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Sumimary

Non-invasive ultrasonic technology for media contained by plane walls or pipes is of interest for various
applications, such as flow metering, hydrate detection, non-destructive testing and evaluation, crack
detection, corrosion and sand monitoring, etc. As such methodologies may involve rather complex
ultrasonic waveguide propagation (leaky Lamb modes), accurate modeling tools can significantly aid
in the development and optimization of such measurement methods. Fundamental understanding and
control with the generation, reflection, transmission and reception of the ultrasonic pulsed signals prop-
agating in a pipe wall/plate and the surrounding fluids, are important to achieve effective measurement
solutions. This include the exploitation of leaky Lamb mode suited for the application at hand. Prop-
erties of importance in this respect include signal level and waveform, bandwidth of the pulse and
signal-to-noise ratio. The parameters influencing the transmission are e.g. the vibration pattern, beam
pattern, frequency response and operation frequency of the transmitting transducer, in addition to the

angle of beam incidence, the material parameters and the thickness of the pipe wall/plate.

For description of sound generation and propagation in viscoelastic plates and surrounding fluids var-
ious theoretical approaches have been used in the literature. This include the plane-wave theory,
two-dimensonal (2D) Cartesian angular spectrum method (ASM) employing a 2D Gaussian beam,
three-dimensional (3D) ASM using a 3D Gaussian beam or a 3D beam from a circular, baffled and
uniformly vibrating piston source, 2D finite element modeling (FEM) and 3D FEM approaches, and
a distributed point source method (DPSM). In the aforementioned descriptions the source transducer
itself may not be accounted for, and a simplified radiated sound field is used as an approximation of
the real beam pattern of the measurement transducer. The transducer construction and properties
are of critical importance for excitation of the desired waveguide. The transmitting transducer should
therefore be accounted for in the modeling for a more complete description of the signal chain through

the system.

The objective of this thesis is to investigate theoretically and experimentally the interaction of piezoelec-
tric transducer-excited ultrasonic pulsed beams with a fluid-embedded viscoelastic plate. Two modeling
approaches are used to simulate the 3D signal propagation through the measurement system: i) A fi-
nite element method approach, and ii) a hybrid approach, involving finite element modeling combined
with an angular spectrum method at normal and arbitrary angles of beam incidence, respectively. The
presented work extends earlier descriptions by including the 3D signal propagation through the trans-

ducer, its vibration, including the effect of the electrical loading of the signal generator, excitation of



leaky Lamb modes in the viscoelastic plate, and the sound field transmitted through the plate. Since
use of a commercial transducer does not provide sufficient information concerning the transducer con-
struction, dimensions and materials involved, and material data, a piezoelectric transducer has been
designed, constructed, characterized and used for measurements and FEM simulations. Calculations
of the transducer’s input voltage to transmitted sound pressure transfer function, and transmitted
sound pressure signal waveforms, are compared to measurements. Comparisons are made at a given
distance between the transducer and the plate for given angles of orientation of the transducer with
respect to the plate and for given receiver positions. The comparisons include signal frequencies close
to excited leaky Lamb modes in the plate and in-between such modes. Discussions with respect to
optimization of acoustic and electroacoustic properties mentioned above are made. Thus, this work
extends current theoretical descriptions of bounded beam interaction with fluid-plates and halfspaces.
This includes the 3D electro-acoustical coupling in the transducer, accounting for a more realistic beam
pattern of the measurement transducer in the theoretical description, and its influence on leaky Lamb
mode propagation in the plate, in addition to a quantitative description of the measurement system
described.
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Chapter 1

Introduction

The objective of this thesis is to investigate theoretically and experimentally the interaction of piezo-
electric transducer-excited ultrasonic pulsed beams with a fluid-embedded viscoelastic plate. The three-
dimensional (3D) theoretical description includes the signal propagation through a piezoelectric source
transducer and its vibration, the effect of the electrical loading of the signal generator, the radiated
sound pressure field, excitation of leaky Lamb modes (guided waves) in the viscoelastic plate, and the

sound field transmitted through the plate®.

In this chapter the background and motivation for the current thesis is presented in Sect. 1.1, and the
objectives are further formulated in Sect. 1.2. A review of previous work with relevance to the current

work is presented in Sect. 1.3. The structure of the thesis is described in Sect. 1.4.

1.1 Background and motivation

Non-invasive ultrasonic technology for media contained by pipes or plane walls is of interest for various
applications, such as pipeline deposit detection of e.g. sand-, wax- or hydrate-formation e.g. [1, 2, 3, 4],
non-destructive testing and evaluation (NDT& E) of defects, cracks, corrosion, etc in pipes, e.g. |5, 6,
7, 8, 9, 10], flow metering e.g. [11, 12, 13], etc. As such methodologies may involve rather complex
ultrasonic waveguide propagation, accurate modeling tools can significantly aid in the development
and optimization of the measurement methods. Fundamental understanding and control with the
generation, reflection, transmission and reception of the ultrasonic pulsed signals propagating in the
pipe wall/plate and the surrounding fluids, are important to achieve effective measurement solutions.
Li and Rose [14] presented dispersion curve comparison between hollow-cylinder guided waves and
guided waves in infinite plates (cf. Lamb waves?), for different 2R/h (pipe diameter/wall thickness)
ratios, see Fig. 3 in [14]. They concluded that the non-axisymmetric guided waves in the pipe wall
can be treated as Lamb waves in an elastic plate when the wall thickness h is far less than the cylinder
diameter 2R. Velichko and Wilcox [17] concluded that for a wall thickness A much less than the pipe

IThis thesis focuses on sound transmission through the plate, but reflected beams from the plate are included in the

description, but are not shown.
2 Another common notation for these waves are "Rayleigh-Lamb waves” [15, 16].



radius R, and the wavelength A of the guided wave much less than the pipe circumference the effect
of the curvature of the pipe on wave propagation becomes negligibly small. Thus, the isotropic elastic

pipe wall can formally be represented as a plate given

h << R and \ << 27R, (1.1)

respectively.

Sound reflection from, transmission through, and propagation in isotropic elastic and viscoelastic fluid-
embedded plates is then relevant and useful in the work to enhance our understanding of guided wave
propagation and mechanisms involved in non-invasive ultrasonic technology. This includes the exploita-
tion of leaky Lamb mode suited for the application at hand. Properties of importance in this respect
include signal level and waveform, bandwidth of the signal and signal-to-noise ratio. The parameters
influencing the transmission are e.g. the vibration pattern, beam pattern, frequency response and
operation frequency of the source transducer, in addition to the angle of beam incidence, the material

parameters, and the thickness of the plate.

Theoretical and numerical modeling and experimental studies involving fluid-embedded elastic plates
have been extensively investigated in the literature using various approaches, cf. Sect. 1.3. In many of
these descriptions the source transducer itself may not be accounted for, and simplified radiated sound
pressure fields are used as approximations for the real beam pattern of the measurement transducer.
The transducer construction, properties and operation are of critical importance for the excitation
of the desired waveguide and the total transmission through the system. It would be advantageous
to provide a three-dimensional (3D) theoretical description of ultrasonic pulsed beam transmission
through a system consisting of a piezoelectric source transducer and a viscoelasic plate, including
the electroacoustical coupling in the transducer, the real beam pattern of the transducer, and their
effect on guided wave propagation in the elastic plate. By doing so, a quantitative description of such
measurement systems can be acheived, useful to explain and optimize the signal propagation through
the system with respect to non-invasive ultrasonic technology and its challenges, and optimization of

acoustic and electroacoustic properties.

1.2 Objectives

The objective of this thesis is to extend the theoretical description of ultrasonic non-invasive measure-
ment systems by including the signal propagation through a piezoelectric source transducer and its
vibration, the effect of the electrical loading of the signal generator, the radiated sound pressure field,
excitation of leaky Lamb modes (guided waves) in the viscoelastic plate, and the sound field transmitted
through the plate. The piezoelectric source transducer is to be included in the 3D theoretical descrip-
tion using the finite element method (FEM), thereby accounting for the electroacoustial coupling in the
transducer, a more realistic beam pattern of the transducer than more simplified transducer models,
and their influence on leaky Lamb mode excitation in the plate. Since use of a commerical transducer

does not provide sufficient information regarding the transducer construction, dimensions and materi-



als involved, and material data, a piezoelectric transducer is to be designed, constructed, characterized
and used for measurements and FEM simulations. This will enable a quantitative description of the
measurement system, from input voltage to the transducer - to the transmitted sound pressure through
the plate. The effect of accounting for a more realistic beam pattern, in comparison to more simplified
models for beam excitation, is to be investigated based upon transmission through the plate and the
excitation of leaky Lamb modes. The simplified model of a uniformly vibrating planar and circular
piston mounted in a rigid baffle of infinite extent is here of interest, since this model seems to be ex-
tensionally used in the literature. For convenience, this source is here referred to as the “baffled piston
model”. Important properties such as signal level, bandwidth of the transmitted signal, and waveform
is sought, and discussed based upon optimization of transmission through the total system, and with

respect to non-invasive ultrasonic technology.

1.3 Literature

This section presents a summary review of some earlier work which are of relevance for this thesis.
The literature study focuses on ultrasonic beam interaction with a fluid-embedded elastic plate, with
emphasis on the theoretical description of the imposed incident acoustic beam and its feasibility to
account for the real beam pattern of the measurement transducer. Bounded beam interaction with an
immersed solid half-space is also of interest, due to its historical and theoretical similarity to the elastic
plate. A vast number of related articles have been published utilizing guided waves for NDT purposes,
with the main objective to detect areas within the plate affected by defects, cracks, corrosion, etc. The
finite element method has been used for piezoelectric transducer characterization and design, by e.g.
[18, 19, 20], etc. It is not within the scope of this thesis to give a full review on these matters, but

rather focus on relevant work which utilizes finite beams to excite the guided waves.

The theory for symmetric and anti-symmetric Lamb modes in a free (vacuum-embedded) solid plate
was formulated by Rayleigh [21] and Lamb [22] in 1889, and Lamb [23] in 1917, respectively. In 1938
Reissner [24] presented a solution for the transmission of a plane-wave through a solid plate immersed
in a single fluid medium, as a function of incidence angle, frequency and plate thickness. Levi and
Nath [25] gave an equivalent solution the same year, Osborne and Hart [26] in 1945 (focused on the
eigenmodes), and Schoch [27] in 1952. Transmission measurements were performed by Sanders [28],
Osborne and Hart [29], Smyth and Lindsay [30], and Fay and Fortier [31], all showing evidence for
diffraction effects of the source. Fay and Fortier [31] pointed out that the radiation pattern of the
transmitter sound field may be of importance, since the impinging sound does not entirely consist of
plane-wave motion. In 1950, for a liquid-solid (L/S) interface, Schoch [32] discussed how a reflected
beam is displaced laterally from the position prescribed by geometrical acoustics. In 1952 Weinstein
[33] pointed out the failure of plane-wave theory to predict the reflection of a narrow ultrasonic beam,
since the rays of which the beam is composed will all be incident at slighly different incidence angles.
Both Fay and Fortier, and Weinstein made no attempt to account for a diffracted beam in their simu-

lations.



A series of experiments on a (L/S) interface made by Neubauer [34] in 1973 gave insight to reflection
effects that occur for incidence at or near the Rayleigh angle, which could not be explained by Schoch’s
beam-displacement theory. In addition to specular reflection, a Rayleigh wave was generated by the
incident beam and radiated continously into the fluid. This effect was called the Rayleigh angle phe-
nomena. Later that year, Bertoni and Tamir [35] used an asymptotic analysis and presented a unified
theory for the Rayleigh angle phenomena, by accounting for the bounded character of the acoustic
beam. They explained the reflected field for incidence at or near the Rayleigh angle as a superposi-
tion of a geometrical-acoustic component and a leaky Rayleigh-wave field. Bertoni and Tamir made
use of plane waves in terms of a two-dimensional (2D) Cartesian angular spectrum method (ASM),
using rather idealized 2D Gaussian beams, with no description of sidelobes in the transducer beam
pattern, and with the beam extending to infinity in one plate dimension. Neubauer and Dragonette
[36] presented in 1974 measurements of Rayleigh phase velocity and shear speed estimation near or
at the Rayleigh angle, in agreement with the theoretical model of Bertoni and Tamir. Plona et al.
[37] showed in 1975 that the simple expressions for Rayleigh waves and Lamb modes for a vacuum-
embedded plate could approximate the behaviour of solids and plates loaded by a liquid, provided that
the densities of the two substances were quite different. In 1976 Pitts et al. [38] presented theoretical
results that showed that the Rayleigh mode is a special type of Lamb mode vibration, and that the
physical properties of a thick solid plate will show some resemblance to that of an infinite half space.
Breazeale et al. [39] measured in 1977 the reflected beams for different materials using a specially man-
ufactured transducer providing a near Gaussian beam, presenting fair agreement with the theory of

Bertoni and Tamir. While the measurements where performed in 3D, the theory used was for a 2D field.

Reflection and transmission of an ultrasonic bounded beam at oblique incidence to a solid plate was
treated by Plona [40] and Pitts [41] in 1976 and 1977, using an angular spectrum method with 2D Gaus-
sian beams. They concluded that the non-geometric effects which were present for both the reflected
and transmitted beams in a liquid-solid-liquid (L/S/L) interface when the incident angle corresponds
to the excitation of a leaky Lamb mode, were consistent with the same effects at or near the Rayleigh
angle for a (L/S) interface, explained by Bertoni and Tamir. In 1979 Fiorito and Madigosky [42, 43]
investigated a plane-wave resonance theory for sound transmission and reflection from a fluid-embedded
solid plate for oblique incidence angles, representing the transmission maxima as poles and zeroes in
terms of the expanded transmission coefficient. Ngoc and Mayer [44] extended in 1980 the earlier limi-
tations by using the complete reflection coefficient in relation to the asymptotic representation, thereby
enabling a theoretical model to study the reflected field from a (L/S) interface for any incident angles.
Ngoc and Mayer used 2D Gaussian beams to create the incident sound pressure field. Ng et al. [45]
extended in 1981 the theory of Bertoni and Tamir to fluid-loaded solid plate using 2D Gaussian beams,
taking into account all existing poles, and in 1982 Claeys and Leroy [46] presented the reflection and
transmission of 2D bounded beams on half-spaces and through plates using exact transmission coeffi-

cients and inhomogenous plane waves to form the incident beam.

In 1984 Pott and Harris [47] used a complex source-point method with an asymptotic analysis to model

incident 3D Gaussian beams on a L/S interface. Their work showed that the incident beam is spec-



ularly reflected except at or near the critical angles. Schmidt and Jensen [48] studied reflection from
a vertical line-array source (almost Gaussian) at a (L/S) interface near the Rayleigh angle in 1985,
which included full wavefield solutions for both continous and pulsed ultrasonic beams. Rousseau and
Gatignol [49] discovered in 1986 that the incident beam is specularly reflected except at or near the
critical angles for a (L/S/L) interface, with an asymptotic analysis utilizing 2D Gaussian beams. They
concluded that the nongeometrical effects of the reflected field depends cojointly of the excited Lamb
waves at a specific frequency. In 1988 Ng et al. [50] measured the non-specular reflection phenomena
for an ultrasonic bounded beam reflected from a solid plate, and found close agreement with 2D an-
gular spectrum method using a Gaussian beam. That same year, a study of the reflection of bounded
beams on layered half-spaces and plates was carried out by Kundu [51]. There, the incident beams
were approximated by Gaussian beams, and the Thomson-Haskell matrix was used to solve the prob-
lem. In 1991 Lunde [52] studied interference effects in sound fields transmitted at fluid-solid interfaces
using the full-wave simulation model CAPROS [53]. The model enabled 3D sound fields composed of
arbitrarily distrubuted point sources to model a 2D horizontal source array. In 1992 Zeroug and Felsen
[54] used the complex source point method to model nonspecular reflection in a liquid-solid interface,

using collimated 2D Gaussian beams.

Matikas et al. [55] presented in 1993 reflection studies from a focused Gaussian beam from a fluid-
solid interface, by decomposition using the Fourier integral representation, for any angle of incidence.
The same year presented Abeele and Leroy [56] a study of bounded beam on arbitrary layered media
using heterogeneous plane waves. Dechamps and Chevée [57] studied reflection and transmission of
2D transient Gaussian beams on viscoelastic and orthotropic plates in water using Debye’s series to
describe reflection /refraction coefficients. For comparing simulated and measured responses, both are
normalized by the amplitude at a specific position. Due to scanning limitations, only the region with
relatively high transmission through the plates was measured. Chimenti et al. [58] presented similar
work as Rousseau and Gatignol [49] in 1994, but included also other elastic stuctures like half-spaces
and solid cylinders. They compared measured and simulated data of the reflected field from a plate as
a function of position parallell to the plate. That same year, Zeroug and Felsen [59] investigated 3D
Gaussian incident beam interaction with fluid-loaded plane layered elastic structures, combining the
complex source-point technique with an asymptotic solution for the reflection coefficients. Anderson
et al. [60] used a 3D baffled piston model for transmission calculations through a solid plate in air
using ASM and exact plane-wave pressure transmission coefficient in 1995. The model showed that the
incidence of a three-dimensional beam onto an elastic plate exhibits behaviour which is significantly
different than the case of two-dimensional models, concluding the need for 3D modelling. E.g. the
3D transmitted field has a characteristic width in the transverse direction that is on the order of the
transducer diameter, leaky attenuation in the sagittal plane observed in the 3D case appears to be
higher than what is expected using 2D. This transducer-model provided a more realistic and accurate
description of the sound field radiated by a real source than 2D or 3D Gaussian beams, when properly
accounting for sidelobes of a finite dimensional transducer. In 1996 Zeroug and Stanke [61] presented
both theory and experiment for ultrasonic pulsed beam transmission through a fluid-embedded elastic

plate, using the complete reflection coefficient and using a series of complex source-point monopoles to



account for a quasi-Gaussian 3D diffraction (symmetric 3D beam with a quasi-Gaussian amplitude).

In 1996 Lobkis et al. [62, 63] studied 3D bounded beam reflection from a fluid-loaded plate. This study
permits the inclusion of the transducer diffraction effects for both the transmitter and receiver, using
both baffled piston and Gaussian sources. They concluded that for two identical transducers, the beam
shape, and near- and far-field conditions had a relatively minor impact on the receiver voltage, which
was calculated using Auld’s reciprocity formulas. The same year, Castaings and Cawley [64] studied
the generation, propagation and detection of Lamb waves in plates using air-coupled transducers. The
transducers radiated fields were approximated as 2D collimated beams, and the pressure distribution
are applied to the 2D plate modelled using finite elements (FE). The plate itself was assumed to vi-
brate in vacuum, so fluid loading was not accounted for. In 1997 Cawley and Hosten [65] investigated
the possibility to better determine elastic constants of a plate by fitting the experimental results to
the predictions of plane-wave theory. They concluded that bounded beam effects were large at low
frequencies, and used large transducers to minize the bounded beam effect on measurements. Moulin
et al. [66, 67] used a coupled 2D finite element-normal modes expansion approach in 1999 and 2000,
respectively, to account for a piezoelectric element and its influence to Lamb mode excitation. The
piezoelectric elements where bonded onto a vacuum-embedded plate, and the surface stresses where
calculated using FEM and used in the normal modes expansion. One assumption was that the propa-
gating normal modes in the plate where not alterned too much by the presence of the surface-mounted

elements.

In 1997 and 2001 Landsberger and Hamilton [68, 69] investigated the second-harmonic generation in
sound beams reflected and transmitted through elastic solids, by using a 3D angular spectrum method
to model the incident field from a baffled piston source, thus accounting for effects of sidelobes in the
transmission of the beam pattern through the solid, and finite extent of the beam pattern, in both
plate dimensions. Younghouse [70] extended the work of Landsberger in 2002 by considering a plate
rather than a thick solids, by using the complete plane-wave reflection/transmission coefficients. Both
work accounted for fluid loading. Vandeputte et al. [71] studied in 2003 the influence of planar cracks
in plates on reflected and transmitted pressure fields utilizing 2D Gaussian beams. They presented
results for incident angles near critical angles of L/S/L and L/S/V(vacuum) interfaces. That same
year, Vanaverbeke et al. [72]| studied the interaction of 2D Gaussian beam on a thin inclusion in a
fluid-loaded plate.

Duquenne et al. [73] extended in 2004 the 2D coupled finite element-normal mode expansion technique
by Moulin to account for transient excitation and lossy materials. They assumed that the resonance
of a thin piezoelectric element coupled to the plate was significantly damped, hence its frequency re-
sponse was smoothed. Then, the frequency dependence of the surface traction on the plate could be
approximated to be the spectrum of the excitation signal. In 2005 presented Potel et al. [74] a study
of Lamb waves in anisotropic multilayered media, by a monochromatic incident 3D beam, using an
asymptotic approach. An analytical expression for particle displacement on the emitter was used to

excite Lamb waves. The same year, Declercq et al. [75] gave a historical survey of the development



of inhomogeneous wave theory, and its impact on reflection/transmission phenomena. Bezdek et al.
[11] investigated in 2005 a 3D simulation of a transit-time ultrasonic flowmeter based upon a cou-
pled FEM-HIRM (Helmholtz-Integral-Raytracing method) approach. A piezoelectric element and its
structure-borne coupling to the surrounding pipe wall was simulated using FEM, and the fluid-borne
acoustic was simulated using the HIRM. In 2006 Kazys et al. [76] used finite-difference to detect and
visualize inhomogeneties in composite materials using air-coupled transducers, running 2D simulations
and using a strip-like source to excite the Lamb modes in the elastic structure. Bouzidi and Schmitt
[77] modelled a large ultrasonic bounded pulse transducer for use in acoustic transmission goniometry
in 2006, where the observed bounded acoustic pulse at z = 2 cm was used to model the incident field
towards the plate, and appropriate transmission coefficients were used at both interfaces of the thick
plate. Banerjee and Kundu [78] used in 2007 a distributed point source method (DPSM) to calculate
the 3D ultrasonic field in a solid plate immersed in a fluid, where the incident beam was generated by a
finite dimensional transducer modelled as a piston source. The DPSM models the vibration pattern on
the front surface of the transducer by a finite number of point sources. Qualitative agreement between
theoretical and experimental results is shown. That same year, Banerjee et al. also used the DPSM
for a near fluid-solid interface [79]. They showed visual images of the critical reflection phenomenon,

showing the incident and reflected beam.

Jocker and Smeulders [80] investigated methods for minimization of finite beam effects for determining
reflection and transmission coefficients of an elastic layer in 2007. They proposed a spectral decom-
position of a finite beam to determine the reflection and transmission coefficient for each plane wave,
and concluded that the method would also work for thin plates where the wavelength was larger than
the plate thickness. Lamkanfi et al. [81] studied the same year the transmission of leaky Rayleigh
waves near the edges of a fluid-loaded elastic plate using finite elements. They used a 2D Gaussian
beam to simulate the incident pressure field, and showed that leaky Rayleigh waves on the horizontal
surface of the plate travel around the corner of the plate. In 2007, Bezdek et al. [12] further developed
the hybrid FEM-HIRM approach, focused on flow measurement and used Snell’s law to calculate the
nominal beam path and the axial sensor distance. As pointed out in that work, this does not include
the effect of e.g leaky Lamb mode propagation in the pipe, and its effect on the actual nominal beam
path. The next year a book on the subject was released [13]. That same year, Bezdek and Tittman [82]
used finite element modeling to describe guided wave propagation excited by a piezoelectric element
mounted on a wedge, attached to a three-layered elastic plate structure. In this 2D simulation study
the piezoelectric element and the beam pattern was extending to infinity in one plate dimension. The
DPSM was further used by Das et al. [83] in 2007 to study the interaction between a 3D finite bounded

beam and corrugated plates.

In 2008 Bouzidi and Schmitt [84] used the phase advance technique to study a bounded acoustic beam
interacting with a water-loaded plate, being able to model both the stationary monofrequency beam
wavefield and the temporally bounded pulse using Gaussian beams. In 2008 Hosten and Biateau [85]
predicted the absolute values of the pressure field generated by guided waves propagating in a plate-

structure, excited by air-coupled transducers. The plate and surrounding air regions were modeled



using 2D FEM, and the transducer’s beam by volume pressure excitation equal to the measured pres-
sure (magnitude only) from the transducers. In a 3D FEM study of sound propagation in an air-coupled
NDT system by Ke et al. [86] in 2009, the local pressure distribution produced by the source transducer
was used as normal-stress excitation on the plate surface, using 2D Gaussian window to define the pres-
sure distribution on the surface of the transducer. The plate itself was assumed to vibrate in vacuum,
so fluid loading was not accounted for. That same year, Dao et al. [87] studied the wave propagation
in a fluid wedge over a solid half-space using the DPSM method, and comparison with measurement
showed that the DPSM computation were qualitatively in line with the experimental results. Partially
immersed and fully submerged solid half-spaces were compared. In 2010 Masmoudi et al. [88] extended
the work by [85] to include 3D FEM for the plate, and showed comparison (absolute level) between
simulations and measurements, where they assumed that the transducer radiated as an unbaffled rigid
piston. In a 2D FEM study in 2010 Delrue et al. [89] investigated single-sided air-coupled technique
for non-destructive testing. In this work the elastic steel plate was immersed in air, where 2D Gaussian
beam is used. Whereas Landsberger and Younghouse focused on nonlinear effects, Lohne ef al. in
the years 2008-2013 [90, 91, 92, 93, 94, 95] studied the transmission through a water-immersed plate
using the exact plane-wave pressure transmission coefficient in both frequency and time domains, using
pulsed piston-generated 3D beams. Comparisons to measurements were made. Lohne et al. observed a
frequency shift of the S; mode at normal incidence in [90], and explained the shift in [91, 92] as beam
diffraction effects. Waag et al. [96] studied thickness measurements of steel plates using half-wave
resonances in air, using the baffled piston model to account for a finite dimensional transducer in 2012.
Simulations and measurements showed a similar frequency shift as observed and discussed by Lohne
et al. in [90, 91], respectively. [88] was extended by Masmoudi and Castaings in 2012 [97], to study
material anisotrophy on the purity of the guided wave modes. In both cases comparison were made

with measurements.

The presented work in this thesis is partly based on the work by Lohne et al. [90, 91, 92|. Earlier
work based on radiation from a directive baffled piston source, or Gaussian beams, is extended to
account, for the piezoelectric transducer in the description of 3D sound transmission through a vis-
coelastic plate, which includes the transducer’s frequency response, vibration and beam pattern, and
its electroacoustical coupling. Axisymmetric finite elements are used to simulate the signal propaga-
tion through a system consisting of a piezoelectric source transducer and a water-embedded viscoelastic
plate at normal beam incidence, denoted the FEM approach. This approach is extended to account
for oblique angles of beam incidence using a hybrid FEM-ASM approach. In this approach the trans-
ducer’s voltage-to-pressure response and the radiated free-field sound pressure are simulated using the
FEM. This FEM-simulated sound pressure field is further propagated through the viscoelastic plate
and the surrounding fluid using an ASM and the exact plane-wave pressure transmission coefficient.
Since use of a commercial transducer does not provide sufficient information and control concerning the
transducer construction, dimensions, materials and material data involved, a piezoelectric source trans-
ducer is designed, constructed, characterized, and used for measurements and FE simulations. This
enables quantitative simulations of the measurement system, from input voltage to the transducer, to

the transmitted pressure through the plate, in addition to a more realistic beam pattern representation



than earlier work based on simplified beam models. The two approaches are compared to measurement

results.

Fig 1.1. Hybrid FEM-ASM simulated free-field sound pressure field radiated by the piezoelectric source transducer
at a frequency of 446 kHz (near the Sy mode), titled towards the steel plate (thickness of 6.05 mm) (yellow) at a 25°
beam incidence angle, and simulated transmitted pressure field below the steel plate. Dag Magne Ulvang at Christian
Michelsen Research, Bergen, Norway, visualized the simulated sound pressure data using VoLumesHop (http://www.cg.
tuwien.ac.at/volumeshop)(October 28, 2013). 3D volume. For pressure spectra and pressure waveforms as function of

e.g. frequency, receiver position for the following case refer to Figs. 7.30 to 7.33.

Fig. 1.1 exemplifies the 3D signal transmission through the measurement system, showing the hybrid
FEM-ASM simulated free-field pressure sound field radiated by the piezoelectric source transducer at
a frequency of 446 kHz (near the Sy mode), tilted towards the steel plate (thickness of 6.05 mm)
(yellow) at a 25° beam incidence angle, and simulated transmitted pressure field below the steel plate,
propagated through the plate using the plane-wave pressure transmission coefficient. In the figure, the

reflected sound pressure field is not displayed. Pressure spectra and pressure waveforms, as function of



e.g. frequency, beam incidence, receiver position, are simulated and compared to measurement results

in Chap. 7, for the following case refer to Figs. 7.30 to 7.33.

Earlier work, e.g. [91, 98], have shown that for relevant transducer dimensions and frequencies, a
plane-wave approach is not sufficient for accurate description of guided waves in the solid plate and
the associated leaky Lamb modes. [60, 91, 92, 93, 94, 95| have shown that accounting for the source
transducer’s 3D beam pattern is important, even at normal incidence. Previous work, e.g [60, 91, 92, 93,
68, 69, 70], on description of 3D beam transmission through elastic plate at normal and oblique angles
of beam incidence have been based on approximating the incident field radiated by the piezoelectric
transducer with the simplified field of a baffled piston source having the same -3 dB beamwidth. In
the description of such measurement systems, there is therefore the question of the importance of
accounting for the real beam pattern of the transducer. The errors introduced by using such a baffled

piston model approach can now be evaluated.

1.4 Outline of the thesis

The theory for the 3D signal propagation through the measurement system is presented in Chapter 2,
using the FEM and hybrid FEM-ASM approaches. For the FEM approach the analysis is formulated
in the time- and frequency-domain, using finite elements to describe the signal propagation through
the measurement system. For the hybrid FEM-ASM approach the analysis is formulated also in the
frequency-wavenumber domain, using finite elements to describe the signal propagation through the
source transducer and surrounding fluid, calculating the incident free field sound pressure at the upper
surface of the plate (when the plate is absent). Then, the signal is propagated through the plate using
the exact plane-wave pressure transmission coefficient based on the leaky Lamb dispersion equations.
For that reason, the plane-wave pressure transmission and reflection coefficients are derived, arguments

for this are given in Sect. 2.2.1.

The experimental setup and measurement methods are presented in Chapter 3, including the hy-
drophone calibration scheme, measurements of the piezoelectric transducer properties and transmission
measurements through the system. A method for determining the sound velocities in the plate [91] is

described and used, and extended to approximate the corresponding loss factors ( Q-factors).

The simulation setup of the FEM and hybrid FEM-ASM approaches are presented in Chapter 4, in
addition to the FE simulations of the piezoelectric source transducer and the baffled piston source. An
example of FEM convergence tests for the hybrid FEM-ASM approach is also presented.

Chapter 5 presents the piezoelectric source transducer construction, including the transducer design
and the construction process. Results for the FEM calculated piezoelectric source transducer are pre-

sented and compared to measurements.

The importance of accounting for the real beam pattern of the measurement transducer is addressed
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in Chapter 6, comparing transmission through the plate using FEM transducer-excited vs. piston-
generated beams and plane waves at different angles of beam incidence, to measurements. The results

include the measurement of the sound velocities in the plate with corresponding loss factors.

In Chapter 7 the results for the quantitative description of the signal transmission through the mea-
surement system are reported, using the FEM and hybrid FEM-ASM approaches at different angles
of beam incidence. Results are shown for the voltage-to-pressure transfer function in the frequency
domain, and for pressure waveforms in the time domain, for given voltage excitation to the transducer,
in comparison with measurements. The overall findings of the work is discussed in relation to the

objectives and relevant literature.

Chapter 8 presents the major conclusions of the thesis. Finally, topics for future work are discussed.
A list of references follows the conclusions, listed in the order they are referred. The FEM baffled,
FEM piezoelectric transducer and FEM approach project-codes are listed in Appendices A, B, C, re-
spectively. In Appendix D the program code for calculation of FEM incident fields is listed, while
the ASM-part of the hybrid approach program code is listed in Appendix E. The time domain signal
calculation program code is listed in Appendix F. Various program codes for the measurement setup

and stage control are listed in Appendix G.
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Chapter 2

Theory

2.1 Introduction

This chapter presents the theoretical description of the measurement system described in Chap. 3,
consisting of a piezoelectric source transducer and a fluid-embedded viscoelastic isotropic plate, see
Fig. 2.1, assuming a linear system. The 3D description includes the signal propagation through the
piezoelectric transducer and its vibration, including the effect of the electrical loading of the signal
generator, the radiated sound pressure field, excitation of leaky Lamb modes (guided waves) in the
viscoelastic plate, and the sound field transmitted through the plate. The analysis is formulated as a
series of transfer functions, each describing the sound propagation through a part of the total system.
Axisymmetric finite elements are used to simulate the signal propagation through the measurement
system at normal beam incidence, denoted the FEM approach. This approach is extended to account
for oblique angles of beam incidence using a hybrid approach, involving axisymmetric finite elements
to describe the transducer’s voltage-to-pressure response and the radiated free-field sound pressure. A
coordinate transformation is then used to calculate the incident free-field pressure on the surface of the
plate for a given beam incidence, and further propagate this through the plate and the surrounding
fluid using the angular spectrum method, and the plane-wave pressure transmission coefficient. This
approach is denoted the hybrid FEM-ASM approach. The analysis for both approaches is formulated
in the time- and frequency-domains, and for the hybrid FEM-ASM approach, also in the frequency-

wavenumber domain.

The 3D signal propagation through the measurement system is described in Sect. 2.2, with the hy-
brid FEM-ASM approach described in Sect. 2.2.1, and the FEM approach in Sect. 2.2.2. Since no
information is available for the sound transmission through the transducer using the simplified baffled
piston model, a transfer function for comparison of the FEM transducer model vs. the baffled piston
model for plate transmission is derived in Sect. 2.2.3. A short description of the FEM, its use, and the
finite element program used in this thesis, is given in Sect. 2.3. The Lamb frequency equations for a
solid plate in vaccum are formulated in Sect. 2.4.1, and extended in Sect. 2.4.2 to include the leaky

Lamb frequency equations for a solid fluid-embedded plate. The plane-wave pressure transmission and
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reflection coefficients for a solid plate immersed in a single-fluid are formulated in Sect. 2.4.3.

2.2 Signal transmission through the system

Figs. 2.1, 3.1(a) and 3.1(b) show the system consisting of a piezoelectric source transducer connected
to a signal generator, radiating at a beam incidence € towards an assumed infinite water-embedded
viscoelastic steel plate of thickness 2L. A cylindrical coordinate system (r’,2’), or (2,4y',2’) (where
' =1"cosd’, y =r'sing’, and ¢’ € [0, 27|, where ¢’ is the angle between r— and the z—axis), is used
to describe the axisymmetric source transducer and the incident pressure field in the water between the
transducer and the steel plate. A 3D Cartesian coordinate system (x,y, z) is used to describe the sound
field in the water-immersed steel plate and the lower adjacent water region. Both coordinate systems
have origin located at the center of the transducer’s front surface; z’ and z are directly normal to the

transducer’s front surface and the plate, respectively.! The relationship between the two coordinate

systems is
x = cosfz’ —sinf7/,
y=1y, (2.1)
2z =sinfx’ + cos0z'.
L <+— Piezoelectric transducer
S P
o .
N~ b
~ P
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! —
(Q\
Water Steel plate yz =z,
= Water z=12z,
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o
‘_| . -y .
- Receiver position (x,y,z) —» %

Fig 2.1. An illustration of an acoustic beam, generated by a piezoelectric transducer at an angle of beam incidence 6,

interacting with a water-immersed viscoelastic steel plate. y is directed out of the paper.

0 is the angle between the two coordinate systems (in the zz-plane), i.e. the angle between the trans-

ducer and the plate; 6 is therefore the angle of beam incidence, relative to the z-axis. Hence, the

'For measurements in Chap. 3 the coordinate system is directed horizontally, i.e. z—axis is horizontal, where in the

theoretical description the z—axis is directed vertically.
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tranducer tilts in the zz-plane, and not in the yz-plane. A time dependency of e* is assumed and

used throughout the entire thesis. w = 27 f is the angular frequency, and f is the frequency.

A pulsed voltage waveform wvg(t), representing the electromotive force of the signal generator, is used
to excite the piezoelectric source transducer. Due to the generator’s internal impedance, Zj, and the
electrical connection to the transducer, a voltage reduction appears across the transducer. The result-
ing voltage waveform transmitted to the piezoelectric transducer is denoted v(t). The pulsed ultrasonic
beam interacts with the water-immersed steel plate with upper surface located at z = zg, and lower
surface located at z = z1 = zg + 2L. The pressure waveform is transmitted through the plate, exciting
leaky Lamb modes, and into the adjacent water region and detected at various receiver positions indi-
cated by ’+’ in Fig. 2.1. pi(x,y, z,t) is the transmitted pressure waveform at a given receiver position

(2,9, 2)|»>2, below the steel plate.

The electrical loading of the signal generator is simulated using the Thévenin model (Fig. 2.1), given
by the transfer function
V() Zr(f)

=iy = w2 22

where Zp(f) is the electrical input impedance of the piezoelectric transducer and Zj is the internal

(output) impedance of the signal generator. The voltage frequency spectra of vg(t) and v(t), Vo(f) and

V(f), are given by the temporal Fourier transform [99] as

Vo(f) = /_Oo vo(t)e ™ dt, (2.3)
V(f) = /jo v(t)e 2t dt, (2.4)

respectively. The signal transmission through the system is modeled using the hybrid FEM-ASM and
the FEM approaches. The hybrid FEM-ASM approach is presented in Sect. 2.2.1, and describes the
signal transmission for normal and oblique beam incidence between the transducer and the steel plate.
The FEM approach is presented in Sect. 2.2.2, and describes the signal transmission for normal beam

incidence between the transducer and the steel plate, due to the axisymmetric finite elements.

2.2.1 The hybrid FEM-ASM approach

The hybrid FEM-ASM approach is used to simulate the signal propagation through the system at an
arbitary angle of beam incidence, but the angle is limited by the numerical capabilities of the simulation
computer. The transducer’s voltage-to-pressure response and the radiated free-field sound pressure field
in water at the upper surface of the plate are simulated using the FEM. This FEM-simulated sound
pressure field is further propagated through the plate and the surrounding fluid medium using the ASM,
for given angles of orientation of the transducer with respect to the plate (angle of beam incidence), and
for given receiver positions. The ASM models the propagation of an ultrasonic beam by representing

the wave field as an integration over plane waves [100]. The method propagates a known pressure field
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at a 2D reference plane z = const. to another parallell plane in the frequency-wavenumber domain
using the spatial Fourier transform, Eq. (2.6). Our ASM approach includes the plane-wave pressure
transmission coefficient 7 to describe the propagation through the steel plate, Eqs. (2.7) or (2.104),
and the plane wave propagator to propagate the transmitted pressure frequency-wavenumber spectrum
Pi(hfq, hyy, 20+ 2L, f) to the receiver depth, Eq. (2.8).

The signal propagation through the transducer and into the adjacent water region is described by the

transducer’s voltage-to-pressure transfer function

Py(r', 2, f)
V()

where Py(r’,2', f) is the free-field sound pressure frequency spectrum in the water radiated by the

(2.5)

transducer. The coordinate relationship of Eq. (2.1) gives the relationship between the transducer’s
axisymmetric sound field and the 3D coordinate system (z,y, z), for a given angle of beam incidence, 6.
Thus, the sound pressure as a function of (x,y, z) is calculated from the axisymmetric sound pressure,
given as function of (¢/,2’), for a known angle 6. Interpolating Py(r’,2’, f), cf. Chap. 4 for detailed
description of the interpolation, over the plane (x,y, zo) gives Py(x,y, 20, f) where zg = const., which
is the incident free-field sound pressure frequency spectrum in water at the upper surface of the steel
plate when the plate is absent. Py(x,y, 20, f) is transformed into the frequency-wavenumber domain

by the 2D spatial Fourier transform [100] with respect to (z,y), giving

Po(hf,$7hfvy?Z07f) :// Po(x7y7Z0af)ei(hfwwz+hf’yy)dxdy7 (26)

where Po(hy q, by, 20, f) is the incident free-field sound pressure frequency-wavenumber spectrum in

water at the upper surface of the steel plate when the plate is absent.

The signal propagation through the steel plate is described by the plane-wave pressure transmission
coefficient 7, given as [80, 98, 95]

FT(hywihpy, L, f) = 2 1, - i . 2.7
Brehn b D) = =g Tl ) (B4 IV)(A—iY) 27

where Py (hy o, hyy, 20 + 2L, f) is the transmitted pressure frequency-wavenumber spectrum in water
at the lower surface of the steel plate, and S, A and Y are defined in Eqgs. (2.49), (2.50) and (2.91) re-
spectively?. The derivation of the plane-wave pressure transmission coefficient .7 is given in Sect. 2.4.3
as a function of horizontal wavenumber, derived from the Lamb and leaky Lamb dispersion equations
given in Sects. 2.4.1 and 2.4.2, respectively. These relations are well known and have been derived by
e.g. [27, 101, 102, 80]. In these and related works, the derivation is often incomplete (skips multiple
derivations), formulated as a function of incident angle, or uses another time dependency. As the

plane-wave pressure transmission coefficient is an important part of this thesis, a complete derivation

2Here, it is assumed that each plane-wave component of the 3D beam has no particle motion perpendicular to its

direction.
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as a function of horizontal wavenumber was deemed necessary.

The signal propagation through the lower adjacent water region to the receiver plane at depth z is
described by the plane-wave propagator transfer function [100] as

Pt(hf,ﬂﬂ?h.ﬂy’z?f) — e~ ihp=(2=(20+2L)) (28)

Pl(hf,zv hf,ya 2o + 2L7 f)

where Py(hyz, hyy, 2, f) is the transmitted sound pressure frequency-wavenumber spectrum at the

receiver depth. This spectrum is transformed into the frequency-space domain by the inverse 2D

spatial Fourier transform [100], giving

1 > —1i x
Pt(xa Y, %, f) = (271')2 // Pt(h’fa-'lh hﬁya 2, f)e (e +hf’yy)dhf7g;dhf,y7 (29)

where P;(z,y, z, f) is the transmitted sound pressure frequency spectrum at the receiver depth.

In the frequency-space domain, the total signal propagation through the transducer-water-plate system

is then governed by the voltage-to-pressure transfer function

Pt(x7ya 2, f)
V()

Finally, the transmitted pressure waveform, p:(x,y,z,t) at the receiver position (z,y, z), is given by

Hyp(z,y,z,f) = , for z > 2. (2.10)

the inverse temporal Fourier transform [99] as

pt(xvyvzat) = / Pt(xvyvzvf)eﬂﬂ-ftdfa (211)

:9271[‘/O(f)'HVV(f)'HVP(xvyazvf)}» (2'12)

where .Z, ! denotes the inverse temporal Fourier transform in Eq. (2.11).

2.2.2 The FEM approach

The FEM approach is used to simulate the signal propagation through the measurement system us-
ing axisymmetric finite elements (due to limitations in computer capabilities), hence its limitation to
normal beam incidence. For normal beam incidence to the plate, the 3D Cartesian coordinate sys-
tem (z,y, z) which governs the steel plate and the lower adjacent water region is coincident with the
cylindrical coordinate system (7/,2’), and the cylindrical coordinate system is therefore used. The
circular piezoelectric source transducer transmits an ultrasonic beam towards the steel plate, which
is represented as a circular elastic plate with thickness 2L and radius R, cf. Sect. 2.3 regarding the
modelling of infinite fluid and elastic regions. Using a frequency domain implementation (cf. Sect. 2.3),
standing waves appear between the transducer and the upper surface of the steel plate. This standing
wave pattern influences the voltage-to-pressure transfer function, preventing comparisons with mea-

surements and the hybrid FEM-ASM approach. Pi(z,y, 2, f)e® is simulated directly and used to

3Subscript cw (continuous waves) denotes that a standing wave pattern is present.
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calculate Hy p(z,y, 22, f)ew using Eq. (2.10). The temporal Fourier transform described in Egs. (2.3)
and (2.11) is used to enable separation of the first arrival and successive echoes in time. pi(z,vy, 2,t)
is determined to be the first arrival, and P;(z,y, z, f) is determined from that waveform’s steady state

region using Fourier analysis. See Sect. 4.2 for a detailed description of this method.

2.2.3 Transfer function for simulated piston generated beams

A circular, baffled and uniformly vibrating piston model has been used in the literature [60, 68, 69,
70, 91, 92, 98, 93] to approximate the incident pressure field from a real transducer. By using such a
simplified model, no information is available for the sound transmission through the transducer. For
that reason Hy p(z,vy,z, f) can not be used for comparison of the FEM transducer and the baffled
piston models. To enable such a comparison a pressure-to-pressure transfer function, which governs

the signal propagation through the steel plate and water, is defined as

Pt(xayasz)
P0(0707207f> |9:0° ’

where Py(z,y, 20, f)|o=0° is the incident free-field sound pressure frequency spectrum in water at the

HPP(xayasz) = (213)

upper surface of the steel plate when the plate is absent, for transducer or piston radiation at normal
beam incidence, i.e. § = 0°. Eq. (2.13) is defined similarly as in [91, 98, 93, 94]. This transfer function
is used here to compare simulated piezoelectric transducer vs. piston-generated transmission of sound
through the plate at normal and oblique angles of beam incidence. It is also used to measure the sound

velocities in the plate using the method described in Sect. 3.3.

2.3 Finite element method (FEM)

The finite element (FE) equations for a piezoelectric structure vibrating in a fluid are presented for
both K-form and H-form, by e.g. [103, 104, 105] as

My, 0 0 i 0 0 Cul [0] |Kwu Kug 0 a 0
~w? 0 0 0 Be+iws 0 0 0 B¢ |Ksu Ksg 0 gr=1-Q|,
0 0 —Myy,| |4 Cou 0 0 | &) ] 0 0 =Kyl ¥ 0

(2.14)
and
My, 0 0 i 0 0 Cup| @] |Huw Huy 0 i 0
—w?| 0 0 0 Ve+iws 0 0 0 Vo |Hgw Hpz 0 Vo= |-1/(iw)]|,
0 0 —Myy| |9 Cpu 0 0 0 0 0 —Kyu| |¢ 0
(2.15)

where the variables are defined in Tab. 2.1.
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TABLE 2.1. Definition of the variables used in Eq. (2.14).

(M) global mass matrix
[M ] global fluid mass matrix

{4 displacement vector

B electric potential vector

0 velocity potential vector
[Cuy] | global fluid/structure coupling matrix
[Cyul] | global fluid/structure coupling matrix
(K] global stiffness matrix
(K 8] global piezoelectric stiffness matrix
[Kus] global piezoelectric stiffness matrix
[K 5] global dielectric stiffness matrix
(K o] global fluid stiffness matrix

{Q} global charge vector

The value of any variable A defined in each node of the structure is written as A. The K-form
gives the relations between the displacement, electrical potential, velocity potential and the electrical
charge. The transition from K- to H-form is described in [103, 106]. H-form gives the relations between
displacement, electrical voltage V, velocity potential, and the electrical current I. From Eq. (2.15) the
equations for the velocity potential (', 2’, f), sound pressure P(r’,2’, f), electrical admittance Y7 (f),

source sensitivity Sy (f) and beam pattern D(f, ¢) are as following;:

() = —iw (= [Kyyp] + w? [Myy]) " [Cpal {a), (2.16)
P(r’,z’,f) = —iwpfw(r’,z’, ), (2.17)
Yr(f) = iw [{Hug}” (D™ {Hus} — Hgs] , (2.18)

where [D] = [Hyu] — w? M) + 02 [Cuy] (= [Kpp] + w02 [Myy]) " [Cyal,

P(Oad:dO:]-maf)

Sv(f)= Vi , (2.19)
DU0) = R (2.20)

where p; is the density of the fluid, dy and d are distances from the front surface of the transducer to

the sound pressure P(r’,2’, f), assuming far field conditions at these distances.

The 3D finite element model used in the present thesis is the FEMP 5.0 program (runs on MATLAB),

which is a frequency domain implementation [103, 106, 107, 108, 109] developed in a cooperation

between the University of Bergen and Christian Michelsen Research. This program has seen extensive
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use, and has been successfully compared to measurement results, e.g. [18, 110, 111, 112, 113, 114, 115],
and other FEM codes such as ABAQUS and ANSYS [103]. The losses in the piezoelectric and elastic
regions are represented by the imaginary parts of the complex constants as used in [116], see the
discussion on material data in Sect. 5.2.1. Lossless fluid is assumed. For an axisymmetric simulation
this implementation uses 8 node isoparametric finite elements for both the fluid, elastic and piezoelectric
regions [103]. For modeling infinite fluid regions infinite elements [103] or perfectly matched layers
(PMLs) [108, 117, 118, 119] can be used. The PML method can be interpreted as a coordinate streching
in the frequency domain through a complex change of variables. In the direction x, where x denotes

either ' or 2/, the coordinate transformation is
b)

eyl ey (2.21)

where ~, is defined by
Yo =1+ ~0u(2) x> (2.22)
Yo =1 ,r <t (2.23)

The damping function o used in this thesis is an ’optimal’ damping function introduced by [118§]

Cl

(2.24)

o= ,
r* —x

where z* is truncation of the normal fluid region in the z direction, and c; is the compressional sound
velocity in the fluid. In the FE implementation used, there is no possibility for having frequency

dependent mass- and stiffness matrices [108]. In order to get rid of the frequency dependency in Eq.

(2.22) a o* is defined as o* = ow/wp |108] and used for o,

Yz =14+ La(m) ,x >t (2.25)
wo

For modelling an infinite elastic medium without end reflections (such as for the plate) a ”decreasing
Q" method [108, 112] has been employed here, because PML for an elastic region have not been
implemented yet for the current version of FEMP 5. This ”decreasing @ ,;” method reduce the loss
factor @,s exponentially inside a region of an elastic medium to approximately zero, thus reducing the
reflections from the endfaces of that region. Use of this method forces the losses associated with the

compressional and shear waves in the plate to be equal.

2.4 Plane waves in layered media

Planes waves in layered elastic media have been formulated and derived by many, e.g [15, 27, 101, 120,
121] etc. The Lamb modes for a vacuum-embedded elastic plate are formulated in Sect. 2.4.1, and
extended to account for fluid loading in Sect. 2.4.2, where the leaky Lamb modes for a fluid-embedded
plate are given. The plane-wave pressure transmission and reflection coefficients for a single-fluid im-

mersed elastic plate are derived in Sect. 2.4.3.
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In the derivation that follows it is assumed that the plate is infinite in both z— and y—directions, and
a Cartesian coordinate system (z, z) is chosen. The components of the particle motion are confined to
these directions, and it is assumed that no Lamb modes have particle motion in the y—direction, thus
SH-modes (shear-horizontal) are excluded, this is consistent with e.g. [16, 58, 60, 70, 90, 120]. The
thickness of the elastic plate is 2L. In this section, for the sake of simplicity in the derivation, the plate

is centered around z = 0.

2.4.1 Lamb modes in a vacuum-embedded plate

The derivation of the symmetrical and anti-symmetrical Lamb modes in a vacuum-embedded elastic
plate follows [90], but there a time dependency of e~ is used. The linearized displacement equation
of motion for an isotropic elastic, homogeneous, solid medium is given as
0u

(As +2us)V(V-u) — ps [V x (V x u)] = PS oz (2.26)
where wu is the the displacement, A\g and ug are the Lame parameters, pg is the density of the medium
and ¢ is time [16]. Eq. (2.26) can be decomposed into two expressions by introducing longitudinal and
shear wave velocities [16]. By the Helmholtz decomposition, the displacement vector can be expressed
by a scalar potential, ®, and a vector potential, ¥, i.e. u = V®+V x ¥. This yields the two equations

[16],

1 62 1 62
(v2 0 ) P =0, and (v2 — a) =0, (2.27)

“Zor o
for longitudinal and shear waves respectively. The longitudinal and shear wave velocities, ¢y, and cg,

in a solid medium are defined as

cr = 7AS + QMS, and Ccs = &a (228)
ps ps

respectively. The horizontal and vertical displacements, u, and u,, and the normal and shear stresses,
T.. and T, for an elastic medium are given in [16] Egs. (2.29) and (2.30). Without loss of generality,

the waves can propagate in the x—direction, making ® and V¥ independent from y, thus a% =0.

o® 0V, 0V, oe 0V, 09,
== i il Y _ 2.2
e = g T Jy 0z’ Y= T o oy’ (2.29)
ou ou ou ou ou
T.,=As+2 i A T YY), Ty, = = 2, 2.30
(As + MS)(62)+ S<8m+8y> Ms(f)z+8x> ( )

respectively. By separation of variables, the solution for the scalar and vector potential are then given

as
P = (AZ—Gihzz + Aél-efihzz) ei(wtfn:v) and \I/y _ (BZ—eikzz + Béi-efikzz) 6i(wt777:c)' (231)

The amplitudes A; and B;’ represent longitudinal and shear waves propagating in the positive z-

direction, and the amplitudes A, and B, represent longitudinal and shear waves propagating in the
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negative z-direction, as shown in Fig. 2.2. Subscript 2 indicate layer @ The wavenumbers for the

longitudinal and shear waves are given as h = w/cy, and k = w/cg, respectively.

VACUUM - L @
SOLID
+ - + -
X Az Az Bz Bz @
z
Z= L —
VACUUM @

Fig 2.2. An elastic plate with thickness 2L in vacuum. y is directed out of the paper.

The boundary conditions for an isotropic elastic plate in vacuum are zero normal and shear stresses at

the surfaces, given as

T,,=0at z==+L, (2.32)
T,.,=0at z=+L, (2.33)

respectively. The vertical wavenumbers for longitudinal and shear waves, h, and k., and the horizontal

wavenumber 7, in Eq. (2.31) are defined as (including evanescent waves) [100]

VhZ—=n2forn<h

h, = , (2.34)

i/n2 —h2forn>h
VEk?2—n2forn<k

k, = . (2.35)
in?2 — k2 forn >k
Derived from the boundary conditions, the two waves must have the same phase velocity on the surfaces,

giving n = hy = k; when hy =k, =0, i.e.

n:\/hgmg,:ﬁgm;:»n:hx:kx. (2.36)

The horizontal phase velocity ¢, in the plate is given as

Cph = —, (2.37)
7

which represents the phase velocity for the waves in the plate in the z—direction. From now on, the
term e*(“t=1%) is suppressed [16]. By introducing trigonometric functions, Eq. (2.31) can be formulated

as
® = [Ag1 cos(h,z) +iAggsin(h,2)], U, = [By cos(k.z) +iBs s sin(k.z)], (2.38)
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where A271 = A; + A;, A272 = —A; + A;, B271 = B; + B; and B272 = —B;r + B;

The displacements and stresses can be obtained by using Eq. (2.38) and Egs. (2.29-2.30) giving

Uy = —in[Az 1 cos(h,z) + iAs o sin(h,2)] + k. [Ba sin(k,z) — iBa 2 cos(k,z)] (2.39)
u, = —h, [Az1sin(h,z) — iAo cos(h,z)] — in [Ba, cos(k,z) + iBag o sin(k,z)] (2.40)
T.. = As [-n*{Az1 cos(h.2) + iAzzsin(h.2)} — ink.{ B, sin(k.z) — iB 2 cos(k.2)}]
+ (As + 2us) [—h2{Az,1 cos(h.2) + iAz z sin(h.2)} + ink.{Ba,1 sin(k.z) — iBa 2 cos(k.2)}]
= [Ag 1 cos(h,2) + iz asin(h,2)] (—=n*As — h2(As + 2us))
+ [Bg,1sin(k,z) — iBg o cos(k,2)] (—ink.As + ink,(As + 2us))
= us(2n* — k%) [Ag,1 cos(h,z)) +iAgasin(h,2)] + i2usnk, [Ba sin(k,z) — iBa s cos(k,z)] (2.41)
T.. = pslinh, {Agysin(h,z) —iAs o cos(h.z)} + k2 {Baj cos(k,z) + iBa g sin(k.2)}
+ih,m{Ag 1 sin(h,z) —iAs s cos(h,2)} — n? {Ba cos(k,z) + iBa o sin(k,z)}]
= i2usnh, [Agsin(h,z) — iAg o cos(hz,)] — us(2n® — k?) [Ba1 cos(k,z) + iBaosin(k,2)] (2.42)

Using the boundary conditions at z = £L in Eqs. (2.41) and (2.42) gives

T..(L) cos(h.L) (2557522) cos(k,L) isin(h,L) (2;22’71“;2) sin(k.L)| [Aa;

T..(L) | (2222”_}1;2) sin(h, L) —isin(k,L) % cos(h,L) —cos(k,L) Bso

T..(—L) cos(h.L) s cos(k. L) —isin(h. L) Gl sin(koL) | | Az

Ty.(—L) (2_;222}];3) sin(h, L) isin(k,L) (2§§f7€2) cos(h,L) —cos(k,L) B 1
(2.43)

By Gaussian elimination, adding -1 times row 1 to row 3 and dividing by 2, adding +1 times row 2 to
row 4 and dividing by 2, then adding +1 times row 3 to row 1 and -1 times row 4 to row 2, gives the

matrix

cos(h.L) % cos(k,L) 0 0
2nh, .
(2772777—1&’) sin(h,L) —isin(k,L) N 0 e 0. (2.44)
0 0 —isin(h,L) e sin(k,L)
0 0 (272];’%@2) cos(h,L) —cos(k,L)

Setting the determinant of this matrix to zero gives the dispersion relations for symmetric and anti-
symmetric Lamb modes for a solid plate in vacuum. The determinant of this matrix is zero if one or
both of Egs. (2.45) and (2.46) are zero

2
—icos(h,L)sin(k,L) — % cos(k,L)sin(h,L) =0, (2.45)
n? —
2
isin(h. L) cos(k. L) + % cos(h, L) sin(k.L) = 0, (2.46)
n? —
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defining the symmetric and antisymmetric Lamb modes for a vacuum-embedded elastic plate, e.g.
[15, 120], as

—4n?hk, tan (k.

k.L)
S tric: = 2.47
YIMEHE 02 “ %22 T tan(hL) (247)

. . —4nh.k, tan(h,L)
Anti-symmetric: CTEIE = tan(koL) (2.48)

For later use one introduces the Lamb characteristic functions for the symmetric (S) and antisymmetric

(A) plate modes as

S = (2n* — k%)? + 4n*h.k (2.49)

1
tan(h, L) “tan(k,L)’
A= (2n* — k*)*tan(h.L) + 4n°h_k, tan(k.L). (2.50)

2.4.1.1 Cut-off frequencies

For certain frequencies standing compressional and shear waves are present across the thickness of the
plate [92, 120]. These frequencies occur when the phase velocity of the generated Lamb waves approach
infinity [122], and can be calculated letting the horizontal wavenumber 1 approach zero [90, 92, 122].
Letting the horizontal wavenumber approach zero in Eqs. (2.47) and (2.48) gives

.. tan(kL)
£ 2.51
Symmetric: tan(hL) =0, (2.51)
tan(hL
Anti-symmetric: tzzgkLi 0. (2.52)

These equations are zero if the numerator becomes zero, or the denominator becomes infinity. For Egs.
(2.51) and (2.52) this happens when

lim tan(z) =0or lim tan(x) = oo, (2.53)
Tz—nm z—
where x = hL or x = kL and n = 1,2,3... . The cut-off frequencies for symmetric Lamb modes from

Eq. (2.51) are given as

15 2ncg (2n — 1)ey,
n T 4L 4L

where f5 and f; are the corresponding frequencies for the symmetrical TS (thickness-shear) and TE

,n=1,23 .. and f = n=1,23 .., (2.54)

(thickness-extensional) modes respectively. The cut-off frequencies for anti-symmetric Lamb modes

from Eq. (2.52) are given as

A 2ner, (2n —1)cg
T AL AL

where fl‘;‘l and ft‘?L are the corresponding frequencies for the antisymmetrical TE and TS modes respec-

,n=1,2,3,..and f = m=1,2,3,.., (2.55)

tively.
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2.4.2 Leaky Lamb modes in a fluid-embedded plate

4If the plate is immersed in a single fluid with compressional sound velocity cf, and wavenumber
hy = w/cy, the guided waves inside the plate can leak energy into the surrounding fluid. Such waves
are named leaky Lamb waves. This means that longitudinal waves in the fluid are generated when
guided waves propagates inside the plate, see Fig. 2.3. In the upper semi-infinite fluid half-space (layer
@) there exists an applied incident plane wave A}, coming from z = —oo, and one reflected plane
wave A], propagating towards z = —oo. In the lower semi-infinite fluid half-space (layer @) one
transmitted plane wave A;f is propagating towards z = co. The sound pressure in the fluid layers @

and @ can be written as (where subscript denotes layer no.)

Oy = Afe =7 4 A7 et e7, (2.56)
By = Afe hr=7 (2.57)
respectively [27, 90].
. ;
A1 A1
FLUID @
z=-L
SOLID
+ - + -
X Az Az Bz Bz @
z
z=L
FLUID @
.
As

Fig 2.3. An elastic plate with thickness 2L immersed in a single fluid. y is directed out of the paper.

The boundary conditions for an infinite isotropic plate fully immersed in a single fluid are continuity

of normal displacement u,, normal stress 7,, and vanishing shear stress T,.., given as [90]

Uzn = Uz nt1 at z = :l:L7 (258)
Tzz,n = Tzz,n+1 at z = :tLy (259)
T,.=0at z ==L, (2.60)

4This derivation continues from Sect. 2.4.1 and follows [90] until Tab. (2.73), the matrix calculations thereafter have

been made independently.
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where n denotes layer no. The vertical wavenumber for the fluid is defined as

\/h% —n?forn <w/c
hy. = ! d (2.61)
iy/n? — h} for n>w/cy.

The horizontal /normal displacement and normal stress in the fluid layers (n = 1, 3) can now be calcu-

lated as
0P 0P
.= — , = — 2.62
" ox “ 0z ( )
Ouy,  Ou,
T..=-p=2A , 2.63
p=x (G + %) (2.63)
where p is the sound pressure, cy = 2—;, Ay is the Lamé parameter, and p; is the fluid density.
For layer @ in Fig. 2.3 this gives
u, = —ihy . [Afe7 127 — A7 ehrE] (2.64)
Tzz =—-p= _pwa [Aii_eiihf’zz + Al_eihf'zzjl : (265)
For layer @ in Fig. 2.3 this gives
u, = —ihys Afe =2, (2.66)
Tzz =—-Pp= )‘f<0 - h2,zA§re_ihfyzz)
= —prwiAfe ez, (2.67)

Using the boundary conditions at z = +L, combining Eqs. (2.40) and (2.41) and the above equations,

gives the displacement w, and 7T, as

uy(L) = —hy [Ag 1 sin(h,L) — iAg 2 cos(h,L)| — in [Bz21 cos(k,L) + iBs 2 sin(k,L)]

+ihg Afe =l = 0 (2.68)
uy(—L) = —h, [—As1sin(h,L) —iAg 2 cos(h,L)] — in[Ba cos(k,L) — iBagsin(k,L)]
—ih Aye M=l pihy ATl = 0, (2.69)
T..(L) = ps(2n* — k?) [Ag1 cos(h, L) 4 iAa g sin(h,L)] + i2usnk, B sin(k.L) — iBy o cos(k,L)]
+ ppw?Afem el =, (2.70)
T..(—L) = ps(2n® — k%) [Ag1 cos(h, L) — iAs g sin(h,L)] + i2usnk, [~ Ba, sin(k, L) — iB o cos(k, L)]
+ppAye el 4 pr? ATt l = 0, (2.71)

where T, at z = L is given in Eqgs. (2.41) and (2.42). Arranging these equations into a matrix as
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where the constants are defined as

a11

a12

ihf’ze
h,sin(h,L)

—ai a12
a21 a22
0 as2
0 —a12
0 a22
0 —aszp

—ihy . L

ays = nsin(k, L)
ayy = ih, cos(h,L)

ays = incos(k, L)

2
a1 = pfw-e

—ihy . L

—a23

—a13
—asgs
—ass

ais

a33

agy = ps(2n* — k%) cos(h. L)

ass = —2usnk, cos(k,L)

a14
a24
34

a14

—0a24

a34

—a1s Al_
—aszs A2,1
—ass Bs o
—a15 ais| |Azz2
azs  age| | B2
—ass 1 LAT
a24

a25

as2

ass

o O O O

ihy, AfeihseD

—prw?AfeihssL

asgq = 2nh, cos(h,L)
ass = (20 — k?) cos(k. L)

16 = ihﬁze

2
26 = pfrw-e

—ihy . L

—ihy . L

)

—ipg(2n? — k?)sin(h.L)
i2usnk, sin(k, L)
—i2nh, sin(h. L)
—i(2n? — k*)sin(k.L)

(2.72)

(2.73)

This is in agreement with [90], although appropriate signs due to the chosen time dependency are

different. The 6x6 matrix in Eq. (2.72) is now denoted A. Dispersion relations for symmetric and

antisymmetric leaky Lamb waves can be found setting the determinant of this matrix to zero. The

determinant of this 6 x 6 matrix is calculated using the cofactor expansion, thus the determinant can

be calculated by the weighted sum of the determinants of sub-matrices.

det |A| = —ail1

G2  —a23

aszz  —ass
—a12  a13

a22 —asz3
—a32 as33

24
a34

14

—a24

a34

—azs 0 a2
—azs 0 ass
—ais Q1e| — @21 [—aA12
a5  A26 a22
—azs 0 —a32

—ams
—ass
a13
—aszs

as33

a14

a34

14
—a24

a34

—ais

—ass

—a15
a25

—ass

aig| -

a26
0

(2.74)

From Tab. 2.73, identify a1 = a11 and asg = as1 and further reduce these two 5x 5 matrix determinants

to four 4 x 4 matrix determinants as

det |A| = —aj1a11

a22
a32
a22

—as2

—a23
—as3
—@23

ass

a24
a34
—a24

a34

—aszs
—ass
a25

—ass
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+ a11021

a22
a32
—ai2

—as2

—a23
—as33
a13

ass

a24
a34
a14

a34

—a25
—ass
—a15

—ass



a12 —a13 a14 —a15 a12 —a13 ai4 —ais

az2 —ass a34 —ass a32 —as3z asz4 —ass

—a210a11 —+ a21a21 . (275)
a22 —Qa23 —a24 a25 —ai2 a13 a14 —a15
—as2 az3 a34 —ass —as2 as3 a34 —a35

Denote these four 4 x 4 matrix determinants as ,

2],
det |A| = —a%l + a11a21 — a21a11 + a%l. (276)

Calculating now the determinant of each of these four matrix determinants:

and respectively, writing Eq. (2.75) as

Q22  —Q23 Q24  —Q25
—a33 a34 —ass a32 a34 —ass
az2  —azz  az4  —AaA35|
= @G22 |—az3 —Q24 Q25 | — (*a23) a22 —G24  A25
a22 —ag23 —a24 az5
ass asz4  —asp —Qaz2 a34  —azs
—azz2  a33 asq4  —asp
azz  —azz —ass azz  —az3z  a34
+a24 | a2 —a23  ags —(—025) 22 —@23 —a24
—azz2 @33  —ass —azz2  a33 a34

= a2 [—a33(a24a35 — az5a34) — aza(az3azs — azzass) — azs(—a3a34 + azzasy)]
+ ag3 [as2(azsa3s — azqa2s) — aza(aza(—ass) + azaa25) — azs(azeazs — az2a24)]
+ ag4 [az2(agzass — aszzazs) + aszz(aza(—ass) + assasz) — azs(azeaszs — az2a23)]
+ ags [as2(—azs3azs + az3a24) + azz(azeass — azaazz) + aza(azeass — azzazs)]

= 4(a22033a25034 + Q23432024035 — 422033024035 — G25032G23034) (2.77)
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a2
a32
—ai2

—as2

—a23
—ass3
a13

as3

a24 —a25

az4 —ass
= 22

a14 —a1s5

a34 —ags
+agq

—ass

a13

a33

a32
—ai2

—a32

a34
ai4

a34

—ass
a13

ass

—ass a32

—a15| — (—a23) |—a12

—ass —asz
—ass a32

—a15| — (—azs) |—aiz

—ass —asz

az4 —ass

a14 —ais
a34 —a35

—as3z  as4

@13 a14

ass3 a34

= a9 [—ass(a1a(—ass) + a15a34) — aza(ai13(—ass) + assais) — ass(a13a34 — a33a14))

+ ag3 [as2(a14(—ass) + asaa1s) — asa(ai2ass — asea15) — ags(—ai12a34 + azaai4))

(
+ a24 [as2(a13(—ass) + aszais) + ass(ai2ass — a15a32) — ags(—ai2a33 + aszai13))
(

+ ags [as2(a13a34 — agsais) + asz(—ai2ass + a1aas2) + aza(—ai2ass + agza13)]

= 2(@22@33@14@35 — (22033015034 — (230320140435 + 023032034015

— (24032013035 + 24033012035 + 025032013034 — a25a33a12a34)

ai2
a32
a22

—asz

—ai3
—ass

—a23

ass

ai4 —ais
—ass3

a34 —ass
= ai2|—asg3

—G24  A25
a33

a34 —ass
a32
+ai14 | ase
—a32

aszq4  —ass a32
—az4 azs5 | T a13| a2

a34 —ass —asz
—asz3 —azs a32
—a23 G5 | T a15| ago

ass —ass —as2

asz4  —ass
—a24 a25

a34 —ass
—as3 a34
—a23 —a24

ass a34

= a1z [—ass(agaass — a2s5a34) — aza(a23a3s — azzass) — azs(—a23a34 + az3a24))

+ a13 [as2(agaass — agaaas) — asa(ass(—ass) + aseass) — ass(azeass — azaaaq)]

+ a14 [as2

23035 — A33025) + a33(—a22a35 + a25a32) — ass(az2ass — az2aas)]

+ a15 [ag2(—a23a34 + azzaz4) + ass(ag2ass — agaasz) + asza(azeass — azsas3))

= 2(@12@33@25@34 + 13032024035 — 013032034025 — (14033035022

— 415032023034 + A15034022033 + 014035032023 — a12a33a24a35)
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19 —aiz ai4 —ais
—a33 az4 —ass a32  a3z4 —ass

a32 —a33 as4 —ass
=a12| a3 a4 —ais| +a13|—ai2 a4 —as

—a12 a13 a14 —0a15

a33 a34 —ass —asz asz4 —ass
—a32 asz a34 —a35
a32 —az3z —ass a32 —assz  as4
+aia|—a12  a13  —ais| tais |—a2 a3 aiy
—a32  Aasg —ass —a32  asz  a34

= a1z [—as3(—a11a35 + a15a34) — aga(—aizass + assais) — ass(@13a34 — a33a14)]

+ a13 [ag2(—a14a35 + azaa15) — aga(a12ass — agaais) — ass(—ai2a34 + az2a14)]

(
(- )
+ a14 [ag2(—a13ass + aszais) + ass(ai2ass — a15a32) — ass(—aizass + agaai3)]
+ a15 [as2(a13a34 — agzais) + asz(—a12as4 + a14as32) + aza(—ai2ass + azza13)]
= 4(a12a33035014 + 013032034015 — 12033034015 — 13032035014) (2.80)

Simplifying Eq. (2.76) as

det|A| = —a [ 1]+ arra0i (2]~ [3])) + a2,[4], (2.81)

it becomes apparent, that minus must be calculated.

Using Eqs. (2.78) and (2.79) this gives

_

= 4(az2a33a14a35 + (23032034015 + 24033012035 + (25032013034

— (22033015034 — (23032014035 — G24032013035 — 025033012034 (2.82)

E and gives

Inserting now the constants from Tab. 2.73 for each of the variables in
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= 4(a20a33025034 + (23032024035 — 422033024035 — A25032023034)

= 4[us(2n* — k*) cos(h. L) —i(2n* — k*) sin(k. L)i2usnk. sin(k, L)2nh, cos(h. L)
— 2ugnk, cos(k,L)(—i)2nh, sin(h, L)(—i)us(2n* — k*) sin(h.L)(2n* — k) cos(k.L)
— s (2% = k?) cos(h-L)(—i)(2n* — k?) sin(k. L) (—i)ps(2n° — k?) sin(h. L) (20> — k?) cos(k L)
— i2ugnk, sin(k, L)(—i)2nh, sin(h, L)(—2)usnk, cos(k.L)2nh, cos(h,L)]

= 4[4p2nh. k. (207 — k*)? cos®(h. L) sin? (k. L) + 4puin*h.k.(2n* — k?)?sin®(h, L) cos®(k.L)
+ 1% (2n? — k?)*sin(k. L) cos(k, L) sin(h, L) cos(h. L)
+ 16p3n*h?k? sin(k, L) cos(k. L) sin(h, L) cos(h, L)].

= [sin(k, L) cos(k,L)sin(h, L) cos(h.L)]

2 2 2 12 o tan(k.L) 2 2 2 12 otan(h. L)
A[dpsn hzk= (20" — k) tan(h.L) T ST hek. (20 — k) tan(h.L)
+ g (20 — k°)* 4 16080 h2k]
= [sin(k.L) cos(k.L)sin(h.L) cos(h,L)] 4u% AS. (2.83)

—[3]= 4us(2n® = k*) cos(h. L)(=i) (21 — k) sin(k. L)ih. cos(h. L)(2n* — k*) cos(k. L)
— 2usmk. cos(k.L)(—i)2nh. sin(h. L)2nh. cos(h.L)in cos(k. L)
—ips(2n° — k?) sin(h.L)(—i)(2n° — k?) sin(k. L)h. sin(h.L)(2n* — k*) cos(k- L)
+ i2usnk, sin(k, L) (—i)2nh, sin(h, L)y sin(k. L)2nh., cos(h, L)
— s (2n* — k?) cos(h.L)(—i)(2n* — k?) sin(k, L)in cos(k.L)2nh. cos(h. L)
+ 2usnk. cos(k, L)(—i)2nh, sin(h, L)ih, cos(h.L)(2n* — k?) cos(k. L)
+ips(2n? — k?)sin(h, L)(—4)2nh. sin(h, L)nsin(k. L)(2n* — k?) cos(k. L)
— i2ugnk, sin(k, L)(—4)(2n* — k?)sin(k, L)h, sin(h, L)2nh. cos(k,L)]. (2.84)

Setting the term [sin(k.L) cos(k.L)sin(h,L) cos(h,L)] outside the brackets provides

1 1
Alugh,(2n? — k*)3 ———— — Wk, ——— — ush, (20 — E*)3 tan(h, L *h2k, tan(k,L
[:U‘S ( n ) tan(th) 8#577 z tan(k‘zL) 125 ( n ) a‘n( )+8,u577 z an( )
1
—2usn?h. (20 — k*)? ———— + dugn®h’k. (2% — k*)——— + 2usn?h. (2n% — k*)? tan(h. L
sn h(2n ) tan(th)Jr psn hzk.(2n )tan(k,ZL)Jr psn~hz (21 )~ tan(h, L)
—4psn®h’k.(20° — k%) tan(k.L)]
1 1
= 4{ugh,[———[(2n® — k*)?(—k? — 4%k h, kK,
ks [tan(hZL) [(2n )7 (=k7)] + tan(kzL)[ U ]
+ [tan(h, L)[2n? — k*)2(k?)] + tan(k. L) [4n*k*h.k.]
1 1
= —4k%ugh, |4 (2n* — k22— + 4n?hk,———— S — (20 — k%)% tan(h, L) — 4nh.k, tan(k. L
pshe [P = 12 b s b @ = R (L) — 4 tan L)

(2.85)
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Identifying S and A from Eqs. (2.49) and (2.50) this gives

—[3] = [sin(k.L) cos(k.L) sin(h, L) cos(h,L)] x [—4k>push.(S — A)]. (2.86)

= 4(a12033035014 + 013032034015 — A12033034015 — (13032035014)

= 4[h, sin(h.L)(—i)(2n* — k*)sin(k.L)(2n* — k*)? cos(k. L)ih cos(h.L)
+ nsin(k,L)(—i)2nh, sin(h,L)2nh, cos(h,L)in cos(k,L)
— h sin(h.L)(—4)(2n* — k?) sin(k.L)2nh., cos(h.L)in cos(k, L)
—nsin(k,L)(—4)2nh, sin(h,L)(2n* — k%) cos(k. L)ih, cos(h.L)

= [sin(k. L) cos(k,L)sin(h.L) cos(h,L)] x
ARZ[(20° = k)% + 40t — 4n?(20° — KP)]

= [sin(k.L) cos(k,L)sin(h,L) cos(h,L)] 4h?k* (2.87)

Gather now the terms to calculate det|A| as

det|A| = fafl + a11a21( - ) + a%l
= [sin(k. L) cos(k.L)sin(h,L) cos(h,L)] x
e el [BG ApgAS —ihg . prwdk®ush. (S — A) + prw*4h2k?] (2.88)

The dispersion relations for the symmetrical and antisymmetrical leaky Lamb modes are derived by

setting the determinant in Eq. (2.88) to zero as

h3 ApSAS —ihg .prw?dk®pnsh. (S — A) + pjw*ahZk* =0 (2.89)
Setting the term h7 4u% outside the brackets, and using ps = cgps and w = kcg, provides

phz

. prhe a4 8 : ;
AS —i——k*(S—A) + k®=(S+1iY)(A—1iY 2.90
RS — ) R = (S (A=) (290
where,
y = Pile e (2.91)
pshy.z

and S and A are defined in Eqs. (2.49) and (2.50). This defines the dispersion relations for leaky Lamb

modes in a single fluid-embedded plate as
S+iY =0, (2.92)

and
A—iY =0, (2.93)

for symmetrical and antisymmetrical modes, respectively.
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2.4.3 Plane-wave reflection and transmission from a fluid-embedded plate

®The plane-wave pressure reflection and transmission coefficients, Z(hs 4, hsy, L, f) and T (hyz, hy,y, L, )
respectively, can be calculated by setting the incident wave amplitude in Eq. (2.72) to unity, i.e. A7 =1

in

A7 . AT
‘@(hf,xahf’yava) = Aii.eilzhf’ZLa y(hfymvhf-,yﬂLaf) = Aiieilzhf’ZL' (2'94)
1 1

By using Cramer’s rule A7 and Aj can be calculated as

ro + ihs L 7
—thy AT e a2  —ai3 a4 —ais
2 A+ ihs L
—ppw Ay e ag2  —a3 G4  —as2s
0 aza  —azz a34 —a3s
det
0 —aj2 a3 G4 —ais A1
0 Q22  —Q23 —Q24 A25 0426
3 L 0 —azy azz3 azs —azs O |
— _ a (2.95)
—a11 a2 —a13  aig  —ais O
as1 azs  —a23 azy —azs O
0 aga —aszz agzge —azs O
det
0 —ai2  a13 a4 —ais Q16
0 a2  —G23 —Q24 G25 (26
| 0 —az2 a3z azs —azs O |
and
_ _ e L
—a11 a2 —ai13 a4 —ais  —thy AT
2 A+ ihs oL
a1 @z —G23 Q4 —Qgs —prw Ale™s
0 agza  —as3 az4 —ass 0
det
0 —aiz a3 a4 —ais 0
0 a2  —Q23 —G24 ao25 0
0 —a3z2 a3z az4 —ass 0
A = = _ - = (2.96)
—ai1 a2 —ai3  ai  —ais 0O
a1 a2  —ag3 azs —azs 0
0 aza —aszz azs —azs O
det
0 —ai2 a3 a4 —ais A
0 (22  —Q23 —G24 Q25 U2
| 0 —azz  as3 aza —azs 0 |

Recall that, the determinant to the denominator matrix, called A in Sec. 2.4.2, has been calculated in

Eq. (2.88). Thus, in order to calculate the plane-wave pressure reflection and transmission coefficients

5The present derivation continues from the derivation of the leaky Lamb modes in Sect. 2.4.2 using a e’“? time

dependency, and expresses the plane-wave pressure coefficients as a function of horizontal wavenumber.
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the determinants of the numerator matrices above must be calculated.

Calculation of the plane-wave pressure reflection coefficient, % (hy ., hs,, L, f)
Denote the numerator matrix in Eq. (2.95) for A7 m. Calculating the determinant of this matrix by
cofactor expansion, recall the matrix determinant calculation in Sect. 2.4.2. Each of the four 4 x 4

matrix determinants are the same, so by cofactor expansion the determinant is given as

det ATm = —ihf’zeihf@L (a11 — agl) + pwae”Lfsz (a11 — a21)
= eihvaL (—ihf,zau—i— e_ihf'zLihf,zpwa <+) — pfwgagl) s (297)
where a16 = a11, and agg = agq, see Tab. (2.73). The determinants , , and are defined in

Sec. 2.4.2 in Eqs. (2.77), (2.78), (2.79) and (2.80), respectively. From Egs. (2.78) and (2.79), +

is zero. Then

det Aym = eths=l (—ihf,zall - wa2a21)
= h27z — pf«w‘l

= [sin(k. L) cos(k,L)sin(h,L) cos(h,L)] [4;1?9112,2145 - 4p?w4h2k4] . (2.98)

Using Eq. (2.95), A7 is calculated as

_  detAim
Ar = detA ~

Substituting this for A] in Eq. (2.94) and setting A] = 1, the plane-wave pressure reflection coefficient

is formulated as

det A7 M _ioh. L

%(hf,z7 hf7y7 L? f) = det A
4ugh3 (AS — 4pjwthZk?

—i2hy . L,
=e
e~ i2hys =L (4h§,u%AS —idhyppw?k2psh, (S — A) + 4p§w4h§k4)

Utilizing s = c%ps and w = kcg gives

AS p?w4h§k4
o pZh2
B(Wfwihpy L, f) = Lo T (2.99)
’ ’ psh.k2hy . prw? p2wih2k4
Identifying Y in Eq. (2.91) this gives
AS —Y?
K (hy ) h ) L, = -
(htohr 1) = g s = Ay 72
AS —Y?
= (2.100)

(S +iY)(A—iY)
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Eq. (2.100) is identical to the plane-wave pressure reflection coefficient formulated by [80], and similar
to [58] (with opposite sign in front of ¢ due to the different time dependency). The plane-wave pressure

reflection coefficient is not used further in this thesis, but is included in the calculations.

Calculation of the transmission coefficient, .7 (hy ., hy,y, L, f)
Denote the numerator matrix in Eq. (2.96) for Afm. Calculating the determinant of this matrix by

cofactor expansion gives

a1 Q22 —G23 G24  —Ag5 —ai1 @12  —ai3 a4 —ais
0 agzz  —as3 az4 —ass 0 agz  —aszy  az4  —ass
. ihs L 2 ihs L
det A:Jarm: ihy.e™=" 10 —a12 a3 aly  —as| — ppwes s 0 —ai2 a3 a4 —ams
0 a2  —Q23 —G24  ao25 0 a2  —a3 —az4 Q25
0 —az a3z azq4 —ass 0 —a3z2 a33  G34  —a35
G32 —a3z azg  —a35 az2  —azz az4  —ass
' —a a a —a 4 —a a a —a
) hy L 12 13 14 15 2 ihy.L 12 13 14 15
=thy e ay + prwe™=an
G20 —Q23 —a24 Q25 G2  —Q23 —a24 Q25
—azz  as3 a3z4  —ags —aszz  asg a3z4  —asgs
azg2  —aszz azxg  —ass
. ; ; —ai2 a13 Q14 —azs
= (zhf,ze’hf’zLagl + pfwze’hf’zLau) (2.101)
G22  —Q23 —A2q4 Q25
—az2  a33 az4  —ass
Denote the matrix determinant of Eq. (2.101) as .
G3z2  —a33 az4  —a35
a13 a4 —ais —a12 @14 —ais
—ai2 a3 a14 —ais
=a32|—a3 —Q4 G5 |+ A33| aza —azy  aos
Q22 —Q23 —a24 G35
a33 a34 —ass —a32 a34 —ass
—azz  as3 a3z4  —ags
—ai2 a13 —aizs —ai2 a13 a14
+aza| azes  —ag3 ags |+ aszs| ase  —a3 —axy
—a32 as3s3 —ass —a32 a33 a34
= a3z [a13(a24a35 — a34a25) — a14(ag3ass — a33a25) — a15(—agzaszs + azzazy)]
+ azz [—a12(azaass — as4a25) — a14(—ag2ass + az2a25) — a15(az2a34 — a32a24)]
+ azq [—a12(agsass — aszags) — a13(—agass + as2a25) — a15(azeass — aszass)]
+ ass [—a12(—a23034 + a33a24) — a13(A22a34 — a32024) + a14(a22a33 — a32a23)]
= 2(a32015023034 + 43213024035 + A33014022035 + 433012034025
— (32013034025 — Q32014023035 — (33Q12024035 — A33015022034) (2.102)

Inserting now constants from Tab. 2.73 for each variable in gives
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=2[—i2nh, sin(h, L)in cos(k,L)(—2)usnk, cos(k,L)2nh, cos(h.L)
—i2nh, sin(h, L)nsin(k,L)(—i)ps(2n* — k%) sin(h, L)(2n* — k?) cos(k, L)
—i(2n? — k?)sin(k.L)ih. cos(h.L)us(2n* — k?) cos(h.L)(2n* — k%) cos(k. L)
—i(2n? — k?)sin(k,L)h, sin(h, L)2nh. cos(h, L)i2usnk, sin(k.L)
+ i2nh, sin(h,L)nsin(k, L)2nh, cos(h. L)i2usnk, sin(k, L)
+ 2nh,, sin(h, L)ih, cos(h, L)(—2)psnk. cos(k.L)(2n* — k%) cos(k. L)
+i(2n* — k?)sin(k.L)h, sin(h, L) (—i)us(2n* — k?)sin(h.L)(2n* — k%) cos(k. L)
+ (2% — k?) sin(k. L)in cos(k, L) us(2n* — k?) cos(h,L)2nh. cos(h.L)]
= [sin(k, L) cos(k,L)sin(h. L) cos(h.L)] (

) 1
ol apap Loy g2 22 L m? — k) —
[—8usm hzkztan(kzL) psn” (2" — k°)" tan(h. L) + psh. (2n” — k7) tan(h.L)
1
+ 4“Sn2h2kz(2n2 — k‘2) tan(l{sz) — 8usn4h§kz tan(kZL) + 4M5n2h2k2(2n2 - kz)i
tan(k. L)
1
op? _ 1:2)3 L) —2usn?h.(2n® — k22— —
F pushs (20" = k%) tan(he L) = 2pusm™he (20" = )" 2o )

=[sin(k. L) cos(k.L)sin(h,L) cos(h.L)] (

1
9 LY[4n? on? _ k2) — 8yt A2 on? _ k2) — ’p
[NShZ[tan(kz )[ n hzkz( n k ) 8n hzkz] + tan(kzL)[ n-hk.(2n k=) —8n hzkz}

+tan(h. L)[(21° — k*)*(=k*)] + [(2n* = K)*(=k*)]])

1
tan(h,L)
=[sin(k, L) cos(k,L)sin(h,L) cos(h,L)] (

1
—2k%ush, | (2n% — k%) tan(h, L) + 4nh, k, tan(k, L m? — k) ——— +4n?hk,————
pshe | @7 = K tan(h.2) + s tane )+ {2 = 1) b )

= [sin(k. L) cos(k.L)sin(h.L) cos(h.L)] [-2k*push-(A+ S)] . (2.103)

Substituting this in Eq. (2.101), and for as; and a1; using Tab. 2.73,

det Afm = (ihy.ps0® + pyw®ihy )
= %ihy.psw?5]

= [sin(k. L) cos(k. L) sin(h, L) cos(h.L)] x [—idpush.k*hy .pru?(A+ 9)],

utilizing ps = psck and w = keg. Using Eq. (2.96), A7 is calculated as

At — det Agm.
3 det A

Substituting this in Eq. (2.94) and setting A = 1, the plane-wave pressure transmission coefficient is

calculated as
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det A{'m —i2hy . L
76 2
det A

_ oi2hs L —idpshk*hy.prw?(A+9)
ek (4h243AS — idhy,ppwk2ushs (S — A) + 4ptwth2k?)

<?(h‘fﬂca hf,y7L7 f) =

Utilizing s = c%ps and w = kcg gives

—i Ll pA(A 4 5)

R
g(hf@’hfﬁy?‘[’?f): Pt 2 Ah2k4 "
AS — PSRl eI (S — A) - P
Identifying Y in Eq. (2.91) this gives
—iY(A+S)
T (hfw,hyy, L, f) = .
(hgas gy Lo f) AS —iY (S —A)+Y?
—iY(A+95)

= ST AT (2.104)

Eq. (2.104) is identical to the plane-wave transmission coefficient formulated by [80].
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Chapter 3

Experimental setup and measurement

methods

3.1 Introduction

This chapter presents the experimental arrangement for sound transmission measurements of a system
consisting of a piezoelectric source transducer and a water-embedded viscoelastic plate, see Chap. 2 for
the theoretical description of this measurement system. In addition, measurements of the properties for
the piezoelectric source immersion transducer described in Chap. 5 is presented. The experimental ar-
rangement of the measurement system, used to measure the transmission through the water-embedded
steel plate using the piezoelectric source transducer as transmitter, and a needle hydrophone as a re-
ceiver, is given in Sect. 3.2, together with a method [91, 92] for determining the sound velocities in the
steel plate and the corresponding @Q-factors (cf. Sect. 3.3). For quantitative measurements of the sys-
tem, a calibration of the needle hydrophone is needed and described in Sect. 3.5, using a 2-transducer
(cf. Sect. 3.5.2) and a 3-transducer (cf. Sect. 3.5.3) calibration scheme. The experimental setup for
measuring the piezoelectric transducer properties are given in Sect. 3.6, for the electrical admittance
Yr (cf. Sect. 3.6.1), the source sensitivity Sy (f) (cf. Sect. 3.6.2) and the beam pattern D(¢, f) (cf.
Sect. 3.6.3). The program codes for the data acquisition, motor control and calculation of measured

transfer functions are listed in App. F.

3.2 Transmission measurements

A 2L = 6.05 mm thick, 500 mm wide and 760 mm long hot rolled! AISI 316L stainless steel plate is
immersed in a water tank with dimensions (60 - 75 - 160) cm?® (height,y - width,x - length,z), see Figs.
3.1(a) and 3.1(b). A computer controlled HP 33120A [123] signal generator set up a 10 V peak-to-
peak (130 us duration) sine burst, vg(t), and transmits the resulting waveform v(t) (affected by the
electrical loading, see Sect. 2.2) to a piezoelectric transducer (Figs. 3.1(d) and 5.14), at a distance

of 270 mm from the steel plate, i.e. the upper surface of the steel plate is located at z = zg = 270

IThe significance of hot rolled vs. cold rolled steel is briefly reported in Sect. 6.2.2.
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mm. Measurements are made over the frequency range 350 kHz - 1 MHz. The distance was chosen so
that comparisons to the works by [90, 91, 92] were possible. The frequency range was chosen due to
the excitation of the leaky Lamb modes in that frequency range. The in-house constructed 36.1 mm
diameter piezoelectric transducer has been designed, constructed, characterized and used for measure-
ments and FEM simulations, c¢f. Chap. 5. A 1 mm PVDF needle hydrophone [124] with a specially
made 100 mm probe length (serial no. 1820) (Fig. 3.1(c)) is connected to a preamplifier (serial no.
PA110078) and a DC coupler (serial no. DCPS223)(Precision Acoustics Ltd. (PA)) and is used to
detect the transmitted signal in a plane at zo = 376.05 mm, 100 mm from the steel plate. The signal
is terminated with 50 € load in parallell with the input of a high impedance (1 MQ) Femto HVA-10M-
60-F amplifier [125] by a RG-58 coaxial cable from the DC coupler, before the signal is filtered using a
Krohn-Hite type 3202 bandpass filter [126](20 kHz - 2 MHz) and digitized using a Tektronix DP0O3012
oscilloscope [127]. The oscilloscope uses 8-bit vertical resolution, temporal settings are adjusted to 100
000 samples in the 400 ps windows, which results in a sample rate of 250 MHz. An average of 256
bursts are used in the measurements presented. The hydrophone has been calibrated by PA and the
National Physical Laboratory (NPL) UK, and has also been calibrated in-house over the frequency
range using a 3-transducer reciprocity calibration scheme, cf. Sect. 3.5.3. The transmitted sound
pressure p;(x,y, z2,t) is measured at given receiver positions, '*’ in Fig. 2.1. The measured waveforms
are converted from voltage to sound pressure, using the magnitude of the probe hydrophone receiver
sensitivity at the centre frequency of each waveform, i.e. the phase response of the probe has not been
available and used for correction of measured waveforms. P;(x,y, 22, f) is calculated using the Fourier
transform, defining the transmitted peak-to-peak pressure as the maximum frequency spectrum ampli-
tude of the steady state region in pi(z,y, 22,t). Utilizing MATLAB and the function £ft, the frequency
spectrum is two-sided, i.e. the spectrum is displayed for both negative and positive frequencies. For a
real time response, the frequency spectrum is symmetrical around the DC-component. Thus, only half
of the energy is contained at the maximum positive frequency spectrum amplitude. Hence, to calculate

the peak-to-peak amplitude, a factor of 2 x 2 is needed.

For transmission measurements, a sine burst vg(¢) with a 130 us duration was needed in order to reach
the steady state region of the transmitted waveforms p;(z,y, 22,t) in the frequency range 350 kHz -
1 MHz. A Precision Acoustics Ltd (PA) PVDF 1 mm needle hydrophone (standard probe length)
[124] was used for measurements at first, but, using this hydrophone, one experienced fluctations in
the steady state region of the transmitted waveform. Applying a 130 us long burst the source of these
fluctations were reflections from the transition region between the probe and the preamplifier of the
hydrophone, due to the length (=~ 35 mm) of the probe. This was confirmed by applying a shorter
pulse, reducing the fluctations to approximately zero. The experimental setup here is based on the
experimental setup by Lohne [90, 91, 92]. Lohne used the same type of hydrophone, and reduced the
fluctations implementing a normalization method. This method cannot be used here, since the goal is
to make quantitative measurements including the piezoelectric source transducer response. In order to
limit the fluctations, the reflected sound must either be scattered and/or absorbed. A sound aborber
provided by PA was inserted just before the transition region with limited success, similar to the one

used by [92]. A copper cone was inserted just before the transition region with no improvement, and
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for some frequencies even worsening the fluctations. A new 1 mm needle hydrophone with a probe

length of 100 mm was then ordered from PA, so that the reflections from the transition region would

not affect the steady state region, applying a 130 us long burst.

Tektronix _Hi

50 0
r
PA
HP33120A Preamp.
signal gen. DC coupler
h
Parker 404XE TO7 Linear stage (z-axis)

Y

Rotary stage:

Micos PRS-100 Linear stages:

Micos LMS-100 (x-axis)
Parker 404XE T09 (y-azis)

Z

Source transducer Needle hydrophone

WATER

steel plate
270 mm 100 mm
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Fig 3.1. Experimental measurement setup. a) Principle sketch of the measurement setup, with coordinate system
(z,y,2). x into the paper. b) Photograph of the measurement tank with the steel plate immersed in water. c)
Photograph of the PA needle hydrophone with 100 mm probe length. d) Photograph of the in-house constructed

piezoelectric transducer used as source.

3.2.1 Frequency response of the electronic equipment

To correctly determine the transmitted signal p;(x,y, 22, f) through the measurement system, the
frequency response for the FEMTO amplifier, together with the frequency response for the Krohn-Hite
filter, must be determined. The amplification factor for the instruments is given as
V(o o)
[V (f)inl
where V(f)in and V(f)ous are the input/output voltages to and from the instrument as function of

frequency, respectively. In this study one neglects the electrical loading of the cables.

45.78

n

45.76

V.1 [dB]

u

>° 7
< 45.74f
o

45.721

45.7 i

45.68 A

Amplification factor [20log |

80 400 600 _ 800 1000 1200 1400

Frequency, f [kHz]

FIG 3.2. Measured amplification factor of the FEMTO HVA-10M-60-F amplifier in the frequency range 200 kHz - 1.5
MHz. The amplifier is operating in 40 dB mode.

Fig. 3.2 shows the measured amplification factor for the FEMTO HVA-10M-60-F amplifier as a func-

tion of frequency, operating in 40 dB mode. In accordance with its usage in the total measurement
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system, the amplification factor is measured using the signal generator with a 50 Q output impedance
to generate Vi,, and using the oscilloscope with a 1 MQ||11.5pF input impedance to measure Vui. The
input and output impedance of the FEMTO amplifier is 1 MQ||15pF and 50 €2, respectively. Fig. 3.2
shows that the frequency response of the amplification factor is relatively flat in the frequency range,
350 kHz to 1 MHz, and therefore a constant amplification factor of 45.74 dB is used throughout the

frequency range when conducting measurements.

Fig. 3.3 shows the measured amplification factor for the Krohn-Hite filter as a function of frequency,
operating as a bandbass filter in the range 20 kHz - 2 MHz. In accordance with its usage in the total
measurement system, where the input and output impedance of the Krohn-Hite filter is 100 k2||50 pF
and 50 €, respectively, the same measurement setup is used as for the measurement of the amplification
factor for the FEMTO amplifier. Fig. 3.3 shows that the frequency response of the amplification factor

varies up to 1 dB in the frequency range, hence it is taken into account when conducting measurements.
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FIG 3.3. Measured amplification factor of the Krohn-Hite bandpass filter (20 kHz - 2 MHz) in the frequency range 100
kHz - 1.5 MHz.

3.2.2 Alignment and distance measurements

The piezoelectric source transducer is connected through a mounting rack to a Micos precision rotary
stage PRS-110 [128], which rotates about the transducer’s front surface, such that zy do not change
with the beam incidence 6. This rotary stage is mounted on a carriage able to move in parallell to
the z-direction, see Fig. 3.1(a) and Fig. 3.1(b). On this carriage, a Parker 404XE T07 [129] linear
stage is positioned, making it possible to step in the z—direction, and connected through a rod to a
carriage on the other side of the steel plate, which supports the needle hydrophone. On this carriage, a
system consisting of a Micos LMS-100 [130](in the z-direction) and a Parker 404EX T09 [131] (in the
y-direction) linear stage is mounted, which in turn supports the needle hydrophone. Thus, making the

measurement system able to make 3D scans.
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Alignment of the transducer and needle hydrophone is carried out using a cross laser to determine that
the transmitter and the receiver is on-axis with respect to each other. Fine-tuning is done acoustically,
finding the maximum sound pressure at a high frequency where the transducer’s main lobe is narrow.
The distance between the transmitter and receiver is determined measuring the transit time of a pulse,
knowing the sound velocity c; in water. The sound velocity of water is measured by a two-distance
method using time arrivals. At a given distance between the transmitter and receiver the time arrival
t; of a pulse is determined. Using the Parker 404XE TO07 motor stage the receiver is driven to another
position along the acoustical axis, where z is the relative distance between the two positions. Here,
another time arrival ¢, is determined. Knowing the time arrivals and the relative distance between the

two positions, the sound velocity in water cy can be calculated as

0z
Cf = .
-
The distance between the transmitter and the steel plate for transmission measurements is fixed using

(3.2)
a reference rod with a length of 270 mm.

3.3 Method for determining ¢; and cg, and the corresponding
Q-factors

A method [91, 92] relates the transmission of sound through the plate at normal beam incidence to
the cut-off frequencies for a solid plate in vaccum (Eqs. (2.54) and (2.55)) to determine the sound
velocities, c;, and cg, for the steel plate. For a solid plate immersed in a fluid, where the density
of the fluid is much less than the density of the plate, the frequencies that corresponds to maximum
transmission through the plate is almost equal to the excitation frequencies of Lamb modes for the
same plate in vacuum [37]. The cut-off frequencies can then be found from plane-wave transmission

when the incident ultrasonic plane-wave approaches the normal incident angle [91].

The sound velocities for the water-embedded steel plate is found by measuring Hpp (0,0, 22, f) (Eq.
(2.13)) for a normal beam incidence, where the frequencies of maximum transmission are used as the
cut-off frequencies in Eqs (2.54) and (2.55). The method assumes a normal incident plane-wave, and
care must be taken to ensure negligible beam effects in transmission measurements. This will be further
discussed in Sect. 6.2.2.

This method is here extended to approximate the corresponding loss factors (Q%J and Q?\}) for the
compressional and shear sound velocities, respectively. After the sound velocities in the plate are
determined, hybrid FEM-ASM simulations of Hpp (0,0, 22, f) at normal beam incidence are compared
to transmission measurements, and simulated loss factors are varied until agreement is found. Results

are reported in Sect. 6.2.2.
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3.4 Measurements for the transducer front layer

In order to facilitate FEM simulations of the measurement transducer described in Chap. 5, the
material data for the components of the transducer design must be determined. From Chap. 5, the
material data for the other components in the transducer design than the front layer were either taken
from other sources, or determined in a different way, e.g. adjustment of piezoelectric material data,
cf. Sect. 5.2. This section describes the methods for determining the density (cf. Sect. 3.4.1) and the

sound velocities (cf. Sect. 3.4.2) of the front layer used in the piezoelectric source transducer.

3.4.1 Density measurements

The front layer material? was delivered by the manufacturer in the form of a plate (height x width x
thickness of 306 x 306 x 7 mm). The density of the front layer was determined by measuring the weight
and the volume of this plate. The weight was measured using a AND EK-2000i [132], measurement
uncertainty of 0.1 g. The length and width of the plate were measured using a Kobra(Mauser) [133]
300 mm caliper, where the thickness was measured using a Tesa Digit mircometer [134], measurement

uncertainty of 5 pm.

3.4.2 Sound velocities measurements

The same setup as in Sect. 3.2 is used, where two V301 Olympus transducers [135] are used as
transmitter and receiver positioned a distance d apart, and on-axis with respect to each other. The
sound velocities for the front layer material are measured by determining the time-of-flight difference
between the signals received by the receiver V301 of the two cases; with the inserted plate with thickness
tm, and that witout the plate[136]. The compressional sound velocity is then calculated as

¢f
il = , 3.3
Em.t 1 — Atier/d (3:3)

where At; is the time-of-flight difference at normal beam incidence towards the plate. The shear sound

velocity is then calculated as

cr
m,s — y 3.4
s =T Atyer/d (3.4)

where At is the time-of-flight difference at an angle above the critical angle towards the plate, given
as
0. =sin"(cs/cm), (3.5)

assuming that the travel distance through the plate corresponded to the plate thickness. This method

assums that the phase velocity is approximately equal to the group velocity.

2See Sect. 5.2.2 for the discussion regarding the choice of material.
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3.5 Hydrophone calibration

3.5.1 Introduction

In order to facilitate quantitative assessment of the measurement system, the receiver hydrophone has
been calibrated by Precision Acoustics (PA)[124] in the frequency range 1 - 20 MHz, with 1 MHz in-
crements, and by the National Physical Laboratory (NPL)[137] in the frequency range of 100 kHz to 1
MHz, with 10 kHz increments, providing a level of confidence of approximately 95%. The end-of-cable
loaded sensitivity is calculated, which is the combined receiver sensitivity of the needle hydrophone,
preamplifier and the DC coupler, when the DC coupler is terminated with a 50 €2 load in parallell with
a high impedance amplifier. In order to assess whether the NPL calibration can be used in the mea-
surement system described in Sect. 3.2, an in-house calibration is made. In Sect. 3.5.2 and 3.5.3 two
reciprocity calibration schemes [138] are used to determine the end-of-cable loaded receiver sensitivity
of the hydrophone in the frequency range 100 kHz - 1.5 MHz, with increments of 5 kHz. The needle
hydrophone with serial no. 1820, preamplifier with serial no. PA110078 and a DC coupler with serial
no. DCPS223 are calibrated, denoted receiver R, using two V301 immersion transducers by Olympus
[135], denoted S (serial no. 654220) and T (serial no. 654055).

In the following derivation one assume that the measurements are preformed under ideal conditions,
i.e. free field, far field, no losses in fluid, no loss due to cables. The theoretical derivation takes into
account the phase responses, but for measurement results, only the magnitude is used. Measurement
results are not corrected for absorption, since it can be neglected in frequency ranges up to 1 MHz for
calibration in fresh water [138]. As absorption increases with frequency and distance, the worst case
scenario at 1 MHz, i.e. maximum frequency for transmission measurements, with a maximum distance

of 376.05 mm is examined. For the following case, absorption corresponded to 0.086 dB.

3.5.2 2-transducer calibration scheme

This calibration method assumes that the two V301 transducers, denoted S and T, are equal and re-
ciprocal. Two measurements must be completed to calibrate the unknown receiver sensitivity of the
hydrophone, where the first measurement determines the open circuit voltage source sensitivity of the
transmitting transducer and the second measurement determines the end-of-cable loaded receiver sen-
sitivity of the hydrophone. Since the end-of-cable loaded receiver sensitivity for the needle hydrophone
is to be calculated, the hydrophone in measurement B (source S — receiver R) is terminated with 50
), whereas transducer T in measurement A (source S — transducer T) is terminated with 1 M to

determine the open circuit voltage source sensivitiy.

Measurement A): Source S — Transducer T
A voltage Vs(l) is delivered to source S. This provides the on-axis free-field sound pressure Pr at

transducer T as W
SYVvs'dy .
pp = 28 dsl Oezk(dofdl), (3.6)

where d; is the distance between the source and the transducer, Sg is the open circuit voltage source
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sensitivity of source S at dy = 1 m. k = w/c, where c is the sound velocity in water.

The open circuit output voltage Vs of transducer T is given as

1
M¥S¥Vs( )dO oik(do—dz)

1

Vst = My Pp = (3.7)

where M} is the open circuit voltage receiver sensitivity of T.

A reciprocal transducer must be linear, passive and reversible. If one assumes that transducer T is
reciprocal, then

My
where S:IF is the open circuit current source sensitivity of T. J is the spherical reciprocity factor [138,

139], given as
_ My _ %eikdo
ZrSY. pf ’

where Z7 is the electrical input impedance of transducer T, S¥ is the open circuit voltage source

(3.9)

sensitivity of T, and p is the density of the surrounding fluid.

Inserting for MY in Eq. (3.7) gives

1
_ JS¥ZTS¥VSE )dO eik(do—di)

% . 3.10
or > (3.10)
If now source S and transducer T are equal then
Sy =S¥, (3.11)
and the voltage source sensitivity of the source S can be calculated as
v_ [Verdi L gy (3.12)

s = Vél) dT)JZT
Measurement B): Source S — Receiver R

2) . . . . . .
A voltage VS( ) is delivered to source S. This provides the on-axis sound pressure Pg at receiver R as

SYVEPdy
Prp = STierk(do_dZ)’ (3.13)

where ds is the distance between the source and the receiver.

The end-of-cable loaded voltage Vsgr out of receiver R is given as

2
MXS;‘/VS( )dO pik(do—da)

2

Vsr = My Pp = ; (3.14)

where M}, is the end-of-cable loaded voltage receiver sensitivity of R.
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Inserting Eq. (3.12) for the source sensitivity of S in Eq. (3.14), the end-of-cable loaded voltage receiver

sensitivity of R is calculated as

B Vsr da 1 (ik(d2—do) (3.15)
(2) Vst di 1 _ik(di— ’ )
VS do \/VZIT) dTl) 77 € k(d1—do)

The electrical conductance for the two V301 transducers used as source S and transducer T is presented
in Fig. 3.4 to verify that the two transducers have approximately the same electrical response. Below
300 kHz, there exists some deviations between the two transducers, but these were disregarded due to
the measurement range set in Sect. 3.2. See Sect. 3.6.1 for the experimental setup for the electrical

measurements.

Conductance [20Iog10(G) dBre18S]

-130 —Source S: V301 — no. 654220
140 ‘ ‘ ‘ ‘ —Transducer T: V301 - no. 654055
- 200 400 600 800 1000 1200 1400

Frequency, f [kHz]

Fig 3.4. The electrical conductance for the V301 transducers, source S (no. 654220) (blue line) and transducer T (no.

654055) (red line), used in the two-transducer calibration scheme.

Carrying out measurement A), the open circuit voltage source sensitivity for the source S is calculated
and presented in Fig. 3.5(a), using a distance of 1.167 m between the source and transducer. The
corresponding open circuit voltage receiver sensitivity for the source S is calculated using Eq. (3.8),
and presented in Fig. 3.5(b). Concluding measurement B), the end-of-cable loaded receiver sensitivity
of the 1 mm needle hydrophone (probe length 100 mm) (red line) is determined and presented in Fig.
3.6 using a distance of 0.9109 m between the source and receiver, terminated with a 50 €2 load in parallell
to the high impedance amplifier in comparison with the end-of-cable loaded sensitivity measured by
NPL (blue line). During the NPL calibration the separation distance between the hydrophone and the
source was 1 m. The two stipulated black lines is the measurement uncertainty of the NPL calibration,
level of confidence of approximately 95%. From Figs. 3.5(a) and 3.5(b), the V301 transducer can not
be used in the region 1.1 - 1.2 MHz. This means that the reciprocity calibration in this region, see Fig.

3.6 can not be used.
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Fig 3.6. In-house end-of-cable receiver sensitivity of the PA 1 mm needle hydrophone (probe length 100 mm) (red line)

in comparison with the NPL calibration (blue line) with uncertainty limits (dotted black lines).

3.5.3 3-transducer calibration scheme

In this calibration method two transducers are used to determine the receiver sensitivity of a receiver,
a source S, transducer T and receiver R. The difference from the 2-transducer method is that one does
not need to assume two equal transducers to determine the receiver sensitivity. Four measurements
must be completed to calibrate the unknown receiver sensitivity, where three measurements are needed
to actually determine the sensitivity, and the fourth measurement is completed in order to test if trans-
ducer T is reciprocal. Since the end-of-cable loaded receiver sensitivity for the needle hydrophone is
to be calculated, the hydrophone in measurement A (source S — receiver R) and C (transducer T
— receiver R) is terminated with 50 €2, whereas measurement B and D is made under open circuit

conditions (terminated with 1 M). The same distances as in Sect. 3.5.2 between source S, transducer
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T and receiver R is used.

Measurement A): Source S — Receiver R
A voltage Vs(l) is delivered to source S. This provides the on-axis free field sound pressure Pg at the

receiver R as N
_ S}S/VS do pik(do—d)
dy ’

where d; is the distance between the receiver and the source, , Sg is the open circuit voltage source

Pr (3.16)

sensitivity of source S at dp = 1 m. k = w/c, where ¢ is the sound velocity in water.

The end-of-cable loaded voltage Vsgr out of receiver R is given as

1
M}{SEVS( )dO pik(do—d1)

Vsp = M}, Pp = i

(3.17)

where M} is the end-of-cable loaded voltage receiver sensitivity of R.

Measurement B): Source S — Transducer T
A voltage Vs(z) is delivered to source S. This provides the on-axis free field sound pressure Pr at the

transducer T as ©
_ SL‘S‘/VS do ptk(do—dz)

Pr i (3.18)
where ds is the distance between the transducer and the source.
The open circuit voltage Vg7 out of transducer T is given as
Vsr = MY Pr = MY SYVEdy ¢ik(do—da) (3.19)
2
where M} is the open circuit receiver sensitivity of T with respect to voltage.
Dividing the voltage Vgg in Eq. (3.17) with voltage Vsr in Eq. (3.19) gives
Vsr _ M—X@ﬁeik(dr“. (3.20)

Vsr MY di Vs@)

A reciprocal transducer must be linear, passive and reversible. If one assumes that transducer T is
reciprocal, then
My
=T _ 3.21
SL (3:21)

where S, is the current source sensitivity of T. .J is the spherical reciprocity factor [138, 139], given as

1%
J= MTV — 200 inao, (3.22)
ZTST pf

where Zp is the electrical input impedance of transducer T, S¥ is the open circuit voltage source

sensitivity of T, and p is the density of the surrounding fluid.
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From Eq. (3.20), the end-of-cable loaded receiver sensitivity of R is given as

2) Ver d
1% S SR C1 3 1V ik(d1—d2)
==-——"Mie . 3.23
R él) VST d2 T ( )

Using the spherical reciprocity factor in Eq. (3.22) gives

V& Vsp dy :
MY = 522 26V JZpetk(dida), 3.24
r Vi Vst dy T are (8:24)
Measurement C): Transducer T — Receiver R
A voltage VT(l) is delivered to transducer T. This provides the on-axis free field sound pressure Py at

the receiver R as @
_ S’Z‘{VT do pik(do—ds)

Pr i , (3.25)
where ds is the distance between the transducer and the receiver.
The end-of-cable loaded voltage Vg out of receiver R is given as
Vrr = MY Pr = weiwo—d@. (3.26)
3
From Eq. (3.26) the open circuit voltage source sensitivity of T is then given as
v _ Vrrds 1 iva-d0) (3.27)

T = V}I)IOME

The end-of-cable loaded receiver voltage sensitivity of receiver R can be calculated inserting Eq. (3.27)

into Eq. (3.24), giving

v VP Vspdi Veg ds 1

= 8 SROLITRS _ j7 eth(di—da+ds—do) 3.28
" Ve v do T 829

which becomes

(2)
My = | Vo VsrdiVirds ;) i, —a,ray-ao). (3.29)

Using the spherical reciprocity factor given in Eq. (3.22), this can be rewritten as

(2)
MY — Vs Verdi Vrr ds 2do ) iya,—ayran) (3.30)

Measurement D:) Transducer T — Source S

This measurement is conducted to test if transducer T is reciprocal. After completing measurement B),
the transducers are kept in their positions, and a voltage VT(Q) is applied to the transducer T, resulting
in a measured voltage Vprg. This test will actually check if the system ’transducer T — source S’ is
reciprocal, but if that is the case, then most likely will transducer T also be reciprocal. The system

will be reciprocal if

Vsr  Vrs

—_ = 3.31
R (331)
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where Ig = Vs(z)/ZS and Iy = V:,(?)/ZT, and Zg is the input impedance of source S.

Measurements A), B) and C) are conducted to calculate the end-of-cable loaded receiver sensitivity,
using the same tranducers as in Sect. 3.5.2 for source S and transducer T. Fig. 3.7 shows the end-
of-cable loaded receiver sensitivity of the hydrophone (100 mm probe length) for the 2- (blue line)
and 3-transducer (red line) reciprocity methods. There is up to approximately 280 mV /MPa difference
between the two methods in the frequency range. For the same reason as for the 2-transducer reciprocity
calibration scheme, the 3-transducer method can not be used in the frequency range 1.1-1.2 MHz, but

the 3-transducer calibration curve shows an improved continuity before 1.1 MHz, and after 1.2 MHz.
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Fig 3.7. End-of-cable loaded receiver sensitivity of the PA 1 mm needle hydrophone (100 mm probe length). Comparison

of the 2-transducer (blue line) and 3-transducer (red line) reciprocity calibration methods.

In Fig. 3.8 the end-of-cable loaded receiver sensitivity calculated using the 3-transducer reciprocity
calibration method (red line) is compared to the calibration provided by NPL (blue line). A closer
agreement can be observed than for the 2-transducer reciprocity method in Fig. 3.6 because one does

not need to assume that the two V301 transducers are equal.

In Fig. 3.9 the ratio between the two fractions of Eq. (3.31) is presented. The ratio is approximately
unity (exception 1.1-1.2 MHz region), confirming that the system ’transducer T — source S’ is nearly
reciprocal, and that the 3-transducer reciprocity method can be used to calibrate the hydrophone. If not
stated otherwise, the NPL calibration is used for piezoelectric transducer properties and transmission

measurements throughout this thesis.
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Fig 3.9. The ratio between the two fractions of Eq. (3.31), confirming that the system ’transducer T — source S’ is

nearly reciprocal.

3.6 Measurements of piezoelectric transducer properties

In this section the measurement setup for the piezoelectric transducer properties are given. For acous-

tical measurements the measurement setup described in Sect. 3.2 is used, with the steel plate absent.
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The experimental setup for measuring the electrical admittance is given in Sect. 3.6.1, the source

sensitivity in Sect. 3.6.2 and the beam pattern in Sect. 3.6.3.

3.6.1 Electrical admittance, Y (f)

The electrical measurements are carried out using a HP4192A Impedance analyzer [140], connected to
a PC through a GPIB cable. Fig. 3.10 shows the impedance analyzer, with a holder of polystyrene
to reduce reflections from the piezoelectric transducer structure used for measuring the electrical ad-
mittance Y (f) for the structure in air, where Y (f) = ﬁ When the transducer radiates in water, a
RG-58 coaxial cable is used to connect the transducer to the instrument. In order to minimize effects of
the measurement equipment, including cables, the instrument and cables are zero-adjusted [140] before

each measurement.

Fig 3.10. HP4192A Impedance analyzer used to measure the electrical admittance Y'(f).

3.6.2 Source sensitivity, Sy (f)

The source sensitivity is defined e.g. [138, 141] as

su(p) = Tl

where V(f) is the input voltage to the transducer, P(0,d = dy = 1m, f) is the free-field on-axis sound

(3.32)

pressure at a distance dg = 1 m, assuming far field conditions at this distance. A distance of d = 0.9065
m between the transducer and receiver is used for the results reported in Chap. 5. The rayleigh distance
for the prototype transducer (cf. Chap. 5) is shown in Fig. 3.11 using the radius of the front layer

(blue line) and piezoelectric disk (red line), respectively.
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Fig 3.11. Rayleigh distance of the prototype transducer in water (c; = 1485 m/s) using the radius of the front layer

(blue line) and the piezoelectric disk (red line), respectively.

3.6.3 Beam pattern, D(¢, f)

The beam pattern is defined [141] as

DU6) = B (3.59)

where ¢ = tan(r’/2’) in Fig. 2.1 in Chap. 2, p(d, f, ¢) is the sound pressure at a distance d, assuming
far field conditions at this distance, with an angle ¢ from the on-axis. The hydrophone is positioned
at (z,y,2) = (0,0, 2), and the piezoelectric source transducer is positioned at (z,y,z) = (0,0,0), and
is rotated around the y—axis by the Micos PRS-110 rotary stage to conduct the measurements. A

distance of d = 0.63 m between the transducer and receiver is used for the results reported in Chap. 5.
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Chapter 4

Simulation setup

4.1 Introduction

This chapter presents the simulation setup for sound transmission simulations of the system described
in Chaps. 2 and 3 for the FEM and hybrid FEM-ASM approaches, in Sects. 4.2 and 4.3 respectively.
The piezoelectric source transducer model used to excite the measurement system is described in Sect.
4.5, at various steps in the construction process (cf. Sect. 4.5.1), and for the finished prototype in Sect.
4.5.2. The baffled piston source, used in comparison with the piezoelectric transducer, is described in
Sect. 4.5.3. The material data for materials in the piezoelectric source transducer and the surrounding
water is listed in Chap. 5, and the material data for the steel plate are listed in Chap. 6. For the

accuracy of FEM simulations, refer to FEM convergence tests in Sect. 4.4.

4.2 The FEM approach

For normal beam incidence, a FEM approach is used to calculate the voltage-to-pressure transfer
function Hy p(z,y, 22, f)ew, Eq. (2.10). A decimated mesh of the FE simulations is shown in Fig. 4.1,
in order to visualize the meshing of the transducer, steel plate and water regions, refer to Chap. 6 for
material type and data for the steel plate. The fluid PML (grey regions) thickness is set to 30 mm in
all directions. Different distances to the PMLs, in addition to PML thicknesses were tested to ensure
minimal reflections from these regions. The steel plate with a radius of 450 mm is indicated in green
with the "decreasing Q" method (cf. Sect. 2.3) implemented from 7’ = 220 mm to the endface of the
steel plate to reduce end reflections. In this region the @, for the steel plate is reduced exponentially
from Qs to 0.001. The frequency range is 300 kHz - 1.2 MHz, using non-frequency dependent damping
function (cf. Sect. 2.3) for the PMLs calculations at 750 kHz, with a step frequency of Af = 500 Hz.
On a 16 x 3.60 GHz processor and 192 GB RAM the simulation took approx. 2.5 weeks to complete. 3
elements per shear wavelength at 1.2 MHz is used as the element division in the piezoelectric disk and
in the other elastic regions, whereas 3 elements per compressional wavelength is used in water. The

electrical loading of the signal generator is included as described in Chap. 2.
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Piezoelectric transducer
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Fig 4.1. A decimated mesh of the axisymmetric FE simulation of the piezoelectric source transducer and the water-
immersed steel plate (green region) at normal beam incidence. PMLs and the “decreasing Q p;” method have been utilized

to simulate unbounded water regions and non-reflecting endfaces of the steel plate, respectively.

Using a frequency domain implementation, standing waves will appear between the transducer and the
steel plate. For separating successive arrivals in time for a given frequency, a 80000 points, 100 period
long, signal waveform v(t) with the given centre frequency is used to excite the piezoelectric transducer.
A sampling frequency of 40 MHz is used, giving At = 0.0250 us and Af = 500 Hz, equal to the FEM
approach simulations. The waveform is transformed into the frequency domain using Eq. (2.4) giving
V(f) and multiplied with the voltage-to-pressure transfer function Hy p(z,y, 22, f)ew' calculated di-
rectly from the FE simulations. As the frequency range is 300 kHz - 1.2 MHz, Hy p(x,y, 22, f)ew and
the transducer’s admittance Y (f)q, is set to zero elsewhere (for f < 300 kHz and f > 1.2 MHz), see
justification in the next paragraph. The combined frequency spectrum of Pi(x,y, 22, f)ew and V(f)
is then transformed back into the time domain using Eq. (2.12), e.g. Fig. 4.11(b) for a 60 period
long 457 kHz tone burst. The first arrival is determined by time-gating as pi(z,y, 22,t), and its steady
state region is determined. From this region the Fourier transform is used to calculate Pi(x, z, 22, f)
in a similar manner as in Sect. 3.2. The voltage-to-pressure transfer function Hy p(z,vy, 22, f) is then

calculated by completing the above steps for all frequencies in the range 350 kHz - 1 MHz.

The amount of aliasing introduced by using a bandlimited voltage-to-pressure transfer function is dic-
tated by the bandwidth of the sinc-function (frequency spectrum of V(f)), and the behaviour of the
transfer function at the end-frequencies. First, minimal aliasing due to using a bandlimited transfer
function is introduced by smoothly ending Hy p(x,y, 22, f)ew at the end-frequencies. The FEM trans-

ducer described in Chap. 5 is built for operating at frequencies around 400-600 kHz. For transducer

ISubscript cw denotes that the standing wave pattern is present.
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characteristics, e.g. electrical conductance and source sensitivity (Figs. 5.26(a) and 5.26(b)) the source
sensitivity has a low value at 300 kHz (approx. 44 dB re 1 Pa/V down from maximum), and in the
range 1.1-1.2 MHz (approx. 57 dB re 1 Pa/V at 1.2 MHz down from maximum), and the frequencies
are therefore chosen as the end-frequencies to smoothly confine our transfer function. Second, aliasing
introduced by not representing the combined spectrum of V(f) and Hyp(x,y, 22, f)ew correctly, in-
creases as the centre frequency of v(t) reaches the end-frequencies of the transfer function, since greater
parts of the frequency spectrum of V(f) (sinc-function) is multiplied with zeroes. But, by using 100
period long tone bursts, the narrow bandwidth of V'(f) makes it possible to represent frequency spectra
of Pi(x,y, 22, f)ew in the frequency range 350 kHz - 1 MHz without introducing significant numerical
errors due to this. The same conclusion can be made for simulating transmitted waveforms using ei-
ther the FEM or hybrid FEM-ASM approach. The difference there is that the number of periods is
changed, which effects the bandwidth of the sinc-function (less than 100 periods — wider bandwidth,
more than 100 periods — narrower bandwidth). But, the centre frequencies of the simulating waveforms
are located in the middle of the frequency range, hence the bandwidth of the given sinc-function plays

a less important role.

To minimize numerical errors due to folding in the time domain, it is important to use a time trace
that does include all significant echoes, since echoes that does arrive later will be folded into our time
window. Due to the large acoustic impedance-ratio of water and steel, including the losses in the steel
plate, and geometrical distrubution in water, successive arrivals in time will be dampen accordingly.
Using the time window above, all significant echoes are represented (e.g. Fig. 4.11(b)), and minimal

folding occurs.

4.3 The hybrid FEM-ASM approach

For normal and oblique angles of beam incidence, a hybrid FEM-ASM approach is used to calculate
the voltage-to-pressure transfer function Hyp(z,y,z, f), Eq. (2.10). The FEM is used to calculate
the free-field sound pressure frequency spectrum Py(r’, 2’, f) from the piezoelectric source transducer
in the fluid nodes of the unbounded water region, when the plate is absent, see Fig. 4.2(a). The
frequency range is 300 kHz - 1.2 MHz, using non-frequency dependent damping function for the PMLs
calculations at 750 kHz, with a step frequency of Af =1 kHz. On a 16 x 3.60 GHz processor and 192
GB RAM the simulation took approx. 3 weeks to complete (dividing the frequency range and running
two parallell simulations). 3 elements per shear wavelength at 1.2 MHz is used as the element division in
the piezoelectric disk and in the other elastic regions, whereas 3 elements per compressional wavelength
is used in water. The fluid PML (grey regions) thickness is set to 30 mm in all directions. A larger
water region in front of the transducer than the FEM approach is used, with max (', 2") = (450, 430)
mm (incl. PMLs), making it possible to calculate the free-field sound pressure field for angles of beam
incidence in the region 0 — 30°. Convergence tests for the FEM calculations are reported in Sect. 4.4.
The coordinate relationship of Eq. (2.1) gives the relationship between the transducer’s axisymmetric
sound field and the 3D coordinate system (x,y, z), for a given beam incidence 6. Thus, the sound

pressure as a function of (z,y,z) can be calculated from the axisymmetric sound pressure, given as
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function of (1, 2’), for a known beam incidence 6, cf. Chap. 2. 2D linear interpolation of Py(r/,z’, f)
over the plane (z,y, z0) gives Py(z, vy, 20, f). Interpolation is used to fit the axisymmetric data to a grid
of [Zmins Tmaz, Ymins Ymaz] = [—300, 300, —300,300] mm with N, x N, = 1024 x 1024 points, giving
the spatial sampling interval Az = Ay — 0.586 mm. The maximal horizontal wavenumber A7'0* and

h’}lzx are calculated as

-0.1——————=Piezoelectrictransducer ———— 7

Z’ [m]

~PML-regions (grey)

0 0.05 0.1 015 02 025 03 035 04 045 05

r'[m]
(a)
o1 ! Rigid baffle
Piston '91d baltle

0'70 0.1 0.2 0.3 0. 0.5

r'[m]

(b)

Fig 4.2. A decimated mesh of the FE simulations used in the hybrid FEM-ASM to calculate Py(r’, 2’, f). a) For the
piezoelectric transducer, b) For the piston source. Water regions in blue, with fluid PMLs (grey regions) to simulate an

unbounded medium.
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mamil: maz:l:
fix = Aa’: hf,y Ay 5362 rad/m. (4.1)

The wavenumber sampling interval Ahs, = Ahy, is then given as

Ahy, = J\f[‘f — Ahy, = % — 10.47 rad/m. (4.2)
z Yy

The relationship between the real horizontal wavenumber 1 and the plane-wave incident angle 0p is

given as

Op = sin~* (;ﬁ?) . (4.3)

The Fourier transform in Eq. (2.6) is used to transform Py(z,y, 20, f) into the frequency-wavenumber
domain giving Po(hy 5, hyry, 20, f), using the Fast Fourier transform (FFT) algorithm. The sound pres-
sure is then propagated through the steel plate using the plane-wave pressure transmission coefficient
T given by Eq. (2.7).

The plane wave propagator given by Eq. (2.8) is then used to propagate Pi(h¢ g, by, 20 + 2L, f) to
the receiver depth zo. Py(hy sz, Ry, 22, f) is then transformed into the frequency-space domain using
Eq. (2.9), using the Fast Fourier transform (FFT) algorithm. Evanescent waves are included in the
propagation through the steel plate and lower adjacent water region by Eqs. (2.61), (2.34) and (2.35).

The electrical loading of the signal generator is included as described in Chap. 2.

The hybrid FEM-ASM approach is also used to simulate the signal propagation through the system
using a simplified piston-generated beam, in order to assess the deviations introduced using a piston
model in relation to the piezoelectric transducer. FEM is used to calculate the free-field sound pressure
frequency spectrum Py(r’, z’) from a piston source in the fluid nodes of the unbounded water region,
replacing the transducer. The FEM simulation simulates both near- and far-field sound pressure from
the piston, in relation to [60, 68, 69, 70, 91, 92] which only used the far-field solution. A coarse
decimated mesh is shown in Fig. 4.2(b). If not stated otherwise, the same setup as in Sect. 4.2 is used.
Further information regarding the piston source is located in Sect. 4.5.3. Fluid PMLs (grey regions),
with 20 mm thickness in all directions, are used to simulate an unbounded medium in front, and to
the sides, of the piston in a water column with size (r/, z’) = (500, 676.05) mm (including PMLs). The
frequency range is 300 - 1 MHz2, where 3 elements per compressional wavelength at 1 MHz is used as
the element division in the water column, and using non-frequency dependent damping function for
the PMLs calculations (cf. Sect. 2.3) at 650 kHz. A rigid baffle is specified along the r’-axis, at 2’ =0

min.

2This simulation is not used to calculate time domain waveforms, hence only including frequencies up to 1 MHz.
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4.3.1 Signal transmission exemplified, for propagation of a 457 kHz tone

burst at normal beam incidence

In the following section the signal propagation through the system at normal beam incidence using the
hybrid FEM-ASM approach is exemplified, for propagation of a 457 kHz tone burst at normal beam
incidence using the piezoelectric transducer as source. This is done to illustrate the signal transmission
in the hybrid approach, in addition to the time domain calculations in the hybrid FEM-ASM and FEM
approaches. Fig. 4.3(a) shows the 80000 points long signal waveform of the electromotive force wvg(t),

with a center frequency of f = 457 kHz. Using Eq. (2.3) the pulsed waveform is transformed into the

frequency domain, giving |Vo(f)| as shown in Fig. 4.3(b). A sampling frequency of 80 MHz is used,
giving At = 0.0125 ps and Af = 1kHz, equal to the hybrid FEM-ASM simulations.

"

Fig 4.3. a) The electromotive force waveform (tone burst) vo(t). b) Magnitude of the frequency spectrum Vo (f) of
vo(t).
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The electrical loading of the signal generator is simulated using the Thévenin model in Eq. (2.2).
Fig. 4.4(a) shows the resulting voltage waveform v(¢) transmitted to the transducer (representing the
electrical input voltage to the piezoelectric transducer). The magnitude of the corresponding frequency
spectrum V' (f) is given in Fig. 4.4(b). The electrical impedance of the piezoelectric transducer, Zr(f),
is simulated from 300 kHz to 1.2 MHz. Zp(f) is set to zero elsewhere, cf. Fig. 5.26(a) in Sect. 5.4.3.

v(H)[v]

20log, |V (f)[[V/Hz]

. I I . I I . I
0 50 100 150 200 _ 250 300 350 400 450 500 140 -1 ObO —560 6 560 1 dOO

Time [us] Frequency [kHz]
(a) (b)
Fig 4.4. a) The electrical input voltage waveform to the piezoelectric transducer, v(t). b) Magnitude of the frequency

spectrum V' (f) of v(¢).
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Fig. 4.5(a) shows the magnitude of the FEM calculated and interpolated incident free-field pressure
frequency spectrum Py(z,y, 29, 457kHz) at the plate’s upper surface, when the plate is absent. In Fig.
4.5(b) the FEM calculated magnitude of the free-field pressure frequency spectrum |Py(z, 0, zo, 457kHz)|
at y = 0 mm is shown (blue line) and compared to the FEM pressure at the nodes along the surface
(red line - before interpolation). At normal incidence 2z’ = z, and only interpolation over the (z,y, o)
grid is needed to calculate Py(z,y, 20, f). The axisymmetric FEM incident free-field pressure frequency

spectrum is presented in Fig. 4.5(b) from x = 0 mm to x — 300 mm.
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Fig 4.5. At normal beam incidence § = 0°: Magnitude of the incident free-field pressure frequency spectrum at the plate’s
upper surface in absence of the plate, shown as a function of (z,y). a) |Po(z,y, z0,457kHz)|, b) |Po(z, 0, z0,457kHz)|,
extracted from Fig. 4.5(a) (blue line) and compared to the axisymmetric FEM pressure at the nodes along the surface

(red line  before interpolation).
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Fig 4.6. At normal beam incidence (§ = 0°): Magnitude of the 457 kHz component of the incident free-field pressure
frequency-wavenumber spectrum at the plate’s upper surface in absence of the plate, shown as a function of hy , and hy ;.
a) |Po(hy o, hy .y, 20,457kHz)|, b) |Po(hf 4,0, 20,457kHz)| extracted from Fig. 4.6(a). The transitions from propagating

to evanescent regions are marked with black vertical lines.

The incident sound pressure frequency spectrum Py(z,y, 20,457kHz) in Fig. 4.5(a) is transformed into

the frequency-wavenumber domain using the Fourier transform of Eq. (2.6), giving Po(hyz, by, 20, 457kHz)

shown in Fig. 4.6(a). The incident free-field pressure |Po(hy 4,0, 20,457kHz)| at hf, = 0 rad/m in Fig.
4.6(a) is shown in Fig. 4.6(b). The transitions between the propagating and the evanescent regions

are marked with black vertical lines, corresponding to an incident angle of 90°, equal to 1933.6 rad/m
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using Eq. (4.3). In the propagating region, Eq. (4.3) can be used to calculate the incident angle of

each plane-wave component.

To describe the transmission of sound through the water-immersed steel plate the plane-wave pressure
transmission coefficient 7 (hy 5, hyy, L, f), described by Eq. (2.7), is used. The magnitude of the plane-
wave pressure transmission coefficent .7 at f = 457 kHz and hyf, = 0 rad/m, |7 (h¢ 4,0, L,457kHz)|,
is shown in Fig. 4.7(a). This figure demonstrates the transmission of each plane-wave component
through the water-immersed steel plate at 457 kHz. Black vertical lines indicate the transitions to the
evanescent region. A close up of Fig. 4.7(a) is given in Fig. 4.7(b). Regions where the transmission
is relatively high corresponds to the excitation of leaky Lamb modes, closely related to Fig. 6.5. In
addition, (the plane-wave pressure transmission coefficient) 7 (hy s, by, L, f) can be considered as a
lowpass filter, cutting higher wavenumbers due to little to none transmission of sound at an angle above
the excitation of the Ay mode, i.e. ~ 32.43° at 457 kHz, see Fig. 6.4. Using Eq. (4.3) this corresponds
to hy, ~ 1037 rad/m. With regard to the numerical implementation of the angular spectrum method,
the plane-wave pressure transmission coefficient thus reduces possible aliasing from higher wavenumbers
in Po(hsq,hyy, 20, f). Fig. 4.7(b) shows the various leaky Lamb modes excited in the water-immersed

steel plate at 457 kHz, see Chap. 6.
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Fig 4.7. Magnitude of the 457 kHz component of the plane-wave transmission coefficent of the viscoelastic steel plate,
|7 (hf,2,0,L,457kHz)| at hy, = 0 rad/m. a) The transitions from propagating to evanescent regions are marked with
black vertical lines, b) A close up of Fig. 4.7(a), highlighting the various leaky Lamb modes in the steel plate.

Po(hsa, hyy, 20, 457kHz) is now multiplied with the plane-wave pressure transmission coefficient

T (htz, by, L,457kHz) using Eq. (2.8), giving the transmitted free-field pressure frequency-wavenumber
spectrum at the lower surface of the steel plate, P1(hy 4, hs .y, 20 + 2L, 457kHz), shown in Fig. 4.8(a).
The magnitude of the (transmitted pressure frequency-wavenumber spectrum) |P1(hy 4,0, 20+2L, 457kHz)|
at hy, = Orad/m in Fig. 4.8(a) is extracted and shown in Fig. 4.8(b). The transitions to the evanescent
region are marked with black vertical lines. As a result of the multiplication with the plane-wave pres-
sure transmission coefficient, all plane waves transmitted through the steel plate have been modified,

and higher wavenumbers filtered out.
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Fig 4.8. At normal beam incidence (6 = 0°): Magnitude of the 457 kHz component of the transmitted free-field pressure
frequency-wavenumber spectrum at the plate’s lower surface, shown as a function of wavenumber components hy , and
hfy. @) |P1(hfq, by, 20 + 2L,457kHz)|, b) |P1(hf 4,0, 20 + 2L,457kHz)| extracted from Fig. 4.8(a). The transitions

to the evanescent regions are marked with black vertical lines.

Pi(hsa, hyy, 20+ 2L,457kHz) is now propagated to the receiver depth z; = 376.05 mm using the plane
wave propagator given in Eq. (2.8), giving Py(hs 4, hy,y, 22,457kHz), the magnitude is shown in Fig.
4.9(a). The magnitude of the transmitted pressure frequency-wavenumber spectrum |Py(h 4, 0, 22, 457kHz)|
at hy, = 0 rad/m in Fig. 4.9(a) is extracted and shown in Fig. 4.9(b). The evanescent waves in Fig.
4.8(b) are suppressed due to a propagation distance of 100 mm, see Fig. 4.9(b).
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Fig 4.9. At normal beam incidence (§ = 0°): Magnitude of 457 kHz component of the transmitted pressure

)

frequency-wavenumber spectrum at the receiver depth zo, ie. '+’ in Fig. 2.1. a) |Pi(hf g, hyy, 22,457kHz)|, b)
|Pt(hy,2,0,22,457kHz)| extracted from Fig. 4.9(a). The transitions to the evanescent regions are marked with black

vertical lines.

The transmitted pressure frequency-wavenumber spectrum Py(hy ., by, 22,457kHz) is transformed
into the spatial domain using the inverse Fourier transform, Eq. (2.9), giving P;(x,y, z2,457kHz), the
magnitude presented in Fig. 4.10(a). The magnitude of the transmitted pressure |P:(z,0, z2,457kHz)]
at y = 0 mm in Fig. 4.10(a) is extracted and shown (blue line) in Fig. 4.10(b), in comparison with
|P(x,0, z2,457kHz)| calculated using the FEM approach (red line) discussed in Sect. 4.2. Above
x = 220 mm the figure shows some deviations between the two approaches, due to the PML region for

r > 220 mm, in the FEM approach, see Sect. 4.2.
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Fig 4.10. At normal beam incidence (6 = 0°): Magnitude of transmitted pressure frequency spectrum at the receiver
depth z2, i.e. at the depth of %’ in Fig. 2.1). a) |P:i(z,y, 22,457kHz)|, b) |P:(z,0, z2,457kHz)|, extracted from Fig.
4.9(a), and in comparison with |P;(z, 0, 22,457kHz)| calculated using the FEM approach (red line) discussed in Sect. 4.2.
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Fig 4.11. At normal beam incidence (6 = 0°): a) The transmitted pressure waveform p; (0,0, z2,t) calculated using the

hybrid FEM-ASM approach. b) The transmitted pressure waveform p¢(0, 0, 22, t)cw using the FEM approach.
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Fig 4.12. At normal beam incidence (§ = 0°): The transmitted pressure waveform p¢(0,0, z2,t) calculated using the
hybrid FEM-ASM approach (blue line) and the FEM approach (red line).
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At a given (x,y, z2)-position the transmitted pressure P;(x,y, z2,457kHz) is transformed into the time
domain using Eq. (2.12), giving p;(x,y, 22,t). The hybrid FEM-ASM transmitted pressure waveform
p+(0,0, z2,t) is shown in Fig. 4.11(a) in comparison with the transmitted pressure waveform calculated
using the FEM approach given in Fig. 4.11(b), see Sect. 4.2. As a step frequency of 500 Hz is used
for the FEM approach, the time trace is doubled in relation to the hybrid FEM-ASM approach. In
addition, as a consequence of the standing wave pattern in the FEM approach, a first and successive
(echoes) pulse arrivals are present. Fig. 4.12 shows the first arrival, and the comparison of the hybrid
FEM-ASM (blue line) and FEM (red line) calculated waveform. A phase difference of approximately
11° between the two approaches is observed. As one can observe from Fig. 4.11(b), a fifth echo may
coinside with the first arrival, interfering with the signal, which can be one of the reasons for the phase
difference between the two approaches. Between the first arrival and echo, there exists some aliasing,

probably due e.g. the frequency sampling, reflections from the end faces, PML reflections, etc.

4.4 FEM convergence

In general it is necessary to conduct convergence tests to confirm that a fine enough element discretiza-
tion has been used for the finite element model. This section reports FEM convergence tests for the
hybrid FEM-ASM approach, examining the accuracy of the on-axis pressure Py(0,0, z9,457kHz) at nor-
mal beam incidence (6 = 0°) as a function of elements per wavelength. They are also representative for
the FEM approach and the FE simulations in Sect. 4.5. FEM convergence tests of the program FEMP
5.0 and earlier versions have been made by e.g. [103, 109, 111, 142, 143, 144] and the convergence tests
made in this section are intended as complementary to those. Note that earlier works only examined

the magnitude of given parameters, while the corresponding phase convergence is here also examined.

Convergence tests examines the relative change in FEM simulations as a function of e.g. elements per
wavelength, in relation to an assumed converged (very densed meshed) simulation. The error is given

in parts-per-million in relation to the highest element division given by Eqgs. (4.4) and (4.5) as

P, 457kHz),| — |P(0,0, 20, 457kHZ) conv
relative error in |Py(0,0, 29, 457kHz)|[ppm] — 108 (| 0(0,0, 29,457kHz ), | — | Py(0, 0, 29, 457kHz) |>7

|P0 (0, O, 20, 457kHZ)conv‘
(4.4)

and

AP()(O, O, 20, 457kHZ)n - lf)o(o7 07 20, 457kHZ)conv
ZPQ(O, 0, 20, 457kHZ)conv

relative error in ZPy(0,0, 2o, 457kHz)[ppm]| = 10° <

(4.5)
for calculation of magnitude and phase respectively. The subscripts ,, and ¢ony denotes that the param-
eter has been calculated using n elements per wavelength or calculated from the assumed converged

simulation, respectively.
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Fig 4.13. FEM convergence for a) the magnitude, and b) the phase of Py(0,0, z0,457kHz) using the FEM-ASM
approach, as a function of elements per wavelength. c¢) Phase difference of Py(0,0,20,457kHz), in relation to
Py(0,0, z0,457TkH7)conv {in degrees).
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Tab. 4.1 and Fig. 4.13 show the convergence of the magnitude (||) and phase (£) of the incident pressure
Py(0,0, z9,457kHz) using the hybrid FEM-ASM approach, in relation to the assumed converged solution
using 14 elements per wavelength. For FE simulations using less than 3 elements per wavelength, the
element division is too coarse, and the error introduced is on a different scale as compared to the
level of precision in the thesis otherwise, and is therefore not shown. Fig. 4.13(a) shows a steady
convergence of the magnitude of Py(0, 0, 29, 457kHz),, towards |Py(0, 0, 29, 457kHZ)cony| as the number
of elements per wavelength, n, increases. Fig. 4.13(b) shows the corresponding phase convergence as a
function of elements per wavelength. Fig. 4.13(c) shows the phase difference of Py(0,0, g, 457kHz),, in
relation to Py(0,0, 20, 457kHz)cony as a function of degrees. Since Eq. (4.5) does not take into account
differences above one period in the phase, and given the trend in Fig. 4.13(c), the phase difference using
3 elements per wavelength is assumed to be the sum of the calculated phase difference and 1 period.
The figures also show a delayed convergence of phase in relation to the convergence of magnitude, as
a higher number of elements per wavelength is needed in phase convergence, as opposed to magnitude
convergence, to provide a certain level of accuracy. E.g. 6 elements per wavelength is needed to ensure
no more than approx. 3% error in magnitude, whereas 12 elements is needed to provide the same level
of confidence in phase convergence. This is most likely due to the fact that a given phase response is

expected to vary more frequently than the corresponding magnitude response.
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TABLE 4.1. Convergence for |Py(0,0, z0,457kHz)n| and ZPy(0, 0, z0,457kHz), using the hybrid FEM-ASM approach.

Relative error in ppm in relation to the converged solution.

Elements per wavelength | Relative error |Py(0, 0, 22,457kHz)|, | Relative error £Py(0,0, 22,457kHz),
3 23127 (2.3%) 2157300 (216%)
4 12301 (1.2%) 765800 (76.9%)
5 5695 (0.57%) 327410 (32.7%)
6 3155 (0.3%) 159600 (16%)
7 1543 (0.15%) 84995 (8.4%)
8 940.3 (0.94%) 48045 (4.8%)
9 619.5 (0.62%0) 28047 (2.8%)
10 393.4 (0.39%0) 16522 (1.65%)
11 184.3 (0.18%o) 9421 (0.94%)
12 96.4 (0.1%o) 4966 (0.5%)
13 49.4 (0.05%0) 2016 (0.2%)
14 0 0

Fig. 4.13(a) asserts the level of convergence for the magnitude of the FEM calculated transducer
transfer functions presented in Chap. 5, and the magnitude of the FEM calculated transfer functions
for the measurement system presented in Chap. 6 and 7. For simulated sound pressure waveforms in
Chap. 7, Fig. 4.13(c), in addition to Figs. 4.13(b) and 4.13(a) asserts the level of convergence. For
the results presented in Chap. 5, an element division of 3 elements per wavelength is used at 1 MHz
(cf. Sect. 4.5). Hence, we have 4 elements at 750 kHz, 5 elements at 600 kHz, 6 elements at 500 kHz,
7 elements at 428 kHz and 8 elements at 375 kHz. For the results presented in Chap. 6 and 7, an
element division of 3 elements per wavelength is used at 1.2 MHz (cf. Sects. 4.2 and 4.3). Hence,
we have 4 elements at 900 kHz, 5 elements at 720 kHz, 6 elements at 600 kHz and 7 elements at 515
kHz, 8 elements at 450 kHz, 9 elements at 400 kHz and 10 elements at 360 kHz. The representative
numerical errors introduced at these frequencies in the FE simulations used, in relation to the assumed

fully converged solution, can be extracted from Table. 4.1.

4.5 The piezoelectric source transducer

For the description of the measurement system, from the excitation voltage signal to the transducer,
to the received pressure signal transmitted through the plate, the piezoelectric source transducer is to
be included in the FEM. For commercial transducers, constructional details, materials involved and
material data are usually not available at the level required for accurate modeling. A piezoelectric
transducer is designed and constructed for use in measurement and modeling, and reported in Chap.
5 in Sects. 5.2 and 5.3, respectively. In this section the FE simulation of the piezoelectric source
transducer is presented in Sect. 4.5.2, in addition to FE simulations of the transducer at various
steps in the construction process in Sect. 4.5.1. Refer to Chap. 5 for the transducer design and
construction, in addition to material type, data and dimensions. Axisymmetric (about the z—axis)

FEM is used throughout this section. For the sake of simplicity, in Sect. 4.5.1 the lower surface of
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the piezoelectric disk is located at z’ = 0, and in Sect. 4.5.2 the piezoelectric source transducer is
positioned symmetrically around z’ = 0. This has been done to ease implementation and the use of
infinite fluid elements to simulate an unbounded water region, where the infinite elements must be

applied at a fixed radius around the center of the transducer.

4.5.1 Simulation of various steps in the construction process

This section presents the FE simulations of the transducer at early stages in the construction process,
starting with a circular piezoelectric disk in vacuum (Sect. 4.5.1.1), and gradually introducing front
and adhesive layers (Sect. 4.5.1.2). For FE simulations of backing and encapsulation layers, these are

included in the simulations of the piezoelectric transducer in Sect. 4.5.2.

4.5.1.1 Piezoelectric disk in vacuum

Fig. 4.14 shows a decimated mesh of a circular piezoelectric disk (yellow region) vibrating in vaccum.
For piezoelectric transducer properties simulations of electrical admittance Y (f), a frequency range of
0 - 1 MHz is utilized, with a step frequency of 1 kHz. 3 elements per shear wavelength at 1 MHz is
used as the element division for the piezoelectric element. This setup is used to adjust material data

for the piezoelectric disk used as basis for the transducer construction, cf. Sect. 5.2.1.

x10°

0 0.002  0.004 0.006‘[ ]0.008 0.01 0.012 0.014
r[m

FIG 4.14. A decimated mesh of the axisymmetric FE simulation of a circular piezoelectric disk (yellow regions) vibrating

in vacuum.

4.5.1.2 Piezoelectric disk with a front layer in vacuum

Figs. 4.15(a) and 4.15(b) show a decimated mesh of a piezoelectric disk (yellow region) with front
layer (green region) vibrating in vacuum, simulated without and with an adhesive layer (blue region)
added between the disk and front layer, respectively. For piezoelectric transducer properties simulations
of electrical admittance Y (f), the same frequency range as in Sect. 4.5.1.1 is used. 5 elements per
shear wavelength specified at 1 MHz for the piezoelectric disk is used as the element division for the
piezoelectric disk, the front and the adhesive layers. This setup is used to adjust material data for the

electrical conductive adhesive in the transducer design, cf. Sects. 5.4.1 and 5.4.2.
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(a) Piezoelectric disk with front layer. (b) Piezoelectric disk with front and adhesive layers.

Fig 4.15. A decimated mesh of the axisymmetric FE simulation of a piezoelectric disk (yellow region) with front layer

(green region), without and with an adhesive layer (blue region), vibrating in vaccum.

4.5.2 Prototype transducer

Fig. 4.16 shows a decimated mesh of the piezoelectric source transducer vibrating in vacuum. The
prototype transducer consists of a piezoelectric disk (yellow region) attached to a front layer (green
region) with an adhesive layer. A casing (red region) encloses a backing layer (blue region), which
supports the piezoelectric disk. The cone of air in the transducer design (cf. Sect. 5.2) is simulated as
a rectangle of vaccum. For the piezoelectric transducer properties simulations of electrical admittance
Y (f), a frequency range of 0 - 1 MHz with a 1 kHz step frequency is utilized. 3 elements per shear

wavelength specified at 1 MHz for the piezoelectric disk is used as the element division for the

0.02

Piezoelectric dis|

Casing

Vacuum

_0.020‘““““\H“““‘\‘ PRI R
0.005 0.01 0.015 0.02
r[m]
FIG 4.16. A decimated mesh of the axisymmetric piezoelectric source transducer vibrating in vacuum. The transducer
consists of a piezoelectric disk (yellow region) with a front layer (green region), with an adhesive layer inbetween. A

casing (red region) encloses a backing layer (blue region), which supports the piezoelectric disk.
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piezoelectric and elastic regions. This setup is used to compare the prototype transducer to electrical
measurements in air. For piezoelectric transducer properties simulations of electrical admittance Y'(f),
source sensitivity Sy (f) and beam pattern D(¢, f) in water, 12th order infinite fluid elements [103],
with radius R;,; = 80 mm, have been used to simulate an unbounded fluid medium. [103] examined
the influence of R;,s on the accuracy of the on-axis pressure, see Fig. 4.14 in [103]. Fig. 4.17 shows
a decimated mesh of the piezoelectric source transducer radiating in water using finite (white region)
and infinite fluid elements (light blue region). A frequency range of 0 - 1 MHz is used, with a 1 kHz
step frequency. The same element division as for the tranducer in vacuum is used, whereas 3 elements
per compressional wavelength specified at 1 MHz is used as the element division for the water region.
This setup is used to compare and characterize the prototype transducer to electrical and acoustical

measurements in water.
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Fig 4.17. A decimated mesh of the axisymmetric piezoelectric source transducer radiating in an unbounded fluid medium

using 12th order infinite elements.

4.5.3 The baffled piston source model

Fig. 4.18 shows the decimated mesh of the baffled piston source radiating in water using 12th order
infinite fluid elements [107] with radius R;,s = 100 mm. This simulation is used to compare the baffled
piston source to piezoelectric transducer properties in Chap. 5. The effective radius of the piston is
calculated to acyp = 10.55 mm using the FEM simulated transducer’s beam pattern and the -3 dB angle
(6_345) of the main lobe at the frequency corresponding to maximum source sensitivity, f = 575 kHz,
see Figs. 5.25 and 5.27(d). The effective radius is determined from the baffled piston beam pattern,
expressed as [141]

_ 2Ji(kacpssin(a)  2J1(x)

4.
kaey s sin(a) x (46)

D(a)

)
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where .J; is a Bessel function. When the function D(«) is equal to v/2/2, this corresponds approximately
to -3 dB. The value of = which gives D(a) = v/2/2 is approx. 1.6137. The effective radius a.f is then

calculated as

1.6137

kSin(a_gdB) ' (47)

Geff =

The piston source is simulated with a thickness of 0.01 mm. The center of the piston surface is situated
at (1,2") = (0,0), applied with a forced displacement with an amplitude of 1 x 10~¢ mm (1 nm) along
the 7’-axis over the entire piston front surface for each simulated frequency. The frequency range is set
to 0 - 1 MHz, where 3 elements per compressional wavelength at 1 MHz is used as the element divison

in the water. A rigid baffle is specified along the r’-axis, at 2’ = 0 mm, for ' > as.
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Fig 4.18. A decimated mesh of the axisymmetric baffled piston source radiating in an unbounded fluid medium using

12th order infinite elements.
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Chapter 5

Piezoelectric transducer construction

5.1 Introduction

This chapter presents the design and construction of the piezoelectric source transducer used in the
measurement system. Since use of a commercial transducer does not provide sufficient information and
control concerning the transducer construction, dimensions, materials and material data involved, a
piezoelectric source transducer is designed, constructed, characterized, and used for measurements and
simulations. The in-house design and construction provides then sufficent knowledge on material types,
dimensions and data, enabling the inclusion of the source transducer into the theoretical description of
the measurement system using the FEM, thereby accounting for a more realistic beam pattern of the
transducer than simplified models, and its influence on leaky Lamb mode excitation in the plate. In
addition, this allows for a quantitative description of the system, from input voltage to the transducer
- to transmitted sound pressure through the plate (incl. phase response), vital in the optimization of

important system properties, such as signal level, bandwidth of transmitted signal, waveform, etc.

The transducer design, consisting of a piezoelectric disk, front layer, backing layer and casing, is
presented in Sect. 5.2. In Sect. 5.3 the construction process is documented, explaining the step-
by-step process from electrically wiring the piezoelectric disk, to making the transducer waterproof.
Three finished prototype transducers with dimensions are presented in Sect. 5.4, including the FEM

simulation of them in comparison with measurement results.

5.2 Transducer design

The design of the piezoelectric source transducer is presented in this section. The dimensions for the
transducer have been determined after multiple FEM simulations with different radius/thickness of
the front, backing and casing layers, with respect to optimization of transducer properties, such as
bandwidth and source sensitivity. A Mitutoyo MDH-25M [145] digital micrometer, with measurement
uncertainty of 0.5 um, is used for dimension measurements. Each component is described in detail in

the following subsections, the piezoceramic material in Sect. 5.2.1, the front layer in Sect. 5.2.2, the
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FIG 5.1. Design of the piezoelectric source transducer. Nominally dimensions for the transducer design, where the

dimensions of each prototype are listed in Sect. 5.4. A photograph of a prototype transducer can be seen in Fig. 5.14.

76



backing layer in Sect. 5.2.3 and the waterproof casing in Sect. 5.2.4.

Fig. 5.1 shows the transducer design with representative dimensions, where the dimensions for each
prototype are listed in Sect.5.4. The transducer design starts with a Ferroperm Pz27 [146] piezoelectric
disk with diameter x thickness (DxT) of nominally 25 x 4 mm. The disk is electrically connected
to a ’G’ coaxial plug with a wire. An Eccosorb MF114 [147] front layer with (D xT) of nominally
30 x 1 mm is attached to the front surface of the piezoceramic disk, and again attached to the steel
casing. A Divinycell HCP70 [148] backing layer is inserted behind the piezoceramic disk, supporting
it, and keeping the element electrically isolated from the casing. An electrically conductive adhesive,
marked ’ea’ in Fig. 5.1, is used to connect the front electrode of the piezoceramic disk to the front
layer, and then to the steel casing. It is also used to electrically ground the casing to the coaxial plug.
A normal adhesive, marked 'na’ in Fig. 5.1, is used to attach surfaces which do not require to conduct
electricity. The mechanical workshop at the Department of Physics and Technology, UoB, cut and

made the different components in the transducer construction.

5.2.1 Piezoelectric material

The lead zirconate titanate piezoceramic material Pz27 manufactured by Meggitt Ferroperm Piezoce-
ramics [146] is chosen as the starting point for the transducer structure. The Acoustic Group at the
Department of Physics and Technology, University of Bergen, has worked with this material before-
hand, e.g. [20, 110, 111, 114, 115, 142, 149, 150, 151, 152], with respect to material data and use in the
FEM for transducer constructions. A circular disk with diameter x thickness of nominally 25 x 4 mm
and D/T — 6.25 (see Fig. 5.2) is chosen, such that the first thickness extensional mode, fr; &~ 500

kHz, is situated in the middle of the measurement frequency range, cf. Chap. 3.

- i —1 ] 1 | I I ,L_T

5 . | i L | | ! i i L

FIG 5.2. A photograph of one of the Pz27 disks (marked element no. 12) used in the prototype transducers, with
diameter D = 24.888 mm and thickness T = 3.942 mm, resulting in a D/T = 6.31.

Material data:
With the development of accurate transducer modeling tools such as the FEM, material data supplied
by the manufacturer may not provide the optimal comparison between simulations and measurements.

The standarized methods [153] for determining material data also may not provide acceptable precision
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since the requirements of these methods, based on one-dimensional models, are not sufficiently met for
any D/T-ratios [143, 144]. Other methods have been utilized to adjust material data to measurements,
e.g. an iterative inversion scheme [19, 154, 155], based upon three-dimensional finite element simula-

tions.

In 2005, Lohne [114] calculated a new set of material constants for a circular Pz27 disk with D/T
(20 x 1 mm) = 20 by applying methods described by Sherrit [156, 157], and then adjusting them to
electrical measurements in air using the sensitivity analysis provided by [111]. The material constants
that could not be calculated using these one-dimensional methods, such as the cF, e;5 and €7] were
taken from the material data provided by the manufacturer of the piezoelectric material PZT-5A [158].
Knappskog [115] further adjusted these material constants by comparing measurements and finite
element simulations of Pz27 disks with D/T (20 x 2 mm) = 10, based upon the sensitivity analysis
in [111]. In this thesis, the material set given by Lohne/Knappskog is further adjusted to provide an
improved agreement with electrical measurements in air on the Pz27 disks used in this work. In Tab.
5.1 the adjusted material data (Lohne/Knappskog/Aanes) for Pz27 is presented, and compared to the
material data for Pz27 given by the manufacturer, alongside the adjusted Lohne/Knappskog material
set. The constants from Meggitt Ferroperm A/S does not include loss factors for each constant, but
two loss factors, one elastic and one dielectric loss constant, Qp; and tand, respectively. The losses in
the adjusted sets are represented by the imaginary part of the complex constants as used in [116]. A
reservation concerning this method is taken, since it is only based on measurements of one type of Pz27
elements. The material constants can be misleading or erronoeus, especially for the corresponding loss
factors.

TABLE 5.1. Material data for Pz27. Material data from the manufacturer and adjusted from electrical measurements

in air. Terminology as used in [153].

Adjusted(Lohne/Knappskog) | Ferroperm | Adjusted(Lohne/Knappskog/Aanes)
cF [101° N/m?] 11.875(1 + i/95.75) 14.7 12.025(1 + i/96)
c55[101° N/m?] 7.430(1 + i/71.24) 10.5 7.62(1 + i/70)
c5 (101 N/m?] 7.425(1 + 1/120.19) 9.37 7.42(1 + 1/120)
c[101° N/m?] 11.205(1 + i/177.99) 11.3 11.005(1 + i/190)
cF[101° N/m?] 2.110(1 + i/75) 2.3 2.11(1 + i/75)
e31|C/m?] -5.4(1 - i/166) -3.09 -5.4(1 - 1/166)
es3[C/m?] 16.0389(1 - 1/323.77) 16.0 17.0(1 - i/324)
e15/C/m?| 11.20(1 - i/200) 11.64 11.20(1 - i/200)
€71 [107F /m] 8.110436208(1 - i/50) 10.005 8.11044/(1 - i/50)
€55[107°F /m] 8.14585296(1 - 1/86.28) 8.0927 8.14585(1 - i/130)
plkg/m3] 7700 7700 7700
Qm 0 74 0
tan 0 0.017 0

Fig. 5.3 shows the measurement of the electrical conductance in air for the circular Pz27 disk in Fig. 5.2,

(marked no. 12 — blue line). Comparing this measurement, to FEM calculated conductance employing
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the setup in Sect. 4.5.1.1, using the different material data provided in Tab. 5.1, shows a closer
agreement with the adjusted (Lohne/Knappskog/Aanes) set (red line), than with the manufacturer’s
(dashed black line) and Lohne/Knappskog’s (green line) material sets.
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FIG 5.3. Measurements in air of the electrical conductance for the Pz27 no. 12 disk with D/T = 6.31 (blue line),
compared to FEM calculated conductance with the different material data given in Tab. 5.1. FEM simulations with
material data from, Ferroperm (dashed black line), Lohne/Knappskog (green line), and Lohne/Knappskog/Aanes (red

line).

5.2.2 Quarter-wave front layer

To increase the bandwidth and source sensitivity of the transducer a front layer is added to the piezo-
electric element. One frequently used method is quarter-wave matching, where the thickness of the
matching layer is given as [141, 149, 159]

ERL e (5.1)
where subscript m denotes matching layer, c,,; and A,,; are the compressional sound velocity, and
corresponding wavelength, in the matching layer, respectively. A consequence of this is that the ideal
characteristic acoustic impedance for the matching layer, z,, = pmCm 1, Where p,, is the density, between

a piezoelectric element and the fluid in which it radiates, is given as

o = VBT, (5.2)
where

2p = \/ cB3p- (5.3)
z, = real(c,)p,, where ¢, = \/cB/p, [159] (conversion from c&; to c§} is given by e.g. [160]), and

zf = pycy is the characteristic acoustic impedances of the piezoelectric element and fluid, respec-
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tively. For the case of a Pz27 disk radiating in water using material data in Tabs. 5.1 (adjusted -
Lohne/Knappskog/Aanes) and 5.5, the ideal characteristic acoustic impedance of the matching layer

is approximately 6.5 Mrayl.
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FIG 5.4. A photograph of one of the MF114 front layers used in the prototype transducers, with diameter = 30.396

mm and thickness = 1.023 mm.

The material Eccosorb MF114, see Fig. 5.4, manufactured by Laird Technologies - Emerson & Cuming
[147], is chosen as the front layer of the transducer since the characteristic impedance is close to the
geometric mean between water and the Pz27 disk, z,, = 6.4 Mrayl, using the material data in Tabs. 5.1
and 5.2. This material is classified by the manufacturer as a high loss load absorber for the microwave
industry. The manufacturer provided a compressional sound velocity ¢, of 2290 m/s, and a density
pm of 2900 kg/m3 [147]. In the laboratory, the density is measured to be 2850 kg/m? using the method
given in Sect. 3.4.1. The sound velocities are measured using the method given in Sect. 3.4.2. At
normal incidence, the compressional sound velocity ¢, ; is measured to be 2250 m/s, and at an incidence
angle above the critical angle, 6, ~ 41° using Eq. (3.5), the shear sound velocity ¢, s is measured to
be 1000 m/s. A loss factor Q7% of 20 is chosen based upon adjusting FEM simulations to electrical

measurements. The material data for MF114 used for FE simulations is listed in Tab. 5.2.

TABLE 5.2. Measured material data for Eccosorb MF114.

Cm,|m/s] | 2250

Cm,s[m/s] | 1000

pm|kg/m3] | 2850
Qi | 20

5.2.3 Backing layer

A backing layer is bonded (see Sect. 5.3.1 for the type of adhesive used) to the piezoelectric element to
increase scattering and attenuation of sound waves travelling towards the back of the transducer, thus
reducing reflections from the stainless steel casing, cf. Sect. 5.2.4. The material Divinycell HCP70,

manufactured by DIAB Group [148], is chosen as the backing layer for the transducer as it is easy
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to shape, and since Knappskog [115] has prior experience with it, providing the material data needed
for FE simulations. The material data for HCP70 is listed in Tab. 5.3. A thin sheet of Divinycell
HCP70 was provided by the manufacturer, so, in order to provide the wanted thickness of the backing
layer, two layers, denoted backing no. 1 and backing no. 2 is to be carved and mounted together (see
Sect. 5.3.4 for specifics) to form the total thickness. Fig. 5.5(a) shows the backing layer no. 1, which
supports the Pz27 disk, and keep the element electrically isolated from the casing. Fig. 5.5(b) shows
the backing layer no. 2, which is coned in order to scatter waves travelling towards the back of the

tranducer.

TABLE 5.3. Material data for HCP70 from [115].

cp[m/s] | 1605.5

cs|m/s] 826

plicg/m?] | 300
Qum 25

FIG 5.5. A photograph of the HCP70 backing layer. Both backing layers are used in the construction. a) Backing layer
no. 1 towards the front of the transducer is formed to hold the Pz27 disk. b) Backing layer no. 2 towards the end of the

transducer is coned to scatter sound waves travelling towards the back of the transducer.

5.2.4 Water-proof casing

Since the transducer is to operate in water, the transducer’s casing is constructed in stainless steel, see
Fig. 5.6. Material data from [90] for AISI 316L stainless steel is used for the steel casing, and is listed
in Tab. 5.4 (QS, is taken from Tab. 6.5). The inside of the steel casing is mechanically ribbed (pm in
the order of magnitude) in order to scatter any sound waves hitting the inside of the wall. These are

not taken into account in the FEM simulations of the transducer in Chap. 4.

Fig. 5.7 shows the backside of the transducer, and its electrical connection to a water-proof RG-
58 coaxial cable. A thin circular steel plate supports a 'G’ coaxial plug, to electrically connect the
transducer. The front end of the coaxial plug is grinded down, and an ’o’-ring is inserted to ensure

waterproofing towards the coaxial cable. The coaxial plug is grounded to the steel casing via the screws
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shown in Fig. 5.1.

TABLE 5.4. Material data for the steel casing from [90].

Ceqlm/s] | 5780
cesfm/s] | 3050
pelkg/m?] | 8000

Qs, | 1000
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FIG 5.7. The backside of the tranducer, with the coaxial plug.

5.2.4.1 Material data for water

The material data used for water in the simulations is listed in Tab. 5.5. The water density is taken
to be 1000 kg/m? and the compressional velocity c; is measured to be 1485 m/s at room temperature
using the method in Sect. 3.2.2. Lossless water, where the absorption coefficient «y is zero, is assmued.
Since the measurements have been conducted over a wide time span, this room temperature can vary,

resulting in a faster or slower sound velocity in water for the measurements, than that used in the
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simulations. This will have an impact on comparisons, especially regarding waveforms and time-of-
flight measurements. From [141], a temperature change of 1° C corresponds approximately to a change
in the sound velocity in water of 3 m/s. For waveforms in the measurements, which travels 370
mm in water, this corresponds to approx. 0.5 us difference in the time-of-flight. The time-of-flight

measurements reported in Chap. 7 must be considered in light of this.

TABLE 5.5. Material data for water.

crlm/s] 1485
pslicg/m¥] | 1000
ayf [dB/m] 0

5.3 Construction process

This section describes the construction process of the piezoelectric transducer, based upon the tranducer
design in Sect. 5.2, see Fig. 5.1, and the materials chosen. The step-by-step process in the construction
is explained. Fig. 5.8 shows all mechanical parts of the transducer, which include the steel casing, the

coaxial plug, the front layer, the backing layer and the piezoelectric disk.

m nn‘nnwmmrmmm

e

FIG 5.8. All mechanical parts of the piezoelectric transducer. Second row, from left to right: the casing plug, the
casing and the front layer. First row, from left to right: the backing layer no. 2 (towards the back of the transducer),
the backing layer no. 1 (towards the Pz27 disk) and the Pz27 disk.

The electrical connection of the piezoelectric disk is explained in Sect. 5.3.1. In Sect. 5.3.2 the
attachment of the front layer to the piezoelectric disk is described. Then, the casing is attached in
Sect. 5.3.3, before the backing layer is inserted in Sect. 5.3.4. At the end, the water-proofing and

electrically wiring the coaxial connector is presented in Sect. 5.3.5.

5.3.1 Electrically connecting the piezoelectric disk

Firstly, one has to consider how to electrically connect the piezoelectric disk to the coaxial plug in Fig.

5.7. Tt is chosen, see Fig. 5.1, that a wire should run through a channel in the HCP70 layers from
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the coaxial plug to the back electrode of the Pz27 disk, and attach it by soldering. A hole is drilled in
the center of the HCP70 layers, see Fig. 5.5. The wire is soldered to the back electrode such that the
direction of polarisation is towards the back of the transducer (side with the "dot”). Per Heraldstveit at
the Department of Physics and Technology, UoB, did the soldering, preheating the Pz27 disk to 175°
C, then soldering the wire to the element at 270° C, below the Curie temperature of the material at
350° C [146]. Fig. 5.9 shows the measured electrical conductance in air for the Pz27 disk no. 12 before

(blue line) and after (red line) soldering (including a electrical wire, approx. length 10 cm).
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FIG 5.9. Measured electrical conductance in air for the Pz27 disk no. 12 before (blue line) and after (red line) soldering.

In the process of electrically grounding the front surface electrode of the Pz27 disk, several choices were
considered. One choice is to solder a second wire to the front electrode, run it downwards, sandwiched
between the steel casing and the backing layer, before attaching it to the bottom of the steel casing.
This initial proposal was abandoned, since the solder would create a small bump at the upper electrode,
either making the front layer not parallell to the Pz27 disk, or removing a small part of the front layer.
Since the piezoelectric disk and the front layer is an essensial part of the transducer such procedures
could affect its preformance. In addition, such deformations can not be modeled using axisymmetric

FE simulations, see Chap. 4.

The preferred design was attaching the front electrode to the steel casing by using an electrically
conductive adhesive, cf. Sect. 5.3.2. That way, the Pz27 disk and the front layer would be parallell,
and the structure of those materials would be intact. A problem with this method is that such an
adhesive would at best only provide a voltage drop, but worst case be non-conductive. In addition,
these adhesives are known not to provide the best adhesive properties with respect to normal adhesives.
For the case of connecting non-conductive materials, a standard 2-component epoxy Loctite Power

Epoxy Extra Time [161] is used.
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5.3.2 Attaching the quarter-wave front layer

A Silver Conductive Epoxy 2-component electrically conductive adhesive (silver conductive epoxy)
from MG Chemicals [162] is used to connect the Pz27 and MF114 disks, in addition to connect them
electrically to the steel casing, see Fig. 5.1. The manufacturer specified the densities of the uncured
two-components to be 2470 and 2200 kg/m?3, respectively, but no information were available regarding
the sound velocities or corresponding loss factors. This is further discussed in Sect. 5.4.2. This
adhesive is also used in order to connect the casing cylinder to the casing plug, see Figs. 5.1 and 5.13.
The conductive adhesive was tested on similar materials, and proved to provide a strong bond. The
mechanical workshop at the Department of Physics and Technology made a plastic form used in the
gluing process to align the center of the piezoelectric disk with the center of the front layer. After the
piezoelectric disk and the front layer are bonded together, see Fig. 5.10(b), new electrical measurements

in air were compared to FE simulations of the Pz27 and MF114 disks in vacuum, see Sect. 5.4.

(a) (b)

FIG 5.10. a) The piezoelectric element, and the plastic form used in the gluing process. b) Pz27 disk no. 12 with the
MF114 front layer attached. The electrically conductive adhesive is also used in the outer ring of the front layer, around

the Pz27 disk, to connect it electrically to the steel casing.

5.3.3 Attaching the casing

The electrically conductive adhesive is left to cure for 24 hours in room temperature before the casing
is attached to the front layer using the normal adhesive, see Figs. 5.1 and 5.11. After the curing
is complete, the electrical conductivity between the steel casing and the silver epoxy is tested. The
electrical resistance at DC was at best about 50 €2, reduced to approx. 7.3  when a small layer of the

electrically conductive adhesive was added to ensure a good contact.
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(a) (b)

FIG 5.11. The Pz27 disk no. 12 with the MF114 front layer attached to the stainless steel casing. a) from the side, b)

from above.

5.3.4 Attaching the backing layer

The next step is then to attach the backing layer to the structure, see Figs. 5.1 and 5.12. On the
surface of backing layer no. 1 (Fig. 5.5(a)) directed towards the Pz27 disk, the normal adhesive is used
to ensure that the backing layer is firmly attached to the Pz27 disk. Small amounts of adhesive is also
lubricated alongside the inner wall of the casing to ensure that the backing layer stays in place. Then
backing layer no. 2 (Fig. 5.5(b)) is attached the same way as the backing layer no. 1, but only using
the normal adhesive towards the steel casing, and not towards backing layer no. 1. The two backing
layers are pressed firmly against each other, to minimize the air gap inbetween them, and following

reflections.

(a) (b)

FIG 5.12. Attaching the backing layer to the structure, a) backing layer no. 1, b) backing later no. 2.

5.3.5 Waterproofing and electrically wiring a coaxial connector

At the end, the plug-casing (Fig. 5.7) is attached to the steel casing using the normal adhesive, see
Figs. 5.1 and 5.13(b). The electrically conductive adhesive is attached to the outer ring of backing
layer no. 2 in order to ensure electrical connection between the cylinder and the backside of the steel

casing, see Fig. 5.13(a).
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(a) (b)

FIG 5.13. Attaching the backside of the stainless steel casing. a) Ensuring electrical connection using the conductive

adhesive. b) Connecting the backside of the stainless steel casing using the normal adhesive.

The wire is then cut to an appropriate length before soldering to the coaxial plug. The coaxial plug is
then inserted into the backside casing, and the normal adhesive is used to ensure that the connection
becomes water-proof. Four screws into the backside casing ensures electrical connection to the coaxial
plug. An ’o’-ring, see Fig. 5.1 and 5.14(b), is inserted onto the coaxial plug in order to isolate the
electrical signal from water. A photograph of one of the finished prototypes is presented in Fig. 5.14.
A total of three prototypes were made, but only two of them provided reasonable agreement, between

FE simulations and measurements, see Sect. 5.4.

FIG 5.14. A finished prototype transducer. a) from the side, b) from the back.

5.4 Piezoelectric transducer properties

In this section the finished prototypes are presented, alongside the measured dimensions used in the
FE simulations of them. Measurement and simulation results underway in the construction are also
presented. Material data for each material is listed in Sect. 5.2. Three prototypes are made, presenting
prototype no. 1, no. 2 and no. 3 in Sects. 5.4.1, 5.4.2 and 5.4.3, respectively. The FE simulation
setup for the prototype transducers is given in Sect. 4.5.2, and in Sect. 4.5.1 for FE simulations of

various steps in the construction. FEM calculated electrical conductance for the attached Pz27 and
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MF114 disks, in addition to finished prototypes, in vacuum and water, are compared to electrical
measurements. For prototypes no. 2 and 3, FEM calculated source sensitivity and the beam pattern
(for no. 3) are also compared to acoustical measurements. Prototype no. 3 is used for transmission

results presented in Chap. 6 and Chap. 7.

5.4.1 Prototype no. 1

For prototype no. 1 the Pz27 disk no. 12 with a (D, x T},) of 24.888 x 3.942 mm is chosen. A front
layer with (Dy x Tr) of 30.396 x 1.023 mm is used. The thickness of the HCP70 backing layer no. 1,
Tp1, is 14.23 mm, and the backing layer no. 2, Tys, is 15.04 mm. The casing thickness, T, is 2.35 mm,
and the thickness of the back casing (supporting the coaxial plug), T.2, is 4.02 mm. The total length
of the casing, L., is 34.53 mm. The thickness of the electrically conductive adhesive, T,,, is 0.058 mm,
measuring the total thickness of the Pz27 and MF114 front layer after attachment, and substracting
those thicknesses from the total thickness. The air cone thickness and radius, T,. and Ry, is set to

10.42 and 4.01 mm, respectively. The dimensions are listed in Tab. 5.6.

TABLE 5.6. Dimensions for prototype no. 1.

D,[mm] | 24.888 || Tpo[mm] | 15.04
Tplmm] | 3.942 || Teq[mm] | 2.35
Dy|mm] | 30.396 | Tuomm] | 4.02
T¢lmm]| | 1.023 L.|mm] | 34.53
Ty [mm] | 14.23 | T.o[mm] | 0.058
Toelmm] | 10.42 || Ryefmm] | 4.01

Fig. 5.15 shows the measured electrical conductance, G(f), in air (blue line) for the piezoelectric disk
and front layer, see Fig. 5.10(b). This measurement is compared to the FEM calculated conductance,
see Sect. 4.5.1.2, of the Pz27 and MF114 disks (blue line), where deviations are observed, especially in
the region around the first thickness extensional (TE1) mode. The peak in the proximity of 600 kHz is
shifted upwards in frequency in the simulations with respect to measurements. To improve comparison,
a layer of the electrically conductive adhesive was added inbetween the Pz27 and MF114 disks in the

FE simulations (black line).

The material data for the electrically conductive adhesive is presented in Sect. 5.4.2. A closer agreement
to measurements can be observed after including the epoxy layer, but there are still variations in the
measurements which are not present in the FE simulations. After multiple simulations of different
epoxy layer thicknesses, epoxy material data, and air pockets inside the epoxy layer, it was concluded
that most likely small air pockets got trapped in between the front layer and Pz27 disk during curing
of the adhesive. The construction continued in order to provide experience for additional prototypes
to come, but no effort were made to compare measurements to FE simulations. Fig. 5.16 shows the

measured electrical conductance in air (blue line) and water (red line) for the finished prototype.
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FIG 5.15. Measured electrical conductance G(f) in air (red line) for the attached piezoelectric disk and front layer (see

Fig. 5.10(b)), compared to FEM calculated conductance with (black line), and without (blue line) the conductive epoxy

layer in the FE simulations.
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FIG 5.16. Measured electrical conductance in air (blue line) and water (red line) for prototype no. 1.
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5.4.2 Prototype no. 2

For prototype no. 2 a Pz27 disk with a (D), x T},) of 24.894 x 3.936 mm is chosen. A front layer with
(Dy xTy) of 30.460 x 1.054 mm is used. The thickness of the HCP70 backing layer no. 1, Ty, is 13.45
mm, and the backing layer no. 2, Tj, is 15.01 mm. The casing thickness, T, is 2.64 mm, and the
thickness of the back casing (supporting the coaxial plug), T.2, is 4.11 mm. The total length of the
casing, L., is 34.32 mm. The thickness of the electrically conductive adhesive, T,,, is 0.074 mm. The
air cone thickness and radius, T,. and R, is set to 10.42 and 4.01 mm, respectively. The dimensions
are listed in Tab. 5.7.

TABLE 5.7. Dimensions for prototype no. 2.

Dp[mm]| | 24.894 | Tpe[mm] | 15.01
Tplmm] | 3.936 | Teq[mm] | 2.64
Dy[mm] | 30.460 || T,o[mm| | 4.11
T¢lmm] | 1.054 L. mm]| | 34.32
Tpi[mm] | 13.45 || T,o[mm] | 0.074
Toelmm] | 10.42 || R,.[mm] | 4.01

Based upon experience with prototype no. 1, the electrically conductive adhesive layer was added in
the FE simulations of the piezoelectric disk with the front layer, see Sect. 4.5.1.2. Fig. 5.18 shows
the measured electrical conductance in air for the Pz27 and MF114 disks (see Fig. 5.10(b)), compared
to FEM calculated conductance with the epoxy layer included. Recall from Sect. 5.3.1 that the
manufacturer only provided the density, pe,, for the epoxy, not the sound velocities. The compressional
and shear sound velocities, ¢, and cgeq, of the epoxy, respectively, and the corresponding loss factor,
QMea, were varied to adjust the FE simulations to the measurements. The material data used for FE

simulations of the electrically conductive adhesive is listed in Tab. 5.8.

TABLE 5.8. Material data used for the electrically conductive adhesive.

CLea|m/s] | 1700

Csealm/s] | 1000

pealkg/m?] | 2340
QMea 20

The construction continued following the procedures in Sect. 5.3. Figs. 5.17 and 5.18 show the FEM
simulated (red line) electrical conductance in comparison to electrical measurements (blue line) in air,
excluding and including the electrically conductive adhesive in the FE simulations, respectively. Above
700 kHz the simulated electrical conductance shows some deviations from the measurements. Fig.
5.19 shows the measured (blue line) and FEM calculated (red line) electrical conductance in air for
prototype no. 2. Fig. 5.20 shows the measured (blue line) and FEM calculated (red line) electrical
conductance in water for prototype no. 2. As for Figs. 5.17, 5.18 and 5.19, a deviation can be observed
above 700 kHz. Fig. 5.21 shows the measured (blue line) and the FEM calculated (red line) source

sensitivity in water for prototype no. 2. Whereas the electrical conductance shows deviations above
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700 kHz, the voltage source sensitivity does not show the same deviations.
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FIG 5.17. Electrical conductance in air for the attached Pz27 disk with front layer (blue line), compared to FEM
calculated conductance (red line) with the electrically epoxy adhesive layer excluded.
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FIG 5.18. Electrical conductance in air for the attached Pz27 disk with front layer (blue line), compared to FEM
calculated conductance (red line) with the electrically epoxy adhesive layer included.
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FIG 5.19. Measured (blue line) electrical conductance in air for prototype no. 2, compared to the FEM calculated (red

line).
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FIG 5.20. Measured (blue line) electrical conductance in water for prototype no. 2, compared to the FEM calculated

(red line).
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FIG 5.21. Measured (blue line) voltage source sensitivity in water for prototype no. 2, compared to the FEM calculated
(red line).

5.4.3 Prototype no. 3

A third prototype is produced to test the reproducibility of the tranducer design, and material data
for the electrically conductive adhesive. For prototype no. 3 a Pz27 disk with (D, x T},) of 24.877 x
3.956 mm is used. A front layer with (Dy x Ty) of 30.440 x 1.065 mm is used. The thickness of the
HCP backing layer no. 1, Tp1, is 15.12 mm, and the backing layer no. 2, Tps, is 13.64 mm. The casing
thickness, T.1, is 2.83 mm, and the thickness of the back casing (supporting the coaxial plug), Tio, is
3.96 mm. The total length of the casing, L., is 34.42 mm. The thickness of the electrically conductive
adhesive, T¢,, is 0.07125 mm. The air cone thickness and radius, T,. and R,., is set to 10.42 and 4.01

mm, respectively. The dimensions are listed in Tab. 5.9.

TABLE 5.9. Dimensions for prototype no. 3.

D,[mm]| | 24.877 || Tpo[mm] 13.64
Tp[mm] | 3.956 | Teq[mm] 2.83
Dy[mm] | 30.440 || T o[mm] 3.96
T¢[lmm]| | 1.065 L [mm] 34.42
Tp1[mm] | 15.12 Teo[mm] | 0.07125
Tpelmm] | 1042 || Ryelmm] | 4.01
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FIG 5.22. Electrical conductance in air for the attached Pz27 disk with front layer (blue line), compared to FEM

calculated conductance (red line) with the epoxy layer included.
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FIG 5.23. Measured (blue line) electrical conductance in air for prototype no. 3, compared to the FEM calculated (red

line).
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FIG 5.24. Measured (blue line) electrical conductance in water for prototype no. 3, compared to the FEM calculated

(red line).

D
o

—Measurement
—FEM

(&)
o

I
o

W
o

N
o

—
o
T

|

%0 300 400 500 600 700 800 900 1000
Frequency, f [kHz]

Source sensitivity [20Iog10|SV| dBre 1 Pa/Vat 1 m]

FIG 5.25. Measured (blue line) voltage source sensitivity in water for prototype no. 3, compared to the FEM calculated
(red line).
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Fig. 5.22 shows the measured (blue line) and FEM calculated (red line) electrical conductance in air
for the attached Pz27 disk and front layer, including the electrically conductive epoxy layer in the
FE simulations. The construction continued following the procedures in Sect. 5.3. Fig. 5.23 shows
the measured (blue line) and FEM calculated (red line) electrical conductance in air for prototype no.
3. Fig. 5.24 shows the measured (blue line) and FEM calculated (red line) electrical conductance in
water for prototype no. 3. Fig. 5.25 shows the measured (blue line) and FEM calculated (red line)
voltage source sensitivity in water for prototype no. 3. The same deviations above 700 kHz as for
Figs. 5.19, 5.20 and 5.23 are observed, but is less apparent here. Figs. 5.26(a) and 5.26(b) show the
electrical conductance and the source sensitivity of prototype no. 3 in the frequency range 0 - 1.5
MHz (dotted blue lines), respectively, compared to FEM results (red lines) shown in Figs. 5.24 and
5.25 and measurements (green lines). The in-house 3-transducer reciprocity calibration is used since
measurements have been conducted up to 1.5 MHz (NPL calibration was available up to 1 MHz, cf.
Sect. 3.5). The FEM setup as described in Sect. 4.5.2 is used, but 3 elements per shear wavelength
at 1.5 MHz (instead of at 1 MHz) is used as the element division. A frequency step of 10 kHz is used
(instead of 1 kHz). These figures are here presented for the discussion in Sect. 4.2 regarding the limited
frequency range of FE simulations, and are also used to confirm that the FEM results presented in this

chapter have adequately converged for use in measurement comparisons.
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Fig 5.26. FEM simulated a) electrical conductance and b) source sensitivity for prototype no. 3 in the frequency range

0 - 1.5 MHz in comparison to measurements (green lines).

Fig. 5.27 shows the measured (blue line) and FEM calculated (red line) magnitude of the beam pattern
|D(¢)| for prototype no. 3, at specific frequencies within the frequency range of interest. Beyond the
first side lobe the FEM simulated beam pattern |D(¢)| show some deviations from measurements,
except for the beam patterns at 370 kHz, 420 kHz and 1 MHz, where the deviations occur beyond
the main lobe. As the frequency increases, the main lobe of the transducer becomes narrower, thus
increasing the effect the higher order side lobes will have on the transmission of sound through the
steel plate. From this, one expects that deviations between the simulated P;(z,y,z, f) compared to
measurements will increase both with frequency and position from z’ = 0. Provided more accurate
material data become available, improved agreement beyond the first side lobe may also be possible to

obtain for the FEM calculated transducer source.
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Fig 5.27. FEM simulated (blue line) and measured (red line) magnitude beam pattern |D(¢)| for the piezoelectric

source transducer at specific frequencies, in the range 370 - 1000 kHz.



5.5 Summary and discussion

This chapter presented the design and construction for the piezoelectric source transducer to be used in
the measurement system. Electrical and acoustical measurements in water and air, and FE simulations
are compared at several steps of the construction process, starting with a circular piezoelectric ceramic
disk and gradually introducing matching, backing and encapsulation layers/materials, involving the
challenges of obtaining accurate material data. Characterization results in water are compared with
simulations of transducer properties such as electrical admittance response, and source sensitivity re-
sponse and beam pattern, including radial modes and the fundamental thickness-extensional mode of
the transducer. The results demonstrates sufficient agreement for use of the transducer in a system
modeling approach (with description of signal propagation in time and frequency domain) using FEM.
Provided more accurate material data become available, improved agreement to measurements are ex-
pected. Figs. 5.26(a) and 5.26(b) show that the FEM results presented in this chapter have adequately
converged for use in measurement comparisons, see also the discusssion conserning convergence in Sect.
4.4,
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Chapter 6

Ultrasonic beam transmission through

fluid-embedded steel plate

6.1 Introduction

This chapter compares the results for the signal transmission through the plate and water, using the
piezoelectric transducer, baffled piston and plane-wave theory. Transmission results through the plate
are presented in Sect. 6.2.1, comparing 3D beams vs. plane-waves using the FEM approach, with
respect to beam effects introduced by using a finite dimensional transducer. Sect. 6.2.2 presents the
measurement results for determination of the sound velocities in the plate, and the corresponding Q-
factors, based upon the method described in Sect. 3.3 [91, 92]. The assessment of the deviations using
the piezoelectric tranducer model vs. the baffled piston model as source to the measurement system is
discussed in Sect. 6.3, based upon hybrid FEM-ASM results for transmission of sound through the steel
plate and water. Comparison of simulated piezoelectric transducer vs. baffled piston results at different
angles of beam incidence are discussed, in relation to the measured beam pattern of the transducer and

its influence on leaky Lamb mode excitation in the plate.

6.2 Signal transmission through the plate

In this section the beam effects of using a finite dimensional transducer for transmission measurements
are discussed based upon a comparison of 3D beams, using the FEM approach, and plane-wave theory
results in Sect. 6.2.1. Further on, the measurement of the sound velocities with corresponding Q-factors
for the steel plate is reported in Sect. 6.2.2, using the method described in Sect. 3.3 [91, 92, 150]. With
regard to sound velocity measurements, a brief documentation of cold rolled vs. hot rolled steel and

its effect on the shear sound velocity is given in Sect. 6.2.2.1.
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6.2.1 3D beams vs. plane-waves

In Fig. 6.1 the Lamb dispersion curves for the steel plate in vacuum are shown as a function of horizontal
wavenumber 7 (in the range 0-2500 rad/m) and frequency, calculated from Eqgs. (2.47) and (2.48). The
dispersion curves defines the symmetrical and antisymmetrical Lamb modes in the steel plate, given
in Tab. 6.1 at n = 0 rad/m. The zero order symmetrical, S§, and zero order antisymmetrical, Ay, are
defined from Fig. 6.1'. The sound velocities in the plate are marked with red lines. In Fig. 6.2 the
Lamb dispersion curves for the steel plate in vacuum are shown as a function of phase velocity (in the

range 0-2.5) and frequency.
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Fig 6.1. Dispersion curves for the steel plate in vacuum as a function of horizontal wavenumber n and frequency. The

material data is given in Tab. 6.5. The sound velocities in the plate are marked with red lines.

TABLE 6.1. Vacuum-embedded steel plate at n = 0 rad/m. Material data for the steel plate is listed in Tab. 6.5.

Symbol | Frequency [kHz| | (S)ymm/(A)ntisymm | Type mode
A v
A 258.7 AY TS
S AT7.6 Sy TE
S,v v
# 517.4 S TS
A v
A 776.0 A3 TS
0 955.4 Ay TE

Fig. 6.3 shows the leaky Lamb dispersion curves for the steel plate in water as a function of phase
velocity (in the range 0-2.5) and frequency, calculated from Eqs. (2.92) and (2.93). The dispersion

curves defines the symmetrical and antisymmetrical leaky Lamb modes in the steel plate, given in Tab.

IFor references to the plane-wave theory in Chaps. 6 and 7, the leaky Lamb modes are used. For the sake of
simplicity in notation, the leaky Lamb modes are therefore denoted without any superscript, and the Lamb modes with

the superscript v, e.g. S§ and Sp is the zero order symmetrical Lamb and leaky .amb mode, respectively.
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6.2 at h¢, = 0rad/m, e.g. 0p = 0°. The zero order symmetrical, Sy, and zero order antisymmetrical,
Ay, are defined from Fig. 6.3. Two Scholte-Stoneley waves exists for a single fluid-embedded immersed
plate [163], denoted the (S)ymmetrical and (A)ntisymmetrical Scholte-Stoneley wave. The dispersion
curves algorithm utilized here is used with permission from Kjetil Daae Lohne [90], refer to this work

for discussion regarding numerical difficulties tracing the Ay mode correctly for low frequencies.

2.5 \

v !

A

0 0.1 0.2 0.3 0.4 0.5 0.6
Frequency, f [MHZ]
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Fig 6.2. Dispersion curves for the steel plate in vacuum as a function of phase velocity and frequency. The
data is given in Tab. 6.5.

material
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Fig 6.3. Dispersion curves for the steel plate in water as a function of phase velocity and frequency. The material data
are given in Tabs. 6.5 and 5.5.
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TABLE 6.2. Water-embedded steel plate at normal incidence 8p = 0°. The * indicates a 1° incidence angle with the
steel plate. Material data for the steel plate is listed in Tab. 6.5.

Symbol | Frequency [kHz| | (S)ymm/(A)ntisymm | Type mode
fi 260.0% Ay TS
f5 477.7 Sy TE
s 517.5% So TS
fi T74.5% Ay TS
fit 955.4 A TE

In Fig. 6.4 the magnitude of the plane-wave transmission coefficient .7 for the steel plate in water
is shown as a function of phase velocity cp;, (normalized to the shear velocity cg) (in the range 0-
6) and frequency, calculated using Eq. (2.104) and Eq. (2.37) for hy, = 0. The maxima of |7
corresponds to the symmetrical (S) and antisymmetrical (A) leaky Lamb modes in the steel plate,
showing the dispersion curves for leaky Lamb modes (cf. Fig. 6.3) at maxima of the plane-wave
pressure transmission coefficient. Material data for the steel plate and water are listed in Tabs. 6.5
and 5.5, respectively. In Fig. 6.5 the magnitude of the plane-wave pressure transmission coefficient 7
for the steel plate in water is shown as a function of horizontal wavenumber h¢ . (in the range 0-2500
rad/m) and frequency, calculated using Eq. (2.104) for hy, = 0. In Fig. 6.6 the magnitude of the
plane-wave transmission coefficient 7 for the steel plate in water is shown as a function of plane-wave
incidence angle #p (in the range 0-60°) and frequency, calculated using Eq. (2.104) and Eq. (4.3) for
hfy = 0. Recall Eq. (2.37) that states that 7 o 5 so as the horizontal phase velocity increase, the

horizontal wavenumber approach zero, i.e. the plane-wave incident angle approach normal incidence.

Plane wave pressure transmission coeff., |T|

0
100 200 300 400 500 600 700 800 900 1000
Frequency, f [kHz]

Fig 6.4. Magnitude of the plane-wave pressure transmission coefficient, | 7| as a function of phase velocity and frequency,

including leaky Lamb modes in the water-immersed steel plate. The material data are given in Tabs. 6.5 and 5.5.
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Similar plots as Figs. 6.5, 6.4 and 6.6 can be found in e.g. [164, 74, 94, 95, 98, 92, 91], but in many of

these only the dispersion curves of the (leaky) Lamb modes are given.
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Fig 6.5. Magnitude of the plane-wave pressure transmission coefficient, | 7| as a function of horizontal wavenumber and
frequency, including leaky Lamb modes in the water-immersed steel plate. The material data are given in Tabs. 6.5 and
5.5.
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In Fig. 6.7(a) the black curve shows the magnitude of the plane-wave pressure transmission coefficient
& for plane waves at normal incidence 6, = 0, cf. Fig. 6.6, presented as a function of frequency. As the
plane-wave angle of incidence approaches zero, the symmetrical and antisymmetrical leaky Lamb modes
in the plate approach the cut-off frequencies, creating standing waves (thickness-extensional (TE) and
thickness-shear (TS) modes, respectively) across the thickness of the steel plate. Since a plane-wave
at normal incidence only generates compressional displacement in the plate, only compressional waves
appear inside the plate, exciting the S; and A3 modes. For that reason a plane-wave at normal inci-
dence cannot excite TS modes in the plate, and the leaky Lamb modes corresponding to these modes,
the Sy and A modes, will vanish as the incident angle of the imposed plane-wave approaches zero.
In Fig. 6.7(a) the plane-wave pressure transmission coefficient at normal incidence is compared to the
FEM calculated ratio |Py(0,0, 29 + 2L, f)/Po(0,0, 20, f)|, using the piezoelectric transducer as source
at normal incidence of the beam (6 = 0°). Since the FEM approach impose the transducer’s directive
beam across the surface of the steel plate, displacements in both the thickness and radial direction will
occur at normal incidence of the beam. Both compressional and shear waves are thus set up in the
plate, thereby exciting all four leaky Lamb modes in the frequency range at normal beam incidence.
The transducer beam can be represented as an integration over an angular spectrum of plane-waves
with various incidence angles with respect to the on-axis (2’-axis), scaled according to the wavenumber
spectrum of the sound pressure distrubution on the upper surface of the steel plate (when the plate
is absent) at the given frequency. Most of the energy transferred from the transducer into the water
is transmitted through the main lobe. Thus, plane-waves outside this region will only give a small
contribution to the total transmission at that frequency, or none at all. So, at a given frequency and
beam incidence, the transducer beam will excite all available leaky Lamb modes at that frequency.
But, the main contribution to the overall transmission will be given by leaky Lamb modes excited in

the vicinity of the beam incidence (inside the main lobe).

In Fig. 6.7(b), the plane-wave pressure transmission coefficient at 1° incidence angle is compared to the
same FEM calculated ratio |P;(0,0, 22 4+ 2L, f)/Py(0,0, 20, f)| as in Fig. 6.7(a), using the piezoelectric
transducer as source at normal beam incidence. Here, the S; and As modes are excited, together with
the S; and A3 mode. The frequencies corresponding to the Sy and Ay modes correspond approximately

to the frequencies where the TS modes are present across the thickness of the plate [91, 98, 93].

By using the transducer at normal beam incidence it is found that the region with relatively high
transmission around the S; mode is shifted downwards in frequency, in relation to the use of a plane-
wave at normal incidence. This shift will affect the measurement of ¢y, in the plate using the method
described in Sect. 6.2.2. This frequency shift is observed in [90], and explained in [91, 92] using
Hpp(0,0, 22, f), and with the ratio | Py (0,0, zo+2L, f)/FPo(0,0, 2o, f)| in |98]. In addition, it is observed
in [91, 93] and discussed in [98] that Hpp (0,0, 22, f) and the ratio |P;(0,0, 20 + 2L, f)/Po (0,0, 2o, f)]
also exceeds unity in this region, where, the pressure transmission coefficient .7 never exceeds unity.
For small plane-wave incidence angles, the S; mode is excited at lower frequencies than at normal
incidence (cf. Fig. 6.6). At these frequencies, the FEM transducer’s 6_sqp is approx. 5°. Then, the

non-zero incident plane-wave components of the beam will excite the S; mode at a lower frequency
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Fig 6.7. The magnitude of the plane-wave pressure transmission coeff., |.7|, for a) plane waves at normal incidence
(6p = 0°), b) plane waves at 0° and 1° incidence. Both a) and b) include comparison with the ratio |P1(0,0, 20 +
2L, f)/Po(0,0, 20, f)| for the transducer source field calculated using the FEM approach.

than a normal incident plane-wave (cf. Fig. 6.7(a)), causing the relatively high transmission to be
shifted downwards in frequency in relation to plane-wave theory. The ratio |P;(0,0, zo+2L, f)/Py(0,0, 2o, f)|
represents the beam transmission through the plate, where Py(0,0, 2o, f) and P;(0,0, 29 + 2L, f) can

be represented as an integration of incident and transmitted plane-wave components, respectively. As
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Py(0,0, 2o, f) is located at the centre of the main lobe, it contains a small number of incidence plane-
wave components. The leaky Lamb modes can be regarded as very narrow bandpass filters in the
frequency-wavenumber domain, depending on the mechanical losses, allowing only a small number of
incident plane-wave components through the plate at a given frequency. So, the ratio can for most
cases be regarded as a small number of transmitted over incident plane-wave components. But, due
to the behaviour of the S; mode at low incident angles, this mode allows a wider range of incident
plane-wave components to pass through the plate at given frequencies. Given that the conditions a
suitable, i.e. wide transducer beam covering this incident plane-wave range, the S; mode is excited
by a wide range of incident plane-wave components of the beam. Take the example of a normal inci-
dence 457 kHz beam using the hybrid FEM-ASM approach, the wavenumber spectra of Py(x,y, 2o, f)
and P (z,y, 20 + 2L, f) for that frequency are shown in Figs. 4.6(b) and 4.8(b). Here, no individual
plane-wave component of Py (hy o, hy,y, zo + 2L, f) have increased due to the transmission through the
steel plate in relation to the corresponding plane-wave component of Po(hys ., hsy, 20, f), but due to
superposition of the plane-wave components, P;(0,0, 22, f) in Fig. 4.10(b) has increased in relation to
Py(0,0, zg, f) in Fig. 4.5(b). This explains why the ratio exceeds unity.

The transmission around the S5 mode is different for the 3D beam in relation to the plane-wave theory,
except at frequencies just below the S; mode, where both methods show a minimum. As this minimum
is very close in frequency to the S5 mode, it is later used for measuring the shear sound velocity in the
plate using the method described in Sect. 6.2.2. Around the A; mode the FEM approach indicates
a much wider region where the transmission of sound is relatively high in relation to the plane-wave
theory. The 3D beam gives a wider region of relatively high transmission around the As mode in
relation to the plane-wave theory. Due to the behaviour of the transmission in this region, the fre-

quency of maximum transmission using 3D beams is slightly less in relation to a 1° incident plane-wave.

Around the A3 mode the overall transmission of sound through the plate is lowered using the trans-
ducer’s beam, see Fig. 6.7(a), in relation to plane-wave theory. Ouly a minor upward frequency shift
is observed in relation to the beam excitation of the S; mode, although the A3 mode displays a similar
behaviour at small plane-wave incidence angles, where it is excited at higher frequencies than at nor-
mal incidence. This is most likely due to the highly directive transducer at these frequencies (see Fig.
5.27(h)). This shift will affect the measurement of ¢y at A3 using the method described in Sect. 6.2.2.

The magnitude of the plane-wave transmission coefficient 7, and |Hpp(0,0, 22, f)| calculated using
the FEM and hybrid FEM-ASM approaches are presented in Fig. 6.8, based upon the material data in
Tab. 6.5 and compared to measurement results. Tab. 6.3 presents the frequencies extracted from local
maxima or minima in |Hpp (0,0, 23, f)|, corresponding to the (leaky) Lamb modes defined in Tabs.
6.1 and 6.2, respectively. Recall that |Hpp(0,0, 22, f)| is calculated and measured at a distance of 100
mm below the lower surface of the steel plate. If the transmitted pressure at the receiver depth is
extrapolated to the lower surface of the steel plate assuming spherical waves, the pressure amplitude is
inversely proportional to the range (a distance of 100 mm), an increase of the transmitted pressure of

approximately 3.16 dB will be experienced, see [93]. The frequency step for measurements, the hybrid
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FEM-ASM approach and the FEM approach are 1 kHz, 1 kHz and 500 Hz, respectively.
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Fig 6.8. At normal beam incidence (0 = 0°): Measured (blue line), in comparison to hybrid FEM-ASM (red line) and
FEM (green line) calculated magnitude of the pressure-to-pressure transfer function |Hpp (0,0, 22, f)| and the plane-wave

pressure transmission coefficient | 77| (black lines).

TABLE 6.3. Water-embedded steel plate at normal beam incidence § = 0°. Material data for the steel plate is listed

in Tab. 6.5. Frequencies extracted from Fig. 6.8. A‘f"’a‘m is not determined due to the frequency range used.

Symbol Frequency [kHz] (S)ymm/(A)ntisymm | Type mode
Measured | Simulated (FEM) | Simulated (Hybrid)
A beam - i - Abeam TS
=beam 457 459.0 459 Gpeam TE
he 519 518.0 518 Sheam TS
e 774 T74.5 774 Abeam TS
Abeam | 955 956.5 957 Abeam TE

6.2.2 Measurement of ¢; and cg, with corresponding ()-factors

The method described in Sect. 3.3 is here used to measure the sound velocities [91, 92, 93] and
corresponding @Q-factors in the steel plate. In Fig. 6.9 the measured magnitude of the pressure-
to-pressure transfer function |Hpp(0,0, 29, )| for the steel plate with thickness 2L = 6.05 mm is
presented. The frequencies of maximum and minimum transmission in |Hpp(0,0, 22, f)| is used as
approximations of the cut-off frequencies in Sect. 2.4.1. The frequencies are listed in Tab. 6.4 together
with the associated mode and the corresponding wave velocity calculated using Eqs. (2.54) and (2.55).
The method assumes near plane-wave conditions, which for a finite dimensional transducer does not

necessarily exists, cf. discussion in Sect. 6.2.1, and minimal effects due to the loading of the water.
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Fig 6.9. At normal beam incidence (0 = 0°): Measured magnitude of the pressure-to-pressure transfer function
[Hpp(0,0, 22, f)I.

TABLE 6.4. Calculations of the compressional ¢y, and shear wave cg velocity, using Egs. (2.54) and (2.55), by
approximating the frequencies of maximum and minimum transmission in the measured |Hpp(0,0, z2, f)| in Fig. 6.9 as

the cut-off frequencies of the T.amb modes in Sect. 2.4.1.

Symbol | (S)ymm/(A)ntisymm | Frequency [kHz] | ¢ [m/s] | cs [m/s]
lsl,beam S})eam 457 5530 -
tsl,heam Sbeam 519 - 3140
tg,beam Abeam 774 - 3121
l,;\,beam Ageam 955 5778 -

The sound velocity determined from the frequency close to the S; mode is ignored, cf. S; mode
discussion in Sect. 6.2.1. The shear velocity determined from the minimum accociated with the Sy
mode is underestimated with respect to the excitation frequency of the Ss mode, cf. Sy mode discussion
in Sect. 6.2.1. The same argument is made for the shear velocity determination around the A modes,
cf. Ay mode discussion in Sect. 6.2.1. For the determination of the compressional sound velocity
using the maximum accociated with the A3 mode, the frequency is slightly overestimated, cf. A3 mode
discussion in Sect. 6.2.1. The corresponding Q-factors for the compressional and shear wave velocity,
Q% and Q3,, respectively, are estimated by fitting the hybrid FEM-ASM simulated |Hpp(0,0, 22, f)]
to the measurements in Fig. 6.9, by varying the Q-factors. In Fig. 6.10(a) a Q%; = 1000 is estimated
by fitting the hybrid FEM-ASM simulated |Hpp(0,0, 22, f)| to measurements around the S; mode. In
Fig. 6.10(b) a Q3,; = 500 is estimated by fitting the hybrid FEM-ASM simulated |Hpp(0,0, 22, f)| to
measurements around the S mode. This method is only intended to provide a rough estimate of the

Q-factors (within £ 100), and one must take this into consideration using them.
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Fig 6.10. At normal beam incidence (0 = 0°): Fitting the hybrid FEM-ASM simulated pressure-to-pressure transfer
function |Hpp (0,0, z2, f)| with varying Q%; and Q% to measurements (red line) around a) the S1 mode for determining
QL. b) the S3 mode for determining Q7.

The material data for the steel plate used for simulations is listed in Tab. 6.5, based upon measurements
by [91] and estimations made here. The Q%, is used for the Qs in the FEM approach. The density is
taken from Tab. 5.4. From arguments made in Sect. 6.2.1 and in the paragraph above regarding beam

effects, the material data listed could most likely be refined.

TABLE 6.5. Material data used in simulations for the steel plate. Q]LV[ = Qs in the FEM approach.

cr [m/s] | 5780
¢s [m/s] | 3130
pelkg/m?| | 8000
QL | 1000
Q3 500

6.2.2.1 Cold rolled vs. hot rolled steel

The AISI 316L steel plate used in the measurement system is hot rolled, cf. Sect. 3.2, which means
that the plate is rolled to its thickness using a temperature above the recrystallization temperature
of the material [165]. Cold rolling or strain hardening occurs at a temperature below the material’s
recrystallization temperature. Problems with the use of Lamb waves inspection of cold rolled steel
has been investigated by e.g. [166, 167]. In Fig. 6.11 the pressure-to-pressure transfer function
|Hpp(0,0, 22, f)| for a AIST 316L cold rolled steel plate with thickness 2L = 5.9 mm is presented.
Comparing this figure to Fig. 6.9 two mimimas appears around the shear modes Sy and As, which
indicates the existence of two shear velocities in the plate. This is most likely due to the anisotropy
induced by the cold rolling. [167] found similar results, measuring two different shear velocities in cold

rolled AISI 314/6L steel plates, which were reduced to one velocity by heat treatment.
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Fig 6.11. At normal beam incidence (§ = 0°): Measured magnitude of the pressure-to-pressure transfer function

|[Hpp(0,0, z2, f)| for a cold-rolled AISI 316L stainless steel plate with thickness 2L = 5.9 mm.

6.3 Piezoelectric transducer model vs. baffled piston model

This section compares the signal transmission through the plate using the piezoelectric source trans-
ducer and the baffled piston models, based upon comparison of measured and simulated pressure-to-
pressure transfer function Hpp(z,y, 22, f) using the hybrid FEM-ASM approach. The deviations using
the simulated piezoelectric transducer vs. the piston source model in the system description are dis-
cussed, based upon hybrid FEM-ASM results for transmission of sound through the steel plate and
water, and measurements. Transmission studies for beam incidence angles 8 = 0°,5°,10°, 15°,20°, 25°
and 30° are shown in the following subsections. The listed frequencies for the leaky Lamb modes in

this section have been calculated from the plane-wave pressure transmission coefficient given in Fig. 6.6.

Fig. 6.12 shows the FEM calculated (red lines) and measured (blue lines) magnitude of the beam
pattern |D(¢, f)| for the piezoelectric source transducer as shown in Chap. 5, in comparison with the
beam pattern of the piston source (dashed black lines). The piston radius is adapted to the FEM
transducer’s -3 dB angle at 575 kHz, cf. Sect. 4.5.3. The beam pattern at that frequency is presented
in Fig. 6.12(d), where the piston source correctly models the transducer main lobe, but none of the
higher order side lobes. At a frequency lower than 575 kHz, the piston’s main lobe becomes narrower
than the main lobe of the FEM calculated piezoelectric transducer and measurements. At a frequency
higher than 575 kHz, the piston’s main lobe becomes wider than the main lobe of the FEM calculated
piezoelectric transducer and measurements. Agreement is shown close to the z’—axis (near the centre

of the source’s main lobe).
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Fig 6.12. FEM simulated (blue line) and measured (red line) magnitude beam pattern |D(¢, f)| for the piezoelectric
source transducer at specific frequencies, in the range 370 - 1000 kHz, together with the simulated beam pattern for the

adapted piston source (dashed black). The distance used in the measurements is given in Sect. 3.6.3.



As the baffled piston source is only a valid model to the measurement transducer around the centre
of the main lobe, the spatial region where this model can be used for transmission simulations will
decrease as a function of frequency, due to a narrowing of the main lobe. And, approaching the edge
of the main lobe and moving into the first side lobe, the piston source fails to model the piezoelectric
source transducer’s beam pattern. Thus, the FEM calculated transducer models the real transducer

more correctly.

6.3.1 Normal beam incidence

In Figs. 6.13(a) and 6.13(b) the simulated |Hpp(z,0, 22, )| is shown for 0° beam incidence angle, as
a function of frequency and z-position, at the receiver depth zo, using the piezoelectric transducer and
piston sources, respectively. The maxima are in the vicinity of the leaky Lamb modes, and demonstrate
regions in space and frequency where the transmission of sound through the plate is relatively high.
Figs. 6.13(a) and 6.13(b) are qualitatively similar, but quantatively different, which becomes apparent
moving beyond the region (z—axis) affected by the source’s main lobe. The frequencies corresponding
to the leaky Lamb modes Sy, So, As and A3 for a plane-wave incident angle 8p = 0° cf. Fig. 6.6 are
477.7 kHz, 517.5% kHz, 774.5%x kHz and 955.4 kHz respectively, indicated at z = 0 mm in Fig. 6.13.

The * indicates a 1° incidence angle with the steel plate.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 29, f)| at = 0, x = 20 and =z = 40
mm in Fig. 6.13 (marked with vertical lines) using the piezoelectric transducer (blue lines) and the
piston (red lines) as source, are shown in Figs. 6.14(a), 6.14(b) and 6.14(c) as a function of frequency,
respectively, and compared to measurement results (green lines). Maxima are in the vicinity of leaky
Lamb mode excitation in the plate. Fig. 6.14(a) for £ = 0 mm is similar to Figs. 6.8 and 6.9 used
for determining the sound velocities in the steel plate. An agreement within 1.2 dB (0.8 dB around
Sbeam) ig shown for both transducer models to measurements, with some exceptions, including around
the As mode. This is approx. within the measurement uncertainty for the calibration of the needle
hydrophone at 0.8 dB. The deviations around the As mode for the hybrid approach is also experienced
in Fig. 6.8, but not for the FEM approach. This is further discussed in Sect. 7.2. The deviations
between the two transducer models are negligible with respect to measurements for this z—position.
For z = 20 mm in Fig. 6.14(b) an agreement within 0.8 dB between simulations and measurements
is shown up to approx. 600 kHz. Around the As mode and above, the deviations to measurements
are greater, approx. 2 dB with respect to the transducer, and 4 dB with respect to the baffled piston.
For z = 40 mm in Fig. 6.14(c) an agreement within 2.4 dB between simulations and measurements
is shown up to 600 kHz, except at the minimum around 500 kHz. Above 600 kHz, the deviations are
greater, but simulations for the transducer are closer to measurements than the baffled piston. For
off-axis positions at x = 20,40 mm, as frequency increases, these positions are not covered by the
source’s main lobe, and one expects deviations to grow, in accordance with the deviations in the beam
patterns in Fig. 6.12. As the simulated beam pattern of the source transducer follows the measured
beam pattern for a wider range than the baffled piston source, one expects the baffled piston to deviate

from measurements at a lower frequency than the source transducer. This is apparent in Fig. 6.14(c).
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Fig 6.13. At normal beam incidence (§ = 0°): Simulated magnitude of the pressure-to-pressure transfer function
|Hpp(x,0, 22, f)| using the hybrid FEM-ASM approach, for a) the piezoelectric transducer and b) the baffled piston
source. Solid lines indicate the z—distances and frequencies addressed in Figs. 6.14 and 6.15, respectively. Leaky Lamb
modes for a plane-wave incident angle §p = 0° are indicated at their respective frequencies at = 0 mm. The leaky

Lamb modes Sz and Az have been calculated using a 1° incidence angle.
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Fig 6.14. At normal beam incidence (§ = 0°): Simulated magnitude of the pressure-to-pressure transfer function
|Hpp(z,O0, 22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and baffled piston
(red line), in comparison with measurements (green line) for a) £ = 0 mm, b) = 20 mm and ¢) z = 40 mm. The

frequency spectra at the three z—distances are indicated with solid lines in Fig. 6.13.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 29, f)| for f = 457 kHz, f = 518 kHz,
f =775 kHz and f = 956 kHz in Fig. 6.13 (marked with horizontal lines) using the piezoelectric
transducer (blue lines) and the piston (red lines) as source, are shown in Figs. 6.15(a), 6.15(b), 6.15(c)
and 6.15(d) as a function of x—position respectively, and compared to measurement results (green
lines). For f = 457 kHz (below the S; mode, cf. discussion in Sect. 6.2.1) in Fig. 6.15(a) there
is agreement within 3.3 dB between the simulations and measurements up to approx z = 50 mm.

x—positions below this is covered by the source’s main lobe. For f = 518 kHz (near the Sy mode) in
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Fig 6.15. At normal beam incidence (# = 0°): Simulated magnitude of the pressure-to-pressure transfer function
|Hpp(x,0, 22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and baffled piston
(red line), in comparison with measurements (green line) for a) f = 457 kHz, b) f = 518 kHz, ¢) f = 775 kHz and d)
f = 956 kHz.

Fig. 6.15(b) agreement within 2 dB exists up to x = 25 mm. As the transmission through the plate
is low in relation to e.g. Fig. 6.15(a), noise in measurements can influence the measurement results.
There are larger deviations between simulations and measurement for f = 775 kHz (near the A mode)
in Fig. 6.15(c) due to the deviations in Fig. 6.14(a), see Sect. 7.2. For f = 954 kHz (near the Aj
mode ) in Fig. 6.15(d) there is agreement within 4.5 dB between measurements and simulations up to

approx. = 50 mm. The same conclusion as for Fig. 6.15(a) can be applied here.

6.3.2 0 = 5° beam incidence

In Figs. 6.16(a) and 6.16(b) the simulated |Hpp(z,0, 22, f)| is shown for 5° beam incidence angle, as
a function of frequency and z-position, at the receiver depth zo, using the piezoelectric transducer and
piston sources, respectively. As for normal incidence, the maxima are in the vicinity of the leaky Lamb
modes, and demonstrates regions in space and frequency where the transmission of sound through the
plate is relatively high. Figs. 6.16(a) and 6.16(b) are qualitatively similar, but quantatively different.
The frequencies corresponding to the leaky Lamb modes S7, Sy and A, for a plane-wave incident angle
f0p = 5° cf. Fig. 6.6 are 453.8 kHz, 581.1 kHz and 774.9 kHz, respectively, indicated at £ = 20 mm in
Fig. 6.16.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 22, f)| at © = 0 mm, z = 20 mm,
2 =40 mm and z = 80 mm in Fig. 6.16 (marked with lines) using the piezoelectric transducer (blue
lines) and the piston (red lines) as source, are shown in Figs. 6.17(a), 6.17(b), 6.17(c) and 6.17(d) as
a function of frequency, respectively, and compared to measurement results (green lines). For x = 0
mm in Fig. 6.17(a) an agreement within 2.1 dB for the two sources to measurements are shown up
to 600 kHz, and deviations between the simulations are negliable in that respect. But, over 600 kHz
the transducer shows a closer agreement to meaurements than the baffled piston. For z = 20 mm in
Fig. 6.17(b) an agreement within 0.9 dB is shown for the entire frequency range between simulations
and measurements, except around the As mode and at high frequency, see discussion in Sect. 7.2. As

x = 20 mm is positioned within the main lobe of the sources for the whole frequency range, the
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the x—distances and frequencies addressed in Figs. 6.17 and 6.18, respectively. Leaky Lamb modes for a plane-wave
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deviations between the transducer and baffled piston are negligible. A similar conclusion can be made
for = 40 mm in Fig. 6.17(d). But, for # = 60 mm in Fig.6.17(d) one moves to a position not
covered by the source’s main lobe at high frequencies, above 750 kHz, and deviations occur. Again,

the transducer is closer to measurements than the piston model.
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Fig 6.17. At 0 = 5° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function |Hpp(x,0, 22, f)|
using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and piston (red line), in comparison
with measurements (green line) for a) £ = 0 mm, b) z = 20, ¢) z = 40 mm and d) & = 60 mm. The frequency spectra

at the four z—distances are indicated with solid lines in Fig. 6.16.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 22, f)| for f = 454 kHz, f = 581 kHz
and f = 775 kHz in Fig. 6.16 (marked with horizontal lines) using the piezoelectric transducer (blue
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Fig 6.18. At 6 = 5° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function |Hpp(z,0, 22, f)|
using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and baffled piston (red line), in com-
parison with measurements (green line) for a) f = 454 kHz, b) f = 581 kHz and ¢) f = 775 kHz.

lines) and the piston (red lines) as source, are shown in Figs. 6.18(a), 6.18(b) and 6.18(c) as a function
of x—positions respectively, and compared to measurement results (green lines). For f = 454 kHz (near
the S7 mode) in Fig. 6.18(a) a closer agreement between the transducer and measurements is shown,
than between the baffled piston and measurements, and the transducer correctly models the interference
pattern in the region z = 150 — 200 mm. The interference pattern will be further discussed in Chap.
7. For f = 581 kHz (near the S; mode) in Fig. 6.18(b) an agreement within 1 dB between simulations
and measurements is observed in the region x = —20 — 60 mm, but the measured interference pattern
beyond z = 100 mm is slightly shifted in frequency in comparison to simulations. For f = 775 kHz
(near the Ay mode) in Fig. 6.18(c) the deviations between simulations and measurements are greater,
discussed further in Sect. 7.3. From Fig. 6.16, the variations in frequency and position are large in this

region, so possible alignment error in measurements will produce large deviations from simulations.

6.3.3 6 = 10° beam incidence

In Figs. 6.19(a) and 6.19(b) the simulated |Hpp(x,0, 22, f)| is shown for 10° beam incidence angle,
as a function of frequency and z-position, at the receiver depth 2, using the piezoelectric transducer
and piston sources, respectively. As for 0° and 5° incidence, the maxima are in the vicinity of the
leaky Lamb modes. Figs. 6.19(a) and 6.19(b) are qualitatively similar, but quantatively different. The
frequencies corresponding to the leaky Lamb modes S;, S; and Ay for a plane-wave incident angle
Op = 10° cf. Fig. 6.6 are 447.3 kHz, 738.6 kHz and 806.1 kHz, respectively, indicated at x = 60 mm in
Fig. 6.19.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 22, f)] at £ = 40 mm, 2 = 60 mm,
x =80 mm and z = 100 mm in Fig. 6.19 (marked with lines) using the piezoelectric transducer (blue
lines) and the piston (red lines) as source, are shown in Figs. 6.20(a), 6.20(b), 6.20(c) and 6.20(d) as
a function of frequency, respectively, and compared to measurement results (green lines). For x = 40
mm in Fig. 6.20(a) an agreement within 2 dB up to and above the A; mode between the transducer
and measurements is observed, whereas the same level of agreement between the baffled piston and

measurements exists only up to the As mode. Above the A; mode, x = 40 mm is positioned outside
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Fig 6.19. At & = 10° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(x,0, 22, f)| using the hybrid FEM-ASM approach, for a) the piezoelectric transducer and b) the piston source.
Solid lines indicate the z—distances and frequencies addressed in Figs. 6.20 and 6.21, respectively. Leaky Lamb modes

for a plane-wave incident angle 8p = 5° are indicated at their respective frequencies at x = 60 mm.
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the main lobe of the measurement transducer, hence the FEM transducer model follows the behaviour of
the measurements better than the baffled piston, cf. Fig. 6.12. For positions « = 60, 80,100 mm (Figs.
6.20(b), 6.20(c) and 6.20(d)) both transducer models show an agreement within 3 dB to measurements
for approximately the entire frequency range, except at certain frequencies. Both simulation models
show agreement with the measurement transducer’s transmitted pressure, but at = 100 mm for high

frequencies the transducer source is closer to measurements than the baffled piston.
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Fig 6.20. At 6 = 10° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(z,0, 22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and piston (red
line), in comparison with measurements (green line) for a) z = 40 mm, b) z = 60 mm, ¢) z = 60 mm and d) z = 100

mm. The frequency spectra at the four z—distances are indicated with solid lines in Fig. 6.19.
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Fig 6.21. At # = 10° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function
|Hpp(z,0, 22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and baffled piston
(red line), in comparison with measurements (green line) for a) f = 448 kHz, b) f = 739 kHz and c¢) f = 806 kHz.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 22, f)| for f = 448 kHz, f = 739 kHz
and f = 806 kHz in Fig. 6.19 (marked with horizontal lines) using the piezoelectric transducer (blue
lines) and the piston (red lines) as source, are shown in Figs. 6.21(a), 6.21(b) and 6.21(c) as a function
of z—position respectively, and compared to measurement results (green lines). For f = 448 kHz (near
the S mode) in Fig. 6.21(a) an agreement within 1.2 dB for both models to measurements is observed
in the region z = 0 — 100 mm, measurements follows (with a frequency shift) the interference pattern
(discussed in Chap. 7). For f = 739 kHz (near the S, mode) in Fig. 6.21(b) the FEM transducer
model follows measurements more closely than the baffled piston, especially in the region x = —50 — 50
mm. The same conclusions can be made for f = 806 kHz (near the As mode) in Fig. 6.21(c), but noise

in measurements is more prominent here.

6.3.4 6 = 15° beam incidence

In Figs. 6.22(a) and 6.22(b) the simulated |Hpp(x,0, 22, f)| is shown for 15° beam incidence angle, as
a function of frequency and z-position, at the receiver depth zo, using the piezoelectric transducer and
piston sources, respectively. The frequencies corresponding to the leaky Lamb modes A; and S; for a
plane-wave incident angle 8p = 15° cf. Fig. 6.6 are 523.9 kHz and 631.9 kHz, respectively, indicated
at z = 120 mm in Fig. 6.22.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 22, f)| at z = 100 mm, z = 120 mm
and z = 140 mm in Fig. 6.22 (marked with lines) using the piezoelectric transducer (blue lines) and the
piston (red lines) as source, are shown in Figs. 6.23(a), 6.23(b) and 6.23(c) as a function of frequency,
respectively, and compared to measurement results (green lines). For x = 100 mm in Fig. 6.23(a),
an agreement within 1.3 dB between measurements and the FEM transducer model is shown, while
there exists larger deviations to the baffled piston, especially in the region 600-900 kHz. The same
conclusions can be made for = 120 mm in Fig. 6.23(b), but the deviations are not as prominent as
in Fig. 6.23(a). For x = 140 mm in Fig. 6.23(c), the FEM transducer model still exceeds the baffled
piston model with regards to agreement to measurements, especially at the minimum around 770 kHz,

where the baffled piston incorrectly simulates the minimum at a frequency higher than given by the
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Fig 6.23. At 6 = 15° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(x,0, 22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and piston (red
line), in comparison with measurements (green line) for a) z = 100 mm, b) z = 120 mm and ¢) = 140 mm. The

frequency spectra at the three x—distances are indicated with solid lines in Fig. 6.22.
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Fig 6.24. At # = 15° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(z,0, 22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and baffled piston
(red line), in comparison with measurements (green line) for a) f = 524 kHz and b) f = 634 kHz.

measurements. There are some issues regarding the measurements at high frequencies, which may be

related to alignment issues discussed in Sect. 3.2.2.
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The simulated pressure-to-pressure transfer function |Hpp(z,0, 22, f)| for f = 524 kHz and f = 634
kHz in Fig. 6.22 (marked with horizontal lines) using the piezoelectric transducer (blue lines) and
the piston (red lines) as source, are shown in Figs. 6.24(a) and 6.24(b) as a function of z—position
respectively, and compared to measurement results (green lines). For f = 524 kHz (near the A; mode)
in Fig. 6.24(a), agreement within 3.4 dB is shown between the simulation models and measurements
in the region x = 100 — 250 mm, including the interference pattern. For f = 634 kHz (near the S,
mode), agreement within 2.1 dB is shown between the FEM transducer model and measurements in
the region z = 75 — 200 mm, whereas the baffled piston model shows the same agreement in the region
z = 100 — 200 mm.

6.3.5 6 = 20° beam incidence

In Figs. 6.25(a) and 6.25(b) the simulated |Hpp(z,0, 22, f)| is shown for 20° beam incidence angle, as
a function of frequency and x—position, at the receiver depth zs, using the piezoelectric transducer and
piston sources, respectively. The frequencies corresponding to the leaky Lamb modes Sy and A; for a
plane-wave incident angle 8p = 20° cf. Fig. 6.6 are 372.6 kHz and 746.0 kHz, respectively, indicated
at z = 150 mm in Fig. 6.25.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 22, f)] at z = 120 mm, z = 150 mm
and z = 180 mm in Fig. 6.25 (marked with lines) using the piezoelectric transducer (blue lines) and the
piston (red lines) as source, are shown in Figs. 6.26(a), 6.26(b) and 6.26(c), respectively, and compared
to measurement results (green lines). For z = 120 mm in Fig. 6.26(a), an agreement within 1.5 dB be-
tween measurements and the simulation models are shown for the entire frequency range, except above
950 kHz. For x = 150 mm in Fig. 6.26(b), an agreement within 2.6 dB for both models to measurements
is shown up to 900 kHz (exception around the minimum at 570 kHz). The first minimum around 580
kHz is simulated accurately with respect to frequency, but not the second minimum around 960 kHz.
From Fig. 6.25, the second minimum increases with frequency as one moves to higher x—positions, so
the measurements here is most likely conducted at a position slightly higher than x = 150 mm. For
x = 180 mm in Fig. 6.26(c), agreement within 1.9 dB is shown up to 900 kHz for the transducer, and
850 kHz for the baffled piston. Above this region, greater deviations are shown to measurements for
both simulation models, especially the baffled piston. As for the other x—positions, alignment of the

hydrophone is crucial for accurate measurements at these frequencies.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 29, )| for f = 373 kHz and f = 746
kHz in Fig. 6.25 (marked with horizontal lines) using the piezoelectric transducer (blue lines) and
the piston (red lines) as source, are shown in Figs. 6.27(a) and 6.27(b) as a function of xz—position
respectively, and compared to measurement results (green lines). For f = 373 kHz (near the Sy mode)
in Fig. 6.27(a) an agreement within 4.2 dB is shown for the transducer in relation to measurements in
the region x = 50 — 250 mm, except at the beginning of this region where measurement noise is clearly
present. For f = 746 kHz (near the A; mode) in Fig. 6.27(b), agreement within 2 dB for the FEM
transducer model to measurement is shown for x = 75 — 180 mm, and for the baffled piston model to

measurements for x = 125 — 180 mm. For the region below z = 75 mm, noise is a dominant, part of
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Fig 6.25. At 6 = 20° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(z,0, 22, f)| using the hybrid FEM-ASM approach, for a) the piezoelectric transducer and b) the piston source.
Solid lines indicate the z—distances and frequencies addressed in Figs. 6.26 and 6.27, respectively. Leaky Lamb modes

for a plane-wave incident angle §p = 20° are indicated at their respective frequencies at = 150 mm.
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Fig 6.27. At 6 = 20° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(z,0, 22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and baffled piston
(red line), in comparison with measurements (green line) for a) f = 373 kHz and b) f = 746 kHz.

the measurement results.
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6.3.6 6 = 25° beam incidence

In Figs. 6.28(a) and 6.28(b) the simulated |Hpp(x,0, 22, f)| is shown for 25° beam incidence angle, as
a function of frequency and x—position, at the receiver depth zs, using the piezoelectric transducer and
piston source, respectively. The frequency corresponding to the leaky Lamb mode Sj for a plane-wave
incident angle Op = 25° cf. Fig. 6.6 is 446.0 kHz, indicated at £ = 200 mm in Fig. 6.28.

The simulated pressure-to-pressure transfer function |Hpp(x,0, 29, f)| at = 180 mm, z = 200 mm
and x = 220 mm in Fig. 6.28 (marked with lines) using the piezoelectric transducer (blue lines) and the
piston (red lines) as source, are shown in Figs. 6.29(a), 6.29(b) and 6.29(c) as a function of frequency,
respectively, and compared to measurement results (green lines). For x = 180 mm in Fig. 6.29(a),
an agreement within 2 dB for the entire frequency range is shown between measurements and the
simulated transducer, whereas the baffled piston model shows deviations in the frequency range 600 -
800 kHz. For x = 200 mm in Fig. 6.29(b), the same argument (agreement within 3.3 dB) as for Fig.
6.29(a) can be made. For z = 220 mm in Fig. 6.29(c), agreement within 0.8 dB for both simulation
models to measurements can be shown up in the range 450 - 700 kHz, while the FEM transducer model

follows the measurements above more closely than the baffled piston model.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 22, f)| for f = 446 kHz in Fig. 6.28
(marked with a horizontal line) using the piezoelectric transducer (blue lines) and the piston (red lines)
as source, is shown in Fig. 6.30 as a function of x—position, and compared to measurement results

(green lines). Agreement within 2 dB is shown for both models to measurements in the region

Frequency [kHz]

0 50 100 150 200 250
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Fig 6.28. At # = 25° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(x,0, 22, f)| using the hybrid FEM-ASM approach, for a) the piezoelectric transducer and b) the piston source.
Solid lines indicate the x—distances and frequencies addressed in Figs. 6.29 and 6.30, respectively. The Sp mode for a

plane-wave incident angle §p = 25° is indicated at its respective frequency at x = 200 mm.

x = 125 — 250 mm (except minimum at z = 230 mm), while the FEM transducer model also shows

agreement, within 5.5 dB downwards to x = 0 mm.
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Fig 6.29. At 6 = 25° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(z,0, 22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and piston (red
line), in comparison with measurements (green line) for a) z = 180 mm, b) z = 200 mm and ¢) z = 220 mm. The

frequency spectra at the three x—distances are indicated with solid lines in Fig. 6.28.
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Fig 6.30. At 6 = 25° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(z,0, 22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and baffled piston

(red line), in comparison with measurements (green line) for f = 446 kHz.

6.3.7 6 = 30° beam incidence

In Figs. 6.31(a) and 6.31(b) the simulated |Hpp(x,0, 22, f)| is shown for 30° beam incidence angle, as
a function of frequency and x—position, at the receiver depth zs, using the piezoelectric transducer and
piston source, respectively. The frequency corresponding to the leaky Lamb mode Sj for a plane-wave

incident angle p = 30° cf. Fig. 6.6 is 691.3 kHz, indicated at x = 230 mm in Fig. 6.31.

The simulated pressure-to-pressure transfer function |Hpp(x,0, 29, f)| at = 200 mm, z = 230 mm
and z = 260 mm in Fig. 6.31 (marked with lines) using the piezoelectric transducer (blue lines) and
the piston (red lines) as source, are shown in Figs. 6.32(a), 6.32(b) and 6.32(c) as a function of fre-
quency, respectively, and compared to measurement results (green lines). For all these x—positions, an
agreement, within 5 dB between the two simulation models and measurement is shown for the entire

frequency range.

The simulated pressure-to-pressure transfer function |Hpp(z,0, 29, )| for f = 692 kHz in Fig. 6.31

(marked with a horizontal line) using the piezoelectric transducer (blue lines) and the piston (red lines)
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Fig 6.31. At 6 = 30° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(z,0, 22, f)| using the hybrid FEM-ASM approach, for a) the piezoelectric transducer and b) the piston source.
Solid lines indicate the x—distances and frequencies addressed in Figs. 6.32 and 6.33, respectively. The Sp mode for a

plane-wave incident angle 6p = 30° is indicated at its respective frequency at x = 230 mm.

as source, is shown in Fig. 6.33 as a function of x—position, and compared to measurement results
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(green lines). For the region z = 190 — 250 mm an agreement within 4 dB is shown for the FEM

transducer model, whereas 8.6 dB for the baffled piston model. For positions z = —50 — 190 mm, noise

is a dominant part of the measurements.
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Fig 6.32. At 6 = 30° beam incidence: Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(z,0,z22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and piston (red

line), in comparison with measurements (green line) for a) z = 200 mm, b) z = 230 mm and ¢) z = 260 mm. The

frequency spectra at the three x—distances are indicated with solid lines in Fig. 6.31.
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Simulated magnitude of the pressure-to-pressure transfer function

|Hpp(z,0, 22, f)| using the hybrid FEM-ASM approach for the piezoelectric transducer (blue line) and baffled piston

(red line), in comparison with measurements (green line) for f = 692 kHz.
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6.4 Summary and discussion

In Sect. 6.2.1 the signal transmission through the plate, and excitation of leaky Lamb modes, are stud-
ied and discussed, based upon comparisons of plane waves and 3D beams. Fig. 6.7 shows a comparion
of the plane-wave transmission coefficient .7 and the FEM calculated |P; (0,0, z4-2L, f)/Py(0,0, zo, f)]
at normal beam incidence, which demonstrates the effect of accounting for a 3D beam in transmission
simulations. This is in agreement with [91, 92], which observed and discussed 3D beam diffraction effects
using a baffled piston model and Hpp(x,y, 22, ). Depending on the beam pattern of the source used
and the behaviour of leaky Lamb modes as a function of frequency /incident angle, non-zero plane-wave
components of the beam can excite leaky Lamb modes at small non-zero incident angles. Results using
a directive beam can for that reason deviate from plane-wave results. Such effects can also apply for
oblique beam incidence angles. Many works on material property determination or monitoring uses the

plane-wave theory and discuss and/or suggests ways to minimize these beam effects, e.g. [65, 80, 77, 96].

In Sect. 6.3 the signal transmission through the plate, and excitation of leaky Lamb modes, are stud-
ied and discussed, based upon comparisons of the 3D beams using the simulated piezoelectric source
transducer, the baffled piston model, and the measurement transducer, at different beam incidence
angles. A similar study using the baffled piston model and measurements is reported in Lohne et al.
[91]. They discussed the validity of the baffled piston model for describing the real beam pattern of the
measurement transducer, concluding fairly good correspondence to measurements, but also highlighted
that a finite element simulation of the beam from the measurement tranducer could be more accu-
rate. A normalization method was used to compare simulations to measurements, in this thesis this
normalization method is avoided by using a longer needle hydrophone in transmission measurements.
Younghouse [70] showed transmission results as a function of x—position through an aluminum plate,

comparing meaurement results to the baffled piston model.

Figs. 6.13, 6.16, 6.19, 6.22, 6.25, 6.28 and 6.31 show that the local maxima of transmission through
the plate does not necessarily correspond to single plane-wave excitation of leaky Lamb modes, and
show therefore the importance of using a more realistic 3D beam for transmission optimization with
respect to bandwidth, signal level and waveform. In Figs. 6.17, 6.20, 6.23, 6.26, 6.29 and 6.32 the sim-
ulated pressure-to-pressure transfer function |Hpp(x,y, 22, f)| using the transducer and baffled piston
models as sources, are compared to measurements, as a function of frequency for given x—positions.
In Figs. 6.18, 6.21, 6.24, 6.27, 6.30 and 6.33 the simulated pressure-to-pressure transfer function
|Hpp(z,y, 22, )| using the transducer and the baffled piston models, are compared to measurements,
as a function of x—position for given frequencies. For x—positions within the region covered by the
source’s main lobe, the piezoelectric transducer and baffled piston produce similar results, as expected
from the comparison of beam patterns in Fig. 6.12. For x—positions on the edge/outside this region,
there is a closer agreement between the simulated piezoelectric source transducer and measurement
results, than with the simulated baffled piston source, since the first and higher order sidelobes of
the FEM calculated transducer models the measurements more closely than the baffled piston source
model. As the main lobe narrows as frequency increases, x—positions initially covered by the source’s

main lobe at low frequencies, are covered at higher frequencies by the first or higher order sidelobes.
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The deviations between the FEM transducer vs. baffled piston model as source will then also increase.

For individual transducer configurations the baffled piston model can be adequate for studying signal
transmission through the plate, depending on accuracy requirements. But, one has to measure the
transducer’s beam pattern over a wide frequency range to calculate the effective radii for a range of
frequencies. This is both time consuming and laborious. In addition, by using the baffled piston
model one does not gain simulation results on an absolute level, and no representation of pressure
waveforms in the time domain, for a given input voltage signal to the measurement transducer. The
signal transmission through the plate is extended to account for the signal transmission through the

system, including the piezoelectric source transducer in Chap. 7.

133






Chapter 7

System approach including

piezoelectric transducer modeling

7.1 Introduction

This chapter reports the results for the signal transmission through the measurement system, from in-
put voltage to the piezoelectric source transducer, to transmitted pressure waveforms below the plate,
using the FEM and hybrid FEM-ASM approaches, in comparison with measurement, results. The ef-
fects of 3D diffracted beams through the plate, and the electroacoustical coupling in the piezoelectric
source transducer, are studied with respect to optimization of signal level and bandwidth of the trans-
mitted signals. The voltage-to-pressure transfer function, Hy p(x,y, 22, f) in Eq. (2.10), governing the
signal transmission through the system (absolute scale), and transmitted pressure field distributions,
|Pi(x,y, 22, f)] in Eq. (2.9) in the frequency domain, and pressure waveforms in the time domain,
pi(x,y, 22, f) in Eq. (2.12), are presented for given voltage excitation signal to the transducer and
for different beam incidence angles between the transducer and the plate. The deviation in the pulse

arrival time is given in fractions of the waveform’s centre frequency wavelength.

7.2 Normal beam incidence

In Fig. 7.1 the hybrid FEM-ASM calculated |Hy p(x,0, 22, f)| is shown for a 0° beam incidence angle,
as a function of frequency and z-position, at the receiver depth zo = 376.05 mm, in relation to Fig. 6.13
where the relative transmission through the plate is shown. The frequencies corresponding to the leaky
Lamb modes S7, So, A; and Aj for a plane-wave incident angle p = 0° cf. Fig. 6.6 are 477.7 kHz,
517.5% kHz, 774.5% kHz and 955.4 kHz respectively, indicated at £ = 0 mm in Fig. 7.1. The * indicates
a fp = 1° incidence angle with the steel plate. The maxima are in the vicinity of the leaky Lamb
modes, and demonstrates regions in space and frequency where the transmission through the system
is relatively high. The black vertical lines show x—positions where the simulations are compared to
measurements as a function of frequency, and the black horizontal lines show specific frequencies where

the simulations are compared to measurements as a function of x—position. Similar plots are shown in
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[98, 95] for the piezoelectric transducer, and in [91, 92] for a piston generated beam pattern.
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Fig 7.1. At normal beam incidence (6 = 0°): Simulated magnitude of the voltage-to-pressure transfer function

|Hy p(z,0, 22, f)| using the hybrid FEM-ASM approach. Solid lines indicate the z—distances addressed in Fig. 7.2,
and frequencies in Figs. 7.4, 7.5, 7.6 and 7.7. Leaky Lamb modes for a plane-wave incident angle 0p = 0° are indicated

at their respective frequencies at © = 0 mm.

The hybrid FEM-ASM simulated voltage-to-pressure transfer function |Hy p(x,0, 22, )| at £ = 0 mm,
z = 20 and z = 40 mm in Fig. 7.1 (marked with lines) are shown (blue lines) in Figs. 7.2(a), 7.2(b)
and 7.2(c), respectively, as a function of frequency. The corresponding relative transmission through
the plate are shown in Fig. 6.14. Comparisons are made with the transfer function calculated using the
FEM approach (red lines) and measurements (green lines). The black vertical lines indicates frequencies
where the transmitted waveforms are simulated and compared to measurements, cf. Figs. 7.4, 7.5, 7.6
and 7.7. For x = 0 mm in Fig. 7.2(a), an agreement within 1.8 dB to measurements is shown up
to 900 kHz, except around the Ay mode for the hybrid FEM-ASM approach. This is possibly due
to improper frequency sampling (1 kHz) in the hybrid FEM-ASM approach. For z = 20 mm in Fig.
7.2(b) a similar agreement is shown. For z = 40 mm in Fig. 7.2(c), an agreement within 3.2 dB is
shown, except at the minimum around 500 kHz and at higher frequencies. This position is situated
outside the transducer’s main lobe at these frequencies, and is influenced by the higher order sidelobes.
In addition, accurate positioning of the needle hydrophone at higher frequencies is important, due to
a highly directive transducer beam pattern (in relation to lower frequencies). An agreement within 1.2
dB between the FEM and hybrid FEM-ASM approaches is given.
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Fig 7.2. At normal beam incidence (§ = 0°): Simulated magnitude of the voltage-to-pressure transfer function

|Hy p(x,0, 22, f)| using the hybrid FEM-ASM approach (blue line), in comparison with the FEM approach (red line)
and measurements (green line) for a) £ = 0 mm, b) z = 20 mm and c¢) z = 40 mm. The frequency spectra at the three
r—distances are indicated with solid lines in Fig. 7.1.

Figs. 7.3(a), 7.3(b), 7.3(c) and 7.3(d) show the magnitude of the hybrid FEM-ASM simulated pressure
field distribution |P(z,0,z, f)| at f = 457 kHz, f = 518 kHz, f = 775 kHz and f = 956 kHz as a
function of z— and z— positions, respectively, near the leaky Lamb modes for 8p = 0°. The incident
pressure field produced by, and propagated from, the piezoelectric transducer towards the plate, and
the pressure field transmitted through the plate, is presented. The pressure field reflected by the plate’s
upper surface back towards the source is not displayed, since reflection’s studies are not part of this
work. Null regions are also present. Similar plots are reported in [78, 79| for a water-solid interface
using the DPSM, showing the incident and reflected pressure fields, including null regions in accor-
dance with the theory of Bertoni & Tamir [35]. These works showed qualitative agreement between
the DPSM and measurement results, where quantitative agreement is shown in this thesis between
the two approaches and experiments. For f = 457 kHz (near the S; mode), f = 518 kHz (near the
S mode) and f = 775 kHz (near the A; mode) in Figs. 7.3(a), 7.3(b) and 7.3(c), respectively, the
plate causes a beam narrowing effect. This is most likely due to the lowpass filter effect .7 has in the
frequency-wavenumber domain, cf. Sect. 4.3.1. But, for f = 956 kHz (near the A3 mode), the plate

causes a beam spreading effect.

Fig. 7.4(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P;(z,y, 22, f)]
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at a frequency of 457 kHz as function of x— and y—positions, for a constant z = 2z, close to the
excitation frequency for plane-wave normal incidence of the S; at 477.6 kHz. Fig. 7.4(b) show the
hybrid FEM-ASM (blue line) and FEM (red line) calculated |Hy p(z,0,29,457kHz)| as function of
x—position, in comparison with measurements (green line), cf. Fig. 6.15 for the transmission through
the plate. An agreement within 1.9 dB to measurement is shown up to x = 50 mm, and adequately
thereafter. Negliable deviations between the two simulation approaches are shown. Recall that the
FEM approach is axi-symmetric around the z—axis, therefore no results are shown for x—positions
below z = 0. In Figs. 7.4(c), 7.4(d) and 7.4(e) the simulated sound pressure waveforms p;(z,y, 22,t)
with centre frequency f = 457 kHz are compared to measured waveforms, and simulated waveforms
using the FEM approach, at three receiver positions ’%’ in Fig. 7.4(a), at x = 0, 20, 40 mm, respectively.
Agreement within 1.55 dB between the two approaches and measurements in signal level and waveform
are shown, as expected from Fig. 7.4(b). The deviations in the pulse arrival time between simulated
and measured waveforms are 0.05, 0.14 and 0.1 for z = 0,20,40 mm, respectively. For x = 0 mm,
due to the maximum in Fig. 7.4(a) at this position, the waveform has a wide bandwidth, and steadily
increases to reach the maximum, whereas for z = 20, 40, the waveforms first oscillates at maximum,

before they settle down at their respective amplitudes given by Fig. 7.4(a).
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Fig 7.3. At normal beam incidence (0 = 0°): Simulated magnitude of the transducer radiated pressure field distribution
|P(z,0, 2, f)|, a) at f = 457kHz, b) at f = 518 kHz, c) at f = 775 kHz and d) at f = 956 kHz, using the hybrid
FEM-ASM approach.

Fig. 7.5(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P;(z,y, 22, f)]
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Fig 7.4. At normal beam incidence (§ = 0°): Simulated magnitude of the transmitted pressure field distribution

|Pi(z,y, 22, f)| at a) 457 kHz near the S; at 477.6 kHz. b) Simulated and measured |P;(z, 0, 22, f)|-

Simulated and

measured pressure waveforms p¢(z, y, z2,t) with centre frequency f = 457 kHz, at the receiver positions x’ in Fig. 7.4(a):

¢) at position (0,0, 22), d) at position (20,0, z2) and e) at position (40,0, z2).

with measurements (green lines), cf. Fig. 6.15 for the transmission through the plate. An agreement
within 1.8 dB between the hybrid FEM-ASM and measurements is shown in the region x = —20 — 20
mm, with a greater deviation to the FEM approach. In Figs. 7.5(c), 7.5(d) and 7.5(e) the simulated
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sound pressure waveforms p;(z,y, 22,t) with centre frequency f = 518 kHz are compared to measured

waveforms, and simulated waveforms using the FEM approach, at three receiver positions "%’ in Fig.

7.5(a) at x = 0,20,40 mm, respectively. Agreement within 1.8 dB between the hybrid approach and

measurements in signal level and waveform are shown for x = 0,20 mm, but the transmitted waveform

at x = 40 is not simulated correctly. The deviations in the pulse arrival time between the simulated and

measured waveforms are 0.05, 0.16 and 0.16 for x = 0, 20,40 mm, respectively. Due to the minimum

at this frequency in Figs. 7.1 and 7.2, the waveforms uses a relatively
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Fig 7.5. At normal beam incidence (§ = 0°): Simulated magnitude of the transmitted pressure field distribution

|Pi(z,y, 22, )| at a) 518 kHz near the S at 517.5 kHz. b) Simulated and measured |P;(z, 0, 22, f)|.

Simulated and

measured pressure waveforms p¢ (z,y, 22, t) with centre frequency f = 518 kHz, at the receiver positions ’+” in Fig. 7.5(a):
¢) at position (0,0, 22), d) at position (20,0, z2) and e) at position (40,0, 2z2).
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Fig 7.6. At normal beam incidence (§ = 0°): Simulated magnitude of the transmitted pressure field distribution
|Pi(z,y, 22, f)| at a) 775 kHz near the Ay at 774.5 kHz. b) Simulated and measured |P(z,0, 22, f)|. Simulated and
measured pressure waveforms p¢ (z,y, 22, t) with centre frequency f = 775 kHz, at the receiver positions +” in Fig. 7.6(a):
¢) at position (0,0, 22), d) at position (20,0, z2) and e) at position (40,0, 22).

long time to settle down and reach a steady state, in relation to the waveforms in Fig. 7.4. Fig.
7.6(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P;(z,y, 22, f)| at
a frequency of 775 kHz as function of x— and y—positions, for constant z = 25, close to the excitation
frequency for plane-wave normal incidence of the As at 774.5 kHz. Fig. 7.6(b) shows the hybrid FEM-
ASM (blue line) and FEM (red line) calculated |Hy p(z,0, 22, 775kHz)| as function of x—position, in
comparison with measurements, cf. Fig. 6.15 for transmission through the plate. Deviations between

the simulations and measurements are shown for the entire region, which is discussed under Fig. 7.2.
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In Figs. 7.6(c), 7.6(d) and 7.6(e) the simulated sound pressure waveforms p:(z,y, z2,t) with centre

frequency f = 775 kHz are compared to measured waveforms, and simulated waveforms using the

FEM approach, at three receiver positions %’ in Fig. 7.6(a) at x = 0,20,40 mm, respectively. Closer

agreement, between the two approaches and measurements in signal level and waveform is shown for

x = 0,20 mm, than for x = 40 mm, where the measured signal level show greater deviations to the

simulated, as expected from Fig. 7.6(a).
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Time, t [us]

(e)

Simulated magnitude of the transmitted pressure field distribution

|Pi(z,y, 22, )| at a) 956 kHz near the A3 at 955.4 kHz. b) Simulated and measured |P(z,0, 22, f)|. Simulated and
measured pressure waveforms p¢ (z,y, 22, t) with centre frequency f = 956 kHz, at the receiver positions ’+’ in Fig. 7.7(a):
c) at position (0,0, 22), d) at position (20,0, z2) and e) at position (40,0, z2).

The deviations in the pulse arrival time are difficult to estimate, due to the different starting patterns
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of the waveforms, they are 0.08, 0.23 and 0.93 for x = 0, 20, 40 mm, respectively. At x = 0,20 mm, the
FEM approach simulated waveforms does not reach a steady state, as the waveform steadily increases in
this region. This will affect the calculation of Hy p(x,y, 22, f) in this frequency region. Fig. 7.7(a) shows
the hybrid FEM-ASM simulated transmitted pressure field distribution |P;(z,y, 22, )| at a frequency
of 956 kHz as function of x— and y—positions, for constant z = z5, close to the excitation frequency
for plane-wave normal incidence of the A3 at 955.4 kHz. Fig. 7.7(b) shows the hybrid FEM-ASM (blue
line) and FEM (red line) calculated |Hy p(z,0, z2,956kHz)| as function of x—position, in comparison
with measurements (green line), cf. Fig. 6.15 for transmission through the plate. Agreement within 1.9
dB between simulations and mesurement is shown in the region z = —50 — 50 mm. Measurement noise
is prominent for larger x—positions. In Figs. 7.7(c), 7.7(d) and 7.7(e) the simulated sound pressure
waveforms p;(x,y, z2,t) with centre frequency f = 956 kHz are compared to measured waveforms,
and simulated waveforms using the FEM approach, at three receiver positions '+’ in Fig. 7.7(a) at
x = 0,20,40 mm. Agreement within 1.9 dB between the two approaches and measurements in signal
level and waveform is shown for all positions, except the waveform at x = 40 mm. The deviations
in the pulse arrival time between the simulated and measured waveforms are 3.44, 2.49 and 2.77 for
x = 0,20,40 mm, respectively. The large deviations in the pulse arrival time for this frequency, in
relation to the waveforms at lower frequencies shown earlier, can be explained by a too coarse element
division at this frequency for FEM simulations, see Sect. 4.4 for FEM convergence tests. This will be
further discussed in Sect. 7.9. As for the waveform near the S; mode in Fig. 7.4, the waveforms are
broadbanded.

7.3 6 =5° beam incidence

In Fig. 7.8 the hybrid FEM-ASM calculated |Hy p(z,0, 22, f)| is shown for a 5° beam incidence angle,
as a function of frequency and z-position, at the receiver depth zy = 376.05 mm, in relation to Fig.
6.16, where the relative transmission through the plate is shown. The frequencies corresponding to
the leaky Lamb modes S, Sy and As for a plane-wave incident angle 6p = 5° cf. Fig. 6.6 are 453.8
kHz, 581.1 kHz and 774.9 kHz, respectively, indicated at x = 20 mm in Fig. 7.8. The maxima are
in the vicinity of the leaky Lamb modes, and demonstrates regions in space and frequency where the
transmission through the system is relatively high. The black vertical lines show x—positions where
the simulations are compared to measurements as a function of frequency, and the black horizontal
lines show specific frequencies where the simulations are compared to measurements as a function of
x—position. Similar plots are shown in [98; 95] for the piezoelectric transducer, and in [91, 92| for a

piston generated beam pattern.

The hybrid FEM-ASM simulated voltage-to-pressure transfer function |Hy p(z,0, 22, )| at £ = 0 mm,
z = 20 mm, z = 40 mm and z = 60 mm in Fig. 7.8 (marked with lines) are shown (blue lines)
in Fig. 7.9(a), 7.9(b), 7.9(c) and 7.9(d), respectively, as a function of frequency, and compared to
measurement results (red lines). The corresponding relative transmission through the plate are shown
in Fig. 6.17. The black vertical lines indicates frequencies where the transmitted waveforms are

simulated and compared to measurements, cf. Figs. 7.11, 7.12 and 7.13. For x = 0,60 mm in Figs.
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7.9(a) and 7.9(d) respectively, an agreement within 1.8 dB to measurements is shown up to 750 kHz
(near As mode), but above this frequency there exists greater deviations. For z = 20,40 mm in Figs.
7.9(b) and 7.9(c), an agreement within 3 dB to measurements is shown for the entire frequency range,
except around the As; mode. The x—positions 0 mm and 60 mm are situated outside the transducer’s
main lobe at high frequencies, and is influenced by the higher order sidelobes. As the FEM calculated
beam patterns show deviations to measurements beyond the main or first sidelobe, cf. Fig. 5.27, one

expects greater deviations for the transmitted fields aswell.
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Fig 7.8. At 6 = 5° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(z,0, 22, f)|
using the hybrid FEM-ASM approach. Solid lines indicate the z—distances addressed in Fig. 7.9, and frequencies in
Figs. 7.11, 7.12 and 7.13. Leaky Lamb modes for a plane-wave incident angle 6p = 5° are indicated at their respective

frequencies at x = 20 mm.

Figs. 7.10(a), 7.10(b) and 7.10(c) show the magnitude of the hybrid FEM-ASM simulated pressure
field distribution |P(z,0, z, f)| at f = 454 kHz, f = 581 kHz and f = 775 kHz as a function of z—
and z—positions, respectively, near the leaky Lamb modes for p = 5°. The incident pressure field
produced by, and propagated from, the piezoelectric transducer towards the plate, and the pressure
field transmitted through the plate, is presented. For f = 454 kHz (near the S; mode) and f = 775 kHz
(near the As mode) in Figs. 7.10(a) and 7.10(c) respectively, the plate causes a beam displacement, in
addition to a beam narrowing effect. While for f = 581 kHz (near the Ss mode) in Fig. 7.10(b), the
plate causes a beam narrowing effect. For all frequencies, an interference pattern can be seen below
the plate, due to the superposition of a geometrically transmitted field and a leaky transmitted field

due to the leaky guided wave motion inside the plate.
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Fig 7.9. At 6 = 5° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(x,0, 22, f)|
using the hybrid FEM-ASM approach (blue line) in comparison with measurements (red line) fora) z = 0 mm, b) z = 20
mm, c¢) z =40 mm and d) z = 60 mm. The frequency spectra at the four z—distances are indicated with solid lines in
Fig. 7.8.

Fig. 7.11(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P;(x, y, 22, f)|
at a frequency of 454 kHz as a function of z— and y—positions, for a constant z = 25, close to the
excitation frequency for a #p = 5° plane-wave incidence of the S; at 453.8 kHz. Fig. 7.11(b) shows the
hybrid FEM-ASM (blue line) calculated |Hy p(x,0, z2,454kHz)| as function of x—position, in compar-
ison with measurements (red line), cf. Fig. 6.18 for the transmission through the plate. An agreement
within 3.7 dB to measurement is shown for the entire region. In Figs. 7.11(c), 7.11(d), 7.11(e) and
7.11(f) the simulated sound pressure waveforms p;(z,y, 22,t) with centre frequency f = 454 kHz are
compared to measured waveforms at four receiver positions '+’ in Fig. 7.11(a) at = = 0, 20,40, 60
mm, respectively. Agreement within 1.4 dB between the simulations and measurements in signal level,
bandwidth and waveform are shown, as expected from Fig.7.11(b). The deviations in the pulse arrival
time between simulated and measured waveforms are 0.02, 0.02, 0.09 and 0.09 for x = 0, 20, 40, 60 mm,

respectively.

Fig. 7.12(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P(x, y, za, f)]
at a frequency of 581 kHz as a function of z— and y—positions, for a constant z = 25, close to the
excitation frequency for a 8p = 5° plane-wave incidence of the Sy at 581.1 kHz. The interference
pattern present in Fig. 7.10(b) can be seen. Fig. 7.12(b) shows the hybrid FEM-ASM (blue line)
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calculated |Hy p(x,0, z2,581kHz)| as function of x—position, in comparison with measurements (red
line), cf. Fig. 6.18 for the transmission through the plate. An agreement within 1.6 dB for the region
x = —10 — 50 mm is shown, and the behaviour of the interference pattern is correctly simulated. In
Figs. 7.12(c), 7.12(d), 7.12(e) and 7.12(f) the simulated sound pressure waveforms p:(z,y, 22, t) with
centre frequency f = 581 kHz are compared to measured waveforms at four receiver positions %’ in
Fig. 7.12(a) at x = 0,20,40,60 mm, respectively. The same conclusions as for the waveforms in Fig.
7.11 can be made. The deviations in the pulse arrival time between simulated and measured waveforms
are 0.35, 0.4, 0.35 and 0.4 for = = 0, 20, 40,60 mm, respectively. Fig. 7.13(a) shows the hybrid FEM-
ASM simulated transmitted pressure field distribution |P;(z,y, 22, )| at a frequency of 775 kHz as a
function of x— and y—positions, for a constant z = z5, close to the excitation frequency for a 8p = 5°
plane-wave incidence of the Ao at 774.9 kHz. Fig. 7.13(b) shows the hybrid FEM-ASM (blue line)
calculated |Hy p(x,0, 29, 775kHz)| as function of z—position, in comparison with measurements (red
line), cf. Fig. 6.18 for transmission through the plate. In Figs. 7.13(c), 7.13(d), 7.13(e) and 7.13(f) the
simulated sound pressure waveforms p;(x,y, z2,t) with centre frequency f = 775 kHz are compared to
measured waveforms at four receiver positions ’x’ in Fig. 7.13(a) at = = 0, 20,40, 60 mm, respectively.
Agreement within 1.7 dB between the simulations and measurements in bandwidth and waveform are
shown, with some deviations in signal level, as expected from Fig. 7.13(b). For x = 20,40 the signal

level of the simulated waveforms increases, while the measurements decreases for x = 20, while
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increases at = 40,60 mm. This influences the calculations of the measurement results, which assumes
a steady state region of each transmitted waveform. The measurement results in Fig. 7.13(f) are
therefore calculated from the very beginning of the steady state region. To correct this, another
method for determining |P;(x,y, 22, f)| must be implemented. The deviations in the pulse arrival time

between simulated and measured waveforms are 0.08, 1.47, 1.16 and 0.31 for = = 0,20,40,60 mm,

respectively.
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Fig 7.11. At 0 = 5° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(x,y, 22, f)|
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Fig 7.12. At 0 = 5° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(z,y, 22, f)|
at a) 581 kHz near the S at 581.1 kHz. b) Simulated and measured |P;(z,0, z2, f)|. Simulated and measured pressure
waveforms p¢(z,y, 22, t) with centre frequency f = 581 kHz, at the receiver positions '+’ in Fig. 7.12(a): ¢) at position
(0,0, 22), d) at position (20,0, z2), e) at position (40,0, z2) and f) at position (60,0, z2).
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Fig 7.13. At 6 = 5° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(z,y, 22, f)|
at a) 775 kHz near the Ay at 774.9 kHz. b) Simulated and measured |P(z,0, z2, f)|. Simulated and measured pressure
waveforms p¢(x,y, z2,t) with centre frequency f = 775 kHz, at the receiver positions ’+’ in Fig. 7.13(a): c) at position
(0,0, 22), d) at position (20,0, z2), e) at position (40,0, z2) and f) at position (60,0, z2).

7.4 0 =10° beam incidence

In Fig. 7.14 the hybrid FEM-ASM calculated |Hy p(z,0, 22, f)| is shown for a 10° beam incidence
angle, as a function of frequency and z-position, at the receiver depth zo = 376.05 mm, in relation to
Fig. 6.19. The frequencies corresponding to the leaky Lamb modes S, So and As for a plane-wave
incident angle p = 10° cf. Fig. 6.6 are 447.3 kHz, 738.6 kHz and 806.1 kHz, respectively, indicated at

x = 60 mm in Fig. 7.14. The maxima are in the vicinity of the leaky Lamb modes, and demonstrates
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regions in space and frequency where the transmission through the system is relatively high. The black
vertical lines show z—positions where the simulations are compared to measurements as a function of
frequency, and the black horizontal lines show specific frequencies where the simulations are compared
to measurements as a function of z—position. Similar plots are shown in [95] for the piezoelectric

transducer, and in [91, 92] for a piston generated beam pattern.
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Fig 7.14. At 6 = 10° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(z, 0, 22, f)|
using the hybrid FEM-ASM approach. Solid lines indicate the xz—distances addressed in Fig. 7.15, and frequencies in
Figs. 7.17, 7.18 and 7.19. Leaky Lamb modes for a plane-wave incident angle 6 p = 10° are indicated at their respective

frequencies at x = 60 mm.

The hybrid FEM-ASM simulated voltage-to-pressure transfer function |Hy p(x, 0, 22, f)| at = 40 mm,
2 = 60 mm, x = 80 mm and x = 100 mm in Fig. 7.14 (marked with lines) are shown (blue lines) in
Fig. 7.15(a), 7.15(b), 7.15(c) and 7.15(d), respectively, as a function of frequency, and compared to
measurement results (red lines). The corresponding relative transmission through the plate are shown
in Fig. 6.20. The black vertical lines indicates frequencies where the transmitted waveforms are simu-
lated and compared to measurements, cf. Figs. 7.17, 7.18 and 7.19. For all z—positions an agreement,
within 2 dB between simulations and measurements is shown for the entire frequency range, with some

exceptions.

Figs. 7.16(a), 7.16(b) and 7.16(c) show the magnitude of the hybrid FEM-ASM simulated pressure
field distribution |P(z,0,z, f)| at f = 448 kHz, f = 739 kHz and f = 806 kHz as a function of z—
and z— positions, respectively, near the leaky Lamb modes for §p = 10°. The incident pressure field
produced by, and propagated from, the piezoelectric transducer towards the plate, and the pressure
field transmitted through the plate, is presented. For f = 448 kHz (near the S; mode) in Fig. 7.16(a)

the plate causes a beam displacement and beam narrowing effect. While for f = 739 kHz (near the S
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mode) and f = 806 kHz (near the As mode) in Figs. 7.16(b) and 7.16(c) respectively, the plate causes
a beam narrowing effect only. An interference pattern is shown, as for a 5° beam incidence angle in
Fig. 7.10, caused by the superposition of a geometrically transmitted field and a leaky field due to
the leaky guided wave motion inside the plate. For all frequencies, some aliasing effects in the region
x = (—300) — (—200) mm can be experienced, this will be further discussed in Sect. 7.9.
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Fig 7.15. At 6 = 10° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(z, 0, 22, f)|
using the hybrid FEM-ASM approach (blue line) in comparison with measurements (red line) for a) £ = 40 mm, b)
2 =60 mm, ¢) x = 80 mm and d) z = 100 mm. The frequency spectra at the four z—distances are indicated with solid
lines in Fig. 7.14.

Fig. 7.17(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P;(x,y, 22, f)|
at a frequency of 448 kHz as a function of z— and y—positions, for a constant z = 25, close to the
excitation frequency for a p = 10° plane-wave incidence of the S; at 447.3 kHz. Fig. 7.17(b) shows the
hybrid FEM-ASM (blue line) calculated |Hy p(z,0, 22, 448kHz)| as function of z—position, in compari-
son with measurements (red line), cf. Fig. 6.21 for transmission through the plate. An agreement within
2.4 dB between simulations and measurements is shown for up to = 130 mm, at high x—positions
the noise becomes a dominant part of the measurement results. In Figs. 7.17(c), 7.17(d), 7.17(e) and
7.17(e) the simulated sound pressure waveforms p;(z,y, z2,t) with centre frequency f = 448 kHz are
compared to measured waveforms at four receiver positions ’«’ in Fig. 7.17(a) at x = 40, 60, 80, 100 mm,
respectively. Agreement within 1.2 dB between the simulated and measured waveforms in bandwidth,
signal level and waveform is shown, as expected from Fig. 7.17(b). The deviations in the pulse arrival
time between simulated and measured waveforms are 0.09, 0.05, 0.31 and 0.36 for x = 40, 60, 80, 100
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mm, respectively.
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Fig 7.16. At (0 = 10°) beam incidence: Simulated magnitude of the pressure field distribution |P(z,0,z, f)|, a) at
f = 448kHz, b) at f = 739 kHz and ¢) at f = 806 kHz, using the hybrid FEM-ASM approach.

Fig. 7.18(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P;(x, y, za, f)]
at a frequency of 739 kHz as a function of z— and y—positions, for a constant z = 25, close to the
excitation frequency for a §p = 10° plane-wave incidence of the Sy at 738.6 kHz. Fig. 7.18(b) shows
the hybrid FEM-ASM (blue line) calculated |Hy p(x,0, 22, 739kHz)| as function of x—position, in com-
parison with measurements (red line), cf. Fig. 6.21 for transmission through the plate. An agreement
within 0.8 dB between simulations and measurements is shown in the region z = 30 — 100 mm, outside
this region noise becomes a dominant part of the measurement results. Also, in this region the higher
order sidelobes contributes to the overall transmission. Hence, greater deviations due to the deviations
in the beam patterns in Fig. 5.27. In Figs. 7.18(c), 7.18(d), 7.18(e) and 7.18(e) the simulated sound
pressure waveforms p;(x,y, z2,1) with centre frequency f = 739 kHz are compared to measured wave-
forms at four receiver positions '+’ in Fig. 7.18(a) at x = 40,60, 80, 100 mm, respectively. Agreement
within 0.8 dB between simulated and measured waveforms for bandwidth, signal level and waveform is
shown. The deviations in the pulse arrival time between simulated and measured waveforms are 0.07,
0.07, 0.59 and 0.51 for z = 40, 60, 80, 100, respectively. Fig. 7.19(a) shows the hybrid FEM-ASM sim-
ulated transmitted pressure field distribution |P;(x,y, 22, f)| at a frequency of 806 kHz as a function of
x— and y—positions, for a constant z = zs, close to the excitation frequency for a p = 10° plane-wave
incidence of the As at 806.1 kHz. Fig. 7.19(b) shows the hybrid FEM-ASM (blue line) calculated
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|Hy p(x,0, 22, 806kHz)| as function of x—position, in comparison with measurements (red line). An

agreement, within 2.2 dB is shown in the region x = 40 — 150 mm, although for x—positions above
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Fig 7.17. At 0 = 10° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(x, y, 22, f)|
at a) 448 kHz near the S at 447.3 kHz. b) Simulated and measured |P;(z,0, z2, f)|. Simulated and measured pressure
waveforms p¢(z,y, z2,t) with centre frequency f = 448 kHz, at the receiver positions +’ in Fig. 7.17(a): ¢) at position
(40,0, z2), d) at position (60,0, 22), €) at position (80,0, z2) and f) at position (100, 0, z2).

150 mm, the simulations still follows the behaviour of the measured interference pattern. In Figs.
7.19(c), 7.19(d), 7.19(e) and 7.19(e) the simulated sound pressure waveforms p;(z,y, z2,¢) with centre
frequency f = 806 kHz are compared to measured waveforms at four receiver positions ’«’ in Fig. 7.19(a)
at x = 40,60,80,100 mm, respectively. The same conclusion regarding waveform, bandwidth and

signal level can be made as for Fig. 7.18, deviations within 1.3 dB. The deviations in the pulse arrival
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time between simulated and measured waveforms are 0.16, 0.24, 0.72 and 0.64 for = = 40, 60, 80, 100,
respectively. As for other waveforms at high frequencies, e.g. Fig. 7.7, the numerical errors in the
simulated time arrival increases with frequency, as the FE element division decreases, cf. convergence
tests in Sect. 4.4. Another reason for the deviations in the transient region of the pulses, is that
the transfer function Hy p(z,y, 2o, f) is only simulated up to 1.2 MHz. The transient region for high

frequency (above 700-800 kHz) waveforms could be improved by extending the transfer function to
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Fig 7.18. At 6 = 10° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(z, y, 22, f)|
at a) 739 kHz near the S at 738.6 kHz. b) Simulated and measured |P:(z,0, z2, f)|. Simulated and measured pressure
waveforms p¢(z,y, z2,t) with centre frequency f = 739 kHz, at the receiver positions '+’ in Fig. 7.18(a): ¢) at position
(40,0, z2), d) at position (60,0, 22), €) at position (80,0, z2) and f) at position (100, 0, z2).
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higher frequencies beyond 1.2 MHz, and using a finer FE division. This is further discussed in Sect.
7.9.

— 50
> —Hybrid FEM-ASM
'ﬁ‘ § —Measurement
I & 40 . !
a o
e 8 3o 1
o =
2 N
I B
4 o
8 @
2 N 10)
N S
= X
Z Es
z £
° o
g o —10
=1 S
SR, | |
=50 0 50 100 150 200 250
X [mm]
(a) (b)
200
— i —, 500 T T T T T T
Hybrid FEM-ASM —Fiybrid FEM_ASM
100k ‘ , , - § [—Hybrid FEM-ASM|
o AAAMAA A
VPV 0l
. _100- 1 , , ‘ |
— = L L L L L L L L
240 260 280 300 320 340 360 380 400 420 = S0 260 280 300 320 340 360 380 400 420
g 200, g
S >
g —Measurement]| 3 500 ! ! ! ! ! ! —Measurement
< 100 : 1«
0 o—w--ﬁw M\WMWWMMWWWWWWWWW
-100
209 . . . . . . , , 509 I , , , . , , ,
40 260 280 300 320 340 360 380 400 420 40 260 280 300 320 340 360 380 400 420
Time, t [us] Time, t [us]
(c) (d)
400 . . . . ‘ ‘ _ 400 ‘ ‘ ‘ ‘ ‘ ‘ _
—Hybrid FEM-ASM| —Hybrid FEM-ASM|
200r N 2001 1
0 0
— —200r 1 @ —-200p q
g £
= _40 L L L L L L L L = -40 L L L L L L L L
= 340 260 280 300 320 340 360 380 400 420 & 5}40 260 280 300 320 340 360 380 400 420
S s
S 400 S 400
. —Measurement = —Measurement
< 200+ 4 2 200 4
0 0
—2001 N —-2001 q
_a0 , , . \ , , , _40 , , , , \ , , ,
§40 260 280 300 320 340 360 380 400 420 £40 260 280 300 320 340 360 380 400 420
Time, t [us] Time, t [us]
(e) )

Fig 7.19. At 0 = 10° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(x, y, 22, f)|
at a) 806 kHz near the Ay at 806.1 kHz. b) Simulated and measured |P;(z,0, 22, f)|. Simulated and measured pressure
waveforms p¢(z,y, z2,t) with centre frequency f = 806 kHz, at the receiver positions +’ in Fig. 7.19(a): ¢) at position
(40,0, z2), d) at position (60,0, 22), €) at position (80,0, z2) and f) at position (100, 0, z2).

7.5 6 = 15° beam incidence

In Fig. 7.20 the hybrid FEM-ASM simulated |Hy p(x, 0, 22, f)| is shown for a 15° beam incidence angle,

as a function of frequency and z-position, at the receiver depth zy = 376.05 mm, in relation to Fig.
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6.22. The frequencies corresponding to the leaky Lamb modes A; and S; for a plane-wave incident
angle p = 15° cf. Fig. 6.6 are 523.9 kHz and 631.9 kHz, respectively, indicated at £ = 120 mm in Fig.
7.20. The maxima are in the vicinity of the leaky Lamb modes, and demonstrates regions in space and
frequency where the transmission through the system is relatively high. The black vertical lines show
x—positions where the simulations are compared to measurements as a function of frequency, and the
black horizontal lines show specific frequencies where the simulations are compared to measurements as
function of x—position. Similar plots are shown in [95] for the piezoelectric transducer, and in [91, 92]

for a piston generated beam pattern.

1000 60
50 =
[0
o
40 o
N o
3 ]
2 =
s N
=1 20 <
o =1
L >
10 &
o
k)
0 g

= : : -10

-50 0 50 100 150 200 250

X [mm]

Fig 7.20. At 6 = 15° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(z, 0, 22, f)|
using the hybrid FEM-ASM approach. Solid lines indicate the z—distances addressed in Fig. 7.21, and frequencies in
Figs. 7.23 and 7.24. Leaky Lamb modes for a plane-wave incident angle §p = 15° are indicated at their respective

frequencies at x = 120 mm.

The hybrid FEM-ASM simulated voltage-to-pressure transfer function |Hyp(z,0, 22, f)| at = 100
mm, z = 120 mm and 2 = 140 mm in Fig. 7.20 (marked with lines) are shown (blue lines) in Fig.
7.21(a), 7.21(b) and 7.21(c) , respectively, as a function of frequency, and compared to measurement
results (red lines). The corresponding relative transmission through the plate are shown in Fig. 6.23.
For all z—positions an agreement within 1.6 dB between simulations and measurements is shown for
the entire frequency range, except at higher frequencies at * = 140 mm. For high frequencies, this

r—position is not covered by the main lobe of the transducer.

Figs. 7.22(a) and 7.22(b) show the magnitude of the hybrid FEM-ASM simulated pressure field distri-
bution |P(x,0, 2z, f)| at f = 524 kHz and f = 634 kHz as a function of z— and z—positions, respectively,
near the leaky Lamb modes for p = 15°. The incident pressure field produced by, and propagated

from, the piezoelectric transducer towards the plate, and the pressure field transmitted through the
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plate, is presented. For f = 524 kHz (near the A; mode) in Fig. 7.22(a), the plate causes a beam

narrowing effect, in addition to an interference pattern discussed in Sect. 7.4. For f = 634 kHz (near

the S; mode) in Fig. 7.22(b), the plate causes, in addition to the beam narrowing effect shown for

f =524 kHz, a beam displacement. As discussed earlier, aliasing effects in the region around -300 to

-200 mm for the transmitted pressure are present. This is further discussed in Sect. 7.9. The
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step-by-step simulation process of the hybrid FEM-ASM approach is exemplified in Sect. 4.3.1.
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Fig 7.23. At 6 = 15° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(z, y, 22, f)|

at a) 524 kHz near the A; at 523.9 kHz. b) Simulated and measured |P;(z, 0, z2, f)|. Simulated and measured pressure

waveforms p¢(x, y, z2,t) with centre frequency f = 524 kHz, at the receiver positions ’«’ in Fig. 7.23(a): ¢) at position
(100, 0, z2), d) at position (120,0,22) and e) at position (140, 0, z2).

Fig. 7.23(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P;(x, y, 22, f)|

at a frequency of 524 kHz as a function of z— and y—positions, for a constant z = 25, close to the

excitation frequency for a p = 15° plane-wave incidence of the A; at 523.9 kHz. Here, the interference
pattern present in Fig. 7.22(a) can be observed. Fig. 7.23(b) shows the hybrid FEM-ASM (blue line)

calculated |Hy p(x,0, 29,524kHz)| as function of z—position, in comparison with measurements (red
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line), cf. Fig. 6.24 for transmission through the plate. An agreement within 4 dB is shown in the region

x = 70 — 250 mm, but for z—positions below greater deviations are present. In this region, higher
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Fig 7.24. At 6 = 15° beam incidence:
at a) 634 kHz near the S1 at 631.9 kHz. b) Simulated and measured |P;(z,0, z2, f)|. Simulated and measured pressure

Simulated magnitude of the transmitted pressure field distribution |P;(z, y, 22, f)|

waveforms p¢(z,y, z2,t) with centre frequency f = 634 kHz, at the receiver positions '+’ in Fig. 7.24(a): ¢) at position
(100, 0, z2), d) at position (120,0,z2) and e) at position (140, 0, z2).

order sidelobes dominates the transmission through the plate, hence, deviations based upon the beam
7.23(c), 7.23(d) and 7.23(e) the simulated

sound pressure waveforms p;(z,y, 22, t) with centre frequency f = 524 kHz are compared to measured

patterns in Fig. 5.27 affects the comparion. In Figs.

waveforms at three receiver positions '+’ in Fig. 7.23(a) at = = 100, 120,140 mm, respectively. An

agreement, within 1.9 dB between simulated and measured waveforms for signal level, bandwidth and
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waveform is shown for all z—positions. As is evident from Fig. 7.23(a), for these x—positions the
transmission through the system is relatively high, hence the wide bandwidth of the signals. The
deviations in the pulse arrival time between simulated and measured waveforms are 0.47, 0.52 and
0.68 for x = 100,120,140 mm, respectively. Fig. 7.24(a) shows the hybrid FEM-ASM simulated
transmitted pressure field distribution |Pi(z,y, 22, f)| at a frequency of 634 kHz as a function of z—
and y—positions, for a constant z = z5, close to the excitation frequency for a p = 15° plane-wave
incidence of the S; at 631.9 kHz. Fig. 7.24(b) shows the hybrid FEM-ASM (blue line) calculated
|Hy p(x,0, 22,634kHz)| as function of z—position, in comparison with measurements (red line), cf. Fig.
6.24 for transmission through the plate. An agreement within 6 dB is shown for the region = = 50—200,
including the interference pattern at x—positions 150 mm and higher. In Figs. 7.24(c), 7.24(d) and
7.24(e) the simulated sound pressure waveforms p:(x,y, z2,t) with centre frequency f = 634 kHz are
compared to measured waveforms at three receiver positions '+’ in Fig. 7.24(a) for = = 100, 120, 140
mm, respectively. The same conclusions as for f = 524 kHz in Fig. 7.23 can be made, deviations within
1.2 dB. The deviations in the pulse arrival time between simulated and measured waveforms are 0.5,
0.76 and 0.5 for x = 100, 120, 140 mm, respectively.

7.6 6 = 20° beam incidence
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Fig 7.25. At 6 = 20° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(z, 0, 22, f)|
using the hybrid FEM-ASM approach. Solid lines indicate the z—distances addressed in Fig. 7.26, and frequencies in
Figs. 7.28 and 7.29. Leaky Lamb modes for a plane-wave incident angle §p = 20° are indicated at their respective
frequencies at x = 150 mm.

In Fig. 7.25 the hybrid FEM-ASM calculated |Hyp(z,0, 22, f)| is shown for a 20° beam incidence

angle, as a function of frequency and z-position, at the receiver depth zo = 376.05 mm, in relation to
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Fig. 6.25. The frequencies corresponding to the leaky Lamb modes Sy and A; for a plane-wave incident
angle p = 20° cf. Fig. 6.6 are 372.6 kHz and 746.0 kHz, respectively, indicated at x = 150 mm in Fig.
7.25. The maxima are in the vicinity of the leaky Lamb modes, and demonstrates regions in space and
frequency where the transmission through the system is relatively high. The black vertical lines show
x—positions where the simulations are compared to measurements as a function of frequency, and the
black horizontal lines show specific frequencies where the simulations are compared to measurements as
function of z—position. Similar plots are shown in [95] for the piezoelectric transducer, and in [91, 92]

for a piston generated beam pattern.
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Fig 7.26. At 6 = 20° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(z, 0, 22, f)|
using the hybrid FEM-ASM approach (blue line) in comparison with measurements (red line) for a) x = 120 mm, b)

z = 150 mm c¢) z = 180 mm. The frequency spectra at the three z—distances are indicated with solid lines in Fig. 7.25.

The hybrid FEM-ASM simulated voltage-to-pressure transfer function |Hyp(z,0, 22, f)| at z = 120
mm, z = 150 mm and z = 180 mm in Fig. 7.25 (marked with lines) are shown (blue lines) in
Fig. 7.26(a), 7.26(b) and 7.26(c) , respectively, as a function of frequency, and compared to mea-
surement results (red lines). The corresponding relative transmission through the plate are shown in
Fig. 6.26. The black vertical lines indicates frequencies where the transmitted waveforms are sim-
ulated and compared to measurements, cf. Figs. 7.28 and 7.29. For all z—positions an agreement
within 2.6 dB between measurements and simulations is shown for the entire frequency range, except
at higher frequencies (above 900 kHz) and the minimum at 570 kHz for = 150 mm. For z = 150 mm,
the measured minimum around 960 kHz is shifted upwards in frequency in relation to simulations. As

discussed earlier, alignment issues at high frequency due to the directive transducer can be problematic.
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Figs. 7.27(a) and 7.27(b) show the magnitude of the hybrid FEM-ASM simulated pressure field distri-
bution |P(z,0, z, f)| at f = 373 kHz and f = 746 kHz as a function of x— and z—positions, respectively,
near the leaky Lamb modes for 8p = 20°. The incident pressure field produced by, and propagated
from, the piezoelectric transducer towards the plate, and the pressure field transmitted through the
plate, is presented. For f = 373 kHz (near the Sy mode) and f = 746 kHz (near the A; mode) in
Figs. 7.27(a) and 7.27(b), the plate causes a beam narrowing effect, in addition to a trailing leaky field
(further discussed in Sect. 7.9. Aliasing effects as for e.g. Fig. 7.22(a) are present for both frequencies.
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Fig 7.27. At (0 = 20°) beam incidence: Simulated magnitude of the pressure field distribution |P(z,0,z, f)|, a) at
f =373kHz and b) at f = 746 kHz, using the hybrid FEM-ASM approach.

Fig. 7.28(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P(x, y, za, f)]
at a frequency of 373 kHz as a function of z— and y—positions, for a constant z = 25, close to the
excitation frequency for a §p = 20° plane-wave incidence of the Sy at 372.6 kHz. Fig. 7.28(b) shows
the hybrid FEM-ASM (blue line) calculated |Hy p(x,0, z2,373kHz)| as function of x—position, in com-
parison with measurements (red line), cf. Fig. 6.27 for transmission through the plate. An agreement
within 3.7 dB is shown in the region x = 50 — 250 mm, for x—positions below 50 mm, noise is a
dominant part of the measurement results. In Figs. 7.28(c), 7.28(d) and 7.28(e) the simulated sound
pressure waveforms p;(x,y, z2,t) with centre frequency f = 373 kHz are compared to measured wave-
forms at three receiver positions '+’ in Fig. 7.28(a) at = = 120, 150, 180 mm, respectively. Agreement
within 0.1 dB is shown for waveform, bandwidth and signal level, as expected from Fig. 7.28(b). The
deviations in the pulse arrival time between simulated and measured waveforms are 0.37, 0.04 and 0.30
for = 120, 150, 180 mm, respectively. Fig. 7.29(a) shows the hybrid FEM-ASM simulated transmitted
pressure field distribution |P;(z,y, 22, f)| at a frequency of 746 kHz as a function of 2— and y—positions,
for a constant z = zs, close to the excitation frequency for a p = 20° plane-wave incidence of the A;
at 746.0 kHz. Fig. 7.29(b) shows the hybrid FEM-ASM (blue line) calculated |Hy p(z,0, 22, 746kHz)|
as function of x—position, in comparison with measurements (red line), cf. Fig. 6.27 for transmission
through the plate. Agreement within 4.1 dB is shown in the region z = 75 — 250 mm. The greater
deviations for lower x—position is a combination of noise in measurement results, and the deviations in
the simulated beam pattern to the measured beam pattern moving beyond the first sidelobe. In Figs.

7.29(c), 7.29(d) and 7.29(e) the simulated sound pressure waveforms p;(x,y, z2,t) with centre frequency
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f = 746 kHz are compared to measured waveforms at three receiver positions ’+’ in Fig. 7.29(a) at

x = 120, 150, 180 mm, respectively. The same conclusions as for Fig. 7.28 can be made. The deviations

in the pulse arrival time between the simulated and measured waveforms are 0.3, 0.04 and 0.52 for

x = 120,150, 180 mm, respectively. The transient

z = 180 mm deviates for the measured waveforms.

frequency waveforms.
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Fig 7.28. At 6 = 20° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(x, y, 22, f)|
at a) 373 kHz near the Sp at 372.6 kHz. b) Simulated and measured |P;(z, 0, z2, f)|. Simulated and measured pressure

waveforms p¢(z, y, z2,t) with centre frequency f = 373 kHz, at the receiver positions «’ in Fig. 7.28(a): ¢) at position

(120,0, 22), d) at position (150,0, 22) and e) at position (180, 0, z2).
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Fig 7.29. At 6 = 20° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(z, y, 22, f)|
at a) 746 kHz near the A; at 746.0 kHz. b) Simulated and measured |P;(z,0, 22, f)|. Simulated and measured pressure
waveforms p¢(z,y, z2,t) with centre frequency f = 746 kHz, at the receiver positions '+’ in Fig. 7.29(a): ¢) at position
(120,0, 22), d) at position (150,0,22) and e) at position (180, 0, z2).

7.7 6 = 25° beam incidence

In Fig. 7.30 the hybrid FEM-ASM calculated |Hy p(z,0, 22, f)| is shown for a 25° beam incidence

angle, as a function of frequency and z-position, at the receiver depth z; = 376.05 mm, in relation

to Fig. 6.28. The frequency corresponding to the leaky Lamb mode Sy for a plane-wave incident
angle p = 25° cf. Fig. 6.6 is 446.0 kHz, indicated at z = 200 mm in Fig. 7.30. The maximum is

in the vicinity of the leaky Lamb mode, and demonstrates regions in space and frequency where the

164



transmission through the system is relatively high. The black vertical lines show x—positions where
the simulations are compared to measurements as a function of frequency, and the black horizontal
line show the specific frequency where the simulations are compared to measurements as function of
x—position. Similar plots are shown in [95] for the piezoelectric transducer, and in [91, 92] for a piston

generated beam pattern.
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Fig 7.30. At 6 = 25° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(z, 0, 22, f)|
using the hybrid FEM-ASM approach. Solid lines indicate the z—distances addressed in Fig. 7.31, and the frequency in
Fig. 7.33. The leaky Lamb mode Sy for a plane-wave incident angle 0p = 25° is indicated at its respective frequency at

r = 200 mm.

The hybrid FEM-ASM simulated voltage-to-pressure transfer function |Hyp(z,0, 22, f)| at = 180
mm, z = 200 mm and z = 220 mm in Fig. 7.30 (marked with lines) are shown (blue lines) in Fig.
7.31(a), 7.31(b) and 7.31(c), respectively, as a function of frequency, and compared to measurement
results (red lines). The corresponding relative transmission through the plate are shown in Fig. 6.29.
The black vertical line indicate the frequency where the transmitted waveforms are simulated and com-
pared to measurements, cf. Fig. 7.33. For x = 180,200 mm in Figs. 7.31(a) and 7.31(b), an agreement
within 3.6 dB between measurements and simulations is shown, except at the minimum for x = 200
mm. For z = 220 mm in Fig. 7.31(c), an agreement within 2.8 dB is shown up to 750 kHz. At higher

frequencies, the simulations deviates from the measurement results.

Fig. 7.32 shows the magnitude of the hybrid FEM-ASM simulated pressure field distribution |P(z,0, z, f)]
at f = 446 kHz as a function of x— and z—positions, near the leaky Lamb mode for p = 25°. The
incident pressure field produced by, and propagated from, the piezoelectric transducer towards the
plate, and the pressure field transmitted through the plate, is presented. The plate causes minimal

beam displacement, but a trailing leaky field can be observed. As for other pressure field distributions
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at non-zero beam incidence angles, aliasing effects in the region -300 to -200 mm is evident.
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Fig 7.31. At 6 = 25° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(z, 0, 22, f)|
using the hybrid FEM-ASM approach (blue line) in comparison with measurements (red line) for a) « = 180 mm, b)

z =200 mm ¢) z = 220 mm. The frequency spectra at the three z—distances are indicated with solid lines in Fig. 7.30.
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Fig 7.32. At (0 = 25°) beam incidence: Simulated magnitude of the pressure field distribution |P(z,0, 2z, f)| at f = 446
kHz using the hybrid FEM-ASM approach.

Fig. 7.33(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P(x, y, za, f)]
at a frequency of 446 kHz as a function of z— and y—positions, for a constant z = z5, close to the
excitation frequency for a fp = 25° plane-wave incidence of the Sy at 446.0 kHz. Fig. 7.33(b) shows
the hybrid FEM-ASM (blue line) calculated |Hy p(x,0, z2,446kHz)| as function of x—position, in com-

parison with measurements (red line), cf. Fig. 6.30 for transmission through the plate. Agreement
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within 1.1 dB is shown in the region z = —130 — 230 mm. In Figs. 7.33(c), 7.33(d) and 7.33(e) the

simulated sound pressure waveforms p;(x,y, z2,t) with centre frequency f = 446 kHz are compared to

measured waveforms at three receiver positions ’x’ in Fig. 7.33(a) at z = 180, 200, 220 mm, respectively.

An agreement within 0.6 dB is shown for waveform, signal level and bandwidth of the measured and

simulated transmitted waveforms. Due to the relatively high transmission around this frequency and
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Fig 7.83. At 6 = 25° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(z, y, 22, f)|
at a) 446 kHz near the So at 446.0 kHz. b) Simulated and measured |P;(z,0, z2, f)|. Simulated and measured pressure
waveforms p¢(z,y, z2,t) with centre frequency f = 446 kHz, at the receiver positions '+’ in Fig. 7.33(a): ¢) at position
(180,0, 22), d) at position (200,0,22) and e) at position (220,0, z2).

x—position, cf. Fig. 7.30, the waveforms have wide bandwidths. The deviations in the pulse arrival
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time between the simulated and measured waveforms are 0.45, 0.31 and 0.49 for x = 180, 200, 220 mm,

respectively.

7.8 6 = 30° beam incidence

In Fig. 7.34 the hybrid FEM-ASM calculated |Hy p(z,0, 22, )| is shown for a 30° beam incidence
angle; as a function of frequency and z-position, at the receiver depth zo = 376.05 mm. The frequency
corresponding to the leaky Lamb mode Sy for a plane-wave incident angle p = 30° cf. Fig. 6.6 is
691.3 kHz, indicated at x = 230 mm in Fig. 7.34. The maximum is in the vicinity of the leaky Lamb
mode, and demonstrates regions in space and frequency where the transmission through the system
is relatively high. The black vertical lines show x—positions where the simulations are compared to
measurements as a function of frequency, and the black horizontal line show the specific frequency
where the simulations are compared to measurements as function of xz—position. Similar plots are

shown in [95] for the piezoelectric transducer, and in [91, 92] for a piston generated beam pattern.
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Fig 7.34. At 6 = 30° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(z, 0, 22, f)|
using the hybrid FEM-ASM approach. Solid lines indicate the z—distances addressed in Fig. 7.35, and the frequency in
Fig. 7.37. The leaky Lamb mode Sp for a plane-wave incident angle 6p = 30° is indicated at its respective frequency at

r = 230 mm.

The hybrid FEM-ASM simulated voltage-to-pressure transfer function |Hyp(z,0, 22, f)| at = 200
mm, x = 230 mm and = 260 mm in Fig. 7.34 (marked with lines) are shown (blue lines) in Fig.
7.35(a), 7.35(b) and 7.35(c), respectively, as a function of frequency, and compared to measurement
results (red lines). The corresponding relative transmission through the plate are shown in Fig. 6.32.
The black vertical line indicate the frequency where the transmitted waveforms are simulated and
compared to measurements, cf. Fig. 7.37. For z = 200,230 mm in Figs. 7.35(a) and 7.35(b), an
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agreement within 1.5 dB between simulations and measurements is shown for the entire frequency

range. For = 260 mm in Fig. 7.35(c), an agreement within 3.4 dB is found, but the measurements

fluctuates more than at 2 = 200,230 mm. A possible reason for this is reflections for the sides of the

measurement tank described in Chap. 3, where the needle hydrophone is positioned at the extremity

of the tank for measurements at 8 = 30° and x = 260 mm.
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Fig 7.35. At 0 = 30° beam incidence: Simulated magnitude of the voltage-to-pressure transfer function |Hy p(z, 0, 22, f)|

using the hybrid FEM-ASM approach (blue line) in comparison with measurements (red line) for a) z = 200 mm, b)

x =230 mm c¢) z = 260 mm. The frequency spectra at the three x—distances are indicated with solid lines in Fig. 7.34.

Fig 7.36. At (0 = 30°) beam incidence: Simulated magnitude of the pressure field distribution |P(z, 0, z, f)

-300 -250 -200 -150 -100

kHz using the hybrid FEM-ASM approach.
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Fig. 7.36 shows the magnitude of the hybrid FEM-ASM simulated pressure field distribution |P(z,0, z, f)]
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at f =692 kHz as a function of x— and y—positions, near the leaky Lamb mode for p = 30°. The in-
cident pressure field produced by, and propagated from, the piezoelectric transducer towards the plate,

and the pressure field transmitted through the plate, is presented. The plate causes a beam widening
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Fig 7.87. At 6 = 30° beam incidence: Simulated magnitude of the transmitted pressure field distribution |P;(x, y, 22, f)|
at a) 692 kHz near the Sp at 691.3 kHz. b) Simulated and measured |P;(z, 0, z2, f)|. Simulated and measured pressure
waveforms p¢(z, y, z2,t) with centre frequency f = 692 kHz, at the receiver positions '+’ in Fig. 7.37(a): ¢) at position
(200, 0, 22), d) at position (230,0,22) and e) at position (260, 0, z2).

effect, which therefore is also a beam displacement effect. Aliasing effects are present for the trans-

mitted pressure field in the region -300 to -200 mm, as for other non-zero pressure field distributions.

Here, the aliasing effects are greater than for smaller beam incidence angles. The reason for this is
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while the beam incidence angle increases, the energy distribution moves from = = 0 to the extremity of
the grid used. Aliasing occurs when the frequency-wavenumber spectrum ends abruptly, as discussed

in Sect. 4.2 for the FEM approach, but the discussion is also valied for this case.

Fig. 7.37(a) shows the hybrid FEM-ASM simulated transmitted pressure field distribution |P;(x,y, 22, f)|
at a frequency of 692 kHz as a function of z— and y—positions, for a constant z = 25, close to the
excitation frequency for a p = 30° plane-wave incidence of the Sy at 691.3 kHz. Fig. 7.37(b) shows
the hybrid FEM-ASM (blue line) calculated |Hy p(x,0, z2,692kHz)| as function of x—position, in com-
parison with measurements (red line), cf. Fig. 6.33 for transmission through the plate. Agreement
within 2.3 dB is shown in the region x = 180 — 250, where the main lobe gives the largest contribution
to the overall transmission. As for x—positions below 150 mm, the higher order sidelobes contributes,
therefore greater deviations, cf. Fig. 5.27. In Figs. 7.37(c), 7.37(d) and 7.37(e) the simulated sound
pressure waveforms p;(x,y, z2,t) with centre frequency f = 692 kHz are compared to measured wave-
forms at three receiver positions '’ in Fig. 7.37(a) at « = 200, 230, 260 mm, respectively. An agreement
within 0.9 dB is shown for waveform, signal level and bandwidth of the measured and simulated trans-
mitted waveforms. Due to the relatively high transmission around this frequency and z—position, cf.
Fig. 7.34, the waveforms have wide bandwidths. The deviations in the pulse arrival time between the

simulated and measured waveforms are 0.42, 0.28 and 0.04 for x = 200, 230,260 mm, respectively.

7.9 Summary and discussion

In Figs. 7.1, 7.8, 7.14, 7.20, 7.25, 7.30 and 7.34 the voltage-to-pressure transfer function |Hy p(x, 0, 22, f)|
is shown for different angles of beam incidence as function of frequency and x—position. The figures
demonstrate regions in space and frequency where the transmission through the measurement system is
relatively high. These regions need not necessarily correspond to single plane-wave excitation of leaky
Lamb modes in the steel plate due to 3D beam diffraction effects. In Figs. 7.2, 7.9, 7.15, 7.21, 7.26, 7.31
and 7.35 the simulated voltage-to-pressure transfer functions are compared to measurement results for
different x—positions as a function of frequency. In these figures, if lines are on top of each other, or in
contact, a deviation within 0.5 dB is present. The measurement uncertainty in the NPL calibration of
the needle hydrophone was 0.8 dB. Recall the discussion in Chap. 5 and Fig. 5.27, the FEM calculated
beam patterns show deviations to measurement beyond the first sidelobe. So, at x—positions where the
main contribution comes from either the source’s main lobe or first sidelobe, an agreement within, or in
the range of, the measurement uncertainty of the needle hydrophone is observed, in relation to moving
to z—positions outside this region, where the contributions also comes from higher order sidelobes. As
the main and first sidelobe narrow as the frequency increases, deviations to measurement results will

also increase.

As mentioned in Chap. 6, a similar study by Lohne et al. [91, 92] showed qualitative comparisons be-
tween the baffled piston model and measurements (relative scale), since the electroacoustical coupling
in the transducer is not included in the baffled piston model, and due to the normalization method

used. A comparison on an absolute scale is made by Hosten and Biateau [85], where they measured
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and simulated the particle velocity on the surface of an air-embedded plate using 2D FEM (for the
plate). They simulated the transducer’s beam by volume pressure excitation equal to the measured
pressure (magnitude only) from the transducers. Masmoudi et al. [88, 97] extended this by using 3D
FEM for the plate, where they assumed that the transducer’s front surface radiated as an unbaffled
and rigid piston. These works also used the measured efficieny (magnitude only) of the transducer to
enable comparison of absolute amplitudes (predicted and measured), hence the phase response of the
transducer is not taken into account. For all three works a more simplified beam pattern than can be

achieved using FEM for the transducer was used. Time domain waveforms are not shown in these works.

In Fig. 7.3, 7.10, 7.16, 7.22, 7.27, 7.32 and 7.36 the hybrid FEM-ASM simulated pressure field distri-
butions are shown for different angles of beam incidence at frequencies near to excitation frequencies
of the leaky Lamb modes in the steel plate, as a function of x— and z—positions. The incident pres-
sure field produced, and propagated from, the piezoelectric source transducer towards the plate, and
the pressure field transmitted through the plate is shown. Aliasing effects exists for the transmitted
pressure fields, due to the use of bandlimited frequency-wavenumber spectra. These aliasing effects
increases with the incident angle 6, due to an increasingly abrubt ending of the frequency-wavenumber
spectra, cf. discussion in Sect. 4.2. These aliasing effects could be minimized by expanding the spatial
domain, but this would again lead to larger FEM simulations in the hybrid FEM-ASM approach. The
reflected pressure field from the plate’s upper surface is not displayed, since reflection studies are not
part of this thesis. As leaky guided waves in the plate are excited, the transmitted pressure fields are
a superposition of a geometrically transmitted field and a trailing leaky field due to the leaky guided
wave motion inside the plate. Similar plots are reported in [78, 79] for a water-solid interface using the
DPSM, showing the incident and reflected pressure fields, including null regions in accordance with the
theory of Bertoni & Tamir [35]. These works showed qualitative agreement between the DPSM and
measurement results, where quantitative agreement is shown in this thesis between the two approaches

and experiments. Similar plots are also shown in [84] for a large Gaussian acoustic beam.

Simulated pressure field distributions at the receiver depth z, and simulated pressure waveforms for
frequencies near leaky Lamb modes are presented in Figs. 7.4, 7.5, 7.6, 7.7, 7.11, 7.12, 7.12, 7.17, 7.18,
7.19, 7.24, 7.24, 7.28, 7.29, 7.33 and 7.37 for different incidence beam angles and frequencies close to
the excitation of leaky Lamb modes, as a function of x— and y—positions, for a constant z = z5. The
simulated pressure fields distributions at the receiver depth are compared to measurements for y = 0.
The simulated pressure waveforms are compared to measured waveforms, at different receiver positions
and frequencies. Agreement within, or in the range of, the measurement uncertainty for the needle
hydrophone, for waveform, signal level and bandwidth is shown. These parameters change quickly as
function of z—position, for a given 0, f, and z3. Time delay in the electronics, such as the phase
response of the hydrophone, amplifier and cables have not been accounted for. In addition, the sim-
ulated waveforms use a sound velocity of 1485 m/s for the surrounding water, whereas for measured
waveforms, the sound velocity in water can fluctutate over the time period where measurements are
conducted, due to changes in the water temperature, cf. Sect. 5.2.4.1. The deviations in the pulse

arrival time between the majority of the simulated and measured waveforms are within 0.8 fractions of
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a wavelength. As frequency increases, the time delay between measured and simulated waveforms also
increase. This is due to the element division in the FEM simulations. Such an effect would contribute
to larger time deviations as frequency increases, as the element division for a given frequency decreases.
A higher element division in FEM simulations would improve convergence of the FEM results, cf. dis-
cussion concerning phase convergence in Sect. 4.4, as the relative error using less than 5 elements per
wavelength increases quickly beyond 46°, i.e. 0.12 fractions of a wavelength. Increasing the maximum
frequency above 1.2 MHz in the FEM simulations would also increase accuracy of the simulations at

high frequencies, as discussed in Sect. 4.2.

Lohne et al. [91, 92] showed comparison of pulsed piston-generated waveforms and measurements in
the time-domain. They concluded that the simulated waveforms, both in signal level and bandwidth,
followed the measured waveforms fairly. The results showed larger time-of-flight differences between
measured and simulated waveforms than demonstrated using the FEM piezoelectric transducer model
in this thesis. The transducer’s phase response, hence the signal propagation through the transducer, is
not taken into account using the baffled piston model, which is included in the FEM transducer model.
This could partly explain some of the larger time-of-flight differences shown in [91]. [11, 12] showed
comparisons of measured and simulated FEM-HIRM receiver voltage waveforms through a transit-time
ultrasonic flowmeter. There, the focus was on accurate flowmetering, and not on optimization of the

transmission through the plate/pipe and excitation of leaky Lamb modes.

Possible other experimental sources of errors are alignment of the transducer, steel plate and needle
hydrophone, in addition to the conversion from voltage to pressure in transmitted pulsed waveforms.
Also, the positioning of the needle hydrophone for transmission measurements is crucial, and will affect
comparison in regions where large changes in the transmission occur over a relatively small region in
space/frequency, and for measured pressure waveforms. The hydrophone is not rotated around its
axis moving to different z—positions, hence the front face of the hydrophone is only orthogonal to

transmitted waveforms at normal beam incidence.
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Chapter 8

Conclusions and Outlook

Conclusions from the presented work and its overall findings are given in Sect. 8.1. In Sect. 8.2,

suggestions for future investigations are made.

8.1 Conclusions and overall findings

This thesis reports an investigation of the three-dimensional signal propagation through a measurement
system consisting of a piezoelectric source transducer and a water-embedded viscoelastic plate at nor-
mal and oblique angles of beam incidence. The signal transmission has been studied in terms of a FEM
approach, hybrid FEM-ASM approach, and by measurements. Simulation models were developed to
describe a realistic bounded beam from a finite dimensional piezoelectric transducer and its vibration,
including its electro-acoustical coupling, its interaction with a fluid-embedded viscoelastic plate, and

then those models were evaluated experimentally.

Since use of a commercial transducer does not provide sufficient information and control cencerning the
transducer construction, dimensions, materials and material data involved, a piezoelectric transducer
has been designed, constructed, characterized, and used for measurements and FEM simulations. This
includes a more realistic theoretical and complete transducer description/model in relation to e.g. the
baffled piston and Gaussian sources, especially with regard to the signal propagation (phase response)

through the transducer.

By including the piezoelectric source transducer in the theoretical description, a quantitative description
(absolute scale) of the signal chain, from electrical input voltage to the transducer - to the transmitted
sound pressure through the plate is made. This makes it possible to understand and control larger parts
of the real signal chain through the measurement system, including the signal propagation through the
transducer, in relation to e.g. the baffled piston and Gaussian sources. Optimization of that signal
path, in addition to its effect on the signal path through the plate, provides an improved accuracy
and physical understanding, which is vital in the development, optimization and use of non-invasive

ultrasonic methods and applications.
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By utilizing the FEM to model the source transducer, a more realistic beam pattern, and its influence
on leaky Lamb mode excitation in the plate has been realized, in contrast to earlier work which used
transducer models such as the baffled piston source, Gaussian beams or DPSM, with a simplified de-
scription of the measurement transducer’s beam pattern. The effects of using a baffled piston source
model to approximate the incident free-field pressure radiated by the piezoelectric source transducer
has been studied in terms of the pressure-to-pressure transfer function Hpp(x,y, 22, f). This transfer
function governs the signal propagation through the steel plate and the water, including leaky Lamb
mode excitation in the plate. Error estimation of the baffled piston model used as source can now be
quantified, and prediction can be made under which circumstances a baffled piston model can be used
in replacement of the FEM transducer in transmission simulations. The comparison could easily be

extended to include comparison to other transducer beam models, such as e.g. Gaussian beams.

The 3D signal propagation in time and frequency domain (signal waveforms, signal spectra, and transfer
functions), and results for the transducer fields, have been compared and discussed in relation to results
using plane-waves and measurements. Results demonstrate regions in space and frequency, where the
transmission through the measurement system (including the plate) is relatively high. These regions
do not always correspond to single plane-wave excitation of leaky Lamb modes in the steel plate due
to 3D beam diffraction effects. Such effects in relation to plane-wave theory have been discussed using
the FEM approach at normal beam incidence, comparing the ratio |P;(0,0, zo + 2L, f)/Py(0,0, zo, f)]
to the plane-wave pressure transmission coefficient. These beam diffraction effects can have a major
impact on various ultrasonic methods and applications where one initially makes use of plane-waves
to investigate or monitor material properties. In general, a combination of the source transducer’s 3D
beam pattern and the behaviour of the leaky Lamb modes in a plate with respect to frequency /incident

angle, gives the transmitted pressure fields below the plate.

8.2 Future work

A logical continuation of the present work with respect to non-invasive ultrasonic technology would be
to replace the needle hydrophone by a finite dimensional piezoelectric receiver transducer, and use and
account, for this in the simulations. The FEM approach can be extended to account, for a finite receiver
transducer, in addition to a second steel plate. The hybrid FEM-ASM approach can also be extended
to account for a finite receiver transducer, using the output of the ASM at a given distance as input in
a FEM receiver transducer simulation. Transferring from an immersion transducer technique for leaky
Lamb mode excitation, to a wedge-transducer setup, will make it possible to also include the signal

chain through a possible wedge.

One further important goal will be to obtain transit-time simulations at relevant high accuracies. Better
information on the required materials constants is expected to improve the accuracy of the simulations.
Phase calibration of the needle hydrophone, amplifier and cables would also be a valuable tool in that
respect. Improvement of positioning and maintaining a steady temperature for measurements will also

increase accuracy for time-of-flight comparisons.
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Since the plane-wave pressure transmission coefficient is limited to an isotropic viscoelastic plate and
plane-wave theory, extending the description of the steel plate by finite elements for an oblique angle
of beam incidence would be advantageous. One possible approach is to create a FEM calculated
transmission coefficient using a normal beam incidence in the FEM approach, to be substituted for
the plane-wave transmission coefficient in the hybrid FEM-ASM approach. This can be achieved by
subtracting information from the wavenumber-frequency spectrum of the incident and transmitted
beam in the FEM approach, but for the moment these spectra (due to limitations in the computer)
does not adequately represent all plane-wave components needed to calculate the plane-wave pressure

transmission coefficient for given frequencies.
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Appendix A

FEM baflled piston project-file

if “isempty(read.piston)
r=read.piston(1,1,:);
elr=read.piston(1,2,:);
elfluid=read.piston(1,3,:);
matnumfluid=read.piston(1,4,:);
pistonvalue=read.piston(1,5,:);
zPlate=read.piston(1,6,:);
avstandPlate=read.piston(1,7,:);
avstandNedre=read.piston(1,8,:);
rPlate=read.piston(1,9,:);
matnumPlate=read.piston(1,10,:);
elplate=read.piston(1,11,:);

for s=1:size(r,3)
pmllag(s) = 20e-3;
bakpiston(s) = 50e-3;
glob.pmlsigma_star_vec=0;
read.points(:,:,s)=[ 1 0 0;
2 r(s) 0;
3 0 le-5;
4 r(s) le-5;
5 0 -avstandPlate(s);
6 r(s) -avstandPlate(s);
7 0 -avstandPlate(s)-zPlate(s);
8 r(s) -avstandPlate(s)-zPlate(s);
9 0 -avstandPlate(s)-zPlate(s)-avstandNedre(s);
10 r(s) -avstandPlate(s)-zPlate(s)-avstandNedre(s);
11 rPlate(s) O;
12 rPlate(s) -avstandPlate(s);
13 rPlate(s) -avstandPlate(s)-zPlate(s);
14 rPlate(s) -avstandPlate(s)-zPlate(s)-avstandNedre(s);
15 0 bakpiston(s);
16 r(s) bakpiston(s);
17 rPlate(s) bakpiston(s);
18 rPlate(s) 1le-5];

read.areas(:,:,s)=[ 1,1,2,4,3,1001,1001,0,0;
3,5,6,2,1,elfluid(s),elfluid(s),0,0;
3,7,8,6,5,elfluid(s),elfluid(s),0,0;
3,8,13,12,6,el1fluid(s),elfluid(s),0,0;
3,6,12,11,2,elfluid(s),elfluid(s),0,0;
3,9,10,8,7,elfluid(s) ,elfluid(s),0,0;
3,10,14,13,8,elfluid(s),elfluid(s),0,0;
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%3,3,4,16,15,elfluid(s) ,elfluid(s),0,0;
%3,4,18,17,16,elfluid(s),elfluid(s),0,0;
%3,2,11,18,4,elfluid(s),elfluid(s),0,0];

matnumelast=6; % Just choose elastic material. Not important which material!
read.materials(:,:,s)=[ 1 glob.globvariables.mechanic matnumelast;
2 glob.globvariables.mechanic matnumelast;

3 glob.globvariables.fluid matnumfluid(s)];

read.restraints(:,:,s)=[-1 r(s)+le-9 -le-9 le-9 glob.free.dz pistonvalue(s)];

read.dof (:,:,s)=[ %% PML
-1 1 -avstandPlate(s)-zPlate(s)-avstandNedre(s)-le-9 -avstandPlate(s)-zPlate(s)-avstandNedre(s)+le-9 glob.free.vp;
-1 1 bakpiston(s)-le-9 bakpiston(s)+le-9 glob.free.vp;
%% Bare fluid
rPlate(s)-1e-9 rPlate(s)+le-9 -1 1 glob.free.vpl;
%rPlate(s)-1le-9 rPlate(s)+le-9 -avstandPlate(s) O glob.free.vp;
%rPlate(s)-1le-9 rPlate(s)+le-9 -avstandPlate(s)-zPlate(s)-avstandNedre(s) -avstandPlate(s)-zPlate(s) glob.free.vp;];

% Creating decreasing (Qm for plate outside fluid region

% Eksponentiell neddempning av Qm til Qmin i (retning (enten +-(r,z) (-1,1,-2,2),rmin,rmax,zmin,zmax,Qmin,Qm) - naturlige logaritme --
% se mer i k_calc_mechanic.m

%glob.lossvariation=1;

%glob.lossvarvecs{s} = [1,rPlate(s)-pmllag(s),rPlate(s)+staalvakum(s),-avstandPlate(s),-avstandPlate(s)-zPlate(s),Qmin(s),Qm(s)];

% PML for mange regioner (ikke symmetrisk boks som er default)

% Default glob.pmlform er symmetrisk boks, her er den definert som "manyregions". Dermed kan du legge pmllag vilkaarlig i 2.5d.

% glob.pmlregions{k} = [retning pml(enten +-(r,z) (-1,1,-2,2),rmin,rmax,zmin,zmax]; -- se mer i k_calc_pml.m

glob.pmlform=glob.globvariables.manyregions;

glob.pmlregions={1,2}; ¥ region 4 er for testing av bare fluid (bytt ut 1 og 2 med 4)

%glob.pmlregions{1}=[1,rPlate(s)-pmllag(s),rPlate(s),-avstandPlate(s),0];

%glob.pmlregions{2}=[1,rPlate(s)-pmllag(s) ,rPlate(s),-avstandPlate(s)-zPlate(s)-avstandNedre(s),-avstandPlate(s)-zPlate(s)];

glob.pmlregions{1}=[-2,0,rPlate(s),-avstandPlate(s)-zPlate(s)-avstandNedre(s),-avstandPlate(s)-zPlate(s)-avstandNedre(s)+pmllag(s)];

% For testing av bare fluid

glob.pmlregions{2}=[1,rPlate(s)-pmllag(s),rPlate(s),-avstandPlate(s)-zPlate(s)-avstandNedre(s),bakpiston(s)];
%glob.pmlregions{3}=[2,0,rPlate(s) ,bakpiston(s)-pmllag(s),bakpiston(s)];

f=(read.directharmonicanalysis(1)+read.directharmonicanalysis(3))/2;
glob.pmlomega_vec=2*pixf;
glob.pmlfluid=1;

end

end
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Appendix B

FEM piezoelectric transducer

project-file

if “isempty(read.transducerlimplate)
rp=read.transducerlimplate(1,1,:); % Radius of piezo disk
tp=read.transducerlimplate(1,2,:); % Thickness of piezo disk

rfr=read.transducerlimplate(1,3, % Radius of front layer

1)
tfr=read.transducerlimplate(1,4,:); % Thickness of front layer
tb=read.transducerlimplate(1,5,:); % Thickness of backing layer
tc=read.transducerlimplate(1,6,:); % Thickness of steel casing - back end
matnump=read.transducerlimplate(1,7,:);
matnumfr=read.transducerlimplate(1,8,:);
matnumb=read.transducerlimplate(1,9,:);
matnumc=read.transducerlimplate(1,10,:);
rPlate=read.transducerlimplate(1,11,:); % Radius of steel plate
tBAK=read.transducerlimplate(l,12,:); % Distance from back of transducer to end of fluid region
avstandPlate=read.transducerlimplate(1,13,:); % Distance between the transducer and the steel plate (front to front)
tPlate=read.transducerlimplate(1,14,:); % Thickness of steel plate
tFRONT=read.transducerlimplate(1,15,:); % Distance from lower surface of the steel plate to end of fluid region

tlim = read.transducerlimplate(1,16,:);

% INPUT FOR AIR LAYER AT THE BACK OF THE TRANSDUCER

tair = 10.42e-3; % Depth of cone of air in backing layer
rbair = 4.01e-3; % Radius of cone of air in backing layer
tb = tb-tair;

tc2 = 2.83e-3; % Casing thickness - sides

elp = 3; ' Elements per wavelength in piezo disk

elfr = 3; % Elements per wavelength in front layer

elc = 3; % Elements per wavelength in casing

elf = 3; % Elements per wavelength in water

elb = 3; % Elements per wavelength in backing layer
matnumf = 444; Y% Material number for water

staalvakum = 200e-3; % Steel plate radius in vacuum
PMLlag = 30e-3; % Fluid PML thickness
glob.pmlsigma_star_vec=0; % Damping function to fluid PML
Qm = 1000; % "Decreasing Qm" from Qm

Qmin = 0.001; % to Qmin

matnumcasing = 5;

Tl e o o To T T oo oo e T o o e T e

rair = rfr-rbair;

rc = rfr+tc2;

matdatalim = 560;
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for s=1:size(rp,3)
read.points(:,:,s)=[1 0 O;
rair(s) O0;
rp(s) 0;
rfr(s) 0;
rc(s) 0;
rPlate(s) O;
0 tfr(s)+tlim(s);
rair(s) tfr(s)+tlim(s);
rp(s) tfr(s)+tlim(s);
rfr(s) tfr(s)+tlim(s);
rc(s) tfr(s)+tlim(s);
rPlate(s) tfr(s)+tlim(s);
0 tfr(s)+tp(s)+tlim(s);
rair(s) tfr(s)+tp(s)+tlim(s);
rp(s) tfr(s)+tp(s)+tlim(s);
rfr(s) tfr(s)+tp(s)+tlim(s);
rc(s) tfr(s)+tp(s)+tlim(s);
rPlate(s) tfr(s)+tp(s)+tlim(s);
0 tfr(s)+tp(s)+tb(s)+tlim(s);
rair(s) tfr(s)+tp(s)+tb(s)+tlim(s);
rp(s) tfr(s)+tp(s)+tb(s)+tlim(s);
rfr(s) tfr(s)+tp(s)+tb(s)+tlim(s);
rc(s) tfr(s)+tp(s)+tb(s)+tlim(s);
rPlate(s) tfr(s)+tp(s)+tb(s)+tlim(s);
0 tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
rair(s) tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
rp(s) tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
rfr(s) tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
rc(s) tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
rPlate(s) tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
0 tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);
rair(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);
rp(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);
rfr(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);
rc(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);
rPlate(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);
0 tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);
rair(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);
rp(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);
rfr(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);
rc(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);
rPlate(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);
0 -avstandPlate(s);
rair(s) -avstandPlate(s);
rp(s) -avstandPlate(s);
rfr(s) -avstandPlate(s);
rc(s) -avstandPlate(s);
rPlate(s) -avstandPlate(s);
rPlate(s)+staalvakum(s) -avstandPlate(s);
0 -avstandPlate(s)-tPlate(s);
rair(s) -avstandPlate(s)-tPlate(s);
rp(s) -avstandPlate(s)-tPlate(s);
rfr(s) -avstandPlate(s)-tPlate(s);
rc(s) -avstandPlate(s)-tPlate(s);
rPlate(s) -avstandPlate(s)-tPlate(s);
rPlate(s)+staalvakum(s) -avstandPlate(s)-tPlate(s);
0 -avstandPlate(s)-tPlate(s)-tFRONT(s);
rair(s) -avstandPlate(s)-tPlate(s)-tFRONT(s);
rp(s) -avstandPlate(s)-tPlate(s)-tFRONT(s);
rfr(s) -avstandPlate(s)-tPlate(s)-tFRONT(s);
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61 rc(s) -avstandPlate(s)-tPlate(s)-tFRONT(s);

62 rPlate(s) -avstandPlate(s)-tPlate(s)-tFRONT(s);
63 0 tfr(s);

64 rair(s) tfr(s);

65 rp(s) tfr(s);

66 rfr(s) tfr(s);

67 rc(s) tfr(s);

68 rPlate(s) tfr(s)];

read.areas(:,:,s)=[ 1 1 2 64 63 elp(s) elfr(s) 0 O;
3 65 64 elp(s) elfr(s) 0 0;
4 66 65 elp(s) elfr(s) 0 O;
5 67 66 elp(s) elc(s) 0 O;
6 68 67 elp(s) elf(s) O O;
63 64 8 7 elp(s) elfr(s) O O;

7 64 65 9 8 elp(s) elfr(s) 0 0;

7 65 66 10 9 elp(s) elfr(s) 0 0;

2 66 67 11 10 elp(s) elc(s) 0 O;

3 67 68 12 11 elp(s) elf(s) 0 O;

4 7 8 14 13 elp(s) elp(s) 0 0;
8 9 15 14 elp(s) elp(s) 0 O;
9 10 16 15 elp(s) elb(s) O O;
10 11 17 16 elp(s) elc(s)
11 12 18 17 elp(s) elf(s)
13 14 20 19 elp(s) elb(s)
14 15 21 20 elp(s) elb(s)
15 16 22 21 elp(s) elb(s)
16 17 23 22 elp(s) elc(s)
17 18 24 23 elp(s) elf(s)
20 21 27 26 elp(s) elb(s)
21 22 28 27 elp(s) elb(s)
22 23 29 28 elp(s) elc(s)
23 24 30 29 elp(s) elf(s)
25 26 32 31 elp(s) elc(s)
26 27 33 32 elp(s) elc(s)
27 28 34 33 elp(s) elc(s)
28 29 35 34 elp(s) elc(s)
29 30 36 35 elp(s) elc(s)
31 32 38 37 elp(s) elf(s)
32 33 39 38 elp(s) elf(s)
33 34 40 39 elp(s) elf(s)
34 35 41 40 elp(s) elf(s)
35 36 42 41 elp(s) elf(s)
2 1 43 44 elp(s) elf(s) O
3 2 44 45 elp(s) elf(s) O
4 3 45 46 elp(s) elf(s) O
5 4 46 47 elp(s) elf(s) O

2
3
4
5
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3 6 5 47 48 elp(s) elf(s) 0 O;
%3 44 43 50 51 elp(s) elc(s) O O; %6
%3 45 44 51 52 elp(s) elc(s) 0 O0; %6
%3 46 45 52 53 elp(s) elc(s) 0 0, %6
%3 47 46 53 54 elp(s) elc(s) O 0; %6
%3 48 47 54 55 elp(s) elc(s) 0 0; %6
%3 49 48 55 56 elp(s) elc(s) 0 0; %6
3 44 43 57 58 elp(s) elf(s) 0 0; % endret
3 45 44 58 59 elp(s) elf(s) 0 0; % endret
3 46 45 59 60 elp(s) elf(s) 0 O; % endret
3 47 46 60 61 elp(s) elf(s) 0 O; % endret
3 48 47 61 62 elp(s) elf(s) 0 0; % endret
1;

read.materials(:,:,s)=[ 1 glob.globvariables.mechanic matnumfr(s);
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glob.globvariables.mechanic matnumcasing(s);
glob.globvariables.fluid matnumf (s);
glob.globvariables.piezo matnump(s);
glob.globvariables.mechanic matnumb(s);

glob.globvariables.mechanic matnumc(s);

~N O O W N

glob.globvariables.mechanic matdatalim(s)];

read.restraints(:,:,s)=[-1e-9 rp(s)+le-9 tfr(s)+tp(s)+tlim(s)-1e-9 tfr(s)+tp(s)+tlim(s)+le-9 glob.free.ep 11;
read.dof(:,:,s)=[ -1e-9 rp(s)+le-9 tfr(s)+tlim(s)-1e-9 tfr(s)+tlim(s)+le-9 glob.free.ep;
-1 1 tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s)-1e-9 tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s)+1le-9 glob.free.vp;
-1 1 -avstandPlate(s)-tPlate(s)-tFRONT(s)+le-9 -avstandPlate(s)-tPlate(s)-tFRONT(s)-1le-9 glob.free.vp;
rPlate(s)-1e-9 rPlate(s)+le-9 -1 1 glob.free.vp;
1;

% Creating decreasing Qm for plate outside fluid region

% Eksponentiell neddempning av Qm til Qmin i (retning (enten +-(r,z) (-1,1,-2,2),rmin,rmax,zmin,zmax,Qmin,Qm) - naturlige logaritme --
% se mer i k_calc_mechanic.m

glob.lossvariation=1;

glob.lossvarvecs{s} = [1,rPlate(s)-PMLlag(s),rPlate(s)+staalvakum(s),-avstandPlate(s),-avstandPlate(s)-tPlate(s),Qmin(s),Qm(s)];

% PML for mange regioner (ikke symmetrisk boks som er default)
% Default glob.pmlform er symmetrisk boks, her er den definert som "manyregions'". Dermed kan du legge pmllag vilkaarlig i 2.5d.
% glob.pmlregions{k} = [retning pml(enten +-(r,z) (-1,1,-2,2),rmin,rmax,zmin,zmax]; -- se mer i k_calc_pml.m
glob.pmlform=glob.globvariables.manyregions;
glob.pmlregions={1,2,3};
glob.pmlregions{1}=[2,0,rPlate(s) ,tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s)-PMLlag(s),tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s)];
glob.pmlregions{2}=[1,rPlate(s)-PMLlag(s) ,rPlate(s),-avstandPlate(s)-tPlate(s)-tFRONT(s),tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)];

% glob.pmlregions{3}=[1,rPlate(s)-PMLlag(s),rPlate(s),-avstandPlate(s)-tPlate(s)-tFRONT(s),-avstandPlate(s)-tPlate(s)];
glob.pmlregions{3}=[-2,0,rPlate(s),-avstandPlate(s)-tPlate(s)-tFRONT(s),-avstandPlate(s)-tPlate(s)-tFRONT(s)+PMLlag(s)]1;

%f=(read.directharmonicanalysis(1)+read.directharmonicanalysis(3))/2;
f = 750e3;

glob.pmlomega_vec=2*pix*f;

glob.pmlfluid=1;

end

end
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Appendix C

FEM approach project-file

if “isempty(read.transducerlimplate)
rp=read.transducerlimplate(1,1,:); % Radius of piezo disk
tp=read.transducerlimplate(1,2,:); % Thickness of piezo disk

rfr=read.transducerlimplate(1,3, % Radius of front layer

N
tfr=read.transducerlimplate(1,4,:); % Thickness of front layer

tb=read.transducerlimplate(1,5,:); % Thickness of backing layer

tc=read.transducerlimplate(1,6,:); % Thickness of steel casing - back end

matnump=read.transducerlimplate(1,7,:);

matnumfr=read.transducerlimplate(1,8,:);

matnumb=read.transducerlimplate(1,9,:);

matnumc=read.transducerlimplate(1,10,:);

rPlate=read.transducerlimplate(1,11,:); % Radius of steel plate

tBAK=read.transducerlimplate(1,12,:); % Distance from back of transducer to end of fluid region
avstandPlate=read.transducerlimplate(1,13,:); % Distance between the transducer and the steel plate (front to front)
tPlate=read.transducerlimplate(1,14,:); % Thickness of steel plate

tFRONT=read.transducerlimplate(1,15,:); % Distance from lower surface of the steel plate to end of fluid region

tlim = read.transducerlimplate(1,16,:);

% INPUT FOR AIR LAYER AT THE BACK OF THE TRANSDUCER

tair = 10.42e-3; % Depth of cone of air in backing layer
rbair = 4.01e-3; % Radius of cone of air in backing layer

tb = tb-tair;

tc2 = 2.83e-3; % Casing thickness - sides

elp = 3; % Elements per wavelength in piezo disk

elfr = 3; % Elements per wavelength in front layer

elc = 3; % Elements per wavelength in casing

elf = 3; % Elements per wavelength in water

elb = 3; % Elements per wavelength in backing layer

matnumf = 444; 7 Material number for water

staalvakum = 200e-3; 7% Steel plate radius in vacuum

PMLlag = 30e-3; % Fluid PML thickness
glob.pmlsigma_star_vec=0; % Damping function to fluid PML
Qm = 1000; % "Decreasing Qm" from Qm

Qmin = 0.001; % to Qmin

matnumcasing = 5;

yay

rair = rfr-rbair;

rc = rfr+tc2;

matdatalim = 560;
for s=1:size(rp,3)

read.points(:,:,s)=[1 0 0;

2 rair(s) 0;
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57
58
59
60
61
6

N

rp(s) 0;
rfr(s) 0;
rc(s) 0;
rPlate(s) O;

0 tfr(s)+tlim(s);
rair(s) tfr(s)+tlim(s);
rp(s) tfr(s)+tlim(s);

rfr(s) tfr(s)+tlim(s);

rc(s) tfr(s)+tlim(s);

rPlate(s) tfr(s)+tlim(s);

0 tfr(s)+tp(s)+tlim(s);

rair(s) tfr(s)+tp(s)+tlim(s);

rp(s) tfr(s)+tp(s)+tlim(s);

rfr(s) tfr(s)+tp(s)+tlim(s);

rc(s) tfr(s)+tp(s)+tlim(s);

rPlate(s) tfr(s)+tp(s)+tlim(s);

0 tfr(s)+tp(s)+tb(s)+tlim(s);

rair(s) tfr(s)+tp(s)+tb(s)+tlim(s);

rp(s) tfr(s)+tp(s)+tb(s)+tlim(s);

rfr(s) tfr(s)+tp(s)+tb(s)+tlim(s);

rc(s) tfr(s)+tp(s)+tb(s)+tlim(s);

rPlate(s) tfr(s)+tp(s)+tb(s)+tlim(s);

0 tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
rair(s) tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
rp(s) tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
rfr(s) tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
rc(s) tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
rPlate(s) tfr(s)+tp(s)+tb(s)+tair(s)+tlim(s);
0 tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);

rair(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);

rp(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);
rfr(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);
rc(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);

rPlate(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tlim(s);
0 tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);

rair(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);

rp(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);

rfr(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);

rc(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);

rPlate(s) tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s);

0 -avstandPlate(s);

rair(s) -avstandPlate(s);

rp(s) -avstandPlate(s);

rfr(s) -avstandPlate(s);

rc(s) -avstandPlate(s);

rPlate(s) -avstandPlate(s);
rPlate(s)+staalvakum(s) -avstandPlate(s);
0 -avstandPlate(s)-tPlate(s);

rair(s) -avstandPlate(s)-tPlate(s);
rp(s) -avstandPlate(s)-tPlate(s);
rfr(s) -avstandPlate(s)-tPlate(s);
rc(s) -avstandPlate(s)-tPlate(s);
rPlate(s) -avstandPlate(s)-tPlate(s);

rPlate(s)+staalvakum(s) -avstandPlate(s)-tPlate(s);

0 -avstandPlate(s)-tPlate(s)-tFRONT(s);

rair(s) -avstandPlate(s)-tPlate(s)-tFRONT(s);
rp(s) -avstandPlate(s)-tPlate(s)-tFRONT(s);
rfr(s) -avstandPlate(s)-tPlate(s)-tFRONT(s);
rc(s) -avstandPlate(s)-tPlate(s)-tFRONT(s);
rPlate(s) -avstandPlate(s)-tPlate(s)-tFRONT(s);
0 tfr(s);
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64 rair(s) tfr(s);

65 rp(s) tfr(s);

66 rfr(s) tfr(s);

67 rc(s) tfr(s);

68 rPlate(s) tfr(s)];

read.areas(:,:,s)=[ 1 1 2 64 63 elp(s) elfr(s) 0 O;

1 2 3 65 64 elp(s) elfr(s) 0 O;
1 3 4 66 65 elp(s) elfr(s) 0 O;
2 4 5 67 66 elp(s) elc(s) 0 O;
3 5 6 68 67 elp(s) elf(s) 0 0;
7 63 64 8 7 elp(s) elfr(s) 0 O;
7 64 65 9 8 elp(s) elfr(s) 0 O;
7 65 66 10 9 elp(s) elfr(s) 0 O;
2 66 67 11 10 elp(s) elc(s) 0 O;
3 67 68 12 11 elp(s) elf(s) 0 0;
47 8 14 13 elp(s) elp(s) 0 O;
4 8 9 15 14 elp(s) elp(s) 0 O;
9 10 16 15 elp(s) elb(s) 0 O;
10 11 17 16 elp(s) elc(s)
11 12 18 17 elp(s) elf(s)
13 14 20 19 elp(s) elb(s)
14 15 21 20 elp(s) elb(s)
15 16 22 21 elp(s) elb(s)
16 17 23 22 elp(s) elc(s)
17 18 24 23 elp(s) elf(s)
20 21 27 26 elp(s) elb(s)
21 22 28 27 elp(s) elb(s)
22 23 29 28 elp(s) elc(s)
23 24 30 29 elp(s) elf(s)
25 26 32 31 elp(s) elc(s)
26 27 33 32 elp(s) elc(s)
27 28 34 33 elp(s) elc(s)
28 29 35 34 elp(s) elc(s)
29 30 36 35 elp(s) elc(s)
31 32 38 37 elp(s) elf(s)
32 33 39 38 elp(s) elf(s)

34 35 41 40 elp(s) elf(s)
35 36 42 41 elp(s) elf(s)
2 1 43 44 elp(s) elf(s)

O O O O O O O O O O O O O O O O o o o o o

hh

0
3 2 44 45 elp(s) elf(s) O
4 3 45 46 elp(s) elf(s) O
5 4 46 47 elp(s) elf(s) O
6 5 47 48 elp(s) elf(s) O

44 43 50 51 elp(s) elc(s) 5 %6
45 44 51 52 elp(s) elc(s) 5 %6
46 45 52 53 elp(s) elc(s) , 46
47 46 53 54 elp(s) elc(s) 5 %6
48 47 54 55 elp(s) elc(s) 5 %6
49 48 55 56 elp(s) elc(s) %6 -- 2 er samme som 6

51 50 57 58 elp(s) elf(s)
52 51 58 59 elp(s) elf(s)
53 52 59 60 elp(s) elf(s)
54 53 60 61 elp(s) elf(s)
55 54 61 62 elp(s) elf(s)

O O O O O O O O O O O O O O O O O O O O O O O O O O O o oO oD oo Oo o o o o

O O O O O O O O © o o

5
2
3
5
5
5
2
3
5
5
2
3
2
2
2
2
3
3
3
3 33 34 40 39 elp(s) elf(s)
3
3
3
3
3
3
3
6
6
6
6
6
6
3
3
3
3
3
1

read.materials(:,:,s)=[ 1 glob.globvariables
2 glob.globvariables.mechanic matnumcasing(s);
3 glob.globvariables.fluid matnumf(s);
4 glob.globvariables.piezo matnump(s);

.mechanic matnumfr(s);
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5 glob.globvariables.mechanic matnumb(s);
6 glob.globvariables.mechanic matnumc(s);

7 glob.globvariables.mechanic matdatalim(s)];

read.restraints(:,:,s)=[-1e-9 rp(s)+le-9 tfr(s)+tp(s)+tlim(s)-1le-9 tfr(s)+tp(s)+tlim(s)+le-9 glob.free.ep 1];
read.dof(:,:,s)=[ -1e-9 rp(s)+le-9 tfr(s)+tlim(s)-1le-9 tfr(s)+tlim(s)+le-9 glob.free.ep;
-1e-9 1 tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s)-1e-9 tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s)+1e-9 glob.free.vp;
-le-9 1 -avstandPlate(s)-tPlate(s)-tFRONT(s)+1le-9 -avstandPlate(s)-tPlate(s)-tFRONT(s)-1e-9 glob.free.vp;
rPlate(s)-1e-9 rPlate(s)+le-9 -1 -avstandPlate(s)-tPlate(s) glob.free.vp;
rPlate(s)-1e-9 rPlate(s)+le-9 -avstandPlate(s) 1 glob.free.vp;
1

% Creating decreasing (Qm for plate outside fluid region

% Eksponentiell neddempning av Qm til Qmin i (retning (enten +-(r,z) (-1,1,-2,2),rmin,rmax,zmin,zmax,Qmin,Qm) - naturlige logaritme --
% se mer i k_calc_mechanic.m

glob.lossvariation=1;

glob.lossvarvecs{s} = [1,rPlate(s)-PMLlag(s),rPlate(s)+staalvakum(s),-avstandPlate(s),-avstandPlate(s)-tPlate(s),Qmin(s),Qm(s)];

% PML for mange regioner (ikke symmetrisk boks som er default)

% Default glob.pmlform er symmetrisk boks, her er den definert som "manyregions'". Dermed kan du legge pmllag vilkaarlig i 2.5d.

% glob.pmlregions{k} = [retning pml(enten +-(r,z) (-1,1,-2,2),rmin,rmax,zmin,zmax]; -- se mer i k_calc_pml.m
glob.pmlform=glob.globvariables.manyregions;

glob.pmlregions={1,2,3,4};

glob.pmlregions{1}=[2,0,rPlate(s),tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s)-PMLlag(s) ,tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)+tlim(s)];
glob.pmlregions{2}=[1,rPlate(s)-PMLlag(s),rPlate(s),-avstandPlate(s),tfr(s)+tp(s)+tb(s)+tair(s)+tc(s)+tBAK(s)];
glob.pmlregions{3}=[1,rPlate(s)-PMLlag(s) ,rPlate(s),-avstandPlate(s)-tPlate(s)-tFRONT(s),-avstandPlate(s)-tPlate(s)];
glob.pmlregions{4}=[-2,0,rPlate(s),-avstandPlate(s)-tPlate(s)-tFRONT(s),-avstandPlate(s)-tPlate(s)-tFRONT(s)+PMLlag(s)]1;

%#f=(read.directharmonicanalysis(1)+read.directharmonicanalysis(3))/2;
f = 750e3;

glob.pmlomega_vec=2*pi*f;

glob.pmlfluid=1;

end

end
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Appendix D

Calculation of FEM incident fields

YYYANANN
% Hybrid FEM-ASM

Tl o T T T o oo T T o o o o o T T oo oo T T o oo o T T o oo o T o oo e T oo e o T o oo T e o T o

% This routine calculates the sound pressure from the transducer in a plane

% parallell to the steel plate. The user can specify the distance from the

% transducer to the plane, the (x,y) grid of the plane in addition to the

% incident angle

the transducer shall have towards the plane (e.g. steel

% plate). The front surface of the transducer is located at the origin

=

% using ASM.

(x,y,z) = (0,0,

0). Then, this pressure field can be further processed

% INPUT NEEDED: grid (x,y) of the plane, distance to plane, incident angle

FE simulation of the transducer.

% OUTPUT PROVIDED: sound pressure in grid (X,Y) at the given distance.

% @author, Magne

% STARTED: 16.02.
% UPDATED: 11.12.

%clear all

Aanes
2012
2012

%load piston_result.mat

%load piston_plate_stor_result.mat

disp(’
disp(?
disp(?
disp(’
disp(’

% Importing coordinate system from FE simulation

r_akse = result.nearfieldpressure_r{1,1}; % r-coordinate to each node

z_akse = result.nearfieldpressure_z{1,1}; % z-coordinate to each node

frekvens = result.nearfieldpressure_f{1,1};
%[a,b] = find(frekvens==956e3);

Y%frekvens = frekvens(b);

% Sound field grid in (x,y)

x_0 = 300e-3; %
y_0 = 300e-3; %
z_0 = -270e-3; %

% Incident angle

-x_ 0 <x>x0
-y_o <y >y 0
z-coordinate to the plane parallell to the steel plate

to the transducer towards the steel plate

%theta_inc = O;%input (’Incident angle [degl: ?);
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% Number of points to use in the (x,y) grid for each direction
N_fft = 2710;

% Creating the x-coordinates
qx = [-N_fft/2:1:N_fft/2-1];
Lx = 2%x_0;

XX = qx*Lx/N_fft;

% Creating the y-coordinates
qy = [-N_fft/2:1:N_fft/2-1];
Ly = 2%y_0;

YY = qy*Ly/N_fft;

% Creating the z-coordinates
ZZ = z_O%ones(1,length(YY));

% Coordinate transformation to (x’,y’,z’) to be able to "simulate" an
% incident angle towards the plane.

XXm = cos(deg2rad(theta_inc))*XX + sin(deg2rad(theta_inc))*ZZ;

%XXm = cos(deg2rad(theta_inc))#*XX - sin(deg2rad(theta_inc))*ZZ;

Y¥m = YY;

ZZm = -sin(deg2rad(theta_inc))*XX + cos(deg2rad(theta_inc))*ZZ;

%ZZm = sin(deg2rad(theta_inc))*XX + cos(deg2rad(theta_inc))*ZZ;

% Meshing grid in (x,y)

[X,Y] = meshgrid(XX,-YY);

% Meshing grid in (x’,y’)

[Xm,Ym] = meshgrid(XXm,-YYm);

% Creating corresponding z-coordinates for each grid point above
ZZm = repmat(ZZm,N_fft,1);

% Converting (x’,y’) to polar coordinates (THETA,R)

[THETA,R] = cart2pol(Xm,Y¥m);

if min(min(ZZm)) < z_akse(1)
disp(’WARNING!!! Not enough information to calculate this incident angle!!!’)
break

end

% Interpolating the sound pressure over (x’,y’) for each frequency
for f = 1:length(frekvens)
% Extracting the sound pressure in every node in the FE simulation
P = result.nearfieldpressure{1}(:,f);
% Interpolating the sound pressure ’P’ in coordinates (r_akse,z_akse)
% over (R,ZZm) using ’griddata’ with triangle-based cubic interpolation
[Ri,Zi,Pi] = griddata(r_akse,z_akse,P,R,ZZm, ’linear’);
disp([’Frequency: ’ num2str(frekvens(f)/1000) ’ kHz’])
% Saving the sound pressure for each frequency to individual files for

% import to an ASM.

fil = [’p_TRANSDUCER_DEG_’ num2str(theta_inc) ’_’ num2str(frekvens(f)/1000) ’>_OK.mat’];

p = Pij;
save(fil,’p’,’X?,%Y?%);

end
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Appendix E

ASM approach

% Angular spectrum method for transmission/reflection through a visco-
% elastic isotropic solid in vacuum or immersed in a single fluid using ra
% data from FEMP 5.

HYBRID FEM-ASM

==

% Q@author, Magne Aanes
% STARTED: 17.04.2012
% UPDATED: 10.10.2013

disp(® ?)

disp(?----------- ASM--—--—oo ’)
disp(?----mmmm e ’)

W

clear all

YA USER INPUT
% Sweeping frequencies in kHz

freq = 300:1:1100;

#freq = 600;

% Incident angle of the transducer

theta_inc = 0;

% Distance from the steel plate to the receiver (for transmitted)
zT = 100e-3;

% Distance from the steel plate to the receiver (for reflected)
zR = 100e-3;

I mm INPUT DATA----------mmmmmmmmmmmmm oo
% MATERIAL PROPERTIES FOR FLUID, layer 1 and 3.
cl = 1485; % longitudinal velocity

rhoF = 1000; % density of fluid

% MATERIAL PROPERTIES FOR VISCOELASTIC SOLID, layer 2

cL = 5780; % longitudinal velocity

cS = 3130; % shear velocity

QL = 1e3; % loss factor for cL

QS = 500; % loss factor for cS

rhoS = 8000; % density of viscoelastic solid
t = 6.05e-3; % thickness of viscoelatic solid
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% A
. FLUID LAYER-------- == momommmmomom e %

% Possibility to include loss in the fluid, not used as of now. NOT TESTED!

% Including loss by defining complex sound velocity
%Q1 = 10e3; % loss factor for cl
%ecl = cl*x(1+i./Q1);

% Including loss by defining complex sound velocities.
cL = cLx(1+i./QL);

cS = cS*(1+i./QS);

% Half thickness of the elastic plate

L =t/2;

disp([’Simulation for incident angle [deg] of: ’ num2str(theta_inc)]);
disp(’Starting sweep of frequencies...’)
for cc = 1:length(freq)

% Loading the pressure field at (X,Y,Z_0) from FE simulations

try
fil = [?p_PISTON_DEG_’ num2str(theta_inc) °’_’ num2str(freq(cc)) ’_OK.mat’];
load(fil);

catch
fil = [?p_TRANSDUCER_DEG_’ num2str(theta_inc) ’_’ num2str(freq(cc)) ’_OK.mat’];
load(fil);

end

disp([’Frequency: ’> num2str(freq(cc)) ’ kHz’]);

% Angular frequency

w = 2xpixfreq(cc)*1le3;

% Need only to calculate kx & ky one time, since the X,Y grid is the

% same for all frequencies.

if cc ==

Vi
I

% Horizontal spatial frequencies in rads/meter in x- and y-direction.
Nx = size(X,2);Ny = size(Y,2);

x0 = abs(min(min(X)));y0 = abs(max(max(Y)));

kx = 2%pi/(2%x0)*(-Nx/2:1:Nx/2-1);

ky = 2%pi/(2%y0)*(-Ny/2:1:Ny/2-1);

[KX,KY] = meshgrid(kx,-ky);

eta = sqrt(KX."2+KY."2);

Vi
I

end

% Wavenumber for longitudinal waves in fluid.
hF = w/cl;

%dum_hF_rx = +(hF >= abs(KX));

%dum_hF_ry = +(hF >= abs(KY));

%dum_hF_R = dum_hF_rx.*dum_hF_ry;

dum_hF_R = +(hF >= eta);

dum_hF_E = abs(dum_hF_R-1);

% Vertical wavenumber for longitudinal waves.

hFz = dum_hF_R.*sqrt (hF~2-KX."2-KY.~2)+dum_hF_E.*i.*sqrt (KX. 2+KY."2-hF~2);

% %
% Wavenumber for longitudinal waves in solid.
h = w/cL;

%dum_h_rx = +(h >= abs(KX));

%dum_h_ry = +(h >= abs(KY));

%dum_h_R = dum_h_rx.*dum_h_ry;

dum_h_R = +(h >= eta);

dum_h_E = abs(dum_h_R-1);

% Vertical wavenumber for longitudinal waves.

hz = dum_h_R.*sqrt(h~2-KX.~2-KY.~2)+dum_h_E.*i.*sqrt (KX."2+KY.~2-h~2);

y %

h
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end

% Wavenumber for shear waves in solid.

k = w/cS;

%hdum_k_rx = +(k >= abs(KX));

%dum_k_ry = +(k >= abs(KY));

%dum_k_R = dum_k_rx.*dum_k_ry;

dum_k_R = +(k >= eta);

dum_k_E = abs(dum_k_R-1);

% Vertical wavenumber for longitudinal waves.

kz = dum_k_R.*sqrt(k~2-KX." 2-KY."2)+dum_k_E.*i.*sqrt (KX. 2+KY."2-k"~2);

% YA

% Reflection and transmission coeff. to an elastic plate immersed in a

% single fluid, following Jocker 2007. He assumes an exp(iwt), as is
% used in FEMP 5 and must be used to correctly handled raw data from
% FEMP 5.

%A1 = (k~2-2.%eta."2)."2;

Al = (2.%eta.”2-k~2).72;

A2 = tan(hz.*L);

A3 = 4.%xeta."2.%kz.*hz;

A4 tan (kz.x*L);

A = A1.%A2+A3.%A4;

S2 = cot(hz.*L);

S4 = cot(kz.*L);

S = A1.%S2+A3.%54;

YY = (rhoF/rhoS)*k~4.*(hz./hFz);

=
]

(A.*xS-YY."2)./((S+i.*YY) . *(A-i.*YY)); % reflection coeff.
(-1.%YY.*x(S+A)) ./ ((S+i.*YY).*(A-i.%YY)); % transmission coeff.

% %
S hRhRhRE DA AR hRA 2-D discrete Fourier transform. fft(fft(p).>).° UALALAALN
% Pressure in (X,Y,Z_0) in spatial angular frequency domain.

% pCh_x,h_y,Z_0,w)

Pfk = ifftshift(ifft(ifft(p*length(p)).’).’);

% A

% Propagation term for transmitted/reflected beam following Younghouse

)
]

% (he assumes an exp(iwt)).

prop_termT = dum_hF_R.*exp(-i*hFz.*2zT)+dum_hF_E.*exp(-abs (hFz) .*zT);
prop_termR = dum_hF_R.*exp(-i*hFz.*zR)+dum_hF_E.*exp(-abs (hFz).*zR);
prop_termT(isnan(prop_termT)) = 0;

prop_termR(isnan(prop_termR)) = 0;

% Transmitted beam through the plate.
Pfk_T1 = Pfk.*T;

% Reflected beam from the plate.
Pfk_R1 = Pfk.*R;

% Transmitted/reflected beam propagated to distance zT/zR respectively.
Pfk_T = Pfk_T1.*prop_termT;

Pfk_R = Pfk_R1.*prop_termR;

% )
%hhhkhhhh INVERSE 2-D discrete Fourier transform. fft(fft(p).>).° UAhhhAhA%
p_T = £fft (£ft((Pfk_T/length(Pfk_T))).’).’;

p_R = fft (fft((Pfk_R/length(Pfk_R))).’).’;

P = fft(fft((Pfk/length(Pfk))).’).%;

% YA

result.p{cc} = p_T;

result.f = freq;

result.X = X;

result.Y

Y;
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filnavn = [’result_’ num2str(theta_inc) ’deg2’];
save (filnavn,’result’,’-v7.3?)

disp(’Done!’);

HHAAHH

% ASM postprocess

% @author, Magne Aanes

% STARTED: 15.01.2013
% UPDATED: 15.01.2013

%load result_Odeg.mat

% Pressure to be extracted at (x,y) for transfer function calculation
x = 00e-3;

y = Oe-3;

theta_inc = 0;

f1 = 457;

f2 = 518;

£3 = 775;

f4 = 956;

X = result.X;
= result.Y;

% Extracting the pressure at (x,y) for further transfer function

=

calculation.
aa = find(abs(X(1,:)-x) < 0.3e-3);
bb = find(abs(Y(:,1)-y) < le-4);

if x ==

mkdir (pwd, >transmittert lydfelt’)
end

for i = 1:length(result.f)
PP(i,:) = result.p{i}(bb,aa);

if x == 0
TLL(i,:) = result.p{i}(bb,:);
if i ==
TLL(1,:) = 0;
end

if isnan(TLL(i,:))

TLL(i,:) = TLL(i-1,:);

end

if result.f(i) == f1 || result.f(i) == f2 || result.f(i) == f3 || result.f(i) == f4
filnavn2 = [’lydfelt_’ num2str(theta_inc) ’deg_f_’ num2str(result.f(i))];

p = result.p{i};

save(filnavn2,’p’,’X?,’Y%);

movefile([filnavn2 ’.mat’], [pwd ’\transmittert lydfelt’])

disp([num2str(result.f(i)) ’ kHz’])

end
end
% MUST BE FIXED! WHY NAN?
if i ==
PP(1) = 0;
end

if isnan(PP(i))
PP(i) = PP(i-1);
end

end

if x ==
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freq = result.f;
save([’TLL_’ num2str(theta_inc) °deg’],’TLL’,’X’,’Y’,’freq’)

end

% For further post processing with >fft_analysis.m’, converting to a column matrix

% Important to use .’ NOT ’> to compute the matrix, since .’ computes the column matrix with
% real/imag intact, and ’ computes the complex conjugate transpose, giving real/-imag.

P2 = PP.7;

f = result.f*1000;

filnavn = [’P2_° num2str(theta_inc) ’deg_x=> num2str(x*1000) ’_y=’> num2str(y*1000)°];
save(filnavn, ’P2°,°f’)

disp(’Done!’);
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Appendix F

Time domain signal calculation

% FOURIER TRANSFORMATION USING FFT

% Creating a sine burst in time domain, using FFT to represent the signal
% in the frequency domain. Multiplying the signal with the wanted transfer
% function calculated using e.q. finite element or analytical. At the end
% using IFFT to do an inverse DFT in order to return to time domain for

% analysis.

% t1! TIPS !

% The FE result-file to be loaded must use the same frequency range as for
% the FFT. This means that you have to controll ’Fs’ and ’N’ to get the

% wanted frequency step. In addition a ’Fs’ larger than the highest

% frequency in the FE result-file must also be used.

% It is possible to use a frequency vector or a single frequency.

% @author, Magne Aanes, UiB

% STARTED: 05.05.2011
% UPDATED: 11.12.2012

clear all

disp(® ?)

disP(’? = mmm e ’)
disp(’| Fourier transformation -- ADD-ON to FEMP 5 |’)
disp(? —mmmm e ’)
disp(® ?)

disp(’CHOOSE THE METHOD FOR CALCULATING THE AMPLITUDE OF THE PULSE:’);

option = input(’[1 = FFT] OR [2 = MAXMIN]: ’);

disp(’ 7);

disp(’!!!WARNING!!! Use only Thevenin circuit when transducer is included’)

disp(’ ?);

elLOAD = input([’Use Thevenin circuit to calculate electrical load of the transducer [1 = 0K]’
>[ENTER = NOJ]: °1);

soundfield = input(’Calculate the sound pressure field [1 = 0K] [ENTER = NO]: *);

disp(® ?);

if isempty(soundfield)
option2 = input(’Save and display reduction of frequency spectra [1 = 0OK] [ENTER = NO]: °);
disp(® ?);
else option2 = 0;

end

option3 = input (’Butterworth filter [1 = OK] [ENTER = NO]: °);

= mmmm e USER ------mmmmmm o %
e %



% Please use the DIALOG BOX for changes!

freq = (300e3:500:1150e3) ; % centre frequencies of bursts
freq = 956e3;

ant_peri = 125;7%59,68,101,125 % number of periods

A = 10; % amplitude of sine bursts [e.g. in V]
tPlate = 6.05e-3; % steel plate thickness

Fs = 4eT; % sample frequency

N = 8e4; % N-point FFT

zl = 0.270; % distance between transducer and plate
z = 0.270; % distance to source [in m]

z = z+tPlate+0.100;

rhof = 1000; % density of fluid

cf = 1485; % compressional sound velocity of fluid
a = 30.44e-3/2; % radius of source [in m]

% Number of periods where a transient of the pulse is experienced
transient_begin = 40; % number of periods in the beginning of the main pulse

transient_end = 20; % number of periods in the end of the main pulse
% Butterworth low pass filter
Fc = 20e3; % cut-off frequency (-3 dB)

order = 5; % filter order

disp(® ?);

disp(P - )
disp(’!!!'REMEMBER TO LOAD FEMP-RESULT FILE CORRECTLY!!!’);
B Y (e 0,

4FEMP-result file to load

%load FEM_q1000_KDL_1.239MHz.mat
load PT_tot_Omm.mat

load PT_tot_20mm.mat

load PT_tot_40mm.mat

%load PTr_tot.mat

%load P2_0Odeg_x=0_y=0.mat

% Frequency °FEM_f’

% Distance ’FEM_r’

% Pressure ’FEM_p°.

% These 3 can either be a vector or a scalar.
FEM_f = f;

% To calculate only on-axis pressure

if isempty(soundfield)

FEM_sp = P2;

FEM_rad = 1;
else

FEM_sp = p;

FEM_rad = r;
end

% Possibility to load input admittance to the transducer
if elLOAD

Yt = Y;
end

Y5 )

h )

% disp(® ?);
% disp(’DIALOG BOX opened for input variables:’);

208



% disp(’ ?);
% dlg_title = ’Fourier transformation’;

% prompt = {’Min frequency [Hz]’,’Step frequency [Hz]’,’Max frequency [Hz]’,

% ’Number of periods of the bursts’,’Amplitude of sine bursts [V]’,’Sample frequency [Hz]’,...
% ’N-point FFT’,’Distance to source [m]’,’Density of fluid [kg/m~3]’,...

% ’Sound velocity of fluid [m/s]’,’Radius of source [m]’,...

% ’Number of periods of beginning transient of main pulse’,...

3 ’Number of periods of end transient of main pulse’};

% options.Resize=’on’;
% options.WindowStyle=’normal’;
% options.Interpreter=>tex’;

% if length(freq) ==

% freq_step = fregq;

% else

% freq_step = freq(2)-freq(1);

% end

% def = {num2str(freq(1)),num2str(freq_step) ,num2str(freq(end)),...

% num2str (ant_peri) ,num2str (A) ,num2str (Fs) ,num2str (N) ,num2str(z) ,num2str(rhof),...
% num2str (cf) ,num2str(a) ,num2str (transient_begin) ,num2str(transient_end)};

% answer = inputdlg(prompt,dlg_title,1,def,options);

% if isempty(answer)

% disp (’EXITING THE PROGRAM!?);
3 clear all

% break;

% end

% fmin = str2num(answer{1});

% fstep = str2num(answer{2});

% fmax = str2num(answer{3});

% freq = (fmin:fstep:fmax);

% ant_peri = str2num(answer{4});
% A = str2num(answer{5});

% Fs = str2num(answer{6});

% N = str2num(answer{7});

% z = str2num(answer{8});

% rhof = str2num(answer{9});

% cf = str2num(answer{10});

% a = str2num(answer{11});

% transient_begin = str2num(answer{12});

% transient_end = str2num(answer{13});

Ts = 1/Fs; % sample time
fres = Fs/N;

disp([’The frequency resolution is ’ num2str(fres) ’ Hz’])

disp([’The time resolution is > num2str(Ts) ’ s’])
if (fres ~= (FEM_f(2)-FEM_f(1)))
disp(°WARNING!!! The frequency resolution for the FE simulation and the

break
end
= mmm e BUTTERWORTH LOW PASS FILTER -------------—---—-———-- %
0 %
if option3 ==

% Cut-off frequency of Fc (normalized to Fs/2) in order to run ’butter’
Fc = Fc/(Fs/2);

sweep frequency is not the same!’)

% Creating a Butterworth low pass filter of Nth order with cutoff Fc. ’BB’

% and ’AA’ gives the zeros and poles in H = BB/AA
[BB,AA] = butter(order,Fc);

% Converts the transfer function representation to an second-order section
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% representation. sos is a matrix with BBs and AAs like below.
[sos,gB] = tf2sos(BB,AA);
Bs = sos(:,1:3);
As = sos(:,4:6);
[nsec,temp] = size(sos);
Butterworth = gBx[1,zeros(1,N-1)];
% Filters the data in ’Butterworth’ with vectors ’Bs’ and ’As’.
% Implementation of the standard difference equation.
for aa = l:nsec
Butterworth = filter(Bs(aa,:),As(aa,:),Butterworth);
end
%plot(Imp) % Plot impulse response to make sure it has decayed to zero
Butterworth = fft(Butterworth);
BWF = fftshift(Butterworth);
end

v Y,

h

v Y,

h

% Calculating the FFT for each frequency defined in ’freq’
disp(’ ?)
disp(’STARTING...?);
for jj = 1:length(freq)
if length(freq) > 1
if jj == ceil(length(freq)/4)
disp(’25% completed’)
else if jj == ceil(length(freq)/2)
disp(’50% completed?’)
else if jj == ceil(length(freq)*(3/4))
disp(’75% completed’)

end
end
end
end
tstop(jj) = ant_perix1/freq(jj); % Get the time after ’ant_peri’ of burst
t = (0:Ts:tstop(jj)); % time vector for constructing the signal

% Be aware that N must be larger than length(y), if not, fft(y,N) will
% truncate and be false.
if N<length(t)
disp(’!!!WARNING!!! N is smaller than the length of your signal’)
break;

end

% Sine burst with centre frequency freq

y = Axsin(2*pi.*freq(jj).*t);

% From time domain to frequency domain. In Matlab the fft command must be

% scaled with the length of the signal ’y’. In addition the fftshift shifts
% the zero-frequency component to the center of the spectrum.

Fhat = fft(y,N)/length(y);

Fhat = fftshift(Fhat);

% The option to use a BWF
if option3 ==
Fhat = Fhat.*BWF;

end

% Frequency and time vector
if mod(N,2) == 0
kk = -N/2:N/2-1; % N even

else
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kk = -(N-1)/2:(N-1)/2; % N odd
end
fr = kk.*Fs/N;
tt = (0:1/Fs:(length(Fhat)-1)/Fs);

% %
% %
/A TRANSFER FUNCTIONS -------—-—-mcmommmmommmamm %
i oo %

% Transfer functions to be multiplied are included in this section.

% PHYS373: Plane wave model --> transfer functions

k = (2%pi.*fr/cf);

Hp = exp(-i.xk*z)*rhof*cf; ) particle velocity to pressure (on-axis)

%Hp = exp(-i.¥k*z)*rhofxcf.*(i*2*pi.*fr); % displacement to pressure (on-axis)
Fhat_Hp = Fhat.x*Hp;

t_Hp = z/cf;

% UNIFORMLY VIBRATING CIRCULAR PISTON SOURCE MOUNTED IN A RIGID BAFFLE OF
% INFINITE EXTENT

% PHYS373: Far field propagation --> transfer functions

Hf = i*2%pi.xfr*rhof*a~2/(2xz).*exp(-i.*k*z); % particle velocity to pressure (on-axis)
JHf = i*2xpi.*frxrhof*a~2/(2%z).*exp(-i.*k*z) .*(i*2*pi.*fr); % displacement to pressure
Fhat_Hf = Fhat.*Hf;

T T T e oo T T o oo o T T o e o T T oo o T T e o o T T e oo T T e e T oo e o T e oo T T e

%% FINITE ELEMENT
% On-axis pressure/amplitude -> transfer function X to pressure
% Sensitivity/amplitude -> transfer function X to pressure

% Nearfieldpressure/amplitude -> transfer function X to pressure

% Transfer function --> X to pressure
% Remember that A is the amplitude of the sine burst.
for mm = 1:1length(FEM_rad)
Hfe = FEM_sp(mm,:);%./(i*2%pi.*freq);
% Finding start and stop frequencies from FEMP-result, to add zeros
% where it’s needed.
[aa,bb] = find(fr==FEM_f (end));
[cc,dd] = find(fr==-fr(bb));
if FEM_f(1) ==
% Shall not flip the DC component, therefore (2:end).
Hfe = [conj(fliplr(Hfe(2:end))) Hfel;
Hfe = [zeros(1,dd-1) Hfe zeros(1,length(fr)-bb)];
% Thevinin model to simulate the load of the signal generator.
if elLOAD
% Impedance to the signal generator
Z_gen = 50;
Zt = 1./Yt;
Zthev = Zt./(Zt+Z_gen);
% Fixing Nall problem.
Zthev(1) = 0;
Hzt = [conj(fliplr(Zthev(2:end))) Zthevl;
Hzt = [zeros(1,dd-1) Hzt zeros(1,length(fr)-bb)l;
end
else
% No DC component, flip the entire thing!
[ee,ff] = find(fr==FEM_f(1));
[gg,hh] = find(fr==-fr(ff));

(on-axis)

Hfe = [zeros(1,dd-1) conj(fliplr(Hfe)) zeros(1l,ff-hh-1) Hfe zeros(1l,length(fr)-bb)];
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% Thevenin model to simulate the load of the signal generator
if elLOAD
% Impedance to the signal generator
Z_gen = 50;
Zt = 1./Yt;
Zthev = Zt./(Zt+Z_gen);
Hzt = [zeros(1,dd-1) conj(fliplr(Zthev)) zeros(1l,ff-hh-1) Zthev zeros(1l,length(fr)-bb)];
end
end
% Calculating the transfer function Hzt (ThAivinin model)
if elLOAD
Fhat = Fhat.*Hzt;
end
Fhat_Hfe = Fhat.x*Hfe;
YA )

15 h
R —— 12 s %
o o %

% From frequency domain to time domain

% To scale corretly we multiply by length(y) since we divided by the
% length(y) when we did the fft

F_y = ifft(ifftshift (Fhat*length(y)));

F_Hp = ifft(ifftshift(Fhat_Hp*length(y)));

F_Hf = ifft(ifftshift(Fhat_Hf*length(y)));

F_Hfe = ifft(ifftshift(Fhat_Hfe*length(y)));

I 13
W %
. POST PROCESSING & VALIDATION —--------ommmmmmmmmem %
A — y/

% Post processing and validation tools for analysis are added here.

%% SPECTRUM REDUCTION
% Using envelope.m in order to get the envelope of the spectrum for
% analysis.
% Check to verify that the sinc function of the input sine burst
% has fallen to a minimum required value at the start and stop
% frequencies of the FE simulation in order to produce a correct
% frequency spectrum.
% Calculating also the frequency spectrum reduction of transfer
% functions.
if option2 ==
transfer = {’Fhat’,’Fhat_Hp’, ’Fhat_Hf’, ’Fhat_Hfe’};
for ¢ = 1:length(transfer)
[CC,ans] = envelope(fr,abs(eval(transfer{c})));
CC_at_start = CC(find(fr==FEM_f(1)));
CC_at_stop = CC(find (fr==FEM_f (end)));
% If the number is "not a number" the neareast frequency
% with a finite number is used.
if isnan(CC_at_stop)
CCd = ~isnan(CC);
[ab,cd] = find(CCd);
CC_at_stop = CC(cd(end));
end
reductSTART(c) = 20%*1logl0O(max(CC)/CC_at_start);
reductSTOP(c) = 20%logl0(max(CC)/CC_at_stop);
end
% Saving information for every frequency of the above calculation
% Arranged: 1 row --> Fhat, 2 row --> Fhat_Hp, 3 row --> Fhat_Hf
% and 4 row --> Fhat_Hfe
redSTART(:,jj) = reductSTART;
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redSTOP(:,jj) = reductSTOP;

if length(freq)==
disp([’Recuction of sine burst at FE start frequency [in dB]: ° num2str(reductSTART(1))]);
disp([’Reduction of sine burst at FE stop frequency [in dB]: ’ num2str(reductSTOP(1))]);

disp([’Recuction of Fhat_Hp at FE start frequency [in dB]: ’ num2str(reductSTART(2))]1);
disp([’Reduction of Fhat_Hp at FE stop frequency [in dB]: ’> num2str(reductSTOP(2))1);

disp([’Recuction of Fhat_Hf at FE start frequency [in dB]: ’ num2str(reductSTART(3))1);
disp([’Reduction of Fhat_Hf at FE stop frequency [in dB]: ’ num2str(reductSTOP(3))1);

disp([’Recuction of Fhat_Hfe at FE start frequency [in dB]: ’ num2str(reductSTART(4))1);
disp([’Reduction of Fhat_Hfe at FE stop frequency [in dB]l: ’ num2str(reductSTOP(4))1);

end

end

ikl

o ot T b o T oo T T e o T T o T e o oo e e o T o e o T e T

%% LOCATING THE MAIN PULSE AND FINDING THE AMPLITUDE IN STEADY STATE
% FINDING THE AMPLITUDE OF THE MAIN PULSE
% First we must find the steady state region, before maxmin or fft
% Steady-state region uses t_Hp to find the start of the pulse!
if ant_peri < transient_begint+transient_end
disp(’!!!WARNING!!! NO STEADY STATE OF PULSE CAN BE DETERMINED!!!’);
break;
end
tSTART = t_Hp+transient_begin/freq(jj);
out = abs(tt-tSTART) < abs(Ts);
[X,Y] = find(out==1);
tSTART = tt(Y(1));
tSTOP = t_Hp+(ant_peri-transient_end)/freq(jj);
out = abs(tt-tSTOP) < abs(Ts);
[XX,YY] = find(out==1);
tSTOP = tt(YY(1));
if option == 1 % FFT
F_MAIN = fft(F_Hfe(Y:YY),N)/length(F_Hfe(Y:YY));
F_MAIN = fftshift(F_MAIN);
[a,b] = max(abs(F_MAIN));
MAG_MAIN(mm,jj) = 2*abs(F_MAIN(b)); % peak2peak amplitude
end
if option == 2 % MAXMIN
F_MAIN = F_Hfe(Y:YY);
cMAX = 1;
cMIN = 1;
% Finding the maxs and mins of the F_MAIN vector and collecting them in
% vectors ’maks’ and ’mini’ for further analysis
for cc = 2:length(F_MAIN)-1
if F_MAIN(cc-1) < F_MAIN(cc) && F_MAIN(cc+1) < F_MAIN(cc)
maks (cMAX) = F_MAIN(cc);
cMAX = cMAX+1;
else if F_MAIN(cc-1) > F_MAIN(cc) && F_MAIN(cc+1) > F_MAIN(cc)
mini (cMIN) = F_MAIN(cc);
cMIN = cMIN + 1;
end
end
end
% Make sure that vectors ’maks’ and ’mini’ have equal lengths
if length(maks) ~“= length(mini)
if length(maks) > length(mini)
maks = maks(1:length(mini));
else if length(maks) < length(mini)

mini = mini(1:length(maks));
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end
end
end
MAG_MAIN(mm,jj) = sum(maks+abs(mini))/length(mini); % peak2peak amplitude
end
end
end
% Check that the burst ends before the signal is reflected at the plate
for kk = 1:length(tstop)
if tstop(kk) >= zl/cf
check(kk) = 0;
else
check (kk)

end

1;

end
[checkl,ind] = find(check,1); % Finds the first 1, or first frequency where the burst ends
% before the signal is reflected
if length(freq)>1
disp(’!!!WARNING!!!’)
disp([’Every burst before > num2str(freq(ind)) ’> Hz does not end before the burst is reflected at the plate surface!’])

else
if check ==
disp(’!!!WARNING!!!?>)
disp([’The burst at ’ num2str(freq) ’ Hz does not end before the burst is reflected at the plate surface!’])
end
end

disp(’COMPLETED! )

if soundfield ==
disp(® ?)
disp(’Calculating the sound pressure field...’)
% Defining angles
theta = linspace(0,2%pi,length(r));
disp(’Converting from cylindrical coordinates to cartesian...’)
% Meshing a grid
[THETA,R] = meshgrid(theta,r);
% Converting to cartesian coordinates
[X,Y] = pol2cart(THETA,R);
disp(’Done!’)
% Calculating the pressure along the r-axis.
PPP = cell(size(freq));
for f = 1:length(freq)
p(:,£) = MAG_MAIN(:,f);
% Since axisymmetrical, the pressure is symmetrical around the z-axis
for dthet = 1:length(theta)
PP(:,dthet) = p(:,f);
end
PPP{f} = PP;
if f == ceil(length(freq)/4)
disp(°25 % completed...?”)
else if f == ceil(length(freq)/2)
disp(°50 % completed...?’)
else if f == ceil(length(freq)*3/4)
disp(’75 % completed...’)
end
end
end
end
save FFT_P2_SP.mat freq MAG_MAIN r PPP X Y
disp(’Done!’)
else save FFT_P2.mat freq MAG_MAIN

end
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Appendix G

Various program codes for the

measurement setup

Various program codes for the measurement setup are listed below. Permission from relevant co-authors is

given.

% Routine to calculate peak-to-peak amplitude using FFT
% Halvor Hobaek, modified by Magne Aanes april 2010
function [vl,v2,seriel,serie2] = fftamplitude(resultatVl,fvl,resultatV2,fv2,grensel,grense2...

,grense3,grense4,tidsskalal,tidsskala2)
for m = 1:length(fvl)

dtl = tidsskalal/length(resultatVi{1,m})*10;

T1 = 1/fvi(m);

ppl = T1/dt1;

DN1 = floor((grense2-grensel)/ppl);

N1 = floor(DNi*ppl);

seriel = grensel:grensel+N1;

fsl = fft(resultatVi{l,m}(seriel))/length(seriel)*2;

fs1 = fftshift(£fsl);

[a,b] = max(abs(fsl));

vi(m) = 2*abs(fs1(b));% SPENNING I PEAK2PEAK

if m == ceil(length(fv1)/2)

disp(°25% completed’);

end
end
disp(’507% completed?®);
if fv2 "= 0

for k = 1:length(fv2)
dt2 = tidsskala2/length(resultatV2{1,k})*10;
T2 = 1/£fv2(k);
pp2 = T2/dt2;
DN2 = floor((grense4-grense3)/pp2);
N2 = floor(DN2*pp2) ;
serie2 = grense3:grense3+N2;
fs2 = fft(resultatV2{1,k}(serie2))/length(serie2)*2;
fs2 = fftshift(fs2);
[aa,bb] = max(abs(fs2));
v2(k) = 2xabs(fs2(bb)) ;% SPENNING I PEAK2PEAK
if == ceil(length(fv2)/2)
disp(’75% completed?’);
end

end
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else
v2 = 0;
serie2 = 0;
end
end

Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y A Y Y Y Y Y Y Y Y Y Y Y Y Y A Y Y Y Y A Y Y Y YA AN Y YA

% Frequency response of the HK 3202 filter,
% Used as a bandpass filter - 20 kHz to 2 MHz
% @author, Magne Aanes, 22.09.2011

function [HK_ref] = frekresponsHK(f)

% Measurement frequencies

fr = [100000,110000, 120000, 130000, 140000, 150000, 160000, 170000,180000,190000,200000,210000,220000, ...
230000, 240000, 250000, 260000,270000,280000,290000,300000,310000, 320000, 330000, 340000, 350000, 360000, . . .
370000, 380000, 390000, 400000,410000,420000, 430000, 440000,450000,460000,470000,480000,490000,500000, ...
510000, 520000, 530000, 540000, 550000,560000,570000,580000,590000,600000,610000,620000,630000,640000, ...
650000, 660000,670000,680000,690000,700000,710000,720000,730000,740000,750000,760000,770000,780000,...
790000, 800000,810000,820000,830000,840000,850000,860000,870000,880000,830000,900000,910000,920000, ...
930000, 940000,950000,960000,970000,980000,990000,1000000,1010000,1020000, 1030000, 1040000, 1050000, ...
1060000,1070000, 1080000, 1090000, 1100000,1110000,1120000,1130000,1140000,1150000,1160000,1170000, ...
1180000,1190000, 1200000, 1210000, 1220000, 1230000, 1240000, 1250000, 1260000, 1270000,1280000, 1290000, . ..
1300000,1310000, 1320000, 1330000, 1340000, 1350000, 1360000, 1370000, 1380000, 1390000, 1400000,1410000, . ..

1420000, 1430000, 1440000, 1450000, 1460000,1470000, 1480000, 1490000, 15000001 ;
% Voltage out of filter (p2p)

HK = [1.89815740322123,1.92873083818361,1.95336881941598,1.97316157387699,1.99015206784505,2.00411740251144, ...

I S e I I O I I R C R I CREC I

.74233645729959,1.73696680161402] ;

% Voltage out of the generator (p2p)
vl = 2;

HK_1 = HK./2;

HK_ref = interpl(fr,HK_1,f,’spline’);
end
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function [M_ref] = frekresponsPA_MIN(f)
YA:S:3:2:5:5:3:3: 255152

% Frequency response of a 1 mm PVDF needle hydrophone with submersible
% preamplifier and DC coupler from Percision Acoustics with NPL

% calibration.

% My own calibration of the hydrophone!
% This is the end-of-cable loaded sensitivity!

216

.01290807114181,2.02252602437783,2.03194475639046,2.04005235145225,2.04686459061708,2.05331468959520,2.
.06448881875557,2.06977708469002,2.07417167946944,2.07813053384716,2.08141992975389,2.08453072100330,2.
.09064029006953,2.09365176309648,2.09269586791321,2.09492691210165,2.09740904108479,2.09914004232902,2.
.10241448879628,2.10353159918450,2.10524556101876,2.10584720437715,2.10605274023387,2.10705730578532,2.
.10729239521700,2.10713365267900,2.10610269610551,2.10188357975474,2.10210572325542,2.10123292933098,2.
.09960990442605,2.09816821316199,2.09685568572899,2.09575579583769,2.09465802327442,2.09319186588965,2.
.08944333852575,2.08764703635882,2.08617415358091,2.08462262220898,2.08251844055760,2.08027778388965,2.
.07672651218456,2.07449208996783,2.07222063297409,2.06976252138390,2.06747388447342,2.06413251743233,2.
.05882571025035,2.05624747391985,2.05358088245313,2.05032156173946,2.04721480061956,2.04470493388936,2.
.03945890329554,2.03620206565054,2.03307694476910,2.02970074452694,2.02680817756840,2.02316438428378,2.
.01667358293956,2.01326104438806,2.00928017154085,2.00608869922460,2.00250015824930,1.99993553333333,1.
.99253583980407,1.98825987418586,1.98488464719847,1.98088161856625,1.97735574120827,1.97251022703901,1.
.96504267175709,1.96122510312408,1.96086146786233,1.95660673705674,1.95238157369340,1.94838564794585,1.
.93913984641265,1.93473595997899,1.92993629064445,1.92513099561255,1.92123902534167,1.91765574341443,1.
.90899212181378,1.90397718626617,1.89875151439848,1.89414485460304,1.89266995370215,1.88756564852459,1.
.87881375997534,1.87455009353038,1.86963132535586,1.86403279482595,1.85916358010046,1.85377934122101,1.
.84416236097935,1.83975546735543,1.83530023103576,1.83012970004957,1.82479907179603,1.82206595489330,1.
.81135175216276,1.80601771957717,1.80188457672097,1.79740730975252,1.79213386367607,1.78728481041618,1.
.77909014828480,1.77370848975682,1.76790995802517,1.76304129699747,1.75882601888896,1.75395663500320,1.

05918052121350, ...
08735129500222, . ..
10129523634651, . ..
10739952719187, . ..
10011683350218, . ..
09103320086925, . . .
07867681227726, ...
06145060070353, .. .
04191784983454, ...
02012716567419, ...
99612518393362, . . .
96899322035048, . . .
94354829169392, ...
91295127279374, ...
88319838077207, . ..
84904551335195, ...
81671234466812, ...
78479717984203, ...
74817006905680, . . .



% DCC terminated with 50 ohm before high impedance amplifier!
% Hydrophone serial number 1820 (cone length = 100 mm)

% Preamplifier serial number PA110078

% DC coupler serial number DCPS223

% Date of calibration: 19.12.2011

b RS
% Qauthor, Magne Aanes (PhD candidate)

==

Frequency range

fr = [100000,105000,110000,115000, 120000, 125000,130000,135000,140000,145000, ...
150000,155000, 160000, 165000,170000,175000, 180000, 185000, 190000, 195000,200000, ...
205000,210000,215000,220000,225000,230000, 235000, 240000, 245000,250000,255000, ...
260000, 265000,270000,275000, 280000, 285000, 290000, 295000, 300000, 305000, 310000, ...
315000, 320000, 325000, 330000, 335000, 340000, 345000, 350000, 355000, 360000, 365000, . . .
370000, 375000, 380000, 385000, 390000, 395000, 400000, 405000,410000,415000, 420000, .. .
425000,430000,435000, 440000, 445000,450000,455000,460000,465000,470000,475000, . . .
480000, 485000,490000, 495000, 500000,505000,510000,515000,520000,525000,530000, . . .
535000, 540000, 545000, 550000, 555000, 560000, 565000,570000,575000,580000, 585000, . . .
590000, 595000,600000,605000,610000,615000,620000,625000,630000,635000,640000, .. .
645000, 650000,655000,660000,665000,670000,675000,680000,685000,690000,695000, ...
700000, 705000,710000,715000,720000,725000,730000,735000,740000,745000,750000, ...
755000, 760000,765000,770000,775000,780000,785000,790000,795000,800000,805000, ...
810000,815000, 820000, 825000, 830000,835000, 840000, 845000,850000,855000,860000, ...
865000, 870000, 875000,880000,885000,890000,895000,900000,905000,910000,915000, ...
920000, 925000, 930000, 935000, 940000,945000,950000,955000,960000,965000,970000, . ..
975000, 980000, 985000,990000,995000, 1000000, 1005000,1010000,1015000,1020000, .. .
1025000, 1030000, 1035000, 1040000, 1045000, 1050000, 1055000, 1060000, 1065000, 1070000, . . .
1075000, 1080000, 1085000, 1090000, 1095000,1100000,1105000,1110000,1115000,1120000, . ..
1125000,1130000,1135000,1140000,1145000,1150000,1155000,1160000,1165000,1170000, ...
1175000,1180000, 1185000, 1190000, 1195000, 1200000, 1205000, 1210000,1215000, 1220000, . . .
1225000,1230000, 1235000, 1240000, 1245000, 1250000, 1255000, 1260000, 1265000, 1270000, . . .
1275000,1280000, 1285000, 1290000, 1295000, 1300000, 1305000, 1310000,1315000, 1320000, . . .
1325000,1330000, 1335000, 1340000, 1345000, 1350000, 1355000, 1360000, 1365000, 1370000, . . .
1375000,1380000, 1385000, 1390000, 1395000, 1400000, 1405000, 1410000,1415000, 1420000, . . .
1425000,1430000, 1435000, 1440000, 1445000,1450000, 1455000, 1460000,1465000,1470000, . ..
1475000, 1480000, 1485000, 1490000, 1495000,150000017 ;

% End-of-cable free-field loaded sensitivity of the hydrophone with

% submersible preamplifier was measured using the 3-way transducer method.

% 2xV301 transducers used for this calibration.

Mr = [[2.76091345645997e-07,2.75421523193422e-07,3.16243463297973e-07,3.11487072661680e-07, ...

DO OO oo s R RWWwWwWw
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.03623021562325e-07,3.14454833695198e-07,3.16755059464921e-07,3.12838949582926e-07,3.18661564614097e-07, . . .
.056550491223325e-07,3.64361135962019e-07,3.81926251326734e-07,3.76686493181816e-07,3.71838088943900e-07, . . .
.68074165890078e-07,3.83533797784435e-07,4.03113003131974e-07,4.03542115958275e-07,3.97681308849417e-07, . . .
.99282364998118e-07,3.98900079719884e-07,3.97699764435349e-07,3.98997922519259e-07,4.00354883590101e-07, . . .
.08598101373321e-07,4.11210285210782e-07,4.16031235965742e-07,4.27268862341550e-07,4.31280427591582e-07, . . .
.35477376199615e-07,4.32549796750957e-07,4.39016618118537e-07,4.58086670243405e-07,4.67128512701699e-07, . . .
.72086768538730e-07,4.82403067832842e-07,4.83318049143168e-07,4.79989844873704e-07,4.78094080936171e-07, .. .
.78154667501315e-07,4.86127255885192e-07,4.90469078572423e-07,4.93792175401778e-07,5.01443643693584e-07, . . .
.056560382587869e-07,5.06967604456015e-07,5.11275684820825¢-07,5.17589189519650e-07,5.21755815638895¢-07, .. .
.25797598184856e-07,5.26841269404257e-07,5.27573525541725¢-07,5.26861729054782¢-07,5.31710473255266¢-07, . . .
.39176548496288e-07,5.45922628986755¢-07,5.51869241780812¢-07,5.56523043822461e-07,5.61302331883916e-07, .. .
.63891989352595e-07,5.72972930988710e-07,5.78431912330580e-07,5.83548837209076e-07,5.87118638018870e-07, . . .
.89726519960340e-07,5.93813173808333e-07,5.99272268504966e-07,6.04097859425462¢-07,6.06830652344201e-07, . ..
.09778110893800e-07,6.15890841983134e-07,6.19637396794305e-07,6.23794905918278e-07,6.29350862095580e-07, . . .
.33419231106831e-07,6.36592890010718e-07,6.40137499755651e-07,6.44645790453476e-07,6.49006956184417¢-07, . . .
.54283372137286e-07,6.59157111360917e-07,6.62153659291096e-07,6.65687594245454e-07,6.68161603617548e-07, . . .
.68583986552830e-07,6.70957586121654e-07,6.75816090459039e-07,6.82432212970228e-07,6.87056724177234e-07, . . .
.90073232048095e-07,6.90966653395120e-07,6.90569967967553e-07,6.92318762655037e-07,6.95993394543202e-07, . . .
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.00407126085292e-07,7.04171490282558e-07,7.06083815107289e-07,7.09520869071188e-07,7.
.18861010138570e-07,7.24540184425074e-07,7.30544688931713e-07,7.35572359748979e-07,7.
.38211869000691e-07,7.39665043986315e-07,7.42661762927014e-07,7.45981618931322e-07,7.
.48334680277360e-07,7.37421123930218e-07,7.36063404995771e-07,7.33155285415006e-07,7 .
.32326547179410e-07,7.31027746945021e-07,7.27540539130840e-07,7.26965503349350e-07,7 .
.29711972997135e-07,7.31856170956545e-07,7.35399429923127e-07,7.38097174186245e-07,7.
.38051244117940e-07,7.33864168378220e-07,7.32509675521098e-07,7.33749112682955e-07,7..
.42689089167171e-07,7.45551054731415e-07,7.44262295122714e-07,7.39505541000156e-07,7.
.30934360411520e-07,7.26594349583124e-07,7.22403895734720e-07,7.16559204254364¢-07,7.
.00766500888909e-07,6.93985453330685e-07,6.89160390024992¢-07,6.90270479717488e-07,6.
.95032256832094e-07,6.97984601546282e-07,6.99867304887416e-07,7.01441912579486e-07,7.
.11087350231957e-07,7.02180591574316e-07,7.11976687129642e-07,7.28201541882973e-07,7.
.36618384439645e-07,7.42750386203334e-07,7.50590926538649e-07,7.60150161425968e-07,7.
.75938144667102e-07,7.71153088636672e-07,7.75962109249487e-07,7.78323994787633e-07,7.
.79689264881613e-07,7.78463656420448e-07,7.77526529522518e-07,7.75937941453780e-07,7.
.79863883218558e-07,7.86162722031940e-07,7.92942331288838e-07,7.97916110378814e-07,8.
.03116927328679e-07,8.04943067008664e-07,8.07544069501249e-07,8.08503097076701e-07,8.
.08266589536351e-07,8.04215665262388e-07,8.04021155606195e-07,8.06023413776108e-07,8.
.12857228770046e-07,8.17196734194048e-07,8.17884692438086e-07,8.19448321664221e-07,8.
.36667844324382e-07,8.49457809243306e-07,8.51182843740821e-07,8.54033666430174e-07,8.
.59176170775880e-07,8.62541825719085e-07,8.62793017797866e-07,8.68211337223638e-07,8.
.68540774104594e-07,8.70109985403806e-07,8.79427894155075e-07,8.24391237787265e-07,7.
.35703433817644e-07,6.94987751384647e-07,6.63822448768573e-07,6.45943657447942¢-07,6.
.38558046229674e-07,6.45028527493031e-07,6.58078630042246e-07,6.75739204944177e-07,7.
.43750611925665e-07,8.00225888489881e-07,8.43616574621657¢-07,8.86584910867210e-07,8.
.76498492232071e-07,8.77096797804935e-07,8.69469283192916e-07,8.80190727873579e-07,8.
.83895748619141e-07,8.81346019272906e-07,8.81986807307602e-07,8.83213892342342¢-07,8.
.79246730916659e-07,8.62426151666629e-07,8.56928795439361e-07,8.50129496133516e-07,8.
.44536076658198e-07,8.44878888767139e-07,8.46289027905807e-07,8.43137116885640e-07,8.
.32216505566977e-07,8.25051328072354e-07,8.21753176558422e-07,8.26119865949769e-07,8.
.23893474689699e-07,8.21902847902860e-07,8.21259636118640e-07,8.20740483428052e-07,8.
.20822043432679e-07,8.28116538925632e-07,8.29161419760123e-07,8.26868598101934e-07,8.
.23799676865008e-07,8.27600880844856e-07,8.33548995172697e-07,8.37953111468078e-07,8.
.33403773290846e-07,8.12326409131759e-07,8.10266967460775e-07,8.12494369324493e-07,8.
.21210288354246e-07,8.20667791176934e-07,8.17175419221940e-07,8.13440220048933e-07,8.
.10103531159447e-07,8.09999707627059e-07,8.10664646272352e-07,8.08409069553990e-07, 8.
.02762999265310e-07,8.01488805090309e-07,8.03264328390172e-07,8.03624847730191e-07,8.
.98184507187390e-07,7.93543431386231e-071;

Interpolated using the frequency range specified by user!

_ref = interpl(fr,Mr,f,’spline’);

end
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function [M_ref] = frekresponsPA_NPL(f)

h

=

it

Frequency response of a 1 mm PVDF needle hydrophone with submersible
preamplifier and DC coupler from Percision Acoustics with NPL
calibration.

Hydrophone serial number 1820 (cone length = 100 mm)

Preamplifier serial number PA110078

DC coupler serial number DCPS223

Date of calibration: 28 November - 1 December 2011

A

Delivered UiB: 13 December 2011

Qauthor, Magne Aanes (PhD candidate)

Frequency range

218

13409890336911e-07, ...
37335524222054e-07, ...
47828063995749e-07, . . .
31327312969360e-07, . . .
28524505224955e-07, . ..
39327754754062e-07, . . .
37068376337002e-07, .. .
34505911130450e-07, ...
09268087795336e-07, .. .
92155267588744e-07, ...
03691937629746e-07, ...
31612378894755e-07, ...
70653808219418e-07, ...
78912520129838e-07, ...
76785030651611e-07, ...
01419669812515e-07, ...
08649727055833e-07, . . .
10847246054877e-07, ...
26565666820093e-07, . . .
55501280321430e-07, ...
68008350642363e-07, . . .
77727545478631e-07, . . .
36041656036990e-07, . . .
13839095570644e-07, ...
80260907972616e-07, ...
82139034287977e-07, ...
78438963243795e-07, ...
46531148595368e-07, .. .
36863132201161e-07, ...
23908535742162e-07, ...
20399119694938e-07, . ..
24239512150485e-07, . ..
37530438094176e-07, . . .
18127315573633e-07, .. .
10909911400541e-07, .. .
05588925631147e-07, ...
02316346598973e-07, . . .



fr = [100:10:1000]*1e3;

% End-of-cable free-field loaded sensitivity of the hydrophone with

% submersible preamplifier was determined by the comparison calibration

% method, in conformance with IEC 60565: 2006 (BS EN 60565: 2007), using an

% NPL reference standard hydrophone. The hydrophone under test was

% terminated with a 50 Ohm load. More information in calibration sheet.

% dB re 1V/AtPa

Mv_dB = -[249.4,249.0,249.2,248.5,249.0,248.2,248.6,248.2,248.5,248.0,247.4,248.1
247.6,247.1,247.8,247.8,246.6,246.1,246.4,246.3,246.2,246.0,245.9,245.9,245.6
245.5,245.5,245.2,245.0,244.9,244.8,244.8,244.8,244.6,244.4,244.4,244.3,244.3 .
244.0,243.9,244.0,243.9,243.7,243.7,243.7,243.6,243.3,243.4,243.4,243.3,243.1, ...
243.0,243.0,243.0,242.7,242.8,243.0,243.0,243.0,242.9,243.0,243.0,243.0,243.0
243.0,243.0,243.0,243.1,243.3,243.4,243.6,243.6,243.7,243.7,243.5,243.4,243.3
243.2,243.0,243.0,242.7,242.5,242.6,242.7,242.7,242.6,242.8,242.7,242.6,242.7
242.71;

% Uncertainty, confidence of approximately 95 %, k = 2.
Mv_dB_k2 = [ones(1,70)%0.7 ones(1,length(Mv_dB)-70)%0.8];
Mv_500hm_k2 = 10.~(Mv_dB_k2./20);

upper_limit = Mv_50ohm_k2;

lower_limit = 1-(upper_limit-1);

% End-of-cable free_field loaded sensitivity (mV/MPa) ~ terminated with 50 ohm
Mv_50ohm = 10.~(Mv_dB./20)/1e-6x1e3/1e-6;

% Open-ended free-field loaded sensitvity (mV/MPa) ~ terminated with 1 MOhm
Mv_1Mohm = Mv_50ohm/ (50/(50+50));

% End-of-cable loaded sensitivity to be used! DCC terminated with 50 ohm
% and then connected to the HVA.

M = Mv_50ohm/1e3%1le-6;

M_ref = interpl(fr,M,f,’spline’);

end
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% Skript som setter opp Micos-motorer.

% Fungerer paa Matlab/Windows.

% Espen Storheim, 08/07-2009

% Magne Aanes, 28/04-2011 - Modifisert
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% Skriptet setter opp et haandtak for den aktuelle porten og
% gjor dette til ein global variabel. Da kan den brukes av
% alle skript og funksjoner uten at en slipper aa deklarere

% den paa nytt.

global si
sl = serial(’COM1’,’BaudRate’,115200);
fopen(s1)

fprintf(sl,’1 init?);

% Setter konstanter i PID-en paa LMS110
% Fra PI-MiCos : PID(400,2,4000)
#PID(800,1.5,8000) ;

PID(1000,1,10000) ;

% Setter hastighet og akselerasjon

fprintf(s1,’4 1 sna’); % 2
fprintf(s1,’5 1 snv?’); % 10

219



% Setter hastighet og akselerasjon til rotasjonsmotor
fprintf(s1,°100 2 sna’);
fprintf(s1,’1 2 snv’);

% Finner utgangspunktet

%fprintf(s1,’1 ncal?);

%fprintf(s1,’2 ncal?);
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% Skript som initialeserer Parker-motorene som Kjersti brukte.

% Basert paa motorinitiering.m av Halvor Hobaek.

% Denne versjonen er tilpassa Matlab/Windows.

% Espen Storheim, 08/07-2009.

% Magne Aanes, 28.04.2011 - modifisert
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% Oppsett av seriellporten. Deklarerar handtaket globalt slik at
% det kan nyttast inni funksjonar, t.d. Parkerstep.m.
global s2;

s2 = serial(’COM3’,’Terminator’,’CR’);

% Oppstart av motorane.

fopen(s2);

fprintf(s2,’°#1°);

%#disp(’Dersom resultatet nedanfor er 3 er alt i orden.’)
idn = fscanf(s2);

% Killer motor nr. 1 paa grunn av nokre smaa men ukjente problem.
fprintf(s2,’1K’);
fscanf (s2);

% Startar motor nr. 1.
fprintf(s2,’10N);
fscanf(s2);

% Startar motor nr. 2.
fprintf(s2,’20N’);
fscanf(s2);

% Set grensene til motorane. Desse er trulig relatert til dei elektriske
% sensorane som er montert.

fprintf(s2,’1LIMITS(0,0,0)’);

fscanf (s2);

fprintf(s2,’2LIMITS(0,0,0)°);

fscanf (s2);

% Generelle kommentarar til koden:

% Det viktigaste i forbindelse med desse motorane er aa settje terminatoren

% til CR og aa sende kommandoen #1. Denne koden er berre verifisert paa Matlab

% 2006 under Windows XP.
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% Skript som styrer Micos-motorer.

% Fungerer paa Matlab/Windows. %

% Espen Storheim, 08/07-2009 Y%

% Magne Aanes, 28.04.2011 - modifisert
h
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% a = 1: lineaer

% a = 2: rotasjon
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function Micosstep(g,a,m)

% KORT FORKLARING:
% Dette skriptet styrar Micos DT-80 (2008/04) rotasjonsmotoren som finns

% paa akustikklaben. Argument som trengs er lista nedanfor.

% g er antal grader (positiv eller negativ), Mp vaere en streng + X.0 i mm
% a er aksen (1),
% m =0 -> relativ royrsle,

% m =1 -> absolutt royrsle.

==

Standardinnstillingar dersom ein berre oppgir vinkelen i argumentet til skriptet:
if (nargin < 3)

a =1; % Akse 1 er default.

m = 0; % Relativ step (r) er default.
else

end

global s1  J Brukar handtaket fraa Micosinitialisering.m.

% Setter bevegelsestype (absolutt eller relativ).
if (m==0)

cmd = [num2str(g) > ° num2str(a) ° nr’l;
else (m==1)

cmd = [num2str(g) > ° num2str(a) °> nm’];

end

fprintf (s1,cmd)

% Maa vente til motor staar i ro
% Sjekker hvortid motor er ferdig med aa kjore
tall = 1;
while tall ==
beveger_seg = MotorSend(sl, [num2str(a) ’ nst’]);
tall = str2num(beveger_seg);
if tall ==
break;
end
end
end
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% Skript som kjorer motorane ein gitt distanse, her konvertert til mm. Input

% i denne funksjonen er distanse og motor nummer. Dette forutset at skriptet

% Parkerinitiering.m er brukt i forkant slik at motorane er klar til bruk.

% Espen Storheim, 08/07-2009.

% Magne Aanes, 28.04.2011 - modifisert
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% n = 1: langs tank

% n = 2: paa tvers av tank
% d = avstand i mm, n = akse
function Parkerstep(d,n)
global s2

% Konverterar distanse til antal step.
if (nargin ==1)
n=1;

else

end
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% Konverterar distanse til antal step.
al = 1.250e-3;
a2 = 1.250e-3;

if (n == 1)

d = d/al;
else

d = d/a2;
end

% Klargjer motoren.

cmd = [num2str(n) ’D’> num2str(d)];
fprintf(s2,cmd);

fscanf(s2);

% Kjorar steget.
fprintf(s2, [num2str(n) °G’]);
fscanf (s2);

% Sjekker hvortid motor er ferdig med aa kjore
beveger_seg = 1;
while beveger_seg == 1
midlertidig = MotorSend(s2, [num2str(n) *R(MV)’1);
midlertidig = fscanf(s2);
beveger_seg = str2num(midlertidig(3:end));
if beveger_seg ==
break;
end
end
end
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% PID-constants for Micos stages
function PID(p,i,d)

global s1;

fprintf(sl, [num2str(p) ’> 1 1 setsp’l);
fprintf(sl,’1 1 getsp’);

P = fscanf(sl);

fprintf(sl, [num2str(i) ’> 2 1 setsp’]l);
fprintf(s1,’2 1 getsp’);
I = fscanf(sl);

fprintf(sl, [num2str(d) > 3 1 setsp’]);
fprintf(s1,’3 1 getsp’);
D = fscanf(sl);

% disp([’P-ledd = ’,P]);
% disp([’I-ledd = *,I]);
% disp([’D-ledd = ’,D]);
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% [x wf timeDiv] = adjustAmplitude(ch,instrument,meas)
% Adjusts voltage scaling and gathers acoustic data.
% Rune Hauge & Eivind Mosland, 2012

% Mod. Magne Aanes, for aa fungere med mitt oppsett

function [x wf timeDiv] = adjustAmplitude(ch,ud_skop,meas2,samples)
% Magne Aanes, 11.01.2013, endringer til bruk i min kode!
instrument = [];

instrument.scope = ud_skop;
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meas = [];

meas.wait_scaling = meas2;

% Stop aquisition.

fprintf (instrument.scope, >ACQ:STATE STOP’);

% Wait to ensure that the scope wipes its memory.
pause (1)

% Start aquisition.

fprintf (instrument.scope, ’ACQ:STATE RUN’);

% Wait for averaging.

pause (meas.wait_scaling)

% Read waveform.
[x wf timeDiv] = DPOLes(ch,samples,instrument.scope);

maxV = max(wf);

% Get current scaling.

Scaling = str2num(query(instrument.scope, [’CH’,num2str(ch),’:SCA?°]));

% The divs of interest for acoustic measurements are: 10e-3, 20e-3,
% 50e-3, 100e-3, 200e-3, 500e-3
%verticalScalings = [le-3 2e-3 5e-3 10e-3, 20e-3, 50e-3, 100e-3, 200e-3, 500e-3 1 2];
verticalScalings = [2e-3 be-3 10e-3, 20e-3, 50e-3, 100e-3, 200e-3, 500e-3 1 21;
%verticalScalings = [10e-3];
ind = find(Scaling==verticalScalings);
if ind ==
ind = 1;
fprintf (instrument.scope, [°’CH’ ,num2str(ch),’:SCA >,10e-31);

end

scrnRows = 5;

% scrnRows = 4;

% Adjust vertical scaling and measure until no clipping.
finished = 0;
while “finished
%disp([’Current volt/div: °,num2str(verticalScalings(ind))])
if maxV >= scrnRows*verticalScalings(ind)
Scaling = verticalScalings(ind+1);
fprintf (instrument.scope, [’CH’ ,num2str(ch),’:SCA ’ ,num2str(Scaling)l);

ind = ind +1;

% Wait for averaging to finish.

pause (meas.wait_scaling)

%disp(’Measuring’)
[x wf timeDiv] = DPQOLes(ch,samples,instrument.scope);

maxV = max(wf);

elseif ind "= 1 && maxV < scrnRows*verticalScalings(ind-1)
%disp(’Decreasing scaling?’)
Scaling = verticalScalings(ind-1);
fprintf (instrument.scope, [’CH’ ,num2str(ch),’:SCA ’ ,num2str(Scaling)l);

ind = ind -1;

% Wait for averaging to finish.

pause (meas.wait_scaling)

%#disp (’Measuring’)
[x wf timeDiv] = DPOLes(ch,samples,instrument.scope);
maxV = max(wf);

else
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finished = 1;
end
end
end
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% Skript som kommuniserer med Tektronix DP03012

% 8-bit unsigned characters. Windows version.

% Modifisert Magne Aanes, 20.07.2011 for aa fungere med Matlab Instrument
% Control Toolbox.

function [x,wf,tidsskala] = DPQOLes(ch,samples,DP0)

fprintf (DPO, >SAV:WAVE:GATI NON?);

fprintf(DPO, [’SAV:WAVE CH’> num2str(ch) ’,REF1°]);
fprintf (DP0O, >DAT:S0U REF1°);
fprintf (DPO, DAT: START 1°);
fprintf (DPO, [’DAT:STOP ° num2str(samples)]);
fprintf (DPO, >CURV??);

pause(1);

ydata = binblockread(DP0,’int87);

fscanf (DP0); % reading trailing terminating character

fprintf (DPO, >HOR:SCA?’);
tidsskala = str2num(fscanf (DP0));

fprintf (DPO, WFM0:XZE??); % time coordinate of the first point
xze = str2num(fscanf(DP0));

fprintf (DPO, WFMO:XIN?’); 7% horizontal point spacing in unites
xin = str2num(fscanf(DP0));

fprintf (DPO, WFMO:YMU??); 7% vertical scale factor per digitizing level in units
YMU = str2num(fscanf(DP0));

fprintf (DPO, >WFMO:YZE??); 7 vertical offset
YZE = str2num(fscanf(DP0));

x = xze:xin: (xze+(length(ydata)-1)*xin); % time vector
wf = (ydata*YMU) + YZE; % scaling the waveform (wf)
end
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%% Program for akustiske maalinger i vanntank

% Magne Aanes, juli 2011

% Programmet kjorer gjennom spesifisert frekvensomraade
% og henter ut data fra valgfritt skop

% Bruk ’instrreset’ hvis programmet bryter for det avsluttes skikkelig

% Frekvensomraadet en onsker aa undersoke
fstart = 350e3;

fstep = 1e3;

fstop = 1000e3;

burst_rate = 50; % Tid(i Hz) mellom hver burst

voltinn = 10; % Spenning paa innsignal fra generatoren(pk)
samples = 100e3; % antall samples paa skop

ch=1; % Lese fra kanal 1 paa skop

average = 256; % antall midling paa skop

meas = 1; % Tid for midling



fprintf (ud_signal, [’BM:INT:RATE °> num2str(burst_rate)]);
fprintf (ud_signal, [°VOLT ’> num2str(voltinn)]);

fprintf (ud_skop, >ACQ:MOD AVE’);

fprintf (ud_skop, [?’ACQ:NUMAV ’> num2str(average)]);
fprintf (ud_skop, [’HOR:RECO ’> num2str(samples)]);
fprintf (ud_skop, *DAT:START 1°);

fprintf (ud_skop, [’DAT:STOP ’ num2str(samples)]);
fprintf (ud_skop, TRIG:A:TYP EDG;A:EDGE:AUX’);
fprintf (ud_skop, >TRIG:A:TYP EDG’);

resultat = {};

frekvens = [];
f = fstart;
i=1;

=

Avstand til forste kant paa PA hydrofon er 26 mm --> 18 pulser ved 500 kHz
%t = 30e-6;

% Avstand til stang - 170 mm --> 225@;5

%t = 22be-6;

% Pulslengde lang, 60 pulser ved 500 kHz

t = 130e-6;

disp(’Commencing measurements’)

%% Innhenting av data fra skop og sweeping av frekvensomraadet
while f <= fstop;

disp(f)

fprintf (ud_signal, [’BM:NCYC ’, num2str(ceil(fxt))]);

fprintf (ud_signal, [’FREQ ’, num2str(f)]);

pause(2);

[tid{1},resultat{i},tidsskalal] = adjustAmplitude(ch,ud_skop,meas,samples);

frekvens (i) = f;

ant_peri(i) = ceil(f*t);

f = f + fstep;

i=1+1;

end

disp(’Done!’);

disp(’Saving data to file...’);

save elektrisk.mat tid resultat frekvens tidsskala ant_peri

disp(’Done!?);
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addpaths;

%% BRUKER

disp(’Source sensitivity using hydrophone!’);

disp(’Commencing calculation of source sensitivity’);

d = 0.9068; 7% Avstand mellom lydkilde og hydrofon (i m)

amp_faktor = 45.74; ) [dB] Forsterkning i HVA-10M-60-F

delta_amp = 20.24; % [dB] delta mellom 40/60 dB. (mA&lt ved 500kHz)

temperatur = 19; % Temperatur (i C)

% Steady-state omrA&de for spenning inn pA& sendertransduser (v1)
grensel = 35000;
grense2 = 45000;

% Steady-state omriéde for spenning ut fra forsterker (v2)
grense3 = 40000;
grense4 = 50000;

disp(’Loading measurement data...’);

%% PROGRAM
load elektrisk_pNo2_20Vpp.mat
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resultatV1l = resultat;

fvl = frekvens;

tidsskalal = tidsskala;

load akustisk_pNo2--PA_20Vpp.mat
resultatV2 = resultat;

fv2 = frekvens;

tidsskala2 = tidsskala;

disp(’Done!?);
disp(’Method for calculating voltage amplitude:’);
valg2 = input (’[FFT = 1] [MAXMIN = 2]°);
disp(’Calculating voltage amplitudes...’);
if valg2 == 1
% FFT-metode fra Halvor for A& finne amplitude, modifisert
[vl,v2,seriel,serie2] = fftamplitude(resultatVl,fvl,resultatV2,fv2,grensel,grense2,grense3...
,grense4,tidsskalal,tidsskala2) ;
disp(’Done!?);
else if valg2 ==
% %%---MAKS PEAK-PEAK AV SPENNING UT 0G INN---%%
[v1,v2] = maxmin(resultatV1,fvl,resultatV2,fv2,grensel,grense2,grense3,grensed);
end
disp(’Done!’);

end

if length(fvl)>length(fv2)
f = fv2;
else f = fvi;

end

disp(??);
valgl = input(’End-of-cable free field loaded sensitivity by [1]-UiB or [2]-NPL: *);
% End-of-cable free field loaded sensitivity! DCC terminated with 50 ohm
% before high impedance amplifier.
if valgl ==

[M_ref] = frekresponsPA_MIN(f);
else if valgl ==

[M_ref] = frekresponsPA_NPL(f);

end
end
amp = 10~ ((amp_faktor+delta_amp)/20);
V = v2/amp; %v2 er i peak2peak
% Korrigerer for forsterkning i HK-filteret
V = V./frekresponsHK(f);
% Trykk ved hydrofon (peak2peak)
p = V./M_ref;

disp(’Calculating source sensitivity at 1 m...%);
% Trykk ved 1 m

do = 1;

p_1m = p*d/d0;

% KildefAjlsomhet Sv

Sv=p_1im./v1;

% KildefAjlsomheten gitt i dB re 1V/Pa

Svlg = 20%loglO(abs(Sv));

save akustiskSVhyd.mat f Sv Svlg

disp(’Done!’);
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%% Program for akustiske maalinger i vanntank

% Magne Aanes, jan 2012

% Direktivitetsmaalinger
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addpaths;
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% Frekvensen en onsker aa undersoke
f = 5756e3;

burst_rate = 50; % Tid(i Hz) mellom hver burst

voltinn = 10; 7 Spenning paa innsignal fra generatoren(pk)
samples = 100e3; % antall samples paa skop

ch=1; % Lese fra kanal 1 paa skop

average = 64; % antall midling paa skop

% Vinkler i grader

vstart = -45;
vstep = 1;
vstop = 45;

% Avstand = 270 mm, f = 575 kHz
vertikal_v = [-45,-35,-25,-15,-10,-7,-6,6,7,10,15,25,35,45];
vertikal = [20,50,20,50,100,200,500,200,100,50,20,50,20] *1e-3;

% Initalisering av HP 331204

ud_signal = gpib(’agilent’,7,12); % GPIB-kanal 12
fopen(ud_signal) ;

fprintf (ud_signal, [’BM:INT:RATE °> num2str(burst_rate)]);
fprintf (ud_signal, [’VOLT ’ num2str(voltinn)l);

% Initalisering av Tektronix DP03012

ud_skop = gpib(’agilent’,7,1,’InputBufferSize’,samples, ’OutputBufferSize’,samples);
fopen(ud_skop) ;

fprintf (ud_skop, *ACQ:MOD AVE’);

fprintf (ud_skop, [?’ACQ:NUMAV ’ num2str(average)]);
fprintf (ud_skop, [’HOR:RECO ’> num2str(samples)]);
fprintf (ud_skop, >DAT:START 1°);

fprintf (ud_skop, [’DAT:STOP ’> num2str(samples)]);
fprintf (ud_skop, >TRIG:A:TYP EDG;A:EDGE:AUX’);
fprintf (ud_skop, >TRIG:A:TYP EDG’);

% Pulslengde lang, 60 pulser ved 500 kHz

t = 130e-6;

fprintf (ud_signal, [’BM:NCYC ’, num2str(ceil(f*t))]);
fprintf (ud_signal, [°’FREQ ’>, num2str(f)]);

resultat = {};
i=1;

v = vstart;
vinkel = [];

ant_peri = ceil(f*t);

disp(’Commencing measurements’)
%% Innhenting av data fra skop og sweeping av frekvensomraadet
while v <= vstop;
disp(v)
for k = 1:length(vertikal_v)
if v == vertikal_v(k)
fprintf (ud_skop, [’CH’> num2str(ch) ’:SCA ’ num2str(vertikal(k))1);
fprintf (ud_skop, [’REF’> num2str(ch) ’:SCA °> num2str(vertikal(k))]1);
pause (5)
end
end
pause (10)
[tid{1},resultat{i},tidsskala] = DPOLes(ch,samples,ud_skop);
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vinkel(i) = v;

v = v + vstep;
i=1i+ 1;
Micosstep(vstep,2,0)

end

disp(’Done!’);

disp(’Saving data to file...’);

save elektrisk.mat tid resultat vinkel tidsskala ant_peri

disp(’Done!?);
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% Kjor mainSV for aa sette frekvens og slikt!

h

start_x = -250;

step_x = -1;

stop_x = -300;

start_y = 0;

step_y = -0;
stop_y = -0;
x_akse = [start_x:step_x:stop_x];

if start_y == 0 && stop_y ==
y_akse = 1;
else
y_akse = [start_y:step_y:stop_yl;
end
XX = start_x;yy = start_y;
ii = 1;
ch=1;
meas=1;
samples=100e3;
resultat={};

while ii <= length(x_akse)*length(y_akse)
% Styrer motor
disp([’x = > num2str(xx) ’> :: y = ’ num2str(yy)])
[tid{1},resultat{ii},tidsskala] = adjustAmplitude(ch,ud_skop,meas,samples);
xx = xx + step_x;
ii = ii + 1;
if start_y == O && stop_y ==
Micosstep(step_x,1,0);
pause (3)
else
if xx > stop_x && yy > stop_y
Parkerstep(step_y,2);
pause (10)
instrreset
Parkerinitiering
Micosinitialisering
init_mainSV
pause (5)
Micosstep(-(abs(stop_x)+abs(start_x)),1,0);
% Vente for 100 mm distanse
pause (60)
yy = yy * step_y;
xx = start_x;
else
Micosstep(step_x,1,0);
pause (3)
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end
end

end

disp(’Done!’);
disp(’Saving data to file...’);

save elektrisk.mat tid resultat tidsskala x_akse y_akse
disp(’Done!?);
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% 3-transducers resiprocity calibration of the PA 1 mm needle hydrophone

% Q@author, Magne Aanes

% STARTED: 05.10.2011
% UPDATED: 19.12.2011

% Method: see pp. 7.26-28 in PHYS 272
% Assumes:

% Free field

% Far field

% Spherical waves

% V301 nr. 654055 transducer is reciprocal

% Source S: V301 nr. 654220
% Receiver R: PA 1 mm needle hydrophone
% Transducer T: V301 nr. 654055

% All sensitivities are given with respect to voltage

do = 1;

rho = 1000;

temperatur = 19.0; % Celsius, beregnet cl = 1485.9 m/s.

amp_faktor = 45.74; 7 [dB] Forsterkning i HVA-10M-60-F

delta_amp = 20.24; % [dB] Forsterkning i HVA-10M-60-F. Delta fra 40 til 60 dB.

% a) Source S --> Receiver R

% Voltage Vsl into source S [20 Vppl

load elektrisk_Vsl.mat

Vsl = vi;

clear vl

% Voltage Vsr out of receiver R using source S (terminated with 50 ohm)
load akustisk_Vsr_50ohm.mat

% Distance between source S and receiver R [in m]
dl = 0.9109;

% Corrects for the amplification in HVA

Vsr = v1/(10~ ((amp_faktor+delta_amp)/20));

% Corrects for the amplification in HK-filter
Vsr = Vsr./frekresponsHK(f);

clear vi

% b) Source S --> transducer T
% Voltage Vs2 into source S [2 Vppl
load elektrisk_Vs2.mat

Vs2 = vi;

clear vl

% Input admittance to source S
load Z_V301_654220.mat

Y = g+i.*b;

ZtS = 1./Y;

clear fr g b

% Current Is2

Is2 = Vs2./ZtS;
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% Voltage Vst out of transducer T using source S (terminated with 1 Mohm)
load akustisk_Vst.mat

% Distance between source S and transducer T [in m]

d2 = 1.167;

% Corrects for the amplification in HVA

Vst = v1/(10~ ((amp_faktor)/20));

% Corrects for the amplification in HK-filter

Vst = Vst./frekresponsHK(f);

clear vl

% c) Transducer T --> Receiver R

% Voltage Vt into transducer T [20 Vppl

load elektrisk_Vtl.mat

Vtl = vi;

clear vl

% Voltage Vtr out of receiver R using transducer T (terminated with 50 ohm)
load akustisk_Vtr_50ohm.mat

% Distance between transducer T and receiver R [in m]
d3 = 0.9123;

% Corrects for the amplification in HVA

Vtr = v1/(10~ ((amp_faktor+delta_amp)/20));

% Corrects for the amplification in HK-filter
Vtr = Vtr./frekresponsHK(f);

clear vl

% Input admittance to transducer T

load Z_V301_654055.mat

Y = gt+i.*b;

ZtT = 1./Y;

clear fr g b

% Resiprocity factor for transducer T

J = 2%d0./(rhox*f);

checkResiprocity = input(’Control that transducer T is resiprocal?[1=0K]: );
if checkResiprocity ==

% d) Transducer T --> Source S

disp(’Reciprosity check!’)

% Voltage Vt2 into transducer T [2 Vpp]

load elektrisk_Vt2.mat

Vt2 = vi;

clear vl

% Current It2

It2 = Vt2./ZtT;

% Voltage Vts out of source S using transducer T (terminated with 1 Mohm)

load akustisk_Vts.mat

% Distance between transducer T and source S [in m]

d4 = 1.167;

% Corrects for the amplification in HVA

Vts = vixsqrt(2)/(10~(amp_faktor/20));

% Corrects for the amplification in HK-filter

Vts = Vts./frekresponsHK(f) ;

clear vl

figure

plot (£/1000,abs(Vst./Is2)./abs(Vts./It2),’Linewidth’,2)

set(gca, ’Fontsize’,30) ;xlabel (’Frequency, f [kHz]’);ylabel(’Ratio of fractions?’)

x1im([100 1000]1)

y1im([0.9 1.051)

grid on;box on;

end
%% Receiver sensitivity with respect to voltage

% 1. Measurement a,b,c,d) terminated with 1 Mohm --> free field open curcuit

% 2. Measurement a,b) terminated with 50 ohm,
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% c,d) terminated with 1 Mohm,

% End-of-cable free field loaded (as in the NPL calibration)

Mr = abs(sqrt((Vs2./Vs1).*(Vsr./Vst).*J.*ZtT.*(d1/d2).*(Vtr./Vt1)*(d3/d0)));

% I mV/MPa:

Mr_korr = Mrxle3/le-6;
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% 2-transducers resiprocity calibration of the PA 1 mm needle hydrophone

% Qauthor, Magne Aanes

% STARTED: 05.09.2011
% UPDATED: 09.02.2012

h

% Source S: V301 nr. 654220

% Receiver R: PA 1 mm needle hydrophone
% Transducer T: V301 nr. 654055

do = 1;

rho = 1000;

temperatur = 19.0; % Celsius, beregnet cl = 1485.9 m/s.

amp_faktor = 45.74; Y [dB] Forsterkning i HVA-10M-60-F

delta_amp = 20.24; % [dB] Forsterkning i HVA-10M-60-F. Delta fra 40 til 60 dB.

% a) Source S --> transducer T

% Voltage Vs2 into source S [2 Vppl

load elektrisk_Vs2.mat

Vs2 = vi;

clear vi

% Input admittance to source S

load Z_V301_654220.mat

Y = g+i.*b;

ZtS = 1./Y;

clear fr g b

% Current Is2

Is2 = Vs2./ZtS;

% Voltage Vst out of transducer T using source S (terminated with 1 Mohm)
load akustisk_Vst.mat

% Distance between source S and transducer T [in m]
dl = 1.167;

% Corrects for the amplification in HVA

Vst = v1/(10~ ((amp_faktor)/20));

% Corrects for the amplification in HK-filter

Vst = Vst./frekresponsHK(f);

clear vi

% Resiprocity factor for transducer T
J = 2xd0./(rhoxf);

% Source sensitivity to source S
Sv = sqrt((Vst./Vs2).x(d1/d0) .*(1./(ZtS.%J)));

% b) Source S --> Receiver R

% Voltage Vsl into source S [20 Vppl

load elektrisk_Vsl.mat

Vsl = vi1;

clear vi

% Voltage Vsr out of receiver R using source S (terminated with 50 ohm)
load akustisk_Vsr_50ohm.mat

% Distance between source S and receiver R [in m]

d2 = 0.9109;

% Corrects for the amplification in HVA
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Vsr = v1/(10~ ((amp_faktor+delta_amp)/20));
% Corrects for the amplification in HK-filter
Vsr = Vsr./frekresponsHK(f);

clear vi

% Pressure at hydrophone

pH = Sv.*Vs1xd0/d2;

% End-of-cable loaded sensitivity

Mr = abs(Vsr./pH);

% I mV/MPa:

Mr_korr = Mr*le3/le-6;
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% Transmission measurement calculations

warning (’off’);

%% BRUKER

dl = 270e-3; 7 Avstand mellom lydkilde og staalplate
d2 = 100e-3; 7% Avstand mellom staalplate og hydrofon

temperatur = 19.7; % Celsius, beregnet cl = 1485.9 m/s.
amp_faktor = 45.74; 7 [dB] Forsterkning i HVA-10M-60-F
delta_amp = 20.24; % [dB] Forsterkning i HVA-10M-60-F. Delta fra 40 til 60 dB.

% Steady-state omraade for maaling uten plate
grensel = 55000;
grense2 = 65000;

% Steady-state omraade for maaling med plate
grense3 = 75000;
grense4 = 85000;

% Steady-state omraade for elektrisk
grense5 = 60000;
grense6 = 70000;

disp(’Loading measurement data...’);
%% PROGRAM

load akustisk_pNo3_20Vpp_270mm.mat
resultatVl = resultat;

fvl = frekvens;

tidsskalal = tidsskala;

clear resultat frekvens tidsskala
navn = ’Odeg_x0’;
load(navn,’-mat’)

resultatV2 = resultat;

fv2 = frekvens;

tidsskala2 = tidsskala;

clear resultat frekvens tidsskala
load elektrisk_pNo3_20Vpp.mat
resultatV3 = resultat(1l,:);

fv3 = frekvens;

tidsskala3 = tidsskala;

clear resultat frekvens tidsskala

disp(’Done!’);

f = fv2;

disp(’Calculating voltage amplitudes...’);

% FFT-metode fra Halvor for aa finne amplitude, modifisert av Magne Aanes
[vl,v2,seriel,serie2] = fftamplitude(resultatVl,fvl,resultatV2,fv2,grensel,grense2,grense3...
,grensed,tidsskalal,tidsskala2);

% FFT-metode fra Halvor for aa finne amplitude, modifisert av Magne Aanes
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[el,e2,Eseriel,Eserie2] = fftamplitude(resultatV3,fv3,0,0,grenseb,grense6,0,...
0,tidsskala3,0);
disp(’Done!’);

vl = v1i(1:2:end);
el = e1(1:2:end);

valgl = input(’End-of-cable free field loaded sensitivity by [1]1-UiB or [2]-NPL: ’);
% End-of-cable free field loaded sensitivity! DCC terminated with 50 ohm
% before high impedance amplifier.
if valgl ==

[M_ref] = frekresponsPA_MIN(f);
else if valgl == 2

[M_ref] = frekresponsPA_NPL(f);

end
end
amp = 10~ (amp_faktor/20);
V1 = vi/amp; %vl er i peak2peak
V2 = v2/amp;
% Korrigerer for forsterkning i HK-filteret
V1 = V1./frekresponsHK(f);
V2 = V2./frekresponsHK(f) ;
% Trykk ved hydrofon (peak2peak)
P1 = V1./M_ref;
P2 = V2./M_ref;

Hpp = 20*logl0(abs(P2./P1));

HVp = 20%*logl0(abs(P2./el));

navn2 = [navn ’_resultat’];

save(navn2,’f’,’P1’,°P2’,%e1’,°HVp’,’v2’,’v1’,%el’, "Hpp’)
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