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Abstract. The precise phylogenetic position of the weevil subfamily Platypodinae continues to be one of the more contentious issues in 
weevil systematics. Morphological features of adult beetles and similar ecological adaptations point towards a close relationship with the 
wood boring Scolytinae, while some recent molecular studies and larval morphology have indicated a closer relationship to Dryophthori­
nae. To test these opposing hypotheses, a molecular phylogeny was reconstructed using 5,966 nucleotides from ten gene fragments. Five of 
these genes are used for the first time to explore beetle phylogeny, i.e. the nuclear protein coding genes PABP1, UBA5, Arr2, TPI, and Iap2, 
while five markers have been used in earlier studies (28S, COI, CAD, ArgK, and EF-1α). Bayesian, maximum likelihood and parsimony 
analyses of the combined data strongly support a monophyletic Curculionidae (the advanced weevils with geniculate antennae), where 
Brachycerinae, Platypodinae, and Dryophthorinae formed the earliest diverging groups. Dryophthorinae and core Platypodinae were sister 
groups with high support, with the contentious genera Mecopelmus Blackman, 1944 and Coptonotus Chapuis, 1873 placed elsewhere. 
Other lineages of wood boring weevils such as Scolytinae, Cossoninae, and Conoderinae were part of a derived, but less resolved, clade 
forming the sister group to Entiminae. Resolution among major curculionid subfamilies was ambiguous, emphasizing the need for large 
volumes of data to further improve resolution in this most diverse section of the weevil tree. 

Key words. Weevils, molecular phylogeny, Platypodinae, Scolytinae, Dryophthorinae, ambrosia beetles, TPI, UBA5, PABP1, Arrestin2, 
Iap2.

1. 	 Introduction

The weevil superfamily Curculionoidea represents one 
of the most diverse groups of insects, with more than 
60,000 described species (Oberprieler et al. 2007). Clas­
sification of the group has changed considerably over 
the past centuries, as can be expected for such a tre­
mendously diversified group. Recent revisions of higher 
taxa (Alonso-Zarazaga & Lyal 1999; Oberprieler et 
al. 2007) have highlighted considerable uncertainty tied 
to the placement and rank of certain taxa, but have also 
pointed towards a gradually unified classification, largely 
founded on, and confirmed by, recent phylogenetic anal­
yses (Kuschel 1995; Marvaldi et al. 2002; McKenna et 
al. 2009; Jordal et al. 2011; Haran et al. 2013; Gillett 
et al. 2014; Gunter et al. 2015). 
	 There is now a certain consensus that orthocerous 
weevil families (weevils with straight antennae) form a 

variety of older diverging lineages, including Nemony­
chidae, Anthribidae, Attelabidae, Belidae, Caridae, and 
Brentidae. Most of the controversy is therefore associ­
ated with the placement and rank of the advanced wee­
vils which are characterized by geniculate antennae – the 
megadiverse family Curculionidae sensu Oberprieler et 
al. (2007) (Fig. 1). The generally low phylogenetic reso­
lution obtained so far may be a consequence of limited 
molecular data per taxon unit, as well as the high number 
of species, with species-rich clades requiring larger data 
volumes to obtain resolution. The type of data used in 
previous analyses has mainly been of ribosomal or mito­
chondrial origin, with no more than five nuclear protein 
coding genes applied to date (Farrell et al. 2001; Mc
Kenna et al. 2009; Jordal et al. 2011; Riedel et al. 2016). 
A commonly used ribosomal marker, the 18S gene, has 
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a low substitution rate and, hence, contains very limited 
information for weevil phylogenetics (Farrell 1998). 
Additional markers are therefore much needed to enable 
further resolution of the weevil tree. 
	 Perhaps the most contentious issue in weevil phylo­
genetics is the placement of the wood boring and fungus-
farming subfamily Platypodinae (Jordal et al. 2014; Jor-
dal 2015). These beetles share a functional niche with 
11 fungus-farming lineages in another weevil subfamily, 
Scolytinae (Hulcr et al. 2015). These all live in nutri­
tional symbiosis with Microascales and Ophiostomatales 
ambrosia fungi and are therefore generally referred to as 
‘ambrosia beetles’ (Beaver 1989). Platypodine and sco­
lytine ambrosia beetles excavate tunnel systems in dead 
trees into which they inoculate fungal spores and culti­
vate small fungal gardens in the wood; this serves as the 
only food source for their larvae. Fungus farming is a tru­
ly unique evolutionary innovation seen elsewhere only in 
one clade of ants and one clade of termites (Mueller & 
Gerardo 2002). 
	 The wood boring behaviour that characterizes bark 
and ambrosia beetles is generally associated with a sub­
stantial reduction in rostrum length and strengthened tib­
ial spines, a feature also seen in some other wood boring 
weevils such as many Cossoninae and the conoderine 

tribe Campyloscelini (Jordal et al. 2011; Kirkendall et 
al. 2014). Wood boring taxa have often been placed close 
to each other in classifications due to morphological 
similarities (Blandford 1897; Kuschel 1995; Kuschel 
et al. 2000; Oberprieler et al. 2014; see Fig. 1A), in par­
ticular, Platypodinae and Scolytinae (Wood 1986; Mo-
rimoto & Kojima 2003). However, morphological data 
(Lyal 1995; Marvaldi 1997) and recent molecular phy­
logenetic studies (McKenna et al. 2009; Gillett et al. 
2014; Gunter et al. 2015) have indicated that this may 
not reflect evolution, but adaptation to similar life styles. 
Some large-scale molecular studies have rather suggest­
ed a close, but weakly supported, relationship between 
Platypodinae and Dryophthorinae (McKenna et al. 2009; 
Haran et al. 2013; Gillett et al. 2014), in particular 
agreement with larval and pupal morphology (Marvaldi 
1997). Both types of data also suggest that platypodines 
and dryophthorines are advanced weevils, forming the 
first diverging clade after the origin of Brachycerinae 
(Fig. 1B). All three subfamilies (sensu Oberprieler et al. 
2007) have therefore been ranked as families by some 
authors, as opposed to subfamilies, and placed outside 
a more narrowly defined Curculionidae (sensu Thomp-
son 1992; Zimmerman 1993, 1994; Alonso-Zarazaga & 
Lyal 1999). 

Fig. 1. Two main hypotheses on relationships in the advanced weevils, using Brentidae as outgroup: A: Proposed by Kuschel (1995) 
and partially supported by mixed morphological and molecular data in Farrell (1998), Marvaldi et al. (2002), and Jordal et al. (2011). 
B: Proposed by Marvaldi (1997) and supported by molecular data in McKenna et al. (2009), Haran et al. (2013), and Gillett et al. (2014). 
Subfamilies marked by * as broadly defined by Oberprieler et al. (2007).
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	 In order to establish a more robust resolution in the 
weevil phylogeny, we added five new nuclear protein 
coding genes to the phylogenetic analysis. The new 
markers were originally screened and optimized for bark 
beetle phylogenetics (Pistone et al. 2016), and we have 
tested their usefulness for a broader range of weevil taxa. 
Based on new sequence data, we tested the hypothesis 
that Platypodinae is the sister group to Dryophthorinae, 
using a largely unbiased taxon sampling that represents 
most major groups of advanced weevils.

2. 	 Materials and methods

Samples included 72 species of 15 different subfamilies 
in the family Curculionidae, sensu Alonso-Zarazaga & 
Lyal (1999), or 9 subfamilies sensu Oberprieler et al. 
(2007). Ten species of Anthribidae, Attelabidae, Api­
onidae and Brentidae were included as outgroup taxa 
(Table 2). DNA was extracted from a leg for each of the 
larger species, or head and pronotum for smaller species, 
using the DNeasy® Blood & Tissue Kit (Qiagen, Hilden, 
Germany) following the manufacturer’s instructions.
	 PCR (Polymerase Chain Reaction) was used to am­
plify gene fragments prior to Sanger sequencing. DNA 
sequences were obtained from ten genes, five of these 
have not previously, or only rarely, been used in beetle 
phylogenetics: Triose phosphate isomerase (TPI), Arres­
tin 2 (Arr2), Inhibitor of apoptosis 2 (Iap2), Ubiquitin-
like modifier-activating enzyme 5 (UBA5), and Polyade­
nylate-binding protein 1 (PABP1). 

	 TPI is a key enzyme of the glycolysis pathway 
(Wierenga et al. 2010) and has occasionally been used 
in phylogenetic analyses of insects (Hardy 2007; Wieg-
mann et al. 2009; McKenna & Farrell 2010). 
	 Arr2 is a mediator protein involved in the sensitiza­
tion of G-protein-coupled receptors and in other signal­
ling pathways (Gurevich & Gurevich 2006). Molecular 
characterization of this gene in Maruca vitrata (Lepido
ptera: Crambidae) has demonstrated congruence with ba­
sal holometabolan relationships and could potentially be 
valuable as a phylogenetic marker (Chang & Ramasamy 
2013). 
	 Iap2 is a member of the inhibitor of apoptosis pro­
tein family, mainly involved in regulation of caspase 
activity ensuring cell survival (Leulier et al. 2006; Huh 
et al. 2007). Iap2 in particular is required for the innate 
immune response to Gram-negative bacterial infections 
(Rajalingam et al. 2006). 
	 UBA5 is an E1 enzyme responsible for the activation 
of ubiquitin-fold modifier 1 protein (Umf1) by forming a 
high-energy thioester bond (Komatsu et al. 2004; Dou et 
al. 2005; Bacik et al. 2010; Gavin et al. 2014). Ubiquit­
ination, including the process of post-translational modi­
fication or addition of ubiquitin to a protein, is carried 
out by activation, conjugation and ligation performed by 
three ubiquitin-modifier classes of enzymes (E1, E2 and 
E3 respectively). Information regarding UBA5 in insects 
is very limited. 
	 PABP1 is known as the Poly (A) binding protein 1, 
which plays a crucial role for the messenger RNA trans­
portation from the nucleus (Apponi et al. 2010). This pro­
tein has a conserved structure in the Metazoa (Smith et al. 
2014). PABP1 has not been used in phylogenetic studies 
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of invertebrates, but has been briefly considered for such 
analyses in vertebrates (Fong & Fujita 2011).
	 Primers and protocols for the five new gene frag­
ments were recently developed for Scolytinae (Table 1; 
see also Pistone et al. 2016). Five additional markers 
previously used in weevils were also included (Jordal et 
al. 2011): arginine kinase (ArgK), carbamoyl-phosphate 
synthetase 2 - aspartate transcarbamylase - and dihy­
droorotase (CAD), elongation factor 1 alpha (EF-1α), the 
large nuclear ribosomal subunit (28S rDNA), and the mi­
tochondrial gene cytochrome oxidase I (COI). 
	 Nucleotide sequences were blasted in GenBank for 
verification (minimum E value threshold = 1E-4). Or­
thology was assessed in OrthoDB (Zdobnov et al. 2017) 
and each of the five novel markers was analysed phylo­
genetically and compared to the combined result of five 
established markers (see also Pistone et al. 2016). Se­
quences were aligned using ClustalX in BioEdit (Hall 
1999) and MAFFT (Katoh & Standley 2013) applying 
default settings. Gblocks (Castresana 2000) was used to 
reduce the number of ambiguous sites in the 28S rDNA 
alignment. Settings in Gblocks allowed less strict flank­
ing positions, gap positions within blocks, and small fi­
nal blocks. In the final matrix, the introns were removed 
from all the protein coding genes before the phylogenetic 
analysis. 
	 Phylogenetic analyses were made in a Bayesian sta­
tistical framework, or by maximum likelihood, or the 
principle of parsimony. Four analyses were based on 
concatenated datasets created for 72 taxa: i) a nucleo­
tide matrix combining 10 gene fragments (5,966 char­
acters) and divided into seven partitions (28S, COI by 
coding position, and all nuclear coding genes combined 
by codon position); ii) the same dataset partitioned by 10 
genes; iii) including the same 10 genes, but with third 
codon positions excluded and the remaining data divided 
into 5 partitions (28S, COI first and second positions, and 
other protein coding genes first and second positions); 
iv) a concatenated amino acid matrix (1,792 characters), 
with nine partitions divided by gene (ribosomal DNA 
excluded). Additional Bayesian analyses were made of 
single genes, or combinations of these.
	 For the Bayesian analyses, MrModeltest v. 2.3 (Po-
sada & Crandall 1998) was used to determine the best 
substitution model for each partition based on the Akaike 
information criterion (AIC). The best model for each 
of the ten genes, and for each codon position, was the 
general time reversible model with gamma distributed 
rates and a proportion of invariable sites (GTR+I+Γ). 
The mixed model was used for amino acid data. The 
analyses were implemented in MrBayes 3.2.6 (Ron-
quist & Huelsenbeck 2003), via the CIPRES Science 
Gateway portal (Miller et al. 2011). Two sets of four 
Markov Chain Monte Carlo (MCMC) chains (one cold 
and three heated with default temperature parameter 0.2) 
were run for 20,000,000 generations (for amino acid data 
30,000,000) and sampled every 1,000 generations. The 
first 25% trees were discarded as burn-in, to obtain a fi­
nal tree sample of 15,000 trees. Analysis parameters (e.g. 

likelihood and posterior values) were visualized in the 
software Tracer1.6 (Rambaut et al. 2014).
	 Maximum likelihood analyses were performed by the 
software IQTREE (Trifinopoulos et al. 2016). Substitu­
tion models for each partition were selected using Model 
Finder (Kalyaanamoorthy et al. 2017) integrated in the 
software. Node support was assessed by 1,000 bootstrap 
replicates.
	 Parsimony analyses were made in PAUP* (Swofford 
2002) with 1,000 random addition replicates and TBR 
branch swapping. Gaps were treated as missing data and 
all characters were either equally weighted or third posi­
tions were excluded. To assess node support, a total of 
200 bootstrap replicates were performed, using 10 ran­
dom addition replicates per bootstrap replicate. 
	 Phylogenetic trees were visualized in FigTree1.3 
(Rambaut & Drummond 2009) and edited in TreeGraph2 
(Stover & Muller 2010).

3. 	 Results

A total of 204 sequences were obtained for the five new 
markers, and 45 additional sequences were obtained for 
five previously established markers (Tables 2, 3). PABP1 
generated readable sequences in 81.9% of the samples, 
followed by UBA5 (62%), Iap2 (53%), TPI (43%), and 
Arr2 (43%). 
	 The majority of failures were caused by negative 
PCR amplification (126 of 146 failures). The most fre­
quent problem with erroneous sequences was either un­
readable or chimeric chromatograms (17/146), especially 
for UBA5, PABP1, and Iap2. Only three sequences of 
TPI were from other organisms – one nematode and two 

Table 3. The number of species successfully sequenced per fam­
ily or subfamily. Sequencing success higher than 50% is marked 
in grey.

Family – subfamily # species UBA5 PAPB1 Iap2 Arr2 TPI

Anthribidae 3 1 2 3 2 1

Attelabidae 2 0 1 0 1 0

Brentidae / Apionidae 5 3 4 0 2 1

Brachycerinae – Erirhininae 1 0 1 0 0 0

Baridinae – Ceutorhynchinae 2 1 2 2 0 2

Baridinae – Conoderinae 7 4 6 6 4 4

Coptonotinae 2 0 2 0 2 1

Cossoninae 8 7 6 5 4 3

Curculioninae 1 0 1 0 0 0

Dryophthorinae 5 4 4 2 0 3

Entiminae 5 1 3 2 0 0

Molytinae 4 4 4 4 1 3

Molytinae – Cryptorhynchinae 3 2 3 1 1 2

Molytinae – Lixinae 2 2 1 2 1 0

Platypodinae 12 9 11 6 7 6

Scolytinae 10 7 8 5 6 5

Total sequencing success 72 45 59 38 31 31
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fungi. Sequences of PABP1 and UBA5 were relatively 
easy to align, whereas the amplified fragments of Arr2, 
Iap2 and TPI were more problematic due to long introns 
(Electronic Supplement Table S1), but also because of 
one or two length-variable coding regions (Fig. 2). Intron 
boundaries followed the general GT-AG rule in all genes, 
except for TPI in two species of Diapus Chapuis, 1865 
which had the first intron boundaries defined by GC-AG.

3.1. 	 Characteristics of new phylogenetic 
		  markers

3.1.1.	 Inhibitor of apoptosis 2 – Iap2. A total of 38 good 
quality sequences (clearly defined peaks in the chroma­
togram) (52.7%) were obtained for this marker. The am­
plified fragment contained in most cases two exons and 
one intron (Electronic Supplement Table S1). The intron 
length varied from 50 – 274 bp, and was present in most 
species except Anthribidae, one Molytinae, one Dryo
phthorinae, and two Platypodinae. The first exon of the 
amplified gene fragment contained two length-variable 
regions, resulting in 208 – 222 amino acids. These length 
variable regions contained long serine repeats that were 
difficult to align; hence they were tentatively included or 
excluded in the phylogenetic analyses.

3.1.2.	 Arrestin2 – Arr2. Sequences were obtained from 
31 of the 72 species (43%). The amplified gene fragment 
consisted of three exons and two introns. The beginning 
of the second exon contained indels that translated into 
a variable number of amino acids (Fig. 2). One triplet 
insertion occurred in the fourth exon only in Micro­
borus angustus Jordal, 2017. The first intron varied from 
50 – 154 bp and was present in the majority of the ad­
vanced weevil species with the exclusion of Coptonotus 
and one Conoderinae species, and was absent in Brenti­
dae, Attelabidae, and Anthribidae. The second intron was 
49 – 201 bp long, and occurred in the majority of taxa as 
described for the first intron. The third intron was 47 – 84 
bp long and present in the majority of the sequences, with 
the exclusion of 4 species (one Anthribidae, Mecopelmus 
zeteki Blackman, 1944, M. boops, and Hylesinus varius 
(Fabricius, 1775).

3.1.3.	 Polyadenylate-binding protein 1 – PABP1. Se­
quences were obtained from 59 species (81.9%). The 
total length was 441 bp, which translates into 147 ami­
no acids. One triplet deletion occurred in Tesserocerus 
ericius Blandford, 1895, resulting in one amino acid 
shorter fragment. Only one of the 58 successful samples 
contained an intron (Anthribidae, 156 bp). 

Fig. 2. Examples of length variable regions in the Iap2 and Arr2 genes, framed by red boxes. A: Iap2 alignments of nucleotides and amino 
acids (the first of two variable regions). B: Arr2 alignments of nucleotides and amino acids.
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3.1.4. Ubiquitin-like modifier-activating enzyme 5 – 
UBA5. A total of 45 sequences (62%) were obtained for 
UBA5, consisting of two exons and one intron. The total 
length of the alignment was 348 bp without the intron. 
The length of the intron ranged from 50 – 177 bp, but 
was absent in Zacladus Reitter, 1913, Microborus, and 
one Brentidae. One of the Platypodinae species (Diapus 
pusillimus Chapuis, 1865) had one amino acid insertion 
in the second exon, resulting in one amino acid longer 
peptide (116 aa). 

3.1.5. Triose phosphate isomerase – TPI. Among the 
39 samples that successfully amplified (54%), only 31 
provided validated sequences of sufficient quality (43%). 
The amplified gene fragment contained up to three in­
trons separating four exons, with 564 bp translated into 
188 amino acids. The sequence of Scolytoproctus Faust, 
1895 (Conoderinae sensu Alonso-Zarazaga & Lyal 
1999) had one triplet deletion in the fourth exon. The first 
intron was 50 – 795 bp long, and was present in most spe­
cies. The second intron was present only in one species, 
Apion curtirostre Germar, 1817 and was 116 bp long. 
This additional intron was not observed in our previous 
screening on bark and ambrosia beetles and other weevils 
(Pistone et al. 2016). The third intron was 54 – 246 bp 
long, and was present in all amplified taxa, except Z. af­
finis (Ceutorhynchinae).

3.2. 	 Phylogenetic analyses

The Bayesian and parsimony analyses of the combined 
nucleotide data produced largely congruent results for 
major weevil clades (Table 4). Exclusion or inclusion of 
the indel-rich coding regions in Arr2 and Iap2 did not 
change the reconstruction of these clades. 
	 The Bayesian analysis partitioned by codon position 
per genome and 28S (7 partitions, analysis I) resulted in 
a paraphyletic Curculionidae with respect to Mecopel­
mus zeteki (Fig. 3). A sister relationship between the core 
Platypodinae and Dryophthorinae was maximally sup­
ported (PP = 1) and these two lineages formed a strongly 
supported sister group to all other Curculionidae. The Er­
irhininae (Brachycerinae) genus Himasthlophallus Zhe­
rikhin & Egorov, 1990 formed a weakly supported sister 
group to Entiminae and a clade consisting of Scolytinae, 

Molytinae, Ceutorhynchinae, Cryptorhynchinae, Curcu­
lioninae, Cossoninae, Conoderinae, and Lixinae (Baridi­
nae). Each of the last five subfamilies was paraphyletic as 
defined by Oberprieler et al. (2007), while many smaller 
clades were consistent with the Alonso-Zarazaga & 
Lyal (1999) subfamily system. A near-identical topology 
was found by maximum likelihood using the same 7 par­
titions in IQTREE (Electronic Supplement Fig. S1).
	 With the same data partitioned by gene (analysis II), 
Curculionidae was monophyletic, albeit with Mecopel­
mus and Apion Herbst, 1797 forming a basal polytomy 
(Electronic Supplement Fig. S2). The tree topology was 
largely congruent with that based on the 7-partitions 
analysis, but notably with Himasthlophallus as sister to 
Entiminae.
	 In the parsimony analysis of all nucleotides un­
weighted, Curculionidae was recovered as paraphyletic 
with respect to Apion and Apoderus Olivier, 1897, with 
bootstrap support of 76 (Electronic Supplement Fig. S2). 
Excluding the third codon position from the protein cod­
ing genes (analysis III) did not result in greater resolu­
tion, or higher node support for relationships between 
subfamilies, in either the Bayesian or the parsimony 
analyses (Electronic Supplement Fig. S3). A close affin­
ity between the core Platypodinae and Dryophthorinae 
was again confirmed with maximum support (PP = 1), 
whereas Mecopelmus grouped with Apion. In the par­
simony analysis with third positions excluded (III), En­
timinae was recovered as monophyletic (BS = 55), while 
in the Bayesian tree, Sitona Germar, 1817 (Entiminae) 
was nested inside Dryophthorinae. 
	 The analysis of the amino acid translated data (anal­
ysis IV) resulted in very similar tree topologies in the 
parsimony and the Bayesian analyses (Electronic Sup­
plement Fig. S4). Both analyses recovered each of the 
subfamilies Platypodinae (ex Mecopelmus) and Dryoph­
thorinae as monophyletic and as sister clades (PP = 0.56); 
these two groups formed the sister lineage to all other 
Curculionidae (PP = 0.51). Among the latter, a monophy­
letic Entiminae (PP = 0.62) formed the sister group to the 
remaining taxa, but with a marginal posterior probability 
of 0.56. In the parsimony analysis of these data, Sitona 
(Entiminae) grouped together with parts of Baridinae, 
and Mecopelmus grouped with Entiminae. A moderately 
supported clade (PP = 0.92) included taxa of Molytinae, 
Cossoninae, Scolytinae, Curculioninae, Baridinae, and 

Table 4. Posterior probability (pp), parsimony bootstrap support (P-bs) and maximum likelihood bootstrap support (MLbs) from analyses 
of data set II – IV, for selected groups of weevils supported by data set I (Fig. 3). Bootstrap support values below 50 and posterior prob­
abilities below 0.95 are not shown.

II: by gene III: 3rd excluded IV: amino acids

pp P-bs MLbs pp P-bs MLbs pp P-bs MLbs

A: Platypodinae + Dryophthorinae 1.0 – 69 1.0 < 50 82 < .95 < 50 89

B: Dryophthorinae 1.0 71 100 1.0 77 90 1.0 < 50 100

C: Platypodinae, excl. Mecopelmus 1.0 96 100 1.0 100 100 < .95 86 97

D: Curculionidae, excl. Mecopelmus 1.0 – 81 1.0 74 98 < .95 < 50 77

E: Curculionidae w/ pedal aedeagus – < 50 50 – – – < .95 < 50 –

F: Entiminae < .95 56 98 1.0 55 60 < .95 < 50 74
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Fig. 3. Phylogenetic consensus tree of dataset I, divided into seven partitions (by codon position in mitochondrial and nuclear genes, and 
28S). Bayesian posterior probability values are shown above nodes, and parsimony bootstrap values below nodes. 
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Coptonotus, forming largely a polytomy. Conoderinae 
was monophyletic (PP = 0.79) and was closely related 
to the molytine tribe Amorphocerini (PP = 0.54). In 
both the Bayesian and parsimony analyses, Coptonotus 
grouped together with part of a paraphyletic Scolytinae. 
	 Separate analyses of the five established markers 
combined, and the five new markers combined, resulted 
in less resolved tree topologies compared to the analyses 
of all data (Electronic Supplement Fig. S5). In each case 
Curculionidae was monophyletic. The most significant 
difference between the two smaller datasets was a sister 
relationship between Platypodinae and Dryophthorinae 
that was supported by the new markers only (PP = 0.95). 
In the nucleotide analyses of individual genes (Electronic 
Supplement Figs. S6 – S9), the Platypodinae-Dryophthor­
inae clade was supported by the ArgK and UBA5 data, 
and nearly so by the TPI data. All Dryophthorinae were 
lacking Arr2 data, while Iap2 indicated a more derived 
position for Dryophthorinae, separate from Platypodinae. 
Amino acid translated data revealed largely paraphyletic 
groups for most of the genes, except COI, Arr2, TPI, and 
Iap2, which were all monophyletic for Platypodinae, 
whereas TPI grouped Platypodinae and Dryophthorinae 
as sister groups (Electronic Supplement Fig. S7).

4. 	 Discussion

4.1. 	 Weevil relationships

This study provides the clearest evidence to date for a 
sister relationship between Dryophthorinae and the core 
Platypodinae (sensu Jordal 2015). Previous molecular 
studies have suggested similar topologies, but these had 
generally lower node support, including for this particu­
lar node (McKenna et al. 2009; Gillett et al. 2014). With 
maximum support in the various analyses presented here, 
it seems prudent to conclude that these two subfamilies 
are indeed sister groups. Our molecular data therefore 
refute a close relationship between Scolytinae and Platy­
podinae which has been proposed repeatedly over the last 
centuries (Blandford 1897; Schedl 1972; Wood 1978; 
Kuschel 1995; Kuschel et al. 2000; Bright 2014), even 
in mixed molecular- and morphology-based analyses 
(Marvaldi et al. 2002; Jordal et al. 2011). 
	 Previous comparative analyses of morphological data 
focussed to a large extent on adult head structures (Wood 
1978, 1986; Morimoto & Kojima 2003), features that 
are heavily modified through adaptation to wood boring 
and therefore not necessarily homologous in taxa with 
similar feeding behaviour (e.g. Lyal 1995). Several other 
features associated with wood tunnelling show extensive 
homoplasy, including the shape of legs with hooks and 
denticles used for substrate attachment, for instance in 
unrelated groups such as Campyloscelini (Conoderinae) 
and in Araucariini (Cossoninae, see e.g. Kuschel 1966; 
Jordal et al. 2011). Larval anatomy, which may be less 

prone to wood boring adaptations, supports a sister re­
lationship between Platypodinae and Dryophthorinae 
at the base of Curculionidae (Marvaldi 1997). A more 
detailed review of the historical development of morpho­
logy-based classifications of Platypodinae and Scolyti­
nae can be found in Jordal (2014). 
	 Our molecular data corroborate recent studies that 
excluded Mecopelmus from Platypodinae, supporting a 
more narrowly defined subfamily that corresponds to the 
core Platypodidae sensu Wood (1993) or Platypodinae 
sensu Jordal (2015). This is generally consistent with 
morphological characters, in particular the male genita­
lia and associated abdominal structures, which are very 
different in Mecopelmus (see Thompson 1992; Kuschel 
et al. 2000; Jordal 2014). Larvae are unfortunately not 
known for this genus, which could potentially have clari­
fied the relationship to other weevil groups. The position 
of Mecopelmus therefore appears to be one of the major 
remaining challenges in weevil phylogenetics, and re­
quires considerably more sequence data to solve. 
	 Several molecular studies have indicated that Platypo­
dinae and Dryophthorinae are, together with members of 
the Brachycerinae, distinct basal lineages in Curculioni­
dae (McKenna et al. 2009; Gillett et al. 2014). The split 
between these three groups and the remaining Curculio­
nidae (including Entiminae) is supported by major dif­
ferences in the male genitalia – with Entiminae and other 
derived Curculionidae having a pedal form as opposed 
to the ancestral pedotectal type seen in Dryophthorinae 
and Brachycerinae (Thompson 1992). The male genitalia 
of Platypodinae are highly reduced and therefore diffi­
cult to assess, but they have tentatively been associated 
with the more primitive type of genitalia. Molecular data 
strongly support the assertion that the platypodine aedea­
gus is derived from the pedotectal type. Brachycerinae, 
Dryophthorinae and Platypodinae are ranked as subfami­
lies in the Oberprieler et al. system (2007), while given 
full family status in the Alonso-Zarazaga & Lyal sys­
tem (1999). In light of the recent phylogenetic results, 
it is understandable that such discrepancies in rank oc­
cur. Without defined auxiliary criteria, such as the time 
banding criterion (Vences et al. 2013), the rank seems 
largely subjective. A reconciled solution would need ad­
ditional information on the Brachycerinae in particular, a 
group which may consist of multiple unrelated lineages 
(McKenna et al. 2009; Gillett et al. 2014) and, hence, 
will be simultaneously affected by changes in the rank of 
Dryophthorinae and Platypodinae (see also Jordal et al. 
2014).
	 Our study also confirms a long-standing hypothesis 
that Entiminae form part of a distinct lineage of broad-
nosed weevils placed among the more advanced Cur­
culionidae. Data on mitochondrial genomes have also 
shown that Cyclominae and Hyperinae (sensu Alonso-
Zarazaga & Lyal 2009) belong to this lineage (Gillett 
et al. 2014; Gunter et al. 2015). Together they form the 
sister group to all other advanced weevils, including Cos­
soninae, Scolytinae, a broadly defined Molytinae, Curcu­
lioninae, and Baridinae (see also McKenna et al. 2009). 
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The advanced weevil clade also includes the genus Cop­
tonotus, which therefore has a very distant relationship 
to Mecopelmus – both of which have been placed in the 
same family Coptonotinae by some authors (e.g. Schedl 
1962; Wood 1993; Wood & Bright 1992). Molecular 
data were indecisive in placing Coptonotus which seems 
to be an old isolated lineage consisting of only four 
known species (Smith & Cognato 2016). 
	 The limited resolution of the major lineages of ad­
vanced weevils is not very surprising given the enormous 
diversity characterising this part of the weevil tree. Rela­
tionships among Curculioninae, Molytinae, and Baridinae 
(sensu Oberprieler et al. 2007) were largely unresolved 
also in previous molecular studies, including those based 
on mitochondrial genomes (Haran et al. 2013; Gillett et 
al. 2014). Most of the incongruence found in our study is 
mainly associated with the deepest nodes in each of these 
subfamilies, reflecting potential problems with the broad 
concept of classification proposed by Oberprieler et al. 
(2007). The Alonso-Zarazaga & Lyal (1999) system is 
on the other hand more finely divided into many more 
subfamilies and each of these is therefore less likely to 
be polyphyletic. Consistent with the latter system we re­
covered separate clades for the ‘baridine’ groups Ceuto­
rhynchinae and Conoderinae, and separate clades for the 
‘molytine’ groups Lixinae, Cryptorhynchinae, and Mo­
lytinae sensu stricto. However, our taxonomic sampling 
was limited to just a few genera for each of these groups 
and can therefore not provide a proper test of monophyly. 
A recent molecular study on Cryptorhynchinae illustrat­
ed, for instance, the many problems with placing atypical 
members of ‘molytine’ subgroups (Riedel et al. 2016). 

4.2. 	 Application of novel molecular 
		  markers

The optimization and application of five new molecular 
markers in weevil phylogenetics was promising despite 
a variable degree of PCR amplification. A modest in­
crease in new molecular data – less than doubling the 
number of nucleotides – gave increased node support 
for the Dryophthorinae-Platypodinae clade in particular, 
but also in the node connecting Scolytinae, Cossoninae, 
Curculioninae, and the broadly defined Baridinae and 
Molytinae (compared to McKenna et al. 2009; Gillett 
et al. 2014). Several deeper nodes on the other hand ap­
peared to conflict with well-established topologies, indi­
cating high substitution rates in many of these markers. 
They therefore seem to have limited potential in resolv­
ing older weevil relationships (see Pistone et al. 2016). 
Moreover, we obtained low resolution in the most di­
verse clade of Curculionidae, similar to recent phyloge­
netic studies based on complete or partial mitochondrial 
genomes (Haran et al. 2013; Gillett et al. 2014; Gunter 
et al. 2015). In general, it appears difficult to obtain reso­
lution in this most diverse section of the weevil tree, and 
is likely a consequence of high diversity, involving tens 
of thousands of species (Oberprieler et al. 2007).

	 Low resolution could also be due to missing data, 
particularly in TPI, Arr2, and Iap2, which were prob­
lematic to amplify across all Curculionoidea. These gene 
fragments sometimes contained very long introns that 
may require further optimization of PCR extension times 
and improved primer design. Furthermore, some primers 
appear to be taxon specific, such as Iap2, which mainly 
amplified species of Anthribidae, Molytinae, Baridinae, 
and Cossoninae; TPI, which mainly amplified species 
of Molytinae, Baridinae and Dryophthorinae; while the 
Arr2 and TPI primers did not amplify any Entiminae. 
The same three genes were also problematic to align, in 
part due to the irregular length of introns, and in Iap2 and 
Arr2 this was also due to length variable coding regions. 
These length variable regions may be informative for cer­
tain clades (Pistone et al. 2018), but their signature varies 
considerably among weevil taxa and is generally known 
to be rather homoplasious across families and orders of 
insects (Ajawatanawong & Baldauf 2013; Hardy 2007). 
	 Incongruence of single genes may also contribute to 
reduced resolution in the weevil tree topology. The single 
most deviant gene in this respect was Iap2, which placed 
Dryophthorinae in a highly supported derived position 
separate from Platypodinae. However, this strong sup­
port faded when the data were translated to amino acids 
and became more similar in topology to the TPI data. 
There is a slight possibility that some of the genes in­
clude a mixture of multiple gene copies, which is known 
for some genes such as Elongation Factor 1-alpha in bark 
beetles (Jordal 2002). Different copies of this gene can 
nonetheless be detected by different intron structure and 
highly divergent sequences, but were not observed in our 
dataset. Among the other 9 genes we could not detect any 
signs of paralogous copies based on OrthoDB analyses 
using all available Coleoptera and Hymenoptera sequenc­
es. It is therefore not very likely that paralogous copies 
are responsible for the observed incongruence across in­
dividual genes. Rather, it is anticipated that single genes 
are not able to provide phylogenetic signals that corre­
spond to comprehensive multi-gene analyses (McKenna 
et al. 2009; Gillet et al. 2014). Instead, we observed a 
significant increase in resolution and node support with 
a stepwise addition of five new markers. The clearest in­
dication of such accumulative effects from the new data 
was the better resolution of the core Platypodinae, which 
was monophyletic or nearly so for Arr2, UBA5, Iap2, and 
TPI, while only 28S among the established markers sup­
ported monophyly of the subfamily. 
	 To enable a more complete resolution in the phylo­
geny of main weevil groups, larger volumes of genomic 
data are required. New data are currently being processed 
as a part of the 1-Kite project where a broadly sampled 
weevil phylogeny will be reconstructed from more than 
1,000 loci (McKenna et al. unpubl. data) obtained by 
anchored hybrid enriched sequence capture (Lemmon et 
al. 2012). This approach will likely become the stand­
ard procedure in large scale phylogenetics in the future, 
which could make PCR-based Sanger sequencing redun­
dant (Brady et al. 2014; Faircloth et al. 2015). Howev­
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er, most phylogenies made in connection with taxonomic 
work are more practically obtained with smaller data 
volumes. Given that PCR amplification of few genes and 
individuals is still much faster and cheaper than next gen­
eration sequencing, the Sanger method will still be need­
ed for small-scale routine phylogenetics such as DNA 
barcoding and integrative taxonomy. Thus, our twofold 
aim here was to develop primers and protocols for new 
molecular markers, and to use the new data to test one 
particularly interesting relationship – the one between 
Dryophthorinae and Platypodinae. We believe the new 
data obtained have demonstrated considerable promise in 
achieving these aims.
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