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Abstract

Epidemiological studies suggest that father’s smoking might influence their future children’s health, but few studies have
addressed whether paternal line effects might be related to altered DNA methylation patterns in the offspring. To investigate a
potential association between fathers’ smoking exposures and offspring DNA methylation using epigenome-wide association
studies. We used data from 195 males and females (11–54 years) participating in two population-based cohorts. DNA
methylation was quantified in whole blood using Illumina Infinium MethylationEPIC Beadchip. Comb-p was used to analyse
differentially methylated regions (DMRs). Robust multivariate linear models, adjusted for personal/maternal smoking and
cell-type proportion, were used to analyse offspring differentially associated probes (DMPs) related to paternal smoking. In
sensitivity analyses, we adjusted for socio-economic position and clustering by family. Adjustment for inflation was based on
estimation of the empirical null distribution in BACON. Enrichment and pathway analyses were performed on genes annotated
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to cytosine-phosphate-guanine (CpG) sites using the gometh function in missMethyl. We identified six significant DMRs
(Sidak-corrected P values: 0.0006–0.0173), associated with paternal smoking, annotated to genes involved in innate and
adaptive immunity, fatty acid synthesis, development and function of neuronal systems and cellular processes. DMP analysis
identified 33 CpGs [false discovery rate (FDR) <0.05]. Following adjustment for genomic control (k ¼ 1.462), no DMPs remained
epigenome-wide significant (FDR<0.05). This hypothesis-generating study found that fathers’ smoking was associated with
differential methylation in their adolescent and adult offspring. Future studies are needed to explore the intriguing hypothesis
that fathers’ exposures might persistently modify their future offspring’s epigenome.
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Introduction

It has been increasingly acknowledged that environmental con-
ditions during in utero development and early life may contrib-
ute to later onset health and disease. Evolving evidence
suggests that paternal line exposures can also affect offspring
health (1–6). In particular, recent epidemiological reports have
demonstrated that fathers’ smoking is associated with an in-
creased asthma risk and adiposity (7, 8) in their children.

Efforts in identifying biochemical mechanisms underlying
such altered phenotypes have suggested epigenetic regulatory
systems as a possible mechanistic link between environmental
exposures and disease risk (9). Epigenetic processes propagate
regulatory information through mitosis essential for normal cell
tissue function and development (10). However, the epigenome
also displays a high degree of structural adaption, and is deter-
mined by the combined response to both environmental and
genetic factors (11). The plasticity of these systems is important
as they affect gene transcriptional activity and lead to long-
lasting phenotypic changes in a disease-related manner that
may also persist through meiosis, i.e. between generations.

There is clear evidence for altered epigenetic programming
in response to tobacco smoke exposure, and several genome-
wide studies have identified associations between personal
smoking and changes in DNA methylation at single cytosine-
phosphate-guanine (CpG) sites in whole blood or isolated
peripheral blood mononuclear cells (12–15). Methylation differ-
ences in cord blood of offspring born to smoking mothers have
also been reported (16–18), and such differences have been
shown to persist until adulthood (19, 20). However, to our
knowledge, evidence for a persistent methylation effect in off-
spring due to paternal tobacco use has yet to be demonstrated.

As DNA methylation can be stably propagated through mi-
totic and possibly meiotic cell divisions (10, 11), it seems theo-
retically plausible that offspring DNA methylation might be
persistently influenced by paternal smoking exposure. We
hereby present a hypothesis-generating analysis of a relatively
small number of persons, with the aim to investigate the associ-
ation between paternal smoking and genomic methylation pat-
terns in offspring, and to explore potential biological impact of
methylated regions and annotated genes.

Results

Characteristics of the study populations are presented in
Table 1. There was an equal gender distribution in both cohorts,
with mean age of 26 and 44 years for RHINESSA and European
Community Respiratory Health Survey (ECRHS), respectively. A
substantial proportion of the subjects had fathers that smoked
during their childhood (66%), for RHINESSA participants this
was due to enrichment of samples from persons with smoking
fathers for DNA methylation.

Differentially Methylated Region Analysis

Analysis of differentially methylated regions (DMRs)
using comb-p identified six significant DMRs (Sidak-corrected
P values: 0.0006–0.0173) (Table 2). Among these DMRs, spanning
between 3 and 5 DNA methylation sites, five were mapped
to known genes. Two of the annotated genes were related to in-
nate immune system pathways (ATP6V1E1, C2), whereas one

Table 1: characteristics of study participants by cohort, RHINESSA
(n ¼ 95), and ECRHS2 (n ¼ 100)

Descriptive variables RHINESSA ECRHS P-valuea

N¼ 95 N¼ 100

Sex, n (%)
Male 46 (48) 44 (44) 0.63
Female 49 (52) 56 (56)

Age, mean 6 SD 26 6 7.5 44 6 6.2 <0.001
Range 11–45 31–54
Education, n (%)

Primary 5 (5) 10 (10) 0.52
Secondary 33 (35) 37 (37)
College/university 51 (54) 53 (53)

Smoke status, n (%)
Never 68 (72) 41 (41) <0.001
Ex 13 (14) 29 (29)
Current 14 (15) 30 (30)

Pack years, median (range) 2 (0–23) 8 (1–37) <0.001
Childhood smoke exposure, n (%)

Father smokedb 66 (69) 63 (63) 0.67
Mother smoked 31 (33) 31 (31) 0.56
Father and mother smoked 31 (33) 24 (24) 0.44
No parent smoked 25 (26) 28 (28) 0.44

Father education, n (%)c

Primary 10 (11) 46 (46) <0.001
Secondary 38 (40) 22 (22)
College/university 45 (47) 25 (25)

Mother education, n (%)c

Primary 11 (12) 62 (62)
Secondary 30 (32) 24 (24)
College/university 43 (45) 7 (7)

Father age, childbirth,
mean 6SDd range

31 6 5.8 32 6 6.5 0.69

20–54 20–58

aChi square test for categorical variables; t-test for continuous (norm. distrib-

uted); Wald test for continuous (non-norm. distributed).
bRHINESSA sample included 23 persons with father smoking starting <age

15 years, 43 with father smoking starting >15 years and smoking for at least

4 years before conception of offspring, and 29 with non-smoking fathers/

mothers.
cMissing RHINESSA; Educ. 6 (6%); father educ. 2 (2%); mother educ. 6 (6%);

ECRHS; father educ./mother educ. 7 (7%).
dFather’s age in ECRHS obtained from registry data.
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DMR was involved in lipid metabolism regulation and fatty acid
biosynthesis (ACSF3). One DMR overlapped with the catenin al-
pha 2 gene (CTNNA2), which are related to development of the
nervous system. One DMR mapped to the WD repeat domain 60
gene (WDR60), which regulates a variety of cellular processes in-
cluding cell cycle progression, signal transduction, and gene
regulation (Table 3).

Differentially Mediated Probe Analysis

Epigenome-wide association between father’s smoking and off-
spring DNA methylation at a single probe level identified 33 CpGs
that passed epigenome-wide significance at a FDR rate P< 0.05
(Fig. 1). However, the EWAS exhibited a genomic inflation factor
(lambda) of 1.462 (Supplementary Fig. S1). After applying correction
for genomic inflation using the BACON method, epigenome-wide
association between father’s smoking and offspring DNA methyla-
tion identified 37 significantly differentially methylated CpG sites
(inflation-adjusted P-value <0.0001) (Supplementary Figs S2 and
S3). After subsequent filtering of data and removal of CpG sites hav-
ing SNPs within the region of 650 bp of the CpG, and with minor al-
lele frequency �0.05, we retained 32 differentially mediated probes
(DMPs) with differential methylation between exposure groups for
enrichment analysis (Supplementary Table S1). The top 10 DMPs

are presented in Table 4. Among these, four were related to innate
and adaptive immunity and various immune cell subsets (BCAS1,
MFGE8, UNC93B1, and RALB) (21–24). Another DMP (DLGAP1) was re-
lated to neuronal systems and behavioural disorders (25).

Enrichment Analysis

Enrichment analysis of the 32 DMPs (Supplementary Table S1)
using Enrichr for transcription factor-binding sites identified by
the Encyclopedia of DNA elements (ENCODE) and Epigenomic
roadmap project did not identify significant enrichment in regu-
latory regions (Supplementary Tables S2–S4 and Figs S4–S6).

Analyses using ontologies defined in the KEGG (Kyoto
Encyclopedia of Genes and Genomes) and GO (Gene Ontology)
databases retrieved pathways and terms, and although not sta-
tistically significant, results from top 10 KEGG pathways
showed enrichment of addiction behaviours (nicotine addic-
tion). Summary statistics of top 10 GO and KEGG enrichment
results are shown in Tables 5 and 6, respectively.

Sensitivity Analyses

To address the issue of relatedness among some of the partici-
pants (siblings in RHINESSA, n¼ 44), we performed linear mixed

Table 2: statistically significant DMRs (Sidak P < 0.05) as associated with father’s smoking

Location No. probes Slka P-value Sidaka P-value Ref gene name and feature CpG feature

Chr22:18111277-18111521 4 6.01E-07 0.0019 ATP6V1E1 Intron, 50UTR, cds Island
Chr6:31865522-31865866 5 2.49E-06 0.0055 C2 TSS, intron, exon, 50UTR Shore
Chr2:80752765-80752967 4 1.69E-06 0.0006 CTNNA2 intron NA
Chr16:89180587-89180843 3 5.83E-06 0.0173 ACSF3 intron, cds, nc_intron, nc_exon, nc_intron NA
Chr1:182669050-182669315 3 6.67E-07 0.0019 LINCO1688 intergenic NA
Chr7:158766826-158767135 3 5.24E-06 0.0129 WDR60 intergenic Island

aBoth Slk, uncorrected Stouffer-Liptak-Kechris P values, and Sidak P values corrected for multiple testing are reported.

50UTR , 5 prime untranslated region; cds, coding sequence; TSS, transcription start site; nc_intron, non-coding intron, nc_exon, non-coding exon.

Table 3: characteristics of DMRs

Genes annotated to DMRs Putative gene function Related pathways

ATP6V1E1 (ATPase H þ transporting
V1 subunit E1)

Encodes component of vacuolar ATPase (V-ATPase)
that mediates acidification of intracellular com-
partments in eukaryotic cells necessary for variety
of intracellular processes (32, 66, 67)

Innate immune system
Synaptic vesicle cycle

C2 (complement C2) Serum glycoprotein part of pathway of the comple-
ment system responsible for regulating immune
responses (33, 68)

Innate immune system
Complement pathway

CTNNA2 (catenin alpha 2) Involved in regulating cell–cell adhesion and differ-
entiation in the nervous system. Essential for
proper regulation of cortical neuronal migration
and neurite growth (34, 69)

Blood–brain barrier and immune cell
transmigration

Sertoli–sertoli cell junction dynamics

ACSF3 (acyl-CoA synthetase family
member 3)

Catalyzes initial reaction in mitochondrial fatty acid
synthesis (70)

Regulation of lipid metabolism by peroxi-
some proliferator-activated receptor al-
pha (PPARalpha)

Fatty acid biosynthesis
Linc01688 (long intergenic non-protein

coding RNA 1688)
Unknown

WDR60 (Wd repeat domain 60) Encodes a member of the WD repeat protein family.
Involved in variety of cellular processes including
cell cycle progression, signal transduction, apo-
ptosis, and gene regulation (71)

Organelle biogenesis and maintenance
Intraflagellar transport
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models on the 32 significant (inflation-adjusted P-value
<0.0001) CpG sites, where family ID was included as random ef-
fect. All 32 CpGs were sustained in these analyses
(Supplementary Table S5).

To account for potential confounding by social class, we con-
ducted a sensitivity analysis adjusting for paternal socio-economic
background by adding education as a proxy for socio-economic sta-
tus to the regression model. Methylation at all the selected CpG
sites (inflation-adjusted P-value <0.0001) was still associated with
paternal smoking in this analysis (Supplementary Table S6).

Replication Analysis

Due to the amount of missing CpG sites between the EPIC and
the 450 K microarray, we could not pursue replication of the sig-
nificant DMRs identified in the DMR analysis. We undertook
replication of the selected CpG sites (inflation-adjusted P-value
<0.0001) in a subsample from Isle of Wight (IoW) with available
data from cord blood DNA samples (N¼ 159, study characteris-
tics presented in Supplementary Table S7). However, due to dif-
ferent methylation array platforms, and because some CpGs
were discarded by pre-processing, only 13 out of the 32 CpGs

Table 4: differentially methylated probe analysis (corrected P-value <0.00001)

PROBEID BETA SE P-value Adj P-value CHR MAPINFO Gene

cg05019203 �0.018 0.003 2.83E-08 4.40E-06 20 52612962 BCAS1
cg25727029 0.013 0.002 3.56E-08 5.16E-06 15 89482453 MFGE8
cg00626693 �0.014 0.003 6.27E-08 7.64E-06 16 30622810 ZNF689
cg19754387 0.006 0.001 1.33E-07 1.29E-05 2 208576057 CCNYL1
cg24534854 �0.013 0.003 2.09E-07 1.76E-05 8 22582613 PEBP4
cg20272935 0.024 0.005 3.02E-07 2.27E-05 11 67765720 UNC93B1
cg04164584 �0.010 0.002 3.44E-07 2.49E-05 17 27235821 PHF12
cg06876354 0.017 0.003 4.65E-07 3.07E-05 2 121020189 RALB
cg25012097 �0.012 0.002 4.74E-07 3.11E-05 13 39263863 FREM2
cg07217718 0.025 0.005 6.17E-07 3.73E-05 18 3585484 DLGAP1

PROBEID, probe identifiers; BETA, estimates; SE, standard error; Adj P-value, P-value adjusted by multiple test correction; CHR, chromosome; MAPINFO, position of the

CpGs in the chromosome; Gene, UCSC RefGene.

Table 5: top 10 enriched pathways in GO molecular function, biological processes, and cell compartment identified using genes CpGs (thresh-
old: inflation-adjusted P-value <0.0001)

Ontology and terma ID CpGs in tern Meth CpGs P-value

MF Selenomethionine adenosyltransferase activity GO:0098601 1 1 <0.001
MF Methionine adenosyltransferase activity GO: 0004478 2 1 0.001
MF Extracellularly glutamate-gated chloride channel activity GO:0008068 1 1 0.002
BP Regulation of exocyst assembly GO:0001928 1 1 0.002
BP Regulation of exocyst localization GO:0060178 1 1 0.002
CC Excitatory synapse GO:0060076 48 2 0.002
BP S-adenosylmethionine biosynthetic process GO:0006556 3 1 0.002
BP Sequestering of neurotransmitter GO:0042137 2 1 0.003
BP Synaptic vesicle lumen acidification GO:0097401 2 1 0.003

aOntology: BP, biological process; CC, cell compartment; MF, molecular function; ID, GO identifier; CpG in term, number of CpGs in GO term; Meth.CpGs, number of

significant CpGs.

Figure 1: Manhattan plot for paternal smoking EWAS (before adjusted for genomic inflation). In the plot, the vertical axis indicates (�log10 transformed) observed P val-

ues, and the horizontal axis indicates chromosome positions with the points indicating individual CpG. Red line: Bonferroni threshold and blue line: Multiple testing

correction threshold (FDR < 0.05)
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identified in the ECRHS/RHINESSA cohort were available for rep-
lication in the IoW cohort (Supplementary Table S7).

Discussion

In the present study, we have measured epigenome-wide CpG
site-specific DNA methylation in adolescent and adult offspring
and identified six significant DMRs (Sidak-corrected P values
0.0006–0.0173) related to father’s smoking. To our knowledge,
this is the first study suggesting persisting effects of paternal
smoking on offspring DNA methylation. Although previous
genome-wide associations of maternal smoking suggest that
associations with DNA methylation changes in offspring tend to
weaken with increasing age of the offspring (26), and our study
subjects will have accumulated a range of exposures influenc-
ing DNA methylation, it is remarkable that we were able to de-
tect methylation differences associated with paternal smoking
in persons aged 11–54 years.

Of the six statistically significant DMRs identified, one region
overlapped with intron 11 within the catenin alpha-2 (CTNNA2)
gene. CTNNA2 has previously been shown to be differentially
methylated in relation to smoking (18, 27, 28). It is expressed
across the central nervous system and suggested involved in
behavioural dysfunction and addiction (29). Although it did not
harbour a CpG island, which would have provided additional
support for a regulatory role for this region, DNA methylation at
intronic sequences outside CpG islands may also be of func-
tional important (30). Two DMRs (ATP6V1E and WDR60), co-
localized with CpG islands, and the region within ATP6V1E1
covered parts of the 5 prime untranslated region (50UTR) and
the coding sequence of the gene. One DMR, annotated to the C2
gene on chromosome 6, was located to a CpG island shore
(regions within 2000 bp of a CpG island), and overlapped with
the transcription start site (TSS) as well as the 50UTR and exon 1
of C2. Although this indicates regulatory functions of the DMRs,
they consist of CpGs of only nominal significance and differen-
tial methylation could reflect irregular spacing of probes and
should be interpreted with caution as they may introduce false-
positive results.

When exploring the biological impact of annotated genes,
there were similar patterns in the DMR and DMP analyses, al-
though the identified DMPs did not remain significant at
epigenome-wide levels of significance. Two of the significant
DMRs (ATP6V1E1 and C2) and four of the top DMPs (BCAS1,
MFGE8, UNC93B1, and RALB) were annotated to genes related to
innate and adaptive immunity and to different immune cell
subsets (21–24, 31, 32). Furthermore, one DMR (CTNNA2) and

one DMP (DLGAP1) mapped to genes involved in function and
development of neuronal systems (25, 33), and to behavioural
dysfunction (29, 34, 35).

Except CTNNA2 (18), none of our significant DMRs or top
DMPs are previously reported in epigenome-wide studies of the
effect of maternal smoking (16, 17, 36–39), or current or lifetime
personal smoking exposure (12–15, 40–42). This is also in agree-
ment with Joubert et al. who demonstrated that the CpGs differ-
entially methylated in relation to maternal smoking were not
associated with paternal smoking (43). Given the differences in
gamete development in males and females, it seems biologi-
cally plausible that exposure effects through the maternal and
paternal line may differ and induce epigenetic modifications at
different loci. Further, it seems plausible that effects transmit-
ted across generations may differ from those of personal smok-
ing. To investigate whether the DMP-specific DNA methylation
differences were driven by relatedness among participants, we
conducted a sensitivity analysis accounting for family. All the
top DMPs remained suggesting that our findings were not due
to residual confounding by genetic or family-related environ-
mental factors.

There is increasing evidence of shared pathophysiology be-
tween nicotine dependence and neuropsychiatric disorders (44),
and smoking has been reported to modify genes that predispose
to addictive behaviours (27, 45). In previous literature, maternal
smoking during pregnancy has been associated with adverse
neurodevelopmental outcome (46) and behavioural alterations
in offspring (20, 47). Enrichment analysis of the top 32 differen-
tially methylated probes (adj. P< 0.00001) identified GO terms
and KEGG pathways involved in developmental and regulatory
processes of the brain and the central nervous system and nico-
tine addiction, suggesting that paternal smoking may also in-
duce aberrant methylation in genes related to
neurodevelopment. However, as the identified CpGs did not re-
main significant epigenome-wide after adjustment for inflation,
results from the KEGG and GO enrichment analysis should be
interpreted with caution and may not be valid.

When we explored the biological and regulatory role of dif-
ferentially methylated loci by investigating ENCODE and
Epigenomic roadmaps annotated regulatory domains, we found
no significant enrichment for histone modification signatures
and transcription factor sites among our significant CpG sites.
Whether the detected methylation differences can introduce
functional changes at the gene transcriptional level needs fur-
ther investigation.

The present study cannot differentiate whether the observed
association of father’s smoking with offspring DNA methylation
may be due to second-hand smoke exposure during the

Table 6: top 10 enriched pathways in KEGG using genes CpGs (threshold: inflation-adjusted P-value <0.0001)

KEGG Pathway ID CpGs in path Meth. CpGs P-value

KEGG ECM–receptor interaction path:hsa04512 86 2 0.006
KEGG Glutamatergic synapse path:hsa04724 114 2 0.011
KEGG Nicotine addiction path:hsa05033 40 1 0.047
KEGG Cysteine and methionine metabolism path:hsa00270 48 1 0.049
KEGG Biosynthesis of amino acids path:hsa01230 74 1 0.063
KEGG Synaptic vesicle cycle path:hsa04721 78 1 0.093
KEGG Pancreatic cancer path:hsa05212 75 1 0.095
KEGG Colorectal cancer path:hsa05210 86 1 0.104
KEGG Retrograde endocannabinoid signalling path:hsa04723 141 1 0.149
KEGG Cytokine–cytokine receptor interaction path:hsa04060 289 1 0.167

Pathway, KEGG pathway; ID, pathway identifier; CpG in path, number of CpGs in pathway; Meth.CpGs, number of significant CpGs.
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gestational period and/or childhood (post-conception) or due to
altered sperm DNA methylation patterns transmitted to the off-
spring (pre-conception). A pre-conception effect is suggested by
previous studies showing that the strongest effect of father’s
smoking on offspring phenotype was observed when smoking
occurred before conception and particularly at an early age (7, 8,
48). However, further studies with detailed information about
exposure onset in large samples will be required to address this.

The identified DMPs associated with father’s smoking
showed relatively small effect estimates, with top 10 CpG beta
values relative to offspring of smoking and non-smoking fathers
ranging from �0.02 to 0.03. This is in line with previous findings
where DNA methylation differences associated with environ-
mental exposures are characterized by small changes on the
scale of 2–10% (30, 49). However, previous studies have demon-
strated that even small changes can impact transcriptional ac-
tivity and be consistent in different populations and across age
groups (17, 49). Although associations with in utero maternal
smoking have shown higher estimates, ranging from �0.28 to
0.18 (16, 18, 26), we would expect DNA methylation changes re-
lated to paternal exposures to be subtler when compared to di-
rect effects from placenta–foetus interactions. Further, smaller
effect estimates could be expected considering that we analyzed
associations of father’s smoking with DNA methylation in ado-
lescents and adults. The fact that we found epigenomic regions
(DMRs) associated with paternal smoking, adds functional rele-
vance to our discoveries, as it implies differential methylation
in regions that may affect regulation of transcription. These re-
gional changes are also more robust as they are less prone to
SNP effects and risk of false-positive findings as compared to
site-by-site analysis, and they improve the specificity and po-
tentially functional relevance of our findings (50).

A main limitation of our study is the relatively small study
population. The present study was underpowered to allow
stratification by offspring’s sex or age, hence we did not address
potential variability of effect estimated by gender or in different
age groups. On the other hand, the study participants come
from population-based cohorts, which is a strength of the study
and to some degree allows for generalization of the results. In
thorough analyses, we have accounted appropriately for the
study design with two linked cohorts and family members.
Further, we had information on personal smoking as well as
smoking in both parents and have been able to account for
main confounding factors (potentially associated with both the
exposure and the outcome) in the analyses. However, rest con-
founding from included and unknown factors may still be
present.

We have not been able to verify our findings in an indepen-
dent cohort. We pursued replication in a sample from the IoW
third-generation study, however, replication of significant
DMRs proved not be possible as different methylation platforms
were used in the two cohorts (Illumina 450K in IoW and
Illumina EPIC Beadchip in RHINESSA/ECRHS) and a large num-
ber of sites were missing in the replication analysis. Few other
cohorts have reliable and extensive information on father’s
smoking, while personal or maternal smoking are often well
documented. Thus, the novel findings of DMRs related to
father’s tobacco smoking in our analyses, should be considered
hypothesis generating and be interpreted with caution.

Conclusion

In conclusion, this hypothesis generating EWAS study is the
first to report associations between paternal smoking and DNA

methylation characteristics in adult and adolescent offspring. It
is notable that differential methylation was detectable in this
age group. Our results are intriguing as they indicate that
fathers’ exposures might persistently modify their future off-
spring’s epigenome. This emphasizes the necessity to focus on
male-line exposures in relation to phenotypic variation in their
children, and further research to replicate our findings and ex-
plore potential mechanisms.

Methods
Study Population

This study included data from 195 males and females aged 11–
54 years participating in two linked population-based cohorts
(Fig. 2).

The ECRHS conducted a study of population-based random
samples of adult women and men aged 20–44 years in 1990–94
and followed up participants with clinical investigations in
2002–04 and 2012–14. The present analysis included 100 partici-
pants from the Bergen study centre with available DNA methyl-
ation data from DNA collected in ECRHS II. Information on
father’s year of birth was obtained from the Norwegian National
Registry.

The Respiratory Health in Northern Europe, Spain and
Australia study (RHINESSA) (www.rhinessa.net) investigated
the offspring of ECRHS study participants in 10 study centres,
following standardized protocols harmonized with the ECRHS
protocols. The present analysis included 95 participants from
the Bergen study centre in which DNA methylation was
measured.

For the present analysis, offspring from the two cohorts
were merged and analysed together. Information on smoking
and other variables were obtained through interviews. Unless
otherwise stated, definitions are similar in the two cohorts.

The study was approved by the Regional Committee for
Medical and Health Research Ethics in Western Norway
(RHINESSA: 2012/2017; ECRHS: 2010/759), and each participant
gave written informed consent prior to participation.

Smoking Exposure and Covariates

In the RHINESSA cohort, information on fathers’ smoking habits
was collected from longitudinal data given by the fathers them-
selves as participants in the ECRHS II study, responding to the
question: (i) Have you ever smoked for as long as a year?. In the
ECRHS cohort, information on father’s smoking was reported by
the ECRHS participants and based on the question: Did your

Figure 2: flowchart of study population. Offspring originate from two linked

study populations with standardized and harmonized protocols: the ECRHS and

the RHINESSA
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father ever smoke regularly during your childhood? Father’s smoking
was categorized as a binary variable, as having smoked or not
during offspring’s childhood. In the present analysis paternal
smoking was not defined in more detail as information regard-
ing age of smoking onset was only available for RHINESSA
participants.

Information on mothers smoking was reported by partici-
pants based on the question: Did your mother ever smoke regularly
during your childhood, or while pregnant with you? with the answer-
ing categories ‘no’ (n¼ 128), ‘yes’ (n¼ 62), or ‘don’t know’ (n¼ 5)
Maternal smoking was dichotomized as either having smoked
(‘yes’) or never smoked (‘no’) during offspring’s childhood,
whereas ‘don’t’ know’ replies were excluded from further
analyses.

Personal smoking was classified as current, ex or never
smoking, based on the questions: i. Have you ever smoked for as
long as a year? (ii) If yes How old were you when you started smoking?
(iii) Have you stopped or cut down smoking? (iv) How old were you
when you stopped or cut down smoking? Number of pack years was
calculated based on the number of years smoked and the aver-
age number of daily cigarettes.

Parental educational attainment was categorized in as lower
(primary school), intermediate (secondary school) and higher
education (college or university). Personal education level was
defined the same way in RHINESSA and categorized in three
levels based on reported age when education was completed in
ECRHS.

Methylation Measurements and Quality Control

DNA was extracted from whole blood using a standard salting
out procedure (51). Samples were processed with the Illumina
MethylationEPIC Beadchip microarray, which assesses methyla-
tion at > 850 000 CpGs. Methylation measurements were per-
formed by the Oxford Genomics Centre (Oxford, UK) using the
EZ 96-DNA methylation kit (Zymo Research, CA, USA), following
the manufacturer’s standard protocol, with multiple identical
control samples assigned to each bisulphite conversion batch to
assess assay variability. Samples were randomly distributed on
microarrays to control against batch effects. The CPACOR pipe-
line (52) was used to pre-process and normalize the methylation
data. We removed probes with CpG loci located on sex chromo-
somes and probes located at 0 distance to known SNPs. We ap-
plied Illumina background correction to all intensity values.
Any intensity values having detection P values >¼10�16 were
set as missing data. Samples with call rate <98% were excluded.
After pre-processing, 765 082 sites remained for subsequent
analysis. A quantile normalization was applied using limma on
intensity values separately based on six different probe-type
categories (Type-I M red, Type-I U red, Type-I M green, Type-I U
green, Type-II red, and Type-II green). Beta values were then
calculated from these normalized intensity values. ComBat was
used to correct for batch effects (53).

Statistical Analyses

For identification of DMRs, composed of multiple signals across
individual CpG positions, we used Comb-p (54) (Python version
2.7). This method identifies regions enriched for low P values
based on the probe location and unadjusted P values from the
site-specific CpG analysis. For each region the comb-p algorithm
adjusts the CpG P values for auto-correction between probes by
using the Stouffer-Liptak-Kechris (slk) correction, followed by
multiple testing adjustment using a one-step Sidak correction

method (54). Regions containing at least two probes and having
a Sidak-corrected P-value <0.05 were considered statistically
significant.

Robust multivariate linear regression models were used to an-
alyse the association of offspring differentially associated probes
(DMPs) adjusted for paternal and offspring age, offspring gender,
as well as personal and maternal smoking status. Educational
level was added in sensitivity analyses to account for socio-
economic status. Cell proportions (CD8T, CD4T, NK, B Cells,
Monocytes, Granulocytes) were estimated using the minfi package
(55) (R version 3.4.2), and cell composition coefficients were de-
rived using the Houseman method (56). These were additively in-
cluded in the model. Multiple hypothesis testing was accounted
for by controlling the false discovery rate (FDR), using Benjamini
and Hochberg’s algorithm (57). CpGs with FDR-corrected P-value
<0.1 were considered statistically significant and normalized
methylation betas were used as outcome measurements. In order
to address possible inflation of our test statistics by systematic
biases, a Bayesian method based on estimation of the empirical
null distribution was applied using the R/Bioconductor package
BACON (58), and P values were estimated.

Some of the study participants originated from the same
family. To account for this, we performed linear mixed model
analysis on the top CpGs including family IDs as random effect.

For CpG annotation, we used the UCSC Genome browser anno-
tation provided by Illumina in the array manifest together with
SNIPPER (version 1.2, http://csg.sph.umich.edu/boehnke/snipper/)
to annotate the nearest gene within 10 Mb of each CpG.

To investigate the regulatory context of the top differentially
methylated probes (inflation-adjusted P-value <0.00001), we
performed enrichment analysis in annotated regulatory ele-
ments (TF Chip seq and histone modification signatures) from
the ENCODE (59), as well as the Epigenomics roadmap (60) using
Enrichr (61).

Pathway analysis was conducted using KEGG (62), and
GO databases (63) using gometh function in the missMethyl
package (52).

Replication in Isle of Wight Cohort

To pursue replication of findings, we used the IoW third-genera-
tion study which since 2010 has enrolled children born to
second-generation parents—the original Birth cohort. Extensive
descriptions of the IoW multigenerational cohort design and
objectives have been published elsewhere (64, 65). Father’s
smoking information given by the fathers themselves, and DNA
methylation measurements using the Illumina Infinium
HumanMethylation450 Beadchip array in cord blood DNA avail-
able for 159 subjects were included in the present analysis.
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M-F, Holland N, Holloway JW, Hoyo C, Hu D, Huang R-C,
Huen K, Järvelin M-R, Jima DD, Just AC, Karagas MR,
Karlsson R, Karmaus W, Kechris KJ, Kere J, Kogevinas M,
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