved via the PubChem 

Identifier Exchange Service.52 Salt components, compounds with unsupported elements, and 

conflicting bioactivity data were identified and removed following the procedure described in ref 

17. Also compounds with a molecular weight below 200 Da and above 900 Da were removed. In 

addition, all molecular structures were neutralized and tautomers merged using the “canonalize” 

method implemented in the “tautomer” class of MolVS.53 Subsequently, duplicate compounds 

were removed based on identical SMILES. In order to ensure the consistency of predictions, 

compounds with identical Morgan2 fingerprints and differing promiscuity labels (e.g. 

stereoisomers) were removed from the training sets. This concerned a total of 1945 compounds 

for the PSA and 2 825 compounds for the CDRA training sets. For any compounds with identical 

Morgan2 fingerprints only one instance was kept in the training sets. 

For each PubChem Bioassay record the unique identifier for genes of the NCBI Protein 

database54 (“gene identifier”, GI) was obtained via the PubChem PUG REST interface. In total, 

429 and 712 unique GIs were retrieved for the PSA and CDRA records, respectively. 

Subsequently, using these GIs, the protein sequences of all proteins of interest were downloaded 

in FASTA file format from the NCBI Protein database. Clustering of all protein sequences with 

cd-hit 55 (sequence identity = 60%; tolerance = 3) resulted in 388 and 537 protein clusters for the 

PSA and CDRA records, respectively. 

For model development, each data set was split randomly into an external test set (10%) and a 

training set (90%) with the “train_test_split” method of the “model_selection” module of scikit-

learn (version: 0.19.1).35 Only the training set was used for model selection. Initial experiments 

for selecting the most suitable machine learning algorithm and descriptor sets were performed 



with default parameters for ETCs and RFCs, except for the number of estimators, which was set 

to 50, the class weight, which was set to “balanced”, and bootstrapping, which was disabled. 

Default parameters were used for all meta classifiers (with ETCs and RFCs parameterized as 

described above). Stratified splitting was performed as part of cross-validation. 

All data sets used to explore and determine the performance of Hit Dexter 2.0 were prepared and 

filtered according to identical protocol as outlined for the training data.  

The Badapple data sets were compiled from the original source16 by merging scaffolds with 

identical SMILES and removing any instances with contradicting promiscuity labels. Scaffolds 

assigned a pScore above 300 were included in the BADAPPLE_HP data set, scaffolds assigned a 

pScore between 100 and 299 were included in the BADAPPLE_P data set, and scaffolds 

assigned a pScore between 0 and 99 were included in the BADAPPLE_NP data set. 

Hardware and Software 

All calculations are performed on Linux workstations running openSUSE 42.2 and equipped 

with Intel i5 processors (3.2 GHz) and 16GB of main memory. 

ASSOCIATED CONTENT 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website at DOI: 

Additional figures and tables: Maximum pairwise similarity distributions between the PSA50 

training set and six chemical data sets. 
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HTS, high-throughput screening 

MCC, Matthews correlation coefficient 

MOE, Molecular Operating Environment 

NP, non-promiscuous 

P, promiscuous 

PAINS, pan-assay interference compounds 

PCA, principal component analysis 

PSA, primary screen assay 
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