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I said: What about my eyes? 

God said: Keep them on the road. 

I said: What about my passion? 

God said: Keep it burning. 

I said: What about my heart? 

God said: Tell me what you hold inside it. 

I said: Pain and sorrow. 

God said: …Stay with it. The wound is the place where the Light enters you. 

 – Rumi 

(translated) 
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Scientific environment 

The following doctoral project was conducted at the Broegelmann Research 

Laboratory, Department of Clinical Science, University of Bergen and within the 

framework of the Bergen Research School of Inflammation. The work was carried out 

under the supervision of Silke Appel and Roland Jonsson within a period of 2017 and 

2020.  

The flow cytometry and mass cytometry experiments were performed at the Flow 

Cytometry Core Facility, Department of Clinical Science, University of Bergen, 

Norway.  
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Summary 

Primary Sjögren’s syndrome (pSS) is a systemic, chronic autoimmune disorder that is 

characterized by progressive lymphocytic infiltration in the exocrine glands i.e., the 

salivary and lacrimal glands, leading to immune-mediated glandular destruction. It 

mostly affects middle-aged women, making diagnosis of the disease challenging, as 

the symptoms (primarily dryness of the mouth and eyes and fatigue) are often confused 

with the side effects of drugs, other comorbidities or aging. Currently there is no cure, 

as the exact mechanism of the disease pathogenesis is not known, and treatment 

strategies mainly aim at alleviating the symptoms. Like most autoimmune diseases, 

pSS progression and phenotype are complex and multi-faceted, with a wide spectrum 

of clinical manifestations, ranging from local to systemic, including fatal conditions 

like B cell lymphoma. Patient heterogeneity is a major obstacle to disease management. 

Therefore, it is imperative to identify potential disease markers that may help in 

diagnosis, prediction, stratification of the patients and/or identification of new 

therapeutic targets.  

The overall aim of this thesis was to study the peripheral blood immune system in pSS, 

to identify disease-specific immune profiles and potential biomarkers that may help in 

patient stratification. In paper I, phosphoflow cytometry was used to compare basal and 

TLR7 and -9 stimulated phosphorylation states in immune cells of pSS patients and 

healthy donors. Both basal and stimulation-induced phosphorylation differed 

significantly between pSS patients and healthy individuals, and between patient 

subgroups. Plasma cytokine levels, measured by Luminex assay, also differed 

significantly between the patients and controls as well as between patient subgroups, 

and correlated with autoantibody status and other clinical parameters. 

In paper II, single cell analysis of peripheral blood immune cells, with special emphasis 

on intracellular signaling, was done using mass cytometry. We compared the 

frequencies of different immune cell subsets among the patient subgroups and healthy 

individuals and analyzed their signaling profiles, upon stimulation with IFNα2b and 

IFNγ separately. Significant differences in cell frequencies were observed among the 
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SSA- and SSA+ pSS patients and controls, along with increased activation status in 

many cell types, particularly in the SSA+ subgroup. Upon IFNα2b and IFNγ 

stimulation, aberrations in phospho-signaling were detected in the various immune cell 

subsets of the patient subgroups, which were most prominent in the SSA+ pSS patients.  

In paper III, we used flow cytometry and qPCR to analyze the expression of TAM 

receptors in various immune cells of pSS patients and healthy controls. Significant 

differences in the mRNA levels of some of the TAM receptors as well as in cell 

frequencies were observed between the patients and healthy donors. Differential TAM 

receptor expressions in the immune cells were detected between the pSS patients and 

healthy controls, with most of them being expressed at slightly lower levels in the 

patients. 

In conclusion, aberrations in cellular compositions, cytokine and TAM receptor levels 

as well as discrepancies in intracellular signaling pathways were detected in the pSS 

patients and their subgroups compared to healthy individuals. Further research can shed 

light on new biomarkers for stratification of patients for personalized treatment. 

Optimized therapeutic strategies can greatly alter the disease outcome and quality of 

life. 
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1.  Introduction 

1.1 The immune system 

Living organisms are constantly exposed to myriad pathogens like bacteria, fungi, 

viruses and parasites. In order to provide protection from diseases caused by them, a 

complex biological system, called the immune system has evolved across phyla. It can 

simultaneously discriminate between ‘self’-‘non-self’ and harmful-harmless, thus 

protecting the host against infectious agents and abnormal ‘self’, while ignoring 

harmless substances and normal ‘self’ [1, 2]. As shown in figure 1, the vertebrate 

immune system can be broadly divided into two distinct yet functionally interconnected 

branches: the innate immunity and the adaptive immunity. These differ in terms of 

reaction time, specificity, diversity and ability to induce memory. In general, the former 

is non-specific but rapid while the latter is slow but highly pathogen-specific [3, 4] . 

 

Figure 1. Innate and adaptive immunity. The innate immune system reacts within hours of an 

infection, while the adaptive immune reactions set in later, after activation of the lymphocytes. Figure 

from Cellular and Molecular Immunology, Abbas et al., 9th edition [5]. Reprinted with permission from 

Elsevier. 
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The innate immune system is the first line of defense against invading pathogens. It is 

initiated within minutes to hours after infection. The three major mechanisms by which 

it offers protection to the host are inflammation, antiviral response and stimulation of 

adaptive immunity [5]. The cells of innate immunity include neutrophils, dendritic 

cells/DCs, monocytes, macrophages, natural killer/NK cells and NKT cells, amongst 

others. They express a limited number of germline-encoded receptors, called pattern 

recognition receptors (PRRs), the most extensively studied being the Toll-like 

receptors (TLRs) [6]. PRRs recognize evolutionarily conserved, invariant molecular 

patterns shared by groups of microbes called pathogen-associated molecular patterns 

(PAMPs) such as lipopolysaccharide (LPS), glycoproteins rich in mannose residues, 

double-stranded RNA and unmethylated CpG DNA [7, 8]. In addition, they can also 

detect endogenous molecules released from damaged or dying cells called damage-

associated molecular patterns (DAMPs) like alarmins [9].  

The hallmarks of the adaptive immune system are diversity, specificity and 

immunologic memory and its cellular components include T and B lymphocytes. Prior 

to infection, low levels of lymphocytes of each specificity are present in the host. 

Following an infection, on encountering its cognate antigen, a lymphocyte becomes 

activated, undergoes clonal expansion and differentiation, producing thousands of 

progenies, equipped to mount a strong immune response against the intruder [5, 10]. 

Secondary and subsequent encounters with the same pathogen mount a much more 

rapid and heightened immune response due to the long-lived memory cells generated 

from the primary response [5, 10].  

Despite their differences, the two arms of the immune system work together for 

effective host defense. As Beutler, the 2011 Nobel prize winner, has elegantly 

summarized, “…the roots of adaptive immunity are buried deep in the soil of the innate 

immune system” [11]. Antigen presenting cells (APCs), specially DCs, play a crucial 

role in linking the innate and adaptive immune responses. They capture, process and 

present antigens to T cells in a major histocompatibility complex (MHC)-dependent 

manner, leading to their stimulation and subsequent activation of adaptive responses 

[12]. 
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1.1.1 Cytokines as chemical messengers 

Cytokines are chemical messengers of the immune system that aid in intercellular 

communication. These are a diverse group of molecules that bind to receptors on cell 

surfaces and can induce complex signaling cascades. They may act in an autocrine 

(acting on the cell secreting it), paracrine (acting on a cell in the vicinity), juxtracrine 

(between adjacent cells, requiring membrane-anchored proteins) or endocrine (acting 

on a distant target cell) manner [13]. These pleiotropic proteins are involved in 

activation, growth and differentiation and migration of immune cells. Those that cause 

differentiation and proliferation of immune cells are called colony-stimulating factors 

e.g., granulocyte macrophage colony-stimulating factor (GM-CSF); those that interfere 

with viral replication are called interferons (IFNs); a special class of cytokines that 

have chemoattractant property and are involved in leukocyte migration are called 

chemokines e.g., macrophage chemoattractant protein-1 (MCP-1) [14]. Cytokines can 

be proinflammatory (e.g., type I IFNs, tumor necrosis factor- α/TNF-α, interleukin 

1/IL-1, IL-12.) or anti-inflammatory (e.g., IL-4, IL-10, transforming growth factor 

β/TGFβ) [15, 16].  

Interferons in the immune response 

IFNs belong to a diverse family of cytokines that have direct anti-viral effects. They 

are produced in response to activation of PRRs like TLRs and other cytosolic RNA-

DNA sensors (e.g., retinoic-acid-inducible gene I/RIG-I and stimulator of IFN 

genes/STING) and help to eliminate infected cells and protect uninfected bystander 

cells [17]. In humans, the IFN family can be divided into three classes: type I, type II 

and type III. The type I IFN family is the largest and composed of 13 subtypes of IFNα, 

IFNβ and other variants like IFNε, IFNκ and IFNω [18]. While IFNγ is the sole member 

of type II IFN family, the type III family consists of IFNλ1 (IL29), IFNλ2 (IL-28A) 

and IFNλ3 (IL-28B) and recently discovered IFNλ4 [19, 20]. IFNs exert their 

biological activity through the activation of the Janus kinase (JAK) and signal 

transducers and activators of transcription (STAT) signaling cascades [21]. 
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Whereas type III IFN response is mostly restricted to epithelial mucosal surfaces, all 

nucleated cells can be induced to produce type I IFNs [22-24]. However, plasmacytoid 

dendritic cells (pDCs) are considered as ‘professional’ type I IFN producers as they 

constitutively express IFN regulatory factor 7 (IRF7) and thus account for about 100 

to 1000-fold greater IFN production than any other blood cell type upon viral infection 

[25]. Type I IFNs can effectively inhibit viral replication by degrading viral RNA, 

inhibiting translation of viral mRNA and apoptosis of infected cells They can also 

activate NK cells, cytotoxic T lymphocytes (CTLs) and DCs and boost antibody 

responses [19, 26]. On one hand, their gene products can initiate a feedforward loop 

inducing production of more type I IFNs, on the other hand they can generate negative 

feedback resulting in production of negative regulators like suppressors of cytokine 

signaling (SOCS) proteins that can inhibit uncontrolled inflammation [27-29]. Type III 

IFNs are involved in blocking viral spread at the site of infection and exerting 

protective roles to restrict tissue damage [22]. IFNγ is predominantly produced by 

activated T cells, NKT cells and NK cells and apart from its modest antiviral activity, 

it plays a pivotal role in stimulation and modulation of immune responses [30]. 

Recently it has been shown that IFNγ has a number of immunoregulatory functions 

that optimize the antiviral response and simultaneously limit overzealous responses 

that may lead to collateral damage [31]. 

1.2 Signaling pathways 

Immune cell signaling is a highly complex and coordinated process that is fundamental 

in achieving defense against infections while limiting host damage. If the equilibrium 

is broken due to aberrations in one or more signaling pathways, it may result in serious 

pathological conditions like autoimmune diseases or cancer. As innumerable signaling 

molecules are involved in a variety of signaling networks with overlapping and 

interconnected functions and redundancies, only those that are relevant for this thesis 

are reviewed in the subsequent sections. 
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1.2.1 TLR signaling  

The human TLR family consists of 10 members (TLRs 1-10) and can be found in many 

cells like DCs, monocytes, macrophages, B cells, T cells and NK cells [32, 33]. These 

are integral membrane glycoproteins consisting of extracellular leucine-rich repeats 

(LRRs), a transmembrane region and an intracellular Toll/IL-1 receptor (TIR) domain. 

The LRRs are involved in ligand-binding while the TIR domain is responsible for 

signaling [34]. They can be subdivided into two classes based on their cellular 

locations: cell surface and intracellular [35]. TLRs 1, 2, 4, 5, 6 and 10 are located on 

the cell surface whereas TLRs 3, 7, 8, and 9 are localized on endosomal membranes 

inside the cell [36]. The cell surface TLRs recognize a wide variety of microbial 

components like LPS and flagellin, while the intracellular TLRs recognize nucleic 

acids [37-39]. For example, TLR7 recognizes single-stranded viral RNA (ssRNA) and 

TLR9 mediates the recognition of viral and bacterial CpG DNA [36, 37]. TLRs are pre-

assembled dimers that are activated upon ligand-binding and recruit adaptor proteins, 

like myeloid differentiation 88 (MyD88), for downstream activation of IRFs (like IFR7 

in pDCs) or mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B 

(NF-κB) [40, 41]. The net result is induction of type I IFNs or proinflammatory 

responses respectively [36, 41, 42]. In pDCs, TLR7 and -9 can activate both NF-κB 

and IRFs, leading to both proinflammatory and antiviral states, as shown in figure 2. 

[36, 43]. The MAPK and NF-κB pathways are further elaborated in the following 

sections. 
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Figure 2. Signaling through TLR7 and -9. TLR7 and -9 reside in endosomal compartments of cells. 

Following binding of TLR to ssRNA (TLR7) or unmethylated CpG dinucleotides (TLR9), a MyD88-

dependent pathway signals through activation of TAK1-mediated NF-κB and MAPK pathways which 

regulates transcription of genes encoding inflammatory cytokines. In pDCs, IRF7 forms a signaling 

complex with MyD88 and following its phosphorylation it dimerizes, enters the nucleus and regulates 

the expression of type I IFNs, including IFN-α and IFN-β. Figure adapted from Kawai and Akira, 2007 

[41]. Reprinted with permission from Elsevier. 
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1.2.2 MAPK cascade 

The MAPK cascade is one of the most prevalent and evolutionarily conserved 

pathways in eukaryotes that controls a wide variety of immune cell functions like 

proliferation and differentiation, survival, metabolism, cell adhesion and migration, 

stress response, apoptosis and transformation [44-46]. Each pathway is a three-tiered 

kinase cascade where extracellular signals are transmitted by sequential 

phosphorylation and activation of subsequent tiers of signaling molecules. The first 

kinase in the series is a serine/threonine kinase called MAPK kinase kinase/MAPKKK 

(e.g., Raf), which upon activation by small GTPases, phosphorylates and activates a 

MAPK kinase/MAPKK (e.g., Ras), in turn phosphorylating and activating a MAPK. 

In mammals the MAPK cascade can be divided into three main families – the 

extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and 

p38/stress-activated protein kinase (SAPK). The ERK pathway is activated by various 

growth factors and mitogens and mainly mediates cell growth and differentiation, 

whereas the JNK and p38 pathways are induced in response to environmental stress 

and inflammatory cytokines (figure 3).  

 

Figure 3. MAPK pathways. The MAPK pathway consists of a three-tiered kinase cascade in which 

the previous kinase, upon activation by phosphorylation, phosphorylates and activates the subsequent 

one. Figure adopted from Morrison, 2012 [45]. Reprinted with permission from Cold Spring Harbor. 
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MAPKs are activated by dual phosphorylation of conserved threonine/tyrosine 

residues, enabling them to interact with hundreds of different substrates like 

transcription factors and repressors and chromatin remodeling proteins [44, 45, 47, 48]. 

The pathway can be inhibited at various levels by phosphatases, that can 

dephosphorylate the tyrosine and serine/threonine residues on the kinases [49].  

The activation of the MAPK pathway in immune cells has been extensively studied in 

the context of TLRs. As mentioned earlier, TLR signaling can activate both ERK and 

p38 in a MyD88-dependent manner, leading to activator protein-1 (AP-1) activation 

(see figure 2) [50]. This ultimately induces the production of proinflammatory 

cytokines and chemokines like TNF, IL-1β, IL-6 and IL-8 [39]. Both ERK and p38 are 

involved in type I IFN responses. For example, p38 is required for the transcription of 

interferon stimulated genes (ISGs) in a STAT-independent manner [17]. There are 

several studies showing that p38 and ERK are involved in anti-viral responses and p38 

also shows growth-inhibitory effects [17]. It has been shown that ERK also participates 

in an IFNγ-dependent transcription of CCAAT/enhancer-binding protein-β (C/EBP-β), 

a transcription factor that binds to response elements known as IFN-γ-activated 

transcriptional elements (GATEs), in the promoters of certain ISGs [51, 52]. 

1.2.3 NF-κB pathways 

NF-κB is a family of proinflammatory transcription factors that can be divided into two 

subfamilies – the NF-κB proteins and the Rel proteins. The NF-κB proteins consist of 

two precursor proteins, NF-κB1/p105 and NF-κB2/p100, that are processed into shorter 

proteins, p50 and p52, respectively; the Rel proteins consist of three members – RelA 

(p65), RelB and c-Rel. Members of the two subfamilies dimerize to become activators 

of transcription [53, 54]. The most frequently activated form of NF-κB in TLR 

signaling is a heterodimer composed of RelA and p50. In quiescent state, these dimers 

are inactive and are localized mostly in the cytoplasm, bound to inhibitory IκB proteins. 

Upon receptor activation, IκB is phosphorylated and targeted for proteasomal 

degradation by the inhibitory kappa kinase/IKK complex (consisting of IKKα, IKKβ 

and NEMO). The free NF-κB dimer can now enter the nucleus and enhance target gene 

transcription (figure 4) [55].  
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Figure 4. Activation of NF-κB pathway. Upon activation, the IKK complex phosphorylates IκB, 

sending it for proteosomal degradation. The NF-κB dimer is now free to enter the nucleus to induce 

transcription of proinflammatory genes. Figure inspired from Luo et al., 2005 [56]. 

 

Signaling through NF-κB plays a crucial role in the development of the immune system 

and innate and adaptive immune responses. As mentioned earlier, signaling through 

TLR7 and -9 in pDCs leads to NF-κB activation and production of proinflammatory 

cytokines [41]. NF-κB also plays an indirect role in type I IFN production and response. 

It generates a positive feedback loop for type I IFN production and IRF7 induction in 

the early stages of viral infection, when endogenous IRF7 levels are low. Under such 

circumstances, NF-κB, along with IRF3 and low IRF7, binds to type I IFN genes 

generating low levels of type I IFNs. This, in turn, promotes more IRF7 production, 

consequently inducing more type I IFN production [57]. In the past decade it has 

become evident that NF-κB also has important roles in IFNγ-induced cellular responses 

in a context-dependent manner [58]. Conversely, it has also been shown that IFNγ can 

augment NF-κB activity by increasing proteasomal degradation of IκB [59]. 

 



 26 

1.2.4 JAK/STAT signaling  

IFNs function through the JAKs and STATs downstream of their receptors IFNAR1/2 

(for type I), IFNGR1/2 (for type II) and IL10R2/IFNLR1 (for type III) [60, 61]. JAKs 

are tyrosine kinases that are bound to the cytoplasmic domains of the IFN receptors. 

Members include JAK1, JAK2, JAK3 and TYK2 [62]. STATs are a family of 

transcription factors comprising seven members (STATs 1, 2, 3, 4, 5a, 5b and 6) that 

are present in inactive form in the cytosol of resting cells [62]. Binding of the IFNs to 

their respective receptors cause receptor dimerization and JAK auto- and trans-

phosphorylation. Activated JAKs now catalyze the phosphorylation of the receptors on 

specific tyrosine residues, generating a docking site for the STATs. Once bound, the 

STATs are phosphorylated by the JAKs on specific tyrosine residues which promotes 

their dissociation, dimerization and entry into the nucleus to bind to specific DNA 

sequences called IFN-stimulated response elements/ISRE (for type I and III IFNs) and 

IFNγ activated sites/GAS (for type I and II IFNs) [60, 63-65], as depicted in figure 

5.The canonical type I pathway involves STAT1-STAT2 heterodimers that form a 

complex with IRF9, called interferon-stimulated gene factor 3 (ISGF3). This complex 

migrates to the nucleus and binds to ISRE in the promoters of ISGs to induce gene 

transcription [17, 62, 66, 67]. IFNγ, on the other hand, promotes STAT1 

homodimerization and binding to GAS elements in the promoters of ISGs. [17, 65]. 

Tyrosine phosphorylation is crucial for STAT dimerization and nuclear transport. 

Additionally, phosphorylation at serine residues are required for complete 

transcriptional activation of STATs 1 and 3 [66, 68]. Whereas type I signaling through 

STAT1 is generally proinflammatory, antiproliferative and proapoptotic, type I 

signaling through STATs 3, 4 and 5 augment survival, proliferation and differentiation 

[69]. Moreover, STAT3 has been shown to induce both pro- and anti-inflammatory 

responses [70]. In fact, it is a key mediator in IL-10 signaling leading to anti-

inflammatory effects and can also directly inhibit STAT1 activity [17]. Thus, activation 

of the STATs are highly context-dependent and varies from one cell type to another 

and the ligand in action [71]. 
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Figure 5. JAK-STAT signaling pathways. Different STAT family members can be activated by 

IFNs. STAT1 homodimers can be formed in response to both type I and type II IFNs. These 

homodimers bind to the promoters of ISGs, leading to the induction of genes encoding 

proinflammatory cytokines and apoptotic factors. Type I and type II IFNs can also activate STAT3 

homodimers, that can result in the production of both pro- and anti-inflammatory cytokines (such as 

IL-10). STAT1-STAT2 heterodimers, following activation by type I IFNs, bind to IRF9 in the cytosol, 

to form the ISGF3 complex. ISGF3, in turn, translocates to the nucleus, binds to ISREs and activates 

antiviral and antibacterial genes. In addition, type I IFNs induce IL-10 production either through the 

phosphoinositide 3-kinase (PI3K)-AKT pathway or through STAT3 homodimers. CREB, cAMP-

responsive-element-binding protein; IFNAR, IFNα/β receptor; IFNGR, IFNγ receptor; JAK, Janus 

kinase; SBE, STAT3-binding element; TBX21, T box 21; TYK2, non-receptor tyrosine kinase 2; 

Figure and text adapted from Gonzalez-Navajas et al., 2012 [17]. Reprinted with permission from 

Springer Nature. 
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Some mechanisms by which the JAK-STAT pathway can be modulated include the 

production of SOCS proteins, microRNAs, internalization of the cell-surface IFN 

receptors and ubiquitin carboxy-terminal hydrolase 18 (USP18) [67]. STAT3 can also 

negatively affect signaling through the JAK-STAT pathway by downregulating ISGF3 

production and activity and competing with STAT1 for binding to docking sites [72]. 

1.3 Tolerance and autoimmunity 

Unresponsiveness of the immune system to an antigen after repeated exposure to it is 

called ‘tolerance’ and non-reactivity to self-antigens is specifically known as ‘self-

tolerance’. The later ensures that self-reactive lymphocytes that can potentially be a 

threat to the host are eradicated. Due to the stochastic nature of the generation of B cell 

receptors (BCRs) and T cell receptors (TCRs), some lymphocytes with self-reactive 

receptors will be generated, which must be eliminated. Self-tolerance can be divided 

into central and peripheral tolerance. Central tolerance occurs in immature 

lymphocytes in the generative lymphoid organs (bone marrow and thymus) whereas 

peripheral tolerance occurs in mature lymphocytes in the peripheral lymphoid organs 

[43].  

In central tolerance of B cells, the immature self-reactive B cells in the bone marrow 

can undergo two fates: they can either be subjected to receptor editing, where the self-

antigen specific BCR is changed to a new non-reactive one, or undergo negative 

selection (clonal deletion) when receptor editing fails [73, 74]. For T cells, central 

tolerance takes place in the thymus where self-reactive clones are either deleted or they 

develop into T regulatory (Treg) cells. The fate between deletion and Treg generation 

is most probably determined by the binding affinity between the TCR and self-peptide-

MHC complex [75, 76]. 

However, central tolerance does not ensure that no self-reactive lymphocytes will enter 

the periphery. Therefore, several mechanisms exist in the periphery (peripheral 

tolerance) that protect the host from these self-reactive cells. These include anergy, 

deletion or suppression. Self-reactive mature B and T cells undergo anergy or 

functional unresponsiveness when they are activated without proper costimulation. 
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This can be due to absence of innate immune responses, or the engagement of 

checkpoint molecules, such as cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) 

and programmed death-1 (PD-1) [77, 78]. B cells undergo anergy when they recognize 

self-antigens without T cell costimulation [79]. Autoreactive B and T cells may also 

undergo cell death by apoptosis [77, 79]. Apart from the natural Tregs generated by 

central tolerance, Tregs can also be induced in the periphery (inducible Tregs) from 

naïve T cells in the presence of IL-2 and TGFβ [80]. Both types of Tregs and B 

regulatory cells (Bregs) can cause immunosuppression of autoreactive cells by various 

mechanisms including secretion of regulatory cytokines like IL-10 and TGFβ [79, 81-

83]. 

Failure of self-tolerance results in a condition called ‘autoimmunity’ where the host’s 

immune system initiates immune responses against self-antigens. Such autoimmune 

reactions are antigen-specific and involve self-reactive lymphocytes [84]. Often 

individuals have auto-reactive lymphocytes without any pathological implications. 

However, sometimes it can cause inflammatory reactions of chronic or acute nature 

that can be organ-specific or systemic, leading to development of autoimmune diseases 

[85]. Organ-specific diseases include multiple sclerosis (MS) and type I diabetes while 

systemic diseases include systemic lupus erythematosus (SLE) and Sjögren’s 

syndrome (SS). During their lifetime, about 5-10% of all individuals will develop some 

kind of autoimmune disorder [86].  

The pathogenesis of autoimmune diseases is poorly understood. It is hypothesized that 

a combination of genetic and environmental factors results in disease development. In 

genetically predisposed individuals, environmental triggers can lead to the breakdown 

of tolerance, production of self-reactive lymphocytes, inflammatory responses 

mediated by innumerable factors and ultimate tissue damage. This sets up a self-

perpetuating autoimmune loop. For instance, inflammation-induced tissue damage may 

lead to the exposure and/or modification of other self-antigens that may result in 

lymphocyte activation by epitope spreading [87]. Infections are often thought to be the 

initial driving forces for autoimmunity. Microbial antigens can potentiate 

autoreactivity by methods like molecular mimicry, release of sequestered antigens and 
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polyclonal activation. For example, rheumatic fever is a case of autoimmune reactions 

initiated by streptococcal infections and sustained by cross-reactivity to cardiac myosin 

[85]. If we look at the genetic aspect, genome wide association studies (GWAS) have 

identified many risk alleles, amongst which the strongest association has been 

established with MHC class II/human leukocyte antigen (HLA) locus, especially HLA-

DR and HLA-DQ, for multiple autoimmune diseases including SS [88]. Other non-

MHC genes involved in diseases like SS include IRF5, STAT4, IL-10, IL-12A and 

Fas/Fas ligand (FasL) [88-91]. 

1.4 TAM receptors and autoimmunity 

A crucial mechanism for maintenance of immunological homeostasis is apoptosis or 

programmed cell death. It is a fundamental process of the immune system and mediated 

predominantly by the phagocytes of the innate immune system like neutrophils, DCs 

and macrophages. Clearance of dead cells by phagocytosis is crucial for maintenance 

of self-tolerance and consequently, failure in removing apoptotic debris may lead to 

autoimmunity [92]. Phosphatidylserine (PtdSer) is almost exclusively located on the 

inner leaflet of plasma membranes. However, in apoptotic cells it is exposed on the 

outer leaflets, acting as ‘eat me’ signals that are recognized by phagocytic cells 

resulting in engulfment and phagocytosis of the former. Errors in this pathway have 

been implicated in diseases like SLE, cystic fibrosis and SS [93, 94].  

A family of receptor tyrosine kinases, called TAM, has been implicated in 

efferocytosis, e.g., efficient clearance of apoptotic cells, in the immune, reproductive 

and nervous systems [95-97]. The TAM family consists of three members- Tyro3, Axl 

and Mer and their ligands growth-arrest-specific 6 (Gas6) and protein S (ProS). In the 

context of the immune system, TAMs are mostly expressed on phagocytes but can also 

be present on some lymphoid populations [95, 98-100]. Impairment of TAM signaling 

leads to accumulation of apoptotic debris, release of autoantigens, inflammation, 

making way for breakdown of tolerance and autoimmunity [101]. It has been 

demonstrated in TAM knock-out (KO) mice that TAM receptors play a crucial role in 

maintenance of tissue homeostasis and prevention of inflammation, as these mice 
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develop a plethora of degenerative disorders like sterility and retinal blindness [102, 

103]. As TAM triple KO mice mature, they develop chronic inflammation and broad-

spectrum autoimmunity [104]. Loss of TAM signaling has been associated with several 

autoimmune diseases like SLE, SS and MS [105-107].  

The extracellular domain of each TAM receptor consists of two tandem 

immunoglobulin (Ig)-like domains (ligand-binding domain) and two fibronectin type 

III (FNIII) repeats, followed by a transmembrane domain and an intracellular tyrosine 

kinase domain. The receptors signal as dimers [108]. Their ligands, Gas6 and ProS are 

structurally homologous proteins, that act as bridging molecules between the TAM 

receptors and apoptotic cells (figure 6) [108]. Whereas Gas6 is a potent ligand for all 

three receptors, ProS can only bind to Tyro3 and Mer [108-111].  

 

 

Figure 6. Structure of TAM receptors. Tyro3, Axl and Mer are expressed by several cell types in the 

immune system, including DCs, macrophages and immature NK cells. TAM receptor dimers bind to 

their ligands, Gas6 and ProS, through the interaction between the two Ig-like domains on the receptors 

and the sex hormone binding globulin (SHBG) domain on the ligands. Gas6 and ProS then bind to 

PtdSer, on the outer leaflet of apoptotic cells, via their Gla domains. EGF, epidermal growth factor, 

FNIII, fibronectin type III. Figure from Lemke and Rothlin, 2008 [108]. Reprinted with permission 

from Springer Nature. 
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Ligand binding causes receptor dimerization, autophosphorylation of the tyrosine 

residues, recruitment of downstream signaling molecules leading to cytoskeletal 

reorganization and internalization of the apoptotic cell [112, 113]. The extracellular 

domains of the receptors can also be cleaved proteolytically by metalloproteinases like 

disintegrin and metalloproteinase 10 (ADAM10) and ADAM 17 and shed into the 

plasma [114, 115]. These can act as decoy receptors, competing with the cell-

membrane bound receptors for the ligand, thus impeding the removal of apoptotic cells 

[116]. Soluble TAMs have been associated with disease severity in some autoimmune 

diseases [117-120]. TAM receptors also play a significant role in the dampening of 

inflammatory responses by upregulating the production of SOCS1 and SOCS3 proteins 

via the IFNAR-JAK-STAT pathway, as illustrated in figure 7 [121, 122]. 

 

 

 

Figure 7. TAM receptors complexed with the IFNAR. In DCs, TAM receptors, when activated by 

the binding of a TAM ligand, form a complex with IFNAR. Direct activation of the hybrid TAM-

IFNAR receptor by Gas6 leads to phosphorylation and activation of STAT1 that dimerizes and enters 

the nucleus, where it drives the expression of SOCS1 and SOCS3. Figure and text adapted from Lemke. 

G, 2013 [122]. Reprinted with permission from Cold Spring Harbor. 
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1.5 Primary Sjögren's syndrome 

Sjögren’s syndrome (SS) is a systemic, chronic, inflammatory autoimmune disorder, 

named after its discoverer Henrik Sjögren, a Swedish ophthalmologist [123]. It is 

characterized by progressive mononuclear cell infiltration in the salivary and lacrimal 

glands, causing dryness of mouth (xerostomia) and eyes (keratoconjunctivitis sicca) 

[124]. Persistent focal infiltration causes glandular tissue destruction, loss of glandular 

function and resultant dryness. It can occur alone (primary Sjögren’s syndrome/pSS) 

or in association with other autoimmune disease like SLE and rheumatoid arthritis 

(RA) (secondary Sjögren’s syndrome/sSS) [125]. Like many other autoimmune 

diseases, pSS is a female-biased disorder, with female: male ratio being 9:1, mostly 

affecting post-menopausal women [124, 126]. However, juvenile Sjögren’s syndrome 

has also been reported in children and adolescents, with the mean age at the time of 

diagnosis being 10 years [127]. The incidence rate of pSS varies in different studies 

due to discrepancies in the classification criteria and methodologies. Global incidence 

ranges from 0.1 to 3% with more stringent estimates on using the revised American-

European Consensus Group (AECG) criteria [128-132]. Autoantibodies against 

Ro/Sjögren’s syndrome-related antigen A (SSA) and La/Sjögren’s syndrome-related 

antigen B (SSB) are characteristic features of pSS with the presence of anti-Ro/SSA 

being a classification criterion of the disease [133]. One major problem is patient 

heterogeneity. Apart from the sicca symptoms, many patients suffer from a wide 

spectrum of Extraglandular manifestations (EGM) that may point towards unique 

pathophysiological mechanisms. Hence, it is vital to stratify and target the patient 

subgroups for effective treatment. 

1.5.1 Pathogenesis of pSS 

The complete etiopathogenesis of pSS is still unknown. However, it has been 

established that genetic, hormonal, immunologic and environmental factors work in 

concert to cause the disease [134]. Often many years pass before the onset of symptoms 

[124]. Viral infections like Epstein-Bar virus (EBV), Cytomegalovirus (CMV), 

Hepatitis C, Coxsackie virus and Human T-lymphotropic virus type-I (HTLV-1) have 

been implicated in pSS [134, 135]. Recently, altered buccal and intestinal microbiome 
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and chronic bacterial infection from Helicobacter pylori have also been associated with 

it [136]. In genetically predisposed individuals, an initial viral infection of the salivary 

glands may cause disruption of glandular epithelial cells resulting in an amplified IFN 

production, especially IFNα by pDCs. This leads to creation of an inflammatory 

microenvironment and exposure of SSA and SSB autoantigens on the dying cells [135]. 

These are small ribonucleoprotein particles that are normally localized inside the cells 

[137]. Exposure of these nuclear antigens in dying cells makes them immune targets. 

Along with viral antigens, APCs process and present these self‐antigens, leading to 

activation of autoreactive T and B cells and subsequent activation of autoantibody‐

producing plasma cells. Autoreactive T cells can also enhance tissue damage by 

secreting cytotoxic granules, further disrupting the epithelium and amplifying the 

exposure of autoantigens. The autoantibodies produced can form immune complexes 

with their cognate autoantigens and bind to pDCs via the Fc receptor for IgG (FcγRIIa) 

and augment type I IFN production. In turn, type I IFNs drive autoantibody production 

by promoting differentiation and activation of the autoreactive B cells [135]. Recently, 

T helper 17 and T follicular helper cells, along with their regulatory counterparts, have 

received considerable attention in the pathogenesis of pSS as their imbalance can cause 

dysregulation of B cell dynamics and autoantibody production [138]. Stromal cells and 

glandular epithelial cells have also been implicated in the maintenance of the local 

inflammatory milieu in the affected exocrine glands [129, 139, 140]. The proposed 

model for pSS pathogenesis is shown in figure 8. 
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Figure 8. Disease model for pSS. Microbial triggers, such as viral infections, initiate disruption of the 

salivary gland epithelium and induce production of type I IFNs, thus creating an inflammatory 

microenvironment and released and exposure of autoantigens on dying cells. APCs then present the 

self‐antigens, which leads to activation of autoreactive T and B cells and subsequent differentiation 

and activation of autoantibody‐producing plasma cells. Autoreactive T cells can also induce tissue 

damage by secretion of cytotoxic granules, further disrupting the epithelium and causing amplified 

exposure of autoantigens. Immune complexes formed between autoantibodies and autoantigens bind 

receptors on pDCs, resulting in enhanced type I IFN production which, in turn, drives further 

autoantibody production. Through this process, a self‐perpetuating cycle of autoimmunity is created. 

IFN, interferon; pDCs, plasmacytoid dendritic cells; MHC, major histocompatibility complex; TCR, T 

cell receptor. Figure and text adapted from Björk et al., 2020 [135]. Reprinted with permission from 

John Wiley and Sons. 

 

As mentioned earlier, susceptibility to pSS has a genetic component, with the strongest 

association being with HLA, especially HLA-DR and HLA-DQ molecules [141]. Some 

non-HLA risk genes include IRF4, STAT5, CXCR5, IL-12A, TNIP1, IL-1RA, IL-10 and 

Fas/FasL [88, 142]. Single nucleotide polymorphisms (SNPs) in two genes, STAT4 and 

IRF5, have been strongly associated with pSS. These polymorphisms further show an 

additive effect, with an increase in the odds ratio (OR) for pSS as the number of risk 

alleles in the carrier increases [143, 144]. It is becoming increasingly evident that 

environmental triggers often act through cellular pathways containing disease-
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associated polymorphisms [145]. Although a genetic predisposition to SS appears to 

exist, the level of genetic contribution is not known. Large twin studies are lacking. 

Only a few case reports are available that describe a very similar phenotype with almost 

identical clinical presentation in pSS twins [141, 146]. Also, there is evidence to 

suggest the involvement of hormones in the development of pSS. Estrogen seems to 

play a protective role and lack of estrogen in post-menopausal women may make them 

prone to the disease [147].  

1.5.2 Diagnosis of pSS 

The patients used in this study were all diagnosed based on the 2002 AECG 

classification criteria (Table 1). They consist of a questionnaire for subjective 

symptoms (oral and ocular), confirmatory tests for oral and ocular dryness as well as 

histopathological (focus score) and serological (presence of autoantibodies) 

parameters. To be classified as pSS, patients must display at least four out of the six 

criteria, including a focus score ≥ 1 (foci are dense aggregates of ≥ 50 mononuclear 

cells per 4 mm2 of glandular tissue) or presence of autoantibodies (anti-Ro/SSA and/or 

anti-La/SSB) [148]. It should be noted that in 2016, a revised version of the previous 

classification criteria was published following the guidelines of both American College 

of Rheumatism (ACR) and European League Against Rheumatism (EULAR) [133]. 

For the assessment of pSS, two disease activity indexes have been developed by the 

EULAR SS task force: the EULAR SS Patient Reported Index (ESSPRI), completed 

by the patients, and the EULAR SS Disease Activity Index (ESSDAI), completed by 

the physicians. The ESSDAI is a systemic disease activity index with 12 domains and 

is used as a gold standard to evaluate outcome measures in randomized clinical trials 

(RCTs) [149, 150].  
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Table 1. The 2002 American-European Consensus Group (AECG) Classification 

Criteria for Sjögren’s syndrome [148] 

1. Ocular symptoms: a positive response to at least one of the following three questions: 

 Have you had persistent feeling of dry eyes for more than three months? 

 Do you have a recurrent sensation of a foreign body in the eyes? 

 Do you use tear substitutes more than three times a day? 

2. Oral symptoms: a positive response to a least one of the following three questions: 

 Have you had a daily feeling of dry mouth for more than three months? 

 Have you had recurrently or persistently swollen salivary glands? 

 Do you frequently drink liquids while swallowing dry foods? 

3. Ocular signs: a positive result for at least one of the following two tests: 

 Schirmer’s test, performed without anesthesia (≤ 5mm in 5 min) 

 Rose bengal score or other ocular dye score ≥ 4 (according to Bijsterveld’s scoring 

system) 

4. Histopathology: a focus score ≥ 1 (50 lymphocytes per 4 mm2 of glandular tissue) in 

minor salivary glands 

5. Oral signs: a positive result for at least one of the following three tests: 

 Unstimulated whole salivary flow (≤ 1.5 ml in 15 min) 

 Parotid sialography showing presence of diffuse destruction without major duct 

obstruction 

 Salivary scintigraphy showing delayed uptake, reduced concentration and/or 

delayed excretion of tracer 

6. Serology: presence of autoantibodies (anti-Ro/SSA or anti-La/SSB or both) in serum 

 

Note: Diagnosis of pSS requires four out of six criteria to be met, including item 4 or item 6.  

 

However, diagnosis of pSS is difficult as the symptoms are often confused with those 

of ageing and medication side effects. As shown in figure 9, often there is a time gap 

between disease onset and diagnosis, [124, 151]. 
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Figure 9. Proposed etiopathogenesis of pSS. Genetic predisposition coupled with environmental 

factors may lead to pSS development. Often years pass before the disease is diagnosed. Figure adopted 

from Jonsson et al., 2011 [124]. Reprinted with permission from Elsevier. 

 

1.5.3 Clinical manifestations  

The local manifestations of pSS are oral and ocular dryness caused by immune-

mediated destruction of the exocrine glands resulting in glandular atrophy. Parotid 

gland enlargement is often seen in these patients. Oral dryness leads to difficulty in 

swallowing, speaking and poor oral health (e.g., dental caries, infections, tooth decay, 

periodontitis) [124, 126]. Ocular dryness can cause irritation, visual impairment, 

corneal ulcerations and eyelid infections [134]. Overall, these cause a significant 

reduction in the quality of life of the patients. Histopathologically, the most 

characteristic feature is the focus score. Moreover, lymphocytic infiltrates, organized 

into ectopic germinal center (GC) -like structures, are seen in the minor salivary glands 

of 10-30% of pSS patients [152-154]. They consist of mainly T and B lymphocytes, 

proliferating cells, follicular dendritic cells and endothelial cells [154]. pDCs have also 

been reported to be recruited to the salivary glands [155]. About 30-70% pSS the pSS 

patients develop a variety of EGMs [134]. Fatigue and musculoskeletal involvement 

(arthralgias and myalgias) are the most common and debilitating symptoms of pSS. 
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The involvement of other epithelia, e.g., those of the upper airways, renal tubules 

and gastrointestinal tract are frequently observed. Dry skin, rashes, vasculitis, 

Reynaud’s phenomenon and purpura are often additional complications. Cytopenia, 

inflammatory bowel disease, chronic liver and kidney problems and peripheral 

neuropathy are some other associated comorbidities [126, 156-158]. One of the most 

fatal outcomes of pSS is lymphomagenesis. pSS patients have approximately 16-fold 

greater risk of developing B cell non-Hodgkin’s lymphoma than the general 

population. This is a classic example of antigen-driven chronic activation of auto-

immune B cells in the GC-like structures. In fact, GC-like structures in the salivary 

glands have been shown to be predictive of increased lymphoma risk in these patients 

[159-161]. There has also been a recent report on the increased risk of coronary heart 

disease in pSS patients [162].  

Several autoantibodies can be found in the serum of these patients, often years before 

clinical symptoms arise [163]. Characteristic autoantibodies include the anti-Ro/SSA 

and anti-La/SSB autoantibodies that are found in approximately 70% of the patients 

[164]. Anti-SSA can be found alone while anti-SSB is generally found along with anti-

SSA antibodies [165]. Other autoantibodies include anti-muscarinic acetylcholine M3 

receptor antibodies (anti-M3R), rheumatoid factor (RF) and anti-citrullinated cyclic 

peptide (anti-CCP) [164, 166, 167]. 

Although men have a lower risk of developing pSS, the disease presents itself in a more 

severe form in them [168]. In a population-based study, it was shown that male patients 

more frequently present with EGM, have more concomitant EGMs and higher 

autoantibody levels. Enhanced serological responses and higher frequencies of 

lymphoma-related parameters were also observed in them. These observations may 

indicate an exaggerated immune activation and a more severe pathophysiological state 

in male pSS patients compared to female patients [169]. 

1.5.4 Anti-Ro/SSA and anti-La/SSB autoantibody system 

Anti-SSA and anti-SSB autoantibodies are typical serological findings in pSS patients, 

amongst who approximately 70% are positive for anti-SSA and approximately 40% are 
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positive for anti-SSB [86]. However, these are also found in other autoimmune diseases 

like SLE and RA in varying degrees [137]. 

The Ro/SSA autoantigen is small nucleocytoplasmic RNA-protein complex composed 

of two different proteins – the 52kDa Ro52 and the 60kDa Ro60 [170]. These associate 

with small cytoplasmic RNAs forming ribonucleoprotein (Ro-RNP) particles [137]. 

Ro52/TRIM21 is an IFN-inducible protein that belongs to the tripartite motif (TRIM) 

family with E3 ligase activity. It can polyubiquitinate members of the IRF family, like 

IRF3 and IRF7, targeting them for proteasomal degradation [171]. Thus, Ro52 serves 

as a mechanism to control inflammation. Ro60 antigen binds to misfolded noncoding 

RNAs (called hY RNA) and targets them for degradation [137]. The 48kDa La/SSB is 

a nuclear phosphoprotein that acts as a regulator for RNA polymerase III transcription 

[172]. It binds to nascent small RNAs and protects them from exonuclease digestion 

and also acts as a transcription factor for mRNAs encoding proteins during stress and 

apoptosis [173, 174]. Corresponding autoantibody levels for these autoantigens are 

found to be elevated in pSS patients [175]. Anti-Ro/SSA and anti-La/SSB antibodies 

have been correlated with earlier onset, more severe dysfunction of the exocrine glands, 

higher intensity of the lymphocytic infiltrates in the minor salivary glands and more 

severe extraglandular manifestations [167]. Anti-Ro antibodies may impair the type I 

IFN negative feedback by inhibiting the E3 ligase activity of Ro52, thus removing the 

negative regulation of IRF3 and IRF7 by Ro52 [176, 177]. Cross-reactivity between 

Ro60 and several viral epitopes, like EBV protein EBNA-1 and Coxsackie virus 2B 

protein in pSS has been suggested [176, 178].  

1.5.5 Interferon signature in pSS 

In the last few decades, ‘signatures’ of diseases have been defined using high-

throughput techniques, that represent clusters of co-expressed genes, often within a 

biological network, that may act as biomarkers for diagnosis, classification and drug 

response prediction [176]. Similar to other autoimmune diseases like SLE, RA and 

scleroderma, an increased expression of type I IFN stimulated genes, called ‘IFN 

signature’, has also been identified in peripheral blood and salivary glands of pSS 

patients [179, 180]. Over half of the pSS patients exhibit a type I signature that is 
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correlated with higher ESSDAI scores, higher autoantibody and serum IgG levels and 

lower lymphocyte and neutrophil counts [181]. Various studies have been carried out 

to identify the differentially expressed genes between pSS patients and healthy 

controls, both in peripheral blood and salivary glands, in which a number of IFN 

inducible transcripts have come up prominently [91, 182, 183]. Several differentially 

expressed genes were found to be common across multiple studies, such 

as IFITM1, IFI44, MX1, IRF7, and IRF8 [176]. Only two genes were downregulated, 

SOC3 and CCL18, which are, in fact, negative regulators of inflammation [155]. Some 

genes that showed preferential upregulation by type I IFNs include MxA, IFI44 and 

OAS1 [181, 184-186]. Many of the upregulated genes also belong to the type II IFN 

pathway [155]. In a study by Nezos and co-workers, they showed that some of the 

preferentially inducible IFNγ genes, like GBP-1 and CXCL9/MIG-1, were increased in 

SS patients compared to controls. They have also reported an upregulation of both type 

I and II ISGs in pSS patients compared to healthy controls, with a predominance of 

type I IFN signature in peripheral blood and type II signature in minor salivary glands 

[187]. Recently, Bodewes and colleagues have shown that pSS patients can be 

classified into three categories depending on their systemic IFN activity – IFN inactive, 

IFN-I and IFN-I + II. No one exhibited only IFN-II signature [188]. The increase in 

systemic type I IFN activity may be important in the development of EGMs like fatigue 

and joint pain [26]. 

1.5.6 Treatment  

Currently, there is no cure or treatment for pSS except symptomatic care and efforts to 

prevent further complications. First line of therapy includes sialagogues and topical 

treatment. Secretagogues, like sugarless candy and chewing gum, and muscarinic 

receptor agonists, like cevimeline and pilocarpine, can be used to stimulate saliva and 

tear production. Topical therapies include artificial tears, artificial saliva, nasal saline 

spray and vaginal estrogen cream. Topical cyclosporine eye drops are effective in some 

cases [159]. Systemic disease can be controlled with non-steroidal anti-inflammatory 

drugs (NSAIDs), disease modifying anti-rheumatic drugs (DMARDs) like 

hydroxychloroquine (HCQ) and corticosteroids like prednisone [189]. Some other 
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immunomodulatory drugs like azathioprine, methotrexate, cyclosporine, and 

leflunomide have been tested in clinical trials but showed highly adverse effects [189]. 

Overall evidence for the success of conventional immunosuppressive therapy is 

limited. Several biologic therapies are also being tried and have led to variable results 

till now. For example, rituximab (anti-CD20), that showed promising results in pilot 

studies, failed to show any significant difference between patients and controls in two 

larger clinical trials [190]; baminercept, a lymphotoxin β receptor IgG fusion protein 

(LTβR-Ig), failed to elicit positive impact on any of the clinical measures of disease 

activity despite evidence of biological effect [191]. Some ongoing trials include those 

studying effects of belimumab (anti-B-cell-activating factor/anti-BAFF), ianalumab 

(anti-BAFF receptor), iscalimab (anti-CD40), and abatacept (CTLA4 Ig). However, no 

drug has shown clear benefits for the treatment of pSS yet [192, 193]. One major reason 

behind this is patient heterogeneity. Thus, it is imperative to stratify patients into 

subgroups that can help in differentiating responders from non-responders of a therapy. 

Identifying and targeting the responders will hugely benefit in achieving the endpoints 

of clinical trials. 

1.6 Biomarkers in rheumatology 

Biomarkers in rheumatology can help identify the risk of disease development, 

improve diagnosis and prognosis, target therapy and assess response to treatment [194]. 

Genetic markers, gene expression profiles, autoantibodies, cytokines and growth 

factors, acute phase proteins, tissue abnormalities detected by immunohistochemistry, 

relative cell frequencies – all act as mechanistic biomarkers for rheumatic diseases 

[195]. These biomarkers can be measured in serum/plasma, urine, synovial fluid, tissue 

biopsy and cells from blood or tissue [196]. Unlike in cancer, the development and 

implementation of new biomarkers in rheumatology has been slow. Very few 

biomarkers are available currently for disease diagnosis, progression and management. 

In general, clinical remission is reached in less than 50% of patients and personalized 

therapeutic approaches are still lacking. For example, some patients receiving anti-TNF 

treatment show inadequate responses in RA and psoriasis [197, 198]. Use of 

appropriate biomarkers may help to identify such non-responders before starting 
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treatment, thereby reducing cost and unwanted effects of a redundant therapy. Thus, a 

robust biomarker can guide us towards precision medicine, identifying high risk 

individuals and offering early diagnosis for intervention and disease prevention [194, 

199]. Due to the complexity and heterogeneity of rheumatic diseases, and because the 

mechanism of their pathogenesis is not clearly understood, single biomarker assays 

may be insufficient. A combination of several markers can be more useful. Some 

biomarkers used in rheumatology are RF and anti-citrullinated protein 

antibodies/ACPA (in RA), anti-centromere antibody/ACA (in systemic sclerosis/SSc), 

anti-SSA and anti-SSB autoantibodies, anti-M3R, Calprotectin and BAFF in pSS [199-

202]. High-throughput technologies like flow and mass cytometry, RNA-sequencing 

and multiplexed functional assays of immune cells show promise in identification of 

candidate biomarkers in rheumatology, that can be used for establishing a molecular 

taxonomy of the diseases and disease stratification, successfully guiding patient 

management in future [203].  
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2. Aims 

The overall aim of this project was to stratify pSS patients based on single-cell-

network-profiling and to gain insight into the underlying pathologic mechanisms of the 

disease.  

The specific aims were as follows: 

1. To investigate potential aberrations in the intracellular signaling mechanisms of the 

MAPK/ERK and JAK/STAT pathways in peripheral blood mononuclear cells 

(PBMCs) of pSS patients compared to healthy individuals by phosphoflow 

cytometry following stimulation with TLR7 and -9 ligands; to compare the 

phosphorylation profiles of the stimulated and unstimulated immune cells between 

the two groups and to correlate them to the clinical parameters of the disease; to 

study plasma cytokine concentrations in the same and correlate them to the 

phosphoproteins (paper I).  

2. To explore and compare the MAPK/ERK and JAK/STAT signaling networks in 

unstimulated and IFN-stimulated PBMCs between subgroups of pSS patients and 

healthy controls using mass cytometry, with the objective of identifying signaling 

parameters that can be used to stratify the patients (paper II). 

3. To compare cell frequencies in peripheral blood of pSS patients and healthy 

controls that can be instrumental in providing information regarding patient 

heterogeneity and disease progression (papers II and III).  

4. To evaluate the expression of TAM receptors and their ligand Gas6 in immune cells 

of pSS patients to identify potential impairment of apoptotic cell removal in these 

patients (paper III). 
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3. Materials and methods 

3.1  Cohort information 

Peripheral blood from pSS patients and healthy individuals was used for all the studies 

incorporated in this thesis. Patients were recruited from the Department of 

Rheumatology, Haukeland University Hospital, Bergen, Norway. All patients fulfilled 

the 2002 AECG classification criteria for pSS and did not suffer from any additional 

autoimmune diseases or lymphoma [148]. Age and sex-matched healthy controls were 

recruited from the blood bank at the Haukeland University Hospital, Bergen, Norway. 

The study was approved by the regional ethical committee (#2009/686) and all 

participants provided written informed consent. Samples from pSS patients and healthy 

donors were collected in parallel to reduce the influence of seasonal effects.  

3.2 Blood collection, PBMC and plasma isolation and cryopreservation 

Peripheral blood from all participants was collected in lithium-heparin tubes (BD 

Diagnostics) and PBMCs and plasma were isolated by density gradient centrifugation 

on LymphoprepTM (Axis-Shield, Oslo, Norway). PBMCs were cryopreserved in a 

freezing mixture composed of 50% X-vivo 20TM, 42.5% ProFreezeTM-CDM (both from 

Lonza, Switzerland) and 7.5% dimethyl sulfoxide/ DMSO (Hybrid max, Sigma D2650) 

at approximately 5 x 106 cells/ml. CoolCell® freezing chamber (Biocision; San Rafael, 

CA, USA) was used to freeze them at -70 °C overnight before moving them to -150 °C 

for long term storage; plasma was aliquoted and stored at - 80˚C.  

3.3 Flow cytometry 

Flow cytometry is a powerful tool in basic as well as clinical research in immunology 

and plays a crucial role in biomarker discovery. It can successfully be used for disease 

state profiling, pharmacodynamic monitoring and drug screening. It uses a laser-based 

technology that excites fluorochromes attached to monoclonal antibodies on cells. 

Using hydrodynamic focusing, the cells are passed through one or several lasers and 

the resultant florescence and light scatter are detected by photomultiplier tubes (PMTs). 
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It, thus, allows for identification of cellular subsets in complex populations with 

precision and rapidity [204]. The basic steps in flow cytometry are depicted in figure 

10.  

 

 

Figure 10. A typical flow cytometry experiment. Sample preparation often involves Ficoll density 

gradient separation of PBMCs from blood and cryopreservation, before staining with fluorochrome-

antibody conjugates. Instrumental setup involves setting the correct voltages for the PMTs to achieve 

optimal sensitivity. Data acquisition involves passing the stained cells through a laser beam and 

recording the fluorescence emission from the bound antibody conjugates. This is followed by data 

analysis. Figure and text adapted from Maecker et al., 2012 [205]. Reprinted with permission from 

Springer Nature. 

 

Phospho-specific flow cytometry or phosphoflow, is the application of flow cytometry 

to study phosphorylation states of intracellular proteins. It provides information about 

the functional responses of cells to stimuli and thereby, the activated intracellular 

signaling mechanisms. In this technique, antibodies against phospho-epitopes of 

interest are used to provide insight into the kinetics of signaling pathways that may not 

be detected by studying surface markers on cells alone [206]. This may lead to the 

identification of dysregulations in signaling networks. Information about malfunctions 

in intracellular signaling in patients suffering from autoimmune diseases can help in 

developing targets for treatment and diagnostic indicators that might act as good 

biomarkers. The basic steps in phosphoflow cytometry are illustrated in figure 11. 
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Figure 11. Basic steps in phosphoflow cytometry. (1) A heterogeneous sample of cells is treated with 

different stimuli, to induce distinct signaling cascades and phosphorylation of target proteins. (2) The 

cells are then fixed, permeabilized, and stained with fluorophore-conjugated antibodies (that are 

specific for the phosphorylated forms of the proteins) and surface markers (to identify cell types). (3) 

The cells are then analyzed on a flow cytometer. Figure adapted from Krutzik et al., 2004 [206]. 

Reprinted with permission from Elsevier. 

 

Phosphoflow cytometry can detect abnormal signaling in peripheral blood samples 

from patients and has been successfully used to predict disease outcomes and treatment 

responses. For example, it has been successfully used for patient classification and 

prediction of response to therapy in acute myeloid leukemia (AML) [207], for 

monitoring anti-IFNβ neutralizing antibodies during the treatment of MS [208] and for 

determining clinical efficacy of DC-vaccinations in glioblastoma patients [209]. 

3.4 Mass cytometry 

Mass cytometry, also called cytometry by time-of‐flight (CyTOF), is a platform that 

couples flow cytometry with mass spectrometry [210]. Ever since its inception in 2009, 

mass cytometry has ushered in a new era of high‐dimensional single‐cell analysis, 

overcoming the limitations of conventional flow cytometry. Instead of fluorophores, 
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this technique uses stable (non-radioactive), rare earth, non-biological, heavy metal 

isotopes coupled to antibodies or other target‐specific probes for labeling cells. As 

shown in figure 12, inside the instrument, stained cells are nebulized into single-cell 

droplets and introduced into an inductively coupled argon plasma/ICP (approximately 

at 8000 K temperature) where they are vaporized and ionized. The resulting ion clouds 

are immediately transferred into the high vacuum of the mass spectrometer (as pushes) 

and are detected by the time-of-flight (TOF) analyzer based on their mass/charge ratios. 

The low-weight ions (that include biological ions) or ions with multiple charges are 

filtered out by a quadruple filter [204, 210]. All data in the pushes are integrated over 

time and subsequently recorded as dual counts (of atoms) for each channel and 

recorded in the .fsc format [211]. 

 

 

Figure 12. Basic steps in mass cytometry. Cells stained with metal-tagged antibodies, against surface 

markers and intracellular phospho-markers, are introduce into the ICP by droplet nebulization. Each 

cell is then atomized and ionized. The lighter and overly abundant ions are removed and the elemental 

composition of the remaining heavy metals/reporters (that are the ions of interest) are identified. 

Signals generated are then correlated to their respective markers and analyzed using conventional 

cytometry platforms. Figure and text adapted from Bendall et al., 2012 [210]. Reprinted with 

permission from Elsevier. 
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Currently up to 50 parameters can be measured simultaneously at a single-cell level 

including cytokines and transcription factors [212, 213]. However, the theoretical limit 

on the instrument has not yet been reached and is likely between 100 and 200 

parameters per cell. CyTOF panels can be designed based on either only surface 

markers to dissect cellular hierarchy, or a combination of surface and intracellular 

markers, focusing on the activation states of intracellular signaling pathways. Such 

multiparametric panels can provide new information about already known cell types 

and also identify new and/or rare cell populations [214, 215]. For example, mass 

cytometry has been effective in analyzing surface as well as intranuclear markers, for 

studying effects of different stimulation conditions and signaling dynamics in PBMCs, 

immunophenotyping of PBMCs and identification of cell types associated with disease 

prognosis in AML patients [216-219]. Like phosphoflow, antibodies detecting the 

phosphorylated states of proteins can be used in mass cytometry to explore in 

vitro activation or treatment effects with drugs [217, 220]. CyTOF is now being used 

in rheumatological studies as well. For example, it has been used to identify signatures 

that can differentiate RA patients from healthy controls. A comprehensive 

understanding of the TNF-mediated signaling patterns may enable more accurate 

diagnosis, better stratification of patients for appropriate treatment and the 

identification of candidate targets for treatment [221]. Using mass cytometry, disease-

specific signatures and disease endotypes have been identified for SSc, SLE and pSS 

by cell frequency analysis of circulating immune cells [222]. This technology has also 

been used to explain the wearing-off phenomenon observed in some patients with 

relapsing-remitting MS on natalizumab treatment [223]. Extensive panels have been 

designed to characterize leukocytes in patients suffering from inflammatory and/or 

autoimmune diseases [224].  

The CyTOF technology is rapidly evolving, along with bioinformatics and reagent 

chemistry, creating a next‐generation platform that can be applied in translational 

research, systems biology and biomarker discovery. Despite its potential, there are 

multiple challenges to mass cytometry data handling, like determining ways to 
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visualize and quantify the data optimally. For researchers with little or no 

computational background, this can be a significant predicament [225]. 

3.5  Luminex assay 

In paper I, cytokine and chemokine concentrations in plasma samples were measured 

using a 25-plex Luminex panel (Invitrogen, catalog number LHC0009M) following the 

manufacturer's instructions and run on a Luminex 100 System (Luminex Corporation, 

Austin, TX). In short, this assay uses polystyrene beads with unique fluorescent 

signatures, biotinylated detector antibodies and Streptavidin/Phycoerythrin (PE) to 

capture and detect the analytes under investigation. Finally, the cytokine and 

chemokine concentrations are calculated from the standard curve. This bead-based 

multiplex immunoassay is a multistep procedure, as illustrated in figure 13. 

 

 

Figure 13. An overview of bead-based immunoassays. Different color-coded beads with dyes that 

fluoresce either red or green are used. The instrument measures both the bead color intensity and the 

mean fluorescence intensity (MFI) of the detection antibody which is typically labeled with a 

Streptavidin/PE conjugate. Figure adapted from Stenken et al., 2015 [226]. Reprinted with permission 

from Elsevier. 
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3.6 ELISA 

Sandwich ELISA kits were used to measure the plasma levels of Tyro3 (Nordic 

BioSite), Axl (Nordic BioSite), Mer (Life Technology) and Gas6 (Sigma-Aldrich) 

following manufacturer’s protocols (paper III). In short, this system utilizes a capture 

antibody and a biotinylated detection antibody to capture the antigen and detect it by a 

colorimetric reaction. Concentrations are measured using the standard curve. The basic 

steps in ELISA are depicted in figure 14. 

 

 

Figure 14. Basic steps in sandwich ELISA. The 96-well plates are precoated with the capture 

antibodies, to which the samples are added, followed by the addition of biotin-labelled detection 

antibodies and a horseradish peroxidase (HRP)-conjugate. Finally, 3,3',5,5'-tetramethylbenzidine 

(TMB) substrate is added for generation of colour. Figure used with permission from LifeSpan 

Biosciences, Inc. (https://www.lsbio.com/elisakits/human-axl-sandwich-elisa-elisa-kit-ls-f2608/2608) 

 

3.7 Data analysis 

Initial visualization and analysis of data was done using Flowjo (Tree Star) (papers I 

and III). For flow cytometry data, identification of immune cell populations was based 

on light scatter properties and the relative expression of CD markers; all numbers 

generated were transferred to Microsoft Excel for further statistical analysis (papers I 

and III). For mass cytometry data (paper II), initial data visualization was done in 

Cytobank, based on the DNA-Iridium (Ir) content, event length, live/dead marker and 
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expression of CD markers; R version 3.5.0 was also used for initial data validation. The 

Astrolabe Cytometry Platform (Astrolabe Diagnostics, Inc.) was used for final 

clustering, visualization and statistical analysis of the data. 

3.7.1 Principal component analysis 

Principal component analysis (PCA) is a mathematical algorithm that reduces the 

dimensionality of the dataset while retaining most of the variation in it [227]. It 

identifies new uncorrelated variables that successively maximize variance, and which 

are linear functions of those in the original data. The new variables are termed as 

principal components [227]. The largest variability is explained by the first principal 

component (PC1) and each successive principal component explains less variability 

then the previous one [228]. Samples can then be visualized in a score plot that helps 

in finding patterns within the data [228]. The variables are visualized in loading plots 

and are interpreted in combination with the score plot, to identify the influence of each 

variable on the spread of the samples in the latter. They are treated as vectors and their 

positions on the loading plot indicate their relationships to each another [227]. 

Variables close to the origin contribute little to the clustering of samples on the score 

plot, while variables on opposite sides are inversely correlated to one another. PCA 

was performed using Unscrambler® (CAMO) (paper I) and software R version 3.3.1. 

(http://www.r-project.org/) (paper III). 

3.7.2 FlowSOM 

FlowSOM is an algorithm that uses self‐organizing maps (SOMs), a type of artificial 

neural network, for hierarchical clustering and dimensionality reduction of complex 

datasets. It is an unsupervised technique that can reveal how all the markers are 

behaving on all the cells and identify subsets that might be missed by manual gating 

[229]. In FlowSOM, all the cells from all the samples are brought together in a big 

matrix which is then used to train a SOM, resulting in a grid of nodes that correspond 

to clusters of cells. The nodes/clusters that are closer, are more similar to each other 

than those at a distance. The resultant clustering is visualized by a minimum spanning 
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tree (MST). The algorithm also assigns a metacluster to each cluster, effectively 

grouping them into populations [229].  

3.7.3 Statistical analysis (papers I and III) 

D'Agostino-Pearson normality test was performed to check for Gaussian distribution 

of the datasets and since some categories did not pass the test, non-parametric methods 

were chosen for further analyses of the data. Correlations were performed using 

Spearman’s rank test. Robust regression and outlier removal (ROUT) method with a 

ROUT coefficient of 1 was used to identify outliers but in most cases the outliers were 

not removed due to the exploratory nature of the analyses. Repeated measures one-way 

analysis of variance (ANOVA), with the Greenhouse correction and Holm-Sidak’s 

multiple comparisons test, was used when comparing fold change (arcsinh) in channels 

measuring phosphorylated proteins in PBMCs for three different isolation methods 

(paper I). Fold change of the median fluorescence intensity (MdFI) was calculated in 

Microsoft Excel using the formula [ASINH (MdFI stimulated/cofactor) - ASINH 

(MdFI unstimulated/cofactor)], with an assigned cofactor of 150 (paper I). Coefficient 

of variation (CV) values for process triplicates reported in paper I were calculated in 

Microsoft excel from MdFI values of target phospho-proteins normalized against their 

respective unstimulated samples. Unpaired Mann-Whitney test was used for analyzing 

the Luminex assay data (paper I) and TAM expression levels (paper III), in order to 

compare between the different groups under investigation. Differences were 

considered statistically significant for p ≤ 0.05. For papers I and III, all tests and graph 

generation were done using GraphPad Prism v7.05 (La Jolla, CA, USA).  

3.7.4 High-dimensional data analysis (paper II) 

Single-cell mass cytometry data was clustered using the FlowSOM R [229] and labeled 

using the Ek'Balam algorithm [230]. Cell subset definitions followed Maecker et al. 

[205], and Finak et al. [231] and the subsets identified are given in Table 2. Cluster 

labeling, method implementation, and visualization were done through the Astrolabe 

Cytometry Platform (Astrolabe Diagnostics, Inc.). Differential abundance analysis was 

done using the edgeR R package [232]; McCarthy et al. [233] following the method 
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outlined in Lun et al. [234]. Differential expression analysis was done using 

the limma R package [235] following the method outlined in Weber et al. [236]. 

Differences were considered statistically significant for false discovery rate 

(FDR)/adjusted p ≤ 0.05.  

 

Table 2. Immune cell subsets identified by the Astrolabe Cytometry Platform  
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4. Summary of the main results 

Paper I  

Phosphoflow cytometry was used to make quantitative measurements of the phospho-

proteins ERK1/2, NF-κB p65, p38, STAT1 (Y701), STAT1 (S727), STAT3 (Y705), 

STAT3 (S727), STAT4 (Y693) and STAT5 (Y694) in T cells, B cells and NK cells 

from female pSS patients and age-matched female healthy individuals, at the basal 

level as well as over a time period of 4 hours following TLR7 and -9 stimulation. 

Cytokine levels in plasma were determined using a 25-plex Luminex-assay and 

correlated to the basal phosphorylation levels and clinical parameters in these patients.  

Significant increase in basal phosphorylation in T cells ( for NF-κB, p38, ERK1/2, 

STAT5, STAT1 Y701, STAT1 S727), and NK cells (for p38, STAT5, STAT1 Y701, 

STAT1 S727) was observed in pSS patients compared to healthy donors. B cells 

showed no significant differences. Following TLR7 and -9 stimulation, stronger 

responses in B cells for NF-κB, p38 and STAT3 S727, were observed in the EGM- 

patients, compared to EGM+ patients and healthy controls, which also correlated with 

the expression of three type I ISGs. 70% of the patients had a positive IFN signature. 

These patients differed from the IFN signature negative patients, in terms of their 

phosphrylation profiles and plasma cytokine levels. 

When comparing cytokine profiles of patients and controls, 12 out of the 25 cytokines 

measured were significantly upregulated in patients including IL-1ß, IL-13, IL-6, IL-

12, MIP-1α, MIP-1ß, MCP-1, IL-15, IFN-α, TNFα, IL-2, and IL-4. Upon stratification 

of patients according to the presence or absence of autoantibodies (SSA+/SSA–), 

significant upregulations were observed in the SSA+ subgroup for IL-1ß, MCP-1, IFN-

α, IL-2, and IL-4 compared to SSA- patients. While the basal phosphorylation profiles 

of all patients showed only moderate correlationsto plasma cytokine concentrations, 

excluding medicated patients from the analysis resulted in strong to very strong 

correlations of RANTES to pNF-κB in NK cells, MIP-1ß, MCP-1, IL-2, and IL-4 to 

pSTAT5 Y694 in B cells and IL-1RA to pSTAT1 Y701 in T cells. Again, on dividing 

the patients into subgroups based on the presence or absence of SSA and EGM, we 
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observed strong to very strong correlations in SSA+ patients of MIP-1α, IL-1RA and 

TNF-α to pSTAT3 Y705 in B cells, TNF-α to pNF-κB in B cells and RANTES to 

pSTAT4 Y693 and pSTAT1 S727 in NK cells. In SSA– patients, IL-1RA correlated to 

pERK in B cells and RANTES to pNF-κB in T cells. EGM+ patients showed strong to 

very strong correlations of several cytokines to pSTAT4 Y693 in NK cells amongst 

others, while in EGM– patients RANTES, IFN-γ, IL-1RA, IFN-α, and IL-12 correlated 

with various phospho-epitopes. 

Paper II 

Mass cytometry was used to immunophenotype different PBMC cell subsets from 

SSA+ and SSA- female pSS patients and age-matched female healthy donors. Next, 

expression levels of the phospho-proteins ERK1/2, NF-κB, p38, STAT1 Y701, STAT3 

Y705, STAT3 S727, STAT4 Y693, STAT5 Y694 and STAT6 Y641, were analysed in 

the identified immune subsets, by stimulating them with either IFNα2b or IFNγ.  

Differential abundance analysis among the healthy donors and the SSA- and SSA+ pSS 

patients revealed imbalances in the frequencies of different PBMC subpopulations. 

Memory B cells were significantly reduced between healthy controls and SSA- patients 

and between SSA- and SSA+ subgroups, CD8+ T central memory cells were 

significantly reduced in the SSA+ patients (in groupwise comparison only), CD8+ T 

effector memory cells were significantly higher between the controls and SSA- patients 

and CD4+ T EMRA cells showed significant reduction between the donors and SSA+ 

patient subgroup. Although not statistically significant, a few other cell types showed 

certain trends. For example, amongst the lymphoid populations, slightly increased 

frequencies were observed in the naïve B cells and CD8+ T EMRA cells across the 

three groups, while a decreasing pattern was seen in the CD4+ T effector memory cells, 

which was most prominent in the SSA+ patients; a slight decrease was also observed 

in the CD56+CD16+ NK cell subset. Amongst the myeloid cells, the cDCs and pDCs 

decreased slightly across the three groups while classical monocytes showed a slight 

increase in both the pSS subgroups compared to healthy donors; the non-classical 

monocytes revealed a weak decreasing tendency across the three groups. Differential 
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expression analysis revealed alterations in the levels of activation markers, CD38 and 

HLA-DR, in many of these cell subsets, with the highest expression being in the SSA+ 

patients for most cell types. 

Upon IFNα2b stimulation, a slightly increased response to pSTAT1 Y701 was 

observed in the memory and naïve B cells, the CD56+CD16+ NK cell subset, the cDCs 

and pDCs across the three groups. Various T cell subsets, also showed a similar 

tendency in the pSS subgroups, with the maximum fold change seen in the SSA+ 

patients. A slightly decreased pSTAT3 Y705 induction was observed in the memory 

and naïve B cells, both NK cell subsets, pDCs and classical monocytes for the SSA+ 

patients compared to the other two groups, whereas the cDCs and the non-classical 

monocytes showed a decreasing trend across the three groups. We also observed NK- 

and T cell-specific reductions in STAT4 Y693 phosphorylation in the pSS patients for 

both the NK cell subsets and the memory T cell subtypes. Slightly reduced STAT5 

Y694 phosphorylation was seen in the naive B cells, various T cell subsets, cDCs and 

classical and non-classical monocytes, which was most noticable in the SSA+ patients. 

Most cell types also showed slightly reduced pSTAT6 Y641 signaling in response to 

IFNα2b, which was most pronounced in the SSA+ pSS patients. 

The effect of IFNγ stimulation was restricted to mainly STAT1 Y701. A significant 

increase in pSTAT1 Y701 induction across the three groups was observed between the 

controls and SSA+ pSS patients in the cDCs, classical and non-classical monocytes. 

Although not statistically significant, a similar trend was seen in the memory and naïve 

B cells, and in the pDCs increase in pSTAT1 Y701 was seen only in the SSA+ patients. 

Again, the SSA+ patients showed the highest fold changes. 

Paper III 

In this study, we examined the plasma concentrations of the soluble forms of Tyro3, 

Axl, Mer and free Gas6 from female pSS patients and age-matched healthy controls by 

ELISA. Next we analyzed their mRNA expression levels in PBMCs from the same 

cohort by RT-PCR. Finally, to confirm the mRNA data and define subpopulations of 

PBMCs, we analyzed TAM receptor expression in PBMCs using flow cytometry. 
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Comparison of the plasma concentrations of soluble TAMs and unbound Gas6 by 

ELISA revealed no significant differences between the patients and healthy controls.. 

At the transcriptomic level, the highest mRNA expression was detected for Mer, 

followed by Axl and Gas6 having similar expression levels, while the lowest 

expression was observed for Tyro3. The mRNA levels of Tyro3 and Mer were 

significantly reduced in pSS patients compared to healthy individuals.  

Considerable differences were observed in the cell frequencies between pSS patients 

and healthy donors, with significant decrease in pDC, cDC1 and cDC2 subsets in the 

patients. At the protein level, surface expression of Mer was the highest. Monocytes 

and DCs showed the highest surface expression of the TAM receptors, except Axl that 

was low in all three monocyte sub-populations. The different monocyte populations 

expressed different levels of the TAM receptors. For example, Mer was highly 

expressed in intermediate and non-classical monocytes, compared to a much lower 

expression in classical monocytes. Most of the lymphoid populations showed low 

TAM expression, except B cells that showed some Tryo3 positivity and T and NKT-

like cells that expressed considerable amounts of Mer. Although not statistically 

significant, all three receptors were expressed at a lower level in patients compared to 

controls in most cell types analyzed. Exceptions to this were the B cells for Tyro3 and 

non-classical monocytes and cDC2 for Mer.  
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5. Discussion 

5.1 Methodological considerations 

5.1.1 Advantages and limitations of flow and mass cytometry 

Although high throughput (measuring up to several thousand events/sec), one major 

challenge in experiment design and data analysis of flow cytometry is the spectral 

overlap of fluorescent probes, that requires complicated compensations [210]. 

Moreover, autofluorescence can also complicate quantitative analysis. Both these 

obstacles are bypassed by mass cytometry as it uses metal-tagged antibodies instead of 

fluorescent probes [237]. However, the greatest advantage of mass cytometry is the 

high number of markers that can be investigated at a single cell level. Detection of >40 

targets using a single panel is possible, making broad characterization of the immune 

system now a reality [238].  

However, mass cytometry has a few drawbacks. First, it cannot measure forward scatter 

(FSC) and side scatter (SSC). So, we do not get any information on the size or 

granularity of the cells. Second, sensitivities of the lanthanide metals are lower than 

most fluorophores. Third, measurement is limited to about 1000 cells per second and 

lastly, the cells cannot be retrieved for downstream analysis [210, 238]. However, DNA 

intercalators containing Ir or rhodium (Rh) can be used to stain the cells. This ensures 

the detection of cells as events and discriminates singlets from doublets and debris, 

when used with event length [237]. Similarly, live-dead stains must also be used. 

Cisplatin or molecules containing both a chelator and maleimide moiety are used as 

viability markers in mass cytometry [218]. Finally, at present, the availability of mass 

cytometers is considerably lower, and the cost is higher than that of flow cytometers. 

5.1.2 Common considerations for single cell analyses 

Antibody selection: Antibodies against surface markers were chosen based on their 

ability to distinguish the cell subsets in PBMCs, by their combinatorial expression on 

cells. Variations in cellular frequencies compared to healthy individuals have been 

reported in the context of pSS. Lymphopenia is often observed, which is due to the 
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decrease in CD4+ T cell subsets as well as B memory cells [129]. pDCs and NK cells 

have also been reported to be decreased in many patients, whereas monocytes and 

granulocytes have been shown to be increased [239, 240]. Activated T cells and 

plasmablasts have also been implicated in the disease [129, 240]. In paper I, we chose 

to look at only the parent populations, i.e., T, B and NK cells, due to limitations in the 

number of markers that can be analyzed simultaneously in flow cytometry, which was 

further compounded by the absence of the yellow-green laser when the experiment was 

conducted. However, in paper II, due to the advantage of mass cytometry, we could 

investigate the different subtypes of T, B and NK cells as well as NKT cells, monocyte 

and DC subsets. To check for possible erythrocyte contamination, we also added 

CD235 to our panel. Studies have demonstrated that TAM receptors are most 

prominently expressed by the phagocytes, mainly the myeloid cells [95]. Hence, for 

paper III, we primarily focused on the monocyte and DC subpopulations. As we used 

PBMCs, we did not expect to see granulocytes and macrophages and hence did not 

include those markers in our panels. 

Phospho-epitopes were selected based on relevant signaling pathways in PBMC 

subsets: TLR7 and TLR9 for paper I and IFNα and IFNγ for paper II. MAPKs like 

ERK1/2 and p38 as well as NF-κB are activated downstream of the TLR pathways. 

Moreover, TLR7 and -9 activation is capable of inducing pathways involved in the 

production of type I IFNs. IFNs, in turn, activate the STATs in various combinations 

to drive unique biological functions. Type I IFN can activate STAT1 and STAT3 in 

almost all cell types whereas STATs 4,-5 and -6 are activated in a cell type and context- 

dependent manner [67]. For example, while IFNα can stimulate STATs1, -3 and -4 in 

T cells, a shift from STAT1 to STAT4 activation by inhibition of STAT1 is required 

for expansion of CD8+ T cells and production of IFNγ during viral infections [69]. A 

differential STAT1/STAT4 balance is also required for IFNγ production and 

cytotoxicity functions of NK cells [241]. The major STAT protein activated by IFN-γ 

is STAT1 [242]. Whereas Type I IFNs can activate p38 to induce the transcription of 

ISGs in a STAT-independent manner, both type I and type II IFNs can activate ERK 
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pathways [51]. Hence the MAPK/ERK and JAK/STAT pathways were chosen to be 

investigated for papers I and II. 

Titration: All the antibodies were titrated for their specific experimental conditions to 

determine their optimum staining concentrations. For all phenotypic markers, the 

concentrations that gave a clear separation between negative and positive populations 

were chosen. Barcoding dyes used in phosphoflow cytometry were titrated using a 3 x 

3 matrix selected based on their ability to resolve each sample in the matrix, as well as 

minimizing spillover into critical channels (paper I). Antibodies to phospho-antigens 

were titrated using unstimulated and stimulated samples to find the concentration 

required for maximum fold change and minimum noise (papers I and II).  

Fixation and permeabilization: Signal transduction and transcription of genes in cells 

are dependent on intracellular phosphorylation of proteins, and measurement of such 

phospho-epitopes can therefore describe activity in the cells [206]. However, 

phosphorylation events are transient and reversible, and the epitopes are inaccessible 

to antibodies directly because of their subcellular localization (in the cytosol or the 

nucleus). Hence, the cells must be fixed (by formaldehyde/paraformaldehyde) to 

stabilize/cross-link the phospho-proteins and then permeabilized (by 

methanol/saponin) for entry of the antibodies (papers I and II) [206]. Both extra- and 

intracellular epitopes and antibodies can be sensitive to fixation and permeabilization 

reagents. So it is important to test the antibody performances for the individual 

protocols [243]. 

Effect of freezing and thawing on cells: To optimize recovery and viability of 

cryopreserved cells after thawing, serum support media, such as fetal bovine serum 

(FBS), are commonly used for freezing. However, to avoid unspecific stimulation 

caused by FBS, we made a freezing mixture containing a Non-Animal Origin (NAO) 

Chemically Defined Freeze Medium, ProFreezeTM-CDM, serum-free cell medium X 

vivo-20TM and cryoprotectant DMSO. The CoolCell® freezing chamber used for 

freezing the samples ensures a consistent cell freezing rate of -1 °C/minute [244]. 

Cooling cells at a controlled rate and the use of DMSO minimize damage to the cells 



 62 

by increasing permeability of the plasma membrane as well as preventing the formation 

of ice crystals [244, 245]. The cells were thawed rapidly at 37°C to avoid ice 

recrystallization and osmotic stress, and to maximize cell recovery and viability [244].  

Stimulation and stimulants: Before stimulation, the cells were rested in the incubator 

for 2 hours, to reduce basal signaling levels in them following the thawing process. 

Instead of FBS, serum-free X vivo-20TM was used for stimulation to ensure that the 

cells were stimulated only by the IFNs and not by components of FBS as well as to 

avoid batch to batch variation of FBS. The stimulants used in paper I were TLR7 ligand 

CL097 and TLR9 ligands ODN 2006 and ODN 2395. CL097 is a derivative of the 

imidazoquinoline compound R848, mimics viral components (ssRNA) and acts as a 

TLR7 agonist. ODNs 2006 and 2395 are type B and C CpG ODNs, respectively. These 

are synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG 

dinucleotides that act as TLR9 ligands. Unmethylated CpG sequences are more 

abundant in bacterial and viral DNA compared to human DNA and can stimulate 

immune responses [246]. While type B and C both stimulate NF-κB mediated signaling 

from late endosomes resulting in strong B cell activation, type C triggers IRF7 

mediated intracellular signaling from early endosomes leading to strong IFNα 

induction [247]. Since viral infection is a potential trigger for pSS, TLR7 and -9 ligands 

were used as stimulants to explore the respective pathways. In addition, pSS is often 

associated with a type I IFN signature, and TLR7 and -9 activation may also lead to 

type I IFN production. In paper II, recombinant IFNα2b and IFNγ were chosen as 

stimulants in order to specifically explore the type I and type II IFN signaling pathways, 

which cause IFN production and upregulation of ISGs through the JAK/STAT and 

MAPK/ERK pathways [17].  

Barcoding: Barcodes label individual samples with a unique signature of dyes/metals, 

allowing multiplexing of the samples prior to staining and acquisition. Fluorescent cell 

barcoding and mass-tag cell barcoding have been in used in papers I and II respectively. 

After barcoding, the samples can be pooled together in one tube for downstream 

staining and data collection [248, 249]. Barcoding reduces antibody consumption, 
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increases throughput, shortens instrument measurement time and most importantly, 

minimizes staining variability.  

Pacific orange (PO) and pacific blue (PB), used for barcoding in phosphoflow, are dyes 

that react to amine groups on protein lysine residues and at the N-terminus, while 

unbound dyes are subsequently washed off [248]. For mass cytometry, the barcodes 

were palladium (Pd)-based. Pd has six isotopes, where each sample is either positive 

or negative for each of the six isotopes. A ‘6-choose-3’ strategy is used in which each 

of the 20 barcodes are positive for 3 of the 6 possible Pd reagents, as shown in figure 

15. A unique combination is, thus, generated for each sample which is used to identify 

that sample during the process of sample deconvolution [249].  

 

Figure 15. Palladium (Pd) barcode scheme used in mass cytometry. Each kit has 20 unique 

barcodes generated from 6 Pd isotopes, where a combination of 3 isotopes is used to identify each 

sample. This is called a ‘6-choose-3’ strategy. Figure inspired from Fluidigm 

(https://www.fluidigm.com/binaries/content/documents/fluidigm/resources/cell-id-20-plex-pd-

barcoding-kit-ug-prd023/). 

 

Controls: Using relevant controls is critical for any successful cytometry assay. 

Controls provide the context based on which one can interpret the samples 

appropriately. Healthy donors were used as biological controls and in stimulation 

assays, unstimulated samples were used as the baseline/reference, to analyze the 

stimulated samples (papers I and II). The phosphoflow and CyTOF assays utilized 

cryopreserved PBMCs from a single donor (internal control) that were thawed and 

processed with each experimental run to monitor inter-assay variation. 
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5.1.3 Flow cytometry: special considerations 

Panel design: The choice of fluorophores was a compromise between wavelength of 

available lasers and filters on the flow cytometer (ideally bright fluorophores used for 

rare antigens and dim for common antigens), as well as availability of the chosen 

fluorochrome-conjugated antibody. Minimizing spillover into important and sensitive 

channels (low abundance markers and phospho-antigens) was also kept in mind in 

order to reduce compensation. However, some concession had to be made due to 

availability. For example, we had to use PerCP-CyTM5.5 for ERK1/2, STAT1 (Y701) 

and STAT3 (Y705), which is relatively dim. 

Controls: BD cytometer setup and tracking beads were used for determining minimum 

baseline PMT voltages and monitoring cytometer setup and performance (like laser 

alignment, laser time delay, sensitivity). Single-stained and unstained cell samples 

were used during experiment setup for optimization of PMT voltages. Voltages were 

set to achieve minimum spillover into other channels, specially the phospho-epitopes 

and TAM receptors. A barcoded sample without antibodies (barcode only control) was 

also used to verify that the MdFI of the other markers did not fluctuate in response to 

the barcode intensities (paper I). All flow cytometry experiments included single-

stained compensation controls (beads or cells) for the measurement and correction of 

fluorescent spillover before subsequent analysis. Fluorescence minus one (FMO) 

controls, that included all antibodies in the panel but one, were used to set appropriate 

gates where distinctions between positive and negative populations were not clear (e.g., 

the TAM receptors and Gas6). 

5.1.4 Mass cytometry: special considerations 

Panel design: For mass cytometry, the MaxPar panel designer and panel wheel were 

used to check for signal spillovers and tolerance for each channel. Although there is no 

major spillover in this platform, there can be some background due to abundance 

sensitivity, formation of oxides (+16) and isotopic impurity (+/-1) [238]. Hence, low-

abundance antigens were generally chosen for channels that received little/no crosstalk 

from other channels and high-abundance antigens were assigned to channels that 
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contributed little/no crosstalk to the channels used for the low-abundance antigens. The 

instrument’s detection efficiency for the isotopes were also kept in mind. Furthermore, 

some antibodies had to be self-conjugated due to lack of availability in the choice of 

suitable metals, e.g., pSTAT3 (S727) and pSTAT4 (Y693). 

Controls: As mass cytometry overcomes the limitations of spectral overlap associated 

with flow cytometry, compensation controls are not required in this assay. To monitor 

changes in instrument performance and signal fluctuations during data acquisition and 

across batches, polystyrene bead standards, called EQTM Four Element Calibration 

Beads (containing 140/142Ce, 151/153Eu, 165Ho and 175/176Lu), were used. These 

beads help to normalize inter-sample and intra-sample variations. 

Contamination/Background noise: The Lanthanide metal isotopes are biologically rare, 

thus making the endogenous cellular background zero. However, apart from the three 

sources of spillover mentioned earlier, some other sources of contamination are iodine 

(127I), tin (120Sn) and lead (209Pb). These can be found in insufficiently purified 

water but are outside the analytical window ( which is 141Pr to 176Yb, 89Y and 209Bi) 

[218]. However, Barium (137-138 Ba) from soaps and gloves can contaminate samples 

and interfere with nearby channels.  

5.1.5 Luminex assay  

The measurement of cytokine levels can be influenced by many factors. When 

processing samples for storage, time duration between collection and cryopreservation 

is important [250]. Storage duration and temperature can influence final measurements 

as well [251, 252]. Detection can also be impacted by the source (e.g., serum or plasma) 

as well as anticoagulants (e.g., heparin, EDTA, citrate) used in plasma tubes [253, 254]. 

Some recommendations favor plasma over serum because the coagulation process may 

have an impact on cytokine release from cells [250]. Hence, we used heparin plasma 

for our assays. Also, both intra- (like circadian rhythm, infections etc.) and inter-

individual variations in cytokine levels can be expected [255, 256]. However, to reduce 

intra-assay variability related to technical procedures, the samples were analyzed in a 

random order on the plate. In our final analysis, we did not include Eotaxin, IL-7 and 
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MIG as they were not recommended to be measured in heparin plasma by the 

manufacturer. GM-CSF, IL-5 and IL-8 were also excluded from the analysis as they 

were below detection limit in most samples.  

A dysregulated cytokine profile in pSS has been reported by many, with a systemic and 

local increase of proinflammatory cytokines and a reduction of anti-inflammatory 

cytokine levels [257]. IL-17, IL-1RA, Il-1β, IL-15, MIP-1α, MIP-1β, IFNα and IL-4 

were found to be increased in pSS patients with ectopic GCs [258] Correlations 

between aberrant cytokine levels and phosphoproteins may suggest a link between the 

signaling pathways and these chemical messengers. 

5.1.6 Quantitative real-time PCR 

18S rRNA was chosen as the reference gene because of its invariant expression 

throughout tissues and cells. It has also been reported to be more reliable than other 

commonly used housekeeping genes [259]. For paper I, expression levels of MxA, 

IFI44 and OAS1 (type I IFN-inducible genes) and GBP1 (IFNγ-responsive gene) were 

analyzed because of the known association between type I IFN signature and increased 

disease activity in pSS [181]. MxA has been reported to be a reliable biomarker for 

identifying systemic type I IFN activity in pSS patients [184]; IFI44 and OAS1 are 

strongly induced by IFNs with IFI44 being activated by only type I IFN [185, 186]; 

IFNγ is a stronger inducer of GBP1 than IFNα [260]. Correlations between 

upregulation of ISGs and patients with a positive type I IFN score (indicating 

potentiated intracellular signaling pathways) may point to a mechanistic link between 

these attributes.  

The TAM receptors and Gas6 are involved in efficient phagocytosis of apoptotic cells. 

In paper III, these were measured because a decrease in their mRNA levels (particularly 

Tyro3 and Axl) have been previously observed in pSS patients, which is suggestive of 

defective clearance of the apoptotic burden in them [106]. Thus, any changes in the 

expression of the TAMs and Gas6 in the pSS patients compared to healthy controls 

may be linked to the pathogenesis of the disease.  
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5.1.7 ELISA 

Soluble forms of the TAM receptors have been reported to compete with the 

membrane-bound TAMs and inhibit apoptotic clearance. There are conflicting results 

regarding their concentration levels in pSS patients. While Qin et al. have demonstrated 

increased soluble Mer in pSS patients compared to healthy donors, Chen et al. have 

shown lower plasma Gas6 concentrations in the former [106, 261]. Aberrations in the 

levels of soluble TAMs and free Gas6 can imply a role in disease development and 

progression.  

According to the manufacturer, the percentage of recovery of Gas6 was more from 

plasma than from serum. Also due to reasons mentioned previously (see section 1.5.2) 

and as all the kits supported heparin plasma as the source material, we used the latter 

for all the ELISA assays. According to the manufacturer’s recommendations, we had 

stored the plasma samples at -80 °C after isolation, and all reagents and samples were 

brought down to RT before use. The samples were recommended to be run in duplicates 

or triplicates. As we had limited availability of plasma and had to run each sample four 

times (once for each of the TAM receptors and Gas6), we decided to run the samples 

in duplicates. As for the range of the standard curves, we followed the manufacturer’s 

recommendations for Tyro3 and Gas 6 (125 pg/ml-8000 pg/ml and 0.41 ng/ml-30 

ng/ml, respectively), as they included the median concentration values of these proteins 

found in literature. However, for Axl and Mer we made some minor changes to the 

standard dilutions to increase the range of the standard curves (13.7 pg/ml-10000 pg/ml 

for Axl and 6 pg/ml-3000 pg/ml for Mer). As these are not abundant proteins, we 

wanted to ensure that we can detect them in all our samples by matching our detection 

range with that from previous studies. As for the sample dilutions, the goal was to get 

the resulting optical density (OD) values of the samples within the OD values of the 

standard curve, for them to be accurately calculated. Hence, the sample dilutions were 

chosen based on information about the antigen concentrations from published literature 

as well as recommendations from the manufacturer’s protocols.  
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5.1.8 Data analysis 

Visualization and interpretation of multivariate data can be difficult due to the sheer 

number of data points. Therefore, PCA was used to identify the important variables 

and visualize the datasets generated by phosphoflow cytometry (paper I). Similarly, 

visualization and analysis of high-dimensional datasets generated by mass cytometry 

(paper II), using traditional manual techniques like biaxial scatter plots, is not feasible 

and may be error-prone. The analysis of high-dimensional single-cell cytometry data 

comes with its own computational challenges in terms of data pre-processing, 

normalization, dimensionality reduction and clustering [262]. Many of the algorithms 

circumvent traditional approaches used in flow cytometric analysis, fundamentally 

changing the way these data are processed and interpreted. However, the large number 

of available algorithms (like viSNE, SPADE, X-shift, PhenoGraph and Citrus), and the 

lack of consensus on best practices for data pre-processing and analysis, raise multiple 

issues [225, 263]. Different pipelines using different tools are being developed 

constantly, that can be overwhelming, by making it increasingly difficult to 

comprehend the challenges and considerations for each approach as well as to 

understand what kind of biological insight each method will reveal. 

5.2 Biological implications of the results 

Primary Sjögren’s syndrome (pSS) is a complex autoimmune disorder, that is difficult 

to manage due to it’s unknow etiopathogenesis and patient heterogeneity. On one hand, 

new technologies, like mass cytometry, RNA sequencing and multiplexed functional 

assays, enable the analysis of immune cell composition and function with 

unprecedented detail and help to elucidate the mechanisms behind pathogenesis of 

diseases as well as in the discovery of novel biomarkers. On the other hand, blood is a 

‘gold standard’ sample that acts as a good source of potential biomarkers [264]. It has 

been studied widely, in search of disease-specific signatures and/or immune cell 

parameters that can differentiate pSS patients from healthy individuals [222, 239, 240, 

265-267]. We have used high-throughput single-cell technologies to compare 

peripheral blood immune cell composition and signaling pathways of pSS patients and 
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healthy controls. Our studies on PBMCs have revealed differences in immune profiles, 

in terms of differential cell frequencies, cytokine levels and aberrant signaling 

potentials, between healthy controls and pSS patients as well as between the SSA- and 

SSA+ patients. Additionally, we have shown that the phagocytic machinery might be 

impaired in pSS patients, with slightly decreased expressions of TAM receptors in 

them. Taken together, all these point towards the complex immune interplay in the 

disease that should be further investigated for identification of candidate biomarkers.  

5.2.1 Altered cell frequencies and activation status of PBMC subsets 

can differentiate between pSS patients and healthy donors as well 

as between patient subgroups 

Immune cell profiling has been suggested as a tool to guide optimized treatment 

decisions in rheumatic diseases [203]. In pSS, differential leukocyte counts and 

lymphopenia have been associated with higher titers of autoantibodies and disease 

severity [153, 240] . Our flow and mass cytometry analyses reveal differences in cell 

frequencies between healthy individuals and pSS patients and between the patient 

subgroups. The decrease in memory B cells, observed by us in our mass cytometry 

assay, is one of the most well-characterized cellular variation in pSS and has been 

reported in other diseases as well, like HIV, SLE and common variable 

immunodeficiency (CVID) [153, 268]. The reduced frequency of memory B cells in 

pSS patients might be due to a skewing towards plasma cell differentiation [268]. This 

fits nicely with the findings of Mariette and colleagues, where they have shown 

increased frequencies of plasmablasts and plasma cells in the peripheral blood of pSS 

patients [153]. Although we did not include plasmablasts in our final analysis, due to 

low cell numbers that may give unreliable results, we did see a slight increase in 

plasmablast frequency in the pSS patient subgroups (data not included in the study). 

We also observed slightly increased naïve B cells in the patient subgroups, which is in 

accordance with our previous finding [269]. We found decreased frequencies of the 

CD4+ T memory subsets, in agreement with previous literature [153, 270]. However, 

we found opposite results for the CD8+ T memory cell populations, except for the 

central memory subset. Although Mareitte et al. showed no significant difference in 
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the CD8+ T lymphocyte populations, there is one report that shows increased cytotoxic 

T lymphocytes in patients with pSS, that might indicate the presence of persistent viral 

infections [271]. In line with earlier observations, we also found slightly decreased 

CD56+CD16+ NK cells, cDCs, pDCs and non-classical monocytes while slightly 

increased frequencies for the classical monocytes were observed [153, 240]. NK cells 

play important role in immune regulation by eliminating target cells and autoreactive 

T and B lymphocytes and reduced numbers and cytolytic activity has been reported 

previously in pSS patients [272]. Therefore, our finding of reduced CD56+CD16+ NK 

subset (the cytotoxic NK cells) may be associated with persistent viral infections and 

development of pSS. Reduced pDCs in circulation is an established fact, that might be 

due to migration to the affected tissues or due to apoptosis [222]. The increase in 

classical monocytes may be a cause for the observed increase in proinflammatory 

cytokines in pSS patients [273]. Moreover, recent microRNA profiling has revealed 

CD14+ monocyte-specific microRNAs in pSS that suppress TGFβ signaling as 

opposed to proinflammatory pathways like IL-12, further establishing the role of these 

monocytes in pSS [274]. As observed by Mariette and colleagues, the changes in cell 

frequencies were greatest in the SSA+ patients. Our mass cytometry results on DCs 

were further confirmed by our flow cytometry analysis, where we found significant 

decrease in pDCs, cDC1 and cDC2 populations in pSS patients compared to healthy 

controls. Decreased myeloid DCs in blood and corresponding migration to salivary 

glands has been observed in early SS, that may help to present antigens to infiltrating 

CD4+ T cells [275].  

However, it should be mentioned that lymphopenia can only indicate progressing 

disease activity but is unlikely to reflect an individual disease or disease subtype unless 

used in conjunction with other criteria. In addition, medications used by patients could 

affect cell concentrations. For example, prednisolone has been shown to cause 

leukocytosis in patients, through increase in monocytes, granulocytes and lymphopenia 

and even low doses, upon prolonged administration can lead to persistent leukocytosis 

[276]. Although our mass cytometry cohort consisted of unmedicated patients, the flow 

cytometry cohorts had patients receiving medication. This may be one reason for some 
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the discrepancies in our results with earlier studies. Many of the observed differences 

in cell frequencies did not reach statistical significance but showed slightly increased 

or decreased tendencies. One major reason behind this is the low sample size of our 

experiments. Also, various studies have used different sampling methods, like whole 

blood vs PBMCs, cryopreserved vs fresh, differences in estimation calculations (such 

as parent population vs grandparent population), which might account for the disparity 

observed in some of the results. Another important aspect is the EGM status of the 

patients. EGMs have been associated with increased comorbidities and may indicate a 

more severe form of the disease [277]. For our mass cytometry study, we had enrolled 

only EGM- patients, whereas in some of the other studies, a portion of the patients 

suffered from a variety of EGMs.  

While both activated CD4+ and CD8+ T cells have been reported to be upregulated in 

the periphery, only CD8+ T cells showed significantly upregulated HLA-DR in the 

salivary glands of pSS patients [153]. Activated T cells may contribute to pSS 

pathogenesis by producing proinflammatory cytokines and inducing B cell 

hyperactivation [270]. It can also be hypothesized that activation and subsequent 

migration of CD8+ T cells to the tissue sites may play a crucial role in tissue damage. 

We found upregulated trends for CD38 and HLA-DR expression for many cell 

subpopulations analyzed, including the CD4+ and CD8+ memory T cells, which were 

most prominent in the SSA+ pSS patients. Enhanced activation status of various cells 

might make these patients prone to increased secretion of proinflammatory cytokines 

(e.g., BAFF by pDCs and monocytes), overactive T cell stimulation by cDCs and 

autoantibody production [124, 278]. 

5.2.2 Aberrant phospho-signaling can distinguish between pSS patients 

and healthy individuals as well as between patient subgroups  

The connection between type I IFN and development of autoimmunity is well 

established. It has been observed that patients undergoing IFN therapy developed de 

novo autoantibodies or increased titers of pre-existing autoantibodies [279, 280]. 

Continuous activation and dysregulation of TLR and type I IFN signaling have been 

hypothesized to play a significant role in the pathogenesis and IFN signature of 
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autoimmune diseases, and IFN signature positive pSS patients have been shown to have 

increased expression of TLR7 in pDCs and monocytes [281, 282]. Also, increase in 

TLR7 and -9 mRNA levels have been observed in PBMC of pSS patients by some 

groups [283]. It has also been proven that genes belonging to both type I and type II 

IFNs are upregulated in pSS [155]. However, till date, very few studies on the phospho-

signaling profiles of pSS patients have been conducted. Additionally, these studies 

were based on the parent populations, i.e., the T and B lymphocytes, NK cells and 

monocytes.  

Differential signaling through TLR7 and -9 pathways in PBMCs can differentiate 

pSS patients from healthy individuals 

In our phosphoflow assay, due to limitations in the number of markers that can be used 

in flow cytometry, we analyzed only the T, B and NK cells. We confirmed previously 

observed upregulation of basal STAT5 Y694 levels in T cells [266]. However, contrary 

to earlier observations, we found significant increase in STAT1 Y701 in T cells but not 

in STAT3 Y705 [284]. No differences were observed in B cells. These disparities may 

be due to the use of cryopreserved PBMCs with long culture period (6 hours) in our 

study, as the other studies used freshly isolated cells. Following stimulation with TRL7 

and -9, increased induction of NF-κB, p38 and STAT3 S727 were observed in B cells, 

even after exclusion of medicated patients, and was strongest in the EGM- patients. It 

is difficult to speculate the cause or the relevance of this finding, as B cells do not differ 

in TLR7 and -9 expressions between pSS patients and healthy individuals [285]. 

However, increased secretion of several cytokines and chemokines have been observed 

in them upon stimulation with TLR7 and -9 ligands, like IFNα by TLR7 ligands [286]. 

Additionally, NF-κB can bind to the promoters of proinflammatory genes, such as 

TNFα and IL1β, which can be secreted by B cells upon antigenic stimulation [287, 

288]. Increased numbers of TNFα and IL1β secreting cells have been shown to be 

present in the peripheral blood of pSS patients [289]. Induction of NF-κB and STAT3 

S727, following TLR7 and -9 stimulation in B cells, was stronger in SSA+ patients, 

justifying the need for patient stratification. Strongest signaling in the EGM- patients 

was regardless of glucocorticoid (prednisone) usage, which inhibits NF-κB activation 
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[290], and HCQ that inhibits TLR7 and -9 signaling [291]. The reason behind low 

response of EGM+ patients is unclear, but interestingly it was observed that the patients 

with high TLR signaling all showed lower responses to IFNα (data not included in the 

study). This suggests a negative regulatory mechanism or a different disease trajectory. 

SOCS1 mRNA expression levels are elevated in PBMCs of pSS patients [292] and can 

be induced by TLR ligands like CpG-DNA [293]. As SOCS1 can suppress several 

cytokine signaling pathways like IFNα, lower responses of these patients to IFNα could 

be due to a TLR-driven upregulation of SOCS1 [294]. The observed correlations 

between the type I ISGs and TLR7 and -9 stimulated phospho-proteins can be due to 

multiple reasons. For example, promoters of early type I IFNs genes have NF-κB 

response elements that are essential for constitutive and early expression of IFNβ 

following viral infections [287]. Consequently, increased responsiveness of NF-κB 

could potentially drive increased early type I IFN expression. Moreover, as many of 

the same components function in the NF-κB, STAT3 S727 and p38 TLR-driven 

responses, it is possible that higher levels of type I IFN gene expression is indirectly 

associated with the increased responses of these phospho-proteins and vice versa. 

Differences in type I and type II IFN signaling in PBMC subsets may point towards 

progressively increasing disease severity in pSS patient subgroups 

Due to the advantage of mass cytometry over flow cytometry, in our CyTOF study, we 

could subdivide the PBMCs into their subpopulations and analyze many cell types 

simultaneously. Confirming our previous results, in response to IFNα, slightly 

increased STAT1 Y701 activation in B, T, NK and NKT-like cells were seen in the 

pSS patient subgroups that was reflected in several subsets of these parent populations, 

as well in the DC subsets [295]. IFNγ stimulation also resulted in slightly increased 

pSTAT1 Y701 induction in the memory and naïve B cells as well as significant increase 

in the classical and non-classical monocytes. This confirms previous findings, where 

B cells and monocytes were shown to exhibit significantly increased STAT1 Y701 

phosphorylation following stimulation with IFNγ [292]. They had also reported that 

the greatest difference in STAT1 phosphorylation between patients and controls was 

observed for IFN-γ stimulation, which was also observed by us in the cDCs and 
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classical and non-classical monocytes, that showed significant increase in the SSA+ 

subgroup. pDCs also showed slightly increased pSTAT1 Y701 induction by IFNγ in 

our analysis. DCs are vital for initiation and maintenance of immune responses as well 

as for self-tolerance. Thus, defects in their functions can lead to aberrant immune 

activation [124]. STAT1 signaling is crucial for the anti-proliferative effects of IFNα 

and IFNγ [296]. The increased activation of STAT1 may partially explain the low 

counts of some of the cell subsets observed by us in the patient subgroups. Thus, an 

enhanced response to both IFNα and IFNγ can play a vital role in pSS pathogenesis 

through its antiproliferative effects. In contrast to STAT1, IFNα-induced repression of 

phosphorylation of the other STAT proteins were observed in our study, like STAT3 

Y705, STAT4 Y693, STAT5 Y694 and STAT6 Y641, that partially confirms our 

previous results. This reciprocal nature of the STATs has been observed by others 

[297]. This has also been previously observed for SLE with reduced responses of 

STAT3 and STAT5 to IFNα in T and B cells [298]. A similar pattern of increased 

pSTAT1 induction and reduced induction of other pSTATs, was observed at 120 

minutes following TLR7 and -9 stimulation (paper I), further indicating a preferential 

STAT1 activation over other STATS in pSS patients. Interestingly, majority of the T 

memory subsets also showed an impaired STAT1: STAT4 ratio, with increased STAT1 

and deceased STAT4 levels upon IFNα stimulation. Low STAT1 has been associated 

with antigen-specific CD8+ T cell proliferation and reduced STAT1 responsiveness 

coupled with enhanced STAT4 responses has been reported in LCMV infections [299, 

300]. It was reported that type 1 IFN preferentially activates STAT1 on day 0 and 

STAT4 on 8 in CD8 T cells in vivo and that STAT4 blocks the STAT1-mediated anti-

proliferative effects in these cells [300]. Hence, a higher STAT1: STAT4 ratio might 

fail to protect CD8+ T cells from the effects of STAT1 inhibition on their expansion 

and function. However, in contrast to our earlier result, we did not observe any 

noticeable difference in STAT3 S727 phosphorylation upon IFN stimulation. 

A dysregulated NK cell signaling profile was observed in pSS patients and patient 

subgroups. In paper I, we found increased basal signaling by NK cells through STAT1 

Y701 and STAT1 S727 in pSS patients. Following stimulation with IFNα (paper II), 
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pSTAT1 Y701 induction was slightly increased in the CD56+CD16+ subset, while 

pSTAT4 Y693 reduced slightly in both the NK cell subsets. A similar pattern was also 

observed after 120 minutes of TLR7 and -9 stimulation (paper I). Such a profile has 

been observed in hepatitis C infected patients receiving IFNα treatment, and may 

polarize NK cells towards low IFNγ production and increased cell cytotoxicity [301]. 

However, no difference in NK cell killing ability has been observed on a per-cell basis 

between healthy individuals and pSS patients [272]. No such patterns in 

phosphorylation responses were observed upon IFNγ stimulation. This is in accordance 

with previous literature where we find reports of selective NK cells hypo-

responsiveness to IFNα and normal responses to IFNγ, in pSS patients compared to 

heathy controls [302]. Whether this aberrant profile has any links to the known STAT4 

polymorphism is unclear [303]. On the other hand, a polymorphism in NKp30 

(rs11575837 (G>A), a NK cell activating receptor that regulates the cross talk between 

NK cells and DCs and IFNγ production, has been associated with pSS pathogenesis 

[304]. STAT3 was also found to be reduced in NK cells after 120 minutes of TLR7 and 

-9 stimulation (paper I). STAT3 has anti-apoptotic effects, enhancing cell survival and 

proliferation [305]. Hence, reduced STAT3 activation may be associated with 

decreased NK cell numbers and increased percentage of apoptotic NK cells observed 

in pSS patients [272]. It should be highlighted that the SSA+ pSS patients showed the 

most prominent changes for many of our observations, while the SSA- subgroup was 

in between the healthy controls and SSA+ patients. This might indicate a progressively 

increasing disease severity in the patients, again underscoring the necessity to stratify 

them for optimum treatment. 

5.2.3 Altered TAM receptor expression may indicate potentially 

impaired phagocytosis in pSS patients  

Increased apoptosis of the glandular epithelial cells is partially be responsible for 

glandular dysfunction in pSS. Apoptosis of salivary gland epithelial cells can be 

mediated by the Fas/FasL system, the TRAIL/ caspase 9 system, inflammation induced 

by TLRs as well as by cytotoxic T cells [306, 307]. Recently the co-stimulatory 

molecule B7-H3 has also been implicated [308]. Clearance of apoptotic debris is 
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crucial in maintaining tissue homeostasis and tolerance and defective apoptosis has 

been linked to inflammation and autoimmune diseases [309]. TAM receptors (Tyro3, 

Axl, Mer), a major phagocytic machinery of our cells, are tyrosine kinase receptors that 

have been implicated in autoimmune diseases like SLE and MS as well as cancers and 

have emerged as potential targets for therapy [310]. The importance of TAMs in 

phagocytosis is evident in TAM KO mice models that develop infertility and retinal 

blindness [122]. As expected, we found highest expression of Mer and lowest 

expression of Tyro3 in the PBMCs of pSS patients [113, 311]. mRNA levels of Tyro3 

and Mer were significantly reduced in pSS patients compared to controls, which is 

partly in line with the previous study by Qin et al.[106]. Although not significant, we 

found slightly increased levels of soluble Mer (sMer) and sAxl in the patients. This is 

in accordance with earlier reports where cleavage of the extracellular domain of the 

receptors by proteases have been reported in inflammation-driven conditions [312]. 

There are reports on soluble Mer inhibiting macrophage clearance of apoptotic cells 

and soluble Axl inhibiting tyrosine phosphorylation of membrane-bound Axl [115]. 

All these might point towards impaired phagocytosis in the pSS patients. However, 

functional assays are required for further confirmation. As observed by others, we 

found highest expression of the TAMs in the monocytes and DCs, with differential 

expression of the receptors in these two populations- Mer was highest in monocyte 

populations while Axl was highest in the DC subsets [113]. Seitz et al. observed that 

phagocytosis of apoptotic cells by macrophages took 60 minutes while it took 6 hours 

by DCs [313]. Different usage of the TAM receptors may cause different apoptotic 

efficiencies in macrophages and DCs, justifying their roles as phagocytes vs 

professional APCs [313]. We also found different monocyte populations showing 

different Mer expressions, with the intermediate and non-classical subsets having 

highest Mer levels. CD16+ monocytes have been reported to have the highest Mer 

expression among the monocytes, that can be related to their preferential role in 

phagocytosis [311]. Among the lymphoid populations, we found T cells and NKT-like 

cells expressing Mer while B cells expressed Tyro3. T cells were long thought to be 

TAM deficient. However, recent studies have reported expression of Mer on TCR-

activated T cells that is involved in proliferation and cytokine secretion, acting as a late 
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costimulatory molecule [314]. There is evidence for the emerging role of Tyro3 

dysregulation in tumorigenesis and has been shown to be expressed in B and T-cell 

acute lymphoblastic leukemia (ALL) cell lines and chronic lymphocytic leukemia 

patients. Initial data suggest that TYRO3 expression is ectopic. However, a thorough 

analysis of TAM expression in B and T cells has not yet been published and it is 

possible that TYRO3 is expressed in specific subsets or during specific phases of the 

immune response [315]. Although we did not find any significant TAM expression on 

NK cells, there are reports that all three receptors are required for their differentiation 

and cytotoxic functions [108]. NKT-like cells have also been shown to express Mer in 

mouse models and negatively regulates cytokine production in them [316]. However, 

these observations highlight the role of Mer in signaling events, as opposed to 

phagocytosis, in these cells. Our general observation of slightly lower expression of 

the TAM receptors in most cell types in the pSS patients, once again emphasizes the 

possibility of compromised phagocytotic activities in them, compared to healthy 

individuals. However, stratification of patients based on autoantibodies must be done 

to see if there are any differences in TAM receptor expression in the patient subgroups. 

Glucocorticoids, like prednisone, act by increasing Mer expression on macrophages 

and stimulating their phagocytic abilities [122]. Patients with low TAM expressions 

can thus be benefitted from these drugs.  

5.2.4 Differential plasma cytokine levels may potentially help to identify 

responders to cytokine-based therapies in pSS patient subgroups 

Dysregulated cytokine signaling network is a central player in pSS pathogenesis. Our 

finding of differential expression of several cytokines and chemokines in the pSS 

patients, mostly proinflammatory, partially confirms previous reports by us and other 

groups [257, 317-319]. When the patients were subdivided based on presence/absence 

of autoantibody, IL-1β, MCP-1, IFNα, IL-2 and IL-4 levels were significantly elevated 

in SSA+ pSS patients compared to SSA- patients and healthy donors. Majority of these 

are have been implicated in pSS. IL-1β is a key cytokine in chronic inflammation and 

has been associated with disease duration in SS patients [318]. It was previously 

reported to be increased in pSS patients by us [319]. In contrast to our previous finding, 
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here we observed increased levels of MCP-1 in pSS patients compared to healthy 

individuals. Elevated IFNα levels have been reported by some, while others have 

reported lower levels of circulating IFNα [318]. 70% of our patients showed activated 

type I IFN system, that might be a consequence of the observed increase in IFNα levels 

or vice versa. In accordance with our earlier findings of elevated IL-2 levels in EGM+ 

pSS patient and in patients with high ESR, our current analysis also revealed increased 

plasma IL-2 levels [319]. Although IL-4 is an anti-inflammatory cytokine, it is 

involved in the Th2-mediated humoral responses [318]. Consequently, it may be 

involved in B cell activation and autoantibody production. This might partly explain 

the increased levels of IL-4 in the SSA+ pSS patients. Basal phosphorylations could be 

correlated to some of the cytokines in the patients that become stronger on exclusion 

of medicated patients. Stratifying the patients based on SSA and EGM further yielded 

significant correlations to various phospho-epitopes. Several biologics are being 

developed targeting the different cytokine families, like anti-IFN and anti-TNF [320]. 

However, cytokine-directed therapies have shown variable efficacies till date [257]. 

Patient selection is an important criterion for clinical studies and differential cytokine 

levels in the subgroups of pSS patients may help in choosing patients that might benefit 

from these therapies. 

5.3 Limitations of the study 

In all three studies, sample size was a compromise between our research question and 

feasibility, i.e., use of expensive reagents and technologies as well as laborious 

methods. Hence, the cohort sizes were not optimal. This particularly affects high-

dimensional and big datasets (paper II) as corrections for multiple testing are needed 

for optimal statistical analysis of such data and a low sample size negatively affects the 

statistical significance of individual parameters.  

We used healthy individuals as controls for all the studies in this project. The use of 

non-pSS sicca patients would have been a more relevant choice, particularly in the 

context of clinics where the likelihood of having to distinguish between pSS patients 

and healthy individuals is extremely rare. The more practical scenario would be to 
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accurately differentiate pSS patients from non-pSS sicca patients. However, we were 

restricted by the unavailability of such patients at the time of inclusion.  

As the samples were collected over time and we wanted to analyze them together, 

cryopreservation/freezing was required. This might have an impact on cell recovery 

and intracellular signaling as well as the cytokine levels. However, the procedure was 

identical for all patients and controls and hence, any error arising due to this would be 

a systematic one. 

For the cytometry assays, there are a few noteworthy limitations. First, some rare cell 

populations could not be analyzed due to low cell numbers (e.g., intermediate 

monocytes and plasmablasts in paper II); some cellular subsets that were analyzed had 

quite low numbers (e.g., cDC1, Tyro and Axl positive subsets in paper III), which 

might affect the analysis negatively. In paper II, in spite of having CD25 and CD127, 

we excluded Tregs from our final analysis due to absence of FoxP3 in our panel, 

without which Tregs cannot be identified with confidence. Also, high inter-individual 

variations were observed, particularly for the TAM positive cell subsets in paper III, 

and accounted for the wide data spread. The addition of live-dead markers (PO for 

papers I and III and cisplatin for paper II) enabled us to exclude dead cells from our 

analysis easily. However, as they do not differentiate between the different cell subsets, 

there are chances of higher levels of apoptosis in some subsets, particularly the rarer 

ones. Therefore, we cannot exclude the effects of apoptotic cells in signaling profile 

alterations, especially in the rare populations. For example, increased percentages of 

apoptotic NK cells are seen in pSS patients [272]. Therefore, differences in signaling 

observed in NK cells (papers I and II) may be a consequence of that. Another factor 

affecting the interpretation of signaling levels can be cell frequency. The phospho-

epitopes were measured in terms of median expressions. However, differences 

observed in them could be due to shifts in the cell frequencies, rather than actual 

potentiation of signaling pathways. One practical limitation for the phosphoflow 

cytometry experiment (paper I) was the absence of the yellow-green laser (561 nm) at 

the time of experiment designing and execution. This laser can nicely separate FITC 

and PE signals and in its absence, we had certain constraints on the choice of antibodies 
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for our panel. As we were using PE-conjugated antibodies for CD56 and PE-Cy7TM for 

three phospho-epitopes, we could not use FITC. Finally, the signal intensities of the 

phosphoproteins detected by CyTOF were in general quite low (paper II). Also, we 

observed a clear batch effect, specifically in batch 2 samples, that showed lower q95 

values for some of the phospho-markers compared to the other three batches. It is worth 

mentioning that the batch effect was not consistent and was more prominent for some 

phospho-markers in some cell types and less/absent in others. We considered quantile 

normalization (QN) using the internal controls. However, artifacts can be introduced 

by this method [321]. Moreover, as mentioned earlier, since the batch effect was 

inconsistent for the different cell types and phospho-proteins, we decided to report the 

results as it is. 

Some other limitations include the lack of information regarding some clinical 

parameters like, Ig levels, C-reactive protein (CRP), complements, anti-nuclear 

antibody (ANA) and focus score for some patients. Furthermore, we did not have any 

knowledge regarding the dosage or time of administration of medication with respect 

to the sampling time (for the medicated patients in paper I). Finally, all our experiments 

were performed using PBMCs. Although peripheral blood is a good indicator of pSS 

pathogenesis and severity, the main site of disease activity i.e., the salivary glands, 

must be studied in order to get a comprehensive picture of the disease. 
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6. Conclusions 

The three studies included in this thesis identify single-cell analysis as a useful 

approach towards understanding the complex immunological interplay in primary 

Sjögren’s syndrome. Patient stratification, based on unique immune profiles, may 

enable development of personalized treatment strategies.  

Study I 

TLR7 and -9 stimulation results in increased response of B cells through STAT3 S727, 

NF-κB and p38 in pSS patients, which also correlate with the type I IFN signature. This 

suggests that the type I IFN signature may either induce an enhanced NF-κB, p38 and 

STAT3 S727 signaling upon TLR7 or -9 activation, or partially be derived in response 

to it, thus, facilitating increased production of interferons. Plasma cytokines also 

correlate with the basal phosphorylation levels of several phospho-epitopes in the 

patients. 

Study II 

Various PBMC subpopulations show altered cell frequencies between the healthy 

donors and the SSA- and SSA+ pSS patients. Many cell subsets show an enhanced 

activation status and increased response to type I and type II IFNs through pSTAT1 

Y701. These, coupled with reduced pSTAT3 Y705 and pSTAT5 Y694 signaling, may 

predispose the pSS patients, particularly the SSA+ subgroup, to an increased 

expression of IFN-induced genes and autoantibody production.  

Study III 

The mRNA levels of Tyro3 and Mer are significantly reduced in the plasma of pSS 

patients compared to healthy controls. Altered cell abundances as well as differential 

TAM receptor expression in the PBMC subsets are observed between healthy 

individuals and pSS patients. Reduced TAM receptor levels in the patients may point 

towards defective phagocytic clearance. 
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7. Future perspectives  

We analyzed the phospho-signaling potentials of the TLR7 and -9 pathways in the T, 

B and NK cells only. Signaling profiles of the different subsets of these cells as well as 

the myeloid subsets, upon TLR7 and -9 stimulation, should be explored in the future 

using mass cytometry. Reasons behind the enhanced TLR7 and -9 responses in the 

EGM- pSS patients through NF-κB, p38 and STAT3 S727 in B cells, compared to the 

EGM+ patients, should be further investigated. In addition, TLR7 and -9 ligands were 

used in combination due to limited availability of PBMC from each patient. It will be 

informative to study these pathways separately in the future.  

The observed phospho-signaling responses in PBMC subsets, upon IFNα2b and IFNγ 

stimulation, should be correlated with clinical parameters as well as IFN scores and 

ESSDAI. This will be useful in understaning the relationship between the observed 

changes and disease progression and severity. Additionally, we only incorporated 

EGM- patients in this study. Presence of EGM has been associated with higher 

comorbidities and risk of mortality in pSS patients [277, 322]. Therefore, studying 

patients with EGM is of future interest.  

The underlying cause for the abberant responses to TLR and IFN stimulations should 

be examined. As mentioned earlier, several polymorphisms have been associated with 

pSS, which play a role in signal transduction. Dividing the patients by polymorphisms 

and associating them with the phospho-signaling may help to identify unique genetic 

profiles, thus facilitating patient stratification. 

Although differential expressions of the TAM receptors were detected in pSS patients, 

the implications of such findings must be investigated by performing functional assays, 

e.g., phagocytosis assays. In addition, it will be interesting to explore whether TAM 

receptor expression levels vary according to presence or absence of autoantibodies in 

the pSS patients. Also, TAM receptor signaling is negatively regulated by the 

production of SOCS1 and SOCS3 proteins that establish a negative feedback loop via 

the IFNAR-STAT1 cascade [121]. While Mer acts mainly in steady-state conditions 

and induced tolerance, Axl is specialized for inducing feedback inhibition of 
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inflammation [312]. In DCs, Axl is induced by TLR and type I IFN stimulation, which 

binds to IFNAR and converts the proinflammatory signaling into an 

immunosuppressive type through expression of the SOCS proteins [122]. Therefore, 

transcriptomic analyses of the SOCS proteins and correlation studies between the 

expression levels of the TAM receptors and SOCS proteins is an exciting future 

prospect. 

Some cell subtypes were not included in our studies, like the T helper 1 (Th1)/Th2 

cells, Th17 and T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. Tregs 

could not be analyzed with confidence due to lack of FoxP3 in our panel. Also, 

leukocyte migration markers were not included. Some of these cells types have been 

reported to be increased in blood (e.g., Th17 and Tfh cells) while some others show 

contradictory results (e.g., Tregs) [323, 324]. Several Th cells have been reported to be 

selectively localized in the labial salivary glands and the expression of Th2 and certain 

Tfh-related molecules have been associated with lymphocytic accumulation and 

ectopic GC formation [325]. Thus, Tfh cells in pSS may be a suitable target for 

peripheral blood analysis, if they migrate from the blood to the salivary glands during 

these processes. Tfh and Tfr cells have been recently suggested as biomarkers for 

ectopic lynphoid activity in pSS [326]. Therefore, it will be useful to study these cell 

populations in the future. However, it should be mentioned that anaylsis of these cell 

subpopulations is challenging as the chemokine receptors used to identify them are 

sensitive to freezing/thawing and fixation procedures. Additionally, sicca patients 

should be included as conrols instead of healthy donors for future experiments. 

Finally, all our studies were based on peripheral blood. In order to fully understand the 

pathophysiological mechanisms and reasons behind the observed patient 

heterogeneity, it will be important to study the active disease site, i.e., the salivary 

glands. In this regard, imaging mass cytometry is of particular interest, as it allows 

visualization of multiple markers in tissue sections simultaneously and can also 

perform neighborhood analyses. It can, therefore, reveal the complex interplay among 

the various cell subsets involved in glandular destruction. Germinal center (GC)-like 

structures have been proposed to be strong predictors of lymphoma development in 
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pSS patients [327]. Consequently, it will be of great relevance to study the cellular 

interactions in the salivary glands using imaging mass cytometry.  
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Primary Sjögren’s syndrome (pSS) is associated with polymorphisms and mRNA

expression profiles that are indicative of an exaggerated innate and type I IFN immune

response. Excessive activation potential of signaling pathways may play a role in this

profile, but the intracellular signaling profile of the disease is not well characterized.

To gain insights into potentially dysfunctional intracellular signaling profiles of pSS

patients we conducted an exploratory analysis of MAPK/ERK and JAK/STAT signaling

networks in peripheral blood mononuclear cells (PBMC) from 25 female pSS patients

and 25 female age-matched healthy donors using phospho-specific flow cytometry. We

analyzed unstimulated samples, as well as samples during a 4 h time period following

activation of Toll-like receptor (TLR) 7 and 9. Expression levels of MxA, IFI44, OAS1,

GBP1, and GBP2 in PBMC were analyzed by real-time PCR. Cytokine levels in plasma

were determined using a 25-plex Luminex-assay. Principal component analysis (PCA)

showed that basal phosphorylation profiles could be used to differentiate pSS patients

from healthy donor samples by stronger intracellular signaling pathway activation in NK

and T cells relative to B cells. Stimulation of PBMC with TLR7 and −9 ligands showed

significant differences in the phosphorylation profiles between samples from pSS patients

and healthy donors. Including clinical parameters such as extraglandular manifestations

(EGM), we observed stronger responses of NF-κB and STAT3 S727 in B cells from

EGM-negative patients compared to EGM-positive patients and healthy controls. Plasma

cytokine levels were correlated to the basal phosphorylation levels in these patients. In

addition, 70% of the patients had a positive IFN score. These patients differed from the

IFN score negative patients regarding their phosphorylation profiles and their plasma

cytokine levels. In conclusion, we here report increased signaling potentials in peripheral

B cells of pSS patients in response to TLR7 and −9 stimulation through STAT3 S727
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and NF-κB that correlate with a type I IFN signature. Induction of these pathways could

contribute to the generation of a type I IFN signature in pSS. Patients displaying elevated

potentiation of STAT3 S727 and NF-κB signaling could therefore benefit from therapies

targeting these pathways.

Keywords: Sjögren’s syndrome, extraglandular manifestations, autoantibodies, phosphoflow, Toll-like receptors,

type I interferon

INTRODUCTION

Sjögren’s syndrome (SS) is a systemic autoimmune disease
characterized by lymphocytic infiltrates of the salivary and
lacrimal glands. The hallmarks of the disease are dryness of
the mouth (xerostomia) and the eyes (keratoconjunctivitis sicca)
(1, 2). This dryness and other clinical manifestations result
in a significant decrease in quality of life. Currently there is
no cure or effective disease modifying treatment for SS, with
management of the disease based on the relief of symptoms.
The lack of effective treatments is linked to the pathogenic
complexity of the disease, with genetic predisposition, hormonal,
and environmental factors all contributing to disease etiology
and pathogenesis. While almost all SS patients display abnormal
tear and/or saliva secretion (3), there is significant heterogeneity
in the disease manifestations, pathology and clinical course.
This heterogeneity may reflect distinct patient subgroups with
unique pathophysiologic mechanisms (4). For example, Sjögren’s
syndrome can present with a wide range of extraglandular
manifestations (EGM) including fatigue and constitutional,
musculoskeletal, articular, cutaneous, pulmonary, liver, and
kidney involvement, as well as neuropathies and lymphomas (5).
B cell hyperactivity is also a common feature of SS. It canmanifest
as hypergammaglobulinaemia and presence of autoantibodies
including anti-Sjögren’s syndrome A (SSA) and anti-Sjögren’s
syndrome B (SSB) (5) often preceding clinical symptoms (6).

Aspects of SS pathogenesis that have gained considerable
attention during recent years are abnormal cytokine production
and genetic associations. Of prominent interest are features

associated with type I interferon (IFN). The type I IFN family

consists of multiplemembers including IFN-α and β, and they are
involved in various biological functions including defense against

viral or bacterial infection, immune-modulation, and negative
regulation of proliferation (7). An activated type I IFN system
known as the interferon signature plays an important role in
different autoimmune diseases, amongst them pSS (7, 8). In pSS
patients, the interferon signature is associated with higher disease
activity index scores (9).

It has been speculated that the initiating factor in the activated
type I IFN response is a genetically determined exaggerated
innate immune response against inappropriately overexpressed
endogenous or exogenous danger signals. Extracellular nucleic
acids present during viral infections, for example, can induce type
I IFN production through interactions of extracellular nucleic
acid with endosomal receptors, including TLR3, TLR7, and TLR9
(7). In SS it has been speculated that expression of danger
signals resulting from transient or persistent viral infection of

epithelial cells leads to continuous activation of TLR signaling
eventually contributing to SS pathogenesis (7). Interestingly, a
number of infectious agents including Epstein-Barr virus, human
T-lymphotropic virus type 1, hepatitis C virus and enterovirus
have been reported as potential initiators of glandular lesions in
SS patients (7).

Dysfunctional intracellular signaling mechanisms may
influence the immunological response of a cell to a given
stimulus, affecting transduction of a given signal and resulting
in aberrant gene expression. We have previously shown
that patients with pSS have an altered response of PBMC to
IFN stimulation (10). Interestingly, several genetic variants
associated with SS function in downstream signaling from
TLRs or their regulation, including IRF5 (11, 12), IL-10
(13), IκBα (14), TNFAIP3 interacting protein 1 (TNIP1)
(12), and OAS1 (15). Potentiation, chronic activation or
dysregulation of TLR signaling pathways could lead to
exaggerated production of type I IFN and contribute
to the type I IFN signature and disease pathogenesis.
However, not much is known about TLR signaling in
patients with pSS.

In this study, we characterized intracellular signaling
pathways including those downstream from TLR7 and −9
receptor activation in PBMC by phospho-specific flow cytometry
(phosphoflow) (16). We focused here on direct targets of TLR
signaling such as ERK/MAPK as well as epitopes activated
upon IFN signaling such as JNK/STAT. Increased induction of
phosphorylation of STAT3 S727 and NF-κB was observed in
B cells from pSS patients following TLR7 and −9 stimulation
compared to B cells from healthy donors. The activation was
shown to be increased in patients with SSA autoantibodies and
patients without extraglandular manifestation. The increased
responses following TLR7 and −9 stimulation through STAT3
S727 and NF-κB in B cells were associated with increased
expression of three genes upregulated in response to type I IFN
(MxA, IFI44, OAS1) but not type II IFN inducible genes (GBP1
and GBP2). Plasma cytokine levels were different in SSA+ and
SSA– patients and correlated with basal phosphorylation levels
of several phospho-epitopes in patient subgroups. In conclusion,
this study provides support that enhanced responses through
TLR7 and −9 may play a role in the induction of a type I IFN
signature observed in pSS patients indicating viral infections
as potential trigger of the disease. Alternatively, induced
expression of type I IFN inducible genes may potentiate TLR7
and −9 responses. Patients displaying elevated potentiation
of these pathways may therefore benefit from therapies
targeting these pathways.
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MATERIALS AND METHODS

Blood Sampling
Peripheral blood from patients with pSS was collected in
Lithium-heparin tubes (BD diagnostics) at the Department of
Rheumatology, Haukeland University Hospital, Bergen, Norway.
Blood from healthy age- and gender-matched donors was
collected at the blood bank at the Haukeland University Hospital
in Bergen, Norway. PBMC were isolated by density gradient
centrifugation with lymphoprepTM (Axis-Shield, Oslo, Norway)
and cryopreserved as described previously (17). Plasma was
aliquoted and stored at −70◦C, and PBMC were stored at
−150◦C for ∼12–16 months. All patients fulfilled the pSS
American-European Consensus group (AECG) criteria (18) and
displayed no additional autoimmune diseases or lymphoma. An
overview of the cohort is shown in Table 1. The study was
approved by the regional ethical committee (#2009/686). All
participants provided written informed consent.

Routine Laboratory Assays
Identification of anti-Ro/SSA and anti-La/SSB, other antinuclear
antibodies (ANA), erythrocyte sedimentation rate (ESR), C-
reactive protein (CRP), and extraglandular manifestations were
obtained as part of routine clinical investigation at time of blood
sampling. SSA, SSB, and ANA were reported as either present or
absent, while other serum and blood parameters were reported as
continuous values. Extraglandular manifestations were defined as
disease features outside surface exocrine glands.

TABLE 1 | Characteristics of patients and controls used in study.

Sjögren’s

syndrome

Healthy controls

COHORT CHARACTERISTICS

Females/males 25/0 25/0

Age, median (range) years 56 (33–73) 54 (42–70)

CLINICAL FEATURES (PATIENTS)

SSA antibodies (%) 19 (76)

SSB antibodies (%) 12 (48)

SSA and SSB antibodies (%) 12 (48)

ANA (%) 19 (76)

Positive Schirmer’s test (tear flow <5

mm/5min) (%); n = 24

14 (58.3)

Focus score† ≥ 1 (%); n = 14 10 (71.4)

ESR, high levels†† 5 (20)

CRP high levels (≥5 mg/L) 2 (8)

Extraglandular manifestations (%) 14 (56)

Treatment

DMARDs 8 (32)

Corticosteroids 2 (8)

Continuous data is expressed as median. Categorical data is expressed as frequency and

percentage.
†
Focus score indicates the number of inflammatory foci containing more than

50 mononuclear cells per 4 mm2 biopsy tissue;
††
Age and gender dependent. DMARDs,

disease-modifying anti-rheumatic drugs; ANA, anti-nuclear antibodies; ESR, erythrocyte

sedimentation rate; CRP, C-reactive protein.

Real-Time Quantitative PCR
Total RNA was isolated from PBMC of 20 pSS patients
and 17 healthy controls and transcribed into cDNA as
described previously (10). The following Taqman gene expression
assays were utilized: Hs00895608_m1 (MxA); Hs00973637_m1
(OAS1); Hs00951349_m1 (IFI44); Hs00977005_m1 (GBP1);
Hs00894837_m1 (GBP2); Hs03928990_g1 (18S rRNA) (all
Thermo Fisher Scientific, Waltham, USA). All PCR reactions
were run in duplicates on a Light Cycler 480 (Roche Diagnostics,
Oslo, Norway). 18S rRNA was used as reference gene, and
relative expression levels were calculated as 2−1Ct. The IFN score
was calculated according to Feng et al. (19) by standardizing
expression levels using mean and SD of the healthy controls for
the respective gene and using the following formula:

3∑

i

=
gene ipSS −mean gene iCtr

SD (gene iCtr)

where i = each of the 3 type I IFN-inducible genes (MxA, IFI44,
OAS1), gene ipSS = the gene expression level in each pSS patient,
and gene iCtr = the gene expression in controls. To set a threshold,
3× SD of healthy controls was utilized.

Antibodies Used for Flow Cytometry
The following phospho-specific monoclonal antibodies were
used in 3 different panels during the flow cytometry protocol
described previously (17): Alexa Fluor R©647 conjugated anti-
STAT4 (pY693, clone 38/p-STAT4, panel 1), anti-STAT 1
(pS727, clone K51-856, panel 2), and anti-STAT3 (pS727,
clone 49/p-STAT3, panel 3); PerCP-CyTM 5.5 conjugated
anti-ERK1/2 (pT202/pY204, clone 20A, panel 1), anti-STAT1
(pY701, clone 4a, panel 2), and anti-STAT3 (pY705, clone 4/P-
STAT3, panel 3); and PE-CyTM7 conjugated anti-p38 MAPK
(pT180/pY182, clone 36/p38, panel 2), and anti NF-κB p65
(pS529, clone K10-895.12.50, panel 1), anti-STAT5 (pY694, clone
47/STAT5(pY694), panel 3) (all from BD Biosciences, San Jose,
CA, USA). Cell surface markers incorporated in the assays
were BV786 conjugated anti-CD3 (clone SK7, BD HorizonTM),
Alexa Fluor R© 488 conjugated anti-CD20 (clone H1 (FB1),
BD Biosciences) and PE conjugated anti-CD56 (clone N901,
Beckmann Coulter, CA, USA).

Cell Culture and Stimulation
Before stimulation, cryopreserved PBMC were rapidly thawed
using a water bath set to 37◦C and washed once in
prewarmed X-vivo 20TM by centrifugation at 300 g for 7min.
The cells were then resuspended in prewarmed X-vivo 20TM

and rested at 37◦C at 5% CO2 for 30min before the cell
concentration was adjusted to 3 × 106 cells/ml in X-vivo 20TM.
Two hundred microliters were dispensed into 7 wells of a
Megablock R© 96 well plate (Starstedt, Nümbrecht, Germany),
along with 2 wells of a reference sample. The cells were
rested at 37◦C with 5% CO2 for 2 h. Following, the cells
were either left unstimulated or stimulated according to a
reverse time course for 15, 30, 60, 120, 180, or 240min with
a combination of TLR7 (CL097; Invivogen) and −9 ligands
(CpG type B ODN 2006 and type C ODN 2395; Invivogen,
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Carlsbad, California, USA) at 2µg/ml each. Due to limited
cell numbers and samples, time points were excluded in 2
patients, both for 60 and 120min, and 1 healthy control for 180
and 240min.

Fluorescent Cell Barcoding and
Phospho-Epitope Staining for Flow
Cytometry
PBMC were fixed by adding 16% PFA (Electron Microscopy
Sciences (Hatfield, PA, USA) warmed to 37◦C directly into the
PBMC cultures resulting in a final PFA concentration of 1.5%.
The samples were mixed thoroughly by pipetting. The cells were
fixed at RT for 10min before pelleting at 1,000 g for 5min.
The PBMC were then vigorously resuspended by vortexing in
50 µl PBS before drop wise addition of 1ml ice cold methanol
and incubation on ice for 30min. The permeabilized cells were
kept overnight at −80◦C. After washing with PBS, the PBMC
were stained according to a 3 × 3 barcoding grid (9 stimulation
conditions) using 3 levels of pacific orange (PO) and pacific blue
(PB) succinimidyl ester dyes (PB 100, 25, and 6.3 ng/ml; PO 250,
70, and 0 ng/ml; Life Technologies, Grand Island, NY, USA) for
30min in the dark at 4◦C in a volume of 1ml. Barcoded PBMC
were then washed once with staining media (PBS containing
1% BSA), and the 9 different dye concentration/combination
samples were combined into one sample. The sample was washed
and incubated with 2 µl Fc receptor block (Miltenyi Biotec,
Bergisch Gladbach, Germany) per 1 × 106 cells for 10min
on ice. Following, the sample was subdivided into 3 parts and
incubated for 30min at RT in the dark with the 3 different
antibody staining panels. An aliquot of the barcoded cells was
collected before addition of antibody as a barcoding only control.
The samples were then washed twice and re-suspended in
staining medium containing 2mM EDTA (Sigma-Aldrich) prior
to analysis.

Flow Cytometry Data Analysis
Samples were acquired on a LSRI Fortessa flow cytometer
(BD Biosciences, San Jose, CA, USA) with BDFACSDiVaTM

Software (BD Biosciences) at the Bergen Flow Cytometry Core
Facility, University of Bergen, Norway. The flow cytometer was
equipped with 407, 488, 561, and 635 nm lasers, and emission
filters for PerCP-Cy5.5 (LP: 685, BP: 695/40), Alexa Fluor-
488 (LP: 505, BP: 530/30), PE-Cy7 (LP: 750, BP: 780/60), PE
(LP: –, BP: 582/15), APC (LP: –, BP: 670–/-14), Pacific blue
(LP: –, BP:450/50), Pacific orange (LP: 570, BP: 585/42), and
BV 786 (LP: 750, BP: 780/60). The cytometer was routinely
calibrated with BD cytometer setup and tracking beads (BD
Biosciences). A minimum of 200,000 events in the intact cell
gate was collected for each sample, giving a minimum of
2,000 events per analyzed cell population (T cells, B cells,
NK cells). Flow cytometry data were analyzed in FlowJo (Tree
Star) and Cytobank (http://www.cytobank.org). A representative
gating strategy and phosphorylation profile for a single donor
is shown in Supplementary Figure S1. Cryopreserved PBMC
from a single donor with unstimulated and stimulated samples
were run in each assay as a positive control for inter-assay

normalization and assessing assay to assay variability. Median
fluorescence intensities (MdFI) for gated populations were
exported to Microsoft excel. The raw flow cytometry data for
which this article is based can be found at the flow data repository
of the International Society for Advancement of Cytometry
(20), FR-FCM-ZYED. The robustness of the flow cytometry
assay used was previously established and published, see “An
optimized multiplex flow cytometry protocol for the analysis
of intracellular signaling in peripheral blood mononuclear
cells” (17). Relevant information for repeating the experiment
as presented in “The minimum information about a Flow
Cytometry Experiment (MIFlowCyt)” (21) are provided in
Supplementary Table S1.

Cytokine Determination
Cytokine and chemokine concentrations were determined in
plasma samples using a 25-plex Luminex assay cytokine and
chemokine panel (Invitrogen, catalog number LHC0009M) and
run on a Luminex 100 System (Luminex Corporation, Austin,
TX) according to the manufacturer’s instructions.

Statistical Analysis
Generation of graphs and comparisons between categories were
done using an Unpaired Mann-Whitney test using Graphpad
Prism (version 6.05). Differences were considered statistically
significant when p ≤ 0.05. The analysis was exploratory in
nature hence no correction was made for multiple comparisons.
Principle component analysis (PCA) using Unscrambler R© X
software (Camo software) was used to reduce dimensionality of
the dataset and find clusters of patients with similar signaling
profile which could be used to differentiate between disease
status, presence of SSA autoantibodies, EGM and medication
(DMARDs and corticosteroids). PCA was performed using the
algorithm NIPALS, the data was mean centered and run with
no weighting for change of MdFI, and weighted for absolute
MdFI by dividing by standard deviation. Two methods were
used to remove “redundant” variables to simplify interpretation
and focusing subsequent analysis. First variables that described
<50% of the variation were removed from the initial PCA, than
if appropriate stepwise reduction of less significant variables with
low variable leverage was performed. Correlations were assessed
by the Spearman’s rank test, with outliers removed using robust
regression and outlier removal (ROUT) method and a ROUT
coefficient Q of 1 used.

Since most of the cytokine data did not follow a normal
distribution, Mann-Whitney U test was performed to study
significant differences between the groups, and Spearman’s
correlation was used to find any significant relationships
between the cytokines and the phosphoproteins. Degree of
correlation was determined according to the recommendation
of the British Journal of Medicine (https://www.bmj.com/
about-bmj/resources-readers/publications/statistics-square-
one/11-correlation-and-regression)—r = 0.4–0.59 (moderate),
r = 0.6–0.79 (strong), and r = 0.8–1.0 (very strong). Analysis
was done using GraphPad Prism 7 and p ≤ 0.05 was considered
to be statistically significant.
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RESULTS

PBMC From pSS Patients Display Shifts in
Phosphorylation States of Proteins
Involved in Signaling Pathways
In order to reveal possible dysfunctional intracellular
signaling mechanisms upon TLR stimulation in pSS
patients, we here analyzed MAPK/ERK and JAK/STAT
signaling networks in peripheral blood cells from female
pSS patients and female age-matched healthy donors in
unstimulated cells and upon stimulation with a combination
of TLR7 and −9 ligands. In this pilot study, we limited
our analyses to the main lymphocyte populations (T cells,
B cells, NK cells) as all have been shown to be affected by
TLR7/9 stimulation (22–24). An overview of unstimulated
and TLR stimulated measurements can be found in the
Supplementary Table S2 (T cells), Supplementary Table S3 (B
cells), and Supplementary Table S4 (NK cells).

Significant increases of basal phosphorylation in cells from
pSS patients were observed in T cells for NF-κB, P38, ERK,
STAT5, STAT1 Y701, STAT1 S727, and NK cells for P38,
STAT5, STAT1 Y701, and STAT1 S727 compared to healthy
donors. B cells showed no significant differences in basal
phosphorylation (Figure 1A).

PCA was used to concurrently relate multiple basal signaling
states to various clinical parameters such as production of
SSA autoantibodies, presence of extraglandular manifestations
(EGM) and medication (DMARDs and corticosteroids)
within the patient cohort (Figures 1B–F). Using basal
phosphorylation levels, pSS patients could be separated
from healthy donors (Figure 1C). Spatial groupings indicated
closer similarities within the pSS and healthy donor cohorts
than between the groups. Separation of pSS and healthy
donor samples was primarily along PC2 which explained
29% of the variation. Examination of the loading plot
(Figure 1B) indicated differences between basal signaling
phenotype of pSS patients and healthy donors, with pSS
patients showing weaker basal pathway activation in B cells
relative to NK and T cells compared to healthy donor cells.
No groupings were shown along PC1 which explained
42% of the variation. Including clinical parameters in
the analysis, patients without autoantibodies against SSA
grouped closer to the healthy controls (Figure 1D), while
patients with EGM (Figure 1E), and patients prescribed
DMARDs or corticosteroids (Figure 1F) grouped throughout
the pSS cluster.

We next analyzed MAPK/ERK and JAK/STAT signaling
networks upon TLR7 and −9 stimulation of PBMC. Initial
responses (15–60min) were weak relative to respective basal
measurements in both T and NK cells, with little or no
change observed in phosphorylation of the measured epitopes
(Figure 2). The strongest initial responses were seen in B
cells for NF-κB, P38, STAT1 S727, and STAT3 S727. The
induction of phosphorylation of STAT1 S727 and STAT3
S727 in B cells from pSS patients was significantly stronger
than healthy donor cells. In order to exclude effects of
the medication on the analyses, we removed medicated

patients from the analyses. This resulted in an even more
pronounced difference between pSS patients and healthy donors
(Supplementary Figure S2).

After 60min of TLR7 and −9 stimulation, many epitopes
of pSS patients displayed altered phosphorylation pattern
compared to healthy donors, independent of medication
(Figure 2, Figure S2).

Next, we included phosphorylation profiles of TLR7 and
−9 stimulated T, NK and B cells in the PCA. Phosphorylation
levels after 15min showed the strongest clustering of subgroups,
while extended time course (>15min) gave no additional
resolution (Supplementary Figure S3), hence we focused on
inducedMdFI at 15min (MdFI15min-MdFIbasal) after stimulation
with TLR7 and 9 ligands (Figure 3). PCA visualization showed
a positive shift along PC1 for approximately half the pSS
samples away from healthy donor samples (Figure 3B). The
pSS samples that were distributed away from the healthy
donors were largely composed of EGM-negative (Figure 3D)
and unmedicated patients (Figure 3E). PC1 explained 83%
of the variation with positive movement along PC1, strongly
influenced by phosphorylation of NF-κB and STAT3 S727 in B
cells (Figure 3A). PC2 explained 9% of the variation and was
influenced primarily by induced phosphorylation of NF-κB in B
cells in a positive direction and negatively by STAT3 S727 in NK,
T and B cells (Figure 3A).

Further comparisons of variables used in the final PCA were
conducted by Mann-Whitney U tests (Figure 3F). Comparisons
between groups and subgroups (pSS patients, healthy donors,
EGM+/–, SSA+/–) were analyzed with and without exclusion
of medicated patients, in order to exclude that the effects
seen were merely due to medication used by patients. EGM–
patients had a significantly increased response to stimulation by
TLR7 and −9 ligands in B cells through NF-κB compared to
EGM+ patients. T cells from EGM-negative patients exhibited
a significantly decreased response in STAT3 S727 compared
to those from EGM+ patients. B cells showed a significantly
increased response in STAT3 S727 in pSS patients compared
to healthy controls, SSA+ compared to SSA– patients and
EGM– patients compared to EGM+ patients. Upon removal of
medicated patients, in particular the B cell phospho-epitopes
for NF-κB, pP38, and STAT3 S727 resulted in stronger and
significant differences between healthy donors and pSS patients
(Supplementary Figure S4).

To summarize, after omitting patients prescribed DMARDs
or corticosteroids from the analysis, B cells from pSS patients
showed an increased response to TLR7 and −9 stimulation
through NF-κB.

Phosphorylation Profiles of Immune Cells
Allow for Stratification of Patient
Subgroups
A subgroup of pSS patients is characterized by a so-called type
I IFN signature that correlates with increased disease activity
(9). We therefore calculated an IFN score using three type I
IFN inducible genes (MxA, OAS, IFI44) according to Feng et al.
(19). As control, two type II IFN inducible genes (GBP1, GBP2)
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FIGURE 1 | Basal phosphorylation profiles in B cells, T cells and NK cells of pSS patients differ compared to healthy controls. Basal phosphorylation levels of NF-κB,

P38, ERK1/2, STAT4 Y693, STAT5 Y694, STAT1 Y701, STAT1 S727, STAT3 Y705, and STAT3 S727 were analyzed by flow cytometry in T cells, B cells and NK cells

are given in (A). Comparisons of phosphorylation levels (MdFI) between healthy donor (blue) and pSS patient (black). Comparisons between pairs were done using an

(Continued)
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FIGURE 1 | Unpaired Mann-Whitney test. Graphs show the median, 25–75 percentiles and minimum and maximum. Differences were considered statistically

significant when p ≤ 0.05, with significance indicated as * ≤ 0.05, ** ≤ 0.01, and **** ≤ 0.0001. PCA analysis of the profiles is given in (B–F), disease status is

highlighted in (C), SSA autoantibody positivity in (D), presence of EGM in (E), and medication (DMARDs or corticosteroids) use in (F), with healthy donors, blue

squares; pSS patients, black circles; SSA+, EGM+, or medicated patients, red diamonds (D–F, respectively). The loading plot, which contains information about the

variable for the corresponding PCA is given in (B), with variable indicated by vectors and the key to the right. Variables contributing little to the PCA are plotted around

the center as denoted by the gray axis, while variables that have high contributions are plotted further from the axes. After initial calculation of principal components,

the model was recalculated with only variable explaining >50% of the variance retained. The data represents 25 healthy controls and 25 patients pooled from 13

independent experiments.

were included. The threshold was set to 8.8 based on 3 × SD of
healthy controls. A type I interferon signature was found in 70%
of patients and 0% of controls (Figure 4A). Medicated patients
tended toward reduced expression compared to unmedicated
patients (Figure 4B).

To investigate whether type I IFN activation was reflective
of phosphorylation levels of intracellular signaling proteins, the
gene expression was correlated to signaling profiles (Figures 4,
5). Comparisons of patients subdivided into type I IFN
signature positive (IFN+) and negative (IFN–) patients and

healthy donors were made for each intracellular signaling
molecule and cell type, with basal phosphorylation variables
that showed the strongest associations with type I IFN gene
expression shown in Figure 4C. Both, IFN+ and IFN– patients

displayed increased phosphorylation of STAT1 S727 in T cells.
Interestingly, an increased phosphorylation of STAT1 Y701 was

detected in NK cells of IFN+ patients compared to IFN–
patients.

Basal phosphorylation levels in B cells from pSS patients

were generally negatively correlated with type I IFN inducible
gene expression, while positively correlated in NK and T cells,

with weaker associations found with type II IFN inducible
gene expression. The strongest significant correlations between

type I IFN regulated genes were observed in NK cells
for pERK, pSTAT1 Y701 and pSTAT3 Y705, and T cells

for pSTAT1 S727 (Figure 4D). No significant associations
were observed against type II IFN regulated genes for the

aforementioned epitopes (Figure 4D).
We next analyzed the phosphorylation status upon TLR7 and

−9 stimulation in correlation to IFN inducible gene expression

in pSS patients against variables identified previously by PCA

(Figure 5A). IFN+ patients showed increased phosphorylation

of NF-κB and STAT3 S727 in B cells, and these differences

remained significant following the removal ofmedicated patients.

No difference was seen between the patient groups for
phosphorylation of STAT3 S727 in T or NK cells.

Especially in B cells a prevalent positive correlation of

phosphorylation levels and IFN inducible gene expression
were detected. The strongest correlations were seen for

phosphorylation levels of NF-κB and STAT3 S727 (Figure 5B).
STAT4 Y693, NF-κB, P38, and STAT3 Y705 in NK cells and
NF-κB in T cells showed positive associations, but only NF-
κB and P38 reached statistical significant correlations. Of the
other two variables identified by PCA, STAT3 S727 in T
and NK cells, no significant correlation with gene expression
was observed (Figure 5B).

Plasma Cytokine Levels Correlate With
Presence of Autoantibodies and Signaling
Responses in Patient Subgroups
The role of cytokines in pSS has been a matter of great interest
over the past few years (25, 26). Our aim was to examine
the plasma cytokine concentration of our pSS patient cohort,
compare them to healthy controls, and possibly correlate them to
clinical parameters and phosphorylation pattern of the epitopes
included in this study.

GM-CSF, IL-5, and IL-8 were excluded from the analyses
as they were below detection limit in most samples analyzed.
Eotaxin, IL-7, IP10, andMIG were not included in the analysis as
they were not recommended to be measured in heparin plasma
by the manufacturer.

When comparing patients with controls, 12 out of the 25
cytokines measured were significantly upregulated in patients
including IL-1ß, IL-13, IL-6, IL-12, MIP-1α, MIP-1ß, MCP-1,
IL-15, IFN-α, TNFα, IL-2, and IL-4 (Supplementary Figure S5,
Supplementary Table S5). When dividing the patients into
subgroups based on the presence or absence of autoantibodies
(SSA+/SSA–), extraglandular manifestations (EGM+/EGM–),
IFN score, medication and Focus score, the only significant
differences were seen in SSA+ patients, where IL-1ß, MCP-1,
IFN-α, IL-2, and IL-4 were significantly upregulated compared
to SSA– patients (Figure 6, Supplementary Table S6).

Correlation analysis of the individual cytokines of the
patients to the phosphoproteins yielded significant results. While
the basal phosphorylation profiles of all the patients showed
only moderate correlations (<0.6) to the plasma cytokine
concentrations, excluding medicated patients from the analysis
resulted in strong to very strong correlations of RANTES to pNF-
κB in NK cells, MIP-1ß, MCP-1, IL-2, and IL-4 to pSTAT5 Y694
in B cells, and IL-1RA to pSTAT1 Y701 in T cells (Figure 7).

We next explored the correlation of the plasma cytokine
levels to basal phosphorylation pattern depending on presence
or absence of SSA and EGM. The exclusion of medicated patients
in the subgroup analysis resulted in too few patients per group
for reliable data, therefore all patients were included in this part
of the analysis. We observed strong to very strong correlations
in SSA+ patients of MIP-1α, IL-1RA, and TNF-α to pSTAT3
Y705 in B cells, TNF-α to pNF-κB in B cells, and RANTES to
pSTAT4 Y693 and pSTAT1 S727 in NK cells (Figure 8A). In
SSA– patients, RANTES correlated to pNF-κB in T cells and
pERK in T cells (Figure 8B). Patients with EGM had strong to
very strong correlations of several cytokines to amongst other
pSTAT4 Y693 in NK (Figure 9A), and RANTES, IFN-γ, IL-1RA,
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FIGURE 2 | TLR stimulation results in different phosphorylation profiles in B cells, T cells, and NK cells of pSS patients compared to healthy controls. Phosphorylation

levels of NF-κB, P38, ERK1/2, STAT4 Y693, STAT5 Y694, STAT1 Y701, STAT1 S727, STAT3 Y705, and STAT3 S727 were analyzed by flow cytometry at different time

points after stimulation with TLR7 and −9 ligands. Comparisons of change of phosphorylation levels (1MdFI) between pSS patient (black) and healthy donors (blue)

are given. Comparisons between pairs were done using an Unpaired Mann-Whitney test. Line graphs show the median and 25–75 percentiles. Differences were

considered statistically significant when p ≤ 0.05, with significance indicated as * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 and **** ≤ 0.0001. The data represents 25 healthy

controls and 25 patients pooled from 13 independent experiments.
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FIGURE 3 | PCA analysis of induced phosphorylation in PBMC at 15min following stimulation with TLR 7 and −9 ligands. Groupings of samples by PCA are shown

by disease status (B), SSA autoantibody positivity (C), EGM presence (D), and medication use (DMARDs or corticosteroids) (E). Healthy donor samples are indicated

by blue squares, pSS patients as black circles, and pSS patients with SSA autoantibodies, EGM or using prescribed DMARDs or corticosteroids (C–E, respectively)

displayed as red diamonds. The loading plot, which contains information about the variable for the corresponding PCA is shown in (A), with variables contributing to

the PCA given as vectors. Variables contributing little to the PCA are plotted around the center as denoted by the gray axis, while variables that have high

contributions are plotted further from the axes. After initial calculation of principal components the model was recalculated with only variable explaining >50% of the

variance retained, stepwise reduction of less significant variables with low variable leverage was then performed. Scatter box plots of variable used in PCA for TLR7

and −9 ligand induced responses are given in (F). Figures show change in MdFI from 0 to 15min (Y axis) following addition of TLR7 and −9 ligands to PBMC cultures.

Measured phospho-protein and responding cell type are labeled above each figure. Groups are identified at the base of each figure (X axis), initially with pSS patients

(pSS) and healthy donors (HD Ctrl), pSS patients are further divided into SSA autoantibody positive and negative patients, patients with EGM (EGM+) or without EGM

(EGM–), and unmedicated and medicated patients. Statistical comparisons were made between each of these pairs as indicated by dashed lines, with black bars

representing medians. The data represents 25 healthy controls and 25 patients pooled from 13 independent experiments. Comparison between pairs were conducted

using an Unpaired Mann-Whitney test with significance indicated as * ≤ 0.05, ** ≤ 0.01 and *** ≤ 0.001.
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FIGURE 4 | Associations of the basal phosphorylation profile with type I IFN inducible gene expression in pSS patients and healthy controls. IFN score was calculated

based on standardized expression levels of three type I IFN inducible genes (MxA, OAS1, IFI44). A threshold was set to 8.8 based on 3 × SD of healthy controls as

seen in (A). Association between IFN score and the use of DMARD or corticosteroids is seen in (B). Unpaired Mann-Whitney test comparisons of

(Continued)
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FIGURE 4 | basal phosphorylation levels for IFN+ patients (n = 14), IFN– patients (n = 6), and healthy controls (n = 17) with the strongest associations are given in

(C), with medians indicated by black bars. Comparisons were conducted using an Unpaired Mann-Whitney test. Correlations between three type I IFN inducible genes

(MxA, OAS1, IFI44) and two type II inducible genes (GBP1, GBP2) with basal phosphorylation levels in pSS patients (n = 20) epitopes, as given in (C), is shown in (D).

Correlations were assessed with Spearman’s rank test, with outliers removed using robust regression and outlier removal (ROUT) method and a ROUT coefficient Q of

1 was used. Significant values are indicated as * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, and **** ≤ 0.0001. The flow cytometric data represents 17 healthy controls and 20

patients pooled from 13 independent experiments, with real time qPCR data representing a single experiment incorporating the 17 healthy controls and 20 patients.

FIGURE 5 | Associations of the phosphorylation profile 15min after TLR7 and −9 stimulation with IFN inducible gene expression in pSS patients and healthy controls.

(A) Unpaired Mann-Whitney test comparisons of phosphorylation levels after TLR7 and −9 stimulation for IFN signature positive patients (n = 14), IFN signature

negative patients (n = 6) and healthy controls (n = 17), medians are given by black bars. (B) Correlation plots of variable identified by PCA and three type I IFN

inducible genes (MxA, OAS1, IFI44) and two type II IFN inducible gene (GBP1, GBP2) for pSS patients (n = 20). Correlations were assessed with Spearman’s rank

test, with outliers removed using robust regression and outlier removal (ROUT) method and a ROUT coefficient Q of 1 was used. Significant values are indicated as * ≤

0.05 and ** ≤ 0.01. The flow cytometric data represents 17 healthy controls and 20 patients pooled from 13 independent experiments, with real time qPCR data

representing a single experiment incorporating the 17 healthy controls and 20 patients.
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FIGURE 6 | Differential expression of cytokines between autoantibody positive (SSA+) and autoantibody negative (SSA-) pSS patients. Cytokine profiles were

measured by 25-plex Luminex assay in plasma. Cytokine levels (pg/ml) showing significant differences between SSA+ patients (red) and SSA– patients (black) are

shown. Healthy controls (HD Ctrls) are shown in blue. Medicated patients are shown as diamond. Comparison between pairs was done by unpaired Mann-Whitney

test between the two patient subgroups. Differences were considered statistically significant for p ≤ 0.05, with significance being indicated as * ≤ 0.05, ** ≤ 0.01. The

median is indicated. The data represents pSS patients (n = 25) grouped into SSA+ patients (n = 12) and SSA– patients (n = 13) (except for IL-4, n = 11 in each

category).

IFN-α, and IL-12 correlated with various phospho-epitopes in
EGM– patients (Figure 9B).

DISCUSSION

Autoimmune diseases often exhibit skewed cytokine and gene
expression profiles. Elucidating mechanisms that contribute to
these profiles are crucial in understanding the pathogenesis of
autoimmune disease. Of prominent interest in autoimmunity is
an increased expression of type I IFN regulated genes known as
the “interferon signature” which has been observed in various
autoimmune diseases (8, 9, 27, 28). Continuous activation and
dysregulation of TLR and type I IFN signaling have been
speculated to play a part in this signature and pathogenesis of
autoimmune disease (29), and IFN signature positive pSS patients
have been shown to have increased expression of TLR7 in certain
cell types (30). In addition, we have previously shown that PBMC
of pSS patients have an altered response to IFN-α stimulation
(10). Hence we investigated cell signaling profiles in PBMCof pSS
patients upon stimulation via TLR7 and−9, determined the gene
expression profile of several IFN inducible genes and correlated
these findings to plasma cytokine levels.

In accordance with a previous observation we found increased
basal STAT5 Y694 phosphorylation in T cells from pSS patients
compared to healthy donors (31). However, in contrast to our

study, the authors also found significant differences in B cells
for basal phosphorylation of STAT5 Y694 and no differences in
phosphorylation of STAT1 Y701 in T cells (31). Another study
also reported on significant differences in basal phosphorylation
levels of STAT3 Y705 in T cells (32), which also is in contrast to
our findings. However, these differences are likely the result of the
use of cryopreserved PBMC and long culture period (6 h) in our
study, as both other studies used freshly isolated cells.

Although PCA using basal measurements allowed for
grouping of pSS patients and healthy donors, its use to identify
important variables of basal measurements for subgrouping of
the patient cohort was largely unsuccessful. The majority of B
cell associated variables largely correlated with each other, as
did T and NK cells with the grouping of pSS patients being
a consequence of higher basal phosphorylation in T and NK
cells. Even though some differences were seen when dividing
the pSS patients according to medication, the small sample size
limits how much we can speculate on the pathophysiological
significance of this.

Basal STAT1 Y701 in NK cells was increased in type I IFN+
patients, but the difference was no longer significant when
excludingmedicated patients. However, the sample size following
exclusion was relatively low, while the data spread remained
similar. Further, phosphorylation of many of the measured
phospho epitopes in NK and T cells from pSS patients, in
particular STAT1 Y701 in NK cells, were positively correlated
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FIGURE 7 | Correlations of basal phosphorylation profiles with plasma cytokine levels in pSS patients without medication. Correlations were assessed by Spearman’s

rank test. Strong (r = 0.6–0.79) to very strong (r = 0.8–1.0) associations are shown with respective p and r-values given at the side of each graph. Correlations were

considered statistically significant for p ≤ 0.05. X-axis denotes concentration of cytokines (pg/ml) and Y-axis denotes phosphorylation levels (MdFI). The data

represents pSS patients (n = 16) without medication (except for IL-4, n = 14, and RANTES, n = 15).

with the expression levels of the three type I IFN inducible genes,
while in B cells a negative correlation was observed. In contrast,
little relationship was observed for the type II IFN induced
genes. Not much is known about NK cells in Sjögren’s syndrome,
so the correlation with basal phosphorylation of ERK, STAT1
Y701, and STAT3 Y705 in NK cells is especially interesting.
Moreover, levels of several plasma cytokines also correlated with
basal phosphorylation in NK cells. Further studies are required to
confirm these correlations.

Following stimulation with TLR7 and −9 ligands, B
cells from pSS patients showed a significantly increased
STAT3 S727 response compared to healthy donors. After
excluding medicated patients, phosphorylation of NF-κB and
P38 was also significantly elevated in B cells from pSS
patients compared to healthy donors. These findings support
the notion that pSS patients display a hyperactive B cell
response and are in line with our previous study showing
increased expression of IFN-α in B cells from pSS patients
after incubation with TLR7 ligands compared to B cells
from healthy donors (33). The increased response to TLR7
and −9 ligands through these pathways may play a role
in the increased expression of IFN-α from B cells of

pSS patients, and may also contribute to the observed
IFN signature in some pSS patients. Thereby, it opens for
speculations regarding the importance of viral infections for
pSS patients. Further, a number of polymorphisms associated
with pSS and the presence of autoantibodies in pSS could
potentially affect signaling through NF-κB, P38, and STAT3
S727. If the potentiation of these signaling profiles are
associated with polymorphisms in negative regulators of TLR
signaling, including A20 (antiapoptotic signaling protein)
which deubiquitylates TRAF6 (tumor-necrosis factor-receptor-
associated factor 6), and affects both MyD88-dependent and
MyD88-independent pathways (34), these differences will also
likely be reflected in other cell types using the same pathways.
Alternatively, the increased response through these pathways
may be attributed to the cellular effects of induction of type I
IFN gene expression.

Interestingly, 70% of the patients included in this study had
an activated type I IFN system. This is somewhat higher than
previously reported for pSS patients [around 55%; (9)] and SLE
patients [around 50%; (27)]. This might be due to limited sample
size and differences in patient inclusion criteria. However, also
the plasma levels of IFN-α were elevated in our cohort of pSS
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FIGURE 8 | Correlation of basal phosphorylation status with plasma cytokine levels in pSS patients grouped according to autoantibody status. Autoantibody positive

pSS patients (SSA+) (A), autoantibody negative pSS patients (SSA–) (B). Correlations were assessed by Spearman’s rank test. Medicated patients are shown in red

while un-medicated patients are shown in black. Strong (r = 0.6–0.79) to very strong (r = 0.8–1.0) associations are shown with respective p and r-values given at the

side of each graph. Associations were considered statistically significant for p ≤ 0.05. X-axis denotes concentration of cytokines (pg/ml) and Y-axis denotes

phosphorylation levels (MdFI). The data represents pSS patients (n = 25) grouped into SSA+ patients (n = 12) (except for RANTES, n = 11) and SSA–

patients (n = 13).

patients, especially in SSA+ patients, which might explain the
high percentage of IFN+ patients.

Induced phosphorylation of STAT3 S727, NF-κB, and P38
correlated significantly with type I IFN inducible gene expression.
Type I IFN has been shown to enhance B cell responses to TLR7

ligands and upregulate TLR7 and MyD88 expression in naïve B
cells (35, 36). Increased type I IFN gene expression may therefore
act to potentiate these signals.

Systemic autoimmune diseases are associated with the
production of autoantibodies and have an important role in
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FIGURE 9 | Correlation of basal phosphorylation profiles with plasma cytokine levels in pSS patients grouped according to the presence of extraglandular

manifestations (EGM). Extraglandular manifestation positive pSS patients (EGM+) (A) and extraglandular manifestation negative pSS patients (EGM–) (B). Correlations

were assessed by Spearman’s rank test. Medicated patients are shown in red while un-medicated patients are shown in black. Strong (r = 0.6–0.79) to very strong

(r = 0.8–1.0) associations are shown with respective p and r-values given at the side of each graph. Associations were considered statistically significant for p ≤ 0.05.

X-axis denotes concentration of cytokines (pg/ml) and Y-axis denotes phosphorylation levels (MdFI). The data represents pSS patients (n = 25) grouped into EGM+

patients (n = 14) (except for IL-4, n = 11) and EGM– patients (n = 11).
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the immunopathogenesis of various autoimmune diseases (29).
Animal models have indicated links between TLR recognizing
nucleic acids and the production of nucleic acid recognizing
antibodies (37). Additionally, type I IFN inducible gene
expression has been observed to positively correlate with
titers of SSA and SSB autoantibodies in SS (38). We showed
increased responses of B cells from SSA+ pSS patients through
phosphorylation of STAT3 S727 in response to TLR7 and −9
stimulation compared to SSA– patients. Our study thereby
links all three observations, enhanced TLR7 and −9 responses,
increased type I IFN gene expression and autoantibodies, further
highlighting their importance in autoimmunity.

Principal component analysis suggests that it is possible to
subdivide pSS patients based on presence of EGM. EGM negative
patients displayed enhanced TLR responses through NF-κB, P38,
and STAT3 S727 in B cells compared to EGM+ patients. This was
also seen after removal of patients prescribed the glucocorticoid
prednisone, which has been reported to inhibit NF-κB activation
(39), and hydroxychloroquine (Plaquenil R©) inhibiting TLR7 and
−9 signaling (40). However, it is still surprising that it was the
EGM negative patients that had an enhanced response in B cells,
as a number of EGM in SS are associated with high prevalence
of hyperreactive B-cells as well as SSA and SSB autoantibodies
(41). One possible explanation might be that the lower responses
of B cells from EGM+ patients represent movement of more
reactive B cells from the periphery to other compartments not
being analyzed in this study.

Several plasma cytokines correlated significantly with basal
phosphorylation levels of various phospho-epitopes in T-, B-,
and NK cells. However, even though presence of outliers was
tested using ROUT’s method, most outliers detected by the test
were not excluded from the analyses except a few very obvious
ones, as Rout’s method is not very reliable for non-parametric
data. The low number of patients per subgroup further requires
caution concerning interpretation of the data. A larger number
of patients has to be analyzed before a more reliable correlation
between phosphorylation pattern, cytokine profile, presence of
autoantibodies and EGM might be found. This might also help
clarifying the pathophysiological relevance of our findings.

This study has a number of limitations, for one, small
sample size, which is further affected by the heterogeneity
of the patients, and in particular the number of medicated
patients. Second, as this was a pilot study, the analysis was
limited to the three main subsets of lymphocytes (T, B, and
NK cells). As these cell subsets are made up of numerous
other subtypes, differential responses and shifts in their relative
frequency in the peripheral blood may affect cellular responses.
Immunophenotyping studies have shown altered distribution
of various cell types in peripheral blood (42, 43). We can
therefore not be certain that the changed signaling profiles

are not caused by these alterations rather than potentiated or

repressed signaling. Moreover, certain subpopulations might be
more prone to apoptosis upon longer stimulation with TLR7
and −9 ligands, which we did not address in this study.
Finally the type I and II IFN regulated gene expression was
assessed in PBMC, and assessment for each cell type might
have strengthened associations and be more informative in
determining origin of the signature. In addition, some of the
statistically significant differences were rather small. Future
studies will have to address the biological relevance in more
functional assays.

In conclusion, we have identified increased responses by B
cell from pSS patients to TLR7 and −9 stimulation through
STAT3 S727 and NF-κB. The increased response was found to
correlate to a type I IFN signature. The results suggest that the
type I IFN signature may either induce or in part be derived
in response to increased activation of NF-κB and STAT3 S727
upon TLR7 or −9 activation, facilitating increased production
of interferon.
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Figure S1. A. Representative gating strategy used in the analysis of intracellular signaling pathways 

in PBMC. Single cells were gated based on their forward scatter area (FSC-A) and forward scatter 

width (FSC-W), followed by intact cells based on side scatter area (SSC-A) and FSC-A. The different 

stimulation conditions were then identified through the intensities of their pacific orange and pacific 

blue stains. Lymphocytes were identified based on their FSC-A and SSC-A scatter properties. 

Lymphocytes were then subtyped as B cells (CD20+), T cells (CD3+CD56-) or NK cells (CD3-CD56+) 

based on surface antigen expression.  B. Cell type specific signalling profile for a single donor 

following stimulation with TLR7 and -9 ligands over a 4 hour time course. The figure indicates the 

change of MdFI compare to an unstimulated sample for each phospho-epitope. 
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Figure S2. Phosphorylation profiles in B cells, T cells and NK cells of unmedicated pSS patients 

compared to healthy controls (see also Figure 2). Phosphorylation levels of NF-κB, P38, ERK1/2, 

STAT4 Y693, STAT5 Y694, STAT1 Y701, STAT1 S727, STAT3 Y705 and STAT3 S727 were analysed by 

flow cytometry at different time points after stimulation with TLR7 and -9 ligands. Comparisons of 

change of phosphorylation levels (ΔMdFI) between unmedicated pSS patient (black) and healthy 

donors (blue) are given. Comparisons between pairs were done using an Unpaired Mann-Whitney 

test. Line graphs show the median and 25 to 75 percentiles. Differences were considered statistically 

significant when p ≤ 0.05, with significance indicated as 1* ≤ 0.05, 2* ≤ 0.01, 3* ≤ 0.001 and 4* ≤ 

0.0001. 
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Figure S3. Groupings of samples by PCA for time points 30, 60, 120, 180 and 240 min. Black circle: 

pSS patient, blue square: healthy donor. The figure key is shown on the right side. The loading plot 

containing information about the variables for the corresponding PCA is shown on the right, with 

variables given as vectors. Variables contributing little to the PCA are plotted around the center as 

denoted by the axis, while variables having high contributions are plotted further from the axes. 
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Figure S4. Comparison of unmedicated patients to healthy controls as shown in Figure 3F. Unpaired 

Mann Whitney tests between healthy donors and un-medicated patients give significant differences 

for both change of pNf-κB and STAT3 S727 in B cell after 15 minutes with p-values of 0.0002 (median: 

pSS- 98.22, HD 55.09; 95% CI: 16.04 to 59.98) and ˃ 0.0001 (median: pSS- 49.39, HD 19.97; 95% CI: 

20.15 to 44.88) respectively. Black circle: unmedicated patients; blue square: healthy controls. 
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Figure S5. Variation in plasma cytokine concentrations between pSS patients and healthy controls. 

Cytokine levels (pg/ml) were measured by 25-plex Luminex assay in plasma and significant 

differences between patients (pSS; red) and healthy controls (HD Ctrls; blue) are shown. Medicated 

patients are shown as diamond. Comparison between pairs was done by unpaired Mann-Whitney 

test. Differences were considered statistically significant for p values ≤ 0.05, with significance 

indicated as * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 and **** ≤ 0.0001. Medians are shown by line graphs. 

The data represents pSS patients (n=25) (except for IL-15 and IL-4 where n= 21 and 22 respectively) 

and HD Ctrls (n=25) (except for IL-6, TNF-α and IL-4 where n=24, 23 and 16 respectively). 
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Table S1. Relevant information for repeating the experiment as presented in “The minimum 

information about a Flow Cytometry Experiment (MIFlowCyt)”. 

Data set Sample/Reagent/ 
Controls/Instrument 

Details 

Samples/Specimens Patient samples Species: Homo Sapiens, Sex: female, Median age (range): 56 (33-73), Phenotype: pSS, 
Location: Department of Rheumatology, Haukeland University Hospital, Bergen, Norway. 

Collection methodology: Venule puncture    
 Healthy donor 

samples 
Species: Homo Sapiens, Sex: female, Median age (range): 54 (42-70), Phenotype: Unknown, 

Location: Blood bank, Haukeland University Hospital, Bergen, Norway. Collection 
methodology: Venule puncture   

 Single donor control Species: Homo Sapiens, Sex: Unknown, Age: Unknown, Phenotype: Unknown, location: 
Bergen, Norway. Collection methodology: Venule puncture   

   

Sample treatment Blood collection Lithium-heparin tubes for patients and healthy donor samples, and a citrate phosphate 
dextrose adenine blood collection bag for the  

single donor control 
 PBMC isolation PBMC isolated within 1hr of blood collection by density gradient centrifugation with 

lymphoprep (Axis-Shield, Cat#07861) 
 Cryopreservation Immediately following isolation, PBMC samples were washed 2x with PBS (Lonza, Cat# 17-

516F) and frozen at 5x106 cells/ml in 7.5% DMSO (Sigma-Aldrich, Cat#D2650), 50% X-vivo 
20TM (Lonza, cat#BE04-448Q), 42.5% ProfreezeTM CDM NAO media (Lonza, cat# 12-769E)  

and at a cooling rate of 1 Celsius/min(CoolCell LX, Biocison, Cat#BCS-405) at -70°C overnight 
before long term storage in  -150°C freezer  

 Thawing Cells were thawed rapidly at 37°C in a water bath, 1ml of  37°C X-vivo 20TM was added 
dropwise to each vial prior to addition to 9ml X-vivo 20TM and washed (300g) prior to 

culturing 
 Culturing The cells were cultured at 37°C with 5% CO2 at 3 x10 cell/ml in a Megablock® 96 well plate 

(Starstedt, Cat#82.1972.002). The cells were rested for 2 hours prior to stimulation. 
 Stimulation 50µl of X-vivo 20 TM (at 240 minute time point) or X-vivo20 TM with TLR7 (CL097; Invivogen, 

cat#tlrl-c97-5) and -9 ligands (CpG type B ODN 2006 and type C ODN 2395; Invivogen, 
cat#tlrl-2006-1 and cat#tlrl-2395-1 respectively) at 2 µg/ml each according to a reverse time 

course for 15, 30, 60, 120, 180, or 240 minutes  
 Fixation Following stimulation cells were immediately fixed at room temperature for 10 minutes with 

37°C 16% paraformaldehyde (Electron Microscopy Sciences, cat#15710) for a final 
concentration of 1.5%. 

 Permeabilization After fixation PBMCs were washed at 1000g for 5 min 4°C with PBS, and resuspended in 
50µl. 1ml ice cold methanol (Sigma Aldrich, cat#32213-2.5L-M) was added dropwise. Cells 

were then incubated on ice for 30min, and then kept overnight at -80°C. 
 Barcoding Prior to barcoding cells were washed 1x with PBS. Cells were then stained for 30 minutes at 

4°C with 3 levels of pacific orange and pacific blue succinimidyl ester dyes (PB 100, 25 and 
6.3 ng/ml; PO 250, 70 and 0 ng/ml; Life Technologies, cat#P30253 and #10163 respectively) 

diluted in PBS. 
 Antibody staining Barcoded cells were then washed 1x in PBS containing 1% BSA (Sigma-Aldrich, cat#A7906-

500g) before being combined into a single sample. The sample was washed (PBS with 1% 
BSA) and incubated with 2µl Fc receptor block (Miltenyi Biotec, cat#130-059-901) per 1x106 
cells for 10 minutes on ice. The sample was then divided into 3 and incubated for 30 minutes 

at room temperature stained with 3 different antibody panels.  
 Antibody panels and 

staining 
concentrations 

Phospho-specific monoclonal antibodies- Alexa Fluor® 647 conjugated anti-STAT4 (pY693, 
clone 38/p-STAT4, panel 1, cat#558137, dilution- 1:10), anti-STAT1 (pS727, clone K51-856, 

panel 2, cat#560190, dilution- 1:10) and anti-STAT3 (pS727, clone 49/p-STAT3, panel 3, 
cat#558099, dilution- 1:20); PerCP-CyTM5.5 conjugated anti-ERK1/2 (pT202/pY204, clone 

20A, panel 1, cat#560115, dilution- 1:10), anti-STAT1 (pY701, clone 4a, panel 2, cat#560113, 
dilution- 1:10) and anti-STAT3 (pY705, clone 4/P-STAT3, panel 3, cat#560114, dilution- 
1:6.5); and PE-CyTM7 conjugated anti-NF-κB p65 (pS529, clone K10-895.12.50, panel 1, 

cat#560335, dilution- 1:20), anti-p38 MAPK (pT180/pY182, clone 36/p38, panel 2, 
cat#560241, dilution- 1:10) and anti-STAT5 (pY694, clone 47 / STAT5(pY694), panel 3, 

cat#560117, dilution- 1:10) (all from BD Biosciences). Cell surface markers BV786 conjugated 
anti-CD3 (clone SK7, BD HorizonTM, cat#563799, dilution- 1:100), Alexa Fluor® 488 

conjugated anti-CD20 (clone H1 (FB1), BD Biosciences, cat#558056, dilution- 1:20) and PE 
conjugated anti-CD56 (clone N901, Beckmann Coulter, CA, USA, cat#A07788, dilution- 1:50) 

 Acquisition Following staining samples were washed 2x in PBS with 1% BSA and resuspended in PBS 
containing 1% BSA and 2mM EDTA (Sigma-Aldrich, cat#E7889-100ml) and then immediately 

analyzed on the flow cytometer. 
   



7 
 

Controls Flow cytometer 
calibration 

Flow cytometer calibrated daily with BD cytometer setup and tracking beads (BD 
Biosciences, cat#655051). Standardized consistent fluorescence intensity target values 

across experiments were obtained with “Application Setting” on the BD FACSDiva software 
 Single donor control Cryopreserved PBMCs from a single donor were included in each assay (n = 13) as a positive 

control, for inter-assay normalization and assessing assay to assay variability. 
 Biological control For each donor an unstimulated PBMC sample was analyzed to assess donor specific 

changes in the phosphorylation of phospho-epitopes follow IFNα stimulation   
 Compensation Single stained compensation controls were analyzed for each assay to assess and control for 

spectral spillover.  Unstained / single stained beads (BD Biosciences, cat#552843) were used 
for compensation for antibody-fluorchrome conjugates; for amine reactive dyes (Pacific blue 

and Pacific Orange), unstained and single stained cells were used.    
   

Instrument Instrument type  BD LSRFortessa™ (BD Biosciences) 
 Software BD FACSDiva software version 8.0.1 (BD Biosciences) 
 Measurement 

parameters See flow data repository of the International Society for Advancement of Cytometry 
   

Data Analysis Compensation Automatic compensation was conducted through FlowJo (Tree Star) prior to importing 
compensated datafiles into cytobank 

 Gating Gating and analysis was performed in cytobank, gating strategy was assessed through 
backgating of identified populations 

   

 

Table S2. Comparison of phosphorylation of ERK, Nf-κB, p38, STAT1 Y701, STAT1 S727, STAT3 Y705, 

STAT3 S727, STAT4 Y693, STAT5 Y694 (median MdFI and 95% confidence interval of median MdFI) in 

T cells from pSS patients (n=25*) and healthy donors (n=25**), by time following TLR7 and -9 

stimulation of PBMC cultures. * 2 patients not included at 60 and 120 minutes, ** 1 healthy donor 

not included at 180 and 240 minutes.    

Phospho epitope Time (minutes) pSS patients Healthy donors  Comparison 

  Median 95% CI* Median 95% CI* P** 
NF-κB 0 148.7 147.3 to 153.5 145.7 141.5 to 148.7 0.0128 

 15 4.7 3.3 to 6.4 4.0 2.5 to 5.9 0.5601 
 30 -4.0 -5.1 to -2.8 -1.6 -2.6 to 0.8 0.0032 
 60 -1.7 -2.5 to -0.3 -0.8 -3.3 to 2.5 0.5904 
 120 0.2 -2.5 to 4.6 3.8 0.8 to 5.4 0.1735 
 180 8.0 5.1 to 10.3 11.8 8.7 to 14.4 0.0503 
 240 9.4 5.8 to 11.0 15.3 10.7 to 17.3 0.0040 

P38 0 60.1 57.8 to 61.0 56.8 54.9 to 57.8 0.0016 
 15 -4.0 -4.7 to -2.6 -3.8 -4.3 to -1.9 0.3233 
 30 -4.0 -5.6 to -2.4 -3.7 -4.4 to -2.4 0.4048 
 60 -2.5 -3.8 to -0.5 -1.7 -4.1 to -0.6 0.9134 
 120 7.8 5.3 to 8.9 9.7 7.4 to 11.4 0.0984 
 180 9.4 7.3 to 12.0 9.5 7.8 to 12.3 0.8149 
 240 7.0 4.6 to 10.4 7.7 4.3 to 11.3 0.5955 

ERK1/2 0 76.1 74.4 to 79.1 73.4 70.1 to 75.2 0.0199 
 15 0.0 -1.2 to 1.1 0.7 -0.2 to 1.8 0.1748 
 30 -0.3 -1.7 to 0.8 0.2 -0.8 to 1.6 0.2868 
 60 -1.8 -2.6 to -1.2 -1.7 -2.8 to -0.2 0.8963 
 120 0.8 -0.8 to 2.0 1.0 -0.4 to 1.9 0.6776 
 180 1.2 0.1 to 2.2 1.3 -0.6 to 2.4 0.6228 
 240 4.1 2.3 to 5.6 2.5 1.1 to 5.2 0.2945 

STAT4 Y693 0 14.0 13.4 to 14.3 13.1 12.4 to 13.7 0.0539 
 15 0.3 0.1 to 0.7 0.4 0.0 to 0.6 0.7391 
 30 0.2 0.0 to 0.6 0.4 0.1 to 0.5 0.4157 
 60 2.1 1.5 to 3.0 3.1 1.9 to 5.2 0.1429 
 120 54.9 40.4 to 64.0 57.6 54.4 to 63.9 0.3536 
 180 59.1 51.3 to 66.0 59.3 52.2 to 66.7 0.8302 
 240 46.8 42.9 to 53.5 49.6 43.3 to 55.3 0.4538 

STAT5 Y694 0 107.5 103.6 to 110.2 98.5 96.2 to 101.0 ˂0.0001 
 15 -23.7 -25.1 to -21.3 -20.3 -21.9 to -19.7 0.0042 
 30 -22.9 -26.0 to -20.4 -19.8 -22.3 to -18.6 0.0910 
 60 -17.3 -19.8 to -13.0 -13.8 -17.8 to -9.8 0.2162 
 120 10.2 3.6 to 16.8 24.3 16.9 to 28.4 0.0147 
 180 -0.3 -2.0 to 2.0 1.9 -1.3 to 7.0 0.1212 
 240 -5.5 -8.4 to -2.0 -3.1 -4.7 to 0.0 0.0946 

STAT1 Y701 0 118.1 115.2 to 121.6 110.4 104.7 to 113.5 ˂0.0001 
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 15 -7.8 -9.1 to -6.3 -5.4 -6.6 to -4.0 0.0040 
 30 -8.5 -10.1 to -6.4 -6.0 -8.2 to -3.8 0.0070 
 60 8.8 1.4 to 11.9 15.7 5.6 to 24.4 0.0541 
 120 143.0 127.8 to 169.7 135.9 114.0 to 154.6 0.5632 
 180 117.9 105.2 to 131.4 109.8 99.2 to 130.8 0.4778 
 240 92.5 83.1 to 101.6 97.9 86.6 to 109.3 0.3331 

STAT1 S727 0 31.4 30.5 to 32.0 28.1 27.9 to 29.5 ˂0.0001 
 15 -1.3 -1.5 to -0.8 -0.7 -1.3 to -0.5 0.0988 
 30 -1.5 -2.1 to -1.2 -0.7 -1.1 to -0.3 0.0189 
 60 -1.3 -2.0 to -0.4 -0.6 -1.4 to 0.0 0.1266 
 120 4.8 3.6 to 7.3 5.9 4.5 to 7.9 0.4827 
 180 7.5 6.2 to 8.9 8.5 7.3 to 10.7 0.2349 
 240 5.9 4.8 to 6.8 7.6 5.7 to 9.1 0.0414 

STAT3 Y705 0 118.2 112.6 to 128.3 129.7 114.2 to 133.3 0.4269 
 15 -4.7 -8.9 to -3.4 -4.1 -7.3 to -2.8 0.5345 
 30 -7.1 -10.3 to -5.3 -7.7 -10.8 to -4.8 0.9029 
 60 15.8 8.1 to 22.2 17.0 13.3 to 25.4 0.1215 
 120 100.4 81.7 to 141.0 124.8 111.0 to 143.3 0.0984 
 180 81.0 64.5 to 103.6 98.7 82.1 to 111.7 0.1073 
 240 61.6 39.1 to 69.2 68.6 57.5 to 77.0 0.2594 

STAT3 S727 0 496.5 470.5 to 509.5 476.5 467.0 to 494.2 0.2868 
 15 -6.6 -11.1 to -4.2 -2.7 -10.6 to 1.4 0.4731 
 30 -13.9 -18.3 to -12.1 -12.8 -16.3 to -6.0 0.3233 
 60 7.8 -0.6 to 27.1 14.5 2.6 to 28.3 0.6045 
 120 162.4 132.9 to 259.4 236.2 205.5 to 267.4 0.0753 
 180 187.8 139.3 to 213 202.3 172.7 to 246.1 0.0553 
 240 125.3 82.7 to 138.4 140.1 120.6 to 152.1 0.0608 

* 95% CI: 95% confidence interval of median, ** Unpaired Mann-Whitney test.  

 

Table S3. Comparison of phosphorylation of ERK, Nf-κB, p38, STAT1 Y701, STAT1 S727, STAT3 Y705, 

STAT3 S727, STAT4 Y693, STAT5 Y694 (median MdFI and 95% confidence interval of median MdFI) in 

B cells from pSS patients (n=25*) and healthy donors (n=25**), by time following TLR7 and -9 

stimulation of PBMC cultures.  * 2 patients not included at 60 and 120 minutes, ** 1 healthy donor 

not included at 180 and 240 minutes.    

Phospho epitope Time (minutes) pSS patients Healthy donors  Comparison 

  Median 95% CI* Median 95% CI* P** 
NF-κB 0 112.7 109.2 to 117.4 115.9 107.1 to 119.0 0.5219 

 15 66.7 46.9 to 98.2 55.1 46.5 to 63.9 0.1253 
 30 86.2 70.3 to 129.5 77.2 69.3 to 93.6 0.3329 
 60 110.7 90.9 to 135.0 103.7 93.7 to 127.5 0.8651 
 120 98.7 88.5 to 107.9 97.6 92.1 to 111.1 0.9448 
 180 96.2 80.9 to 102.6 98.3 90.5 to 106.6 0.3040 
 240 86.1 78.3 to 93.3 94.6 82.4 to 101.3 0.0946 

P38 0 56.7 55.3 to 58.3 60.5 55.9 to 63.4 0.0910 
 15 7.7 4.6 to 11.6 4.3 3.0 to 7.3 0.0873 
 30 11.5 7.2 to 14.2 6.6 5.8 to 10.2 0.1159 
 60 18.1 11.6 to 20.7 12.0 9.2 to 16.8 0.1873 
 120 15.1 14.0 to 20.6 13.8 10.3 to 19.1 0.2843 
 180 13.0 12.0 to 14.9 11.0 8.8 to 15.6 0.4778 
 240 8.6 6.7 to 13.2 9.1 5.7 to 12.6 0.8144 

ERK1/2 0 71.2 68.0 to 75.1 73.0 70.5 to 75.1 0.4496 
 15 6.5 4.6 to 9.1 7.5 6.5 to 10.1 0.5472 
 30 8.5 6.1 to 11.6 9.0 5.7 to 12.9 0.5731 
 60 9.2 6.3 to 11.6 9.2 6.1 to 11.9 0.9611 
 120 13.2 9.7 to 16.0 13.6 10.6 to 16.2 0.7692 
 180 12.0 10.2 to 15.2 11.8 8.8 to 13.4 0.6654 
 240 14.3 10.6 to 19.7 13.0 9.6 to 15.5 0.2427 

STAT4 Y693 0 8.6 8.2 to 9.1 9.6 8.3 to 10.8 0.1405 
 15 -0.1 -0.7 to 0.4 -0.1 -0.8 to 0.5 0.8726 
 30 -0.3 -0.6 to 0.6 0.0 -0.4 to 0.2 0.9791 
 60 -0.4 -1.3 to 0.3 -0.2 -0.8 to 0.2 0.8164 
 120 0.1 -0.2 to 0.8 0.0 -1.0 to 1.1 0.8173 
 180 0.3 -0.6 to 1.7 0.0 -0.7 to 1.1 0.3531 
 240 0.6 -0.1 to 0.8 0.2 -0.3 to 0.8 0.7687 

STAT5 Y694 0 83.8 82.3 to 87.7 90.7 85.6 to 94.1 0.0539 
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 15 -19.9 -22.5 to -18.4 -21.0 -24.0 to -18.6 0.8126 
 30 -19.6 -24.4 to -17.8 -22.0 -25.2 to -20.0 0.3329 
 60 -15.8 -19.5 to -13.3 -18.9 -20.9 to -16.8 0.2089 
 120 -6.7 -10.7 to 0.1 -6.0 -8.7 to 2.8 0.4575 
 180 4.3 -1.7 to 9.8 10.1 -1.4 to 16.5 0.0729 
 240 6.4 2.4 to 9.5 9.3 3.6 to 15.7 0.0729 

STAT1 Y701 0 96.5 91.6 to 104.3 97.7 89.0 to 101.6 0.8877 
 15 -4.6 -8.1 to -2.6 -4.1 -5.8 to -0.8 0.6402 
 30 -8.4 -10.7 to -4.9 -4.9 -8.7 to -2.2 0.1353 
 60 -1.8 -6.5 to 2.2 5.9 -5.6 to 9.8 0.1319 
 120 63.7 54.3 to 82.7 58.2 52.9 to 86.8 0.6635 
 180 150.6 129.0 to 169.3 149.3 114.2 to 171.9 0.5815 
 240 148.0 135.4 to 172.0 151.9 132.1 to 162.7 0.8144 

STAT1 S727 0 29.0 28.0 to 30.2 27.6 25.8 to 29.0 0.0646 
 15 0.9 0.7 to 2.9 1.1 -0.1 to 1.9 0.2150 
 30 5.7 4.1 to 7.4 3.2 1.6 to 3.7 0.0001 
 60 12.9 8.3 to 17.7 7.2 5.4 to 8.5 0.0021 
 120 25.2 23.0 to 30.4 18.3 15.0 to 21.9 0.0003 
 180 45.9 37.9 to 49.6 40.8 34.5 to 45.9 0.2193 
 240 39.4 31.3 to 47.2 37.9 30.9 to 46.2 0.8919 

STAT3 Y705 0 81.24 80.2 to 84.7 83.92 79.7 to 91.0 0.2150 
 15 1.6 -0.3 to 4.0 1.6 -2.3 to 2.7 0.3233 
 30 0.3 -1.9 to 1.9 0.2 -5.8 to 1.0 0.5094 
 60 1.6 -2.0 to 4.0 -0.4 -4.3 to 2.1 0.2015 
 120 21.0 15.1 to 25.1 24.1 17.5 to 31.4 0.4575 
 180 29.7 22.0 to 32.6 26.8 18.1 to 35.8 0.7687 
 240 28.6 24.6 to 32.3 28.2 24.4 to 33.8 0.8298 

STAT3 S727 0 271.3 267.0 to 292.6 295.1 270.2 to 330.4 0.0873 
 15 41.2 22.3 to 49.4 20.0 7.7 to 26.1 0.0035 
 30 83.9 63.3 to 109.9 59.4 43.5 to 71.8 0.0080 
 60 138.8 112.0 to 155.0 96.5 77.3 to 127.0 0.0069 
 120 178.4 155.2 to 196.9 145.2 121.4 to 156.7 0.0074 
 180 184.0 164.9 to 208.3 168.4 145.0 to 194.5 0.2427 
 240 152.8 126.5 to 174.6 156.5 132.7 to 169.3 0.7238 

* 95% CI: 95% confidence interval of median, ** Unpaired Mann-Whitney test.  

 

Table S4. Comparison of phosphorylation of ERK, Nf-κB, p38, STAT1 Y701, STAT1 S727, STAT3 Y705, 

STAT3 S727, STAT4 Y693, STAT5 Y694 (median MdFI and 95% confidence interval of median MdFI) in 

NK cells from pSS patients (n=25*) and healthy donors (n=25**), by  time following TLR7 and -9 

stimulation of PBMC cultures .  * 2 patients not included at 60 and 120 minutes, ** 1 healthy donor 

not included at 180 and 240 minutes.    

Phospho epitope Time (minutes) pSS patients Healthy donors  Comparison 

  Median 95% CI* Median 95% CI* P** 
NF-κB 0 121.4 115.0 to 125.8 120.3 114.8 to 122.2 0.6130 

 15 6.7 5.5 to 8.2 6.6 4.8 to 7.4 0.7247 
 30 3.4 -3.4 to 6.9 4.2 2.9 to 6.4 0.2010 
 60 6.3 2.0 to 10.1 11.9 9.4 to 13.1 0.0261 
 120 19.2 14.0 to 35.6 44.6 33.6 to 49.0 0.0003 
 180 12.1 7.0 to 19.9 26.0 15.7 to 31.7 0.0056 
 240 -15.5 -36.4 to -3.0 6.4 -8.8 to 16.2 0.0168 

P38 0 66.5 64.5 to 71.5 64.6 61.6 to 65.8 0.0318 
 15 -1.0 -3.1 to 0.6 -2.4 -2.9 to -1.0 0.2452 
 30 -1.1 -2.7 to 1.2 -1.2 -2.6 to -0.1 0.5219 
 60 -0.9 -2.3 to 1.1 0.3 -1.3 to 2.9 0.5625 
 120 13.6 11.6 to 15.9 28.2 17.8 to 32.0 0.0003 
 180 15.6 11.6 to 19.5 19.8 15.8 to 24.3 0.0528 
 240 7.9 5.8 to 10.6 11.6 8.2 to 15.7 0.0580 

ERK1/2 0 73.1 69.4 to 75.7 71.7 67.3 to 74.0 0.2223 
 15 2.3 -0.3 to 3.5 3.5 1.0 to 4.8 0.1570 
 30 1.5 0.4 to 2.9 3.3 0.4 to 4.4 0.2531 
 60 2.3 1.5 to 5.2 1.7 0.2 to 2.8 0.2015 
 120 5.6 3.8 to 8.9 6.6 3.7 to 8.2 0.7085 
 180 5.0 2.3 to 7.9 7.0 3.5 to 11.1 0.0946 
 240 11.7 8.2 to 17.2 13.5 8.2 to 18.8 0.8767 

STAT4 Y693 0 17.6 16.3 to 18.2 16.3 15.9 to 18.1 0.5862 
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 15 1.4 1.0 to 2.0 1.5 1.1 to 2.0 0.8726 
 30 2.0 0.8 to 2.6 0.9 0.6 to 2.0 0.3940 
 60 3.8 2.1 to 4.6 7.7 5.2 to 10.4 0.0021 
 120 62.9 39.2 to 74.2 99.2 76.6 to 103.3 0.0009 
 180 54.0 40.3 to 68.9 73.0 62.7 to 85.8 0.0111 
 240 33.2 16.7 to 44.9 43.8 32.8 to 53.6 0.0234 

STAT5 Y694 0 118.7 111.7 to 122.6 109.1 106.2 to 114.7 0.0026 
 15 -22.7 -24.4 to -19.9 -20.1 -21.2 to -18.7 0.0565 
 30 -22.5 -23.6 to -19.5 -18.7 -21.0 to -17.9 0.0737 
 60 -19.6 -21.7 to -16.3 -17.4 -22.0 to -14.8 0.5904 
 120 -14.2 -20.4 to -11.4 -14.1 -16.6 to -10.7 0.3126 
 180 -11.2 -16.2 to -9.3 -13.4 -17.2 to -10.0 0.3230 
 240 -10.7 -17.5 to -7.6 -11.1 -14.4 to -7.0 0.9075 

STAT1 Y701 0 90.0 85.5 to 94.4 83.7 82.5 to 87.0 0.0169 
 15 -3.2 -4.2 to 0.4 -1.0 -2.5 to 1.7 0.1458 
 30 -2.7 -4.6 to -1.3 -0.3 -2.3 to 1.2 0.0318 
 60 10.6 4.8 to 12.2 18.3 8.9 to 25.5 0.0753 
 120 90.4 79.9 to 98.5 72.8 67.5 to 79.3 0.0361 
 180 63.9 56.6 to 74.2 59.0 52.0 to 64.7 0.2592 
 240 41.9 30.6 to 54.1 44.9 38.5 to 54.4 0.3744 

STAT1 S727 0 30.3 29.6 to 31.6 28.5 27.1 to 29.5 0.0070 
 15 -0.3 -1.3 to 0.6 -0.4 -0.8 to 0.7 0.3329 
 30 -1.0 -1.9 to 0.0 -0.5 -1.5 to 0.1 0.1353 
 60 -1.9 -2.4 to -1.3 -0.9 -1.7 to -0.2 0.0380 
 120 4.5 2.8 to 5.8 4.4 2.7 to 5.5 0.9945 
 180 4.4 2.3 to 6.0 4.2 3.3 to 5.6 0.6948 
 240 1.3 -2.5 to 2.8 2.5 -0.8 to 3.4 0.1776 

STAT3 Y705 0 97.8 92.6 to 100.3 94.9 91.6 to 97.8 0.1811 
 15 -0.1 -3.6 to 2.3 0.4 -1.1 to 4.1 0.2781 
 30 1.3 -1.5 to 5.5 0.9 -0.9 to 3.3 0.2868 
 60 0.0 -2.6 to 2.6 1.0 -2.2 to 4.1 0.3754 
 120 26.8 19.4 to 33.1 27.0 21.4 to 32.0 0.8651 
 180 12.7 8.6 to 19.5 14.9 8.0 to 16.0 0.8302 
 240 9.1 4.8 to 15.8 10.3 5.2 to 13.2 0.8452 

STAT3 S727 0 257.4 241.3 to 298.4 275.3 260.1 to 295.1 0.1458 
 15 -8.4 -13.7 to 0.2 -12.6 -15.0 to -7.9 0.2374 
 30 -10.1 -13.7 to -2.4 -8.7 -11.2 to -6.8 0.8425 
 60 -0.9 -6.4 to 1.0 -2.7 -6.9 to 5.9 0.8642 
 120 60.8 39.7 to 75.8 90.4 66.4 to 108.5 0.0026 
 180 40.6 22.8 to 57.7 57.3 38.8 to 91.2 0.0275 
 240 -30.6 -129.2 to 7.4 14.2 -13.5 to 44.7 0.0580 

* 95% CI: 95% confidence interval of median, ** Unpaired Mann-Whitney test.  

 

Table S5. Comparison of plasma cytokine levels (median pg/ml and 95% confidence interval of 

median) showing significant differences between pSS patients (n=25) (except IL-15, n= 21; and IL-4, 

n= 22) and healthy donors (n=25) (except IL-6, n=24; TNF-α, n= 23; and IL-4, n= 16). 

Cytokine  pSS patients Healthy donors  Comparison 

  Median 95% CI* Median 95% CI* P** 

IL-1β  18.96 18.96 to 85.66 18.96 18.96 to 18.96 0.0004 
IL-13  16 16 to 58.78 16 16 to 16 0.0207 
IL-6  

0.3254 0.3254 to 10.18 0.3254 
0.3254 to 

0.3254 
0.0043 

IL-12  200 200 to 288.2 140.4 110 to 140.4 <0.0001 
MIP-1α  84.45 84.45 to 183.3 56.13 56.13 to 56.13 <0.0001 
MIP-1β  66.05 46.95 to 156.6 46.95 46.95 to 46.95 0.0008 
MCP-1  293.5 256.6 to 401.6 219.2 181.1 to 256.6 0.0029 
IL-15  113.7 21.51 to 194.5 21.51 21.51 to 21.51 0.0001 
IFN-α  139 88.51 to 139 88.51 88.51 to 88.51 <0.0001 
TNF-α  7.758 7.758 to 45.95 7.758 7.758 to 7.758 0.0027 

IL-2  6.368 6.368 to 20.93 6.368 2 to 6.368 <0.0001 
IL-4  36.8 36.8 to 270.2 36.8 36.8 to 36.8 0.0049 

* 95% CI: 95% confidence interval of median, ** Unpaired Mann-Whitney test.  
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Table S6. Comparison of plasma cytokine levels (median pg/ml and 95% confidence interval of 

median) showing significant differences between SSA+ pSS patients (n=12) and SSA- pSS patients 

(n=13), (except for IL-4, n=11 in each category).  

Cytokine  SSA+ patients SSA- patients  Comparison 

  Median 95% CI* Median 95% CI* P** 

IL-1β  108.1 18.96 to 182.6 18.96 18.96 to 34.35 0.0199 
MCP-1  401 293.5 to 1337 256.6 219.2 to 293.5 0.0292 
IFN-α  160 88.51 to 423 88.51 88.51 to 139 0.0214 
IL-2  20.93 6.368 to 49.45 6.368 6.368 to 6.368 0.0049 
IL-4  228.9 36.8 to 889 36.8 36.8 to 94.19 0.0339 

* 95% CI: 95% confidence interval of median, ** Unpaired Mann-Whitney test.  
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