
A N E U T R A L M AT T E R WAV E M I C R O S C O P E
( N E M I ) : D E S I G N A N D S E T U P

sabrina daniela eder

Dissertation

submitted to the Department of Physics and Technology in
partial fulfillment of the requirements for the degree of

Philosophiae Doctor (PhD)

at the University of Bergen

December 2011



Sabrina Daniela Eder: A neutral matter wave microscope (NEMI): design and setup,

Dissertation, December 2011

supervisor:

Prof. Bodil Holst, University of Bergen

co-supervisor:

Dr. William Allison, University of Cambridge, Cavendish Laboratory

location:

University of Bergen



A B S T R A C T

Matter wave microscopes such as electron microscopes or helium ion micro-

scopes are vital tools in numerous fields of sciences. This thesis presents the

design of a new matter wave microscope using neutral helium atoms as imag-

ing probe. In contrast to the already well established helium atom scattering

techniques where information about the surface is obtained through diffraction

and spectroscopy analysis, Nemi (short for NEutral helium MIcroscopy) uses

a focused beam of neutral ground-state helium atoms to image the surface of

a sample. The main advantages which set this technique aside from already

existing scanning probe techniques is that the helium probe has a much lower

energy (less than 100 meV) for a de Broglie wavelength of less than 0.1 nm and

that the helium atoms are uncharged and chemically inert. This means that

the Nemi technique is in principle equally suitable for insulators, semiconduc-

tors, metals and organic samples provided they are vacuum compatible. The

new Nemi technique is also particularly suited for the investigation of fragile

samples.

The focusing of the neutral helium beam is realized with a so called Fresnel

zone plate. As a part of this thesis it is shown, for the first time, that sub-micron

focusing with this type of diffraction grating is possible.

A complete design concept for the microscope including a detailed evaluation

of the expected helium flow rates in the probe beam as well as of the back-

ground gas between the vacuum chambers is presented. The functionality and

technical design for the different components are discussed.

First test results characterizing the probe beam of the assembled beam column

are presented.
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0
I N T R O D U C T I O N

0.1 background

When Dunnoyer in 1911 established a directed beam of neutral atoms, he

opened the window to a promising new field of science and technology. By

generating for the first time a so called “molecular beam” he found an ideal tool

for further experiments providing the possibility to answer questions in several

fields of science and research, reaching from basic studies of gas kinetics over

chemical reactions to surface science assignments [1]. Soon after Otto Stern

gave this new technology a starting ground by building the first molecular

beam laboratory in the world. He proved the versatility of molecular beams for

investigating the interaction of single atoms/molecules with photons, external

fields, other atoms or molecules and most importantly for the work presented

in this thesis, with surfaces.

In the special case of surface science Estermann et al. (1931) [2] were the first

to show atom beam diffraction from freshly cleaved LiF crystals and thereby

proved the wave nature of atoms [1]. Estermann and his colleagues worked

with a beam of neutral helium atoms.

A next major development were molecular beams produced by gas dynamic

expansion through a small nozzle by Kantrowitz and Grey in 1951 [3]. For the

first time they presented a source which was not effusive and which had a

significantly narrower velocity distribution and higher intensity [1].

The progress in vacuum techniques during the following years provided new

possibilities and in the early 1970s the development of supersonic beams and

ultra-high vacuum based universal detection schemes marked a next big step

in molecular beam scattering [4]. Since the end of the 1970s “helium atom

scattering” (HAS) has been an important technique for the investigation of

structural and dynamic properties of surfaces [5]. The size and orientation of

surface unit cells (with or without adsorbates) [5, 6] can be determined from

HAS diffraction spectra and with applying time-of-flight (TOF) it is possible
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2 introduction

to obtain high resolution information on low energy surface phonons [7, 8].

One of the biggest advantages of the neutral helium atom beam is the low

beam energy (less than 0.1 eV) and the fact that the beam is neutral. For

example a room temperature beam has a de Broglie wavelength of around

∼ 0.1 nm which corresponds to a beam energy of less than 0.1 eV. This means

that the helium probe beam has a lower energy for a given wavelength than

most other “particle” probes. For example about a factor 1000 compared to

electrons. The energy is so low that there is no penetration into the sample.

Furthermore due to the neutrality of the helium atoms there is no charging of

the investigated samples. A neutral helium beam can therefore be applied to

metals, insulators and semiconductors equally. Even extreme fragile structures

can be investigated without any damage, and since helium is a very nonreactive

element also no chemical reactions with the substrate or surface adsorbates

will occur. A further advantage of using neutral helium atoms for sample

investigations is the possibility to image magnetic or highly charged materials

without any interference effects.

0.2 motivation

The aim of this work is to create a new surface science tool, exploiting the

advantages of low energy, neutral helium beams in a new NEutral MIcroscope

NEMI.

The motivation behind all microscopy technologies is the same, namely to

build an instrument that provides the opportunity to observe features smaller

than what we can see with our naked eye.

The first optical microscope was developed around 1595 [9]. Early micro-

scopes were based on optical lens systems using light to investigate objects.

From then on microscopes have become an important tool in natural science,

and many improvements in the field of microscopy have been made with

regard to magnification, resolution limits and image contrast ever since. Espe-

cially the last century provided immense improvements in the field of optical

microscopy as well as in the development of completely new microscopy tech-

niques using matter waves (electron and helium ion beams) or most recently

scanning probe microscopes where a solid probe scans the sample surface

[10, 11]. The motivation for the new techniques have been to overcome the

resolution limit of classical light microscopy. The theoretical resolution limit of
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classical optical microscopes (far-field) has been shown by E. K. Abbe to be

approximately λ/2 for imaging in air where λ represents the wavelength of

light [12]. Abbe was one of the founders of Zeiss instruments and already at the

end of the 19th century microscopes reached this limitation. Since visible light

has a minimum wavelength located in the area around 0.4 micron (violet light)

the absolute theoretically resolution limit for a classical optical microscope

is in the range about 0.2 micron. In practice the value is considerably higher.

Good imaging is rarely possible with a resolution of less than 1 micron.

One way to achieve higher resolutions is to work with shorter wavelengths

which is done by X-ray microscopy [13, 14]. This technique has its advantage

in the ability of observing thick specimens even in selected environments

like gases or liquids, but this technology suffers, among others, from sample

damage due to the high energies of the beam (12 keV for a wavelength of

0.1 nm).

A new technique to overcome Abbe‘s limitation is Stimulated emission depletion

microscopy (STED) in combination with fluorescence. Fluorescence of a material

is induced by an excitation laser focused to a small spot. A second laser shaped

in a doughnut form, the so called STED-laser is used to quench the fluorescent

emission in a localized area. When the two lasers overlap, only the center

of the doughnut (area without STED laser) still emits fluorescent light. The

new resolution limit is defined by the inner diameter of the doughnut and the

intensity of the STED-laser [15, 16, 17]. A disadvantage of STED microscopy is

that the investigated materials need to exhibit fluorescence and the energies

are quite high.

Another way to overcome Abbe‘s limit is to exploit the behavior of evanescent

waves. This is done in scanning near-field optical microscopy (SNOM) [18]. A fiber

optic tip placed within a few nanometers distance to the sample is collecting

light which is emitted from the sample surface. In that way the resolution is

only limited by the size of the tip-opening and no longer by the wavelength of

the light. With this approach resolutions of a few tens of nanometers are possi-

ble [19, 20]. The very small distance between the tip an the sample restricts the

method to smooth surfaces and the data can be difficult to interpret.

An obvious way to improve the resolution of standard optical microscopes

while decreasing the damage caused by the energy of the beam is to use particle

beam probes which have a lower energy for a given wavelength than a photon.

Ernst Ruska and Max Knoll published the first images based on electrons
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utilized as a probe beam in 1932 [21, 22, 23]. The wavelength of electrons can

be determined by the de Broglie relation λ = h/p which relates the wavelength

λ of a particle to its momentum p (h is the Planck‘s constant) [24]. The momen-

tum of an object is related to its kinetic energy E = p2/2m (ignoring relativistic

effects). There are two different types of electron microscopes. In scanning

electron microscopes (SEM) electron beams with a typically energy in the range

between 0.1 − 30 keV are scanned over a sample [25]. The image information is

gained from the backscattered electrons or, more frequently, from the so called

secondary electrons which are generated by inelastic excitation of the sample.

A special type of scanning electron microscopes is the environmental scanning

electron microscope (ESEM) [26]. With an ESEM tool it is possible to overcome

the restriction of a high vacuum requirement for standard SEM microscopes.

Samples which are either fundamentally incompatible with the vacuum en-

vironment or would contaminate the vacuum system of the instrument (for

example biological tissues, liquids, colloids, damp or dirty samples) can be

observed with an ESEM [25]. Furthermore ESEM can to some extend be used

to image insulating samples. In transmission electron microscopes (TEM) a beam

of electrons is transmitted through very thin samples and the transmitted

electron intensity distribution is detected. Such instruments typically work

with electron beam energies between 40 keV-500 keV (high voltage electron

microscopy HVEM 500 keV-3 MeV) [27]. For all electron microscopes the final

resolution is limited not by the wavelength but by the electron-optical system

which is consisting of electromagnetic lenses. Significant improvements have

been made in the recent years so that presently the resolution for SEM tools

lies in the nm range and TEM instruments can provide resolutions even in the

sub-Ångstrøm area [28]. The high resolution comes at some price. Samples

normally have to be conductive since otherwise charging of the substrate will

occur which influences the image quality. There can be specimen heating due

to the probe beam which might lead to a thermally induced sample damage

or there can be radiation damages as a consequence of ionization. This kind of

damage is especially an issue for TEM microscopy where the applied beam

voltages lie in the keV range and the specimens have to be very thin but it is

also a serious limitation for SEM [27]. A fairly new technique working with

charged particles as a probe beam is helium-ion microscopy (HeIM). The high

source brightness and the low wavelength of the helium ions is utilized to

achieve high resolutions. The excitation volume of the He-ion beam with the
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sample is smaller than with the SEM technique and therefore HeIM is more

surface sensitive [29, 30]. Still sample charging and to some amount sample

damage will also be an issue in HeIM.

A completely different way to overcome Abbe‘s limit of resolution is pre-

sented by scanning probe microscopy (SPM). This alternative field of imaging

techniques started out with the invention of the scanning tunneling microscope

(STM) in 1982 [31]. A tunneling current between the sample and a sharp tip

is utilized to gain information about the sample surface [11]. The measured

current originates in quantum tunneling. To generate this tunneling current

a bias voltage is applied between the tip and the sample. In the commonly

used constant current operation mode the bias voltage is kept constant by a

change in the spacing between the tip and the sample surface. An image of

the topography of the surface is then formed by logging this distance change

during the scanning process. Beside this constant current mode there also

exists a constant height mode where the change in the bias voltage is recorded

as well as spectroscopic and manipulation modes [10]. While these instruments

provide atomic resolution, they also require that the tip as well as the sample

are good conductors which limits the range of samples that can be investigated.

Atomic force microscopy (AFM) represents a SPM technique which is not limited

by requirements of conductivity. Similar to STM, the AFM technology is also

based on the interaction of a sharp tip with the sample surface [32]. AFM

images are recorded by measuring the interatomic forces between the tip and

the sample surface while scanning across the sample. The resolution limit of

AFM currently lies in the range of ∼ 10 − 15 nm. In special cases with the

tapping mode even in the 2 nm range [33].

Both SPM methods suffer from drawbacks. For example they are very sensitive

to inappropriately selected operating parameters which can cause imaging

artifacts. Rough and soft samples might require very slow scanning speeds

and high aspect ratio samples cannot easily be investigated. Also sample- or

tip-damages by tip-interaction with the surface are quite common [10].

To summarize: while all existing microscopy techniques are very useful, there

is no technique presently available which can image fragile, insulating samples,

in particular samples with high aspect ratios in a fast, reliable manner. Neutral

helium atom microscopy (NEMI) offers a new microscopy technique to fill
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this niche. We foresee that it will prove particular useful in the imaging of

polymeric nanostructures (nanoimprint, biochips etc.), but there will no doubt

be many other applications.

0.3 previous work

The idea of building a microscope based on neutral atom/molecular beam

scattering is not new, but the technical realization has proven to be rather

challenging. The main problem has been to focus the neutral helium atom

beam. Focusing of the neutral helium atoms with magnetic or electric lenses,

used for example in SEM and TEM instruments, is not possible. Furthermore

neutral, ground state helium does not have any internal degrees of freedom

and hence cannot be manipulated with the "classical" atom optics techniques

used for example in Bose-Einstein condensation experiments [35, 36]. This

restricts the possible approaches to techniques which manipulate the atoms

via their de Broglie wavelength in analogy to classical optics. Low energy

neutral helium atoms do not penetrate into solid material, which narrows the

possibilities even further down. Thus the two possible techniques are limited

to either focusing using Fresnel zone plates with free standing zones or using

mirrors.

The idea of focusing neutral helium atoms with a mirror has been investigated

by several groups. In 1997 B. Holst and W. Allison used an atom mirror created

from a single 50 μm thick silicon crystal cut along the (111) plane to focus a

helium beam into a 250 ± 50 μm diameter spot [37]. The crystal surface was

hydrogen passivated to make it inert and a parabolic profile for focusing was

achieved by electrostatically deforming the crystal in a parallel plate capacitor

setup. Further work on this silicon crystal setup was published [38] and in 2010

a focal spot diameter of 26.8 ± 0.5 μm × 31.4 ± 0.8 μm was presented [39]. A

major drawback of the Si(111)-H(1x1) mirror is the poor reflectivity of less than

1%. To overcome this limitation a novel Si(111) coating of quantum stabilized

Pb of “magic” height (certain thicknesses are more energetically favored than

others) was introduced by D. Farìas, R. Miranda and co-workers [40]. In this

way a reflectivity of ca. 15% could be achieved. Further improvements solved

the problem of temperature stability of the surfaces which initially was limited

up to only 250 K. Currently these Pb coated atom-optical mirrors give a stable
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Figure 0.1: First 2D images obtained using a neutral helium atom beam to image a
hexagonal copper grating. This pictures were obtained with a (top) 3 μm
diameter and (bottom) 2 μm focused helium beam spot in a transmission
imaging setup [34].

reflectivity over several weeks up to surface temperatures of 450 K (under UHV

conditions) [41]. The initial mirrors were all made by coating Si(111) surfaces.

The idea was that Si(111) wafers can be made very thin (down to 50 microns) so

that the macroscopical mirror shape can be created with electrostatic bending.

Performing the electrostatic bending with sufficient accuracy has proven a big

obstacle and for the time being limits mirror focusing to the order of 20-30

microns. A new and even better approach has been presented very recently by

Farìas and coworkers. In a new paper they use graphene to coat a surface and

a stable helium reflectivity of 20% is achieved [42, 43].The monolayer surfaces

proved to be stable up to 1150 K. This year saw a final major improvement

when Farìas and co-workers showed that the graphene monolayer can be

grown also on a sapphire substrate which opens the possibility of creating a

preshaped mirror by grinding a surface in advance and then simply coat it

with graphene, thus avoiding electrostatic bending completely. This could be

the crucial point favoring mirror focusing instead of zone plates. However, for

the time being it is still not clear if it can be realized technically and so for

this work a zone plate approach has been considered the most feasible and

the one we used. The drawback of the zone plates is that they suffer chromatic

aberrations. A discussion on the theoretical limitations is presented in [44].

Another mirror focusing approach which has to be mentioned here is the

utilization of quantum reflection from concave microscopically rough quartz

surfaces. One dimensional focal widths of below 2 μm were presented with

such quantum reflection mirrors [45].
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Focusing of a neutral helium beam with a zone plate approach was carried out

for the first time in 1991 by Mlynek and co-workers [46]. The achieved focus

had a FWHM of 18 ± 1 μm. Before this, atom diffraction had successfully been

performed on freestanding microstructures [47, 48].

An experiment from 1999 presented by Grisenti and co-workers [49] ob-

tained a diameter d ≤ 2 μm focal spot. This major improvement was achieved

utilizing a so called microskimmer (conical shaped aperture, see section 1.2.2)

as the imaged object.

Several Fresnel zone plate focusing experiments were performed in our group

during the last years and in 2008 our group was able to present the first mi-

croscopy images (in transmission mode) taken with neutral helium atoms [34].

The pictures are presented in figure 0.1. A 540 μm diameter Fresnel zone plate

[50, 51] was applied to focus a helium beam to a 2− 3 μm diameter probe beam

spot. The focused probe beam was then scanned across a hexagonal copper

grating with a period of 36 μm and a rod thickness of 8 μm. The recorded

images were taken in transmission.

The most recent and very encouraging result for neutral atom microscopy

was published earlier this year by Philip Witham and Erik Sànchez [52]. They

presented the first He scattering reflection images obtained with a neutral atom

microscope working by a principle analogous to pin hole optics. One of their

images is presented in figure 0.2. With a simple setup consisting of a free-jet

source, a collimating aperture, a mechanically scan-able sample setup and a

residual gas analyzer implemented as a detector they managed to achieve images

with resolutions of up to 1.5 μm. However flow calculations show that this

resolution is also close to the limit of the setup ( for a spot diameter smaller

than 500 nm the intensity in the spot is at least an order of magnitude less than

for our instrument). Hence a major improvement in resolution is not possible

for this method without significant improvement in helium detection efficiency.

Another problem is that the distance between source and sample needs to be

very small (less than 150 micron ). But the results demonstrates beautifully the

potential power of He-microscopy as a surface imaging technique.



Figure 0.2: (a) He scattering image of an uncoated pollen grain on a QuantifoilTM

TEM grid, back side. (b) Magnified area. (c) Line profile taken across linear
features in (b), vertical units are gray-scale units, where 255 = white (max.
He partial pressure) and 0 = black (min. pressure) published by Philip
Witham and Erik Sànches earlier this year [52].

9



10 introduction

0.4 overview of the thesis

The aim of the work presented in this thesis has been the design of a reflection

neutral helium atom beam scanning microscope with sub-micrometer resolution.

A complete technical design is presented together with characterization mea-

surements of zone plates demonstrating sub-micrometer focusing of a neutral

helium beam for the first time.

The thesis is organized in the following way:

• Chapter 1 - nemi

Introducing “Nemi” presenting basic requirements, design considerations and pa-

rameters for building a “NEutral matter wave MIcroscope” as a new surface investi-

gation tool.

• Chapter 2 - Chapter 5

Presents the detailed calculations determining the technical design parameters and

physical limitations.

• Chapter 6 - Chapter 7

Presents the technical approach for designing, manufacturing and assembling of Nemi.

• Chapter 8 - first sub-micron helium focal spot

Presents the first experimental realization of a sub-micrometer neutral helium focal

spot using zone plates. The results are presented in Paper A (Appendix A).

• Chapter 9 - nemi measurments

Presents the first beam characterizing measurement results gained with the new mi-

croscope setup.

• Chapter 10 - outlook

Gives an outlook on the next assembling steps and future possibilities and applications

for systems like Nemi.

• Section B.1 - Section C.1

The appendix includes Paper A, additional technical design drawings of some compo-

nents, the specifications for the pressure measurement gauges as well as the detailed

prevacuum calculations and a detailed explanation for the determination of the actual

particle flight time t f from TOF-measurements.
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N E M I

1.1 general design considerations

The idea, as presented in the introduction, is to build a NEutral helium scatter-

ing MIcroscope (NEMI) which provides the possibility to gain highly localized

information about a sample surface. Since presently no 2D helium detectors

exists, the basic setup was chosen to be similar to that of a SEM, creating an

image by scanning a focused beam of neutral helium atoms across the sample.

The main components required to build a neutral helium beam microscope are

• BEAM SOURCE (Nozzle)

• BEAM SHAPING ELEMENT ( Skimmer)

• OPTICAL ELEMENT (Zone Plate)

• DETECTION SYSTEM

A sketch of the Nemi microscope presenting these main components is

shown in figure 1.1. The optical element focuses the image of the beam shaping

element (skimmer) onto the sample. The resolution is given by the size of the

image, determined by the diameter of the skimmer and the demagnification

factor b/g.

The final central issue to consider is the physical dimensions of NEMI. They

were determined as follows: To enable enough space for the handling of the

sample-detector arrangement, a minimum working distance of b = 205 mm

between the sample and the zone plate was defined. The diameter of the beam

shaping element, the skimmer (microskimmer) is another predefined value. It

is limited to dSk = 1 − 3 μm. The smallest skimmers that have so far been

tested and known to function are 1 micron in diameter, so this is taken as one

parameter. In addition, to ensure higher intensity, a skimmer of 3 micron is

picked. Giving the two parameters b and dSk, the final distance g from skimmer

to sample is now chosen so that we are sure to get an instrument which works

11
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significantly better than an optical microscope. With this considerations a

distance between skimmer and zone plate of g = 935 mm was chosen. The

demagnification factor is M = 0.219.

The following sub-chapters present a short description of the components

listed in the beginning. Further details and explanations can be found in the

corresponding main chapters.

Figure 1.1: Schematic of the working principle illustrating the main components of the
new NEutral helium scattering MIcroscope named Nemi. The instrument
is based on a Nozzle for the beam generation, a Skimmer for selecting
the central part of the beam, a Zone Plate as an optical element for beam
focusing, and a Detection System for detecting the helium beam atoms
which are back-scattered from the sample surface.

Since Nemi is working with an uncharged helium atom probe beam, the

possible techniques for manipulating the beam are limited. Therefore the

image is generated by scanning the sample across the beam rather than the

beam across the sample (fixed beam, moving stage setup).
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1.2 main components and conceptual limitations

1.2.1 Beam source

The source principle is the same as used in any modern helium atom scattering

(HAS) apparatus. To generate a probe beam consisting of neutral helium atoms,

high pressure helium gas is expanded through a small nozzle aperture into a

chamber with low-pressure ambient background conditions. The properties

defining the source are the nozzle diameter dN, the helium gas pressure po

(further on also referred to as “source/beam pressure”), the nozzle temperature

To and as a consequence of the last parameter the resulting final average

velocity vHe of the helium atoms within the generated beam. Provided the right

choice for these values, a so called “free-jet expansion” (often also referred

to as supersonic expansion ) can be achieved, yielding a high intensity free-

jet helium beam with a nearly monochromatic velocity distribution. As a

boundary condition for such a free-jet expansion the nozzle pressure and the

nozzle diameter have to be chosen so that the mean free path of the atoms in

the helium gas becomes smaller then the nozzle pinhole diameter. Here are

some technical limitations:

Commercially available helium gas bottles have a pressure of po = 200 bar.

A compressor can be used to reach higher pressures, but this can lead to

clustering in the beam even at room temperatures. A long term stable pressure

value of po = 180 bar is a suitable value, which can be maintained for a long

time using a standard helium bottle.

The smallest commercially available diameters for the implemented nozzle

plate holes are 5 μm which is sufficiently small for this first approach of the

microscope.

Details regarding the free-jet expansions and the helium flow parameters

defining the probe beam are presented in chapters 2 and 3 respectively.

1.2.2 Skimmer

As beam shaping element a so called “skimmer” is implemented. From expe-

rience and calculations it is known that an about 10 to 15 mm skimmer-nozzle

distance is an optimum value. At this point the helium atoms propagate on
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straight trajectories without any further collisions. From the skimmer onwards

the helium atoms are assumed to be subject to molecular flow conditions.

A skimmer is a conical shaped aperture with a small orifice diameter at its

source facing side. It is also the separating element between the source chamber

and its neighboring ultra high vacuum chamber (see figure 2.16) and therefore

the system is working as a differential pumping stage. Hence it provides a

first reduction of the helium background in the beam line, which is originating

from the high helium flow within the source chamber. An additional function

of this element is the fact that it confines the helium beam. All the atoms with

trajectories strongly deviating from the central beam line will not pass through

the small skimmer orifice but rather be diverted by the conical skimmer shape.

Subsequently they are pumped out of the source chamber without further

interference with the beam. The size of the skimmer orifice diameter will

have an influence on the final focus size, since the skimmer is restricting the

spatial intensity distribution of the free-jet expansion source. In reality the

free-jet expansion is not a point source. Its spatial intensity distribution (also

called virtual source) depends on the nozzle diameter, the source pressure and

the source temperature. In the case of small skimmer diameters (compared

to the nozzle diameter and consequently also to the virtual source size) the

skimmer orifice restricts the spatial distribution of the free-jet expansion. This

is a necessary requirement to achieve small focal spot diameters of the helium

beam since the skimmer diameter in that case represents the object size which is

imaged by the focusing zone plate. Therefore microskimmers [53] are utilized

in Nemi. This is discussed in more detail in chapter 4.

1.2.3 Atom optical element

When it comes to focusing a beam of neutral atoms or molecules, there are

just classical optical elements to accomplish this task as discussed in the

introduction. Since the particles are uncharged, magnetic or electric field

manipulation is not possible. The atom beam has to be manipulated via its de

Broglie wavelength. These atom optical focusing elements are based on the

principle of atom (molecule) diffraction/reflection on elements structured with

nanometer precision. This high precision is necessary since the wavelength of

the matter waves lies in or even below the Ångstrøm regime. As discussed in

the introduction, there are still several technical limitations with the mirrors,



1.2 main components and conceptual limitations 15

and therefor we use a Fresnel zone plate.

Figure 1.2: Sketch of a Fresnel zone plate element similar to the ones used in Nemi.
The orange highlighted ring system structure represents the Fresnel zones,
whereas the gray disc in the middle and the gray rod structures orientated
in radial direction represents the so called middle stop disc and the sup-
porting grid structure for holding the ring system in place. The middle
stop disc acts as a blocking element for the main part of the zero order
fraction (not diffracted) of the beam. A more detailed description of these
functions can be found in chapter 4.

A Fresnel zone plate (ZP) is a circular diffraction grating consisting of a

system of free standing rings, so called “Fresnel zones”, with decreasing lattice

constant for increasing radii (see figure 1.2). The structure of this pattern will

vary for a given focal length depending on the de Broglie wavelength of the

helium atom probe beam. In the measurements presented in section 8, we

could show that they deliver very stable focus spot sizes below 1 μm diameter

and at the same time still provide a reasonable, high enough beam intensity

within the focal spot close to what would be expected from theory [54]. The

theoretical limitation for the minimal focal spot diameter achievable with this

elements is primarily determined by the chromatic aberration effects [44].
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1.2.4 Detection system

There are basically three main techniques for detecting neutral helium atoms,

(1) ionization detectors [55], (2) laser-based detectors [56] and (3) accommo-

dation and accumulation detectors [57]. The first one is based on ionizing the

neutral helium atoms and subsequently mass selecting the helium-ions and

counting them in an ion-detector (channeltron) [58, 55]. The second type is

applied for spectroscopic detection of atomic and molecular species (state se-

lective detection). If there is no need to do time-resolved analysis, time of flight

(TOF) measurements, it is possible to simply utilize an accumulation based

detection system. This can be done by using a sensitive pressure measurement

gauge to deduce the helium intensity from a pressure increase �p in a small

accumulation volume (a so called Pitot Tube). The Pitot Tube approach

has been chosen for NEMI, because it is simple and easy to implement. This

tube has a small (ca. 0.5 − 1 mm ) entrance pinhole aperture (low-conductivity

channel). When the entering beam flow is equal to the effusive flow back out

of the small pinhole aperture an equilibrium pressure can be measured. The

pressure rise in this equilibrium pressure can be taken as a measure for the

reflected beam intensity. For more details see chapter 5.

This method has the disadvantage that there is the need of a very low

background pressure surrounding the sample (low ×10−9 mbar range), to

gain enough sensitivity for the pressure measurement with the cold-cathode

ionization gauge. On the other hand it has the big advantage that it can be

easily implemented into the system.

1.3 final design parameters

Table 1.1 contains the final design parameters for Nemi. A principle diagram of

the instrument with the main components can be found in figure 1.1, and 1.3.

The decisions for choosing these parameters, is outlined above and discussed

in details in the chapters 2, 3, 4, 5 and 6. The best expected resolution that can

be achieved with these parameters is 380 nm.
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Atom optical parameters of Nemi

vHe = 1823 [m/s] (TN = 320 K) vHe = 1019 [m/s] (TN = 100 K)

λHeRT = 0.5469 [Å] λHeLN = 0.9782 [Å]

dZP = 192 [μm]

f = 168.14 [mm]

g = 935 [mm]

b = 205 [mm]

M = 0, 219

dSk = 1 [μm]/3 [μm]

dN = 5(10) [μm]

dAP1 = 5 [mm] dAP2 = 5 [mm]

dth = 1.43 [μm]/1.56 [μm] dth = 0.38 [μm]/0.73 [μm]

Table 1.1: Atom optical parameters and dimensions for the neutral helium atom scattering
microscope Nemi based on the considerations in the chapters 2, 3, 4, 5
and 6. vHe final average He-atom velocity, λHe mean He-beam de Broglie
wavelength, dZP zone plate diameter, f zone plate focal length, g object
distance (skimmer-ZP), b image distance (ZP-sample), M demagnification
factor, dSk microskimmer orifice diameter, dN nozzle diameter, dAP1 & dAP2
aperture diameter at the PST/ZPC connection and the ZPC/SDC connection
and dth theoretically expected focus spot diameter (limited by the chromatic
aberration of the ZPs) for the two different nozzle temperatures TN . The
best expected resolution for the present setup is 380 nm.

18



2
H E L I U M F L O W C A L C U L AT I O N

One of the first issues in this project was the calculation of the helium-atom-flow

rate within the system. In other words: “is it possible at all to build an instrument

with the desired resolution, and still get enough signal at the detector?” Based on the

parameters of the new instrument: nozzle and skimmer diameter of the source, the

zone plate characteristics defining the focusing of the beam and the efficiency of the

detection system, an evaluation of the expected helium count rate was made.

Furthermore the partial pressure increase in the Ultra High Vacuum (UHV) chambers

and the backing vacuum system due to the helium flow has to be considered for the

design of the pumping system layout. All the considerations and evaluations in respect

to these points will be presented in this chapter. For simplicity the final design is

presented in the calculations and it is shown that it fulfills the requirements.

2.1 he-beam flow rate calculation

The following evaluation of the particle flow within the helium microscope,

and the corresponding expected helium count-rates, is based on the work

of David R. Miller [59] and Bjørn Samelin [58], as well as the literature

presented in [60, 61, 62]. All calculations are made with the assumption that

there is a free-jet helium beam created by a free-jet expansion. This means a

neutral beam of helium atoms, extracted from a high-pressure gas source

expands into a low-pressure ambient background. A more detailed principle

description of this free-jet expansion is presented in chapter 3. For simplification,

collisions of the beam atoms with the background gas are ignored. This

assumption is reasonable since the mean free path for helium atoms in the

ultra high vacuum (UHV) range (p < 1 · 10−7 mbar) is around ∼ 1.8 km (see

section D.1). Hence the probability for any particle collisions between the beam

particles and background gas in the chamber is very low.

19



20 helium flow calculation

In general the particle flow Ṅ which enters the detection system can be

described as follows:

Ṅ = Ṅo(x) · TZP · Rsample (2.1)

It is composed of three components. The first component Ṅo(x) describes

the particle flow in the helium beam at the position (x) where the transmissive

focusing element, the zone plate (ZP) is located (i.e. impinging flow onto the

ZP). The second factor TZP gives the transmissivity of the zone plate, and the

last factor Rsample provides a measure for the final amount of particles entering

the detector. It combines an estimate for the reflectivity of the investigated

sample surface with the expected entrance probability into the detector tube.

In the following these three shares, which are building up the final particle

amount entering the detection system, will be considered independently.

2.1.1 Particle flow Ṅo(x) at a position x along the beam direction

Miller [59] states that the ideal free-jet center-line intensity per steradian Istr

can be described by the nozzle flow rate Ṅ and a peaking factor κ. This leads

to the following three equations.

Istr = κ · Ṅ · π−1 [molecules/s · sr
]

(2.2)

Ṅ = F (γ) · no ·
√

2kTo
m ·

(
πd2

N
4

)
(2.3)

F (γ) =
(

γ
γ+1

)1/2 ·
(

2
γ+1

) 1
γ−1 (2.4)

with no the particle density before the nozzle expansion, k the Boltzmann

constant, To the nozzle temperature [K], m the mass of the expanding gas

(atoms), dN the nozzle diameter, κ the peaking factor κ = 1.98 (see [59]) and γ

the heat capacity ratio or adiabatic index 1.

The variable n(x) defines the particle density at the given distance x from the

nozzle along the beam central line, and Ṅo(x) is the corresponding particle

1 γ =
cp
cv

= f+2
f , with f the ideal gas related degrees of freedom ⇒ γHe =

5
3
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flow. For simplification just the center-line intensities are considered for the

beam flow. This intensity close to the center-line is:

Istr =
∂Ṅo

∂Ω
|Ω=0, Ṅo = �Ω · ∂Ṅo

∂Ω
(2.5)

with the solid angle �Ω defined by the opening surface A at the distance x.

�Ω =
A
x2 (2.6)

Combining equations 2.2 - 2.6, the particle flow at the position x can be written

as

Ṅo = �Ω · Istr =
A
x2 · κ · 1

4
· F(γ) · no ·

√
2kTo

m
· d2

N (2.7)

Since the velocity spread of a free-jet beam is sufficiently small, the particle

flow density j(x) can be described as the product of the density n(x) times the

beam particles average velocity v.

j(x) =
Ṅo

A
= n(x) · v ⇒ n(x) =

Ṅo

A · v
(2.8)

With the beam velocity (final average velocity ) for helium given by vHe =√
5·k·To
mHe

(see chapter 3.4), and equation 2.7, n(x) is found to be

n(x) =
1
4
·
(

dN

x

)2

· κ · F(γ) · no ·
√

2
5
= 0.16075 · no ·

(
dN

x

)2

(2.9)

Hence the particle flow for a helium beam at the distance x along the beam

center-line is given by:

Ṅo(x) = n(x) · vHe · A (2.10)

2.1.2 Particle flow at the Zone Plate position

With the above stated equation 2.10 one can determine the particle flow of He-

atoms impinging on the focusing Zone plate. A sketch of the main microscope

parameters is shown in figure 1.3.
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To calculate Ṅo(x) at the zone plate, the three parameters representing the right

side of equation 2.10 have to be determined.

AZP = r2
zp · π =

d2
zpπ

4 (2.11)

vHe =
√

5kTo
mhe

(2.12)

n(x) = 0.16 · no ·
(

dN
x

)2
(2.13)

2.1.2.1 Penetrable surface at the Zone Plate

AZP = r2
zp · π =

d2
zpπ

4
(2.14)

A detailed description of the zone plates used for Nemi can be found in chapter

4. The outer ring diameter of this ZPs is given by dzp = 192 μm. As figure 1.3

indicates, a beam blocking middle-stop disc is placed in the center of this ZPs.

The batch of ZPs fabricated for Nemi have two different possible central block-

ing disc diameters, dMS20μm = 20 μm and dMS50μm = 50 μm respectively. The

corresponding numbers for the penetrable-surfaces AZP of the two different

kinds of Nemi ZPs are presented in table 2.1.

Middle-Stop diameter dMS Penetrable surface AZP

[μm] [m2]

20 2, 864 · 10−8

50 2, 699 · 10−8

Table 2.1: Beam penetrable surface on the zone plates. All of them have an outer
diameter of dzp = 192 μm.

2.1.2.2 He-particle velocity vhe

vHe =

√
5kTo

mhe
(2.15)

As equation 2.15 indicates, the final average velocity of the helium atoms

depends on the atoms thermal energy defined by the temperature of the nozzle

(see section 3.4). For this evaluation two different cases are of interest, a room

temperature beam TRT = 300 K, and a liquid nitrogen cooled beam with a

temperature of approximately TLN = 100 K. The calculated numbers for these

two cases, as well as the parameters needed to calculate them, are shown in
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table 2.2. A graph representing the helium atom speed characteristic versus

the nozzle temperature is shown in figure 2.1.

Final average Beam Velocity vHe

Boltzmann constant k = 1, 38065 · 10−23 J/K

mass helium mHe = 6, 646 · 10−27 kg

mean velocity RT vHeRT = 1765 m/s (� λ ≈ 0, 565 Å )

mean velocity LN vHeLN = 1019 m/s(� λ ≈ 0, 978 Å )

Table 2.2: Final average velocity vHe for the two different cases of a room temperature
(RT), and a liquid nitrogen cooled beam (LN) respectively. Also presented
here are the required constants to calculate these values. λ hereby states the
corresponding de‘Broglie wavelength for the helium atom beam (see section
4.3)

Figure 2.1: vHe final average speed of the helium atoms depending on the nozzle
temperature To.

2.1.2.3 Beam particle density n(x) at the ZP

To calculate the beam particle density at the ZP (e.q. 2.13), first a determination

of the particle flow quitting at the nozzle has to be made. This value is gained

by the help of the ideal gas law:

no =
No

Vo
=

po

k · To
(2.16)
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The parameters used for the particle density determination are stated in

table 2.3. The geometrical dimensions of the setup can be seen in figure 1.3.

The characteristics of the particle density at the nozzle as well as of the particle

density impinging on the zone plate are presented in figures 2.2, 2.3, 2.4 and 2.5.

The source (nozzle) pressure for all these evaluations was set to po = 180 bar,

except for the graph presented in figure 2.3, where this parameter is varied.

Particle density n(x) at the ZP (position x )

[m3]

no dN1 = 3 μm dN2 = 5 μm dN3 = 10 μm

To = 300 K 4, 345 · 1027 7, 0075 · 1015 1, 9465 · 1016 7, 7861 · 1016

To = 100 K 1, 303 · 1028 2, 1022 · 1016 5, 8396 · 1016 23, 358 · 1016

Table 2.3: Particle density of the He-beam at the nozzle (no) as well as at the ZP
(n(x)) placed at the distance x = LNozz−ZP = 0, 945 m from the nozzle
along the beam line. The numbers are calculated for a source pressure of
po = 180 bar, and the different nozzle diameters of dN1 = 3 μm, dN2 = 5 μm
and dN3 = 10 μm respectively.

Figure 2.2: Particle density no entering the source chamber (SC) directly at the nozzle
versus the nozzle temperature To for a nozzle pressure of po = 180 [bar].

As figure 2.3 indicates, a decrease of the nozzle temperature To and hence

a decrease of the kinetic energy assigned to the atoms, will lead to a higher
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Figure 2.3: Particle density no entering the source chamber (SC) directly at the nozzle
versus the nozzle pressure po for a nozzle temperature of To = 100 [K] and
To = 300 [K] respectively.

particle density no leaving the source. Consequently a nozzle temperature as

low as possible would be desired. On the other hand the helium atoms will

start to cluster if the temperature falls below a certain limit [63]. Also technical

and financial effort makes it currently unreasonable to implement a complex

cooling system. Therefore it was decided to design the system to work either

with a roughly room temperature beam or cooled down to approx. 100 K.



Figure 2.4: Particle density n(x) at the zone plate position x = 0.945 [m] over the nozzle
temperature To at a nozzle pressure po = 180 [bar] for varying nozzle
diameters.

Figure 2.5: Particle density n(x) at the zone plate position x = 0.945 [m] over the nozzle
diameter dN for the two different nozzle temperatures To = 300 K and
To = 100 K at a pressure of po = 180 [bar].

26
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2.1.2.4 Particle flow hitting the ZP

Finally together with equation 2.10 the theoretical particle flow Ṅo(x) impact-

ing onto the ZP can be determined. The calculated values for different sets of

setup parameters are presented in the tables 2.4, 2.5 and in figure 2.6 for the

two different ZPs with the beam blocking disc diameters of 20 μm and 50 μm

respectively.

Particle flow Ṅo(x) impacting onto the Zone plate with dMS = 20 μm

[s−1]

dN1 = 3 μm dN2 = 5 μm dN3 = 10 μm

To = 300 K 3, 5423 · 1011 9, 8399 · 1011 3, 9359 · 1012

To = 100 K 6, 1355 · 1011 1, 7043 · 1012 6, 8173 · 1012

Table 2.4: Calculated He-particle flow Ṅo(x) impacting on the ZP with a middle-stop
diameter of dMS = 20 μm. The corresponding penetrable zone plate surface
is AzpMS(20μm)

= 2, 864 · 10−8 m2, and the nozzle pressure is set to po = 180 bar.
Values for the three different nozzle diameters of dN1 = 3 μm , dN2 = 5 μm
and dN3 = 10 μm are presented at the two different nozzle temperature
conditions of To = 300 K and To = 100 K respectively.

Particle flow Ṅo(x) impacting onto the Zone plate dMS = 50 μm

[s−1]

dN1 = 3 μm dN2 = 5 μm dN3 = 10 μm

To = 300 K 3, 3383 · 1011 9, 2732 · 1011 3, 7093 · 1012

To = 100 K 5, 7822 · 1011 1, 6061 · 1012 6, 4247 · 1012

Table 2.5: Calculated He-particle flow Ṅo(x) impacting on the ZP with a middle-stop
diameter of dMS = 50 μm. The corresponding penetrable zone plate surface
is AzpMS(50μm)

= 2, 699 · 10−8 m2, and the nozzle pressure is set to po = 180 bar.
Values for the three different nozzle diameters of dN1 = 3 μm , dN2 = 5 μm
and dN3 = 10 μm are presented at the two different nozzle temperature
conditions of To = 300 K and To = 100 K respectively.
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Figure 2.6: Particle flow Ṅo(x) impinging on the zone plate surface Azp over the nozzle
temperature To with the three different nozzle diameters of dN = 3 μm,
dN = 5 μm and dN = 10 μm presented for the two different zone plates
with the middle stop diameters (blocking disc) of dMS = 20 μm and dMS =
50 μm respectively

2.1.3 Losses due to diffraction process at the ZP (TZP)

As a next step the transmissivity of the zone plates has to be taken into

account. Theoretically it is expected that 10.1% of the beam enter into the first

order focus [64] but the area of the support rods has to be subtracted.

Preliminary investigation on the transmissivity of similar ZPs [54, 65] show

that the actual transmissivity is TZP = 0.08. This is slightly less than expected.

2.1.4 Reflection at the sample

The last factor influencing Ṅ in equation 2.1, Rsample presents the reflectivity

of the sample as well as the probability of the reflected helium atoms to enter

into the detector. The total reflectivity of a sample will always be 100% since

the helium does not stick to the surface. The amount of atoms which are

collected by the detector is depending on different parameters: The first major

distinction is between crystalline and non-crystalline surfaces. For simplicity

we assume below that this corresponds to pure specular reflection without
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any loss to diffraction peaks. This will hold for metal surfaces, but not for

insulators, where a loss through diffraction peaks can be expected.

• if the investigated surface is crystalline, yielding no diffraction peaks, big

compared to the focal spot size, and the surface normal of the sample is

in the middle of the detector opening all reflected atoms will reach the

detector ⇒ Rsample = 1.

• if the investigated surface is crystalline, yielding no diffraction peaks, big

compared to the focal spot size, and the surface normal of the sample

is tilted compared to the center-line of the detector opening only some

amount of the reflected atoms are detected, depending on the tilt angle of

the surface ⇒ Rsample < 1.

• if the investigated sample is not crystalline, the atoms will scatter diffusely

and less than 100% of the reflected atoms are collected, regardless of the

orientation of the surface normal ⇒ Rsample < 1

A conservative estimate for the detected intensity from a non-crystalline sample

can be described by assuming that the sample is perfectly rough on the atomic

scale (diffuse scattering). With a reflectivity corresponding to a 180° cosine

intensity distribution (see figure 2.7). The corresponding surface area is given

by a half sphere:

AS =
1
2
· 4 · π · R2

The detector aperture with a diameter of dD placed at a distance l from the

Figure 2.7: Cosine distribution of the reflection intensities for a diffuse scattering sam-
ple, illustrating the geometrical relation for the surface area of a spherical
cap.
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sample surface is cutting out a solid angle (γ) of this spherical distribution.

The corresponding surface area AD of the spherical cap (see figure 2.7) is given

by:

AD = π · (r2 + h2) (2.17)

with

r = dD/2

l =
√

R2 − r2

h = R − l

R =
√

r2 + l2

This leads to:

Rsample =
AD

AS
(2.18)

A graph representing the calculated Rsample values for varying sample-

detector distances l is shown in figure 2.18. For example for a detector aperture

Figure 2.8: Rssample for varying sample-detector distances l presented for a assumed
cosine distribution of the reflection.

diameter dD = 1 mm and a sample-detector distance l = 1 mm, the fraction

entering the detector is Rsample = 0.105.
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The case above is an extreme case. In practice the scattering profile for a sample

will be material dependent and can vary strongly between different materials.

For example if the surface exhibits the properties of an Lambertian diffuser the

reflectivity will correspond to a cosine squared distribution perpendicular

to the sample normal and hence the reflectivity factor Rsample is higher than

calculated above [66]. It will be part of the further development work to deter-

mine the scattering profiles for various materials and to determine in detail

the contrast properties of NEMI.

2.1.5 Comparison of determined helium flow values ṄR entering the detection sys-

tem

Several different variations and combinations of Ṅo(x), TZP and Rsample are

listed in table 2.6. The worst case flow rate comes from a room temperature

beam generated by a dN = 3 μm nozzle using a middle-stop dMS = 50 μm ZP.

2.1.6 Pressure increase in the Pitot Tube detector

This section will provide the determination of the expected pressure increase

in the pitot tube, utilized as a He-detector for the Nemi system. This pressure

rise can be related to the amount of He-atoms entering the tube through its

small aperture opening. The working principle of this setup is presented in

detail in chapter 5.

The principle idea behind this method is the formation of an equilibrium

state between the sample chamber and the pitot tube volume, expressing itself

by a pressure difference between the sample chamber pressure and the pressure

in the detection tube. Since the scattered beam particles enter the tube with a

preferential forward direction, the vacuum conductance factor can be neglected

for this case. It is assumed that the whole beam flow simply passes through

without being affected by the pin hole barrier. For the He-atoms flowing

out of the tube due to the pumping via the pinhole aperture, the vacuum

conductance factor is strongly influenced by the diameter of the pinhole, since

the atoms don‘t have a preferential forward direction any more. At some point

an equilibrium state between the in- and out-flow for the tube will arise.

QBeam = QT (2.19)
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with QT the particle flow back-out (out-flow) from the Pitot Tube and QBeam
the beam flow into the tube (in-flow).

At this equilibrium state there will be an increase of the pressure pT within

the pitot tube, compared to the pressure in the sample chamber pSDC. This

value is a measure for the number of particles entering the detector itself.

To determine the expected pressure increase within the detector tube, the

following equations and considerations can be applied.

Together with the Ideal gas law (eq.2.24, and eq. 2.35) one can find:

QT = L(pT − pSC) =
�N
�t · k · T = Ṅ · k · T (2.20)

Ṅ = L(pT−pSC)
k·T (2.21)

pT = pSDC + Ṅ·k·T
L (2.22)

with Ṅ the particle-flow-throughput (2.26), and T the sample-chamber/Pitot-

Tube temperature (RT).

L is the vacuum conductance factor for the pin hole aperture between the

sample chamber and the tube for molecular flow conditions (see D.1), and is

defined as:

L =
c̄
4
· A c̄ =

√
8kT

πmHe
(2.23)

Where A stands for the pin hole surface and c̄ for the average (mean) velocity

of the gas particles [61, 62]. It has to be mentioned that all this considerations

just apply for the boundary condition of a constant and equal temperature T

(sample-chamber temperature = pitot-tube temperature).

Assuming an ideal background pressure in the sample/detector chamber (SDC)

i.e. pSC = 0 , one can calculate the expected partial pressure increase within

the Pitot Tube detector with equation 2.22.

The calculated detector pressure increase values pT for two different cases

of helium flow rates ṄR into the detection system (see table 2.6) are listed in

tables 2.7 and 2.8. The detector aperture diameter is set to dD = 1 mm. Thereby

the just mentioned particle-flow-throughput entering the detector tube ṄR is
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Partial Pressure increase pT in the Pitot Tube for ṄR = 7.8719 · 109 s−1

dPh = 1 mm ⇒ A = 7.8536 · 10−7 m2

c = 1260 m/s

L = 2.473 · 10−4 m3/s

pT = 1.3182 · 10−7 Pa = 1.32 · 10−9 mbar

Table 2.7: Partial pressure increase pT in the detector Pitot Tube, and corresponding
vacuum conductance factors, achieved with a pinhole aperture diameter
of dD = 1 mm, dN = 5 μm and 8% ZP efficiency as well as 10% sample
reflectivity. po = 180 bar, To = 300 K and dMS = 20 μm.

Partial Pressure increase pT in the Pitot Tube for ṄR = 6.2976 · 1010 s−1

dPh = 1 mm ⇒ A = 7.8536 · 10−7 m2

c = 1260 m/s

L = 2.473 · 10−4 m3/s

pT = 1.0546 · 10−6 Pa = 1.05 · 10−8 mbar

Table 2.8: Partial pressure increase pT in the detector Pitot Tube, and corresponding
vacuum conductance factors, achieved with a pinhole aperture diameter
of dD = 1 mm, dN = 5 μm and 8% ZP efficiency as well as 80% sample
reflectivity. po = 180 bar, To = 300 K and dMS = 20 μm.

inserted in equation 2.222,3.

To conclude the evaluation of the detector system it can be said that with the

chosen Pitot tube system good signal intensities can be expected when the

background pressure in the source chamber is in the low 10−9 mbar range.

2.2 lay-out of the pumping system

Within this chapter the considerations and final design decisions regarding the

layout of the ultra high vacuum pumping system for the new microscope are

presented. Such an assembly of high vacuum chambers is necessary to provide

2 Note: For the determination of the the detector entering particle-flow-throughput ṄR the beam
temperature value To has to be used, whereas regarding the average gas particle velocity for
the conductance factor of a pinhole is related to the Pitot Tube/ sample-chamber temperature
which is set to room temperature. This is the case because equation 2.20 is established for
the molecular particle flow of He-atoms back-out from the Pitot Tube through the detector
aperture into the sample chamber.

3 Also note that for the Pitot Tube system utilized in this microscope setup the conditions for
an effusive source are fulfilled. (see chapter 2.2.1.2)
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an atmosphere with a long enough mean free path. It is needed to enable the

helium beam atoms to travel without experiencing any disturbing interactions

on their way to the sample surface. Therefore a beam column with sufficiently

good enough vacuum conditions has to be provided. Furthermore it has to be

able to handle the high helium flow rates due to the beam.

2.2.1 Some vacuum technology and flow basics

The two first sub-chapters 2.2.1.1 and 2.2.1.2 present some basic equations

describing vacuum and ultra high vacuum (UHV) conditions.

2.2.1.1 Ideal gas law

In the following all considerations are carried out with the simplification on

an ideal gas. The Ideal Gas Law is defined as:

p · V = N · k · T (2.24)

with p the pressure, V the volume, N the number of particles, T the temper-
ature in [K] and k the Boltzmann-constant.

The conditions for an ideal gas4 will not exactly apply for our system, but

it will give a sufficiently close estimate of the situation. First some parameter

and value definitions [61, 62]:

Volume-Flow-Throughput V̇ qv =
�V
�t

= V̇ (2.25)

Particle-Flow-Throughput Ṅ qN =
�N
�t

= Ṅ (2.26)

Pressure-Volume-Throughput qpV qpV = p · V̇ (2.27)

Pumping-Speed S S = V̇ (2.28)

Pump-Throughput Q̇ Q̇ = p · S (2.29)

with p the pressure, V the volume, N the number of particles, T the temper-

ature in [K], k the Boltzmann-constant and t the time.

4 Ideal gas: (a): point particles: molecules/atoms are minute spheres; (b): very small sphere
volume compared to the actually occupied volume by the gas; (c) non-interacting in terms of
no forces exerted upon each other; (d): randomly-moving: traveling along straight paths; (e):
perfectly elastic collisions between the molecules.( see [60])
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2.2.1.2 Effusion

The particle flow throughput Ṅ through a small round opening from a cham-

ber with the pressure p into another chamber with a low pressure ambient

background is given by [61]

qN = Ṅ =
n · c̄

4
· A (2.30)

with n the particle density (n = N/V), V the volume, N the number of
particles, c̄ the average (mean) particle velocity5 and A the surface area.

This equation is just valid in case the temperature T = const., and when the

opening in the wall is small (opening diameter D � λ)[63]. Also the condition

of molecular flow (see D.1) has to be fulfilled. As a more detailed definition for

effusive sources M. Kappes and S. Leutwyler state in [67] that in an effusion

source the mean free path length λ within the chamber has to be an order

of one magnitude bigger than the diameter of the orifice D, in other words

λ/D > 10.

2.2.2 System setup

Figure 2.9 presents a sketch of the selected pumping system setup for the

instrument. Four different types of pumps are used. Each chamber has at least

one turbomolecular pump (TP) with magnetic bearings, the so called MAG W

Pumps from OERLIKON/Leybold. The decision for the implementation of

magnetically born turbo-pumps has been made for the reason of vibrational

minimization of the system. Since the source chamber pumps will have to deal

with the biggest amount of helium flow and throughput, two of the MAG W

600 pumps are mounted here. Their pumping speed for helium is given by

550 ls−1 for each of them. The following pumping stage as well as the chamber

holding the Zone Plate are set up with a MAG W 300 TP respectively. Each

of these pumps is presented with 260 ls−1 pumping speed. Finally the sample

chamber is assembled with a MAG W 600 TP.

All the backing pumps for the system are Scrollvac SC 30 D oil free scroll-

pumps, with a pumping speed of 30 m3s−1 and an achievable ultimate pressure

5 c̄ =
√

8·k·T
π·mT

, with mT the atom mass of a single helium atom [61]
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Figure 2.9: Schematic of the pumping system setup for Nemi.

of ≤ 0, 01 mbar. The crucial factor for the assignment of these scroll-pumps, is

the goal of setting up a completely oil free pumping system.

The He flow is highest within the source chamber, therefore this chamber has

its own prevacuum line working with two of the Scrollvac pumps. A third

backing pump is used on the pumping stage, the zone plate chamber and the

sample chamber together. To further reduce the He back-flow into the system,

the pumping stage/ZP-chamber as well as the sample chamber prevacuum lines

respectively, have an additional small SL80 turbomolecular pump implemented

preliminary to the Scrollvac backing pump.

The next step is to estimate the partial pressure increases in the chambers,

so to say in the pumping stage chamber (PST), the ZP chamber (ZPC) and the

sample/detector chamber (SDC), based on the pressure originating from the

helium atoms entering the source chamber (SC) through the nozzle. Figure 2.10

gives a principle sketch of the chamber and pumping situation.
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2.2.3 Partial helium pressure increase in the UHV system

The starting point for all the calculations is the free-jet expansion within the

source chamber (SC). The arising pressure conditions within this chamber are

considered in the following sub-section 2.2.3.1. Two different processes con-

tribute to the partial helium pressure increase in the rest of the Nemi system. For

one part a helium gas diffusion process from one chamber to the next takes place

which is based on the pressure situation in the respective foregoing chamber.

That means that the finally achieved source chamber pressure arising from the

helium expansion leads to a consequent diffusion of helium atoms into the

adjacent pumping stage chamber (PST) and so on. This diffusion process though

is independent from the helium atoms which are traveling with the beam itself

into the following chambers. The partial helium pressure increase based on

those beam atoms will make up the above mentioned second process which

is influencing the final total partial pressure increase in each chamber. Therefore

the total partial helium pressure rise in each chamber is a combination of the

pressure increase due to the diffusion process pdi f f and the pressure rise which

originates from the probe beam pbeam.

ptotal = pdi f f + pbeam (2.31)

In the following the effects of this two different processes will be considered

separately for each chamber and in the end of the section 2.2 the final total

pressure increase in each chamber will be presented.

2.2.3.1 Source chamber (SC)

First the partial source chamber pressure pSC due to the inlet of the helium gas

has to be evaluated. The particle density no of helium atoms entering through

the nozzle pinhole was evaluated in section 2.1.2.3 with the ideal gas law

2.16.

no =
No

Vo
=

po

k · To
(2.32)

Picturing the He-nozzle as a pressurized reservoir with the boundary condi-

tions of a pressure po, and the Temperature To, as picture 2.11 indicates, it is
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Figure 2.11: principle sketch for the flow rate estimate of the nozzle

possible to determine the expected pressure rise within the source chamber as

follows:

According to [61], the helium atoms are moving with 1/3 · N particles in

all 3 space dimensions x, y, z in positive and negative direction, respectively.

Considering the case of a small nozzle pinhole at the end of this reservoir, the

share of He-atoms passing through the nozzle orifice can be roughly estimated

by those atoms traveling in positive x direction, i.e. 1/6 · N atoms are entering

the chamber through the nozzle. This assumption will alter equation 2.10 to

Ṅo = CN · no · v̄He · A (2.33)

with CN = 1/6 the factor for the positive x direction, A the nozzle surface and

v̄He the mean velocity of the He atoms derived from the kinetic theory of

gases [61] under standard conditions.

v̄He =

√
3 · k · To

mHe
(2.34)

Deriving equation 2.24 over the time t one can find

pSC · V̇ = pSC · ∂V
∂t

=
∂N
∂t

· k · T = Ṅ · k · T (2.35)

which can be also written as

pSC =
Ṅo · k · T

V̇
=

Ṅo · k · T
SCH

(2.36)

with Ṅo from equation 2.33, SCH the pumping-speed of the source chamber

turbo-molecular pumps and T the temperature of the chamber which is in the

room temperature (RT) range.
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The pumping speed S for helium for the two MAG W 600 turbo-molecular

pumps is given by SCH = 2 · 550 ls−1 = 1100 ls−1. Hence the partial source

chamber pressure pSC can be determined from e.q. 2.36. Figure 2.12 represents

a diagram of the calculated source chamber pressure values for rising nozzle

pressures po. Additionally the specifically calculated values of pSC for different

system setup parameters are presented in table 2.9. Since this evaluation

is performed for the worst case scenario regarding the particle load on the

pumping system, all further presented values are calculated for a nozzle

pressure of po = 200 bar if nothing else mentioned.

Source Chamber pressure pSC at po = 200 bar

[mbar]

dN1 = 5 μm dN2 = 10 μm

To = 300 K 8.1 · 10−4 3.3 · 10−3

To = 100 K 1.4 · 10−3 5.6 · 10−3

Table 2.9: pSC, partial source chamber pressures for different starting conditions dN
and To.

Figure 2.12: pSC, partial source chamber pressures versus nozzle pressure po for the
two different nozzle diameters dN = 5 [μm], and dN = 10 [μm] at the two
different nozzle temperatures To = 100 [K], and To = 300 [K] respectively.
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2.2.4 Partial pressure increase due to the helium diffusion process from the source

chamber pdi f f

The partial pressure increase in the different ultra high vacuum (UHV) cham-

bers is due to the helium gas which is injected via the nozzle into the source

chamber. This chapter will deal with the partial pressure rise due to a diffusion

processes between the different UHV chambers which originates from the

pressure increase in the source chamber due to the inlet of helium gas through

the nozzle. The diffusion process can be pictured as an effusive source at the

entrance aperture of each chamber.

As a next step the originating partial helium pressures in the remaining

chambers, consequential to the source chamber pressure are calculated. This

means that for the moment the additional pressure rise due to the He-beam is

neglected.

Generally the gas diffusion from a chamber 1 with the parameters p1 and T1

through an opening into an adjacent chamber 2 with a low pressure ambient

background and pumped with a pumping speed S2 is considered. Since

the system is in the ultra high vacuum (UHV) range the conditions for the

molecular flow regime are valid. This leads to the two following equations

for the condition of “equilibrium state particle flow between two chambers through

a pinhole with a small diameter” [62]:

p2 = Ṅ·k·T
S2

(2.37)

Ṅ · k · T = L · (p1 − p2) (2.38)

Hereby equation 2.37 is derived the same way like equation 2.36 on the basis

of the ideal gas law (e.q. 2.24). Equation 2.38 embraces the diffusion passage

between the two chambers by describing the molecular flow through a pinhole

with a small diameter. The factor L states the vacuum conductance factor for a

pinhole (with the surface area A) in the molecular flow regime:

L =
c̄
4
· A =

√
8kT

πmHe

4
· A
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Combining equation 2.37 and 2.38 leads to

p2 =
L

S2 + L
· p1 (2.39)

which describes the expected pressure increase in chamber 2 due to gas diffu-

sion through a small opening from chamber 1. By inserting the corresponding

values for each of the chambers following the source chamber, it is possible to

determine the pdi f f values for each of them. The respective calculations are

presented in the following three sub-chapters 2.2.4.1, 2.2.4.2 and 2.2.4.3.

2.2.4.1 Pumping stage chamber (PST)

The chamber adjacent to the source chamber (SC) is the pumping stage chamber

(PST). The connection part between this two chambers is the skimmer (SK),

whose orifice diameter generally lies in the range between 1 − 5 μm (see figure

2.10).

The pressure p1 from equation 2.39 hereby is given by the source chamber

pressure pSC which was calculated in section 2.2.3.1. The pumping speed S

is represented by the PST MAG W 300 turbo-pump which is stated by the

manufacturer to be SPST = 260 ls−1. The corresponding values evaluated

for the most likely used setup parameters of dN1 = 5 μm, To = 100 K and

po = 200 bar, and for the worst case setup parameters regarding the flow rate,

present at dN2 = 10 μm, To = 100 K and po = 200 bar are stated in table 2.10.

For both of this starting parameter sets the calculated partial pumping stage

pressure increase due to diffusion is presented for a skimmer diameter of

dSk1 = 1 μm and dSk2 = 5 μm respectively.

pPST (di f f ) pumping stage diffusion pressure increase

[mbar]

po = 200 bar dSk = 1 μm dSk = 5 μm

dN = 5 μm,To = 100 K 1, 34 · 10−12 3, 35 · 10−11

dN = 10 μm,To = 100 K 5, 35 · 10−12 1, 34 · 10−10

Table 2.10: pPST (di f f ) pumping stage pressure increase due to diffusion for different
starting setup parameters: po, dN ,To, and dSk respectively.
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2.2.4.2 Zone plate chamber (ZPC)

The same procedure can be used to determine the partial helium pressures

increase due to diffusion from the pumping stage chamber (PST) into the zone

plate chamber (ZPC) and furthermore from the zone plate chamber (ZPC) into the

sample/detector chamber (SDC).

The aperture pinhole placed between the pumping stage chamber (PST) and the

zone plate chamber (ZPC) has a diameter of d = 5 mm.6 p1 from equation 2.39 is

represented by pPST (di f f ) whereas p2 will be the determined ZPC pressure

pZPC (di f f ). The pumping of this chamber is performed by a MAG W 300

with SZPC = 260 ls−1.

Table 2.11 states the calculated values for the diffusion based pressure rise

in the zone plat chamber pZPC (di f f ) at the two same starting parameter setups

like used before for the pumping stage chamber.

pZPC (di f f ) Zone plate chamber diffusion pressure rise

[mbar]

po = 200 bar, d = 5 mm dSk = 1 μm dSk = 5 μm

dN = 5 μm,To = 100 K 3, 11 · 10−14 7, 78 · 10−13

dN = 10 μm,To = 100 K 1, 25 · 10−13 3, 11 · 10−12

Table 2.11: pZPC (di f f ) partial zone plate chamber pressure increase due to diffusion
from the PST chamber for different starting setup parameters: d, po, dN ,To
and dSk respectively.

2.2.4.3 Sample/detector chamber (SDC)

An aperture with a diameter of d = 5 mm separates the zone plate chamber

(ZPC) from the sample/detector chamber (SDC). This leads to the corresponding

numbers for pSDC (di f f ), presented in table 2.12. It has to be mentioned here

that in case of the sample/detector chamber a MAG W 600 turbo-pump is in

charge of the pumping. This pump is stated to have a pumping-speed of

SSDC = 570 l · s−1.

The partial pressure rises in all UHV (ultra high vacuum) chambers due to

diffusion from their neighboring chamber pressures has been evaluated. As

6 A = d2·π
4
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pSDC (di f f ) Sample/Detector chamber diffusion pressure increase

[mbar]

po = 200 bar, d = 5 mm dSk = 1 μm dSk = 5 μm

dN = 5 μm,To = 100 K 3, 34 · 10−16 8, 35 · 10−15

dN = 10 μm,To = 100 K 1, 34 · 10−15 3, 34 · 10−14

Table 2.12: pSDC (di f f ) partial sample/detector chamber pressure rise due to diffusion
from the ZPC chamber for an aperture diameter of d = 5 mm, with varying
parameters for dN , and dSk respectively.

one can see from the presented values it is very minor in all chambers behind

the source chamber (SC). This can be ascribed to the choice of the aperture

diameters between the chambers as well as too the chosen pump setup.

2.2.5 Partial pressure increase due to the helium beam pbeam

The following section considers the pressure increase in the UHV chambers

due to the He-beam for every chamber separately.

In general the basic approach is the same for all chambers. The partial pressure

increase due to the micro-probe beam is based on the residual particle flow Ṅbeam

after weighing the beam-flow into the chamber ṄIN against the beam-flow out

of the chamber ṄOUT. In mathematical terms

Ṅbeam = ṄIN − ṄOUT (2.40)

It is known from equation 2.10 that at position x the particle flow within the

beam is given as

Ṅo(x) = n(x) · vHe · A (2.41)

which leads to

ṄIN = Ṅo(xin) and ṄOUT = Ṅo(xout) (2.42)
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with Ṅo(xin) the beam-particle-flow into the chamber at the entrance aperture

position xin, and Ṅo(xout) the beam-particle-flow at its exit aperture position

xout out of the chamber.

Using the same approach like in 2.36, one can find pbeam

pbeam =
(ṄIN − ṄOUT) · k · T

S
(2.43)

to be the pressure arising within the chamber just due to the probe beam7.

2.2.5.1 Pumping stage chamber (PST)

The entrance aperture diameter for this chamber is given by the skimmer

diameter dSk. The exit diameter of the beam is determined either by the

geometrical setup of the system, this means by the widening of the beam

at that point, or in case of a very wide beam (dbeam > dapp) by the aperture

diameter dapp = 5 mm.

From geometrical considerations (see figure 2.13) one can find that as long as

the skimmer diameter dSk < 50 μm, the beam widening is not limited by the

pumping stage exit aperture (Aperture 1) because the beam diameter in this

cases stays below 5 mm. Since the small focal spot size of Nemi is based on the

usage of microskimmers ( skimmer diameters between 1 − 5 μm), the beam is

never limited by this aperture. Hence the beam flow leaving the pumping stage

chamber through Aperture 1 is regulated by the geometrical beam opening

size dbeamApp1 .

dbeamApp1 = 2 ·
[(

dN
2 + dSk

2
LNozzle−Skimm

)
· LNozzle−App1

]
− dNozzle

To evaluate the pressure rise in the PST chamber due to the beam, one has

to consider the amount of atoms entering the chamber through the skimmer

opening, as well as in principle also the amount of atoms leaving it on the other

side through the exiting aperture to the zone plate chamber. Since equation 2.10,

and the corresponding equation for n(x) (e.q. 2.13) are both just valid close to

the beam axis, they will not deliver a reasonable estimate for the particle flow

leaving the chamber, due to the strong broadening of the beam at that point.

7 Note that the temperature T in equation 2.43 is the chamber temperature, hence room temper-
ature (RT), whereas for Ṅbeam and therefore also for ṄIN and ṄOUT the beam temperature To
has to be assigned.
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Figure 2.13: Schematic for the geometrical considerations regarding the beam widen-
ing at the position of Aperture 1 between the pumping stage chamber
(PST) and the zone plate chamber (ZPC)

Therefore it was decided to do a “worst case” evaluation and consider that all

particles entering the pumping stage will participate into the pressure rise of

the chamber. In other words, all atoms go in, but none go out. This leads to a

change of equation 2.43 to

pPST (beam) =
(ṄINPST) · k · T

SPST
(2.44)

with8

ṄINPST = n(Skimmer) · vHe · ASk (2.45)

n(Skimmer) = 0, 16 · no ·
(

dN
LNozzle−Skimmer

)2
(2.46)

no =
No
Vo

= po
k·To

(2.47)

The calculated pressure numbers for the before mentioned combinations of the

two different nozzle diameters, as well as the two different skimmer diameters

are presented in table 2.13.

8 In the case of the participation of the beam‘s particle flow to the total chamber pressures the
mean velocity of the He-atoms is presented by the atoms final average speed originating from

the free-jet-expansion and hence defined by vHe =
√

5kTo
mhe

(for details see chapter 3.4).
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pPST (beam) Pumping stage chamber Beam pressure-rise

[mbar]

po = 200 bar dSk = 1 μm dSk = 5 μm

dN = 5 μm,To = 100 K 7, 39 · 10−11 1, 85 · 10−9

dN = 10 μm,To = 100 K 2, 96 · 10−10 7, 39 · 10−9

Table 2.13: pPST (beam) pumping stage chamber pressure rise due to the beam for varying
dN and dSk respectively.

2.2.5.2 Zone plate chamber (ZPC)

In the zone plate chamber most of the incoming helium atoms are blocked out of

the beam by the zone plate. Thus the simplification of all atoms participating into

the chamber pressure fits even better than for the PST. Another approximation

is that all beam atoms entering the pumping stage chamber will go directly

through this chamber, and enter into the ZPC chamber. Therefore the beam

inlet flow into the ZP chamber is equal to ṄINPST = ṄINZPC . Hence the pressure

rise within the ZP chamber due to the beam can be estimated to be

pZPC (beam) =
(ṄINZPC) · k · T

SZPC
=

(ṄINPST) · k · T
SZPC

(2.48)

Since the turbo molecular pump mounted to the ZP chamber is the same

model like the one pumping the pumping stage chamber (MAG W 300, SZPC =

260 ls−1), the calculated pressure rise values due to the beam within the ZP

chamber are the same like for the PST which are presented in table 2.13.

2.2.5.3 Sample/detector chamber (SDC)

For the sample/detector chamber pressure it is assumed that maximum 10% of

the particle flow impinging on the zone plate are transmitted further into the

sample/detector chamber. Also there is no particle flow leaving the chamber

since it is the last chamber of the system, hence ṄOUTSDC = 0. This modifies

equation 2.40 and 2.43 to

ṄINSDC = ṄINZPC · 0, 1 (2.49)

pSDC (beam) =
(ṄINSDC )·k·T

SSDC
=

(ṄINZPC ·0,1)·k·T
SSDC

(2.50)
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In the case of the sample/detector chamber, the pumping is performed by a

MAG W 600 turbo molecular pump with SSDC = 570 ls−1. The corresponding

values determined for pSDC (beam) are listed in table 2.14.

pSDC (beam) Sample/detector chamber Beam pressure-rise

[mbar]

po = 200 bar dSk = 1 μm dSk = 5 μm

dN = 5 μm,To = 100 K 3, 37 · 10−12 8, 43 · 10−11

dN = 10 μm,To = 100 K 1, 35 · 10−11 3, 37 · 10−10

Table 2.14: pSDC (beam) sample/detector chamber pressure rise due to the beam for vary-
ing dN and dSk respectively.

2.2.6 Total partial pressure increase due to the helium beam and diffusion

For the determination of the total partial helium pressure increase developing

within the chambers, the two amounts pdi f f and pbeam have to be added up

like stated in equation 2.31. The pressure values due to diffusion between the

chambers pPST (di f f ), pZPC (di f f ) and pSDC (di f f ) are calculated in paragraph

2.2.4. Together with the pressure rises due to the probe beam which were

determined in section 2.2.5 one can evaluate the total partial pressure increase

within each subsequent chamber.

2.2.6.1 Total pumping stage chamber (PST) pressure

The pressure rise due to diffusion from the neighboring source chamber has

been found to be pPST (di f f ) = 1, 34 · 10−10 mbar for the worst case setup

scenario of a diameter dN = 10 μm nozzle combined with a dSk = 5 μm

skimmer orifice at the beam settings of po = 200 bar and To = 100 K. This

pPST (di f f ) pressure value is used as a basis for further considerations.

The calculated values for the total pressure arising in the pumping stage

chamber pPST, can be found by combining the values from the pressure increase

due to the beam pPST (beam) listed in section 2.2.5 and from the diffusion

process pPST (di f f ) which were stated in section 2.2.4. Corresponding values

are shown in table 2.15.
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pPST Pumping stage chamber total pressure-rise

[mbar]

po = 200 bar dSk = 1 μm dSk = 5 μm

dN = 5 μm,To = 100 K 7, 52 · 10−11 1, 88 · 10−9

dN = 10 μm,To = 100 K 3, 01 · 10−10 7, 52 · 10−9

Table 2.15: pPST pumping stage total chamber pressure for varying dN and dSk respec-
tively.

2.2.6.2 Total zone plate chamber (ZPC) pressure

The same procedure is performed to gain the total pressure increase in the

ZPC. Also it is worth to mention that the total pressure rise within the ZP

chamber is mainly due to the beam flow since the increase due to diffusion is

at most in the lower 10−12 mbar range and therefore insignificant. Table 2.16

presents the total pressure values arising within the ZP chamber.

pZPC Zone Plate chamber total pressure-rise

[mbar]

po = 200 bar dSk = 1 μm dSk = 5 μm

dN = 5 μm,To = 100 K 7, 39 · 10−11 1, 85 · 10−9

dN = 10 μm,To = 100 K 2, 96 · 10−10 7, 39 · 10−9

Table 2.16: pZPC total zone plate chamber pressure rise due to the beam and the first
estimated pressure for different dN and dSk respectively

2.2.6.3 Total sample/detector chamber (SDC) pressure

The same way as for the zone plate chamber, the part of the diffusion pressure

increase in the sample detector chamber pSDC (di f f ) is negligible small com-

pared to pSDC (beam). Hence the resulting total pressure rise values for the

SDC which are presented in table 2.17 are nearly the same as the values just for

the increase due to the beam. As one can see from the numbers in table 2.17 the

total pressure increase in the sample/detector chamber is very low. Compared to

the in chapter 2.1.6 calculated expected detector/Pitot Tube pressure rise due
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pSDC Total sample/detector chamber pressure-rise

[mbar]

po = 200 bar dSk = 1 μm dSk = 5 μm

dN = 5 μm,To = 100 K 3, 37 · 10−12 8, 43 · 10−11

dN = 10 μm,To = 100 K 1, 35 · 10−11 3, 37 · 10−10

Table 2.17: pSDC total sample/detector chamber pressure rise due to the beam and the
first estimated pressure for varying dNozzle and dSkimmer respectively.

to the signal from the sample9, it can be seen that for a worst case scenario10

the expected detector/Pitot Tube pressure rise is one order of magnitude

higher than the background pressure increase in the chamber as long as a

small skimmer diameter is used. For an easy comparison the corresponding

numbers are presented in table 2.18.

pSDC Total sample/detector chamber pressure-rise & pressure rise in the detection tube pT

[mbar]

po = 200 bar dSk = 1 μm dSk = 5 μm pT

dN = 5 μm, To = 100 K 3, 37 · 10−12 8, 43 · 10−11 2, 39 · 10−9

dN = 10 μm, To = 100 K 1, 35 · 10−11 3, 37 · 10−10 9, 56 · 10−9

Table 2.18: Comparison pSDC total sample/detector chamber pressure rise against detection
pressure increase in the Pitot Tube pT for a worst case sample reflection
of 10% and a ZP middle stop diameter of dMS = 50 μm, with the starting
parameters po, To, dN and dSk.

2.3 lay-out of the prevacuum system

The Nemi prevacuum system is based on three Scrollvac SC30 D scroll

pumps, and two SL80 turbomolecular pumps. A detailed presentation of

the calculations regarding the dimensioning of the backing pump system

is presented in appendix D. Within this chapter the fundamental starting

consideration for the layout of the prevacuum system are considered and their

final outcome and conclusions based on the calculations of appendix D is

presented in the end of this section.

9 corresponding to the in table 2.17 chosen starting parameters po, dN , dSk and To.
10 10% reflection on the sample surface and a dMS = 50 μm middle stop diameter of the zone plate.



52 helium flow calculation

Basically there are two main points to consider when it comes to the layout of

the prevacuum system for Nemi:

1. Are the intended backing-pumps strong enough to deal with the helium

flow in the system.

2. Any helium back-flow back into the PST/ZPC/SDC - UHV chambers has

to be prevented.

The first point is particularly important in regard to the source chamber (SC)

prevacuum system. The high helium flow from that chamber can lead to a

significantly high stress on the backing pump system which as a consequence

can lead to a considerable reduction of the pumping performance of the two

implemented turbo-pumps for this chamber.

The second point on the other hand is important for all the other UHV

chambers of the system especially the sample/detector chamber. Possible he-

lium-backflow leads to a high background signal for the detection process and

hence it will downgrade or even prohibit good measurement results.

It was decided to work with two separate backing-pump systems for the setup.

One prevacuum line thereby is in charge of evacuating the high helium flow of

the source chamber. The other one takes care of the fore-vacuum for the pumping

stage chamber/zone plate chamber and the sample/detector chamber together.

In appendix D a detailed description for the calculation of the vacuum

conductance factors for both systems is presented. This calculations are based

on the fact that the systems will work in the knudsen-flow regime which is the

case as also shown in the same appendix. Therefore following [60] the vacuum

conductance values for each prevacuum component of the systems can be

determined based on

C = Cm · J (2.51)

with Cm describing the vacuum conductance for molecular flow, and J a

transformation factor. The exact explanation and relation for this formula is

presented in D.3 and the foregoing description for vacuum conductance and

flow regimes in appendix D.

Similar to the treatment of electrical connections and their resistance values

also in the case of vacuum conductance an overall/total conductance value

for the whole prevacuum system can be calculated by summing up each
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component‘s conductance value C either in a serial or a parallel connection. In

the end this total conductance Ctotal can be included for the determination of

the effective pumping-speed of the prevacuum system which is defined as:

1
Se f f

=
1

SP
+

1
Ctotal

(2.52)

SP thereby is the pumping-speed of the prevacuum pump which is stated by

the manufacturer.

Together with the in section 2.2 calculated helium flow Ṅo in each UHV

chamber it is possible to determine the finally appearing prevacuum pressure

of the backing-line (see equation D.35)

p̄preevac =
Ṅo · k · T

Se f f
(2.53)

Based on this prevacuum pressure on the other hand it is possible to make a

statement on point 1 stated in the beginning of this chapter. That is to say if

the intended backing-pumps accomplish the demands. For a proper efficiency

of the turbo-molecular pumps implemented into the system they need to be

provided with a prevacuum pressure below a curtain range. Exceeding this

backing-pressure value will lead to a progressively collapsing of the turbo-

pumps compression ratio and therefore its efficiency. Diagrams provided by

the pump manufacturers show the compression ratio characteristic behavior

with respect to the provided prevacuum pressure of a system. In general it can

be said that a backing-pressure located in the range below ca. 1 · 10−1 mbar

will not significantly influence the optimum pumping speed and compression

of the MAG W turbo pumps.

In the following the conclusions from the evaluation process of the two backing-

pump systems for Nemi are presented. The detailed calculations and consid-

erations on which these conclusions are based on can be found in appendix

D.

2.3.1 Prevacuum-line source chamber (SC)

A schematic diagram presenting all the vacuum components building up the

prevacuum-line for the source chamber is illustrated in figure 2.14. Based on
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this diagram the total conductance of this system Ctotal(SC) and furthermore

the effective-pumping speed of this backing-pump line Se f f (SC) is calculated in

section D.7.

The crucial point for this fore-vacuum setup is the high helium flow originating

in the source chamber. Due to this strong load on the backing system it was

decided to implement two SC 30 D Scrollvac backing pumps. The calculations

from appendix D showed that for nozzle parameters of dNozz = 10 μm, To =

100 K and po = 200 bar the achieved prevacuum pressure will lie in the range of

ca. 1 mbar. As a consequence of this high prevacuum pressure the efficiency of

the two MAG W 600 turbo-pumps used for the pumping of the source chamber

is decreased substantially ( see D.7). The finally achieved end-pressure pend for

the UHV part of the source chamber would for this starting conditions be located

in the area around 2 · 10−2 mbar which is not sufficient enough to provide a

proper undisturbed free-jet-expansion. Consequently for these beam parameters

the current backing-pump setup is not suitable for high beam pressures po.

The same calculations done for a dNozz = 5 μm nozzle (see section D.7) show

that for the start parameters of po = 180 bar and a liquid nitrogen cooled

beam (To = 100 K ) the final source chamber UHV pressure will be around

pend(SC) = 2.5 · 10−3 mbar. This means that again for high beam pressures po

the limits of the fore-vacuum system are reached but for lower beam pressures

po the system is sufficiently strong enough which is also established by the

measurements results presented in section 9.1 gained with the Nemi setup. In

case of a room temperature beam on the other hand the current prevacuum

setup will provide a good free-jet expansion even in the high pressure ranges

around po = 200 bar. Also for this case measurement results are presented in

the same section.

Finally it can be said that the prevacuum-system layout for the source chamber

is adequate for measurements with a room temperature beam as well as

for a liquid nitrogen cooled beam at beam pressures up to po = 80 bar. For

beam parameters exceeding this numbers the additional implementation of a

backing-pump with a higher pumping speed value is suggested, for example

an additional roots-pump.
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2.3.2 Prevacuum-line pumping stage/ zone plate /sample detector chamber (PST/ZPC/SDC)

In case of the second prevacuum-system the focus is not on a high helium flow

but rather on the helium back-flow. The previously performed calculations of

chapter 2.2 showed that the arising helium flow within the PST/ZPC/SDC all

together is rather small compared to the one of the source chamber. Therefore

it was decided to use one backing-pump system for all three chambers. A

schematic diagram presenting all components of this backing-vacuum line is

illustrated in figure 2.15.

The increase in the prevacuum pressure due to the additional helium flow from

the free-jet expansion is about 2 · 10−6 mbar and is negligible small (see section

D.8). The measurements performed on Nemi also confirmed this situation as

one can see from the diagrams presented in chapter 9.

The significant point regarding this pre-vacuum system is to prevent any helium

gas back flow from the prevacuum-system back into the UHV chambers since

this would lead to an increase in the background-signal for the measurements.

For the reason of probably very small pressure rises in the detected measure-

ment signals of our microscope an as low as possible background pressure is

needed. This is necessary to ensure that the whole system is sensitive enough

for measuring even small signal changes located in the lower 10−10 mbar range

in the detected reflection signal.

To achieve a prevention for such helium gas back-flow two additional small SL

80 turbo pumps are attached into the prevacuum line for this three chambers.

Thereby one of them is in in charge of the PST/ZPC together whereas the

second one covers the most sensitive sample/detector chamber itself. In both cases

the small turbo-pumps act as a kind of back-flow barrier.
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2.4 ultimate parameters and settings

All considerations done within the prior chapters show that the chosen ultra

high vacuum pumps as well as the components determining the backing

vacuum system are sufficient to run the system. It was also shown that the

expected particle flow within the helium detection system is high enough to

anticipate good results. The final setup with its pumps and also the optical

element parameters like skimmer size and aperture sizes are listed up once

more in table 2.19 and 2.20. The respective parameters are presented for the

finally used microscope setup, and therefore also the skimmer and nozzle sizes

are adjusted to the proper parameters and not the worst case scenarios for

the pumping system. A graphic presenting all this elements and their finally

chosen parameters is given in 1.3 (see chapter 1).

Final Nemi Setup Parameters

Diameter Relevant Distance

Nozzle dN = 5 μm

Skimmer dSk = 1 − 5 μm LNozzle−Skimmer = 10 mm

Aperture 1 dAppPST−ZPC = 5 mm LSkimmer−Ap1 = 0.717 m

Zone Plate (ZP) dZP = 192 μm LSkimmer−ZP = 0.935 m

Aperture 2 dAppZPC−SDC = 5 mm LSkimmer−Ap2 = 1.011 m

Sample LSkimmer−Sample = 1.140 m

Table 2.19: Final setup parameters and elements for the Nemi helium microscope
system
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3
S O U R C E

The generation of an almost monochromatic neutral gas probe beam is a basic require-

ment to build up a neutral matter-wave reflection microscope based on zone plate

focusing. In this chapter the creation of atomic beams is discussed. Three important

concepts, final average speed, virtual source size and speed-ratio are explained.

3.1 theoretical background for a free jet expansion

3.2 effusive beams

For an expansion of a gas from a reservoir into a low pressure ambient

background chamber via a small orifice one can distinguish between two

different regimes [63]. In both cases the gas leaves a reservoir which has

the initial equilibrium condition of an internal gas pressure po, a reservoir

temperature To and an exiting orifice diameter or nozzle diameter dN. The

background pressure of the chamber into which the gas expands will be

referred to as pB. The distinction between the two expansion regimes is based

on two parameter values, the mean-free-path λo of the molecules in the reservoir

and its exiting orifice diameter dN . The mean-free-path is defined as the average

traveling distance of an atom (molecule) between successive collisions with

other atoms (molecules) (see chapter D.1).

In cases where the mean-free-path is longer than the expansion orifice diameter

and hence λo � dN , the atoms suffer nearly no collision on their way through

the nozzle. The beam generated under this conditions is referred to as an

effusive beam [63]. An effusive beam has a velocity distribution for the exiting

atoms which is only dependent on the energy they gained from collisions with

the reservoir wall. Hence it depends on the reservoir temperature To, as well

as on their own mass m. It can be written as [63]:

F(vx) =
2
α4 · v3

x · exp
(−v2

x
α2

)
α =

√
2·k·To

m

(3.1)
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with vx the mean velocity at point (x), k the Boltzmann constant, To the

reservoir temperature and m the atom (molecule) mass of the beam particles.

As one can see equation 3.1 is a Maxwell Boltzmann distribution. The

average velocity of the atoms is:

v̄ =

√
8 · k · To

π · m
(3.2)

3.3 free jet expansion

The second expansion case is called a free-jet-expansion sometimes referred to

as supersonic expansion. By increasing the gas pressure po within the reservoir

or by reducing the expansion diameter dN , the mean-free-path becomes smaller

than the nozzle diameter. When dN � λo the atoms/molecules leaving the

nozzle experience many collisions. Therefore the assumption of molecular flow

is no longer satisfied during the initial stage of the expansion. A high pressure

gas expansion of this type is called a free-jet expansion and it generates a high

intensity particle beam with a comparatively small, nearly monochromatic

velocity spread. Following the expanding particles their propagation can be

described by the transition between two different flow regimes. At high gas

pressures po and with the restriction to short and converging nozzles, effects

of gas viscosity namely friction and energy loss due to heat transfer can be

neglected. This means that the expansion can be treated as adiabatic and isen-

tropic. Directly after leaving the nozzle the gas density is high. Consequently

the collision frequency of the particles is sufficiently high to be assumed that

there is an equilibrium state maintained throughout the expansion process

[63]. Therefore within this region the particles can be treated with an idealized

continuum model. As the free-jet further expands into the vacuum its density

decreases rapidly with increasing distance from the nozzle which is described

as a transition area from continuum flow to free molecular flow. Due to the low

enough background pressure pB into which the particles are expanding there

will be a point at which the collision frequency of the particles has decreased

to such a low value that the continuum model no longer holds - this is called

the quasi molecular flow regime. Finally all collisions have ceased, and the

particles propagate freely on straight trajectories.

In all the following equations m stands for the beam particle (atom or molecule)
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mass, k is the Boltzmann constant, To the reservoir temperature, v f is the

final average particle speed, and vx the particle velocity in x direction.

3.4 final average speed of a monoatomic gas

Following the literature by M.D. Morse [63] the beam particles energy in the

molecular flow region and hence its ultimate flow velocity can be deduced from

the assumption that the expansion can be treated as adiabatic and isentropic.

Therefore the particle‘s speed will be directly related to the thermal energy of

the atoms. The adiabatic assumption leads to a conservation of the sum of the

enthalpy and the kinetic energy of the directed mass flow [63]

h +
1
2

mv2 = constant (3.3)

where h states the enthalpy of the expanded gas per atom, v the average

flow velocity of the expanded gas atoms and m the particle (atom) mass. Since

this sum of the enthalpy and the kinetic energy has to be constant it is also

equal to the enthalpy of the gas in the source reservoir ho (per atom). For a

monoatomic ideal gas this is defined as

ho = cp · To (3.4)

=
γ

γ − 1
· k · To

=
5
2

kTo

As equation 3.4 shows the enthalpy ho is directly proportional to the reservoir

(nozzle) temperature To. Hence a change of the nozzle temperature will lead to

a change in the particle beams energy. The constant of proportionality thereby

is the heat capacity for constant pressure cp. It can be found from the heat capacity

ratio γ for a monoatomic gas multiplied by the Boltzmann constant k.

cp =
γ

γ − 1
· k (3.5)

γ =
f + 2

f
(3.6)

γ depends on the degrees of freedom of the molecule/atom which in case of

helium (a monoatomic gas) is given by three translational degrees of freedom
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f = 3.

From equations 3.3 and 3.4 on finds the average final flow velocity v f within

the particle beam to be

ho = 0 +
1
2

mv2
f (3.7)

5
2

kTo =
1
2

mv2
f (3.8)

v f =

√
2ho

m
=

√
5kTo

m
(3.9)

Note the difference of v f (e.q. 3.9) to the average atom velocity in an effusive

source v̄ (see e.q. 3.2). It is possible to say that h can be set to h = 0 when the

gas has fully expanded into the vacuum. This is the case for the molecular flow

region of the beam. The final average flow velocity v f of the free-jet expansion

beam is also often referred to as “terminal velocity” or “terminal speed”. In this

thesis further on it is referred to as final average speed or final average velocity.

As shown in chapter 4.3 a de Broglie wavelength λHe of the beam can be

directly related to this velocity. Also it is possible to calculate the beams energy

E (particle energy) from equation 3.7

E =
1
2

m · v2
f (3.10)

To get a feeling for the magnitudes of the just mentioned values, a room

temperature To = 300 K neutral helium beam has the following properties:

v fHe ≈ 1765 m/s

E ≈ 65 meV

λHe ≈ 0, 565 Å

(3.11)

3.5 virtual source

The boundary between the continuum flow and the molecular flow is named

“quitting surface”. After this surface the particles follow straight trajectories

and have a fixed kinetic energy. Hence from this point on it is possible to

apply geometrical optics to the beam (straight trajectories, constant particle

wavelength for each atom respectively).

If one traces the straight trajectories backwards an area of least confusion can
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be found where all atom trajectories passes through a minimum cross section.

This cross section defines the spatial intensity distribution of the source, the

so called “Virtual Source” [68]. It can be seen as the plane defining the source

size and position in regard to geometrical optics. The width of the virtual

source and its location depends on the nozzle diameter, the source pressure

and the source temperature [69]. It can be approximated well by two Gaussian

functions [69]. For our application an additional beam size defining element,

the skimmer, is placed after the virtual source plane to ensure a small object

size entering into the Gaussian Lens Formula (see e.q. 4.16). The skimmer in

this case defines a new source plane located at the skimmer orifice position. A

schematic illustration of the virtual source is presented in figure 3.1. By back

tracing the particles stream lines straight from the quitting surface the virtual

source plane and its corresponding perpendicular speed distribution can be

found. This is presented in figure 3.1 for one direction [69, 70].



Figure 3.1: Schematic illustration of the relation between the spatial intensity dis-
tribution of the virtual source and the perpendicular speed distribution
of the particles passing through point P. From the perpendicular speed
distribution of the particles in point P (located at the quitting surface) it is
possible to find the spatial distribution of the virtual source and its source
plane. After the gas particles exit the nozzle they initially propagate within
a continuum flow regime symmetric around the beam axis. Since during
the expansion the density of the gas declines and hence the mean free
path length increases the continuum flow regime transforms continuous
into a molecular flow regime. After a distance of a view nozzle diameters
they reach a point from which it is possible to assume that they propagate
further on purely within the molecular flow regime on straight trajectories.
The area of this final transition into molecular flow is named quitting surface.
By back tracing the particles on straight trajectories it is possible to find
the location (plane) of the virtual source. Its spatial distribution can be
deduced from the perpendicular speed distributions of the particles in
point P following the model presented by Thomas Reisinger et al.[69, 70].
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3.6 velocity distribution and speed ratio

Similar to the effusive beam the free-jet beam is also characterized by a velocity

distribution of the participating atoms/molecules. It is common in literature

to express the velocity distribution of a free-jet beam by two temperatures.

The temperature of the beam along the beam axis T‖ and the temperature

perpendicular to this direction T⊥. The velocity distribution along the beam

direction x is described by a Maxwell Boltzmann distribution [71]:

f (vx) =

√
m

2πkT‖
· exp

(
−m · (vx − v f )

2

2kT‖

)
(3.12)

with the standard deviation of the normal distribution defined by

σ(v) =

√
k · T‖

m
(3.13)

A measure for the width of the velocity distribution of atom/molecule beams

is given by the “speed-ratio”. This parameter is defined by the following

equation [59].

S =

√√√√ m · v2
f

2 · k · T‖
(3.14)

As shown in section 8.2.2 the speed-ratio can be directly related to the mea-

sured speed distribution using equation 3.15.

S = 2 ·
√

ln 2 · v f

�v
(3.15)

Free-jet beams with small velocity distributions used for example in beam
scattering experiments can reach speed ratio values higher than 300.





4
F O C U S I N G E L E M E N T

This chapter presents an overview over the theory behind Fresnel zone plates. The

final part discusses the fabrication of this elements.

4.1 background

Focusing of neutral atom or molecular beams is based on de Broglie‘s the-

orem of matter-waves, stating that any matter particle has a corresponding

wavelength and therefore is subjected to the wave-particle duality [24]. Hence

it is possible to assign a wavelength to atoms and molecules in correspondence

to their momentum following de Broglies‘s relation

λ =
h
p
=

h
m · v

(4.1)

where λ is the particles wavelength, p its momentum, m the particles mass,

v its velocity and h the Planck constant (relativistic effects ignored).

Since the de Broglie wavelength of particles (matter waves) lies in the Ångstrøm

regime or even below for the energies relevant here, the corresponding diffrac-

tion gratings for such waves have to be periodical structures with a lattice

constant in the nanometer or even sub-nanometer range.

Therefore only the strong improvement in the field of nano-structuring

technology within the last two decades made it possible to start producing

transmission diffraction gratings and zone plates for the use as optical ele-

ments for atom and molecular beams. One main feature of such diffraction

gratings is that they have to be free standing structures to enable the particles

to pass through the optical element. This is the main difference to the zone

plate elements customarily employed for X-ray and neutron optics [51].

A Fresnel Zone-Plate (ZP) can be described as a circular diffraction grat-

ing with radially increasing line densities. Therefore it can be seen as a pattern
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of alternating opaque/impermeable and transparent/transmissive rings [64].

The ring pattern of a “Fresnel Zone Plate” is based on the “Fresnel Zone

Construction” [72, 64, 51]. An easy way to describe this pattern is to picture a

spherical propagating wave front originating from an object at point P (see

figure 4.1). This wavefront is divided into a set of Fresnel zones by spheres

centered at point P‘ which are differing in their radius by λ/2. Radiation

Figure 4.1: Schematic for the Fresnel zone construction. A Spherical wave front (radius
R) which is propagating from point P is divided into a set of Fresnel zones
by spheres centered at point P‘ with radii R′ + n · λ/2 for n = 1 → N. The
radius of the dividing spheres is increasing with a period of λ/2. The zone
plate geometry can be pictured as the projection of the originating zones
on the divided spherical wavefront onto a screen when every second zone
is set to be transmissive.

transmitted from adjacent zones will have opposite signs of phase and will

nullify each other (each transmissive or opaque ring is on zone). Hence a

blocking/removing of either all even or odd zones will lead to an increase of

radiance in point P‘ proportional to the number of zones. The ZP geometry

is described by the following equation (neglecting the higher power terms)

[51, 64, 72]:

r2
n = n · f1 · λ (4.2)
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with rn the radius of the nth zone (n = 1, . . . , N), f1 the first order focal

length of the zone plate and λ the particles wave length.

In case of a given/fixed outermost zone plate radius rN for a ZP with N zones,

equation 4.2 can be transformed to represent a formula for the corresponding

first order focal length of the ZP.

f1 =
r2

N
N · λ

(4.3)

Just as any other diffraction grating also zone plates have subsidiary diffrac-

tion orders so to speak higher-order foci. For the higher order focal lengths of

the ZP, equations 4.2 and 4.3 alternate to

r2
n = m · n · fm · λ and fm =

r2
N

m · N · λ
(4.4)

with fm being the focal length for the mth diffraction maximum (m = 0, 1, . . .).

The ZP‘s focusing function is purely based on a quantum mechanical effect

namely on the diffraction of particles on the grating structure. They don‘t

influence the excitation state of the atoms or molecules and they are also not

able to break apart bondings within a molecule [51].

As long as there is no strong interaction between the particles and the ZP

material, and as long as the particles can be considered to be of point shape it

is in principle possible to apply classical optics to the ZP. (point shape is not

valid anymore in case of big molecules [73])

The deviations from this classic mechanical point of view can be treated

by additional implementation of quantum mechanics and hence taking into

account van der Waals interaction [74, 75]. In the case of neutral helium atom

beams though this additional effect can be ignored [76, 51].

From looking at equations 4.3 and 4.4 it is obvious that a change in the

wavelength λ will influence the focal length which means that ZPs suffer from

chromatic aberration. By differentiation of the right formula of equation 4.4

with respect to λ one can see that the influence of the chromatic aberration

of a ZP gets smaller for higher order foci. A discussion on the impact of this

aberration effect on the finally accomplishable focal spot diameter for the

microscope setup of Nemi is presented in section 4.2.
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The diffraction efficiency ηm of every particular order m is defined as the ratio

between the intensity Im which is transmitted into the diffraction order and

the total intensity Itotal which is incident on the ZP. It can be written as [51]

ηm =
Im

Itotal
=

(
sin
[ a

d mπ
]

mπ

)2

(4.5)

where a is the width of the transparent zone, d is the width of a zone pair

consisting of an opaque and a transmissive zone and a/d is defined as the

opening ratio of the zone plate.

From the equation it can be found that the diffraction efficiency gets a max-

imum in case of a a/d open ratio of 0.5 (meaning that 50% are blocked). The

corresponding efficiencies are presented in equation 4.6.

Efficiency =1/4, 1/π2, 1/9π2, . . . , 1/m2π2 (4.6)

It can be seen that for an optimal ZP 25% of the incident beam intensity goes

into the 0th order part of the beam, whereas 10.1% are transmitted into the 1st

order focus. This shows that it is crucial to block out the 0th order contribution

which overlaps with the first order focal spot. To achieve this an additional

middle stop disc (central disc) is implemented onto the center of the ZP ring

pattern.

4.2 zone plate aberrations and resolution

The resolution of a ZP and therefore the smallest resolvable distance δ between

two incoherent point sources is approximately determined by the width of the

smallest (outermost) zone [51]. For the first order focal spot this resolution can

be more accurately describes by

δ = 1, 22 · drN

with drN being the width of the outermost Fresnel zone.

In case of polychromatic radiation impinging onto the ZP the resolution is

influenced by the wavelength distribution. This effect of chromatic aberration

can be determined from equation 4.3 which shows that the focal length of a
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ZP is indirectly proportional to the diffracted wavelength.

The transversal width dp of the chromatic point spread function (PSF) of a

Fresnel ZP is given as [44, 64]:

dp =
rN

λ/�λ
(4.7)

Herein rN denotes the radius of the ZP and �λ describes the shift in the

wavelength λ. This relation can be deduced by the following considerations:

Figure 4.2: Schematic illustrating the point spread function (PSF) of a Fresnel zone
plate. The relations between the longitudinal and transversal chromatic
aberration are illustrated.

The longitudinal chromatic aberration � f due to polychromatic illumination

with a wavelength shift of λ +�λ/2 and λ −�λ/2 is illustrated in figure 4.2

[64]. By looking at the displayed similar triangles it can be seen that

dp
2

� f − x
= rN

f (4.8)

and
dp
2
x

= rN
f+� f (4.9)

From eq. 4.8 and 4.9 follows

dp =
rN

f
� f +

1
2

(4.10)
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Furthermore from figure 4.2 and eq. 4.3 it can be found that eq. 4.11 has to

be satisfied.

f
� f

+
1
2
=

f
λ+�λ

2

f
λ−�λ

2
− f

λ+�λ
2

+
1
2
=

λ

�λ
(4.11)

Finally combining eq. 4.11 and 4.10 leads to relation 4.7.

The speed ratio S of a molecular/atom beam is a measure for its monochro-

matic quality [44].

S = 2
√

ln(2)
v
�v

� 2
√

ln(2)
λ

�λ
(4.12)

From section 3.6 and 8.2.2 the speed ratio S of a free-jet expansion beam is

known to be related to the parallel speed distribution of the beam particles

by the left side of equation 4.12. Therefore it can be found that it is likewise

related to the de Broglie wavelength distribution as denoted on right side of the

same equation.

This can be followed by considering

�v =
h̄

m · (λ + �λ
2 )

− h̄

m · (λ − �λ
2 )

=

= − h̄ · 2 · �λ
2

m ·
(

λ2 −
(�λ

2

)2
) =

= − 2 · h̄ · �λ
2

m · λ2 ·
(

1 −
(�λ

2

)2

λ2

)

and further deriving

�v
v

=
h̄

m·λ

− 2·h̄· �λ
2

m·λ2·

⎛
⎜⎝1−(

�λ
2 )

2

λ2

⎞
⎟⎠

=

= −
λ·
⎛
⎝1− (

�λ
2 )

2

λ2

⎞
⎠

2· �λ
2

=

= − λ

2· �λ
2
·
(

1 −
(�λ

2

)2

λ2

)
� − λ

2 · �λ
2

(for λ � �λ
2 )
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Hence for λ � �λ/2 it can be said that

v
�v

�
∣∣∣∣ λ

�λ

∣∣∣∣ (4.13)

Therefore it is possible to asses the chromatic broadening dp (width transver-

sal PSF) of a ZP‘s first order focal spot by

dp = 2
√

ln(2) · rN

S
(4.14)

In the case of focusing a free-jet expansion neutral helium beam this chromatic

aberration is the largest aberration effect influencing the ZP and therefore

defines the shape and size of the focal spot. From [77] it is known that in order

to achieve diffraction-limited focusing, a speed ratio roughly larger than the

number of zones on the zone plate is needed. From equation 4.14 it can be

also concluded that the higher the speed ratio value S, the smaller the effect of

chromatic aberration. One way to enhance S is to work with a cooled free-jet

beam. A decrease of the zone plate radius rN however is no reasonable option

since it will be accompanied by a decrease of the focal spot intensity.

Other aberrations such as spherical aberration, coma and astigmatism have an

influence [64]. Spherical aberration for example leads to a corresponding opti-

mum number of zones for a zone plate which for the first order focus spot is

determined by [64]

Nopt =
√

2 · r1

λ
(4.15)

with r1 being the radius of the first zone. We see that for wavelengths in the

Ångstrøm range, there is no practical limitation to the number of zones.

4.3 atom optical parameters

For zone plates with zone numbers N bigger than 100 the optical properties of

a zone plate can be treated the same way as for a thin diffraction lens with the

focal length f [78, 51].

The evaluation of the expected focal spot size basically starts out the same way

as for any geometrical optics system and therefore is based on the Lensmaker’s
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equation which is also often refereed to as thin-lens-equation. Since the ZPs

used for the instrument presented within this thesis have zone numbers bigger

than N = 100 it is possible to apply the Gaussian Lens Formula (4.16) [72].

1
f
=

1
g
+

1
b

(4.16)

with f being the focal length, g determining the object distance and b the

image distance.

The transverse magnification of the system is given by formula 4.17 [72].

M =
b
g

(4.17)

As mentioned in chapter 1.1 one of the main starting points for the devel-

opment of this microscope was to build it as compact as possible to achieve a

high probe beam intensity. The working distance (image distance ZP-sample) b,

should in principle be as small as possible for the smallest demagnification fac-

tor. Restrictions exist for what can be realized technically to still have enough

space for the sample-detector handling. Hence b was set to a fixed number

b = 205 mm. Also the microskimmer diameters are preset to dSk = 1 − 3 μm.

This number is based on a compromise between an as small as possible diame-

ter ( this value defines the imaged object size) and still as high as possible flow

through the skimmer orifice. Since in reality the helium beam source does not

correspond to a point source, its extended size has to be included in the atom

optical considerations. A more realistic picture of the actual spatial intensity

distribution of the free-jet expansion source is provided by the size and location

of its “virtual source” (see section 3.5). From the work presented by Reisinger

et al. [79, 69] it is known that the virtual source size depends on the nozzle

diameter, the source pressure and the source temperature. Generally it can be

said that it is always bigger than the nozzle diameter. Therefore to achieve

small focal spots the size of the virtual source is restricted by a microskimmer

which is placed into the beam-line approximately 10 − 15 mm after the nozzle.

From preliminarily measurements this distance was found to be long enough

to ensure that for all different applied beam pressures and source temperatures

the skimmer shape does not interfere with the free-jet expansion whilst still

being small enough to provide good beam intensities. Hence the skimmer
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orifice position is defining the object plane, and its diameter is a measure for

the imaged source size. Also the high helium background flow from the source

has to be minimized before the beam hits the target. Therefore the system has

to include several differential pumping stages leading to a minimum length of

the setup.

Based on this considerations the distance between the skimmer and the focus-

ing zone plate complies to the object distance g of the atom optical setup. This

parameter is chosen so that a better resolution than with a standard optical

microscope can be reached while it is still small enough to provide enough

intensity in the focused spot ( desired focal spot diameter is in the 0.3 μm

range). Therefore g was set to a value of g = 935 mm. The magnification of the

system can now be determined using equation 4.17 and it is found to be:

M = 0.219 (4.18)

After deciding on this parameters corresponding Fresnel zone plates for room

temperature and liquid nitrogen cooled beams were produced [65].

Both types of zone plates have a focal length of f = 168.14 mm if utilized

in their temperature range.

The difference between the two types originates from different Fresnel zone

dimensions (patterns), necessary for the two different helium beam wave-

lengths. For a free-jet helium beam we have:

λHe =
h

mHe · vHe
(4.19)

vHe =

√
5 · k · To

mHe
(4.20)

with λHe the de Broglie wavelength of the helium beam, vHe the average

speed of the helium atoms in the beam, mHe the mass of a helium atom, To the

atom temperature, k the Boltzmann constant and h the Planck constant1.

In both cases the outer diameter of the ZP is predefined to a diameter of

dZP = 192 μm by the fabrication process.

1 Planck constant h = 6.62618 · 10−34 [Js].
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To reduce the influence of the 0th order part of the beam onto the first order

focus spot, the ZPs designed for Nemi were fabricated with two different

middle-stop disc diameters in particular dMS1 = 20 μm and dMS2 = 50 μm. The

two zone plates have about 1000 and 500 rings respectively (see table 4.1)

Thus the fabricated ZPs can be also distinguished by their middle-stop diame-

ters.

Fresnel zone numbers Nf

dMS1 = 20 μm dMS2 = 50 μm

RT = 320 K 991 934

LN = 100 K 554 522

Table 4.1: List presenting the number of Fresnel-rings Nf for the different zone plate
types fabricated for Nemi. The outer diameter of all ZPs is dZP = 192 μm,
and their first order focal length is given by f1 = 168.14 mm. They are
fabricated for two different probe beam temperatures (RT=320 K, LN=100
K) and with two different middle-stop diameters dMS1 = 20 μm and dMS2 =
50 μm respectively.

A detailed sketch of the atom optical setup for Nemi as well as the correspond-

ing distances is presented in figure 1.3.

The diameter of the geometrical image of the source dop without considering

any aberrations can be determined by the object size (source size) and the

magnification factor M of the system. Since the source size is defined by the

skimmer diameter the expected focal spot diameter without any aberration

effects lies in the range of app. 200 − 1100 nm.

dop = M · dskimmer (4.21)

4.4 focused spot size

The total focused spot size is a convolution of dop and the broadening due

to chromatic aberration dp. In a simple approximation both of this values

can be assumed to have a Gaussian distribution. Therefore the value for
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the theoretically predicted focal spot diameter dth can be determined by the

square-root sums of the squares of dop and dp.

dth =
√
(dop)2 + (dp)2 (4.22)

Table 4.2 presents the theoretically expected focused spot diameters for the

two different beam temperatures of To(RT) = 320 K and To(LN) = 100 K for a

microskimmer diameter of dSk = 1 μm and dSk = 3 μm respectively. The speed

ratio values utilized for this determination are based on the numbers evaluated

for the measurements presented in section 8.

Theoretically evaluated focused spot diameter dth

dSk = 1 μm dSk = 3 μm

RT = 320 K 1.43 μm 1.56 μm

LN = 100 K 0.38 μm 0.73 μm

Table 4.2: Theoretically expected focal spot diameters for the two different beam
temperatures of To(RT) = 320 K (S = 113.6 , po = 150 bar) and To(LN) =
100 K (S = 521.4, po = 150 bar) and the two different skimmer diameters of
dSk = 1 μm and dSk = 3 μm respectively.

The focused spot size is mainly influenced by the chromatic aberration of

the ZP.

4.5 zone plate fabrication

The free-standing silicon-nitride zone plates were fabricated by Thomas Reisinger

at the Mit Nanostructures Laboratory under the supervision of Henry

Smith. They were produced using a scanning electron-beam lithography (SEBL)

process in combination with reactive ion etching. The fabrication process is

described in [65] and [70]. Scanning-electron micrographs of free-standing

silicon-nitride zone plates for Nemi are presented in figures 4.3 and 4.4 . Note

that the free standing Fresnel rings have to be stabilized and held in place by

a support-grid structure (radially orientated rod structures crossing the ring

pattern in a star shaped manner).



Figure 4.3: SEM images of one of the Nemi zone plates (support chip 8, membrane
1). Top: image of the whole zone plate with a middle stop diameter of
dMS = 20 μm visible; middle : SEM micrograph of the same zone plate in
higher magnification showing the outermost Fresnel zones; bottom: same
zone plate in higher magnification showing the middle area Fresnel zones of
the zone plate. (The circular shaped patterns overlying the top image of the
whole zone plate are imaging artifacts)
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Figure 4.4: Scanning-electron micrographs showing the two different zone plate types
utilized in the Nemi setup representing the difference in the middle stop
diameter; top: outer diameter dZP = 192 μm zone plate with a middle
stop diameter of dMS = 20 μm (support chip 8, membrane 2); bottom:
dZP = 192 μm zone plate with a middle stop diameter of dMS = 50 μm
(support chip 8, membrane 6). (again the in a circular wave form shaped
patterns overlying both micrographs are imaging artifacts)

81





5
D E T E C T I O N

The following chapter presents the theoretically considerations which the detection

system of the matter wave microscope is based on. It will describe the working prin-

ciple of a so called Pitot-tube detector, as well as the measurement concept of the

cold cathode pressure gauge. The corresponding mathematical considerations regard-

ing this detection-method are presented in section 2.1.6 together with the evaluation

process for the intensity of the measured reflection signal.

5.1 theoretical background detection system

As described in section 1.2.4, the helium atom detection for the Nemi micro-

scope is based on a pressure measurement within an accumulation tube, a

so called Pitot Tube. This setup became the system of choice because of its

robust working principle and simple design demands. A main factor for the

application of such a detection system is the fact that there is no need for

time resolved and mass selected measurements in Nemi. The intensity of the

reflected beam signal is found from the relative pressure-variation within the

detector tube.

5.2 working principle pitot tube

A Pitot Tube is an accumulation tube with a low-conductivity entrance aper-

ture facing the signal to be measured. This aperture connects the small accu-

mulation cell to the surrounding vacuum. A pressure measurement system

determining the pressure rise/fall within the accumulation volume is mounted

to the opposite side of the tube. Under high-vacuum/ultra-high-vacuum

(HV/UHV) conditions the pressure in such an accumulation volume is only

dependent on the quality of its evacuation. This means that it depends on the

conductance of the opening between the Pitot tube and the HV/UHV chamber.

As described in section 2.1.6 the atoms/molecules entering the Pitot tube have

a preferential forward direction into the tube. They will hardly be influenced
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by the shape of the entering aperture. Within the tube volume the particles

will accumulate bouncing around in all directions. At the same time the Pitot

tube itself is an effusive source (see section 3.2 and and 2.2.1.2) with an outflow

(backflow) of gas particles from the tube (see figure 5.1). After some time an

equilibrium state between the in- and out-flow of the tube arises (see e.q. 2.19)

where the same amount of entering atoms/molecules will leave the tube again.

The formation of this equilibrium state is connected to an increase of the

Pitot-tube pressure which can be observed. The value of this pressure increase

is a measure for the amount of particles entering the tube and therefore for the

beam/signal intensity. The mathematical context of a Pitot tube is described in

chapter 2.1.6. The final correlation between the Pitot tube pressure variation pT

and the incoming particle flow Ṅin is

pT = pSDC +
Ṅin · k · T

L
(5.1)

T states the sample-chamber/Pitot-Tube temperature, pSDC the pressure in

the sample/detector chamber and L the vacuum conductance factor for the

pinhole entering aperture of the tube.

Figure 5.1: Schematic of the working principle of a Pitot tube

5.3 cold cathode pressure measurement gauge

A cold-cathode ionization vacuum gauge also often referred to as inverted-

magnetron essentially consists of two electrodes, a cathode and an anode. By

applying a high voltage electrical field between this two electrodes a gas-

discharge can be induced by the electrons traveling between the cathode and
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the anode. This leads to an ionizing process of the residual gas within the

pressure gauge volume. The gas-discharge current is a measure for the pressure.

However just at gas pressures above 1 mbar the straight trajectories of the

electrons are sufficiently long enough to ionize enough molecules/atoms to

keep the gas discharge running. Due to that reason for lower ambient pressures

the traveling path of the ionizing electrons has to be extended. This is done

by applying an additional magnetic field which forces the electrons to travel

on spiral trajectories. The electron paths are extended and consequently the

probability for a collision with gas molecules on the electrons traveling path

is enhanced strong enough and a stable gas discharge even in the ultra high

vacuum region is reached. This type of vacuum gauge can be used for pressure

measurements down to the range of 1 · 10−11 mbar. An important point to take

into consideration is the fact that the measured signal of cold cathode gauges

is gas type dependent. They have different sensitivities for different gas types

to detect. In case of helium the sensitivity of these gauges is low. The reason for

this is that the required ionization energy for helium is high. Most producer

companies provide corresponding diagrams and correction numbers for their

instrument read-out values for different gas types. In case of the cold-cathode

gauges used for the Nemi microscope the correcting number is stated to be

linear in the range below 10−5 mbar and is specified to be K = 5.9 for helium.

The conversion formula describing the correlation between measured signal

and the effective pressure is stated in equation 5.2. Further information can

be found in the literature [80, 81] as well as in the technical documentation

brochures provided by the different manufacturers.

pe f f = K · indicated pressure (5.2)
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T E C H N I C A L R E A L I Z AT I O N

Within the following section the design concept for Nemi with its technical specifi-

cations and documentations is presented. This is done by the aid of 3D CAD model

images which should provide a better illustration of the technical realization regard-

ing this instrument. Nearly every component implemented in the set-up of Nemi

was therefore designed with a computer-aided design (CAD) software called Pro-

Engineer Wildfire [82]. This kind of approach for the development of a new instru-

ment has the big advantage, that the shape, size and even weight of each component is

roughly known before its actual manufacturing process. Therefore the components can

be assembled virtually beforehand, which provides a strong tool to evaluate the func-

tionality of a newly designed setup. Also it enables special tailoring of a components

shape with regard to other parts of the instrument‘s setup, as well as an easy commu-

nication tool with the mechanical manufacturers of the several customized parts, since

most of them also support CAD-model based communication. Later on changes on the

system can be easily evaluated first, by adapting the CAD-model of Nemi before the

actual change of the parts, as well as it is possible at any time to read out the dimen-

sions of the actual components from the model files. Therefore a big part of the work

presented in this thesis concerns the design and development of the instrument based

on 3D CAD-modeling. This section covers the engineering point of view regarding

the build-up of our matter wave microscope and therefore presents the technical details

and requirements needed for this work. It is structured in a way that each of the UHV

chambers of Nemi will be treated in a separate section with all components belonging

to this chamber described in the same section.

6.1 source chamber

The basic requirements for the source and the source chamber are to provide a

free-jet-expansion from a nozzle element into a HV/UHV chamber. The limita-

tion regarding the nozzle pressure is, for the moment, set by the maximum

pressure of commercially available helium (He 6.0) gas bottles of 200 bar.

The vacuum chamber and its corresponding pumping system needs to be able
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to deal with the high helium flow rates originating from the expansion (see

chapters 2.1, 2.2 and 3).

It was decided to use two turbomolecular pumps with magnetically bearings,

whereas the magnetically version was chosen on account of reduction of the

vibrational influence on the microscope.

As a main additional requirement the nozzle has to be mounted with free move-

ment in all three (X-Y-Z) directions. This boundary condition is demanded

by the beam-line alignment. As described in sub-chapter 1.2.2, a skimmer is

implemented as an exit aperture of the source chamber. This element on the

other hand is mounted in a fixed position, defining a center-line for the beam.

Therefore the nozzle itself has to be moveable in X-Y direction to adjust its exit

orifice directly in line with the skimmer opening hole.

Additional movement in Z-direction corresponding to a distance change be-

tween the nozzle and the skimmer tip is also required. This is due to possible

variations in the optimum distance between the skimmer and the nozzle (see

chapter 3).

6.1.1 Nozzle / Source

For the microscope setup presented within this thesis it was decided to work

with a standard design concept for the nozzle. It is based on a pinhole aperture

which is mounted pressure and vacuum tight against a stainless steel high

pressure gas tube. One big change compared to most other neutral helium

free-jet sources presented in literature and earlier research work is, that the

nozzle setup for Nemi and hence the beam-line is arranged in vertical direction.

The decision of choosing such an upright beam line setup was mainly based

on the anticipated easier sample and detector handling within the sample

chamber which is located at a standard working height.

However, the principle of the nozzle design presented within this work could

also be applied in a horizontal beam line setup1.

1 The technical design of the free-jet source was developed in collaboration with Kurt Ansperger
[83] who also performed the manufacturing of the source components in his mechanical
workshop.
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6.1.1.1 Pinhole aperture - nozzle body

The pinhole aperture utilized for the nozzle setup is a commercially available

Platinum pinhole aperture disc (1)2 with a diameter d = 3.04 (+0/ − 0.02)mm

and a thickness of 0.25 (+0/ − 0.02)mm. It is purchased by Plano [84] (article

Nr.: A0300P, A0301P). Two different pinhole aperture diameters were chosen

namely 10 μm and 5 μm. The 5 μm diameter aperture is the smallest pinhole

diameter available from this company.

3D schematics of an aperture disc are presented in figure 6.1. One side of

the nozzle disc has two conical counter-bores. The final micrometer range

exiting hole has cylindrical shape. The pinhole accuracy is specified to be

±1 μm for pinhole sizes between 5 − 10 μm, and the roundness is stated to

be within 0.1 μm. A scanning electron micrograph of such a dN = 5 μm

nozzle disc pinhole aperture is presented in figure 6.2. The left scanning

electron microscope (SEM) image in figure 6.2 shows a, with some kind of dirt

particles, clogged dN = 5 μm nozzle disc, which was unmounted from Nemi

and exchanged with a new one.

Figure 6.1: Left: principle 3D scheme of the pinhole aperture nozzle disc (1), right: scheme
half section of the nozzle disc.

The pinhole aperture disc is mounted pressure and vacuum tight against a

three millimeter outer diameter stainless steel high pressure gas tube. For the

tightening mechanism the nozzle aperture disc (1) is placed in a circular holding

fixture (2) made from stainless steel which again is placed in a triangular

shaped nozzle retaining fixture (3) (see figure 6.5).

2 Component number for figure 6.5. For simplicity this system is applied for the components in
the chapters 6.1.1 and 6.1.2.
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Figure 6.2: Left: SEM micrograph of the aperture pinhole in a dN = 5 μm nozzle
disc, right: SEM image of a clogged dN = 5 μm nozzle disc unmounted
from Nemi. The black stripes appearing in the image are presumably
imaging artifacts due to statically charging of the dust particle during the
microscopes scanning process.

Figure 6.3: Left: Sketch of the circular holding fixture (2) for the nozzle disc, right: 3D
scheme half section of the circular holding fixture.

To seal the platinum nozzle disc against the stainless steel tube (5) a copper

gasket (4) is placed between the tube and the nozzle disc. 3D schematics of the

components and the mounting principle are presented in figures 6.1, 6.3, 6.4,

6.5 and 6.6.

As indicated in figure 6.5 the stainless steel high pressure gas tube (5) is directly

mounted into the copper nozzle-cooling block (6). This is done by a specially

vacuum proof soldering technique.

That the sealing takes definitely place between the nozzle disc and the high

pressure gas tube is ensured by the fabrication of the triangular shaped nozzle

retaining fixture (3) and the circular holding fixture (2). When this two compo-

nents are mounted against the gas tube and the copper nozzle-cooling block (6)
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Figure 6.4: Left, middle: Sketch of the triangular shaped nozzle retaining fixture (3) for
the nozzle disc, right: 3D scheme half section of the nozzle retaining fixture.

a free distance between those two components and the cooling block is left. In

that way it is possible to ensure that the tightening takes place between the

nozzle disc, the copper gasket and the high pressure gas tube. This can be seen in

detail in the half section scheme of the assembly drawing presented in figure

6.6.

6.1.1.2 Nozzle cooling

Another required boundary condition is the possibility of cooling the nozzle

down to enable a change of the beams energy (see section 3). The need for this

feature is due to the possible manipulation of the helium beam‘s wavelength

by a change of the nozzle temperature (see chapter 3.4).

The temperature adjustment of the nozzle is done by means of liquid nitrogen.

Since it has to be ensured that the nozzle temperature keeps stable over a

time-frame of up to several hours at various temperature settings, a stabiliza-

tion through a counteracting heating element is implemented. The heating

element is controlled by a regulating electronic device acting on account of

the measured actual nozzle temperature. Note that actually not the nozzle disc

but the part of the high pressure gas tube which is mounted within the nozzle

cooling block is cooled down. However the distance of this part to the nozzles

exiting pinhole is small enough to assume that the gas particles (He-atoms)

leave the nozzle with nearly the same thermal energy which they gained

during passing the cooled part of the steel pipe.

The cooling of the copper nozzle block is done via a copper braid which is

mounted with good thermal contact to a very thin-walled liquid nitrogen filled

stainless steel pipe. Figure 6.7 presents a digital photograph of the copper-

braid connection between the nozzle-cooling block and the stainless steel tube

which on its inside gets filled with liquid nitrogen. One can also see the elec-
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trical connection for the vacuum suitable high performance heating cartridge

(Type: HS-4,0: ø=4 mm, L=20 mm and 12V/8W, max. 260°C from HS [85]) and

the mounting of the K-type thermocouple, which provides the possibility to

control the counter heating for a stable regulation of the requested nozzle

temperature. This regulation is performed by an Eurotherm 2404 Controller3

[86].

The supply of liquid nitrogen for the cooling mechanism is performed by a

round tank also referred to as chicken-feeder which is mounted via a KF-25

connection to the head flange of the nozzle mounting setup (see section 6.1.2.2

and figure 6.11).

6.1.2 Nozzle mounting

The nozzle has to be mounted with free-movement in the horizontal X- and

Y direction to provide an adjustment possibility of the nozzle pinhole and

the skimmer pinhole for the beam alignment. Since every source chamber

venting- or nozzle cooling- procedure will slightly shift the nozzle position,

this alignment has to be done frequently and under present vacuum conditions.

Therefore it was decided to perform this step automatized by high vacuum

compatible stepper motors.

The requirements for the positioning system are a vacuum compatibility down

to a pressure below 1 · 10−6 mbar, a travel range in two axes of minimum

5 mm with a resolution of 0.5 �m and maximal physical outer dimensions of

approximately 160 mm x 160 mm x 100 mm (X,Y,Z).

Additionally a vertical Z-adjustment for the distance between the nozzle and

the skimmer has to be provided. Former experiments performed with our

other neutral helium scattering instrument have shown that a skimmer-nozzle

distance between 10-12 mm results in a good beam performance. In the follow-

ing two sub-chapters a detailed description of the technical solution for this

horizontal and vertical adjustment is presented.

6.1.2.1 X-Y movement

The system of choice for Nemi became a combination of two stepper motors

from Zaber (micro linear actuators with built-in controllers) with 25 mm travel

3 2404-CG-VH-HZ-XX-XX-XX-XX-A2-XX-ENG-K-250-1300C
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and RS-232 controlled together with two low vacuum compatible translation

stages with 28 mm travel from Zaber [87]. The linear actuator models are one

actuator of the type KT-NA08A25-SV-ENG1243 acting as a master device and

one T-NA08A25-SV-ENG1244 actuator working in slave mode. The notation

for the two stage components is TSB28-MV. The main specifications for the

actuators are presented in table 6.1. Digital photographs of this components

are presented in figure 6.8. The two linear translation stages are mounted on

top of each other with 90° rotation to provide the X/Y motion.

Zaber linear actuator specifications

Microstep Size (Default Resolution) 0.047625 μm Maximum Current Draw 350 mA

Travel Range 25.4 mm Power Supply 12-16 VDC

Accuracy +/- 8 μm Mechanical Drive System Precision leadscrew

Repeatability < 1 μm Limit or Home Sensing Magnetic hall sensor

Backlash < 4 μm Manual Control No

Maximum Speed 8 mm/s Axes of Motion 1

Minimum Speed 0.00022 mm/s Vacuum Compatible 106mbar

Peak Thrust 65 N Operating Temperature Range 0 to 50 degrees C

Maximum Continuous Thrust 50 N Weight 0.13 kg

Table 6.1: Detailed specifications for the KT(T) -NA08A25-SV-ENG1243 linear actua-
tors

The mounting of the above described source setup onto the X/Y stage is

done with a specially manufactured nozzle mounting plate which is fixed to

the Zaber stage by four M6 screws. It has to be ensured that the thermal

contact between the copper nozzle-cooling block and the X/Y stage is as small as

possible. Therefore spacing cylinders with low temperature conductance made

of macor are implemented between the copper nozzle block and the nozzle

mounting plate. Figure 6.9 and 6.10 present sketches and digital photographs

of the real components of the described X/Y adjustment setup for the source.

6.1.2.2 Z movement

Due to the less frequently required vertical Z-movement of the nozzle, this

motion is performed manually, but still under present vacuum conditions.

Figure 6.11 shows a sketch of the Z-movement mechanism in combination

with the X/Y-Stage and the nozzle-setup.

This graphic should explain the working principle for the vertical adjustment

of the source. The whole X-Y-Z alignment setup for the nozzle is mounted
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via a CF-200 source mounting flange onto (into) the source chamber. The X/Y

table is fixed inside the vacuum chamber whereas the Z-movement is adjusted

from outside. An edge welded CF-100 bellow ensures the possibility for the Z-

movement of the source under vacuum conditions.

Without any counteracting-force, the vacuum conditions within the source

chamber would compress the edge welded bellow together. To work against

this compression, several flat spring sets are placed around three circular sym-

metrically arranged M10 thread rods which are connected with Z-axial free

movement to the top nozzle head flange holding the source.

By tightening of the Z-adjustment screws on-top of this three M10 thread rods,

the vacuum bellow is stronger compressed and the nozzle moves relatively

to the fixed source mounting flange further down in its Z-position. To enable

also a backwards movement of the source to a higher Z-position, the above

mentioned flat spring sets provide a restoring force against the vacuum when

the Z-adjustment screws are loosened.

In this way it is possible to move the source position over a range of approxi-

mately 20 mm in the vertical Z-direction. Three additional M10 threaded rods,

also arranged in a circular position around the bellow, allow an adequate

guidance of the nozzle head flange during this Z-movement, and furthermore

they can be used for the fixation of the final Z-position. For an easy horizontal

adjustment of the head flange a small circular spirit level is implemented on the

top side of the flange. Also the connection for the liquid nitrogen tank (also

referred to as chickenfeeder) for the nozzle cooling is shown in figure 6.11.

Figure 6.12 presents more 3D sketches of the whole nozzle mounting for the

“in vacuum” X/Y/Z movement.

6.1.3 Skimmer

The skimmer is a conical shaped aperture with its small orifice facing the source.

The diameter of the skimmer orifice has to be in the lower micrometer range

to achieve a micrometer or even sub-micrometer focal diameter with Nemi

(see chapter 4.3). Therefore the orifice diameters of the skimmers designed for

this instrument are in the range between 1 − 5 μm. Such skimmers are called

“microskimmers”.

However for the first beam characterizing experiments also bigger skimmer

diameters between 10 − 400 μm have been used.
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The microskimmers are produced by performing a glass pulling process similar

to the one used to fabricate patch clamps for biological cell and tissue studding

[88, 89].

The ones used for Nemi were manufactured here in our group at the IFT in

Bergen [54]. They consist of such a glass pulled skimmer tip, which is glued

with a high vacuum suitable two-component adhesive into the small hole at

the top of a thin walled conical shaped copper body. The glass puller used for

this application was a Narishige PP-830 model [54]. A picture of one of the

Nemi skimmers is shown in the left side of figure 6.13, whereas the middle and

the right part of this figure presents an electron microscope (SEM) micrograph

of the glass tip from a skimmer similar to the ones used for Nemi.

To mount the skimmer element into the source chamber it will be fixed with

the skimmer fixation ring, three M1.6 thread rods and hex-nuts to a skimmer

mounting ring. This ring is mounted on top of a specially reworked CF-150

vacuum blind flange (Viton sealing). To enable the beam to pass undisturbed

through the skimmer orifice into the next chamber the skimmer mounting ring

is also formed conically. The specially reworked CF-150 flange on the other

hand has a cylindrical transition hole. A sketch of this three components is

presented in figure 6.14. The blind flange is fitted vacuum tight (with a viton

gasket) into the source chamber in a way that it provides the skimmer to be

the exiting aperture of the chamber. To exchange the skimmer only the skimmer

fixation ring which is held by the three M1.6 hex-nuts has to be unmounted

and after the skimmer exchange it simply is remounted again.

6.1.4 Complete source chamber

Finally the above mentioned elements (source/nozzle and skimmer) are imple-

mented into a CF-200 Cube from Vacom [90] which is acting as the source

chamber. This cube holds six CF-200 connections providing one connection for

the source mounting, two ports for the two 600 l/s Mag W-600 turbo molecular

pumps, one opening for a CF-quick access door with view-port, one connection

for a CF-4 port cluster flange and one opening for the skimmer mount, which at

the same time acts as connection to the adjacent pumping stage chamber. For a

better illustration of the assembly figure 6.15 shows an exploded 3D sketch of

the just mentioned components. The two Mag W turbo pumps are assembled
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to the cube via a CF-200/CF-150 reducer flange. Also the 4xCF-40 cluster flange

with the main flange dimension of CF-150, as well as the CF-150 quick access

view-port are mounted to the chamber with the same reducer flanges. The

view-port enables a fast access possibility for a skimmer or nozzle exchange.

Since the required vacuum conditions for the source chamber lie only in the

10−6 mbar range, the Viton gasket of the view-port is not an issue. The cluster

flange is used to provide additional ports for vacuum feed-throughs and pres-

sure measurement gauges. At the moment just one of these CF-40 flanges is

equipped with a Pfeiffer [91] PKR-251 active pirani/cold cathode transmitter

(specifications see appendix C.1) for pressure monitoring of the chamber.

The source is directly mounted to the chamber via the CF-200 source mounting

flange. To fix the skimmer to the source chamber and enable a connection to the

adjacent pumping stage chamber, a L = 105 mm long CF-200/CF100 reducer

flange from the company VAB [92] is used. This reducer flange is mounted to

the bottom CF-200 sealing of the cube. The specially reworked CF-150 skimmer

mounting flange on the other hand is fixed on the top side of the just mentioned

VAB reducer flange with a Viton gasket implemented for the vacuum sealing.

Therefore the skimmer mounting flange together with the skimmer mounting ring

and the skimmer will end up inside the CF-200 source chamber cube when the

VAB reducer flange is attached via a copper gasket sealing to the cube.

Two schematics showing the concept of the final skimmer and nozzle (source)

position are presented in figure 6.16.

For a better image of the whole source chamber assembly figure 6.17, 6.18

and 6.19 present further schematic views of the assembly of the source chamber

setup.



Figure 6.5: Exploded assembly drawing of the nozzle disc mounting. The nozzle disc
(1) is placed in the circular holding fixture (2) and sealed by a copper gasket
(4) against the high pressure gas tube (5). To tighten this sealing the circular
holding fixture gets placed within the triangular shaped nozzle retaining
fixture (3) which again is tightened by three M3 stainless steel screws into
the copper made nozzle-cooling block (6). The stainless steel high pressure
gas tube (5) on the other hand is mounted by a specially vacuum proofed
soldering technique directly into this copper nozzle-cooling block (6).
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Figure 6.6: Scheme of the assembled nozzle. Top left: assembled nozzle; top right,
bottom left, bottom right: 3D half section scheme of the assembled nozzle.
Note: the vacuum and high pressure tight sealing takes place between the
nozzle disc (1), the chopper gasket (4) and the high pressure gas tube (5).
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Figure 6.7: Picture of the nozzle cooling system displaying the copper-braid connection
between the copper nozzle-cooling block and the liquid nitrogen filled
stainless steel tube. The two red wires are the electrical connection for
a high performance heating cartridge which is inserted into the nozzle-
cooling block. The thermic connection between the tube for the liquid
nitrogen (LN2) and the copper braid is done by high force clamping of the
braid wires onto the outer diameter of the tube.
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Figure 6.8: Digital images of the Zaber stage components. Top: vacuum compati-
ble TSB28-MV linear translation stage with mounted KT-NA08A25-SV-
ENG1243 linear actuator; middle: detail picture of the actuator pin which
performs the linear motion and bottom: picture of the pull back mechanism
(return spring) for the stage.
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Figure 6.9: 3D schematics of the X/Y nozzle adjustment based on two perpendicularly
assembled Zaber linear stages (2) in combination with two Zaber linear
actuators (1). The nozzle setup (3) is mounted via three Macor spacers (white)
onto the nozzle mounting plate (4) which again is fixed by four M6 screws
onto the X/Y translation stage (2). Also shown in this sketches is the high
pressure helium supply gas tube (5) of the source. (3D CAD model Zaber
linear stages (2) & linear actuators (1) provided by Zaber [87] )
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Figure 6.10: Photograph of the actual Nemi nozzle mounting showing the Zaber stages
and linear actuators for the X/Y adjustment of the source.
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Figure 6.11: 3D sketch of the Z-axis source movement mechanism.
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Figure 6.12: 3D sketches of the whole nozzle (source) setup with free movement in
X/Y and Z direction.
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Figure 6.13: Left: photograph of a skimmer for Nemi; middle, right: SEM micrograph
of a glass tip from a skimmer similar to the ones used in Nemi. The SEM
images were taken by Thomas Reisinger and Martin Greve.

Figure 6.14: Sketches of the skimmer mounting on the CF-150 vacuum blind flange.
Left: skimmer (gold), skimmer fixation ring (light-gray) skimmer mounting ring
(dark-gray) and specially reworked CF-150 blind flange (green) for skimmer
mount; right: 3D scheme half section to provide a better understanding
for the conical shape of the components. The half section sketch also
shows the Viton sealing (black) for the vacuum tight mounting of the
skimmer mount flange into the source chamber.
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Figure 6.19: Sketches of the assembled source chamber from different view directions.
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6.2 pumping stage chamber and zone plate chamber

Chapter 1.1 already briefly mentions that the here presented microscope

system requires differential pumping to enable a strong enough background

gas reduction along the beam line. Especially when the beam hits the focusing

zone plate and even more important in the sample chamber where the focused

beam spot hits the sample, the surrounding vacuum conditions have to be in

the ultra high vacuum range with very low helium gas background. Therefore

the system is build up by several differential pumping stages represented by

the different chambers. They are separated by different aperture openings. A

discussion on the amount of helium diffusion between the chambers along

the beam line is presented in chapter 2.2. The technical setup of the two next

adjacent chambers following the source chamber is presented in the following.

6.2.1 Pumping stage chamber (PST)

The passage (aperture) between the source chamber and the adjacent pumping

stage chamber is represented by the small skimmer orifice. This implies that

the majority of the helium gas background from the source chamber will be

pumped out of the system by the source chambers own pumping setup, since

the skimmer orifice is in the low micrometer range. Due to diffusion processes

there is still some amount of helium gas entering the next chamber besides the

helium atoms in the beam itself. As a first differential pumping stage the so

called pumping stage chamber (PST) is implemented into the system.

The main purpose of this chamber is to reduce the helium background in the

system, and additionally it also serves as a spacer between the skimmer and

the zone plate.

The connection between the source chamber (SC) and the PST is a CF-100

manual stainless steel gate valve from Vacom [90]. The chamber itself is a

combination of a standard CF-100 tee piece 4 together with a CF-100 reducer

cross with two CF-40 slots from VAB [92]. As passage aperture to the following

zone plate chamber (ZPC) a CF-100 copper gasket pinhole aperture is used. The

pinhole/aperture diameter for that connection is 5 mm.

4 purchased also from Vacom [90].
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Figure 6.20 represents sketches of the PST setup. A MAG W 300 turbo-pump

pumps this chamber. As shown in figure 6.20 it is directly mounted onto the

CF-100 tee piece. One of the CF-40 connections from the CF-100 reducer cross is

utilized for the UHV pressure measurement of the chamber. The implemented

pressure measurement gauge is an IKR-270 active cold cathode transmitter

from Pfeiffer [91] (specifications see C.1). The remaining CF-40 connection

on the reducer cross is at the moment unoccupied, but it provides a further

connection possibility.

6.2.2 Zone plate chamber (ZPC)

The requirements for the zone plate chamber are for one part to provide a second

stage of differential pumping along the beam path, and for the other part to

locate the actual beam focusing element namely the zone plate. The helium

background and flow situation for this chamber can be looked up in chapter

2.2.

The chamber is pumped by a MAG W 300 turbo pump, which is connected to

the CF-100 side flange of the specially manufactured zone plate chamber CF-100

cross. The CF-100 cross is shown in figure 6.21. Additionally to the connection

flange for the turbo pump, this chamber also holds the mounting flange for

the zone plate holding mechanism. The ZP mounting CF-63 flange is located at

a position so that after the connection of the zone plate chamber cross into the

system, the center axes of this flange lies in the horizontal zone plate location

plane (within a tolerance of ±5 mm). The position of this plane in respect to

the source and the skimmer is defined in chapter 1.3.

There is an additional CF-40 connection flange welded to the zone plate

chamber cross which provides the connection port for the ultra high vacuum

pressure measurement gauge for this chamber. A IKR-270 active cold cathode

transmitter from Pfeiffer [91] is used for pressure monitoring.

As an additional spacer between the zone plate chamber cross and the pumping

stage chamber a CF-100 distance flange with four attached CF-16 ports is imple-

mented. Generally the zone plate chamber cross could have been manufactured

in the exactly needed length to place the zone plate connection port in the right

horizontal distance from the source. But by implementing this additional stan-

dard part from VAB [92] it was possible to build the zone plate chamber cross

on the basis of a standard CF-100 tee piece, which simplified the production
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and therefore reduced the costs for this component. Another beneficial effect is

that the added CF-100 distance flange holds four more CF-16 connection ports

for the system. This enables the implementation of additional feed-throughs

into the zone plate chamber which for example could provide features like

temperature monitoring.

The exiting aperture and connection of the zone plate chamber to the adjacent

sample chamber of Nemi is provided by a diameter 5 mm CF-100 copper gasket

aperture. A sketch showing the implementation of the exiting aperture as well

as the four-port VAB distance flange to the other ZPC components is presented

in figure 6.22.

6.2.2.1 Zone plate mounting & X-Y movement

The second requirement to the zone plate chamber is, as mentioned in section

6.2.2, to hold the zone plate (ZP) itself. Tied to this requirement is the demand

of a horizontal X-Y adjustment possibility for the ZP5.

The fabrication process of the zone plates provides a silicon nitride chip holding

up to nine zone plates. A principle sketch showing such a chip and its mounting

can be found in figure 6.23. The chip is attached to the ZP holding plate which

on the other hand will be mounted onto the zone plate holder itself by six M4

hexagon socket screws. Figure 6.24 shows a detailed schematic of the mounting

for the ZP holding plate. Another feature implemented onto the ZP holding plate

is a beam adjustment inset. The position of this inset is also shown in figure 6.24.

With the help of this inset it is possible to set a X and Y reference axis for the

in chapter 7.1.2 described zone plate adjustment with the beam line.

The attachment of the zone plate chip onto the ZP holding plate takes place

with three fitting springs shown in figure 6.25.

To make sure the focused helium beam can pass unaffected further on into the

sample chamber the ZP holding plate as well as the zone plate holder itself have

milling grooves. A sketch and a photograph of the ZP holding plate mounted

onto the zone plate holder showing these milling grooves is depicted in figure

6.26.

The zone plate holder is fixed to a rotatable CF-63 flange (zone plate holder flange)

on its back end. Due to the rotation feature it is possible to align the ZP holding

5 Manufacturing of the zone plate holder parts has been performed by Kurt Ansperger [83].
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plate into a horizontal position after the zone plate holder is mounted into the ZP

chamber. To find this horizontal position, a small circular spirit level is attached

to the outside of the zone plate holder flange (see figure 6.27). The fastening of

the rotatable part of this flange against the fixed mounted outer ring of the

flange is done via three radially placed grub screws.

Figures 6.27 and 6.28 present two sketches of the completely assembled zone

plate holder from different view directions.

To mount the zone plate holder with a variable adjustment option in X&Y

direction, the CF-63 flange of the zone plate holder is not directly mounted to

the CF-63 zone plate mounting flange on the zone plate chamber cross. Instead an

additionally X/Y/Z ultra high vacuum stage (XYZT64-50-H from UHV Design

[93]) is implemented in-between those two components. A sketch of this ultra

high vacuum stage is presented in figure 6.29. The X&Y travel of the stage is

±12 mm from the center position whereas the travel range in Z-direction is

50 mm. An additional design drawing with more detailed specifications for

this UHV stage can be found in Appendix B.1.

Assembly sketches presenting the whole zone plate chamber together with the

mounted zone plate holder as well as a mounted MAG W 300 turbo pump

can be found in the figures 6.30 and 6.31 . In the later figure the zone plate

chamber CF-100 cross is faded out to enable a presentation of the zone plate

holder position within the chamber and in respect to the blue marked beam

center line. As indicated in this figure the front side of the zone plate holder is

not interfering with the beam when located in the outermost Z-position of the

zone plate positioning X/Y/Z stage. This enables a beam alignment of the

unfocused helium beam without any interference from the zone plate and the

zone plate holder. The 50 mm travel range and the length of the zone plate holder

are designed so that all zone plates on the zone plate chip can be inserted into

the beam line (indicated by a blue line in figure 6.30 and 6.31). The stage‘s

Y travel range of 12.5 mm is big enough so that it is possible to reach all nine

zone plate locations on the chip.



Figure 6.20: Schematics of the components building up the pumping stage chamber
(PST). A CF-100 gate valve is connected with a CF-100 tee piece and a
CF-100 reducer cross. The exciting aperture from the PST into the ZPC is a
CF-100 copper gasket with a diameter 5 mm pinhole.
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Figure 6.21: Sketches of the zone plate chamber CF-100 cross showing the two CF-100
connection flanges along the instruments beam line, the CF-100 connection
side flange for the MAG W 300 turbo pump, the CF-63 side connection
flange to implement the zone plate holding mechanism as well as the CF-40
side flange to connect the pressure measurement gauge for the chamber.
(all CF-connections are pictured with CF- copper gaskets)
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Figure 6.22: Sketches of the VAB CF-100 four port distance flange connected to the
VAB specially manufactured CF-100 zone plate chamber cross. Also shown
in this figure is a schematic of the MAG W 300 turbo pump and the
CF-100 copper exiting aperture.
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Figure 6.24: Schematic representing the assembled zone plate holder. The zone plate chip
is attached onto the ZP holding plate which is mounted by six hexagonal
socked screws.

Figure 6.25: Photographs of the zone plate holder especially describing the attachment
process for the zone plate chip. This attachment is done via three fitting
springs which are connected to the holder plate through hexagon socked
screws. (Fitting spring concept developed by Kurt Ansperger [83])
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Figure 6.26: 3D sketch (top) and photograph (bottom) of the ZP holding plate and
the zone plate holder showing the milling grooves in both parts. They are
necessary to ensure that the focused helium beam can pass unhindered
further on into the sample chamber. The image in the bottom presents the
zone plate holder without a mounted zone plate chip.
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Figure 6.29: 3D sketch XYZ stage XYZT64-50-H from the company UHV Design. (3D
CAD model provided by UHV Design)
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Figure 6.30: Assembly sketch of the zone plate chamber with a mounted zone plate holder
attached to the UHV X/Y/Z stage as well as with a mounted MAG W
300 turbo pump presented with different view directions (top, bottom).
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Figure 6.31: Sketch of the zone plate holder and the Y/X/Z zone plate adjustment stage
within the zone plate chamber setup. For a better description the CF-100
zone plate chamber cross is faded out of the graphic. To indicate the position
of the helium beam the beams center line is marked by the blue line
passing through the VAB distance flange and the copper exiting pinhole
aperture of the zone plate chamber.
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6.3 sample and detector chamber

Following to the zone plate chamber (ZPC) is the sample and detector chamber

(SDC). The passage aperture between those two chambers is a copper CF-100

gasket with a 5 mm diameter pinhole aperture.

The aim of this chamber is to hold the sample which is mounted with free

X,Y,Z movement and a 360º rotational freedom to place it under different

beam incident angles. The sample chamber of Nemi also contains the whole

detector setup. This is due to the detection principle which is based on a pitot

tube system (see chapter 5).When using this detection principle the distance

between the sample surface and the pitot tube entrance aperture has to be in the

range of 1 mm or below (see section 2.1.4) for diffusive reflecting samples. This

implies that the detector itself has to be located within the sample chamber,

and it has to be adjustable in its position with respect to the sample surface.

Since the sample performs the scan process the detector, ones adjusted for

each sample, can be left in the same position during the whole imaging process.

Another requirement due to the detection principle is the achievement of very

good ultra high vacuum conditions within the chamber (10−9 − 10−10 mbar).

The background vacuum conditions need to be one order of magnitude better

than the measured pressure signal from the detector (see chapter 2.1).

The following section will address the technical design concepts for the sample

implementation, the detector setup and positioning as well as the design of the

sample/detector chamber itself.

6.3.1 Sample implementation

The requirements for the sample implementation were to provide an as flexible

as possible sample mount onto a sample holder with free movement in X,Y,Z

direction and 0-90º rotational adjustment against the impinging beam line. The

demanded vacuum conditions for the sample chamber are a pressure in the

10−10 mbar range.
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6.3.1.1 Sample holder

The sample holder6 is, as shown in figure 6.32, build up by a diameter 65 mm

stainless steel disc which is 2 mm thick. It has two additional disc levels on

it‘s back side. One level with a diameter of 35 mm times 1 mm thick and the

second one with a diameter of 16 mm times 2.5 mm thick. In the center of the

sample holder a diameter 6 mm hole provides the possibility to use the sample

holder also for transmission scans of a sample. From the bottom side of the

sample holder a M12 tread enables the mounting of different apertures with

special cylindrical M12 inset rings. The outer diameter of the aperture discs

has to be between 9 − 10 mm. With such an aperture disc it will for example

be possible to gain a profile scan of the helium beam focal spot diameter.

Figure 6.32: Left: Sketch of the sample holder; middle: schematic half section sample
holder; right: photograph of the sample holder. The photograph also
shows the eight flexible adjustable sample retaining springs attached to
the sample holder with M2 socket head screws.

Several diameter 3.3 mm clearance holes provide a variable mounting option

for the attachment of the sample holder to the piezo table by M3 screws. For

detailed information on the design dimensions see the technical drawing

attached in appendix B.1. To provide the possibility to set a reference position

on the sample holder this component is equipped with a position adjustment inset

(see figure 6.33). A thin rectangular metal plate with two small slit apertures

arranged perpendicular to each other is attached to the sample holder in a way

that it is possible to find a reference position of the whole sample mounting

setup in transmission mode of the beam. A detailed description of the reference

point adjustment process for the sample holder is presented in section 7.1.4.

6 The sample holder is manufactured by Kurt Ansperger [83].
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Figure 6.33: Left: sketch of the sample holder with the attached position adjustment inset;
right: the same component shown in a photograph.

6.3.1.2 Sample holder mounting and scanning process

For the scanning process a piezo table from the company Piezosystem jena

[94] is utilized. A sketch of this ultra high vacuum compatible PXY 102 CAP

ID40 high resolution xy-positioner with integrated capacitive measure system

is presented in figure 6.34, as well as a photograph in figure 6.35.

Figure 6.34: 3D sketches of the UHV compatible high resolution xy-positioner from
different view directions. The sketches show the diameter d = 40 mm
aperture opening in the middle of the piezo table, enabling also scanning
processes with the helium beam in transmission mode.

The technical drawing provided by the manufacturer is attached in appendix

B.1. A listing with the specifications of this component is presented in table 6.2.

The stepping (scanning) process is performed with a 3-channel piezo amplifier

with integrated closed loop controller. The above described sample holder is

mounted to the piezo table with M2 screws. A schematic of the mounted sample

holder together with the piezo table is depicted in figure 6.36. A blue rectangular

plate representing the sample position is also indicated in the drawing. To

better explain the working principle for transmission measurements, half
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Figure 6.35: Photograph of the UHV compatible high resolution xy-positioner.

section sketches of the sample holder and the piezo table are provided at the right

side of the same figure.

6.3.1.3 Sample positioning

A specially manufactured ultra high vacuum compatible XYZR stage system

from Alio [95] provides the X/Y/Z and rotational positioning of the sample.

This stage was purchased by Laser 2000 [96] and has the article number: XYZR

Laser 2000 PO 1004704. It consists of a combination of three standard stage

systems from Alio which are listed in table 6.3.

3D sketches of this three stage components are presented in figure 6.37 . Figure

6.38 presents schematics of the assembled XYZR system from different view

directions. As one can see the linear Z-travel stage is mounted on top of the

X-Y stage, whereas the rotary 360º stage option is attached to the mounting

surface of the Z-stage. The three linear movement axes X,Y and Z are provided

with a step resolution of 0.02 μm through the encoder interface. Additional

design drawings of all three stage components provided by the manufacturer

are attached in appendix B.1.

For the attachment of the sample holder and the piezo table to the XYZR move-

ment unit, a sample attachment unit was designed7. Schematics of this sample

attachment unit are presented in figure 6.39. The bottom of this figure also

shows photographs of this component.

The above described piezo table with the attached sample holder is placed

on this sample attachment unit which on the other hand is mounted directly

7 Fabrication at [83]
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Specifications PXY 102 CAP ID40 piezo table

Stroke closed loop (each axis) �m 80

Stroke open loop (each axis) �m 100

Resolution nm 2

Repeatability nm 18

Dimension: length mm 80

width mm 80

height mm 30

Aperture diameter mm 40

Maximum baking temperature ºC 150

Integrated capacitive feedback sensor

Table 6.2: Specifications ultra high vacuum compatible PXY 102 CAP ID40 high reso-
lution xy-positioner

Alio XYZR stage system

XYZR Laser 2000 PO 1004704

AIO-HR4-5000E-050-XY-UHV integrated XY-linear stage 50 mm travel in X/Y

AIO-D8-2500E-CB-UHV integrated linear Z-stage 25 mm

AIO-40R-D-UHV 360º continuous rotary stage Ø130 mm table

Table 6.3: List of the implemented stages for the XYZR vacuum compatible sample
stage system.

to the rotational stage component of the Alio motion system. For a better

description of the mounting steps the sketches of figure 6.40 as well as figure

6.41 are presented. Figure 6.40 shows the assembly of the sample holder, the

piezo table and the sample attachment unit. Whereas figure 6.41 depicts this three

components further assembled to the XYZR stage. As shown in figure 6.40

also the sample attachment unit holds the necessary notch to permit a free beam

line in transmission mode. Note that the 360º rotary stage has a maximum

bake-out temperature of 35ºC since it contains ceramic components. The two

other linear stages are able to withstand bake-out temperatures of up to 110ºC.



Figure 6.36: Left: sketch of the attachment of the sample holder to the piezo table. The
sample is indicated by the blue rectangular plate placed in the middle of
the sample holder; right: schematic half section sketch of the sample holder
attached to the piezo table at different view directions.
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Figure 6.38: 3D sketches of the assembled XYZR stage from Alio. (3D CAD model
provided by Alio Industries)
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Figure 6.39: Top: Sketches of the sample attachment unit from different view directions;
bottom: photographs of the sample attachment unit.

Figure 6.40: Sketches of the assembled sample attachment unit with the piezo table and
the sample holder from different view directions. Note in the bottom left
view that the sample attachment unit also holds a cylindrical notch to permit
a undisturbed path for the helium beam line in transmission mode.
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Figure 6.41: 3D schematic of the complete sample stage assembly consisting of the
XYZR stage assembled with the sample attachment unit, the piezo table and
the sample holder from different view directions.
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6.3.2 Detection

Chapters 1.2.4, 2.1.6 and 5 presented a detailed description of the working

principle for the detector. In the following the technical realization for this

component will be presented8. The detection of the reflected helium atoms

is performed with a pitot tube system. Actually there are two different pitot

tube detectors implemented in the microscope setup. One reflection detector and

one transmission detector. The second one is simply provided by the attachment

of an additional cold-cathode ionization gauge with a small entrance aperture

placed directly into the straight beam line (see sub-section 6.3.2.3). The main

detector is the device utilized for the reflection mode of the system.

6.3.2.1 Reflection detector & X-Y-Z movement

As mentioned in the beginning of this chapter (6.3) for diffuse samples it

is necessary to place the entrance aperture of the pitot tube detection very

close to the reflecting surface (≤ 1 mm). Therefore it was decided to build

this component on the basis of a “nose-shape” like detection system . This will

Figure 6.42: Sketches of the detector nose presented from different view directions (left,
middle); right: half section sketch of the same component.

ensure sufficient clearance between the sample and the detector to still provide

a free sample movement for the scanning and adjustment process (see figure

6.45).

The detector is assembled by four different main components, the detector head,

the detector nose, the 0-order aperture mounting setup and the cold-cathode gauge.

Sketches of the three first mentioned components are presented in figures

6.43, 6.42 and 6.55. The two main components of the pitot tube part are the

detection nose and the accumulation cylinder. These two components are sealed

8 Technical design developed in collaboration with [83].
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vacuum tight against each other with a gold gasket. The nose is mounted via

four socked head screws.

As shown in figure 6.45 the detector nose is shaped in a way that it is possible

to tilt the sample and the whole sample holding setup in the range of nearly

0− 90 degree in respect to the incident helium atom beam. The detector nose has

been manufactured twice with an entering aperture orifice diameter of 1 mm

and 0.5 mm respectively. The entering aperture of the detector nose is followed

by an approximately 2 cm long cylindrical channel which in the mounted state

is opening out into the bigger also cylindrical shaped main part of the pitot

tube accumulation volume within the detector head (see figure 6.43).

Figure 6.43: Sketches of the detector head presented from different view directions in (a),
(b) and (c); (d) represents a half section sketch from the same component.

Another set of images illustrating the assembled detector head together with the

detector nose and the 0-order aperture mounting setup are shown in figure 6.44. A

half-section sketch of the detector head is presented in the bottom right image

of figure 6.44 (d). It should provide a picture of the traveling path for the

detected helium atoms. For a better understanding of the helium particle path

and the detector position in respect to the sample figure 6.46 shows additional
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sketches of the sample/detector arrangement. Before hitting the sample surface

the helium probe beam passes through the 0-order sorting aperture whereby the

bigger share of the unfocused 0-order part of the probe beam is blocked by

the aperture (see chapter 6.3.2.2). The unaffected focused part of the helium

beam impinges on the sample and the helium atoms are, depending on the

surface structure, reflected in different directions. The amount of reflected

helium atoms entering the detector nose via its aperture therefore will depend

on the samples surface shape and roughness. They will further travel-on into

the detector head where they are accumulated and consequently give rise to a

detectable change in the pressure signal of the detector.

To improve the sensitivity of the detection system the whole detector body is

made from copper, providing the possibility to cool it down to liquid nitrogen

temperature. In this way the detector background vacuum condition within the

accumulation volume is improved furthermore compared to the surrounding

ambient pressure conditions in the sample chamber. This improvement is due

to freezing distillation of background gas particles to the detector walls. As

a consequence a higher sensitivity of the detector for small pressure changes

can be achieved.

The cooling is performed with an outwards mounted liquid nitrogen tank. It

has a pipe entering partly into the source chamber via a CF-63 flange and the

cooling is further transferred via a copper cord directly to the copper made

main body of the reflection detector. The thermal connection thereby is provided

by a clamping mechanism for the cords braids onto the liquid nitrogen filled

tube, as well as onto the detector body itself. To further provide a possibility for

a back-out procedure, an additional heating system based on wire resistance

heating is added to the detectors main body. Photographs explaining this

cooling and heating options for the reflection detector are provided in figure

6.47. The connection of the CF-63 cooling feed-through to the cooling tank

(liquid nitrogen tank, LN2) is done by a special flexible tube proved for low

temperature made of Polytetrafluoroethylene (PTFE, also known as TEFLON).

This tube connects the stainless steel pipe of the CF-63 feed through to the

mounting panel for a ball-shaped LN2 tank also referred to as “chicken-feeder”.

Digital photographs of these components are presented in figure 6.48 .

To provide the option that the whole reflection detector can be placed in the

correct position with respect to the sample‘s surface, it is mounted onto a
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X/Y/Z UHV translation stage (MAX 25) from VAB [92] (see figure 6.49).

This linear translation stage is directly connected from outside to the sample

chamber (see figure 6.60). Since the detector has to be located within the sample

chamber an additional extension is implemented for its placing. A detailed

sketch of the shape of this extension and the accompanying detector placement

is presented in figures 6.50 and 6.51.

Together with this extension tube and the stage it is possible to adjust the

reflection detector in X-Y-and Z direction relative to the sample (see figure 6.53

and 6.54). Figure 6.52 presents the schematics of the mounting of the detector

extension into the X-Y-Z stage. It illustrates how the UHV-tight mounting into

the stage takes place. Note that this mounting needs to be done before the

reflection detector head is assembled to the extension tube.

The figures 6.53 and 6.54 present sketches of the mounted reflection detector

assembled to the extension tube and the Y/X/Z UHV stage. The sample attach-

ment unit, the piezo table, the sample holder and a mounted sample are also shown

in this figure. Also the helium probe beam line is indicated in this graphics.

For better illustration the detection system meaning the detector head and the

extension tube as well as the cold-cathode gauge are presented in a half section

sketch in figure 6.54.

The detector adjustment stage has a travel range of 25 mm in X and Y

direction respectively. In Z-direction the travel is 50 mm which corresponds

to a movement of the detector further into the sample chamber and therefore

more close to the sample. With the long travel range in Z-direction it is possible

to remove the detection setup completely from the direct beam line and the

sample.

The cold-cathode pressure gauge used as the detector is mounted onto the

inside CF-40 flange of the extension tube. Since the count rates (relative He

pressure increase in the detector due to the reflected signal) may be very low,

it is necessary to have a pressure detection gauge working even in the lower

UHV range. Therefore the IKR-070 Module line cold cathode gauge head from

Pfeiffer [91] became the system of choice. The measurement range of this

instrument is stated to be between 5 · 10−3 − 1 · 10−11 mbar. Detailed gauge

specifications are presented in appendix C.1.

6.3.2.2 0-Order sorting aperture

One major issue with using a transmissive Fresnel zone plate for the helium
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beam focusing is the 0-order part of the beam also passing through the zone

plate. The 0-order has a quite high intensity compared to the focal spot (see

chapter 4) and therefore needs to be blocked before the beam is hitting the

sample. On the other hand this blocking system should not interfere with the

focused part of the helium beam. Therefore the blocking is done in two steps.

The first step is performed by the middle stop disc of the zone plate itself. It

stops the innermost part of the beams 0-order. The second blocking step is

done with the help of a separate 0-order sorting aperture. This sorting aperture

consists of a skimmer, placed reversed into the beam line at a relatively short

distance before the sample. To ensure that the detector nose will be positioned

correctly under this sorting aperture, it is mounted on-top of the detectors

main body. A schematic picture of this setup is presented in figure 6.55 and

6.44.

The alignment of the skimmer aperture and the detector nose has to be

performed before the detector is mounted into the sample chamber. It is not

possible to do a realignment once the detector is mounted into the chamber

(see section 7.1.3).

6.3.2.3 “in line” Transmission detector

For the “in line” transmission detector a cold-cathode measurement gauge (Pfeiffer

[91] IKR-060, specifications see appendix C.1) is assembled via a CF-100 to

CF-40 reducer adapter to the sample chamber lid. This is done in a way that the

direct helium beam will enter the cold-cathode gauge through the center of a

diameter 1 mm pinhole aperture placed directly in-front of the pressure gauge.

Therefore it is also referred to as “in line” detector. Figure 6.56 shows a sketch

of the “in line” transmission detector setup. The figure on the top right side

hereby represents a half section sketch of the whole setup, whereas the figures

in the bottom right and left for better illustration just show a half section

sketch of the sample chamber lid and the reducer adapter, against what the

cold-cathode gauge and the pinhole aperture (“in line detector”) are presented

in a full sketch. The top left figure represents a full sketch of this components.



Figure 6.44: Sketches of the assembled detector presented without the cold-cathode gauge.
(a), (b), (c) different view directions, (d) half section sketch. The center-line
of the helium probe beam is indicated by the blue line passing through
the 0-order aperture orifice. From the sample surface reflected helium atoms
enter the detector through the pinhole aperture in the detector nose and
travel further on through the nose into the detector head‘s accumulation
volume. The assignment for the 0-order sorting aperture is to block out the
bigger part of the 0-order share of the helium probe beam.
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Figure 6.45: Sketches to show the idea for the arrangement of the nose detector and the
mounted sample. The sample itself is indicated by the blue plate mounted
on-top of the sample holder which is attached to the piezo table, which again
is mounted onto the sample attachment unit. The incident helium beam is
indicated by the blue line.
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Figure 6.46: Sketches of the sample/detector arrangement from different view directions.
For a better understanding of the traveling path for the reflected helium
atoms the reflection detectors front part is shown in a half section sketch.
The on the sample impinging helium beam is indicated by the blue line
whereas the travel path of the reflected helium atoms within the detector
nose is indicated in the bottom image by the red arrow.
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Figure 6.47: Photographs of the reflection detector with the connected cooling- and
heating -setup for this component (top left, right); as well as photographs
of the cooling- (bottom left) and heating- (middle left) setup respectively.

Figure 6.48: Photographs of the mounting panel for the LN2tank (chicken-feeder)
(left, middle bottom); middle top: mounting panel with attached PTFE
connection pipe; right: LN2tank (chicken-feeder)
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Figure 6.49: Sketch of the reflection detector positioning stage from VAB, presented
from different view directions. (3D CAD model provided by VAB vakuum
Anlagenbau GmbH)
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Figure 6.50: Sketch of the extension for the reflection detector mounted to the stage from
different view directions (top); bottom: half section sketch of the same
component.
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Figure 6.52: Sketch describing the UHV tight mounting of the detector extension into
the VAB X/Y/Z stage. The sealing is a CF-100 copper gasket. Note that
the mounting of the reflection detector head has to be done after assembling
the extension tube into the stage.
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Figure 6.55: Sketches from different view directions (left, middle) of the 0-order aperture
mounting setup presented with an attached skimmer for better explanation;
right: half section sketch of the same component.

Figure 6.56: Sketch of the “in line” transmission detector setup, representing the cold-
cathode gauge assembled via a CF-100/CF-40 reducer flange directly to
the sample chamber lid. The entrance aperture for the detection system is a
CF-40 copper sealing with an diameter d = 1 mm orifice opening in the
middle. Top left: full sketch of the assembled components; top right: half
section sketch of all components; bottom left and right: half section sketch
of the sample chamber lid and the reducer adapter as well as full sketch of
the cold-cathode gauge and the entrance aperture.
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6.3.3 Sample chamber

The sample chamber and its lid are a custom-made UHV chamber designed for

the special requirements of the Nemi system. They were manufactured by VAB

[92] according to our technical drawings (Design drawings see appendix B.1).

Schematic drawings of this chamber are presented in figures 6.57, 6.58 and

6.59. Also depicted in this figures are the corresponding dimensions for each

connection flange. The sample chamber lid is depicted in a sketch in figure 6.57 .

Figure 6.57: Sketch of the sample chamber lid from different view directions. It is a
CF-400 blind flange with an added CF-100 connection on its bottom side
which is centered in the direct beam line position.

The sample chamber is shown in figure 6.58. It is based on a CF-400 main

chamber with a big CF-400 opening on the bottom which after mounting

and assembling of all microscope components is closed by the CF-400 sample

chamber lid.

The components assembled to the respective connection flanges are depicted in

figure 6.59 which shows the sample chamber assembled with the sample chamber

lid. It has to be mentioned that the main adjustment flange, namely the CF-100

flange on the top part of the chamber is centered at the beam line, and it is

also aligned with the CF-100 outlet flange of the sample chamber lid.

The components assembled to the sample chamber which are not just CF-blank

flanges, CF- port views or CF-feed-through connections are the reflection detec-

tor, the transmission detector, the MAG W 600 turbo pump and the liquid nitrogen

(LN2) cooling for the reflection detector. Assembly sketches of all mentioned

components are presented in the figures 6.60, 6.61. For better illustration the

CF-blank flanges, view-ports and electrical feed-throughs are not implemented

in this drawings. Figure 6.60 herein shows assembly sketches of the reflection
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detector and the transmission detector as well as the MAG W 600 turbo pump and

the CF-63 liquid nitrogen cooling adapter flange, assembled to the sample chamber.

Figure 6.61 also includes an attached zone plate chamber with its turbo pump

and the zone plate adjustment stage. A complete sketch of the whole assembled

setup of all UHV chambers for Nemi is presented in figures 6.62, 6.63, 6.64 and

6.65.

The chamber pressure is monitored by a IKR-270 active cold cathode trans-

mitter from Pfeiffer [91] (specifications see C.1).



Figure 6.58: Sketches of the sample chamber from different view directions.
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Figure 6.59: Sketches of the sample chamber and the mounted sample chamber lid from
different view directions.
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Figure 6.61: Sketches of the partly assembled sample chamber attached to the adjacent
zone plate chamber from different view directions. Also apparent in this
figure are the MAG W 300 turbo pump for the (ZP) chamber and the UHV
X/Y/Z translation stage for the zone plate adjustment.
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Figure 6.62: Sketch of the assembled Nemi UHV chambers, sample chamber, pumping
stage chamber, zone plate chamber, sample/detector chamber.
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Figure 6.63: Sketch of the assembled Nemi UHV chambers, sample chamber, pumping
stage chamber, zone plate chamber, sample/detector chamber from a different
view direction.
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Figure 6.64: Sketch of the assembled Nemi UHV chambers, sample chamber, pumping
stage chamber, zone plate chamber, sample/detector chamber from a different
view direction.
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Figure 6.65: Sketch of the assembled Nemi UHV chambers, sample chamber, pumping
stage chamber, zone plate chamber, sample/detector chamber from a different
view direction.
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6.4 instrument placing

The Nemi microscope setup is placed on-top of an optical table from the

company BFI Optilas [97]. It is a Series 784 (Clean Top II) optical table

with honeycomb core with the dimensions 1000 mm x 2000 mm x 300 mm.

The 300 mm corresponds to the table thickness. The pneumatic nitrogen gas

damping system is provided by a support system with 300 mm height tie

bars consisting of 4-posts vibration isolators9.

Figure 6.66: Sketch of the series 784 (Clean Top II) optical table with honeycomb
core from BFI Optilas with the mounted Aluflex profile framework for
holding the microscope setup in a hanging position.

The vertical microscope setup is mounted on-top of this optical table with

a flexible sectional Aluflex profile framework (see figure 6.66). It holds the

instrument in a free hanging position. To illustrate the suspension of the

microscope, figure 6.67 presents a sketch of the Nemi setup attached to the

Aluflex framework and the optical table.

9 4-posts vibration isolation system Micro-g piston gimbal.
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7
B E A M A L I G N M E N T

This chapter describes the beam alignment with regard to the different components

involved in this process. Starting from the top this is the nozzle-adjustment against

the skimmer orifice, the zone-plate adjustment into the beam line and finally the

reflection-detector and sample adjustment.

7.1 beam alignment

Before the first measurements can be performed a beam alignment is necessary.

This alignment process will be performed in five different steps, arranged from

the top of the Nemi setup to the bottom. Hence the alignment will start in

the source chamber and the last alignment step will be the sample-detector

alignment within the sample chamber at the end of the helium particles travel

path.

7.1.1 Skimmer nozzle adjustment

The skimmer nozzle adjustment against the skimmer orifice in X/Y is per-

formed by two linear actuators (see chapter 6.1.2). They are controlled via

a LabView program. It is based on an intensity comparison of the detected

pressure signal at the transmission (in-line) detector. The skimmer-nozzle align-

ment is carried out before the zone plate is placed into the beam line. In this way

it is possible to work with higher detection signals. The alignment is performed

in two different program setups. First there is a raw search which is performed

with a linear scanning movement of the nozzle leading to a final rectangular

detection field. The raw search process stops when a significant signal increase

compared to the background signal is reached. The raw search is performed

with a rectangular scanning process, since the view port in the source chamber

allows a visual pre-adjustment of the nozzle and the skimmer position in the

Y-direction. Hence the scan length in Y-direction can be minimized which

shortens the search time. A screen shot picture of such a rectangular raw-search
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scan can be found in figure 7.1 .

Figure 7.1: Screen shot image of the Labview nozzle-skimmer adjustment program
taken after performing a rectangular raw-search scanning process on Nemi.

Then there is a fine search which is performed with a circular/spiral stepping

process of the nozzle, starting with stepping along a small radius circle at the

starting position and followed by an linear increase of the radius after every

finished circle. This fine search finds the maximum position of the scan by

scanning in small steps. The fine search scan can be performed repeatedly to

refine the maximum position more accurate with each search routine. A screen

shot picture of a circular fine-alignment scan is presented in figure 7.2.

7.1.2 Zone plate adjustment

The next beam alignment step is the adjustment of the zone plate into the beam

line. This is done manually with the X/Y/Z zone plate alignment stage. To

find a starting position for this alignment the zone plate holder is equipped

with the beam adjustment inset. (see section 6.2.2.1)

To illustrate the alignment process figure 7.3 shows the zone plate holder

with the attached ZP holding plate and the beam adjustment inset. This beam

adjustment inset has basically two different alignment slots. The first one is

orientated in Z-direction and the second one is rotated by an angle of 90º

and therefore is aligned with the Y-movement direction of the stage. By a
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Figure 7.2: Screen shot image of the Labview nozzle-skimmer adjustment program
taken after performing a the circular scanning process for the fine-
adjustment of the nozzle-skimmer position of the Nemi Source.

movement of the zone plate holder with the X/Y/Z stage in Z-direction into the

beam line and simultaneously reading out the pressure signal of the “in-line”

detector, one can find the position where the zone plate holder for the first

time completely blocks the beam.

By moving the zone plate holder for approximately further 3 mm into the

beam-line, it is possible to be sure that the Z-position for finding the first

alignment slot is reached. Now the zone plate holder is adjusted in Y-direction

until the signal in the transmission detector reaches a maximum. In this way the

Y-direction reference point (value) on the translation stage scale is determined.

As a next step the reference value for the Z-direction has to be found. This is

done by the help of the second alignment slot. First the Y-value of the stage

is readjusted until the signal in the detector is a minimum (only background

signal left). This movement should not be more than 2 mm to ensure that

it is still possible to hit the Z-adjustment slot in Z-direction. Then the zone

plate holder is moved further into the beam line until the detected signal

rises again for the first time. In the same way as for the Y-direction the Z-

direction reference point (value) can be found by determining the first intensity

maximum in the read out signal of the “in-line” detector. With this adjustment

procedure an exact reference position of the zone plate holder in Y/Z direction
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with respect to the beam line can be found. Note that the positions of the nine

possible zone plate locations on the respective zone plate chip, in relation to this

X/Z reference point on the zone plate holder, first have to be evaluated after the

attachment of the chip onto the ZP holding plate before the final mounting of

the zone plate holder into the zone plate chamber takes place. With this knowledge

it is possible to approach each of the nine zone plate locations on the chip.

Figure 7.3: Sketch to illustrate the zone plate alignment.

7.1.3 Reflection detector adjustment

To adjust the reflection detector to its correct position within the beam-line the

crucial component is the 0-order sorting aperture on the top of the detector.

Before assembling the detector into the sample chamber the sorting aperture‘s

orifice needs to be adjusted with the detector nose entrance aperture. This has

to be done with an optical microscope. Since the mounting connections for the

sorting aperture to the detector head are manufactured with elongated holes, it is

possible to align this two components against each other. Note that the 0-order

sorting aperture orifice diameter has to be equal or smaller than the middle

stop of the ZP to achieve optimal 0-order blocking. After this adjustment the

reflection detector is attached to the extension tube within the sample chamber.

The beam alignment is performed in a 4-step procedure (see figure 7.6):



7.1 beam alignment 169

1. The zone plate is moved into the beam-line.

2. The reflection detector is moved with the X/Y/Z detector translation stage (see

figure 7.6) into the beam line at a Z-position which is definitely located

above the focal plane. The X/Y position is adjusted so that the signal in

the in-line detector becomes a minimum for the second time in both axes.

This corresponds to a position where the beam is completely blocked by

Figure 7.4: Schematic 0-order aperture alignment.

the middle-stop of the ZP and the 0-order sorting aperture (see figure 7.4).

3. The reflection detector is moved down in Z-direction to the point P where a

maximum signal (plateau) arises after a signal increase occurs (see figure

Figure 7.5: Reflection detector Z-alignment

7.5). This corresponds to the position where the focused beam signal is a

maximum whereas the 0th-order part of the beam is blocked best.
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4. The reflection detector is moved out of the beam line again.

This procedure provides a reference position for the reflection detector in X and

Figure 7.6: Detector stage directions for the alignment.

Y direction and additionally a reference point for the optimum Z-position of

the reflection detector. Now the reflection detector is moved out of the beam line

to adjust the sample holder to the focal plane.
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7.1.4 Sample holder adjustment

The first step for the sample adjustment is to set the X/Y reference point of the

sample holder. To achieve that, the sample holder is also equipped with an

adjustment inset similar to the one for the zone plate adjustment. With the help

of the two small adjustment slits which are arranged in 90º to each other and

Figure 7.7: Sketch for the illustration of the X/Y position adjustment of the sample
holder.

by stepping of the X-Y axis of the XYZR-Alio sample positioning stage a X/Y

reference position on the sample holder is found (see figure 7.7). Thereby the

detected beam signal in the in-line detector is used to perform this adjustment.

After once defining this X/Y reference position of the sample holder also the Z-

position has to be adjusted. By performing a linear scan process with one of

the two adjustment slits on the sample holder it is possible to take line scans of

the focal spot diameter. For easier handling this reference point adjustment

should be performed without the reflection detector positioned in the beam line.

The adjustment steps are:

1. The X/Y reference positions of the sample holder are determined with the

adjustment inset (sample holder) by maximizing the beam signal in the

in-line detector. The corresponding positions are stored in the sample stage

program.
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2. With one of the slits in the X/Y adjustment inset on the sample holder the

focal spot size is determined by a slit-scan performed with the piezo-table

of the sample holder. A variation of the Z-position of the sample holder is

used to minimize the focus spot diameter. A minimum of the focus spot

diameter corresponds to the sample holder Z-reference position where the

adjustment inset is located in the focal plane. (note that the 0th-order part

of the beam is not blocked at the moment and hence overlays the signal)

3. Then the sample is moved into the beam line with a corresponding X/Y/Z

sample stage movement and is tilted to the desired scan angle. Note that the

Z movement is necessary since the sample surface is at a higher position

than the adjustment inset on the sample holder.

7.1.5 Sample-reflection detector alignment

Finally the reflection detector is adjusted to the sample.

1. The sample holder is moved down approximately 5 mm in its Z-position

to ensure that there is no collision with the reflection detector when it is

moved back in the beam line.

2. The reflection detector is moved back into the beam line to its X/Y/Z reference

position.

3. The sample approaches “step by step” its Z-axis reference point. A visual

control via the CF-flange view ports in the source chamber ensures that

there is no collision between sample and detector-nose. If necessary the

the Z-position of the reflection detector has to be slightly readjusted.
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F I R S T S U B - M I C R O N H E L I U M F O C A L S P O T

To determine the capability of fresnel zone-plate diffraction for the implementation

as the atom beam focusing tool in Nemi, preliminary focusing measurements were

carried out. They were performed with zone-plates produced in a similar manner

to the ones that will be used in Nemi, but with different focal lengths to fit our

already existing apparatus MAGIE. The results are presented in a paper submitted

to New Journal of Physics (see Appendix A ). They include the first sub-micrometer

focusing of a He-beam. Additionally the velocity distribution of a He-beam as a critical

parameter for the focal spot size is discussed in detail. A new method for determining

narrow velocity distributions is described.

8.1 sub-micron focusing of neutral helium beam (paper a)

Since the fresnel zone-plates are one of the main components for the Nemi setup,

preliminary focusing experiments with such circular diffraction gratings were

carried out. The goal of these experiments was to achieve, for the first time,

a sub-micrometer neutral helium beam focus spot by the usage of a fresnel

zone-plate similar to the ones utilized later in Nemi. The corresponding results

are presented in the attached paper A (see Appendix A).

One of the required values for the analysis of the measurement data is the in

chapter 3.6 described speed ratio S of the atom beam, so to say the beam‘s

velocity/energy distribution. For the paper it was finally decided to implement

theoretically evaluated speed ratio values gained by simulations based on the

Lennard-jones potential [98, 99, 100]. They were performed by Gianangelo

Bracco from the Department of Physics at the University of Genova, Italy.

But also an additional set of measurements to experimentally evaluate the

speed ratio of a roughly room temperature beam was performed which is

presented in the following sections.
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8.2 experimental speed ratio determination

The experimental speed ratio determination for the neutral helium beam is

based on the time-of-flight (TOF) measurement technique. This technique is the

common method to determine the kinetic energy of the atoms/molecules in a

particle beam [101, 102]. In the following is presented: The experimental setup

for the TOF-measurements performed on Magie (8.2.1), the basic relation of

the measured TOF-spectra and the speed distribution of the beam (8.2.2), the

standard deconvolution method used to determine the speed-ratio values S

from the measurements (8.2.2.1), a new evaluation procedure which allows

to determine S for narrow speed distributions (8.2.2.2) and the measurement

results from this new speed-ratio evaluation technique for a room temperature

beam (8.2.3).

The reason for a new evaluation procedure is, that for beams with a narrow

speed distribution (high speed-ratios) the standard deconvolution procedure

cannot be applied. Narrow in that case means that the broadening of the TOF-

spectrum due to the transmission function of the chopper slit is big compared

to the actual speed distribution of the beam.

8.2.1 Experimental setup for Speed Ratio determination

The time-of-flight (TOF) technique is based on the measurement of the flight

time the atoms need to travel a certain distance L. Just as for the Nemi setup

Magie is also equipped with a free-jet expansion source. But in contrast to the

new microscope setup, Magie is also provided with a so called chopper-disc to

enable TOF measurements. This disc which holds one or several slit openings

is implemented into the beam line to chop the beam into short beam pulses.

Additionally the instrument itself is equipped with the necessary electronics to

measure the flight times of this pulse segments. Figure 8.1 presents a sketch of

the TOF measurement setup. To chop the free-jet-expansion beam the chopper-

disc rotates with the frequency f . Thereby the chopper defines the spatial and

the time-wise starting point of the measurement (L1 = 0 and t1 = 0). The

disc can be moved into the beam-line with a vertical translation stage which

provides a read-out/adjustment possibility for the actual vertical position of

the chopper (chopper slit) with regard to the beam. The chopped beam pulses

subsequently travel undisturbed through the rest of the ultra high vacuum
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Figure 8.1: Sketch for the time-of-flight (TOF) measurement setup on the Magie appa-
ratus. A chopper disc rotating with the frequency f and equipped with two
trapezoidal shaped chopping slits is implemented into the neutral helium
beam line to chop the beam into small beam packages. The flight time of
this beam packages between chopper and ionization detector is measured
and together with the given flight distance of the beam (between chopper
and detector) it is possible to determine the speed distribution (speed ratio)
of the beam.

setup and finally are detected time-resolved by the TOF electronics. To gain

enough signal intensity in the course of this time resolved detection the beam‘s

signal is integrated over several incoming beam pulses. From the broadening

of the time resolved detected beam pulses it is possible, with the knowledge

of the flight distance L between the chopper and the detector, to find the

velocity/energy distribution of the beam‘s atoms. Due to the different traveling

velocities of the beam particles (speed distribution of the beam) the former

small packages at the chopper exhibit a broadening during their propagation

over the distance L. Faster particles will arrive earlier, slow ones later. With the

corresponding TOF electronics the incoming particle intensities in the detector

are recorded time-resolved. From this flight-time distribution the related veloc-

ity distribution can be found.

As shown in figure 8.2 the chopper wheel has two trapezoidal shaped slits

arranged with 180º spacing between each other. Additionally two small rect-

angular shaped slits are located in ca. 4 mm distance to each of the chopping
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Figure 8.2: Sketch of the chopper wheel implemented for the TOF measurements. The
disc is equipped with two slits of trapezoidal shape arranged 180º to each
other. They are accounted to chop the beam. Additionally it also has two
small rectangular slit openings in radial direction to the center of the
disc. They deliver a trigger pulse to the TOF measurement electronics
based on the signal of a photo-diode. All the other features present on
the chopper wheel, so to say the ten elongated wide slits as well as their
corresponding small rectangular shaped trigger slits, are not used for the
TOF measurements presented here.

trapezoidals in radial direction to the center of the disc. They are assigned to

deliver a trigger signal to provide the TOF electronics with a starting pulse for

the counting process. This trigger pulse is generated by a light-emitting-diode

(LED)/photo-detector combination mounted in a fixed position relative to the

chopper wheel. Always when a beam package passes through the chopping

trapezoidal this LED-photodetector system will deliver a starting pulse to the

measurement electronics. After a certain previously appointed delay time td

following this trigger pulse the electronics start to accumulate the signal from

the incoming helium atoms at the detector in certain predefined time-bins

with increasing time-line. Together with the knowledge of the flight distance

L, the start time for each beam package and the detected signal intensities per

time-bin it is possible to determine the flight time distribution.

A graph showing one of the acquired TOF- spectra is presented in figure 8.3.
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Figure 8.3: Flight time spectrum of the free-jet expansion helium beam. This measure-
ment was taken with a To = 295 K, po = 81 bar beam at a chopper fre-
quency of f = 270 Hz and a vertical chopper height position of 0.835 inch.
Particle traveling distance (chopper-detector) of Lchopp−det = 2046 mm. (file:
TOF3297)

8.2.2 Speed ratio evaluation

As one can see from figure 8.3 the measured time-of-flight signal of the direct

beam can be well fit by a Gaussian (normal) distribution. It is directly related

to the velocity spread of the beam‘s helium atoms. This is in good accordance

with the in literature described velocity distribution of a free-jet expansion

source [59]. The center-line of the Gauss-peak can be related to the final average

velocity v f of the beam with a corresponding actual flight time t f . An exact

explanation for how t f is determined can be found in Appendix E.

To determine the actual velocity distribution of the helium particles from the

gained TOF-spectra, one has to know that the speed ratio S of a molecular beam

is related to the full-width-half-maximum of the measured time distribution and

the particles final average velocity v f
1.

As described in section 3.6 the velocity distribution of the beam is based on a

Maxwell Boltzmann distribution which from the mathematically point of

1 note that v f = L/t f
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view corresponds to a Gaussian shaped (normal) distribution of the particles

velocities v with a standard deviation of [59]

σv =

√
k · T‖

m
(8.1)

where m stands for the beam particle (atom or molecule) mass, k is the

Boltzmann constant and T‖ the beam temperature parallel to the beam axis.

The full-width-half-maximum (FWHM) of a normal (or Gaussian) distribution

is defined as FWHM =
√

2 · ln 2 · 2σ. Together with the speed-ratio definition

from equation 3.14 this leads to the following consideration:

S =

√√√√m · v2
f

2kT‖
⇒ S2 =

v2
f

2 · m
kT‖

=
v2

f
2 · 1

σ2
v
=

=
v2

f
2 ·
(

2·√2·ln 2
FWHM

)2 ⇒

S =
v f√

2
· 2·√2·ln 2

FWHM =
v f ·2·

√
ln 2

FWHM =

= 2 · √ln 2 · v f
FWHM = 2 · √ln 2 · v f

�v = S

One can see that the beam‘s speed ratio S is related to the TOF-measurements

in the form

S = 2 ·
√

ln 2 · v f

�v
= 1, 66 · v f

�v
≈ 1.66 · t f

�t
(8.2)

with v f the final average velocity corresponding to the actual flight time t f

of the atoms within the package and �v and �t the FWHM of the measured

TOF spectrum.

The last part of equation 8.2 can be stated that way due to the following

considerations:

�v = L
t f +

�t
2
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2
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and further considering

v
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Since in case of the here evaluated TOF measurements the condition t f � �t
2

is valid it is also possible to state

⇒ v f

�v
�
∣∣∣∣ t f

�t

∣∣∣∣ (8.3)

Therefore the speed ratio of the nearly monochromatic molecular beam can

be directly evaluated from the TOF measurements with the read out of their

actual flight time t f and the FWHM of the curves.

Of course it also has to be taken into account that the FWHM of the measured

TOF-spectra in reality is put together by a convolution of the actual velocity

distribution of the beam and a broadening due to the measurement technique,

which results in a broadening of the real velocity distribution.

8.2.2.1 Standard deconvolution process

Generally the full-width-half maximum (FWHM) of the measured TOF-spectrum

�tM provides a measure for the particles energy/velocity spread. Since the

pulse packages are chopped by a finite slit width additional broadening will

be overlaid onto the Gauss peak‘s width2. Also the detection process provides

some smearing of the measured flight time distribution. The spatial location of

the particle detection within the electron bombardment ionization detector is

defined by its ionization-volume with the length LD. This is described by a spa-

tial ionization-probability of the detector. The total distribution of the measured

TOF signal TM is therefore generated by a convolution of the actual velocity

2 Note that an optimal chopper slit would be indefinitely small so that there is no big influence
on the chopper transmission function. Such small slit widths are not reasonable since the
detected beam intensities would be to small.
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spread of the beam‘s particle (corresponding flight time distribution T(v)),

the width of the chopper slit (chopper-transmission function) and the spatial

distribution of the particle detection. For simplicity the chopper-transmission

and the ionization probability of the detector are approximated by two Gauss

functions C(x) and D(x) respectively.

For free-jet expansion beams where the FWHM of the real velocity distri-

bution of the beam T(v) is broad compared to the FWHM of the chopper-

transmission function C(x), the real velocity spread (speed ratio of the beam)

can be determined with a standard deconvolution procedure like described in

literature [102].

The FWHM of the actual velocity spread of the beam particles is defined as

�tv, the FWHM of the chopper-transmission function as �tC and the FWHM

of the detector ionization probability function as �tD. This leads to [102]

�t2
M = �t2

v +�t2
C +�t2

D (8.4)

with

�tv = L · �v
v2

f
(8.5)

�tD = LD
v f

(8.6)

�tC = w
2π·rch· fch

(8.7)

with L the particles fight distance between chopper and detector, LD the

detector ionization length, v f the final average particle velocity (from section

8.2.2), �v the corresponding FWHM of the real velocity distribution of the

beam, rch the chopper disc radius at the center of the beam, fch the chopper

frequency and w is the chopper slit‘s width.

From this equation one can find the desired FWHM �tv of the actual particles

flight-time distribution.

�tv =
√
�t2

M −�t2
C −�t2

D (8.8)

The ratio of t f /�tv is thereby a measure for the speed ratio S of the helium

beam (see e.q. 8.2).
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8.2.2.2 Speed ratio evaluation for high speed ratios

When it comes to high speed ratios and hence a small velocity distribution, the

above described standard deconvolution procedure cannot be used anymore.

For such beams the FWHM of the real velocity distribution of the beam is small

compared to the FWHM of the chopper-transmission function. Hence a small

error in the determination of the used slit width w can lead to a significantly

high change in the evaluated speed ratio S of the beam. To better explain this

circumstances an example is presented in the following:

For a To = 122.9 K beam at po = 81 bar nozzle pressure, the speed ratio values

S for a chopper slit-width of w = 1.83 ± 0.1 mm calculated with the standard

deconvolution process are presented in table 8.1. As one can see a slit-width

Speed Ratio S evaluated from the Tof-Spectrum

for a chopper slit width of w = 1.83 ± 0.1 mm

w = 1.73 mm 245.66

w = 1.83 mm 286.18

w = 1.93 mm 326.62

Table 8.1: Evaluated speed ratio numbers for a To = 122.9 K, po = 81 bar beam de-
termined from the recorded TOF-spectrum for a �w = ±0.1 mm varying
chopper slit width.

variation of �w = 0.1 mm leads to a speed ratio deviation by ca. �S = ±40.

This number �w is due to a combination of factors:

• The chopper slit used for the TOF-measurements on Magie has a trape-

zoidal shape, therefore w is not a fixed value but depending on the height

position of the chopper disc (slit) compared to the beam-line. In case of

the on Magie utilized microskimmers the exact position of the beam line

is varying slightly due to the manufacturing process of the skimmer tips.

Hence there is no absolute position of the beam-line.

• The vertical translation stage used to position the skimmer into the beam-

line has a high inaccuracy especially when it comes to repeatability.

• The manufacturing tolerances of the chopper slight have also an influence

on the exact slit width. Those tolerances are small but still have to be

mentioned here.
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Therefore a new speed ratio evaluation method was developed based on a

direct determination of S without the influence of the chopper slit function.

To remove the influence of the chopper slit width, the slit‘s trapezoidal shape

can be utilized. The speed ratio values S at different height positions of the

chopper-slit and hence at different slit widths are recorded. Afterwards the

ratios S (S = 1.66 · (t f /�tM)) determined from the measurement are plotted

corresponding to their height positions ( see chapter 8.2.3). By extrapolating

the gained curve to the theoretical tip position of the chopper slit (P) the

corresponding speed ratio value for an infinite small slit is found (see fig.

8.4). At this position there is no broadening of the beam‘s real flight-time

distribution due to the chopper-slit‘s transmission function. Therefore the

influence of the the chopper slit‘s width w is mostly eliminated3.

The accordant evaluation process performed to gain the value of S for a

roughly room temperature beam (K = 295 K) is presented in the following

section (8.2.3).

8.2.3 Example for the new correction method for a room temperature beam

One of the several rallied TOF spectra gained by measurements taken with

a To = 295 K, po = 81 bar beam and at a chopper frequency of f = 270 Hz is

presented in figure 8.3. Equal files were recorded for 19 other height positions

of the chopper disc with respect to the beam line. To achieve an accurate

knowledge for the respective height position of the slit, the overall helium

particle count rates for each TOF-measurement were recorded as well. The

chopper-detector distance for the measurements was L = 2046 mm.

Additionally to the count rates at the vertical height positions of each TOF-

measurement further count-rates for chopper positions with decreasing slit

widths were collected until there was no beam signal left. No beam signal in

this case means that due to the trapezoidal shaped form of the chopper slit the

beam reaches the position where it leaves the slit at its smaller end (length b1).

A sketch representing the chopper slit‘s dimensions is shown in figure 8.4.

In principle the height position of the chopper disc can be read out from the

length scale of the vertical translation stage which the chopper is mounted to.

Nevertheless the measurements showed that this position information is not

3 There might be an error occurring from the manufacturing tolerances of the trapezoidals angle
and slit height.
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Figure 8.4: Schematic of the chopper slit dimensions. Point P corresponds to the
theoretical position of the tip of the trapezoidal shaped chopper slit.

exact enough and even more inaccurate when it comes to repeatability. There-

fore it was decided to perform a more precise determination of the chopper

disc‘s height positions with respect to the beam.

From the curve gained by the intensity/count rate measurements (see figure

8.5) the height values displayed on the scale of the vertical translation stage

can be connected with the corresponding height position on the chopper disc.

The faster disappearing of the beam signal (steeper slope) is related to the

position where the beam is leaving the chopper slit at the trapezoidal‘s smaller

end (length b1). The exact slit height position for each TOF measurement

can be found by the slit‘s geometrical dimensions. The corresponding eval-

uation graph is presented in figure 8.5. Two linear fit curves were created

corresponding to the measured signal intensities at different chopper positions.

The crossing point of these two linear fits correspond to the beam leaving

the trapezoidal chopper slit. Hence the corresponding value on the choppers

translation stage can be connected to the chopper slit‘s smaller end with the

length b1. By the knowledge of the chopper slit‘s height h and the translation

stage positions for each TOF measurement the exact height positions of the slit

in relation to the beam for each TOF spectrum can be found.

Each TOF-file is analyzed for its speed ratio value S(h). This is done by

evaluating the actual flight time t f and the FWHM �tM(h) for each TOF-

spectrum. These two values provide the corresponding speed ratio values

S(h) = 1.66 · t f /�tM(h) for each measurement. It has to be mentioned here
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Figure 8.5: Evaluation curve for the position where the beam leaves the slit. This
position is found where the two blue linear fit-lines cross. The measured
intensities thereby are indicated by the green filled squares connected with
the red dashed line.

that the S(h) numbers are determined without a deconvolution of the real

speed distribution and chopper-transmission function. As a next step each

S(h) is plotted on the y-axis versus the chopper slit height position as shown

in graph 8.6 . A fit through all the S(h) values is extrapolated to the point P

to eliminate the broadening of the TOF-spactrum due to the finite chopper

slit width (see fig. 8.6). This point corresponds to a infinite small chopper

slit width (w = 0 mm). Note that the location of point P is known from the

measurement presented in figure 8.5. In this way a more accurate speed ratio

determination even for beams with high monochromaticity can be performed.

As for the presented RT beam this measured speed ratio value was found to

be S = 56, 2 ± 0.05 which agrees well to the speed ratio numbers published in

literature [103, 67].

It has to be mentioned here that the measurement/analysis uncertainty for S is

mainly afflicted by the uncertainty of the fitting procedures and the fabrication

tolerance of the slit height. By taking a closer look at this values it can be

found that the error due to manufacturing tolerances will be in the range

of �mS ∼ ±0.5 whereas the Gauss fit leads to an error of �GaussS ∼ ±0.06.



8.2 experimental speed ratio determination 185

Figure 8.6: Measured speed ratio values S versus their corresponding height position
on the trapezoidal chopper slit corresponding to different slit width‘s w.

This means that the error due to manufacturing tolerances outweighs the

uncertainty of the Gauss fit.

The time resolution predefined by the helium detection principle which is

based on electron bombardment ionization of the helium atoms thereby is

no limiting factor for speed ratio values below S = 240. This can be easily

explained by the following consideration:

t
�t

=
L
�L

=
2046 mm

5 mm
≈ 410

With a given flight distance between chopper and detector of L = 2046 mm

and a length of the atom ionization area of 5 mm, the time resolution of the

detection setup for speed ratios below S ≈ 1.66 · t
�t = 1.66 · 410 ∼ 247 is no

issue. Since our measured numbers are below this value there is no limitation

coming in on behalf of that.





9
NEMI MEASURMENTS

Within this part of the thesis the first measurement results gained with the new neu-

tral helium scattering microscope setup Nemi are presented. In particular it will

describe the characterization of the free-jet beam as well as the vacuum chamber pres-

sure responses due to the additional gas flow originating by the beam and its genera-

tion. The presented measurements were carried out with an unfocused neutral helium

atom beam gained with a diameter 5 μm nozzle on the assembled beam-column setup

of Nemi at two different working temperatures.

9.1 characterization of the 5 μm free-jet expansion beam

The following chapter represents the first measurements regarding the pressure

increase within the different Nemi chambers originating due to the helium

probe beam at different source (nozzle) pressures po. Also presented are the

corresponding pressure rises within a Pitot Tube detector setup mounted

directly into the beam line at the position where later on the sample chamber

will be attached. As this indicates these first beam characterizing measurements

were carried out before the sample chamber was assembled to the microscope

setup. Furthermore they were performed without the beam focusing zone

plate element. Nevertheless they provided us with relevant information on the

functional capability and the mechanical handling of the system in respect to

its beam-column part.

The measurement results gained by the “in line” - Pitot Tube detector allow

us to infer on the expected pressure rise within the reflection detector as a

function of the helium beam‘s particle flow. Figure 9.1 shows a principle sketch

for this experimental setup.

The Pitot Tube measuring system which was mounted at the end of the

zone plate chamber (ZPC) was built up of a CF-40-DN-flange metal tube

(diameter D=40mm length app. 70 mm). On one side it was connected to the

zone plate chamber by a tube entering aperture with a pinhole diameter of

dPitot = 1 mm. On the other side a cold-cathode high vacuum gauge with a

187
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Figure 9.1: Principle sketch of the experimental setup for the first beam flow measure-
ments on the Nemi setup.

CF-40-DN flange connection (distance skimmer to detector entrance aperture:

L = 1.090 m) was mounted. This detector setup is similar to the one which will

be later implemented onto the sample chamber as the “in-line” transmission

detector explained in section 6.3.2.3. In the source chamber a skimmer with a

diameter dSk = 9.5 μm was mounted and the dN = 5 μm nozzle was positioned

with a distance of 10 mm to this skimmer.

The characteristic curves presented in the following were taken for two dif-

ferent nozzle temperatures To = 320 K (RT) and To = 110 K (LN) respectively.

The two different nozzle temperature settings are in the following also referred

to as an app. room temperature beam (RT) and a liquid nitrogen cooled beam

(LN) respectively. The cooled beam thereby is of particular interest since the

gained speed ratios will be better (less velocity spread, more monochromatic-

ity) for this beam. As a consequence the zone plate‘s main aberration effect

namely the chromatic aberration is reduced in comparison to the focused room

temperature beam and the focal spot size diameter can be further scaled down

(see chapter 8 and appendix A).

All in the following presented pressure values are background corrected as

well as they are adjusted to helium gas values by multiplying the indicated

value from the pressure measurement gauges with the corresponding gas-

type-dependent coefficient provided by the gauge manufacturer. All cold-cathode

principle based gauges used for Nemi have the same correction coefficient for

helium which is stated to be k = 5.9 in the pressure range below 10−5 mbar.

All the pirani principle based prevacuum gauges which are TPR-280 Pfeiffer

compact pirani gauges (specifications see appendix C.1) have as well a gas-

type-dependency and their coefficient value for helium is specified to be k = 0.8
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in the range below 1 mbar.

The subsequent sub-chapters will treat the measured partial helium pressure

increases in the different chambers assembling the beam line and the last

section will consider the measured signal intensity in the Pitot-tube detection

system.

9.1.1 Measured source chamber pressures

Figure 9.2 presents the partial helium pressure increase within the source

chamber due to the helium beam. Thereby figure 9.2 right shows the partial

helium pressure increases in the prevacuum line (piSC right diagram) whereas

the left side of the same figure represents the end pressure of the ultra high

vacuum part (pSC left diagram) of the source chamber. The measurements

were performed with a nozzle diameter dN = 5 μm helium free-jet expansion

beam at different beam pressures po. Both diagrams represent the characteristic

curves measured with a room temperature beam and a liquid nitrogen cooled

beam respectively. To easily distinguish between these two beam temperatures

the corresponding curves are presented in blue/asterisk lines for the cooled

beam and red/square ones for the room temperature beam. This assignment

of colors will be also maintained until the end of this section.

To compare the actual measured pressure rise to the theoretically expected val-

ues (see section 2.2.3.1), the calculated numbers are indicated as dotted/open-

symbol lines in the left diagram showing the high vacuum pressure conditions

in the source chamber. By comparing those two curves to the measured char-

acteristics it is obvious that the expected linear increase of pSC is not displayed

by the measured lines.

The measured high vacuum pressure values show an upwards bend in the

pressure curves with increasing gradient for rising source pressures po. This

leads to the assumption that the two turbo pumps which are in charge of the

source chamber are loosing pumping speed with increasing helium flow into

the chamber. An additional indicator for this presumption can be found by

studying the prevacuum pressure lines for the source chamber presented at the

right side of figure 9.2. As apparent from this curves higher beam pressures

po drive the prevacuum pressure values into the 10−1 mbar range. The finally

achievable UHV pressure of the chamber is depending on the pumping speed

of the turbo pumps. This value is not a constant number but depends also
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on the provided prevacuum pressure for the system. When the prevacuum

pressure exceeds a certain turbo pump specific value it will lead to a decrease

of the compression ratio of the TP. This pump specific behavior is stated by

characteristic curves provided from the pump manufacturer. Hence a strongly

increasing prevacuum pressure of the system will after reaching a certain

pressure value always lead to an accompanying rising of the finally achievable

lowest end-pressure of the UHV chamber.

For the highest beam pressures with the RT beam we slowly approach this

level where the compression ratio of the turbo pumps starts to get affected

but the influence is not very strong yet. On the other hand by comparing

the pSC & piSC characteristic lines of the RT beam (red/square) and the LN2

cooled beam (blue/asterisk) it is apparent that the gradient of the cooled beam

curve is increasing faster than the one from the room temperature beam (note

the scale change for pSC & piSC between the RT and the LN2 diagram). The

same behavior is also obvious for the prevacuum pressure values. From the

calculations in section 2.2.3.1 it is expect that a cooled free-jet expansion beam

will lead to a higher helium flow originating within the source chamber. As a

consequence likewise the stress on the pumping system for the source chamber

is enhanced faster with the LN2 cooled beam especially in the region of high

source pressures po (ca. po > 100 bar). Therefore at a certain point the load

onto the prevacuum system reaches a value where the backing pumps are not

able to entirely remove all the helium gas arising from the source chamber

anymore. The prevacuum pressure in that case approaches the point where it

starts to significantly reduce the compression ratio of the two turbo pumps.

As a consequence the final end-pressure in the source chamber increases up to

a point where the residual helium gas in the chamber starts to interfere with

the atoms from the free-jet expansion. At some point the collision frequency

between the expansion atoms and the residual gas becomes so high that a

further increase of the beam pressure will not lead anymore to an increase in

the particle density of the probe beam.

In the case of the room temperature beam we can just make out the beginning

of a significant decrease of the turbo pumps pumping speed, therefore for this

beam type the pumping setup is sufficient over the whole source pressure range

of 0 − 200 bar. However in case of a liquid nitrogen (LN2) cooled expansion

the situation with the currently applied source chamber pumping setup is

different. In this case the final source chamber pressure increases faster and
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even reaches the above mentioned pressure limit where the free-jet expansion

is strongly disturbed by the residual gas in the chamber. This is indicated by

the strong upwards bent of the pSC pressure curve for the LN2 beam at a beam

pressure of around po = 80 bar.

The consequence of this faster increase in the chamber pressures and the fact

that in case of the cooled beam the just described point of strong disturbance

of the expansion will be reached is pointed out more clearly by looking at the

characteristic curves for the detected signal presented in section 9.1.4. This

figure will also explain why the LN2 beam measurements are already stopped

at po = 140 bar.

All together the measurements lead to the assumption that the longer the

prevacuum pressure can be kept below the 10−1 mbar range, the smaller the

slope increase of the high vacuum pressure for the source chamber will be. It

is assumed that the prevacuum pressure characteristic has a strong influence

on the pumping power of the turbo pumps.

9.1.2 Measured pumping stage chamber pressures

The measured pressure values representing the partial helium pressure increase

piPST/ZPC and pPST for the adjacent pumping stage chamber are depicted in

figure 9.3. Again the prevacuum characteristic is presented at the right side

of the figure whereas the ultra high vacuum pressure curves are shown on

the left. As apparent by looking at the two prevacuum curves the helium

flow within the pumping stage chamber can be easily handled by the 30 m3/h

scroll-principle backing pump in charge of the pumping stage chamber and the

following zone plate chamber. This is obvious since the prevacuum pressure

rise for increasing beam pressures is with a maximum of app. 8 · 10−4 mbar

rather small if not completely negligible since this increase is of the same

size as the measurement uncertainty of the pirani gauges in this vacuum range.

It is also constant after a first increase following the switch-on of the beam

which is another indicator that the prevacuum system is not stressed by the

raising of the beam pressure. In case of the cooled beam the measurements

even showed no partial He pressure increase in the piPST/ZPC characteristic

line. Of course there will be some amount of pressure increase in the backing

pump system but it is minor and therefore lies in the range below the pirani

gauges sensitivity.
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As a consequence of this prevacuum behavior it can be seen in the left dia-

gram of figure 9.3 that the ultra high vacuum pressure of the pumping stage

pPST depicts an almost linear increasing slope in contrast to the just before

presented source chamber high vacuum pressure pSC. This behavior leads to

the assumption that the pumping speed of the MAG W 300 turbo pump for

the pumping stage chamber is not reduced or influenced even by the high

beam pressures of po.

The ultra high vacuum pressure curve pPST of the LN2 cooled beam is differing

from the RT curve only by slightly enhanced pressure values at the same beam

pressures po. This fits the expectations since a higher helium flow rate will

naturally lead to a higher partial pressure increase in the chamber.

However comparing the pPST measurement results to the calculated numbers

(dotted-lines/open-symbols) it can be seen that the actual pressure increase

is much higher than expected. This circumstances are ascribed to poor seal-

ing between the source chamber and the pumping stage chamber. The connection

between these two chambers should be provided by the skimmer orifice. Nev-

ertheless the skimmer itself is mounted onto a conical skimmer-mounting ring

which furthermore is mounted onto a specially reworked CF-150 flange (see sec-

tion 1.2.2). It is assumed that this skimmer fixation onto this skimmer-mounting

ring is currently not tight enough. A further improvement on this point can be

made by an implementation of an additional Viton sealing between this two

components.

9.1.3 Measured Zone Plate chamber pressure

In case of the zone plate chamber the same backing pump system as for the

pumping stage chamber is used. Hence the prevacuum characteristic line for the

zone plate chamber is the same as presented in the right side of figure 9.3. As

discussed there is nearly no influence of the active helium probe beam on the

pressure value of this prevacuum line.

The ultra high vacuum pumping of this chamber is provided by a MAG W

300 turbo pump. As shown from the characteristic for the zone plate chamber in

figure 9.4 the partial helium pressure increase pZPC in the ultra high vacuum

chamber has a fairly linear tendency. This means that the pumping speed

of the turbo pump is unaffected by the additional helium load. The only

significant difference between the RT curve and the LN2 cooled curve is the
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higher pressure values at the same beam pressures po for the cooled beam.

This complies to the expected behavior due to higher helium flow rates at LN2

beam temperatures.

Comparing the calculated pressure rise values for pZPC (dotted/open-symbol

lines) to the measured characteristics shows that the experimental results are

higher then the evaluated numbers. This can be ascribed to the fact that the

value for the actual pumping speed of the Mag W 300 turbo pump is not

known exactly. The values provided by the manufacturer are standard values

which might vary slightly from pump to pump.

Both characteristics however, the measured as well as the calculated one show

the same tendency for linear increasing of the pZPC pressure values.

Figure 9.4: Zone plate chamber partial helium pressure increases (pZPC) versus the
nozzle pressure po. RT beam measurements are depicted by red/square
lines whereas the characteristics for the LN2 cooled beam are shown by
blue/asterisk lines. The calculated pZPC values for both beam temperature
cases are also presented by dotted/open-symbol lines. All values are
background corrected as well as corrected for helium gas.
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9.1.4 Measured “in-line” Pitot tube detector pressure rise

The final pressure characteristics for the beam characterization describe the

actual detector behavior. It is represented by the read out from the cold-

cathode gauge utilized as the pitot tube “in-line” detector. In the case of these

measurement results it has to be taken into account that a rising beam pressure

po consequently leads to a likewise rising helium background pressure in the

detector tube itself. This is due to diffusion of residual helium background

gas from the zone plate chamber through the pinhole aperture into the detector

tube. Therefore an additional detector background measurement has to be

recorded for each detector signal and subtracted later on from the measurement

results. The following characteristic lines presented in figure 9.5 show the

background-corrected detector response curves. They represents the relative

helium pressure increases within the pitot-tube only due to the helium probe

beam. The plot shows a slight downward bend of the measured RT curve in

Figure 9.5: Comparison of the “in-line” detector signals of a room temperature (RT) and
a liquid nitrogen cooled (LN) beam. The measured detector characteristic
of the RT beam is indicated by the red/square line and the corresponding
calculated values are indicated by the red/open-circle-dashed line. The
blue/asterisk line represents the measured values for the LN beam whereas
the blue/open-pentagon-dashed curve corresponds to the calculated values
for that case.
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the area around approximately po = 100 bar, leading into a lower slope of the

residual characteristic line against higher beam pressures. By comparing the

diagram with the pressure increase behavior of the source chamber (figure 9.2

left) one can see that this bend is located approximately at the same position

as the bent towards a steeper rise for the source chamber pressures which

appears in the pSC characteristic line also in the area above ca. po = 100 bar.

This reinforces the previous argumentation from chapter 9.1.1. In this range

above 100 bar beam pressure, for the RT beam the source chamber turbo pumps

are starting to struggle with the high helium flow from the source and therefore

start to loose pumping speed. As a consequence the source chamber pressure

pSC increases into a range where the residual gas atoms start to interfere with

the beam particles from the expansion. More and more collision events with

the beam particles occur which furthermore leads to a reduction of the particle

density in the probe beam. One can say that the free-jet expansion of the beam

starts to get slightly disturbed by the higher amount of residual helium gas

interaction with the beam. Subsequently also the amount of helium beam

atoms reaching the detector is lowered as well. An even further substantiation

for this argument is delivered by the beam characterization curves gained with

the liquid nitrogen cooled beam shown by the blue/asterisk line in diagram

9.5.

As already indicated (see section 9.1.1) this curve presents the “break down” of

the free-jet-expansion in the source chamber. This means that the expansion is

so strongly disturbed by the residual helium gas that a further increase of the

beam pressure does not anymore lead to an increase in the helium-flow within

the beam. The presented LN2 characteristic curve even shows a decrease of the

detected beam intensity by further increasing of the beam pressure above ca.

po = 80 bar. This indicates strong helium background collisions of the beam

in the source chamber which effectively leads to a decrease of the remaining

straight forward traveling helium atoms entering the residual beam path.

Also illustrated in this graph is the strong bend in the LN cooled curve at

a beam pressure value of about po = 90 bar, whereas the RT beam does not

show such a strong change. As already explained this behavior is accounted to

the fact that in case of the RT beam the pumping setup for the source chamber

is still able to cope with the high helium flow in the chamber, whereas in

the situation of the LN cooled beam this is not the case anymore for beam

pressures above ca. 80 bar. This corresponds also to the strong upwards bend
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of the source chamber pressure pSC of the LN2 cooled beam which also occurs at

the same po pressure range (see figure 9.2). Since in that case the evacuation

of the residual helium gas out of the source chamber is not sufficient enough

to enable a proper free-jet expansion, the slope of the detected signal starts to

decline until a point where it even begins to fall again. Therefore with the

current vacuum pumping setup the LN2 cooled beam can only be used up to

beam pressure values around 80 bar.

To additionally display the pressure values which were expected from the

theoretical considerations of chapter 2.1.1, they are also indicated in figure 9.5

by the dashed lines. Apparently the characteristic curve measured with the

cooled beam corresponds fairly well to the estimated values until it reaches

the point where it is assumed that the free-jet expansion is strongly disturbed

by background collisions in the source chamber.

The measured RT curve on the other hand presents higher pressure values

than expected from the theoretical considerations. Up to now I have no suitable

explanation for this circumstances and hence I propose further investigations

regarding this behavior.

9.1.5 Summary and discussion of the measurement results

Altogether it can be concluded that the current pumping setup is strong

enough to provide good beam behavior over the whole source pressure rang

of po = 0 − 200 bar for a room temperature beam. Measurements with a liquid

nitrogen cooled beam on the other hand are just reasonable until a maximum

beam pressure of about po = 80 bar. To be able to work with a cooled beam

at source pressures higher than this value a further reinforcement on the

prevacuum-system for the source chamber has to be made. This could for

example be accomplished by an additional implementation of a roots-pump

into the backing-line to enable the piSC prevacuum pressure to stay below the

10−1 mbar range also for higher source pressures po.

Also it was possible to confirm that the signal detection with the “in-line” Pitot-

tube detector works as expected.
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This final chapter summarizes the work and results presented in this thesis. It lists

the next assembling steps for Nemi and and a suggestion for the further proceeding

of this project. Additionally a discussion of the applications and future possibilities is

presented.

10.1 conclusion and outlook

A concept and complete technical design for a new neutral matter wave micro-

scope is presented in this thesis. A helium flow calculation for the whole setup

was performed to ensure the functionality of the design idea. It could be shown

that the expected signal intensity is high enough to achieve good imaging

results, and that the designed ultra high vacuum and prevacuum pumping

setup will accomplish the demands. All components of the microscope were

drawn with a 3D computer-aided design software and assembled to a 3D

model of the system. The setup of the beam column with the neutral helium

source was completed and its capability and performance was investigated

and characterized. The results of this tests are presented and in summary it

can be said that the design satisfies all expectations. This investigations also

showed the functionality of the accumulation-tube based detection principle

for Nemi.

All the remaining components of the microscope are manufactured and deliv-

ered and ready for assembly.

Measurements to investigate the performance and capability of Fresnel zone

plates as beam focusing element for neutral helium beams were carried out.

The results are presented in a paper submitted to New Journal of Physics (see

appendix A) demonstrating the first sub-micron focusing of a neutral helium

beam.

The next step for Nemi is to attach the sample chamber and the detection

system to the beam column. It is expected that this assembling process will be

199
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finished within the next months, and that first images can be presented within

the next half year.

For future applications of Nemi an improvement of the source chamber pre-

vacuum system is suggested, so that higher beam pressures also for liquid

nitrogen cooled beams can be applied. This could for example be accomplished

with the installment of an additional roots-pump.

A neutral helium microscope offers the possibility to perform surface inves-

tigations without beam induced damage. It can be applied to all materials

from metals over semiconductors up to insulating structures. In particular

the investigation of polymer nanostructures is a likely first application field.

Therefore it is expected that a tool like this will find wide interest.

Although focusing with Fresnel zones plates offers a good approach for neutral

helium microscopy on the long term the usage of new highly reflective mirrors

might be favorable.
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Abstract. In 2008 we presented the first images obtained with a new type of
matter wave microscope: NEutral Helium Atom MIcroscopy (NEMI). The main
features in NEMI are the low energy of the atoms (<0.1 eV) and the fact that they
are neutral. This means that fragile and/or insulating samples can be imaged
without surface damage and charging effects. The ultimate resolution limit is
given by the de Broglie wavelength (around 0.06 nm for a room temperature
beam). A particular challenge for neutral helium microscopy is the optical element
for focussing. The most promising option is to manipulate neutral helium via its
de Broglie wavelength, which requires “classical” optical elements structured to
nanometer precision. Here we present an investigation of the helium focussing
properties of nano-structured Fresnel zone-plates. Experiments were performed
by varying the illuminated area and measure the corresponding focussed spot
sizes. The results, which includes the first sub-micron focus of a neutral helium
beam, were fitted to a theoretical model. There is very good agreement between
model and experiments and we conclude that zone plates can be produced close to
theoretical specifications. This is an important step towards nanometer resolution
neutral helium microscopy.
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1. Introduction

The importance of microscopy in science and technology can hardly be overstated.
Matter wave microscopes, where massive particles are used as the imaging probe,
have developed rapidly in recent years with major advancements such as helium ion
microscopy [1, 2] and atomic resolution transmission electron microscopy [3]. Common
for all commercially available matter wave microscopes is that the imaging probe
is a beam of charged particles of quite high energy (typically several keV or more)
which may charge the sample if it is not conductive and, due to strong interaction
with the matter, it is highly probable that energy transfer from the probe to the
atomic/molecular species in the sample can cause sample damage. This makes it
difficult to image fragile and/or insulating samples, such as for example polymeric
nanostructures, insulating coatings, various biological samples etc. In some cases
atomic force microscopy or scanning near field optical microscopy can be used instead,
but these techniques are not suited for samples with high aspect ratio structures.

In 2008 this group published the first images obtained using a new matter wave
microscopy technique (NEMI) where a neutral beam of helium atoms is used as the
imaging probe [4]. The low energy of the beam (< 0.1 eV) and the fact that the
beam is neutral, makes this technique particularly suited for microscopy of fragile
and/or insulating samples. Our original images were shadow images obtained in
transmission by focussing a helium beam down to about 2 μm with a Fresnel zone
plate and scanning the focussed beam across a hexagonal copper grid. The image
was obtained by recording the signal variation as atoms were transmitted through
the grid openings or blocked. Very recently the first neutral helium reflection images
were published [5]. The resolution is similar to previous results, but the new reflection
images demonstrate beautifully the potential power of neutral helium microscopy as
a surface characterisation technique.

A crucial point for high resolution neutral helium microscopy is the optical
elements. Because neutral helium in the ground state is not coupled with electric or
magnetic fields it is difficult to manipulate it other than via its de Broglie wavelength.
The general field of de Broglie matter wave optics, where atoms and molecules are
manipulated via their de Broglie wavelength has attracted considerable attention in
recent years [6] and has been a topic for several recent publications also in this journal
[7, 8, 9, 10].Very recently the famous Poisson Spot experiment for light was performed
for the first time with neutral matter waves, using a μm size circular plate created with
electron beam lithography [10, 11]. de Broglie matter wave optics is characterized by
the very small wavelength of matter waves, typically less than 0.1 nm. This puts a
very large demand on the optical elements. In some cases light fields are used [12],
but this is in practice not possible for helium, which means that we are left with
the classical optical elements; mirrors and lenses. Mirror focussing has been tried on
a couple of occasions [8, 13, 14], but the issue of creating the correct mirror shape
remains a limiting factor [15], so that the best 2D focussing obtained with mirrors so
far, has only produced a spot size of around 30 μm diameter [8]. Because the energy
of the atoms is so low that they do not penetrate materials, the only possible lenses
are so called Fresnel zone plates. A Fresnel zone plate is a special type of axially-
symmetric diffraction grating, where the grating period decreases with the distance
from the center. Fresnel zone plates are used extensively for example in X-ray optics
[16]. A few papers have been published on the application of zone plates in focussing
of atoms and molecules [17, 18, 19, 4, 20], but none of these center on the ultimate
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performance of the zone plates. Ultimately, the aim for helium microscopy must be
to create an instrument with nanometer resolution, but before this can be pursued it
must be clear that the optical elements are good enough. This is complex because
the zone plate rings have sharp edges that cannot be imaged with high precision in
electron or helium ion microscopy due to the increased yield in secondary electron
emission at the edges. Thus, the precise characterization of the zone plates can only
be performed with the atomic beams themselves:

Here we present a detailed investigation on the focussing properties of two zone
plates produced in the group of Prof. Günter Schmahl in Göttingen and in the group
of Prof. Henry I. Smith at the Nanostructures Laboratory at MIT (for the rest of the
paper they will be referred to as the Göttingen zone plate and the MIT zone plate
respectively). Descriptions of the fabrication steps for each zone plate can be found
in [21] and in [22]. In both cases the fabrication relies on a combination of electron
beam lithography and planar fabrication steps.

The paper begins with a description of the experimental setup used to measure
the focussing properties of the zone plates (section 2), then follow the results (section
3) and a description of the theoretical modeling (section 4). The paper finishes with
a conclusion.

2. Experimental Setup

The experiments presented here were carried out in the molecular beam apparatus
popularly known as MaGiE. For a detailed description see [23]. A diagram of the setup
is shown in Figure 1. A neutral, ground-state helium beam is created by supersonic
expansion through a 10-μm-diameter nozzle. For the experiments presented here two
different settings were used. The measurements with the Göttingen zone plate were
carried out using a beam with an average velocity of v = (1129 ± 3)ms−1 (E ≈
26.5meV) and an average wavelength of (0.0882 ± 0.0003) nm. The source pressure
was 81 bar. For the MIT zone plate the average beam velocity was v = (1036±3)ms−1

(E ≈ 22.3meV) and an average wavelength of (0.0961 ± 0.0003) nm. The source
pressure was 110 bar. In both cases the average beam velocity was determined using
time of flight (TOF) with a double slit chopper not shown in figure 1.

The central part of the beam was selected using a micro-skimmer. For the
Göttingen zone plate a (2.5 ± 0.1)-μm-diameter skimmer was used and for the MIT
zone plate a (1.1 ± 0.1)-μm-diameter skimmer. The micro-skimmers were made in
house using a glass-pipette-puller (Narishige PP-830) [24]. The distance between
the skimmer and zone plate was g = (1528 ± 5)mm (see figure 1). To control
the illuminated area on the zone plate two collimating apertures with diameters
(300 ± 5) μm and (150 ± 5) μm were used (National Aperture Inc.). The apertures
were mounted on two linear-motion feedthroughs which made it possible to move the
apertures into and remove them from the beam-line. The feedthroughs were placed at
distances of (962±5)mm and (802±5)mm so that the corresponding illuminated areas
in the plane of the zone-plates were (478±11) μm and (288±11) μm respectively. The
MIT zone plate has a diameter of 188 μm and was only tested with full illumination.

To determine the focus spot diameter a (25 ± 2 μm) × 5mm slit aperture (CVI
Melles Griot) was mounted on a piezo table (PI model Nr. P-731) and scanned across
the focussed beam in 0.1 μm steps. In a final experiment the slit aperture was replaced
with a transmissive sample, a holy carbon film from Quantifoil (R2/1).
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Figure 1. Diagram showing the experimental setup used in the measurements
presented here. The central part of the supersonic expansion beam is selected
with a micro-skimmer. Using different collimating apertures the illuminated area
on the zone plate can be controlled. The focussed spot size is determined by
scanning a slit aperture across the focussed spot in the image plane. When the
helium atoms have passed the slit they are detected in an electron bombardment
ionization detector setup. Excluding chromatic aberration the size of the focus is
determined by the diameter of the skimmer dSk, and the demagnification factor
b/g.

3. Results

The zone plates used in this experiments can be seen in figure 2. For more than 100
zones the optical properties of a zone plate can be treated similar to a thin refraction
lens [25]. The focal length f of a zone plate depends on the wavelength λ of the
incident beam and can be determined using the formula [16]:

f =
r2

N · λ (1)

Where r is the radius of the zone plate and N the number of zones.
For a wavelength of 0.088 nm the Göttingen zone plate with N = 2700 and

r = 270μm has a focal length of 306mm. For a wavelength of 0.096 nm the MIT
zone plate with N = 189 and r = 96 μm has a focal length of 486mm. For g =
(1528± 5)mm (see Figure 1) this corresponds to image distances of b = (383± 2)mm
and b = (713 ± 4)mm respectively. The optimum image distances were determined
experimentally by measuring the focus diameters for different values of b and they were
found to be b = (378± 5)mm and b = (712± 5)mm respectively, in good agreement
with the expected values.

The focussed spot sizes were evaluated following the procedure originally
introduced in [19] and further developed in [26]: A (25 ± 2) μm wide slit is scanned
across the focussed spot in sub-micron steps (0.1 μm). As the slit moves across the
spot, the measured intensity rises and based on this rise the spot size can be determined
by a deconvolution of the measurements with a slit function. Figure 3 shows a typical
slit scan. To avoid contributions from temperature fluctuations in the laboratory
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Figure 2. Scanning electron microscope images of the Göttingen zone plate [21]
and the MIT zone plate [22] used in these experiments. The Göttingen zone
plate (top images a) and b)) is 540 μm in diameter with a middle stop 162 μm in
diameter (blocking the zero-order) and 2700 zones including the blocked middle
stop zones. In a) the innermost zones are visible with the middle stop. The radial
support rods keeping the rings in place are also visible. In b) the outermost zone
with a width of about 48 nm can be seen. The MIT zone plate (bottom images
c) and d)) is 188 μm in diameter with a 60 μm diameter middle stop and has 189
zones including the blocked middle zones. The middle stop is visible to the right
in c). In d) the outermost zone with a nominal width of 323 nm can be seen.
For an ideal zone plate there should be a 1:1 ratio between rings and open space.
Both zone plates have slightly wider open zones presumably due to over-exposure
or over-etching during fabrication.

the measurements were performed by taking fast scans 0.1 μm steps, 0.5 seconds per
measuring point. Each slit scan took about 60 seconds. To reduce the effect of
temperature fluctuations several measurements were taken for each spot diameter (7-
20 scans).

In a final experiment the slit was replaced by a carbon film with a hexagonal
pattern of 2 μm circular holes with a periodicity of 3 μm. This sample was used to
create the first sub-micron resolution images obtained with helium microscopy. The
images are shown in figure 5.
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Figure 3. Slit aperture scan across a submicron focussed spot. The scan was
performed with 0.1 μm steps. Depicted is the measured intensity (count rate/sec.)
versus the slit position on the piezo table weighted with the expected statistical
fluctuation of the count rate (

√
N) represented by the error bars. The solid line

represents the fit of the data with a Gaussian Error Function. The measurement
was taken using the Göttingen zone plate.

4. Modeling the Results

Figure 4 presents the focussed spot measurements obtained with the two zone plates.
The focussed spot diameter is plotted versus the diameter of the illuminated area on
the zone plates. The results present averages of several measurements (at least 7 per
result) as discussed in the previous section. The lines in the diagram present the
theoretical model used to predict the focussed spot size dth. As can be seen there is
a good agreement between the theoretical model and the experimental results.

The theoretical model is explained in the following: The spread in wavelength for
a supersonic atomic beam can be determined from the speed ratio S (a measure for
the velocity distribution) as [27]:

S = 2 ·
√
ln 2 · v

�v
� 2
√
ln(2)

λ

�λ
(2)

Here v is the mean velocity, �v is the full-width-half-maximum (FWHM) of the
velocity distribution and λ and �λ the wavelength and FWHM of the wavelength
distribution. The FWHM for a point source (point spread function) dp can now be
determined using simple geometrical arrangements, see figure 6 and [16]. We get:

dp =
ri

λ/�λ
� 2
√
ln(2)

r

S
(3)

where ri is the radius of the illuminated area of the zone plate.
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Figure 4. Focussed spot diameters measured with three different illuminated
areas on the zone plates (diameters: Ø1 = 478 μm , Ø2 = 288 μm, Ø3 = 188 μm).
The solid line shows the theoretically calculated focussed spot diameters for a
beam with speed ratio S=286 and skimmer diameter dSk = 2.5 μm. The dashed
line shows the theoretically calculated focussed spot diameters for a beam with
speed ratio S=408 and skimmer diameter dSk = 1.1 μm. The filled squares
are theoretical values including the experimental uncertainties in wavelength,
illuminated area and distances (g, b).

The speed ratio S can in principle be determined experimentally using a TOF measure-
ment. The TOF signal is a convolution of the actual velocity distribution of the beam
with the chopper slit and the detector function. For the experiments presented here,
the source pressures were rather high and therefore the velocity distribution rather
narrow. This meant that the width of the chopper-slit transmission curve was rather
large in comparison with the velocity distribution and hence we could not determine
the velocity distribution with sufficient accuracy using the standard deconvolution pro-
cedure [28, 29]. Therefore we chose to use theoretically determined parameters for the
speed distributions calculated using the method of moments with the Lennard-Jones
potential [30, 31, 32]. Previous experiments show that there is a very good agreement
between theory and experiment in the pressure and temperature range used for these
experiments [32].

In reality the source is not a single point. The extended size of the source has
to be included to determine the theoretical focus diameter. Previous experiments
show that the spatial intensity distribution in a supersonic expansion source (the
so called virtual source) can be approximated well with two gaussian functions [33]
(a single gaussian function does not describe the tails of the distribution properly).
The width of the two gaussian functions depends on the nozzle diameter, source
pressure and source temperature. On the other hand, the skimmers used here are
smaller than the true virtual source and the beam can be considered as emanating
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Figure 5. 2-D transmission scans of a holy carbon foil QUANTIFOIL® (R2/1).
The holes are 2 micron in diameter with a period of 3 μm. All pictures were
taken with the Göttingen zone plate. (a) image size 15x15 μm2, focussed spot
diameter < 2 μm, step size 300 nm, 2 s/step (b) image size 10x10 μm2, focussed
spot diameter < 2 μm, step size 100 nm, 2 s/step (c) image size 7x7 μm2, focused
spot ≤1 μm, step size 100 nm 1,2 s/step (d) image size 4x4 μm2, focussed spot
diameter ≤1 μm, step size 100 nm 1 s/step. Image c and d are distorted because of
thermal fluctuations, which becomes a factor due to the longer scan times caused
by the small step size and the low intensities (a smaller area of the zone plate is
illuminated to get the better focus and hence the signal is smaller).

from the skimmer. Therefore a reasonable approximation, which will simplify the
following analysis, is to assume a gaussian distribution with FWHM corresponding to
the skimmer diameter dSk. The FWHM of the geometrical image size of the source
is then simply dop = (b/g) · dSk (see figure 1). The final theoretical focus diameter
dth can then be obtained as a convolution of two gaussian functions: the geometrical
image and the point spread function:

dth =

√
(dp)

2
+ (dop)

2 (4)

5. Conclusion

Figure 4 shows that sub micron focussing of a neutral helium beam is possible. Further,
Figure 4 shows a very good agreement between the theoretically predicted focus and
the experimentally measured values for various zone plate diameters. Even for the
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Figure 6. This drawing illustrates the geometrical relation between the change
in focal length �f due to a change in wavelength and the resulting point spread
function dp. ri denotes the radius of the illuminated area of the zone plate.

largest illuminated areas there is a good agreement. This is very encouraging and
shows that the patterning is precise and transmissive. We thus conclude that the
zone plates are patterned to a precision close to specifications paving the way for
nanometer resolution neutral helium microscopy. The slit scan measurement shown in
Figure 3 illustrates one of the problems that we are still facing. The count rate appears
very low - only a few hundred counts. In fact the number of helium atoms arriving
at the detector is much higher, but the very low efficiency of present days electron
bombardment detectors (less than 10-5) makes it appear so low. Several groups are
currently exploring the possibilities of improving the detector efficiency with various
means [34, 35, 36, 37, 38, 39, 40] but so far no breakthrough has occurred. The other
crucial issue is thermal drift. This should be possible to solve quite easily, by designing
an instrument of smaller dimensions, comparable to a helium ion or a scanning electron
microscope, which can be kept in a temperature controlled environment.
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b.1 design drawings and component specifications

b.1.1 UHV Design XYZT64-50-H XYZ stage

Design drawing provided by “UHV design Ltd”, England.
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b.1.2 Sample holder
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b.1.3 Piezo-tabel

Design drawing provided by “Optonyx AB”, Sweden.
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b.1.4 Alio XYZR stage

Design drawings provided by “Alio industries”, USA.
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b.1.5 Sample chamber
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c.1 appendix specifications pressure measurement gauges

There are two different systems providing the pressure measurements for Nemi.

Both of them are from Pfeiffer Vacuum and correspond to the so called “Active

Line” and “Modul Line” of this manufacturer. The active line instruments are

connected to a Maxi Gauge TPG 256 A controller for 6 transmitters, whereas

the Modul line instruments have the TPG-300 controller unit. Each of the two

control units additionally provide RS-232 connection ports for external access.

c.1.1 Prevacuum gauges

There are two different types of prevacuum gauges used for the microscope.

One is the active-line pirani transmitter from Pfeiffer Vacuum and the other one

is a pirani gauge head from the same company but the module-line version. Both

instruments have a gas-type dependence constant of k=0.8 in the area < 1 mbar.

c.1.1.1 TPR-280 Active pirani transmitter

This pressure measurement gauge works on the basis of the pirani pressure

measurement principle. The specifications of this instrument stated by the

manufacturer are presented in the following table.
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TPR 280 Active pirani transmitter specifications

Output signal: sensor error below 0.5 V Measurement range max. 1000 mbar

Output signal: pressure range 2.2-8.5 V Measurement range min. 5 · 10−4 mbar

Output signal: minimum load 10 kOhm Temperature: operating +5ºC ÷ +60ºC

Bake-out temperature 80ºC Temperature: storage -20ºC ÷ +65ºC

Seal metal Supply: voltage 14-30 V DC

Pressure max. 10 bar Supply: power consumption max. 1 W

Feed-through glass Repeatability: 10-3-10-2 mbar ±2 %

Flange stainless steel Flange (in) DN 16 ISO-KF

Accuracy: 10-3-10-2 mbar ±15% Weight 80 g

Filament tungsten Volume 1.5 cm3

c.1.1.2 TPR-010 pirani gauge head

This type of prevacuum gauge is also based on the pirani principle and is from

the modul line. Its specifications are listed below.

TPR 010 pirani gauge head specifications

Bake-out temperature 100ºC Measurement range max. 1000 mbar

Operating temperature, standard sensor cable 0ºC ÷ +70ºC Measurement range min. 8 · 10−4 mbar

Weight 0.14 kg Filament/holder T/Ni

Isolator FPM Chamber wall, inside AlSiMg

Protective filter sintered bronze Flange (in) DN 16 ISO-KF

c.1.2 Ultra high vacuum gauges

There are four different types of UHV pressure measurement gauges in use

for NEMI. They all have the same gas-type dependency factor being stated to be

k=5,9 for pressures in the range < 10−5 mbar.

c.1.2.1 IKR-270 Active cold cathode transmitter

The IKR 270 active cold cathode pressure gauge is an active line instrument. It

is based on the cold cathode (inverted magnetron) measurement technique.

The specification are listed in the following table.
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IKR 270 Active cold cathode transmitter specifications

Output signal: sensor error below 0.5 V Measurement range max. 0.01 mbar

Output signal: pressure range 1.8-8.5 V Measurement range min. 5 · 10−11 mbar

Output signal: minimum load 10 kOhm Temperature: operating +5ºC ÷ +55ºC

Bake-out temperature 250ºC (electronic removed) Temperature: storage -40ºC ÷ +65ºC

Seal Ag Supply: voltage 15-30 V DC

Pressure max. 10 bar Supply: power consumption max. 2 W

Feed-through Al2O3 Repeatability: 10-3-10-2 mbar ±5 %

Flange stainless steel Flange (in) DN 40 CF-F

Accuracy: 10-9-10-3 mbar ±30% Weight 950 g

Filament molybdenum Volume 20 cm3

c.1.2.2 PKR-251 Active pirani/cold cathode transmitter

For the PKR 251 pirani/cold cathode transmitter from the active line, a cold cath-

ode transmitter is combined with a pirani principle based one to cover a wide

pressure range from nearly ambient pressure down to the middle 10−9 mbar

range. The specification parameters provided by the manufacturer are listed

below.

PKR 251 Active pirani/cold cathode transmitter specifications

Output signal: sensor error above 9.5 V Measurement range max. 1000 mbar

Output signal: sensor error below 0.5 V Measurement range min. 5 · 10−9 mbar

Output signal: pressure range 1.8-8.6 V Temperature: operating +5ºC ÷ +55ºC

Output signal: minimum load 10 kOhm Temperature: storage -40ºC ÷ +65ºC

Bake-out temperature 150ºC (electronic removed) Supply: voltage 15-30 V DC

Seal FPM Supply: power consumption max. 2 W

Pressure max. 10 bar Repeatability: 10-3-10-2 mbar ±5 %

Feed-through Al2O3, glass Flange (in) DN 40 CF-F

Flange stainless steel Weight 950 g

Accuracy: 10-8-102 mbar ±30% Volume 20 cm3

Filament (pirani/cold cathode) tungsten/molybdenum Feature interior FPM sealed

c.1.2.3 IKR-060/IKR-070 Cold cathode gauge heads

The pressure measurement gauges utilized for the two detection systems

(reflection/in-line transmission detector) are module line instruments. Both of

them are connected to the TPG 300 control unit via the two corresponding

CP300TT1 measurement boards which hold one cold cathode and one pirani gauge

connection each. Additionally a third measurement board provides a RS-232

interface for external control. Hence it is possible to read out all pressure pa-
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rameters via a Labview program. The two sets of instrument specifications

regarding the gauges are listed in the tables below.

IKR 060 Cold cathode gauge head specifications

Bake-out temperature 250ºC Measurement range max. 5 · 10−3 mbar

Operating temperature, standard sensor cable 5ºC ÷ +80ºC Measurement range min. 1 · 10−10 mbar

Weight 0.85 kg Isolator Al2O3

Internal seal silver Radiation resistance 1 · 107 Gy

Flange stainless steel Flange (in) DN 40 CF-F

IKR 070 Cold cathode gauge head specifications

Bake-out temperature 250ºC Measurement range max. 5 · 10−3 mbar

Operating temperature, standard sensor cable 5ºC ÷ +80ºC Measurement range min. 1 · 10−11 mbar

Weight 0.85 kg Isolator Al2O3

Internal seal silver Radiation resistance 1 · 107 Gy

Flange stainless steel Flange (in) DN 40 CF-F
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d.1 types of flow regimes

There are basically three types of possible flow regimes. Table D.1 states the

main properties of them.

Viscous flow Low vacuum D/λ > 110

Intermediate flow (Knudsen) Fine vacuum 1 < D/λ < 110

Molecular Flow High vacuum D/λ < 110

λ...mean-free-path stands for the average distance traversed by all the molecules

between successive collision with each other, or the average distance

traversed between successive collision by the same molecule, in a

given time. [60]

With T = const.:

λ · p = const. = C∗ (D.1)

where p stands for the pressure and C∗ is a temperature dependent character-

istic value for each gas (see [60]).

C∗
He = 18 · 10−3 cm · mbar

Low vacuum Fine vacuum High vacuum

particle interaction Knudsen flow particle can move without interaction

λ � D λ ≈ D λ � D

internal friction (viscosity) crossover conductance

laminar / turbulent viscous-flow / molecular-flow Cm �= f (p)

Table D.1: Basic properties of the three different flow regimes. The character D is the
pipe/tube diameter and λ is the mean free path length.
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C∗
Air = 6.67 · 10−3 cm · mbar

⇒ with T = 293 K and p = 5 · 10−2 mbar :

λHe(293 K) =
C∗

He
p

= 3.6 · 10−3 m (D.2)

For the pipe/tube diameters used in the prevacuum system, the flow regime

of Nemi is the Knudsen Flow Regime. D/λ numbers for the most common

diameters are listed below.

D = 50 mm → D
λ = 5·10−2

3,6·10−3 ≈ 13.8

Knudsen Regime !D = 40 mm → D
λ = 4·10−2

3,6·10−3 ≈ 11.11

D = 25 mm → D
λ = 2,5·10−2

3,6·10−3 ≈ 6.9

d.2 intermediate - knudsen flow

This sections presents the evaluation of the flow regime type for the prevacuum

system of Nemi. It describes characteristic values and transition points between

the viscous and the molecular flow.

d.2.1 Knudsen‘s Equation

The conductivity C [ls−1] for a tube in any regime (molecular, intermediate or

viscous) is defined by the Knudsen-equation [60].

C =
π

128 · η
· D4

L
· p̄ +

1
6
·
(

2πRoT
M

)1/2

· D3

L
·

1 +
(

M
RoT

)1/2 · D · p̄
η

1 + 1.24 ·
(

M
RoT

)1/2 · D · p̄
η

(D.3)

with

η = 0.177 · p̄ ·
(

M
T

)1/2

· λ (D.4)

in this equation C stands for the conductivity [l · s−1], λ is the mean free path [cm], D the

tube diameter [cm], L the tube length [cm], η the coefficient of viscosity [poise], p̄ the average

pressure [torr], Ro the universal gas constant ( Ro = 6.236 · 104 Torr·cm3

K·mol ), T the temperature [K],
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Figure D.1: J as a function of p̄ · D and the various characteristic values of the different
flow regimes. (Figure drawn corresponding to [60])

and M the molecular weight [g · mol−1] ( MHe = 4.003, MAir = 28.98 )

More information regarding the origin of this equation can be found in

chapter D.3 and [60].

d.2.2 Minimum conductance

Figure D.1 shows a diagram created corresponding to the formulas from [60].

It should provide an illustration for the following considerations. Within the

next subsections several specific pressure values for characteristic points from

the diagram shown in figure D.1 are discussed. This values and the parameters

which are defining them are evaluated following the same basic equations D.5,

D.6 and D.7.

p̄x · D = const · ( T
M
)1/2 · η [Torr · cm] (D.5)

η = 0.117 · p̄x ·
(M

T
)1/2 · λ (D.6)

λ = C∗
p̄x

(D.7)



242 appendix prevacuum

with C∗
He the characteristic value for Helium [Torr · cm], λ the mean free path [cm], D the

tube diameter [cm], η the coefficient of viscosity [poise], p̄x the characteristic pressure value

at the point of interest[torr], T the temperature [K], and M the molecular weight [g · mol−1] (

MHe = 4.003, MAir = 28.98 )

They are varying just by different values for the constant. Due to historical

reasons the units used in the literature are not standard SI-units. To stay con-

sistent the following equations are also presented in the same non-SI units.

The transition point between molecular flow and intermediate flow is de-

fined by the minimum conductance parameters. The parameter defining this

minimum conductance point p̄min is defined as stated in equations D.5-D.7

with

p̄x � p̄min

const = 5.47

For our system the minimum conductance point for He at T = 293 K is of

interest1.

p̄min · D = 5.47 · ( T
M
)1/2 · 0.177 · p̄min ·

(M
T
)1/2 · C∗

He
p̄min

(D.8)

= 8.6398 · 10−3 Torr · cm

with p̄min the average pressure at the minimum conductance point [torr].

d.2.3 Transition pressure

The transition pressure p̄t defines the value of pressure for which the viscous

part of equation D.3 is equal to its non-viscous fraction. Therefore the transition

point pressure describes a mixture of viscous and non-viscous flow. It is

situated somewhere in the middle range of the intermediate flow regime as

shown in figure D.1. The corresponding equations for the transition point and

its pressure value p̄t can be found by inserting

p̄x � p̄t

const = 95.7

in equation D.5-D.7.

1 The corresponding C∗
He stated in section D.1.
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For He at T = 293 K:

p̄t · D = 95.7 · ( T
M
)1/2 · 0.177 · p̄t ·

(M
T
)1/2 · C∗

He
p̄t

(D.9)

= 15.11 · 10−2 Torr · cm

with p̄t the average transition point pressure [torr].

d.2.4 Limits of the intermediate range

If one of the flow conditions predominates, meaning that its influence is of an

order of one magnitude more important than the other, we find the correspond-

ing transition point. Hence flow above the upper limit of the intermediate range

can be considered as viscous, and flow below the lower limit of intermediate

range as molecular flow, respectively [60].

Upper limit intermediate range

Is found by solving equations D.5-D.7 with

p̄x � p̄u

const = 942

For He at T = 293 K:

p̄u · D = 942 · ( T
M
)1/2 · 0.177 · p̄u ·

(M
T
)1/2 · C∗

He
p̄u

(D.10)

= 14.8 · 10−1 Torr · cm

with p̄u the average upper limit pressure [torr].

Since this value is of particular interest for the layout of the prevacuum system,

the following listing present the calculated upper limit pressure values for

the most commonly used prevacuum pipe diameters, (ISO-K DN63, KF-DN50,

KF-DN40, KF-DN25).

D = 66 mm p̄u = 2.9 · 10−1 [mbar] p̄ > 2.9 · 10−1 [mbar] ⇒ viscouse flow

D = 50 mm p̄u = 3.9 · 10−1 [mbar] p̄ > 3.9 · 10−1 [mbar] ⇒ viscouse flow

D = 40 mm p̄u = 4.9 · 10−1 [mbar] p̄ > 4.9 · 10−1 [mbar] ⇒ viscouse flow

D = 25 mm p̄u = 6.9 · 10−1 [mbar] p̄ > 6.9 · 10−1 [mbar] ⇒ viscouse flow
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Lower limit intermediate range

For the lower limit of the intermediate range the parameters are:

p̄x � p̄l

const = 10

For He at T = 293 K:

p̄l · D = 10 · ( T
M
)1/2 · 0.177 · p̄l ·

(M
T
)1/2 · C∗

He
p̄l

(D.11)

= 1.5 · 10−2 Torr · cm

with p̄l the average lower limit pressure [torr].

A listing presents the lower limit pressure values of the intermediate flow

range for the most common pipe diameters (ISO-K DN63, KF-DN50, KF-DN40,

KF-DN25).

D = 66 mm p̄l = 3.0 · 10−3 [mbar] p̄ < 3.0 · 10−3 [mbar] ⇒ molecular flow

D = 50 mm p̄l = 4.0 · 10−3 [mbar] p̄ < 4.0 · 10−3 [mbar] ⇒ molecular flow

D = 40 mm p̄l = 5.0 · 10−3 [mbar] p̄ < 5.0 · 10−3 [mbar] ⇒ molecular flow

D = 25 mm p̄l = 8.0 · 10−3 [mbar] p̄ < 7.99 · 10−3 [mbar] ⇒ molecular flow

The intermediate flow range of helium therefore extends from ca. p̄u =

7 · 10−1 [mbar] down to ca. p̄l = 3 · 10−3 [mbar], in other words it extends over

a pressure range of app. two orders of magnitude.

d.2.5 The molecular-viscous intersection point

Figure D.1 depicts point i as the intersection point of the line representing

the viscous flow, with the one representing the molecular flow. The position

of this molecular-viscous intersection point i is specific for the kind of gas

and its temperature, and it corresponds to Cv = Cm, with Cv the conductance

for viscous flow and Cm the one for molecular flow [60]. On that condition it

follows that

Cv

Cm
= 1

Together with the equations D.5-D.7 and



D.3 general equation knudsen flow 245

p̄x � p̄i

const = 116

one finds for He at T = 293 K:

p̄i · D = 116 · ( T
M
)1/2 · 0.177 · p̄i ·

(M
T
)1/2 · C∗

He
p̄i

(D.12)

= 1.83 · 10−1 Torr · cm

with p̄i the intersection point pressure [torr].

The corresponding values for the most common used pipe diameters are:

D = 66 mm p̄i = 3.59 · 10−2 [mbar]

D = 50 mm p̄i = 4.87 · 10−2 [mbar]

D = 40 mm p̄i = 5.99 · 10−2 [mbar]

D = 25 mm p̄i = 9.73 · 10−2 [mbar]

d.3 general equation knudsen flow

In general the conductance can be written as [60]:

C = Cm · J (D.13)

In this equation Cm is the conductance for molecular flow. J is defined as

J =
Cv

Cm
+

1 +
(

M
RoT

)1/2 · D · p̄
η

1 + 1.24 ·
(

M
RoT

)1/2 · D · P̄
η

(D.14)

Cv is the conductance for viscous flow:

Cv =
π

128 · η
· D4

L
· p̄ (D.15)

and Cm can be determined from

Cm =

(
1
6

)
·
[

2πRoT
M

]1/2

·
(

D3

L

)
(D.16)
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with C the conductivity [ls−1], D the tube diameter [cm], L the tube length [cm], η the

coefficient of viscosity [poise], p̄ the average pressure [Torr], Ro the universal gas constant

( Ro = 6.236 · 104 Torr·cm3

K·mol ), T the temperature [K], and M the molecular weight [g · mol−1] (

MHe = 4.003, MAir = 28.98 )

In the molecular range the conductance is independent from the pressure,

therefore J becomes J = 1. The above mentioned equation for J (eq.:D.14) can

also be written as:

J = δ +
1 + 17 · δ

1 + 21 · δ
(D.17)

This equation is valid for any gas at any temperature. δ is the ratio

δ =
p̄ · D

( p̄ · D)i
(D.18)

d.4 conductance cm molecular flow for different components

To calculate the conductance of a component we need to calculate its molec-

ular flow conductance first. The following formulas define Cm for different

components and can be found in[60].

d.4.1 Molecular flow conductance of an aperture

The molecular flow conductance of an aperture CmA of the area A [cm2] is

given by

CmA = 3.64 · 103 · ( T
M
)1/2 · A [cm3/s]

= 3.64 · ( T
M
)1/2 · A [ls−1]

and if the opening is of circular cross section, A = D2·π
4

CmA = 2.86 ·
(

T
M

)1/2

· D2 [l · s−1] (D.19)

with D the diameter [cm], M the molecular weight [g · mol−1] (MHe = 4.003, MAir = 28.98)

and T the temperature [K].
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Figure D.2: Molecular flow through an elbow piece (right), and definition of the elbow
angle θ.

d.4.2 Molecular flow conductance of a tube of constant cross section

The conductance of long tubes (l ≥ 10 · D) at low pressures CmT (molecular

flow) with a uniform circular cross section A [cm2] is

CmT = 3.81 ·
(

T
M

)1/2

· D3

L
(D.20)

with D the tube diameter [cm], L the tube length [cm], M the molecular weight [g · mol−1]

and T the temperature [K].

d.4.3 Molecular flow conductance of a short tube of constant cross section

An additional factor of 1, 33 · D is added into equation D.20 to consider the

end effect for a tube length decreasing against zero. Hence the molecular flow

conductance of a short tube CmTs is

CmTs = 3.81 ·
(

T
M

)1/2

· D3

L + 1.33 · D
(D.21)

with D the tube diameter [cm], L the tube length [cm], M the molecular weight [g · mol−1]

and T the temperature [K].

d.4.4 Molecular flow conductance - elbows

The molecular flow passing through an elbow piece is pictured as molecules

traveling through the elbow on two different paths (see figure D.2). Therefore
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the elbow can be represented as a tube with the diameter D, and an equivalent

length Le with the boundary condition of

Lax < Le < (Lax + 1.33 · D)

where Lax = L1 + L2 is the length measured along the axis of the elbow. The

elbow angle is given by the variable θ (see figure D.2 right). Thus the equivalent

length is

Le = Lax + 1.33 · θ

180◦
· D (D.22)

and the molecular flow conductance of an elbow CmEL becomes

CmEl = 3.81 ·
(

T
M

)1/2

· D3

Le
(D.23)

with D the tube diameter [cm], Le the equivalent tube length [cm], M the molecular weight

[g · mol−1] ( MHe = 4.003) and T the temperature [K].

d.5 conductance c intermediate (knudsen) flow regime

Combining the general Knudsen flow equations from section D.3 with the

molecular flow conductance equations from section D.4, the conductance val-

ues for our prevacuum system can be determined. From the evaluation of the

lower- and upper-limit pressure values for the Knudsen regime (see sections

D.2.4, D.2.4) it can be reasoned that our backing pump system will mainly

work in the Knudsen flow range (intermediate).

The calculation for each prevacuum component‘s conductance value C is

performed following the equations D.13, D.17, D.18 combined with the corre-

sponding molecular flow conductance values Cm.

The values evaluated for the implemented prevacuum components are listed

in the tables representing the setups of the two prevacuum lines used for Nemi

i.e. table D.2, D.3 and D.4 respectively.
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d.6 total conductance ctotal of an intermediate flow regime vac-

uum system

For vacuum systems which consist of more than one vacuum component, the

corresponding conductance values have to be added up. It has to be distinguish

between a serial and a parallel connection of the system parts, similar to the

treatment of electrical connections.

For a serial connection the overall (total) conductance value Cserial is defined

as ( see [60])

Cserial =
1

C1
+

1
C2

+
1

C3
+ · · ·+ 1

Cn
(D.24)

and in the parallel connected case Cparallel

Cparallel = C1 + C2 + C3 + · · ·+ Cn (D.25)

For the final determination of the effective pumping speed of the vacuum

system, additionally the characteristics of the assembled pumps have to be

taken into account. The adequate pump property is the pumps own Pumping

Speed SP, which is specified by the pump manufacturer. The systems effective

pumping speed Se f f is defined as (see [60])

1
Se f f

=
1

SP
+

1
Ctotal

(D.26)

d.7 conductance prevacuum line source chamber (sc)

Graphic 2.14 shows a sketch of the setup for the SC prevacuum line. The

pictured components and their corresponding Knudsen flow properties are

listed in table D.2.

The components are presented with their corresponding molecular flow con-

ductance values Cm as well as with the conductance values C for the Knudsen

Flow regime. They are listed in the order of their connection sequence starting

from the turbo molecular pumps. In the end the total value for the vacuum

conductance Ctotal is calculated by considering the setup of the components

in parallel and serial connection. Thus CT1 and CT2 are the two separate lines

connecting each of the two MAG W 600 with the final SC prevacuum line
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(Cpv3), respectively. This means CT1 and CT2 are connected parallel and the

resulting altogether value CT1,2parallel is combined in serial connection with the

following pipe system represented by Cpv3 .

CT1 =
(

1
C1

+ 1
C2

+ · · · 1
Cn

)−1 → serial

CT2 =
(

1
C1

+ 1
C2

+ · · · 1
Cn

)−1 → serial (D.27)

CT1,2parallel = CT1 + CT2 → parallel

Ctotal =

(
1

CT1,2parallel
+ 1

Cpv3

)−1

→ serial

The corresponding effective pumping speed Se f f of the system is

1
Se f f

=
1

Sp
+

1
Ctotal

(D.28)

where Sp represents the pumping speed value of the Scrollvac prevacuum

pump, which is given by Sp1 = 26.3 m3h−1 ∼= 7.3 ls−1. There are two of the

Scrollvac SC30 D backing pumps used for the SC due to the high helium

flow, hence Sp = 52.3 m3h−1 ∼= 14.6 ls−1. The effective pumping speed of the

source chamber prevaccum system is Se f f is:

Se f fSC = 5.778 ls−1 (D.29)

The expected rise in the prevacuum pressure p̄preevacSC due to the helium particle

flow penetrating through the chambers turbopumps into the backing pump

system can be calculated with the chamber flow rate from section 2.2.3.1, Ṅo

(see equation 2.33) and the effective pumping speed of the prevacuum system,

Se f fSC .

Wutz, [62] states that the particle flow, Ṅ = qN [s−1] is defined as

Ṅ =
�N
�t

(D.30)

The pressure-volume flow qpV can be written as

qpV = p · V̇ [Pa·m3

s ] (D.31)

Ṅ = qN =
qpV
k·T (D.32)
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with k the Boltzmann constant k = 1.38065 · 10−23 J/K, and T the temperature [K]

It is also known from [62], that the throughput Q̇ [Pa·m3

s ] of a pump and its

pipe system is defined as

Q̇ = p̄ · Se f f (D.33)

Combining above mentioned equations D.30, D.31, D.32 and D.33, one can

find

qpV = Q̇

p̄ =
Ṅ · k · T

Se f f

(D.34)

and in the special case of our source chamber backing pump pressure

p̄preevacSC

p̄preevacSC =
Ṅo · k · T

Se f fSC

(D.35)

For a system setup with dNozz = 10 μm, To = 100 K , po = 200 bar, which will

be a maximum pump load situation, we can find with equations 2.33, D.32

and D.35 that

Ṅo = 1.50 · 1020 s−1

qpV = 6.21
mbar · l

s
p̄preevacSC = 1.08 mbar

(D.36)

Based on the pressure volume flow and the expected prevacuum pressure of

the system, the possible end-pressure in the high vacuum chamber can be

determined. For this calculation the compression ratio ko of the turbo pump

from manufacturer diagrams is used

ko =
p̄preevac

pend
⇒ pend =

p̄preevac

ko
(D.37)

The diagrams provided with our pumps show a compression ratio of roughly

ko = 50 at the above mentioned prevacuum pressure of p̄preevacSC = 1.08 [mbar].
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The end pressure in the source chamber under this starting conditions will be

around

pend ≈ 2.15 · 10−2 [mbar] (D.38)

This value is pretty high, but the starting conditions are a rather worst case

scenario. With this setup though, the helium flow within the source chamber

is to high for a proper free-jet-expansion of the helium beam. The pumping

system is not able to cope with the helium flow arising in the chamber. Hence

too much particle interaction of the helium atoms with each other restrain the

formation of a suitable probe beam. Measurements carried out with this nozzle

starting parameters approve the results of this calculations . They showed an

increase to higher beam pressures po (po < 50 bar) with a 10 μm liquid nitrogen

cooled nozzle leads to a fast approach of the pumping systems limit. Therefore

it was decided to change to a dN = 5 μm nozzle setup.

The recalculate values for starting parameters of dNozz = 5 μm, To = 100 K ,

po = 180 bar are:

Ṅo = 3.37 · 1019 s−1

qpV = 1.40
mbar · l

s
p̄preevacSC = 2.42 · 10−1 mbar

(D.39)

As one can see, the prevacuum pressure is now in the lower ×10−1 mbar

range. This is still high, but for this case the pumping system is able to

handle the particle flow. With the slightly better prevacuum pressure also the

compression ratio of the turbopumps will be better. A rough estimate is that

it lies in the range of ko = 100. Therefore the expected final source chamber

pressure will be

pend ≈ 2.42 · 10−3 mbar (D.40)

The corresponding measurements presented in chapter 9 show that even

though the pumping system is at its upper limit, still a proper free-jet-expansion

is obtain for source pressure values below po = 80 bar ( LN2 cooled beam).
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As one can see from the measurements presented in section 9 the room

temperature beam generated with the current pumping setup provides a fully

functioning free-jet-expansion beam over the whole range of possible source

pressures even up to the higher limit of po = 200 bar.

d.8 conductance prevacuum line pst/ zpc /sdc

The component setup for the backing vacuum line of the pumping stage/ zone

plate chamber and sample detector chamber (PST/ZPC/SDC) is depicted in figure

2.15. All three chambers share one Scrollvac SC30D backing pump. The

conductance values for the specific components are presented in table form,

and can be found in tables D.3 and D.4.

As shown in figure 2.15, the first prevacuum lines after each of the two

MAG W 300 pumps yield into a parallel conductance value CT1,2parallel for the

PST/ZPC chamber combination, derived by summing up the serial connection

conductance values CT1and CT2

CT1,2parallel = CT1 + CT2 (D.41)

Together with the third serial connection value Cpv3 the total vacuum conduc-

tance of the pipes until the further parallel connection to the sample chamber

prevacuum line can be found to be

CPST/ZPC1 =

(
1

CT1,2parallel

+
1

Cpv3

)−1

(D.42)

This conductance factor for the first part of the PST/ZPC prevacuum com-

ponents CPST/ZPC1 is added up in a parallel arrangement with the first part

conductance factor of the sample/detector chamber prevacuum system CSD1 .

The overall first part conductance factor Cpv4 is

Cpv4 = CPST/ZPC1 + CSD1 (D.43)

The remaining prevacuum parts for this backing line are the connection

KF-40 tee-piece together with the 8 m long KF-40 PVC connection tube to the
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scroll pump. Hence the total conductance factor of the prevacuum system for

the pumping-stage-/zone-plate-/sample-detector- chamber can be found to be

CtotalPST/ZPC/SDC
=

(
1

Cpv4
+

1
CTee−piece

+
1

CKF40Tube

+
1

SPSC30

)−1

(D.44)

Regarding this backing pressure system also the two additional little turbo

pumps (SL80) have to be considered. They are serially implemented into the

pipe system to prevent possible helium gas back-flow from the prevacuum

line back into the UHV chambers. This is especially crucial in case of the

sample/detector chamber since the helium background in this chamber has to

be kept as minimal as possible. Therefore for the calculation of the effective

pumping speed the manufacturer pumping speed values of the small turbo

pumps SPSL80 are treated as the vacuum conductance values of those pumps,

that means CPSL80 = SPSL80 . They are directly included in the calculations of

CPST/ZPC1 and CSD1 .

Se f fPST/ZPC/SDC
= CtotalPST/ZPC/SDC

(D.45)

With SPSC30 = 7.3 l · s−1, SPSL80 = 55 l · s−1 the effective pumping speed of the

backing pump line for the PST/ZPC chambers is:

Se f fPST/ZPC/SDC
= 2.0025 ls−1 (D.46)

The expected backing system pressure p̄preevacPST/ZPC/SDC is evaluated with

equation D.34, just with the modification that Ṅ for this three chambers is not

given by Ṅo but by the particle flow ṄbINPST = ṄbINZPC plus the particle flow

due to the particle diffusion from the source chamber into the PST/ZPC/SDC

(pEPST , pEZPC and pESDC). This three values can be found in the sections 2.2.4.1,

2.2.4.2and 2.2.4.3 respectively.

ṄPSTDi f f =
pEPST ·SPST

k·T (D.47)

ṄZPCDi f f =
pEZPC ·SZPC

k·T (D.48)

ṄSDCDi f f =
pESDC ·SZPC

k·T (D.49)

ṄPST/ZPC/SDCges = ṄPSTDi f f + ṄZPCDi f f + ṄSDC + ṄbINPST (D.50)
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258 appendix prevacuum

As one can see from equation D.50 the particle flow due to the beam is assumed

to be the flow which enters the three adjacent chambers at the entrance aperture

of the PST chamber. The final backing system prevacuum pressure due to the

particle flow is

p̄preevacPST/ZPC/SDC =
ṄPST/ZPC/SDCges · k · T

Se f fPST/ZPC/SDC

(D.51)

Looking at the pressure situation with the system parameters dNozz = 10 μm,

To = 100 K , po = 200 bar one can find:

ṄPST/ZPC/SDCges = 4.72 · 1013 s−1

qpV = 2.0845 · 10−6 mbar · l
s

p̄preevacPST/ZPC/SDC = 2.08 · 10−6 mbar

(D.52)

Of course the PST/ZPC/SDC backing pressure system will not really reach

this low pressure value, since the ultimate pressure of the Scrollvac SC30 D

backing pump is stated to be in the range of 5 · 10−3 − 1 · 10−2 [mbar], but this

calculations show that the particle flow will be no problem for this selected

backing pump. Hence also the turbopumps of the pumping-stage-/zone-plate-

/sample-detector chamber will be able to work at their presented optimum

pumping speed. The measurements presented in section 9 also confirm this

conclusion.



E
A P P E N D I X F L I G H T T I M E C A L I B R AT I O N T O F

M E A S U R E M E N T S

e.1 flight time t f calibration tof-meausrements

The flight time t f is made up by four different parameters. The delay time td

for the measured TOF-spectra, preset as a parameter in the TOF-measurement

software. The channel width of the recorded signal parts (time bins) tchannel.

The actual peak time tp which is defined at the center position of the Gauss

scan and a correction time tc which is necessary for the calibration of the

TOF-measurements (due to apparatus influences).

t f = td + tp + tc − tchannel
2

(E.1)

For the evaluation of t f half of the channel width tchannel is subtracted to

appoint the total count in each channel to the middle of the channels time

interval instead of to its end [104].

There are three contributing effects influencing tc:

tc = t1 + t2 + t3

1. t1: Is contributed by the trigger signal which will be delivered from the

LED-photo diode setup in connection with the small rectangular shaped

trigger slits on the chopper disc. It will always provide a to early signal

leading to ⇒ t1 < 0

2. t2: Since the photo diode might not be perfectly aligned with the trigger

slit on the chopper wheel there is an offset. This offset on the other hand

means that the influence of this effect depends on the rotational direction

of the chopper wheel and therefore it can be either negative or positive.

3. t3: A perfect slit opening would be provided by an nearly infinite small

straight line. Since this is not reasonable due to a way to weak signal

going through a thin straight line, there is always an offset of the time

259



260 appendix flight time calibration tof measurements

due to the finite slit width. This influence is negative for all cases since it

does not depend on the rotational direction.

The correction time tc is determined experimentally. It is dependent on the

rotation frequency and direction of the chopper wheel. The evaluation is

done by a measurement of the peak time of the TOF-signals for varying

chopper frequencies. From plotting the peak times tp over the inverse chopper

frequency fchopper a linear increasing curve is found for each spinning direction

respectively. The gradient α of this two curves is related to the correction time

like stated in equation E.2.

tc =
α

fchopper
(E.2)
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Figure 0.1 First 2D images obtained using a neutral helium atom

beam to image a hexagonal copper grating. This pictures

were obtained with a (top) 3 μm diameter and (bottom)

2 μm focused helium beam spot in a transmission imag-

ing setup [34]. 7

Figure 0.2 (a) He scattering image of an uncoated pollen grain on

a QuantifoilTM TEM grid, back side. (b) Magnified area.

(c) Line profile taken across linear features in (b), vertical

units are gray-scale units, where 255 = white (max. He

partial pressure) and 0 = black (min. pressure) published

by Philip Witham and Erik Sànches earlier this year [52].

9

Figure 1.1 Schematic of the working principle illustrating the main

components of the new NEutral helium scattering MI-

croscope named Nemi. The instrument is based on a

Nozzle for the beam generation, a Skimmer for selecting

the central part of the beam, a Zone Plate as an optical

element for beam focusing, and a Detection System for de-

tecting the helium beam atoms which are back-scattered

from the sample surface. 12

Figure 1.2 Sketch of a Fresnel zone plate element similar to the

ones used in Nemi. The orange highlighted ring system

structure represents the Fresnel zones, whereas the gray

disc in the middle and the gray rod structures orientated

in radial direction represents the so called middle stop

disc and the supporting grid structure for holding the

ring system in place. The middle stop disc acts as a

blocking element for the main part of the zero order

fraction (not diffracted) of the beam. A more detailed

description of these functions can be found in chapter 4.

15
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Figure 1.3 Diagram of the helium microscope with the main dis-

tances and dimensions. 17

Figure 2.1 vHe final average speed of the helium atoms depending

on the nozzle temperature To. 23

Figure 2.2 Particle density no entering the source chamber (SC) di-

rectly at the nozzle versus the nozzle temperature To for

a nozzle pressure of po = 180 [bar]. 24

Figure 2.3 Particle density no entering the source chamber (SC) di-

rectly at the nozzle versus the nozzle pressure po for

a nozzle temperature of To = 100 [K] and To = 300 [K]

respectively. 25

Figure 2.4 Particle density n(x) at the zone plate position x = 0.945 [m]

over the nozzle temperature To at a nozzle pressure

po = 180 [bar] for varying nozzle diameters. 26

Figure 2.5 Particle density n(x) at the zone plate position x = 0.945 [m]

over the nozzle diameter dN for the two different nozzle

temperatures To = 300 K and To = 100 K at a pressure of

po = 180 [bar]. 26

Figure 2.6 Particle flow Ṅo(x) impinging on the zone plate sur-

face Azp over the nozzle temperature To with the three

different nozzle diameters of dN = 3 μm, dN = 5 μm

and dN = 10 μm presented for the two different zone

plates with the middle stop diameters (blocking disc) of

dMS = 20 μm and dMS = 50 μm respectively 28

Figure 2.7 Cosine distribution of the reflection intensities for a dif-

fuse scattering sample, illustrating the geometrical rela-

tion for the surface area of a spherical cap. 29

Figure 2.8 Rssample for varying sample-detector distances l presented

for a assumed cosine distribution of the reflection. 30

Figure 2.9 Schematic of the pumping system setup for Nemi. 37

Figure 2.10 Detailed setup sketch for the evaluation of the ultra high

vacuum part of the pumping system. 38

Figure 2.11 principle sketch for the flow rate estimate of the nozzle

40
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Figure 2.12 pSC, partial source chamber pressures versus nozzle pres-

sure po for the two different nozzle diameters dN =

5 [μm], and dN = 10 [μm] at the two different nozzle

temperatures To = 100 [K], and To = 300 [K] respec-

tively. 41

Figure 2.13 Schematic for the geometrical considerations regarding

the beam widening at the position of Aperture 1 between

the pumping stage chamber (PST) and the zone plate

chamber (ZPC) 47

Figure 2.14 Principle sketch of the setup for the Source Chamber

prevacuum line components. 54

Figure 2.15 Principle sketch of the setup for the pumping stage- /

zone plate- / sample detector- chamber prevacuum line

components. 57

Figure 2.16 Nemi setup sketch with the finally chosen parameters 59
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Figure 3.1 Schematic illustration of the relation between the spa-

tial intensity distribution of the virtual source and the

perpendicular speed distribution of the particles passing

through point P. From the perpendicular speed distri-

bution of the particles in point P (located at the quitting

surface) it is possible to find the spatial distribution of

the virtual source and its source plane. After the gas

particles exit the nozzle they initially propagate within

a continuum flow regime symmetric around the beam

axis. Since during the expansion the density of the gas

declines and hence the mean free path length increases

the continuum flow regime transforms continuous into a

molecular flow regime. After a distance of a view nozzle

diameters they reach a point from which it is possible

to assume that they propagate further on purely within

the molecular flow regime on straight trajectories. The

area of this final transition into molecular flow is named

quitting surface. By back tracing the particles on straight

trajectories it is possible to find the location (plane) of

the virtual source. Its spatial distribution can be deduced

from the perpendicular speed distributions of the parti-

cles in point P following the model presented by Thomas

Reisinger et al.[69, 70]. 66

Figure 4.1 Schematic for the Fresnel zone construction. A Spherical

wave front (radius R) which is propagating from point P

is divided into a set of Fresnel zones by spheres centered

at point P‘ with radii R′ + n · λ/2 for n = 1 → N. The

radius of the dividing spheres is increasing with a period

of λ/2. The zone plate geometry can be pictured as the

projection of the originating zones on the divided spher-

ical wavefront onto a screen when every second zone is

set to be transmissive. 70

Figure 4.2 Schematic illustrating the point spread function (PSF) of

a Fresnel zone plate. The relations between the longitudi-

nal and transversal chromatic aberration are illustrated.

73
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Figure 4.3 SEM images of one of the Nemi zone plates (support chip

8, membrane 1). Top: image of the whole zone plate with

a middle stop diameter of dMS = 20 μm visible; middle :

SEM micrograph of the same zone plate in higher magnifi-

cation showing the outermost Fresnel zones; bottom: same

zone plate in higher magnification showing the middle

area Fresnel zones of the zone plate. (The circular shaped

patterns overlying the top image of the whole zone plate

are imaging artifacts) 80

Figure 4.4 Scanning-electron micrographs showing the two different

zone plate types utilized in the Nemi setup representing

the difference in the middle stop diameter; top: outer

diameter dZP = 192 μm zone plate with a middle stop

diameter of dMS = 20 μm (support chip 8, membrane

2); bottom: dZP = 192 μm zone plate with a middle stop

diameter of dMS = 50 μm (support chip 8, membrane

6). (again the in a circular wave form shaped patterns

overlying both micrographs are imaging artifacts) 81

Figure 5.1 Schematic of the working principle of a Pitot tube 84

Figure 6.1 Left: principle 3D scheme of the pinhole aperture nozzle

disc (1), right: scheme half section of the nozzle disc. 89

Figure 6.2 Left: SEM micrograph of the aperture pinhole in a dN =

5 μm nozzle disc, right: SEM image of a clogged dN =

5 μm nozzle disc unmounted from Nemi. The black stripes

appearing in the image are presumably imaging artifacts

due to statically charging of the dust particle during the

microscopes scanning process. 90

Figure 6.3 Left: Sketch of the circular holding fixture (2) for the nozzle

disc, right: 3D scheme half section of the circular holding

fixture. 90

Figure 6.4 Left, middle: Sketch of the triangular shaped nozzle re-

taining fixture (3) for the nozzle disc, right: 3D scheme

half section of the nozzle retaining fixture. 91
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Figure 6.5 Exploded assembly drawing of the nozzle disc mount-

ing. The nozzle disc (1) is placed in the circular holding

fixture (2) and sealed by a copper gasket (4) against the

high pressure gas tube (5). To tighten this sealing the

circular holding fixture gets placed within the triangular

shaped nozzle retaining fixture (3) which again is tightened

by three M3 stainless steel screws into the copper made

nozzle-cooling block (6). The stainless steel high pressure

gas tube (5) on the other hand is mounted by a specially

vacuum proofed soldering technique directly into this

copper nozzle-cooling block (6). 97

Figure 6.6 Scheme of the assembled nozzle. Top left: assembled noz-

zle; top right, bottom left, bottom right: 3D half section

scheme of the assembled nozzle. Note: the vacuum and

high pressure tight sealing takes place between the nozzle

disc (1), the chopper gasket (4) and the high pressure gas

tube (5). 98

Figure 6.7 Picture of the nozzle cooling system displaying the copper-

braid connection between the copper nozzle-cooling block

and the liquid nitrogen filled stainless steel tube. The two

red wires are the electrical connection for a high per-

formance heating cartridge which is inserted into the

nozzle-cooling block. The thermic connection between

the tube for the liquid nitrogen (LN2) and the copper

braid is done by high force clamping of the braid wires

onto the outer diameter of the tube. 99

Figure 6.8 Digital images of the Zaber stage components. Top: vac-

uum compatible TSB28-MV linear translation stage with

mounted KT-NA08A25-SV-ENG1243 linear actuator; mid-

dle: detail picture of the actuator pin which performs the

linear motion and bottom: picture of the pull back mech-

anism (return spring) for the stage. 100
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Figure 6.9 3D schematics of the X/Y nozzle adjustment based on

two perpendicularly assembled Zaber linear stages (2) in

combination with two Zaber linear actuators (1). The nozzle

setup (3) is mounted via three Macor spacers (white) onto

the nozzle mounting plate (4) which again is fixed by four

M6 screws onto the X/Y translation stage (2). Also shown

in this sketches is the high pressure helium supply gas

tube (5) of the source. (3D CAD model Zaber linear stages (2) &

linear actuators (1) provided by Zaber [87] ) 101

Figure 6.10 Photograph of the actual Nemi nozzle mounting show-

ing the Zaber stages and linear actuators for the X/Y

adjustment of the source. 102

Figure 6.11 3D sketch of the Z-axis source movement mechanism.

103

Figure 6.12 3D sketches of the whole nozzle (source) setup with free

movement in X/Y and Z direction. 104

Figure 6.13 Left: photograph of a skimmer for Nemi; middle, right:

SEM micrograph of a glass tip from a skimmer similar to

the ones used in Nemi. The SEM images were taken by

Thomas Reisinger and Martin Greve. 105

Figure 6.14 Sketches of the skimmer mounting on the CF-150 vac-

uum blind flange. Left: skimmer (gold), skimmer fixation

ring (light-gray) skimmer mounting ring (dark-gray) and

specially reworked CF-150 blind flange (green) for skim-

mer mount; right: 3D scheme half section to provide a

better understanding for the conical shape of the com-

ponents. The half section sketch also shows the Viton

sealing (black) for the vacuum tight mounting of the

skimmer mount flange into the source chamber. 105

Figure 6.15 3D explosion sketch of the source chamber. Also pic-

tured in this scheme is the connection port for the liquid

nitrogen (LN2) cooling tank 106
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Figure 6.16 Sketches presenting the final skimmer and source posi-

tion after mounting into the source chamber cube. For a

better understanding components like the MAG W 600

turbo pumps, the 4-port cluster flange and the quick

access view port are not displayed in this images. 107

Figure 6.17 Sketch of the source chamber assembly steps. (a), (b), (c)

displaying three different assemble steps chronologically

arranged, (d) representing a half section sketch through

the vertical middle plane of the source chamber (Mag W

600 not displayed) 108

Figure 6.18 Schematic of the assembled source chamber. 109

Figure 6.19 Sketches of the assembled source chamber from different

view directions. 110

Figure 6.20 Schematics of the components building up the pumping

stage chamber (PST). A CF-100 gate valve is connected with

a CF-100 tee piece and a CF-100 reducer cross. The exciting

aperture from the PST into the ZPC is a CF-100 copper

gasket with a diameter 5 mm pinhole. 115

Figure 6.21 Sketches of the zone plate chamber CF-100 cross showing

the two CF-100 connection flanges along the instruments

beam line, the CF-100 connection side flange for the MAG

W 300 turbo pump, the CF-63 side connection flange to im-

plement the zone plate holding mechanism as well as the

CF-40 side flange to connect the pressure measurement

gauge for the chamber. (all CF-connections are pictured

with CF- copper gaskets) 116

Figure 6.22 Sketches of the VAB CF-100 four port distance flange

connected to the VAB specially manufactured CF-100

zone plate chamber cross. Also shown in this figure is a

schematic of the MAG W 300 turbo pump and the CF-100

copper exiting aperture. 117
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Figure 6.23 Sketch of the zone plate holder. The figure represents a

sketch of the positioning for the zone plate chip. For better

explanation of the principle magnified sketches of the

components are shown. The zone plate shown in the top

left part of the image is located on the zone plate chip (top

and bottom right image). Such a chip can hold up to 9

zone plate patterns. It is attached to the ZP holding plate

which is shown in bright gray in the bottom left picture.

118

Figure 6.24 Schematic representing the assembled zone plate holder.

The zone plate chip is attached onto the ZP holding plate

which is mounted by six hexagonal socked screws. 119

Figure 6.25 Photographs of the zone plate holder especially describing

the attachment process for the zone plate chip. This attach-

ment is done via three fitting springs which are connected

to the holder plate through hexagon socked screws. (Fit-

ting spring concept developed by Kurt Ansperger [83])

119

Figure 6.26 3D sketch (top) and photograph (bottom) of the ZP hold-

ing plate and the zone plate holder showing the milling

grooves in both parts. They are necessary to ensure that

the focused helium beam can pass unhindered further

on into the sample chamber. The image in the bottom

presents the zone plate holder without a mounted zone plate

chip. 120

Figure 6.27 Assembly sketch of the zone plate holder with attached

ZP holding plate, zone plate holder flange, and zone plate

chip. Also indicated is the circular spirit level as well as

the grub screws fixing the rotatable part of the CF-63

flange against the fixed outer ring of the flange after the

horizontal adjustment of the ZP holding plate. 121

Figure 6.28 Assembly sketch of the zone plate holder with attached ZP

holding plate, zone plate holder flange, and zone plate chip

from a different view direction. 122

Figure 6.29 3D sketch XYZ stage XYZT64-50-H from the company

UHV Design. (3D CAD model provided by UHV Design) 123
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Figure 6.30 Assembly sketch of the zone plate chamber with a mounted

zone plate holder attached to the UHV X/Y/Z stage as well

as with a mounted MAG W 300 turbo pump presented

with different view directions (top, bottom). 124

Figure 6.31 Sketch of the zone plate holder and the Y/X/Z zone plate

adjustment stage within the zone plate chamber setup.

For a better description the CF-100 zone plate chamber cross

is faded out of the graphic. To indicate the position of

the helium beam the beams center line is marked by the

blue line passing through the VAB distance flange and

the copper exiting pinhole aperture of the zone plate

chamber. 125

Figure 6.32 Left: Sketch of the sample holder; middle: schematic half

section sample holder; right: photograph of the sample

holder. The photograph also shows the eight flexible ad-

justable sample retaining springs attached to the sample

holder with M2 socket head screws. 127

Figure 6.33 Left: sketch of the sample holder with the attached position

adjustment inset; right: the same component shown in a

photograph. 128

Figure 6.34 3D sketches of the UHV compatible high resolution xy-

positioner from different view directions. The sketches

show the diameter d = 40 mm aperture opening in the

middle of the piezo table, enabling also scanning processes

with the helium beam in transmission mode. 128

Figure 6.35 Photograph of the UHV compatible high resolution xy-

positioner. 129

Figure 6.36 Left: sketch of the attachment of the sample holder to the

piezo table. The sample is indicated by the blue rectangular

plate placed in the middle of the sample holder; right:

schematic half section sketch of the sample holder attached

to the piezo table at different view directions. 131
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Figure 6.37 Schematics of the three Alio stage components. (a): AIO-

HR4-5000E-050-XY-UHV XY-linear stage, (b): AIO-D8-

2500E-CB-UHV integrated linear Z-stage and (c): AIO-

40R-D-UHV 360 degree rotary stage. (3D CAD model pro-

vided by Alio Industries) 132

Figure 6.38 3D sketches of the assembled XYZR stage from Alio. (3D

CAD model provided by Alio Industries) 133

Figure 6.39 Top: Sketches of the sample attachment unit from differ-

ent view directions; bottom: photographs of the sample

attachment unit. 134

Figure 6.40 Sketches of the assembled sample attachment unit with

the piezo table and the sample holder from different view

directions. Note in the bottom left view that the sample

attachment unit also holds a cylindrical notch to permit a

undisturbed path for the helium beam line in transmis-

sion mode. 134

Figure 6.41 3D schematic of the complete sample stage assembly

consisting of the XYZR stage assembled with the sample

attachment unit, the piezo table and the sample holder from

different view directions. 135

Figure 6.42 Sketches of the detector nose presented from different view

directions (left, middle); right: half section sketch of the

same component. 136

Figure 6.43 Sketches of the detector head presented from different view

directions in (a), (b) and (c); (d) represents a half section

sketch from the same component. 137
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Figure 6.44 Sketches of the assembled detector presented without the

cold-cathode gauge. (a), (b), (c) different view directions, (d)

half section sketch. The center-line of the helium probe

beam is indicated by the blue line passing through the

0-order aperture orifice. From the sample surface reflected

helium atoms enter the detector through the pinhole

aperture in the detector nose and travel further on through

the nose into the detector head‘s accumulation volume. The

assignment for the 0-order sorting aperture is to block out

the bigger part of the 0-order share of the helium probe

beam. 141

Figure 6.45 Sketches to show the idea for the arrangement of the

nose detector and the mounted sample. The sample itself is

indicated by the blue plate mounted on-top of the sample

holder which is attached to the piezo table, which again

is mounted onto the sample attachment unit. The incident

helium beam is indicated by the blue line. 142

Figure 6.46 Sketches of the sample/detector arrangement from differ-

ent view directions. For a better understanding of the

traveling path for the reflected helium atoms the reflection

detectors front part is shown in a half section sketch. The
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cathode gauge for the pressure measurement and the ex-
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Figure 6.60 Assembly sketch of the sample chamber with the attached

reflection detector, transmission detector, MAG W 600 turbo

pump and the CF-63 connection flange for the liquid nitro-
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CF-blank flanges, CF-view ports and the electrical CF-

feed-throughs are not displayed. 156
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to the adjacent zone plate chamber from different view
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Figure 6.63 Sketch of the assembled Nemi UHV chambers, sample
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ple/detector chamber from a different view direction. 159
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ple/detector chamber from a different view direction. 160
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chamber, pumping stage chamber, zone plate chamber, sam-

ple/detector chamber from a different view direction. 161

Figure 6.66 Sketch of the series 784 (Clean Top II) optical table with

honeycomb core from BFI Optilas with the mounted
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Figure 7.2 Screen shot image of the Labview nozzle-skimmer ad-
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Figure 7.3 Sketch to illustrate the zone plate alignment. 168
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the Magie apparatus. A chopper disc rotating with the
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given flight distance of the beam (between chopper and
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measurements. The disc is equipped with two slits of

trapezoidal shape arranged 180º to each other. They are
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presented here. 176
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2046 mm. (file: TOF3297) 177
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cated by the green filled squares connected with the red

dashed line. 184
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ber (pPST) whereas the right graph depicts the pressure

behavior of the prevacuum line (piPST/ZPC). RT beam

measurements are depicted by red/square lines whereas

the characteristics for the LN2 cooled beam are shown

by blue/asterisk lines. The calculated pPST values for

both beam temperature cases are also presented in the

left figure by dotted/open-symbol lines. All values are

background corrected as well as corrected for helium gas.
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Table 1.1 Atom optical parameters and dimensions for the neu-

tral helium atom scattering microscope Nemi based on the

considerations in the chapters 2, 3, 4, 5 and 6. vHe final

average He-atom velocity, λHe mean He-beam de Broglie

wavelength, dZP zone plate diameter, f zone plate focal

length, g object distance (skimmer-ZP), b image distance

(ZP-sample), M demagnification factor, dSk microskim-

mer orifice diameter, dN nozzle diameter, dAP1 & dAP2

aperture diameter at the PST/ZPC connection and the

ZPC/SDC connection and dth theoretically expected fo-

cus spot diameter (limited by the chromatic aberration

of the ZPs) for the two different nozzle temperatures

TN. The best expected resolution for the present setup is

380 nm. 18
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