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Scientific environment 

This thesis contributes knowledge in the management of floodplain fisheries in the 

developing world, through using the Okavango Delta (in Botswana) as a case study. 

The PhD work is registered in the faculty of Mathematics and Natural Sciences. It 

was fully funded by the University of Botswana, through the Okavango Research 

Institute (ORI), where I am employed as a fulltime academic staff member. 
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Introduction 

This thesis is the result of 20 years of work in the Okavango Delta, Botswana. I was 

employed as a Fisheries Research Officer in the Ministry of Agriculture the first 6 

years of my professional career from 1996 to 2002. During that period I participated 

in several benchmark achievements, which included: (i) the first ever Frame Survey 

in the Okavango Delta; (ii) the first ever Catch Assessment Survey in the Okavango 

Delta; (iii) the initiation of the first long term monitoring of the Delta’s fish stocks; 

and (iv) the first ever creel survey to assess the impact of traditional fishing gear on 

the Delta’s fish stocks. Since mid-2002, I have been involved in fisheries research in 

the Okavango Delta as an academic staff member of the Okavango Research Institute 

(ORI), under the University of Botswana. Hence, this study is a culmination of over a 

decade of fisheries research in the Okavango Delta, alone or in collaboration with 

colleagues and students. It encompasses a broad range of topics from limnology to 

fisheries management of floodplain systems, using the Okavango Delta as a case 

study. During the past 16 years at ORI, I have supervised/ co-supervised six graduate 

students (three PhD and six MSc) and 13 undergraduate students. I have also 

contributed to a PhD work on the limnology and juvenile fish of the Okavango Delta; 

am currently co-supervising a PhD student on the fisheries dynamics of Cahorra 

Bassa Reservoir in Mozambique; and another PhD student on the aquatic fauna of a 

non-perennial river system in Zimbabwe. I have also written or co-authored 75 

publications (32 peer reviewed journal articles, 31 peer reviewed book chapters and 

books, 6 papers in refereed conference proceedings, and 6 published technical 

reports) in various aspects of fisheries biology and management. I have also 

presented/ co-presented 55 papers in international conferences, symposia and 

workshops as part of my professional experience. This thesis however, contains eight 

selected published, peer-reviewed journal articles and one submitted manuscript.  

The thesis covers the research that I have done on the Delta’s fish stocks and its 

fishery, highlighting floodplain ecosystem dynamics and their role on fish production, 

and the management questions facing floodplain fisheries. The thesis is arranged 

thematically into four sections; (i) juvenile fish, (ii) adult fish, (iii) floodplain 
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dynamics and lastly (iv) an overall synthesis chapter. Table 1 summarizes the data 

that I have collected, or contributed in its collection, and used in this PhD work. The 

actual data collection protocols and materials are fully described in the respective 

publications. Some of the data were collected with other researchers and published 

with me as a co-author: (i) Papers I – III were other PhD studies done in the Delta 

where I was a key collaborator. More specifically papers I - II are from PhD work 

based at the Okavango Research Institute (ORI) where I was one of the supervisors. 

Paper III is also a PhD work based at ORI, but registered at the University of Oslo 

where I was a key research collaborator.  Paper VI is an MSc work based at ORI, but 

with the student registered at Rhodes University where I was one of the supervisors. 

The lead author for paper VIII was a PhD student registered at the University of 

Florida based on data that I collected at ORI. The data for papers I – II are not 

summarized in Table 1 even though I participated in their collection. The data 

sampling protocols for these papers are described in the publications. The reason for 

including all nine papers in the present thesis is because they provide the most 

comprehensive available picture of the drivers and dynamics that determines the fish 

dyamics of the Okavango Delta.  
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All the data collected from the Okavango Delta (Figure 1) and used in this study are 

summarized in Table 1. Two main types of data were used in this study: (i) Fishery 

independent and (ii) fishery dependent data. 

Fishery independent data: These are research data collected by the Fisheries 

Division staff based at Ngarange, Mohembo, Seronga and Guma in the panhandle of 

the Delta (Figure 1). Research data from Nxaraga, Lake Ngami, Chanoga and 

Xakanaxa (Figure 1) were collected by technical staff from ORI. As shown in Table 

1, several kinds of gear were used to collect these data. These included Lundgren, 

Namibian and Botswana nets, which cumulatively amounted to just over 104 000 

individual fish records. Lundgren nets are nylon, monofilament multi-meshed, 12, 3-

m long multi-panel nets made up of meshes of sizes ranging from 13 to 110 mm 

stretched meshes arranged geometrically (Mosepele, 2000). Both Botswana and 

Namibian nets are multi-filament multi-meshed nets. Botswana nets are made up of 

five mesh panels, each 5 meters long, of sizes 50 to 125 mm stretched mesh arranged 

geometrically (Mosepele, 2000) making them 25 m long. Namibia nets are longer as 

they are made up of 9 m long panels, made up of different meshes ranging from 12 to 

150 mm stretched mesh (Mmopelwa et al 2009; Mosepele et al 2011), making them 

90 m long.  

The fish sampling protocol was similar in all the study sites. Soaking time for the 

research nets was 12 hours overnight, and nets were removed at 6 am the following 

day. After removal from the water, nets were placed in buckets, and then fish from 

each panel were placed in separate containers and processed separately. Each 

individual fish specimen was identified to species according to Skelton (2001) and 

total length (TL, cm) measurements taken. For selected species, maturity stage was 

determined according to Nikolsy (1969). Data were then captured in Pasgear 2 

(Kolding and Skålevik, 2010), which is a customized database package for large 

fisheries datasets. Data were scrutinized and cleaned according to Mosepele (2000) 

before analysis.  

Fishery dependent data: These data were collected by three major approaches; (i) 

fisher records, (ii) creel surveys, (iii) population surveys.  
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Total yield data were collected from Catch Assessment Surveys (CAS) conducted by 

the Fisheries Division. These surveys were conducted similar to van Zwieten et al. 

(2003) in fishing villages around the Okavango Delta by fisheries officers. In each 

village around the Delta, a fisheries officer will spend 2-3 days and measure the 

average catch per selected fishers once a quarter. This catch was then multiplied by 

the total number of fishers in each extension area to estimate the total catch by village 

(Fisheries Officer periodically conducted mini frame surveys in their extension areas 

so that they could have an estimate of the total number of fishers in their areas). 

Fisheries officers were encouraged to collect these CAS data across a broad spectrum 

of fisher types (i.e. active and not so active fishers). This estimated catch by village 

was then added for all the fishing villages in the Delta to generate total yield 

estimates for the Delta.    

Fisher records:  Catch and effort data (Table 1) were collected from fisher records by 

the Fisheries Division officers from fishing villages around the Okavango Delta 

between 1995 and 2005. However, due to errors in data collection, data from 1995 – 

1998 were not used in the analysis and were discarded. Just over 100000 daily catch 

and effort records between 1999 and 2005 were collected and used in this study. The 

fishing villages are located in both the Delta panhandle and other parts of the Delta 

(Paper IX). Data collection protocol followed a procedure where the Fisheries officers 

distribute data record forms to fishers in their duty station. This was an efficient data 

collection system from the fishery because Fisheries officers knew the fishers in their 

area very well. Fishers were required to record their daily catches according to five 

fish groups (i.e. Breams, Catfish, Silver catfish, Tiger-fish and an Others group) and 

effort used. Fisheries officers would periodically visit fishers in their extension area 

during the course of the month to monitor their daily records, teach those who were 

failing to record, and offer other extension activities. Data forms were then collected 

at the end of the month and new forms distributed. The Fisheries Officers then sent 

the daily catch and effort record forms to the District headquarters in Maun at the end 

of every quarter. These data were then captured into Pasgear 2 (Kolding and 

Skålevik, 2010) where they were also cleaned before analysis.  
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Recreational hook and line data were daily fish data recorded by commercial tour 

operators in the Delta’s panhandle from their clients. These data, while not extensive 

(just over 1200 records over 38 years), were important in giving an over-view of the 

effort and catches of recreational fishing in the Delta. Data records included 

identification of each individual species caught, TL measurements, type of lure used, 

and the relative fishing effort (12 hours soaking time). Other data that were 

instrumental towards a full understanding of the overall fishing pattern (Paper IX) 

were commercial and subsistence fisher nets. Both these data sets were recorded by 

commercial and subsistence fishers in a procedure similar to what Ticheler et al 

(1998) implemented in Bangweulu, Zambia. For the Okavango, they are described in 

detail by Mosepele (2000). 

Creel surveys: Creel surveys were conducted by Fisheries Division officers around 

the Delta (Mosepele, 2001). Officers’ recorded individual species caught, TL, fisher 

sex and age, and relative effort (12 hours soaking time) from randomly selected 

fishers in fishing villages. Data also covered catches from traditional fishing gear that 

were used in the Delta (Mmopelwa et al 2009). These data, used in conjunction with 

frame survey data, were instrumental in contributing to the fish stock assessment 

paper (Paper IX). Just over 1800 records were collected from creel surveys.    

Population surveys: These data were collected from around the Okavango Delta from 

two frame surveys conducted in 1998 and 2005. 3200 individual fishers records were 

collected in 1998 (Mosepele, 2001) while just over 2700 records were collected in 

2005 (Bokhutlo et al. 2007). The basic data collection procedure involved a group of 

Fisheries officers conducting a population survey in each village around the 

Okavango Delta. Officers would visit every household in a village to determine and 

assess the profile of fishers in the household. 
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Figure 1 Key study sites for this PhD thesis (Map produced by the Okavango Research 

Institute GIS laboratory). 
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Abstract 

Inland fisheries provide vital proteins, jobs and income, for some of the most 

marginalized communities of the world. The role of inland fisheries in household 

food security is particularly important in Africa, where most of the world’ poorest are 

found. Therefore, there is a compelling need to enhance our understanding of the 

dynamics of floodplain fisheries because of their intrinsic value to riparian 

communities. Understanding their impotance will lead to their sustainable utilisation, 

which will contribute to the attainment of some of the 2030 Sustainable Development 

Goals. Therefore, this thesis examines the relationship between fish dynamics and 

environmental variability in flood-pulsed systems, by using the Okavango Delta as a 

case study. Establishing this relationship is important towards identifying the key 

drivers of change, restoration and persistence in floodplain fish communities. The 

thesis also highlights the dynamic interactions between seasonal hydrology and 

nutrient dynamics in floodplain systems. These dynamic processes, coupled with a 

heterogeneous system, sustain a diverse fish community that is a key source of 

livelihoods for the delta’s riparian community. Dynamic processes within the fish 

community, such as distribution, feeding and growth are driven by the seasonal flood 

pulse. Currently, the Okavango Delta fishery is managed through a series of classical 

management approaches which are incompatible with the dynamic nature of flood-

pulsed systems. The best management approach is through balanced harvesting, 

which has been inadvertently implemented by traditional exploitation practices. 

Management interventions in floodplain fisheries should be adaptive, practical, 

realistic and implementable, which in particular means acceptable to the stakeholders. 

Most developing countries have limited resources, and these should be spent on 

achievable and practical activities. Informed management also necessitates 

continuous long-term monitoring of exploited fisheries to follow changes and to 

gradually improve our understanding fishing patterns and their impact on the fish 

communities. This involves the collection of fisheries related data across a broad 

spectrum of activities (e.g. fish consumption, employment creation, various kinds of 

biological data on species exploited, gear use and efficiencies, etc.) and associated 

factors/ variables (e.g. environmental factors, various land-use activities, etc.). Once 
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these have been documented and understood, they can be integrated into a flexible 

management system, which will allow for more adaptive management of these 

resources. Such integration is currently lacking in the Okavango Delta and also in 

floodplain fisheries in general. 
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1. Chapter 1 

Tropical inland fisheries, while producing at least 15-20% of the global fish 

production, are based on the tiny fraction (≈ 0.04 %) that tropical aquatic freshwater 

systems contribute to the world’s freshwater resources (Kolding and Zwieten, 2006). 

Most importantly, inland fisheries provide vital proteins, jobs and income for some of 

the most marginalized communities of the world (Allan et al. 2005; Welcomme, 

2011; HLPE 2014; Bene et al, 2015), but a growing global population, with a 

consequent increase in food demand, will place increased pressure on the global 

water resources (e.g. http://www.waterforfood.org/). According to Molden and de 

Fraiture (2004), this situation is of particular concern in Africa, where pressure on 

water resources is expected to increase rapidly within the next two decades. In 

addition climate change will increase water stress in southern Africa (Boko et al., 

2007) because of reduced rainfall (Clark, 2006), which will likely decrease fish 

productivity (Magadza, 2011) and increase food insecurity. An increased pressure on 

resources has raised concerns of overexploitation exacerbated by lack of knowledge 

on ecosystem response to changes in species, size, and trophic composition of fish 

assemblages (Allan et al., 2005). There is a compelling need to understand the 

dynamics of floodplain fisheries better because of their prevalence, high productivity 

and intrinsic value to riparian communities in Africa.   

Floodplain fisheries are generally considered among the most productive in the 

tropics (Junk, et al 1989; Welcomme, 2009), with an average potential fish 

production rate 2.5-4x that of tropical lakes and reservoirs on a water surface area 

basis ( Bayley, 1991). The Okavango Delta (Fig. 1) is one of the largest inland river 

deltas in the world (Allanson, et al 1990) with a fishery which is predominantly 

artisanal, combined with a small-scale commercial gill net fishery (Mosepele, et al 

2003). Common with most African inland fisheries, the fishery is characterized by a 

multi-species, multi-gear fishery harvesting the fish community across different 

trophic levels (Paper X). Approximately 65 % of the 25,000 people (based on 1995 

population estimates) who live within the periphery of the Delta depend on the 

fishery as a source of livelihood (Mosepele, 2001). Due to competing interests in the 

Delta’s fish resources, particularly between the flourishing tourist industry and the 
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local people, there has been a long history of stakeholder conflicts and repeated 

allegations of over-exploitation of the fish resource and deterioration of the 

environment. However, apart from a preliminary analysis (Mosepele, 2000) there 

have been no informed assessment studies on the Okavango delta fishery. The under-

lying objective for this study was to provide an improved understanding of the 

dynamics of the fish productivity and its relationship with environmental and 

fisheries factors, in order to provide informed knowledge to aid in solving the 

recurrent conflicts and management questions. Because of the complex and dynamic 

nature of the fishery (approximately 71 species and high seasonal variability, Paper 

X), a conventional fish stock assessment, based on steady state assumptions, is 

considered only partly adequate for a comprehensive and accommodating evaluation 

of the fishery. The Okavango Delta is subject to seasonal flooding which, like 

elsewhere, seem to play a key role in determining the nature of its fishery (Paper VII). 

However, a comprehensive understanding of the relationship between the 

hydrological regime and the dynamics of the fishery, the productivity, and the trophic 

interrelationships has never been established. 

The aim of this study was to examine the relationship between fish dynamics and 

environmental variability. Establishing this relationship is important towards 

identifying the key drivers of change and resilience in floodplain fish communities. 

Understanding this relationship will aid in floodplain fisheries and water 

management, as a step beyond prevailing management regimes based on steady state 

conditions (Mosepele, 2014). Tropical and sub-tropical floodplains are dynamic 

pulsating systems, which are constantly changing at various spatio-temporal scales, 

but where the fluctuations are also essential for regeneration and maintenance of the 

ecosystem. Proper understanding of floodplains is key towards their conservation 

under socio-economic development of riparian communities. The fundamental 

philosophy underpinning this thesis is that floodplains are dynamic, interconnected 

aquatic-terrestrial systems driven by seasonal flooding and drying that is mediated by 

a flood pulse at intra- and inter-annual scales and that management needs to be 

equally dynamic and adaptive. 

1.3 Description of the study area 
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Figure 1 Map of the Okavango River basin in southern Africa, with the three 

countries sharing the drainage basin. The insert shows the Okavango Delta inside 

Botswana, which is the focus of this study. (Source: The ORI GIS Laboratory)  

The Okavango river basin (Fig 1) is one of the driest and most sparsely populated 

basins in southern Africa. It is an endorheic (no outlet) system that spans three 

countries (Angola, Namibia and Botswana) (Ashton and Neal, 2003; McCarthy et al 

2003). 

The catchment of the Okavango River Basin is estimated to range in size from 429 

000 km2 (Ashton and Neal, 2003) to 530 000km2 (Andersson et al., 2003). Due to the 

close direct connection between the Delta, situated in a dryland, and the upstream 

catchment area, where most of the water originates, development projects altering the 

Okavango River’s flow are highly likely to impact the delta’s ecological functioning 

and fisheries productivity.  The basin is located in a water scarce area, and future 

planned water abstractions are projected to amount to about 3% of the mean annual 

runoff of the Okavango River when entering Botswana at Mohembo at the distant end 

of the so-called panhandle (Fig 1). However, there is not enough knowledge to 
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accurately predict the scale, significance and resilience of ecosystem responses within 

the Delta to the anticipated decreased flows (Ashton and Neal, 2003).   

Currently, the Delta is still relatively pristine (Milzow et al 2009; Black et al., 2011), 

which however, does not discount threats to its ecological integrity. Threats to the 

Delta do not only come from within the country driven by local population 

development pressures (Porter and Muzila, 1989), but there are also transboundary 

threats which have increased with the advent of peace in Angola (Andersson et al., 

2003; Milzow, et al 2009; 2010).  After a prolonged civil war, a repopulation of the 

headwaters of the Okavango has begun (Mendelsohn et al., 2010), where 

approximately one million people are expected to settle within the river basin 

(Andersson et al., 2003). Concomitant human activities like agriculture (including 

irrigation), water abstraction and hydropower development in both Angola and 

Namibia are expected to place an increased demand on the water resources of the 

basin (Andersson et al., 2003; Junk et al., 2006; Milzow et al., 2009). Being the 

endpoint of a large river in a dessert, the Okavango Delta may undergo the same 

environmental threats from dams and irrigation schemes that are now observed in 

Lake Turkana of Northern Kenya (Gownaris et al. 2016).    

1.3.1 Flooding dynamics in the Delta 

The Okavango Delta is a mosaic of various habitats consisting of swamps, islands and 

river channels whose aquatic, semi-aquatic and terrestrial phases change constantly at 

different temporal scales, driven by the flood regime (McCarthy et al., 2003; 

Ramberg and Wolski, 2008).  It is located in a dry sub-tropical area with a mean 

annual rainfall of 475 mm and experiences large annual variations in temperature 

where October is the hottest month while July is the coldest (Milzow et al., 2009).  

Rain normally falls in the period November – March while annual flooding from the 

Angolan highlands occurs in the period April - September (Ramberg and Wolski, 

2008). Annual precipitation, which is out of phase with seasonal flooding (Porter and 

Muzila, 1989; Ramberg et al 2006a), contributes approximately between 5% 

(Andersson et al., 2003) and 42% ( Ramberg and Wolski, 2008) of the total water 

input into the Delta, while the rest comes as discharge from the Angolan highlands 
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(Ramberg and Wolski, 2008). Total water storage in the Delta is about 10 000 million 

m3 (about a year’s inflow of water) which supports diverse vegetation (Porter and 

Muzila, 1989) aquatic and wildlife species (Ramberg, et al., 2006b). The Delta’s 

hydrology is constantly shifting (i.e. changes in flow patterns from one part of the 

Delta to the other), and is driven by various factors such as seismic activity, 

vegetation dynamics, animal activity and human intervention ( Wilson, 1973; Porter 

and Muzila, 1989; Wolski and Murray-Hudson, 2006; Milzow et al 2009). This 

suggests that flow in the anastomosis of channels can change at any given time due to 

variations in these factors. 

Peak discharge in the Delta’s panhandle occurs in March/ April (Wolski, et al 2005) 

and the flood pulse continues progressively down the Delta, taking a maximum of 6 

months (Andersson et al., 2003) to reach the distal ends of the system. This sinusoidal 

flooding cycle in the Delta results in a period of minimum inundation (November - 

March) to a period of maximum inundation (May - September) (Andersson et al 

2003; McCarthy et al 2003; Wolski et al 2005). There is a time lag between inflow 

and flood extent in the Delta. According to Ramberg et al (2006b), water depth 

variations in the permanently flooded areas are usually very small, while these are 

normally in the order of 1-2 m in the seasonally inundated parts of the Delta. 

Annual average, minimum and maximum flow years in the Delta have a cyclical 

behaviour with a 17.5 year periodicity in the annual average and maximum flows 

(Mazvimavi and Wolski, 2006). However, there is high inter-annual variability in 

flooding patterns where good flood years may be followed by poor flood years 

(Milzow et al 2009; Mendelsohn et al 2010). The extent of flooding in the previous 

year and local rainfall also determine the extent of flooding in any one year 

(Mendelsohn et al., 2010; Milzow et al., 2009). While inter-annual variations in 

rainfall cause variability (lows and highs) in its flooding regime (Wolski and Murray-

Hudson, 2006), earth movements with shifts in the flows also cause different parts of 

the Delta to periodically undergo drying episodes (Milzow et al., 2009). Flooding 

dynamics in the Delta are critical towards a comprehensive understanding of 

ecological processes in the Delta. 
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1.4 Floodplain ecology: Primary and secondary production dynamics  

Seasonal flooding liberates nutrients from the inundated soils as new floodwaters 

enter the floodplains (Welcomme, 1988; Paper III). The Delta has a heterogeneous 

mosaic of micro-habitats (Siziba et al., 2011a) characterized by low nutrient ( Krah et 

al 2006) and oligotrophic waters (Cronberg et al 1995; McKay et al 2011). Despite 

the oligotrophic nutrient status, the Delta is a productive system (Hoberg et al 2002) 

as evidenced by relatively high fish production/biomass in some lower Delta lagoons 

(Fox, 1976; Mosepele et al, 2011) and fast vegetation growth (Ramberg et al., 2006a). 

Several key processes contribute to nutrient dynamics in the Delta; (i) surface waters 

( Cronberg et al 1995; Garstang et al 1998; McKay et al 2011) (ii) soil nutrients  

(Krah et al 2006), (iii) dung from mammals in the seasonal floodplains (Paper VII), 

(iv) mineralization (from senescent plant material and peat) (Ramberg et al., 2006a), 

and (v) windblown dust/ atmospheric deposition ( Krah et al 2006), the latter which is 

a major nutrient source at receding water levels in the seasonal floodplains. 

When the new floods arrive, they carry with them allotropic nutrients from upstream 

runoff, which facilitate the primary production processes in the Delta. The new floods 

also dissolve embedded soil nutrients from the terrestrial dry phase, which increase 

nutrient concentration and availability. This is also coupled with an increase in 

Dissolved Organic Carbon (DOC) in the seasonal floodplains (Mladenov, et al 2005), 

due to high organic matter loading (Mladenov, et al 2007). Additionally, dung from 

the herds of large herbivores (elephants, buffaloes, antelopes) also contributes to the 

organic matter loading in the seasonal floodplains (Paper IV). Hippos also play a 

major role in nutrient cycling of aquatic ecosystems by converting terrestrial biomass 

(ingested grass) into aquatic nutrients into the Delta’s waters where they defecate 

(Garstang et al., 1998). Ultimately nutrient loading switches to atmospheric 

deposition when the floods have reached their maximum extent in the seasonal 

floodplains (Krah et al 2006). The alternating wetting and drying processes in the 

Delta facilitate optimum conditions for enhanced primary production in the system 

(Ramberg et al., 2006b). This is consistent with studies from elsewhere  (Junk et al, 

1989; Ward and Stanford, 1995) which observed that regular flooding and drying in 

floodplains is an essential nutrient pump for biological production. 
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Biomass of large mammals in the Delta is approximately 12 t km-2, and is among the 

highest in wetlands around the world (Junk et al., 2006). The density of mammals in 

the Okavango Delta is 4-8x higher than expected from it standing nutrient status, 

primarily because of its high efficiency in primary productivity from recycling 

nutrients  (Ramberg et al 2006b). This positive feedback loop in fertilization makes 

the Delta highly efficient in transforming plant carbon into higher food-web levels 

through terrestrial mammals (Junk et al., 2006). 

Regular flooding and drying episodes in the Delta increase plant diversity  

(Tsheboeng et al 2014), in accordance with Huston’s (1979) “intermediate 

disturbance hypothesis”. Other factors in this habitat “disturbance” include erosion 

and sediment deposition, and actions by biological engineers like elephants, 

hippopotamus and termites (Paper VII). Frequent disturbances in the Delta create 

small-scale habitat patches, which facilitate the co-existence of different successional 

stages of plant communities. Flood pulsed systems provide diverse food items to food 

webs, and also act as dry season refuges for migrating mammals. Flooding dynamics 

in the Delta, coupled with the “out-of-phase” rainfall season, ensure that fresh 

primary vegetation is available much longer in the Delta for herbivore mammals, 

which increases the land’s carrying capacity  (Junk et al 2006). All these interrelated 

dynamics enhance ecosystem productivity, and contribute to the high productivity in 

the Delta, despite its oligotrophic water. 

In addition to a high average biological basis production, the aquatic processes in 

subtropical and tropical floodplains systems undergo “boom and bust” conditions 

driven by seasonal flooding  (Junk et al 1989; Lowe-McConnel, 1987; Bunn et al 

2006; Schongart and Junk, 2007). The seasonal flooding in the Okavango Delta 

initiates a “boom” in the aquatic primary production when the new annual floods 

inundate the peripheral floodplains (Hoberg et al 2002). As the floodwaters submerge 

the floodplains, microbial decomposition begins to degrade the accumulated detritus, 

dung and other organic matter. There is an initial build-up in nitrogen and 

phosphorous concentrations at the start of the flooding season, but these are gradually 

depleted over time through photolytic degradation and burning in the dry floodplains. 

There are spatio-temporal variations in dissolved oxygen (DO)  (Hoberg et al 2002), 
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conductivity and phosphorous concentrations (Paper I). DO levels are initially low at 

the onset of the floods and increase gradually, before reducing again at decreasing 

flood levels (Hoberg et al 2002). There is also diurnal variability in DO levels where 

anoxic conditions are observed at sunrise while peak DO saturation levels occur at 

sunset ( Hoberg et al 2002). 

The initial flooding in the delta results in a “boom” in chlorophyll a and primary 

production processes, followed by a “bust” towards the end of the flooding cycle. 

During the first week of flooding, chlorophyll a concentration increases from 2.6 to 

23.5 µg L-1 before receding to 10 µg L-1 by the end of the flooding season (Hoberg et 

al 2002). Similarly, primary production increases from 63 µg C L-1 day -1 at the onset 

to 264 µg C L-1 day -1 within a week of flooding, before settling to 82 µg C L-1 day -1 

by the end of the first month of flooding. However, there is spatial variability in 

chlorophyll a concentration across the Delta’s microhabitats (Siziba et al., 2011a). 

The seasonally inundated floodplains in the Delta have higher concentrations of 

DOC, K, SiO2, Mg, HCO3, Na and NO3 than permanently flooded areas (Mackay et 

al., 2011). Like the mosaic pattern of the delta itself, there are spatial and temporal 

variations in water chemistry. This complex system is further exacerbated by a 

surging time lag where new floods arrive at Mohembo (northern Delta), while the 

previous year’s flood are still receding at Maun (southern Delta) (Mackay et al., 

2011).  

The sharp increase in zooplankton biomass “boom” at the onset of the floods is 

inoculated from egg banks in the seasonal floodplains (Hoberg et al 2002; Siziba et al 

2012). Regular flooding is important in maintaining micro-crustacean propagules and 

the diversity of these micro-fauna in the Delta’s floodplains (Siziba et al., 2012). 

Cladocerans, copepods and ostracods are the three major groups whose emergence 

from floodplain sediments is driven by inundation. These micro-crustacea, which are 

key fish food (Paper II), then inoculate new flood waters in the seasonal floodplains 

(Siziba et al., 2012). Riding on the wave of seasonal flooding are strong fluctuations 

in zooplankton biomass over the flooding season in the seasonal floodplains  (Hoberg 

e al 2002). Zooplankton biomass peaks at about 10 mg DW L-1 during the first month 

of flooding, which gradually declines to 1 mg DW L-1 towards the end of the flooding 
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season. Hoberg et al (2002) also observed a species succession in zooplankton species 

during the flooding season. Moina micrura is the dominant species during the onset 

of the flood, whose populations then decrease to the end of the first month of 

flooding. Zooplankton populations are then dominated by Daphnia laevis during the 

second month of flooding, while Chydorus spp. dominates the zooplankton 

community at the end of the flooding season.  

1.5 The flood pulse and fish community dynamics  

1.5.1 Juvenile and small fish species dynamics  

Newly inundated floodplains are an important nursery habitats for fish recruitment  

(King et al 2003). In the Okavango delta the inundated areas are dominated by 

juvenile cichlids (e.g. Oreochromis andersonii, Tilapia sparrmanii and Coptodon 

rendalli), catfish (Clarias gariepinus), and cyprinids (e.g. Barbus bifrenatus and B. 

barnardi) during the first month of flooding. Fish fry and juveniles were observed at 

increasing frequency starting from the second month of flooding (Hoberg et al 2002). 

The boom of primary producers and zooplankton initiated by the seasonal flooding 

(Siziba et al., 2012), serves as abundant food sources for the juvenile fish and small 

fishes (Paper II) and also some adult fish (Paper IV). The subsequent decrease in 

zooplankton biomass corresponding with an increased frequency of juvenile fish over 

the flooding season is due to predation ( Hoberg et al 2002, Paper II). This suggests 

that failed or poor floods cause a bottle neck in fish production due to failed 

zooplankton production (Siziba et al., 2012).  

Juvenile fish growth on the inundated floodplains is rapid within the first year of life 

(Dudley, 1974). Rapid growth ensures that juvenile fish are large enough to (i) avoid 

being stranded in the floodplains at receding floods, and (ii) avoid heavy predation 

when migrating into the permanent channels at draw-down (Booth and Merron, 

1996). Foraging by juvenile fish in the inundated areas is an adaptation for taking 

advantage of high zooplankton biomass that is triggered by the flood pulse (Paper 

III). Less frequently flooded areas (those only flooded occasionally at very high 

flows) show exceptional “booms” in zooplankton biomass and juvenile fish (Paper I), 

especially after a low flood year (Paper II).  During poor flood years, the zooplankton 
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biomass are less exposed to fish grazing, while predation appears to be a strong 

regulator of zooplankton biomass during good flood years (Paper III). Large flood 

years result in extensive flooded areas which appear to particularly facilitate fish 

breeding, growth and survival and ultimately increased fish production  (Lowe-

McConnell, 1987; de Graaf, 2003). The flood volume in the Okavango Delta is a 

major driver of fish production, where relative fish biomass during a high flood year 

can be double that of a low flood year (Paper III).  

Alternating wetting and drying processes are necessary in floodplains to increase 

nutrient turnover, maintain primary production dynamics (Junk et al., 1989) and 

hence fish production. However, the pattern of rise and fall of the hydrograph is 

influencing floodplain fish production.  According to King et al (2003), a “relatively 

slow rate of rise and fall” of the seasonal hydrograph creates optimum conditions for 

fish species to utilize the floodplain for recruitment. Conversely, a rapid rise and fall 

in the hydrograph may offset the balanced time lag between primary production and 

fish production (Tockner et al 2000), which may result in less successful fish 

production. However, short lived hardy species in floodplain systems can adjust 

quickly to extreme hydrological events (Junk et al 1989; Junk, 2002).   

1.5.2 Adult fish  

Community structure and distribution: Floodplain fish communities are structured 

along a hydrology-water chemistry gradient  (Zeug and Winemiller, 2007; Zeug et al 

2005; Paper V). However, due to inter-annual differences in flooding regimes, fish 

communities among years are stochastically different driven by the seasonal dilution 

and expansion dynamics (Paper V; Paper VII) of the hydrological cycle.  

Studies from other areas have shown that poor flood years are dominated by 

opportunistic fish species  Lae, 1995; Petry et al 2003), which have fast growth rates 

and high fecundities. Other studies show that good flood years are dominated by 

iliophagous (mud-eaters) species, which are preceded by piscivores in poor flood 

years (Agostinho et al 2001). Similar kinds of species dynamics driven by flooding at 

an annual scale have also been observed in the Okavango Delta. The Delta’s fish 

community, as judged by experimental catch rates, is dominated by C. gariepinus at 
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maximum flooded area, while tiger fish (H. vittatus) dominates the fish community at 

minimum flooded area (Paper V). Furthermore, poor flood years are dominated by 

hardy, multiple spawning species (i.e. C gariepinus) while good/ high flood years are 

dominated by opportunistic, highly fecund, total spawning species (i.e. Schilbe 

intermedius) (Paper V). Mosepele et al (2011)  observed spatial differences in fish 

community structure among several lagoons in the Delta. Generally, upper Delta 

lagoons have higher fish species richness than lower Delta lagoons. It is possible that 

one factor contributing to these community differences is relative hydrological 

stability in the upper Delta vs. increased hydrological variability in the lower Delta.   

Reproduction: While spawning for some floodplain fish species is cued by rising 

water levels  (Dudley, 1974; van der Waal, 1985; Welcomme, 1985; Godinho et al 

2010; Montcho et al 2011), others spawn at low water levels (Humphries et al 1999; 

Vasquez et al 2009). In the Okavango Delta, peak spawning for some fish species 

occurs at low flood levels in the main channel at high water temperatures, while other 

species spawn during high water levels in the floodplains at low water temperatures 

(Merron et al 1990; Paper V). Van der Waal (1985) observed that spawning for some 

cichlids was apparently not associated with hydrology, while other studies (Dudley, 

1974; Paper V), found that spawning for the majority of cichlids is associated with a 

hydrological gradient, However, for some cichlids (e.g. Serranochromis 

macrocephalus and C. rendalli) spawning was mostly  associated with water 

temperature, which agrees with van der Waal’s (1985) observations.   

Growth and Feeding: Floodplain fish growth is fastest during increasing water levels 

(Power, 1984; Bayley, 1988; Paper VI) and peaks at maximum flooded area to take 

advantage of the available abundant food in the floodplains (Booth and Merron, 1996; 

Paper VI). During the low flood season, intra-specific competition for food (Paper 

IV) decreases growth rates (Dudley, 1974; Martin et al 2011). At inter-annual scale, 

growth of floodplain fish in Kafue, Zambia, differed significantly among years 

according to flooding and temperature (Dudley, 1974).  In the Okavango, studies 

have shown that there are significant differences in maximum size between upper and 

lower delta Clarias gariepinus populations (Mosepele et al, 2011). Other research 

suggests that upper Delta populations follow K life histories while lower Delta 
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populations are more r selected (Merron and Bruton, 1988; Paper VI). Similarly, 

some cichlid species also appear to follow K selected life history strategies in the 

upper delta and are more r selected in the lower Delta (Mosepele and Mosepele, 

2005). 

Like most other features, the diet and feeding ecology of floodplain fish species is 

flood-pulse driven (Lowe-McConnell, 1987; Paper IV). After the feeding and growth 

of the juveniles on the floodplains during high water, a dominant feature is increased 

piscivory at receding water levels by fish predators when all the young fish are forced 

back into the main channels (Bayley, 1988; Paper IV). This “concentration effect” at 

receding water levels facilitates predation by piscivorous fish, as well as fishers. 

Thus, while prolonged inundation or years of good flooding might enhance fish 

growth and production (Bayley, 1988; de Graaf, 2003), this may have an adverse 

impact on large, resident channel living piscivorous fish (Hoeinghaus et al 2003). 

These dynamic processes illustrate the variability of floodplain fish dynamics and the 

need for adaptive approaches in both exploitation and regulations.   

1.5.3 Floodplain fisheries management 

Nature of the fisheries: The preceding overview has highlighted the dynamic 

interactions and processes between floodplain fish communities and the highly 

dynamic environment. Floodplains are unstable, seasonally fluctuating ecosystems 

characterized by strong intra and inter annual variability, where the flood pulse is a 

key driver of practically all processes  (Junk et al 1989; Schongart and Junk, 2007). 

Inland fisheries in Africa are generally small scale and labor intensive (Welcomme, 

2011). They are characterized by multi-species assemblages, of different sizes 

exploited by diverse fishing gears and methods (van Zwieten et al 2003; Welcomme, 

2011; Kolding and van Zwieten 2014; Paper IX). In the Okavango Delta, the 

hydrological regime is a major driver of change in the biology and ecology of the fish 

community (Paper III, IV, V, VI, VII, and VIII). Like other floodplains, the fisheries 

are dynamic, and constantly changing due to the environmental driver, and are never 

in constant equilibrium. This makes conventional management approaches based on 
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steady state equilibrium assumptions inconsistent and difficult ( Staples et al 2004; 

Mosepele, 2008, 2014; Welcomme et al 2010).   

Except for a few highly commercialized fisheries in freshwater systems like the 

Amazon and Mekong  (Welcomme et al 2014), most floodplain fisheries are a major 

source of localized food and nutrition and mostly serving as subsistence for riparian 

households  (Junk, 2002; Mosepele et al 2006; Welcomme, 2011). Their primary 

value to local communities is their contribution towards household income and food 

security (Mosepele et al., 2006), though some African inland fisheries are slowly 

morphing towards commercial or recreational fishing as well (Kolding and van 

Zwieten, 2014). Fishers in floodplain fisheries systems use various traditional 

techniques ( Cerdeira et al 2000; Kolding et al 2003; van Zwieten et al 2003) to adapt 

and optimize utilization of the ever changing fish assemblages, and the same is 

observed in the Okavango Delta (Mosepele et al 2007; Mmopelwa et al 2009; Paper 

IX). Floodplain fisheries are thus also a major source of traditional ecological 

knowledge (Mosepele, 2008) and cultural heritage (Junk, 2002) and any floodplain 

fisheries management regime should incorporate these characteristics into its 

management objectives.  

Effort regulation: Gear restrictions and mesh regulations are fixed attributes and 

remain some of the easiest and cheapest regulations to implement in fisheries 

management regimes (Misund et al, 2002), and these have been widely implemented 

in floodplain fisheries. The fundamental questions in fisheries management is how to 

regulate the fishing mortality, which is a combination of how to catch the fish (this is 

based on gear and mesh restrictions) and how much fish to catch (which is based on 

effort regulation).  The key approach to regulate the ‘how’ question is to control gear 

selectivity, while effort on the other hand is sometimes regulated to maintain the 

aggregate fishing effort in order to obtain a “maximum economic yield” (MEY). An 

efficient economic exploitation of the fishery is assumed to save fish stocks from 

over-exploitation/ collapse ( Bene et al 2010; Kolding and van Zwieten, 2014). 

Arguments such as these are attractive to policy makers and introduce policies aimed 

at effort reduction. The classical argument is that fishers are the main factor 

influencing fish stock dynamics, which is otherwise assumed in ‘steady state’. Since 
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catch is a function of effort, it needs to be managed. The alternative assumption 

would be that effort is controlled by the current production (Kolding and van Zwieten 

2011, 2014), and therefore largely self-regulated,  

The Okavango delta, like other floodplains, is environmentally driven and primarily 

forced by the seasonal flood pulse. Poor floods result in reduced fish production while 

good floods facilitate high productivity. Accordingly, fishing effort is also relatively 

driven by the seasonal flood pulse, where fishers regulate their effort and fishing 

methods based on seasonal flooding (Paper IX). In addition, the structural 

heterogeneity of the Delta also has a major regulating impact on fishing pressure in 

the Delta (Paper IX). According to Mendelsohn et al (2010), there are places in the 

Delta which are inaccessible to fishers, and most fishing activities is conducted in 

areas close to human settlements, such as the panhandle (Figure 1).  

 Mesh or gear regulation: A key theoretical argument for regulating the gear 

selectivity is to protect the young fish and target the big fish in order to prevent so-

called growth overfishing  (Kolding and van Zwieten, 2011). Most fishing gears are 

selective regarding species, sizes and habitats fished  (Kolding and van Zwieten, 

2014) but  regulating selectivity on certain sizes will invariably unbalance the fishing 

mortality on the various components in the ecosystem (Garcia et al. 2012). For 

example, males of O. andersonii, O. macrochir and C. rendalli (which are important 

commercial species in the Okavango Delta), grow larger than females (Dudley, 

1974). Hence, selective harvesting with large mesh sizes would tend to select the 

males from the populations of these three species resulting in unbalanced sex ratios. 

Such scenario can alter the breeding sex ratio of an exploited population and 

ultimately reduce its reproductive potential (Fenberg and Roy 2008). Focusing 

exploitation exclusively on the mature part of the population will also alter the 

demographic composition. It therefore makes ecological sense to also target younger 

age classes than only old big fish, which are the engines of population growth. Big 

Old Fat Fecund Females (BOFFFs) are more fecund than smaller/ younger fish  

(Trippel, 1995; Walsh et al 2006; Kolding et al 2015). Smaller/ younger fish are also 

more productive than bigger/ older fish  (Law et al. 2012). In order to maintain the 

natural structure and composition of fish communities it has been suggested to exploit 
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populations in proportion to their natural productivity, of the so-called  ‘Balanced 

harvest’ concept (Garcia et al., 2012; Law et al., 2012).  

Similar species from different habitats in the Delta have different life history 

strategies  (Merron and Bruton, 1988; Mosepele, 2000; Mosepele and Mosepele  

2005; Paper VI) where lower Delta species are generally smaller and r selected while 

upper Delta species are generally larger and more K selected (Merron and Bruton, 

1988, Mosepele et al, 2011). While O. andersonii from the lower Delta has slower 

growth than those from upper Delta, O. macrochir and C. rendalli from the lower 

Delta grow faster than their upper Delta conspecifics (Mosepele, 2000). Moreover, 

lower Delta populations of these three cichlids were found to mature earlier than 

those from the upper Delta (Mosepele and Mosepele 2005). A similar observation 

was made for C. gariepinus (Paper VI).  

From a multispecies point of view, the smallest fish species (Total Length) in the 

Delta is approximately 32 mm while the largest species is over 1 m with a graduation 

of sizes in between them (Paper IX). Implementing mesh (or gear) regulations will 

certainly skew fishing mortality towards one side of the community size spectrum, 

causing a structural and demographic change of the fish community, and possibly 

also effecting functional changes. According to the Conventional on Biological 

Diversity (CBD), a major component of the Ecosystem Approach to Fisheries (EAF) 

is to maintain the structure and function of the natural communities as close as 

possible to the natural stages. 

Selective fishing, on the contrary, can cause evolutionary change in exploited 

populations  (Rochet, 1998; Law, 2000) which occurs through a three stage process; 

(a) fishery managers set the parameters of selection, (b) fishers apply the mortality 

and, (c) the exploited fish stocks are then exposed to the selective mortality (Law, 

2000). As a consequence, exploited stocks undergo changes in growth and maturation 

(Rochet, 1998; Law, 2000), and selective fishing essentially causes ecosystem 

imbalances  (Schindler et al, 1998; Law, 2000; Kolding and van Zwieten, 2011).  

A new paradigm: Classical single-species assessment models are incompatible with  

multi-species, multi-gear fisheries (Mosepele, 2008; Welcomme, et al 2010; 
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Welcomme, 2011). A more balanced exploitation pattern harvesting species of all 

sizes and all trophic levels is likely the best management approach for floodplain 

fisheries in terms of both yield and maintaining the fish community structure 

(Kolding et al 2003, Mosepele 2014; Paper IX). There are nine different fishing 

gears/ methods observed in the Okavango delta, which collectively harvest the fish 

community across different age classes and trophic levels (Fig 2) and species  

(Mosepele et al 2003; Mmopelwa et al 2009), thus an approximate “balanced 

harvesting” (BH) regime by the diversified gear assemblage; Fig 2) is actually applied 

by fisher communities in the Okavango Delta and is a common attribute of floodplain 

fisheries (Kolding and van Zwieten, 2014). The so far only fish stock assessment of 

the Delta (Paper IX), showed that i) the fish stocks were generally under-exploited 

and ii) that the fish community was being rationally exploited by using several 

different fishing gears and methods to harvest the Delta’s diverse species assemblage 

(Paper IX, Fig 2).  

 

Fig 2 Effect of various fishing gears and methods on the Okavango Delta’s fish 

community where the red scale on the x-axis represents the mean trophic level of 

each species calculated from Paper IV, while the black scale represents the mean age 

of each fish species calculated from Froese and Binohlan (2000)    (Source: Paper IX) 
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Currently, some of these gears (e.g. mosquito nets) and fishing methods (e.g. drive 

fishing) are prohibited in the Delta  (Botswana Government, 2008; Mosepele, 2008, 

2014). However, there is no empirical evidence to justify these regulations.  About 

70% of the species exploited by mosquito nets are generally very small species (e.g. 

Barbus radiatus, Aplocheilichthys johnstoni, etc.), which are not caught by other 

methods (Mosepele et al 2003; Paper IX). Restricting this gear will result in 

decreased catches of these small sized underutilized species, which are primarily 

harvested by women for household consumption. Drive fishing is a traditional and 

efficient method for exploiting cichlids ( Mosepele et al 2007). Thus, prohibiting 

drive fishing will skew gill net fishing mortality towards O. andersonii, while 

Coptodon rendalli, well known for escaping stationary gillnets (Kolding et al., 2003), 

will remain relatively unexploited.. In addition, prohibiting drive fishing will result in 

reduced revenue for the Delta’s commercial fishers which are primarily targeting 

cichlids. Blankly prohibiting some fishing methods and gears, without informed 

justification may not only cause ecosystem imbalances, but may also reduce the food 

security aspect and socio-economic value of the fishery to riparian communities. The 

principle of Balanced Harvest (BH) has been strongly criticized by Froese et al 

(2015), because they argue  it does not conform to ‘basic population dynamics’ as 

developed by  Beverton and Holt. However, BH is a concrete proposal for 

implementing the Ecosystem Approach to Fisheries (EAF)  (Kolding et al 2016), 

which does not only make ecological and biological sense in floodplain fisheries 

(Mosepele, 2014), but it is also sensitive to the cultural value of floodplain fisheries 

(Mosepele, 2008). 

Diversified fishing techniques, as it is traditionally practiced in the Okavango Delta 

and many other African inland fisheries, ensure that most species across various sizes 

and habitats- in the fish community are exploited. It also allows impoverished 

households (especially those headed by women), to have access to high quality 

protein, which again ensures that young children from these fishing households have 

a relatively good nutritional status (Nnyepi et al 2007). BH was intended to reduce 

adverse ecological impacts of fishing while also supporting sustainable fisheries 

(Garcia et al., 2012). Fisheries management should also preserve cultural and heritage 
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practices of fishing communities when these are not proven destructive, because, 

“culture is a fundamental human right” (Junk, 2002). 

1.6 Conclusion 

The seasonal flood pulse in the Delta, driving the dry and wet floodplain phases, is 

the main contributor towards enhanced ecosystem production in an otherwise 

oligotrophic environment. Seasonal flooding not only changes the physical landscape 

of the Delta, by re-connecting isolated lagoons and creating a multitude of diverse 

micro-habitats, it also enhances nutrient dynamics in both the terrestrial and aquatic 

system. These alternating micro-habitats ensure continuous succession in plant 

communities and enhanced plant biomass production (much of which is grazed by 

large herbivores), thereby contributing to nutrient recycling in the system. This 

shifting terrestrial and aquatic based food webs is eventually transformed into fish 

biomass.  

Management interventions in floodplain fisheries should be adaptive, practical, 

realistic and implementable, which in particular means acceptable to the stakeholders. 

Most developing countries have limited resources, and these should be spent on 

achievable and practical activities. Informed management also necessitates 

continuous long-term monitoring of exploited fisheries to follow changes and to 

gradually improve our understanding fishing patterns and their impact on the fish 

communities. This involves the collection of fisheries related data across a broad 

spectrum of activities (e.g. fish consumption, employment creation, various kinds of 

biological data on species exploited, gear use and efficiencies, etc.) and associated 

factors/ variables (e.g. environmental factors, various land-use activities, etc.). Once 

these have been documented and understood, they can be integrated into a flexible 

management system, which will allow for more adaptive management of these 

resources. Such integration is currently lacking in floodplain fisheries. 
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