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Abstract

In the present work we reconstruct the homotopy type of an unknown Euclidean
subspace from a known sample of data. We carry out such reconstruction through
generalized Čech complexes, by choosing radii which are less or equal than the
reach of the subspace and by applying the Nerve Lemma. We also approach the
reconstruction of a geodesic subspace through its convexity radius and a dense
enough sample. Afterwards, we obtain homology and homotopy groups in terms
of persistences, together with interleavings and isomorphisms between them. We
conclude studying the reconstruction of a particular subspace that has reach equal
to zero, where our results cannot be applied.
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0.1 Introduction and historical context.
This thesis is a piece of work in algebraic topology, particularly in homotopy theory,
and in differential geometry, with strong connections to topological data analysis.

The main aim is to reconstruct the geometry of an unknown Euclidean subspace
from a known sample of data. We approach such task for a subspace X ⊆ Rd with
positive reach, by covering X with balls whose centers lie in a sample A ⊆ Rd, and
by studying how large the radii of these balls can be in order to not lose information
of the subspace of interest (since if the radii are too small or too large, it is not
possible to capture all the geometric properties). Then, using topological, algebraic
and analytical tools, we determine when the non-empty finite intersections of such
collection of balls are contractible, and hence forms a good cover. Finally, we take
the nerve of such good cover and we identify it with a particular Čech complex,
and by the Nerve Lemma we obtain that the geometric realization of such a Čech
complex has the same homotopy type as the subspace X.

Simplicial complexes that have the same homotopy type as the subspace of
interest carry a lot of the geometric information of such subspace, hence by geo-
metric reconstruction we mean finding an abstract simplicial complex, in our case
a Čech complex, whose geometric realization has the same homotopy type.

For X,A ⊆ (M,d), where (M,d) denotes a metric spaceM with a metric d, the
Čech complex C d

X(A, r) is an abstract simplicial complex with vertex set A and
such that a finite set of points in A is a simplex if and only if balls with centers
these points and given radii have non-empty intersection.

The main results here are Corollary 2.14 ([12] Corollary 6) which gives a suc-
cessful geometric reconstruction when the radii are less or equal than the reach:

Corollary (2.14). Let X ⊆ Rd with positive reach τ , A ⊆ Rd and suppose that
{BX(aj, rj)}aj∈A is a cover of X, where r = {rj | aj ∈ A} is a set of radii.
If supaj∈A rj ≤ τ , then X is homotopy equivalent to the geometric realization of
CX(A, r).

And a new theorem, Theorem 2.16, which also gives a homotopy equivalence,
but using the directed Hausdorff distance from the subspace to the sample:

Theorem (2.16). Let X ⊆ Rd with positive reach τ , and let A ⊆ Rd be compact.
If α ∈

(−→
dH(X,A), τ

]
, then the geometric realization of CX(A,α) is homotopy

equivalent to X.

We highlight that we also recover the homotopy type of a geodesic subspace
through its convexity radius and a dense enough sample in Lemma 3.18, with the
length metric on X ⊆ Rd defined by dL(x, y) := infγ L(γ) for all x, y ∈ X, where
L(γ) denotes the length of a continuous path γ : I → X connecting x and y.
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Lemma (3.18). Let X ⊆ Rd be a geodesic subspace with the length metric dL and
positive convexity radius ρ. Let A be an s-dense subset of X, where 0 < s ≤ ρ.
Then, |C dL

X (A, s)| is homotopy equivalent to X.

Another aim of this thesis is to study how we can approximate the homology
of a subspace if we do not achieve a homotopy equivalence, since if we have a
homotopy equivalence, then the induced maps on their homotopy and homology
groups in any dimension are isomorphisms. This problem is also relevant if we
obtain a homotopy equivalence with a Čech complex that involves points in the
subspace X, since it is unknown and therefore it is not possible to give exact
computations. In order to do that, we understand homology and homotopy groups
as persistence groups, so that we can form interleavings between them.

An important result here is Proposition 3.25, which for X a geodesic sub-
space, A ⊆ X an s-dense subset and B ⊆ X, gives a (0, s)-interleaving between
{πn(|C dL

B (A, p)|, •)}p>0 and {πn(|C dL
B (X, p)|, •)}p>0, and a (0, s)-interleaving be-

tween {Hn(|C dL
B (A, p)|)}p>0 and {Hn(|C dL

B (X, p)|)}p>0, for any n ≥ 1.
We also have Theorem 3.31 and Corollary 3.34, which under certain conditions,

for an abelian group G give the following isomorphisms:

π1(|C dL
X (A, r)|, •) ∼= π1(|C dL

X (X, r)|, •)
H1(|C dL

X (A, r)|;G) ∼= H1(|C dL
X (X, r)|;G)

where H1(_;G) denotes the first homology group with coefficients in G.
In addition, we work with two metrics on X ⊆ Rd, the length metric dL and the

restriction of the Euclidean metric, obtaining an important parameter which is the
distortion of X, and by Dowker’s Theorem 3.10, in the new Corollary 3.11 we also
get homotopy equivalences and commutative diagrams at the level of geometric
realizations of Čech complexes:

Corollary (3.11). Let X ⊆ Rd with both the length metric dL and the restriction
of the Euclidean distance dE, δ be the distortion of X, A ⊆ X and α ∈ R>0.
Then, we obtain the following homotopy equivalences and commutative diagram,
up to homotopy:

|C dL
X (A,α)| � � //

'
��

|C dE
X (A,α)| � � //

'
��

|C dL
X (A, δα)|

'
��

|C dL
A (X,α)| � � // |C dE

A (X,α)| � � // |C dL
A (X, δα)|.

Regarding some relevant prior work and what we have improved from before,
we give an overview of the bibliography that we have used, pointing out our con-
tributions.
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Our main reference for the geometric reconstruction is the newly published
paper [12], which provides sufficient conditions for finite intersections of balls of
the form BX(aj, rj) to be contractible, for aj ∈ A ⊆ Rd and X ⊆ Rd with positive
reach ([12], Theorem 5). It also presents an application of the Nerve Lemma in
Corollary 2.14 as above ([12], Corollary 6), which we have slightly changed by
taking an infinite sample A rather than a finite one to be more consistent with
the Nerve Lemma 1.20, and we give a new proof of it. In addition, we apply
such Corollary 2.14 in the proof of our new Theorem 2.16, as above, and this new
theorem provides a stronger result based on this paper, since it does not require a
cover of X because we can construct one along its proof.

We also use [17] (Proposition 3.1) to show a well-known result that follows a
similar approach as our Theorem 2.16, and which states the following: a compact
submanifoldX ⊆ Rd with positive reach τ is homotopy equivalent to ⋃a∈A BRd(a, α),
where α ∈ (2ε,

√
3
5 τ) for ε := −→dH(X,A). Hence, we improve such result by giving

a larger interval from where to pick the values of the radius and by generalizing
compact manifolds to Euclidean subspaces.

We study [6] in order to give detailed proofs of the results from [12], and
we show in this thesis the most important results from [6] for our work, which
are quite analytical and more oriented to geometric measure theory. We slightly
change some statements so that they fit better with the ones in [12].

We mention the recent paper [5] to introduce the length metric dL, the con-
cept of distortion, geodesic subspaces for path connected Euclidean subspaces and
Lemma 3.18 as above.

We continue with persistence methods and the reconstruction of homotopy and
homology groups for a geodesic subspace, where our main references are [23] and
[25]. From there we get the idea of considering homology and homotopy groups
as persistence groups, we generalize results for the first homology and homotopy
groups to higher dimension, and we change several definitions and results for Rips
complexes into new versions for Čech complexes, like the definition of r-sample or
our Proposition 3.25 described above ([23] Definition 2.4 and Proposition 3.3).

In such proposition we also give a different proof by defining the desired maps
at the level of Čech complexes, and by obtaining induced maps on their homology
and homotopy groups in any dimension (rather than just for n = 1), which lead to
commutative diagrams and the desired (0, s)-interleaving. We also present several
new results in Section 3.1 describing simplicial maps and commutative diagrams
of Čech complexes, like Corollary 3.11 presented above.

Theorem 3.31, presented above, is based on Theorem 4.2 in [23] (which includes
both an isomorphism for the fundamental groups and another one for the first
homology groups with coefficients in an abelian group, only proving the case of
the fundamental group), but we did not quite understand the original statement, so
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we reformulated it with some different conditions for the case of the fundamental
group, achieving a satisfactory result. We treat the case of the first homology
group with coefficients in an abelian group in our Corollary 3.34 showed above,
as a consequence of Theorem 3.31, and we present a detailed proof of it. We also
improve the formalization of how loops in simplicial complexes are determined by
their sequence of vertices.

For general topological aspects, we reference [9], [16], [19] and [22], and for some
details about the Universal Coefficient Theorem A.25 we use [8]. Such theorem
shows the existence of a short exact sequence

0 −→ Hn(X)⊗G −→ Hn(X;G) −→ Tor(Hn−1(X), G) −→ 0

and from it we obtain a specific corollary, Corollary A.26, that says that for an
abstract simplicial complex K, if |K| is path-connected, then H1(|K|;G) ∼=
∼= H1(|K|) ⊗ G, and this result is exactly what we need to conclude our proof of
Corollary 3.34, showed above.

Therefore, this thesis is framed in a field of active research and interest, and
the work presented here is based on newly published papers (like [12]), connecting
them to more classical results (like [6]), and hence providing new points of view
and a broad understanding of the theory of reconstruction of the topological and
geometric features of an underlying Euclidean subspace.

We proceed giving an overview of the chapters:
In Chapter 1 we present definitions and fundamental results from algebraic

topology in order to give the theoretical foundation of our work, like the Nerve
Lemma 1.20 or the reach.

In Chapter 2 we develop the geometric reconstruction of an unknown Euclidean
subspaceX with positive reach, that is, we find a Čech complex constructed from a
sample of data A and fromX, and we carefully choose the radii of the balls forming
such Čech complex, so that its geometric realization is homotopy equivalent to X.
Here we have Corollary 2.14 and the new theorem, Theorem 2.16 introduced above.

In chapter 3 we consider the topological reconstruction of a geodesic subspace
of Rd, that is, the reconstruction of its homology and homotopy groups using
persistence methods. Here we find Proposition 3.25, Theorem 3.31, Corollary 3.34
and Corollary 3.11 introduced above. In addition, we have Lemma 3.18, as above,
where we reconstruct its homotopy type by the convexity radius and a dense
enough sample.

In Chapter 4 we work with the square as a particular example of an Euclidean
subspace that has reach equal to zero, where our previous results cannot be applied.
We explain several counterexamples and we give a successful reconstruction for a
very basic case and for when we consider it as a geodesic subspace.
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In the Appendix we explain concepts used throughout the thesis. In A1 we
present basic definitions in algebraic topology, in A2 we explain homotopy groups,
simplicial and singular homology and we conclude with the Universal Coefficient
Theorem A.25, introduced above. In A3 we define convergence, continuity and
gradient of a function in a metric space. In A4 we briefly introduce Rips complexes
and we relate them to Čech complexes.

Brief historical context.
Differential geometry was named as a concept by L.Bianchi (1856–1928) in 1894,
meaning manifolds equipped with a Riemannian or a more general metric. Geodesic
paths were previously introduced by Johann Bernoulli (1667-1748), in 1697, and in
our thesis we generalize manifolds into geodesic subspaces in an Euclidean space,
as Nash embedding theorem says that every Riemannian manifold can be isometri-
cally embedded into some Euclidean space. Most of the contributions to differential
geometry were made by C.F.Gauss (1777–1855) and B.Riemann (1826–1866).

In the early 20th century, H.Weyl (1885–1955) characterized a manifold as
a topological space, and together with F.Hausdorff (1868-1942) and H.Poincaré
(1854–1912), among other mathematicians, topology was developed as the study
of the properties of spaces that are invariant under continuous deformations.
H.Poincaré also developed algebraic topology, by introducing homology and the
fundamental group.

It was W.Hurewicz (1904-1956) who introduced the concept of homotopy type,
which is of great relevance since many algebraic invariants depend only upon the
homotopy type of the space.

The abstract definition of a complex was given in 1907 by M.Dehn (1878-1952)
and P.Heegaard (1871-1948), and such concept plays a fundamental role, since the
spaces that can be decomposed into cells are easier to work with. In particular,
the Čech complex is a type of simplicial complex that captures the homotopy type
of the cover of a space by balls around its points, and it was named after E.Čech
(1893–1960), a Czechoslovak mathematician who greatly contributed to the fields
of differential geometry and combinatorial topology. He also worked in detail with
the idea of the nerve of a finite open cover of a compact space, which was originally
introduced by P.S. Alexandrov (1896-1982).

Nowadays, these notions are very popular in topological data analysis, which
consists of analyzing sets of data using tools from algebraic topology and other
fields of pure mathematics, with the goal of studying shape of data.

Some good references are [26], [10], [11] and Wikipedia.
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Chapter 1

Preliminaries.

We present the fundamental notions for building up the theory of this thesis, like
the reach of a Euclidean subspace or the Nerve Lemma 1.20.

Let A,X ⊆ (M,d), where (M,d) denotes a metric space M with a distance d.
We mainly work with A and X as Euclidean subspaces, that is, M = Rd; or

with M = X .
The sample (or point cloud, or set of data) A is known, and the subspace X is

the unknown object whose topology and geometry we are interested in.

Let r = {rj | aj ∈ A} be a set of pre-specified radii, where rj ∈ R>0.

Definition 1.1. We define a subspace ball of centre aj ∈ A and radius rj by:

Bd
X(aj, rj) := {x ∈ X | d(aj, x) < rj}.

Remark 1.2. We notice that the metric d on M can be any metric. Moreover, if
M = Rd, then we have the restriction onto X of the Euclidean metric in Rd,
defined by:

dE(x, y) :=‖ x− y ‖=

√√√√ d∑
i=1

(xi − yi)2

for all x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd. In this case, the subspace
ball can also be defined by BX(aj, rj) = BRd(aj, rj) ∩ X, where BRd(aj, rj) is the
Euclidean open ball.

Clearly, subspace balls are open in X.

For X ⊆ Rd, the reach of X is intuitively a real number that describes how
curved its boundary is. To define it, first we take the points in Rd that have more
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than one nearest point in X, and afterwards we establish that the distance from
X to the clousure of such points is the reach of X. Its formal definition is:

Definition 1.3. Let X ⊆ Rd, we define the set

Y := {y ∈ Rd | ∃x1, x2 ∈ X with x1 6= x2 and dE(x1, y) = dE(x2, y) = d(X, y)}

where the distance from a point to a set is defined by d(y,X) = d(X, y) =
= infx∈X d(x, y).

The closure of Y , denoted as Y , is called the medial axis of Y , and the reach
of X, denoted by τ , is defined by:

τ := d(X, Y ) = infx∈X d(x, Y ).

For our convention, if Y is the empty set, then the reach of X is infinite.

Remark 1.4. For a convex subspace X ⊆ Rd, the reach of X is τ =∞.
That is because the set Y is always empty, since for y ∈ Rd\X, we can pick two

points x1, x2 ∈ X with x1 6= x2 such that dE(y, x1) = dE(y, x2) =: l, and since X
is convex, we take the straight line segment connecting x1 to x2, which lies entirely
in X. So, we can project y to the midpoint x of such segment (forming an angle
of 90◦), and get that d(y,X) ≤ dE(y, x) < l.

Hence, it is said that sets with positive reach are a generalization of convex
sets, as {convex sets} ⊂ {sets with positive reach}.

Example 1.5. Let X be a circle of center y0 and radius r, then Y = {y0} and
τ = r.

Definition 1.6. For X ⊆ Rd and α > 0, we define the tubular set as

Tubα := {y ∈ Rd | δX(y) < α}

where δX is a distance function defined as follows:

δX : Rd −→ R

y 7→ δX(y) := inf{‖y − x‖ | x ∈ X} = d(y,X).

Now we want to define the projection of a point in Rd to its unique nearest
point in the subspace X with reach τ > 0. We define

U(X) := {y ∈ Rd | ∃! point of X nearest to y} (1.1)
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and the projection map

πX : U(X)→ X; y 7→ πX(y) ∈ X such that δX(y) = ‖y − πX(y)‖.

To guarantee that a point y ∈ Rd has a unique nearest point in the subspace
X of reach τ > 0, we must take values α ≤ τ so that δX(y) < α ≤ τ .

Therefore, we have that Tubτ := {y ∈ Rd | δX(y) < τ} ⊆ U(X), and we
restrict πX to such subspace, giving the following definition that is used throughout
this thesis:

Definition 1.7. Let X ⊆ Rd with reach τ > 0. We define the projection map
to the subspace X by:

πX : Tubτ −→ X

y 7→ πX(y) unique nearest point of y in X

so that
δX(y) = ‖y − πX(y)‖.

We can also give another equivalent definition of the reach of an Euclidean
subspace, which is the first one given by Federer in [6]. First, the local reach at a
point is defined, and then the reach of the whole space consist of the infimum local
reach taken over each point in the space. We proceed with its formal definition:

Definition 1.8. (Alternative definition of reach.)
The local reach at a point x ∈ X is defined by

τ(x) := sup{r ∈ R | ∀y ∈ Rd such that ‖y−x‖ < r, ∃! nearest point of y in X}.

And the reach of the subspace X is defined by

τ := inf{τ(x) | x ∈ X}.

Claim 1.9. If a subspace X ⊆ Rd has positive reach τ , then X is closed in Rd.

Proof. The idea of the proof is to assume that X is not closed, so that we get a
contradiction.

If X is not closed, then X ( X. We also assume that if X is not closed and
there exists y ∈ X\X, then there exists x ∈ X such that x is a nearest point to y
in X.

Therefore, either dE(y, x) = 0 or dE(y, x) > 0.

1. If dE(y, x) = 0, then y = x, so y ∈ X, which is a contradiction with y ∈ X\X.
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2. If dE(y, x) > 0, then we can take the Euclidean ball BRd(y, dE(y, x)), which
is open in Rd.
We observe that X is dense in X (since the closure of X is exactly the whole
space X), and that BRd(y, dE(y, x))⋂X is open in X.
Since the intersection of a dense set with any open set is non-empty, and
X ⊆ X, we get that

X
⋂(

BRd(y, dE(y, x))
⋂
X
)

= X
⋂
BRd(y, dE(y, x)) 6= ∅.

Hence, we can take p ∈ X ⋂
BRd(y, dE(y, x)) so that dE(p, y) < dE(y, x), and

since p ∈ X, we conclude that x is not the nearest point to y in X. Moreover,
we can take the ball BRd(y, dE(y, p)) and find another point closer to y in X
by the same procedure, over and over again.

Therefore, we have shown that y ∈ X\X does not have a nearest point in X,
since we reached a contradiction in both cases (1) and (2). That means that

y /∈ U(X) := {y ∈ Rd | ∃! point of X nearest to y}. (1.2)
Now, since for all x ∈ X there exists p ∈ X such that dE(y, p) < dE(y, x), we

can always pick a closer point to y in X, so we obtain that d(y,X) = 0. However,
by hypothesis we had that τ > 0, therefore δX(y) = d(y,X) = 0 < τ , and by
definition of tubular set,

y ∈ Tubτ ⊆ U(X)
which contradicts (1.2).
In conclusion, such arbitrary y ∈ X\X cannot exist. Hence, X\X = ∅, which

implies that X = X, which is the definition of closed subspace.

Proposition 1.10. The distance function δX : Rd → R is Lipschitz and continu-
ous in all Rd, for any subspace X ⊆ Rd.

Proof. The idea of the proof is to show that such function is Lipschitz, and that
being Lipschitz implies being continuous.

We have that for any x, y ∈ Rd,
‖δX(y)− δX(x)‖ = |δX(y)−‖x−πX(x)‖| ≤ ‖y−πX(x)‖−‖x−πX(x)‖ ≤ ‖y−x‖,
hence ‖δX(y)−δX(x)‖ ≤ ‖y−x‖ which is the definition of Lipschitz function (with
constant K = 1).

Now (as explained in Appendix A3), δX is continuous at a point x ∈ Rd if
for all ε > 0 there exists δ > 0 such that if ‖y − x‖ < δ for all y ∈ Rd, then
‖δX(y)− δX(x)‖ < ε.
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By setting δ = ε and using that δX is Lipschitz (with constant K = 1), we
have that ‖δX(y)− δX(x)‖ ≤ ‖y − x‖ < ε.

We can do this same procedure for any x ∈ Rd, therefore δX is a continuous
function in all its domain Rd.

Corollary 1.11. The tubular set Tubτ = {y ∈ Rd | δX(y) < τ}, for τ > 0, is
open in Rd.

Proof. Such set can be written as Tubτ = δ−1
X ((−∞, τ)), where (−∞, τ) is open.

By Proposition 1.10, δX is continuous, and hence the preimage of (−∞, τ) by such
continuous function is open.

Now it comes a central tool in algebraic topology, which are the simplicial
complexes. The idea of these objects, roughly speaking, consists of a combinatorial
structure that facilitates the use of algebra in topology.

We present the definitions of simplicial complex and of simplicial map from
[15].

Let V be a set, and let P(V ) be the set of all finite, non-empty subsets of V .
Such P(V ) is named the power set of V .

Definition 1.12. An (abstract) simplicial complex is a set V and a subset
K ⊆ P(V ) such that if σ ∈ K and % ⊆ σ, then % ∈ K.

We denote a simplicial complex just by K.

Such V is called the vertex set, whose elements v ∈ V are vertices; and such
σ ∈ K is a simplex, represented by σ = [v0, . . . , vq], where vi ∈ V for i = 0, . . . , q.

If a simplex contains exactly q + 1 vertices, it is named a q-simplex and its
dimension is dim(σ) := |σ| − 1 = q. The dimension of K is defined by dim(K) :=
= sup{dim(σ) | σ ∈ K}.

Definition 1.13. Given two simplicial complexes K1 and K2, a simplicial map
F : K1 → K2 is a function F : V1 → V2 on the respective vertex sets of K1 and K2,
such that if σ = [v0, . . . , vq] is a simplex in K1, then F (σ) := [F (v0), . . . , F (vq)] is
a simplex in K2.

The following theorem is from [19] (Theorem 2.5 in the introduction).

Theorem 1.14. Let X be a set, {Ai}i∈I a collection of topological spaces with
Ai ⊆ X for every i, such that Ai ∩ Ai′ is a closed (or open) subset of Ai and of
Ai′, and the topology induced on Ai ∩Ai′ from Ai equals the topology induced from
Ai′.

Then, the finest topology on X such that the inclusion maps Ai ↪→ X are
continuous, is called the coherent topology with respect to {Ai}i∈I .
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We proceed with the construction of the geometric realization of a non-empty
abstract simplicial complexK, guided by [19] (ifK = ∅, we simply set its geometric
realization to be the empty set).

Let |K| be the space of all functions α : V → I, also called barycentric coordi-
nates, with I = [0, 1] ⊂ R, such that:

1. for any α, its support supp(α) := {v ∈ V | α(v) 6= 0} is a simplex of K.
In particular, α(v) 6= 0 for only a finite set of vertices.

2. ∑v∈V α(v) = 1, for any α.

We want to define a topology on |K|, which is going to be a coherent topology.
In order to do that, we define the closed simplex |σ|, for σ ∈ K, by

|σ| := {α ∈ |K| | α(v) 6= 0⇒ v ∈ σ}.

If σ is a q-simplex, then |σ| is in one to one correspondence with the set

{x = (x0, . . . , xq) ∈ Rq+1 | 0 ≤ xi ≤ 1, Σxi = 1} ⊆ Rq+1 (1.3)

given by xi = α(vi) for vi ∈ {v0, . . . , vq} = σ.
Moreover, we give to |σ| the subspace Euclidean topology from such one to one

correspondence.
To make |K| a topological space with the coherent topology, we need to check

the following condition: if σ1, σ2 ∈ K, then σ1 ∩ σ2 is either empty (in which case
|σ1| ∩ |σ2| = ∅) or a face of σ1 and of σ2 (in which case |σ1| ∩ |σ2| = |σ1 ∩ σ2|).

Therefore, in either case |σ1| ∩ |σ2| is a closed set in |σ1| and in |σ2|, and the
topology induced on this intersection from the first closed simplex is equal to the
topology induced from the second one. Hence, we can apply Theorem 1.14, and
get that there is a topology on |K| coherent with {|σ| | σ ∈ K}.

This also means that
|K| =

⋃
σ∈K

|σ|.

Now we have all the ingredients to formally define geometric realizations:

Definition 1.15. The geometric realization of an abstract simplicial complex
K is a topological space consisting of the set |K|, constructed as above, together
with the coherent topology. We also denote it by |K|.

We have seen that we can construct topological spaces from abstract simplicial
complexes, and it also makes sense to construct continuous maps between such
topological spaces from given simplicial maps ([19], page 113).
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We start with a simplicial map ϕ : K1 → K2, then we can define a continuous
map |ϕ| : |K1| → |K2| by

|ϕ|(α)(v′) = Σϕ(v)=v′ α(v) for v′ ∈ K2.

The definition of such continuous map can be understood in an easier way if
we present the following diagram

V1

α
��

ϕ // V2

|ϕ|(α)~~
I

where for a function α ∈ |K1| and a simplex σ = {v | α(v) 6= 0} ∈ K1, we have
that ϕ(σ) = {v′ | |ϕ|(α)(v′) 6= 0} ∈ K2, if |ϕ|(α)(v′) = Σϕ(v)=v′ α(v).

Definition 1.16. Let T be a topological space. An open cover of X ⊆ T is a
collection of subspaces U = {Ui}i∈I with Ui ⊆ T open, for every i ∈ I, such that
X ⊆ ⋃i∈I Ui.

We notice that if U = {Ui}i∈I is an open cover of X with Ui ⊆ X open, for
every i ∈ I, then X = ⋃

i∈I Ui.

Definition 1.17. An open cover of X, U = {Ui}i∈I with Ui ⊆ X for all i ∈ I,
is a good (open) cover if all its open sets and all intersections of finitely many
open sets Uα1 ∩ . . . ∩ Uαn, are either contractible or empty.

Definition 1.18. The nerve of a cover U = {Ui}i∈I , also named nerve complex,
is defined by:

N(U) := {σ = [Ui0 , · · · , Uik ] ⊆ U |
k⋂
j=0

Uij 6= ∅}.

Remark 1.19. We notice that the nerve of a cover is an abstract simplicial com-
plex, where U is the vertex set and for every non-empty finite intersection ⋂kj=0 Uij ,
the set {Ui0 , · · · , Uik} is a simplex.

The homotopy type of a space X can be recovered from the nerve complex
under certain conditions. This is shown in the Nerve Lemma, a central result
which for instance can be found in [9] (Corollary 4G.3, page 459).

Lemma 1.20 (Nerve Lemma). If U = {Ui}i∈I is a good (open) cover of a para-
compact space X, then the geometric realization of its nerve is homotopy equivalent
to X, i.e, |N(U)| ' X.
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We proceed to prove that convex subspaces in Rd are contractible. A convex
subspace X ⊆ Rd is a space such that for every two points in X, the straight line
segment connecting them lies entirely in X. This property is useful in order to
construct good covers.

Proposition 1.21. Let X ⊆ Rd be a convex subspace, then X is contractible.

Proof. We fix a point x0 ∈ X and we define a homotopy H : X × I → X as the
straight line segment joining the point x0 to any other generic point in X, that is

H(x, t) = tx0 + (1− t)x

where H is continuous and well-defined, since such line segment is contained in X
by definition of convex set. We have H(x, 0) = x = idX(x) and H(x, 1) = x0 =
= cx0(x) for all x ∈ X, where cx0 : X → {x0} ⊂ X is the constant map, so
idX ' cx0 , and as we define in Appendix A1, X is contractible.

Moreover, finite intersections of convex sets in Rd which are non-empty, are
again convex. Therefore, in [14] (Lemma 2.7.2) we can find the statement of the
following version of the Nerve Lemma for covers consisting of convex sets in Rd,
since they are good covers.

Corollary 1.22 (Nerve Lemma: Convex Version). Let U = {Ui}i∈I be a collection
of open convex sets of Rd, then |N(U)| ' ⋃i∈I Ui.
Proof. First we remark that every metric space is paracompact ([16], Theorem
41.4).

We define the subspace X := ⋃
i∈I Ui, where Ui ⊆ X open for every i ∈ I, so

that X is paracompact since it is a Euclidean subspace.
The collection U = {Ui}i∈I consist of convex sets in Rd whose finite, non-empty

intersections are again convex, so by Proposition 1.21, such sets are contractible,
and hence they form a good cover of X.

Therefore, by the Nerve Lemma 1.20, |N(U)| ' X = ⋃
i∈I Ui.

Now we introduce the Čech complex ([12]), which is going to play a fundamental
role throughout this whole thesis in recovering the homotopy type of an underlying
topological space. This type of abstract simplicial complex can be viewed as the
nerve of a collection of subspace balls.

Definition 1.23. Let X,A ⊆ (M,d), and let r = {rj | aj ∈ A} be a pre-specified
radii. We define the Čech complex by:

C d
X(A, r) := {σ = [a0, · · · , ak] ⊆ A |

k⋂
j=0

Bd
X(aj, rj) 6= ∅}
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or equivalently,

C d
X(A, r) := {σ = [a0, · · · , ak] ⊆ A | ∃x ∈ X such that d(aj, x) < rj ∀j = 0, · · · , k}.

In the case where M = Rd with the Euclidean metric dE, we usually drop it
from our notation and just write CX(A, r), except if we want to stress that we are
using dE.

If we take just one value to construct the radius of the balls, we set it as r = rj
for all aj ∈ A and we define the Čech complex as

C d
X(A, r) := {σ = [a0, · · · , ak] ⊆ A |

k⋂
j=0

Bd
X(aj, r) 6= ∅}.

A nice and classic application of the Nerve Lemma 1.20 consist of recovering
the homotopy type of an underlying space X from Čech complexes.

We can illustrate this idea by the following basic example, and in the next
chapters of this thesis, we will be using this application of the Nerve Lemma for
Euclidean subspaces (since metric spaces are paracompact by [16], Theorem 41.4)
with different properties (like having positive reach).

Example 1.24 (Classic application of the Nerve Lemma). Let X,A ⊆ (M,d) and
suppose that U = {Bd

X(aj, rj)}aj∈A is a good cover of X.
Then, we can identify N(U) with C d

X(A, r) by noticing that the vertex set of
the nerve complex is U = {Bd

X(aj, rj)}aj∈A and the vertex set of the Čech complex
is A, so that we rename each Bd

X(aj, rj) as its center aj ∈ A, and we get by the
definitions exactly the same simplices in both simplicial complexes. Finally, the
Nerve Lemma 1.20 gives us |C d

X(A, r)| ' X.

We also stress that since the Čech complex C d
X(A, r) is the nerve of the cover

{Bd
X(aj, rj)}aj∈A, if the subspace X is convex, then each ball Bd

X(aj, rj) is con-
tractible, and their finite intersections are also contractible, so we can automati-
cally apply the Nerve Lemma 1.20. However, if X ⊆ Rd is more general, without
the property of being convex, then we have to study if finite intersections of such
balls are contractible, so that the Nerve Lemma can be applied. This is done in the
next chapter through analytical and technical results for subspaces with positive
reach, since as we point out in Remark 1.4, subspaces with positive reach are a
generalization of convex subspaces.
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Chapter 2

Geometric reconstruction.

The aim of this chapter is to reconstruct geometrically a Euclidean subspace, that
is, to reconstruct its homotopy type by finding a simplicial complex constructed
from a sample of data, whose geometric realization is homotopy equivalent to the
subspace. We use Čech complexes as our simplicial complexes, and we see that
such reconstruction is satisfactory when the reach of the Euclidean subspace is
positive and we pick radii less or equal than the reach.

We divide this chapter in three different sections:
In Section 2.1 we present the necessary results used to develop our theory,

which are from [6] (Theorem 4.8 parts 4, 2, 3, 5 and 6; pages 434-438) and from
[12] (Claim 9, Lemma 10 and Claim 11), along with more detailed proofs.

In Section 2.2 we continue with a theorem from [12] (Theorem 5), that establish
the machinery for subspace balls in order to form a good cover, by determining
when finite intersections of subspace balls are contractible; and the main recon-
struction result, its corollary ([12]. Corollary 6), taking an infinite set A ⊆ Rd

rather than exclusively a finite one, in order to be more consistent with the Nerve
Lemma, and giving a new proof for this version.

In Section 2.3 we present a new theorem, Theorem 2.16, which reconstructs the
homotopy type of an underlying Euclidean subspace using the directed Hausdorff
distance, and we compare this result with an already known result, Proposition
2.18 ([17] Proposition 3.1), that follows a similar approach. We also mention some
future work.

We first begin with the following simple result to motivate all the work we
develop along this chapter.

Proposition 2.1. Let X ⊆ Rd with positive reach τ , A be a sample consisting
of the whole Euclidean space Rd, and α ≤ τ . Then, the geometric realization of
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CRd(X,α) is homotopy equivalent to X.
Proof. We approach this result by showing that X is a deformation retract of⋃
x∈X BRd(x, α). For this, we find a homotopy relative to X between the identity

map of ⋃x∈X BRd(x, α) and a retract from such union to X.
We define the retract πX : ⋃x∈X BRd(x, α)→ X as the projection which sends

a point p ∈ ⋃x∈X BRd(x, α) to its unique nearest point in X. Such map is well-
defined, since by hypothesis α ≤ τ , and therefore ⋃x∈X BRd(x, α) ⊆ Tubτ . This
map is also continuous by the following Proposition 2.2, and verifies that πX |X =
= idX .

We see that both id∪x∈X BRd (x,α) and πX agree onX, so we can define a homotopy
relative to X (defined in Appendix A1) between them:

H :
⋃
x∈X

BRd(x, α)× [0, 1] −→
⋃
x∈X

BRd(x, α); H(p, t) = tπX(p) + (1− t)p

where H is well-defined and continuous, since if a point p is in such union, then
p ∈ BRd(x0, α) for some x0 ∈ X, which means that ‖p− x0‖ < α. By definition of
πX , we have that ‖p−πX(p)‖ ≤ ‖p−x0‖ < α. So, p ∈ BRd(πX(p), α), and of course
πX(p) ∈ BRd(πX(p), α). Moreover, BRd(πX(p), α) ⊆ ⋃

x∈X BRd(x, α) because such
union is taken over all points in X. So, we can take the straight line segment
joining p and πX(p) since they are in one same convex ball of such union.

We have H(p, 0) = p = id∪x∈X BRd (x,α)(p), H(p, 1) = πX(p) for all p, and
H(x, t) = x for all x ∈ X and t ∈ [0, 1]. Hence, πX 'X id∪x∈X BRd (x,α).

By Proposition A.7, ⋃
x∈X

BRd(x, α) ' X

By the convex version of the Nerve Lemma 1.22,

|N({BRd(x, α)}x∈X)| '
⋃
x∈X

BRd(x, α)

and by identifying N({BRd(x, α)}x∈X) with CRd(X,α), as we explain in Exam-
ple 1.24, we conclude the proof.

2.1 Previous results.
The following results correspond to part 4, 2, 3, 5 and 6 of Theorem 4.8 in [6].
Proposition 2.2 (Continuity of the projection map). Let X ⊆ Rd with positive
reach τ , then the projection πX : Tubτ → X is continuous, where πX(y) is the
unique point in X such that δX(y) = ‖y − πX(y)‖.
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Proof. Since we are in a metric space, we take as the definition of continuous
map the following (as explained in Appendix A3): a map f : X → Y , with X, Y
metric spaces, is continuous if for any convergent sequence {xn}n∈N → x in X,
then {f(xn)}n∈N → f(x) in Y .

Suppose πX is not continuous. Hence, there exists a sequence {yn}n∈N of points
in Tubτ convergent to a point y ∈ Tubτ such that the sequence {πX(yn)}n∈N does
not converge to πX(y).

That is, for every ε1 > 0, there exists N1 ∈ N such that ‖yn− y‖ < ε1 for every
n ≥ N1; and there exists ε2 > 0 such that for all n ∈ N, there exists N ≥ n such
that

‖πX(yN)− πX(y)‖ ≥ ε2. (2.1)
We construct such non-convergent sequence using the different N ’s, so that we

have the sequence {πX(yn)}n∈N , where N is the set of the natural numbers N ’s.
Since ‖πX(yn) − yn‖ = δX(yn) for each n, by definition of the projection map

and by applying the Triangle Inequality twice, we get:
‖πX(yn)− y‖ ≤ ‖πX(yn)− yn‖+ ‖yn − y‖ ≤ ‖πX(y)− yn‖+ ‖yn − y‖ ≤

≤ ‖πX(y) − y‖ + ‖y − yn‖ + ‖yn − y‖ = δX(y) + 2‖yn − y‖ < τ + 2ε1, for every
n ≥ N1.

Hence, the sequence {πX(yn)}n∈N ,n≥N1 lies in a bounded subset of X. By
Bolzano-Weierstrass Theorem ([20], Corollary in page 458), every bounded se-
quence has a convergent subsequence, so we can take a subsequence {πX(ynj)}nj∈N
such that it converges to a point x ∈ X.

Also, if a sequence converges to a point, then every subsequence of such se-
quence converges to the same point. So, since {yn}n∈N → y, the subsequence
{ynj}nj∈N also converges to y.

But then, since the distance function is continuous,

δX(y) = limnj→∞ δX(ynj) = limnj→∞ ‖πX(ynj)− ynj‖ = ‖ limnj→∞ πX(ynj)−
− limnj→∞ ynj‖ = ‖x− y‖

which means that πX(y) = x, because y ∈ Tubτ , so πX(y) is the unique point
such that δX(y) = ‖y − πX(y)‖.

We get the following contradiction with (2.1):

0 = ‖x− πX(y)‖ = lim
nj→∞

‖πX(ynj)− πX(y)‖ ≥ ε2 > 0

(since if (2.1) holds, then for any subsequence {πX(ynj)}nj∈N of {πX(yn)}n∈N

we also have that ‖πX(ynj)− πX(y)‖ ≥ ε2).
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Therefore, the projection map πX has to be continuous in Tubτ .

Proposition 2.3. Let X ⊆ Rd and let v be a vector in Rd.
If a ∈ X and P := {v | πX(a + v) = a}, Q := {v | δX(a + v) = ‖v‖},

then the sets P and Q are convex.

Proof. It is enough to do the proof for a = 0, since we can just translate for any
other point in X. We notice that

• (i) v ∈ P if and only if ‖b− v‖ > ‖v‖ for all b ∈ X\{a}.

• (ii) v ∈ Q if and only if ‖b− v‖ ≥ ‖v‖ for all b ∈ X.

To prove the implication to the right in (i), we assume that v ∈ P . Hence by
definition of P , a is the nearest point of a+v inX and δX(a+v) = ‖a+v−a‖ = ‖v‖,
therefore for any other point b ∈ X\{a} we have that dE(a + v, b) > δX(a + v),
and since a = 0 by assumption, dE(a+ v, b) = ‖b− v‖. So, ‖b− v‖ > ‖v‖.

To prove the implication to the left in (i), we assume that ‖b − v‖ > ‖v‖ for
b 6= a. Then this means that a is the closest point to v + a in X, with a = 0, so
v ∈ P .

To prove the implication to the right in (ii), we assume that v ∈ Q and b ∈ X,
hence δX(a+ v) = ‖v‖ and ‖b− a− v‖ = dE(a+ v, b) ≥ δX(a+ v) = ‖v‖. Giving
the value a = 0, we finish this part of the proof.

To prove the implication to the left in (ii), we assume that ‖b− v‖ ≥ ‖v‖ with
a = 0. Then, by definition of δX , we have dE(a, a + v) ≥ δX(a + v) ≥ ‖v‖. But
dE(a, a+ v) = ‖v‖, hence δX(a+ v) = ‖v‖.

We proceed showing that P and Q are convex. Let

‖b− v‖2 − ‖v‖2 = b • (b− 2v) (2.2)

for b, v ∈ Rd, since we can represent the scalar products in the following way
and get the equality (2.2):

b • (b− 2v) = 〈b, b− 2v〉 = 〈b, b〉 − 2〈b, v〉,
‖b− v‖2 − ‖v‖2 = 〈b− v, b− v〉 − 〈v, v〉 = 〈b, b〉 − 2〈b, v〉+ 〈v, v〉 − 〈v, v〉.

To check that P is convex, we take v, w ∈ P and prove that the convex com-
bination sv + tw is also contained in P , for s, t ≥ 0 such that s+ t = 1.

To show this, we take b ∈ X\{a} and we apply the equality (2.2) to the
following expression:
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‖b− (sv+ tw)‖2−‖sv+ tw‖2 = b • (b− 2sv− 2tw) = b • (s(b− 2v) + t(b− 2w)) =

= sb • (b− 2v) + tb • (b− 2w) = s(‖b− v‖2 − ‖v‖2) + t(‖b− w‖2 − ‖w‖2) (2.3)
The expression (2.3) is strictly positive by (i) since v, w ∈ P , and hence we get

that sv + tw ∈ P also by (i).
We proceed in an analogous way to check that Q is convex, taking v, w ∈ Q

and showing that the expression (2.3) is non-negative, with b ∈ X allowed to be
b = a, and hence by (ii), sv + tw ∈ Q.

The following result stresses that the projection of a point y in Rd to a space
X ⊆ Rd is unique, and moreover there exists a formula for calculating it, which is

πX(y) = y − δX(y)gradδX(y)

where gradδX(y) denotes the gradient of δX(y), defined in Appendix A3.

Proposition 2.4. Let X ⊆ Rd with positive reach τ , y ∈ Rd\X and δX differen-
tiable at y. Then y ∈ U(X) and

gradδX(y) = y − πX(y)
δX(y) .

Proof. We first prove the equality and later that y ∈ U(X).
We take a ∈ X such that δX(y) = ‖y − a‖.
We consider the line segment (1− t)y + ta, for 0 ≤ t ≤ 1. Hence,
δX((1− t)y+ ta) := infx∈X ‖(1− t)y+ ta− x‖ = infx∈X ‖y− t(y− a)− x‖ ≥

≥ infx∈X (‖y − x‖ − t‖y − a‖) = δX(y)− tδX(y) = (1− t)δX(y)

and we also have

δX((1− t)y+ ta) := infx∈X ‖(1− t)y+ ta− x‖ = infx∈X ‖(1− t)y+ ta+ tx−
− tx− x‖ = infx∈X ‖(1− t)y + ta− tx− (1− t)x‖ ≤ (1− t)infx∈X ‖y − x‖+
+ t infx∈X ‖a− x‖ = (1− t)δX(y)

(since δX(a) = 0 as a ∈ X).
Therefore, by the two previous inequalities, we get

δX((1− t)y + ta) = (1− t)δX(y). (2.4)
Now we derivate (2.4) with respect to t:
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gradδX((1− t)y + ta) • (−y + a) = −δX(y), equivalently,
‖gradδX((1− t)y + ta)‖‖a− y‖ cos θ(t) = −δX(y), and since ‖a− y‖ = δX(y), the
two terms cancel and we get

‖gradδX((1− t)y + ta)‖ cos θ(t) = −1. (2.5)
For t = 0, we have the vectors gradδX(y) and (a−y) over the same line (which

is the straight line through y and a). The vector (a − y) points towards a and
gradδX(y) (which is well-defined as δX is differentiable at y by hypothesis), points
towards y. That is because the gradient points to the direction of increase, and at
the point y, the distance δX(y) is bigger than for any other value δX((1− t)y+ ta)
(since y /∈ X and a ∈ X, so δX decreases as long as it gets closer to a).

Therefore, such two vectors can be written as a − y = −λgradδX(y) for some
constant λ ∈ R, and they form an angle θ(0) = 180◦. So, cos θ(0) = −1 and the
expression (2.5) (for t = 0) becomes

‖gradδX(y)‖ = 1.

We return now to the first expression of the derivative setting t = 0,
gradδX(y) • (−y + a) = −δX(y). Hence,

gradδX(y) • y − a
δX(y) = 1. (2.6)

In addition, it is known that for any two unit vectors v, w ∈ Rd in the same
direction such that v • w = ‖v‖‖w‖ cos θ = 1 (since θ = 0), then v = w.

So, since we have proven that gradδX(y) is a unit vector, and so is y − a
δX(y) as

δX(y) = ‖y − a‖, by (2.6) it follows that

gradδX(y) = y − a
δX(y)

(since we are changing the direction of the vector a − y, and now y − a and
gradδX(y) form an angle of θ = 0).

We now prove that y ∈ U(X) := {y ∈ Rd | ∃! point of X nearest to y}, by
showing that y ∈ Rd\X has a unique nearest point in X.

Let a ∈ X such that δX(y) = ‖y − a‖, and let a′ ∈ X such that δX(y) = ‖y −
−a′‖. By the formula of the statement of this proposition that we have just proven,
we have gradδX(y) = y − a

δX(y) and gradδX(y) = y − a′

δX(y) , therefore a = a′, and we

can denote such point as πX(y), hence y ∈ U(X).
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Definition 2.5. A subspace N ⊆ Rd is a set of Lebesgue measure zero if for
every ε > 0, it can be covered by countably many products of d-dimensional unit
cubes and the volume of the union of such d-cubes is less than ε.

The next theorem is from [7] (Theorem 3.1.6).

Theorem 2.6 (Rademacher’s Theorem). If U ⊆ Rd is open and f : U → Rm is
Lipschitz, then f is differentiable almost everywhere in U , that is, the points in U
at which f is not differentiable form a set of Lebesgue measure zero.

Remark 2.7. We have already seen in Corollary 1.11 that for X ⊆ Rd with
positive reach τ , the subspace Tubτ is open in Rd. Also, by definition of such
tubular set, we always have that X ⊆ Tubτ .

By Claim 1.9, if X ⊆ Rd has positive reach, then X is closed. Hence,

Tubτ\X = Tubτ
⋂

(Rd\X)

is open in Rd, since a finite intersection of open sets is open.

We slightly modify the original statements of [6] (Theorem 4.8, parts 5 and
6), because there it is taken the interior of the sets U(X) and U(X)\X, but since
Tubτ ⊆ U(X), we restrict such results to the sets Tubτ and Tubτ\X because these
are the ones that we need for the next results, and by Corollary 1.11 and Remark
2.7, they are open in Rd, so their interiors are the sets themselves. We give the
corresponding next two results:

Proposition 2.8. The distance function δX : Rd → R is differentiable on Tubτ\X.

Proof. By Proposition 1.10, δX is Lipschitz on all Rd, and we can take its restriction
to the subspace Tubτ\X ⊆ Rd, which is open by Remark 2.7. Hence, by Theorem
2.6, δX is differentiable almost everywhere in Tubτ\X.

We take y ∈ Tubτ\X such that δX is differentiable at y. Then, by Proposition
2.4, (

∂δX
∂x1

(y), . . . , ∂δX
∂xd

(y)
)

= gradδX(y) = y − πX(y)
δX(y)

and by Proposition 2.2, πX is continuous on Tubτ . So,

y − πX(y)
δX(y) : Tubτ\X → Rd

is a continuous map.
Hence, since the partial derivatives of δX at y can be defined almost everywhere

in the open subset Tubτ\X, and we can extend them by the continuous function
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y − πX(y)
δX(y) , then by Lemma 4.7 in [6], we precisely get that ∂δX

∂x1
(y), . . . , ∂δX

∂xd
(y)

exist for all y ∈ Tubτ\X, which is the definition of δX differentiable on Tubτ\X.
Moreover, such partial derivatives are continuous, which is the definition of being
continuously differentiable.

Proposition 2.9. If X ⊆ Rd has positive reach τ and there is a point a ∈ X,
a vector v ∈ Rd and 0 < ε = sup{t ∈ R | πX(a + tv) = a} < ∞, then
a+ εv /∈ Tubτ .

Proof. Let v ∈ Rd such that ‖v‖ = 1, and suppose that y := a+ εv ∈ Tubτ , where
y /∈ X (since πX(y) = a by how we have defined y, and so δX(y) = ‖y−πX(y)‖ =
= ‖a+ εv − a‖ = ε > 0, which means that y /∈ X as the distance from a point in
a set to such set, is always zero).

By Proposition 2.2, πX is continuous, and by Proposition 2.8, δX is differen-
tiable at y ∈ Tubτ\X. Hence, we can apply Proposition 2.4 and get

gradδX(y) = y − πX(y)
δX(y) = a+ εv − a

ε
= v.

Let C : (−r, r) −→ Tubτ\X, for a real number r > 0, be any continuous map
solving the differential equation

C ′ = (gradδX) ◦ C with initial condition C(0) = y.

By Peano Existence Theorem (for a reference, see Wikipedia), such function
C exists for such initial value problem, giving a local solution, where (−r, r) is a
neighborhood of 0 in R.

For s ∈ (−r, r), ‖s‖ < r and

‖C ′(s)‖ = ‖gradδX(C(s))‖ = 1 (2.7)
so, by the Chain Rule and by (2.7),

(δX ◦ C)′(s) = gradδX(C(s)) • C ′(s) = C ′(s) • C ′(s) = ‖C ′(s)‖‖C ′(s)‖cos(0) = 1.
(2.8)

Now, for −r < p < q < r, we take an arbitrary point x ∈ X and by definition
of πX , (2.7), (2.8) and the Fundamental Theorem of Calculus ([20], Corollary in
page 287), we get:

∫ q

p
‖C ′(s)‖ds =

∫ q

p
1ds =

∫ q

p
(δX◦C)′(s)ds = (δX◦C)(q)−(δX◦C)(p) ≤ ‖C(q)−x‖−
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−‖C(p)− x‖ ≤ ‖C(q)− C(p)‖.
It follows that the curve C parameterizes a straight line segment between C(−r)

and C(r), in the direction C ′(0) = gradδX(y) = v.
We take 0 < s < r, and we define t := ε + s > ε, hence C(s) is a point

between C(0) = y and C(r), and since C ′(0) = v, we have that C(s) = y + sv =
a+ εv + sv = a+ tv.

Since ‖v‖ = 1 and δX(y) = ε,

δX(C(s)) = δX(y + sv) = δX(y) + s = ε+ s = t = ‖a+ tv − a‖ = ‖C(s)− a‖.

We defined the map C such that C(s) belongs to Tubτ for any s ∈ (−r, r), so
δX(C(s)) = ‖C(s)−πX(C(s))‖, and therefore a = πX(C(s)), where C(s) = a+ tv.

This implies that t ∈ {t′ ∈ R | πX(a + t′v) = a}, but t > ε where ε is
the supremum of such set. Hence, we have a contradiction and we conclude with
a+ εv /∈ Tubτ .

The following three results correspond to Claim 9, Lemma 10 and Claim 11 in
[12]. The first one presents a simple calculation of the distance from one vertex of
a triangle to another point lying on the edge formed by the other two vertices:

Claim 2.10. Let x, y, z ∈ Rd and λ ∈ [0, 1], then

‖(λy + (1− λ)z)− x‖ =
√
λ‖y − x‖2 + (1− λ)‖z − x‖2 − λ(1− λ)‖y − z‖2.

Proof. The distance from λy + (1− λ)z to x can be expanded as
‖(λy + (1− λ)z)− x‖2 = ‖(λ(y − x) + (1− λ)(z − x)‖2 = λ2‖y − x‖2 + (1−

− λ)2‖z − x‖2 + 2λ(1− λ)〈y − x, z − x〉.
Then, applying the identity 2〈y − x, z − x〉 = ‖y − x‖2 + ‖z − x‖2 − ‖y − z‖2

to this last expansion and after some calculations, we get
‖(λy + (1− λ)z)− x‖2 = λ‖y − x‖2 + (1− λ)‖z − x‖2 − λ(1− λ)‖y − z‖2.
And the claim directly follows.

Given a straight line segment whose endpoints are in X ⊆ Rd, the follow-
ing lemma gives a bound on the distance from any point on that segment to its
projection on X.

Lemma 2.11. Let X ⊆ Rd with positive reach τ and y, z ∈ X. Let u := λy+(1−
− λ)z, for λ ∈ [0, 1], be such that δX(u) < τ . Then

δX(u) = ‖πX(u)− u‖ ≤ τ −
√
max{τ 2 − λ(1− λ)‖y − z‖2, 0}.
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Proof. If πX(u) = u, then there is nothing to prove.
Suppose πX(u) 6= u, and let

w := πX(u) + τ
u− πX(u)
‖u− πX(u)‖ .

Then, we have that ‖w − πX(u)‖ = τ and w − u =
(
τ − ‖πX(u)− u‖
‖πX(u)− u‖

)
(u−

− πX(u)). Therefore,

‖u− πX(u)‖ = ‖w − πX(u)‖ − ‖w − u‖ (2.9)
since geometrically, the points w, u and πX(u) are over the same line, with
dE(w, πX(u)) = τ , dE(w, u) := ε > 0 and dE(u, πX(u)) = τ − ε < τ by the
hypothesis δX(u) < τ .

We have the following equality

πX

(
πX(u) + ‖u− πX(u)‖ u− πX(u)

‖u− πX(u)‖

)
= πX(u).

Now we define a point

wr := πX(u) + r
u− πX(u)
‖u− πX(u)‖ with r < τ.

We see that δX(wr) = ‖wr − πX(wr)‖ ≤ ‖wr − πX(u)‖ = r < τ , which by
definition of tubular set means that

wr = πX(u) + r
u− πX(u)
‖u− πX(u)‖ ∈ Tubτ . (2.10)

We apply by contraposition Proposition 2.9 to (2.10), hence, r < sup{t | πX(πX(u)+

+ tv) = πX(u)} with

v = u− πX(u)
‖u− πX(u)‖ .

We pick s ∈ {t | πX(πX(u) + tv) = πX(u)} such that s > r.
Now we apply Proposition 2.3, with such a as our πX(u), to πX(πX(u)+sv) =

= πX(u), getting that sv ∈ P where P is a convex set. We observe that also 0 ∈ P .
Hence, for r ∈ [0, s], we have the convex combination rv = α(sv) + (1 − α)0, for
α ∈ [0, 1]. We conclude that rv ∈ P , so again by Proposition 2.3,

πX(wr) = πX

(
πX(u) + r

u− πX(u)
‖u− πX(u)‖

)
= πX(u)
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for all r < τ .
We also have BRd(w, τ) ∩X = ∅.
To prove this empty intersection, we notice that it holds if and only if

d(w,X) ≥ τ . We see that

limr→τ− d(wr, X) = limr→τ− ‖wr−πX(wr)‖ = limr→τ− ‖wr−πX(u)‖ = limr→τ− r =

= τ .
So, d(w,X) = limr→τ− d(wr, X) = τ .

We can conclude that y and z must not be in BRd(w, τ) because they belong
to X by hyphotesis, hence ‖w − y‖ ≥ τ and ‖w − z‖ ≥ τ .

By applying Claim 2.10 to ‖w − u‖, we get

‖w−u‖ =
√
λ‖w − y‖2 + (1− λ)‖w − z‖2 − λ(1− λ)‖y − z‖2 ≥

√
τ 2 − λ(1− λ)‖y − z‖2.

(2.11)
Then, from (2.11) and since ‖w− πX(u)‖ = τ , the expression (2.9) is bounded

as follows:

‖u− πX(u)‖ ≤ τ −
√
max{τ 2 − λ(1− λ)‖y − z‖2, 0}.

Claim 2.12. Let X ⊆ Rd be a set with positive reach τ , y, z ∈ X, λ ∈ [0, 1] and
u := λy + (1− λ)z. Let x ∈ Rd with ‖x− y‖ < τ and ‖x− z‖ < τ . Then

‖x− πX(u)‖ ≤
√
λ‖y − x‖2 + (1− λ)‖z − x‖2.

Proof. Let r :=
√
λ‖y − x‖2 + (1− λ)‖z − x‖2 <

√
λτ 2 + (1− λ)τ 2 = τ .

From Claim 2.10 we have the following equality

‖x−u‖ =
√
λ‖y − x‖2 + (1− λ)‖z − x‖2 − λ(1− λ)‖y − z‖2 =

√
r2 − λ(1− λ)‖y − z‖2

(2.12)
We also notice that by the Triangle Inequality and by hypothesis:

‖y − z‖ ≤ ‖y − x‖+ ‖x− z‖ < 2τ
and as illustrated in the following figure, by definition of δX ,

δX(u) ≤ min{‖u− y‖, ‖u− z‖} < τ.
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Figure 2.1: (Every point in the line segment between two points in X such that
they are at a distance less than the reach from a chosen point in Rd, belongs to
Tubτ and therefore has a unique nearest point in X).

Hence, we can apply Lemma 2.11 and obtain the following inequality:

‖u− πX(u)‖ ≤ τ −
√
max{τ 2 − λ(1− λ)‖y − z‖2, 0}. (2.13)

Then, from (2.12), (2.13) and by applying the Triangle Inequality to ‖x−
− πX(u)‖, we get:

‖x−πX(u)‖ ≤ ‖x−u‖+‖u−πX(u)‖ ≤
√
r2 − λ(1− λ)‖y − z‖2+τ−

√
τ 2 − λ(1− λ)‖y − z‖2 =

= r−λ(1−λ)‖y−z‖2

 1
r +

√
r2 − λ(1− λ)‖y − z‖2

− 1
τ +

√
τ 2 − λ(1− λ)‖y − z‖2

.

The product λ(1−λ)‖y− z‖2 is always non-negative, and since r < τ , the sub-

traction
 1
r +

√
r2 − λ(1− λ)‖y − z‖2

− 1
τ +

√
τ 2 − λ(1− λ)‖y − z‖2

 is always

positive. Hence,

‖x− πX(u)‖ ≤ r.
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2.2 Reconstruction of the homotopy type of a
Euclidean subspace.

In this section we show a theorem from [12] (Theorem 5) that establish when finite
intersections of Euclidean balls intersected with X are contractible (it is in fact
when the radii of the balls are less or equal than the reach of X); and the main
reconstruction result, its corollary ([12]. Corollary 6), taking an infinite set A ⊆ Rd

rather than exclusively a finite one, and giving a new proof for this version.

Theorem 2.13. Let X ⊆ Rd with positive reach τ , A ⊆ Rd be a finite subspace
and {rj | aj ∈ A} be a set of radii. If maxaj∈A rj ≤ τ , then ⋂aj∈A BX(aj, rj) is
either contractible or empty.

Proof. Let fix aα ∈ A and y1, y2 ∈ BRd(aα, rα) ∩X.
By definition of subspace ball for X ⊆ Rd, BX(aα, rα) = BRd(aα, rα) ∩X.
We define the straight line segment connecting the points y1 and y2 in such

Euclidean ball, since it is convex:

l : [0, 1] −→ BRd(aα, rα)

t 7→ l(t) = ty1 + (1− t)y2

Now, we want to define the curve between the projections to X of the points
lying on the line segment l(t), where such projections are the images of the map
πX : Tubτ → X.

In order to do that, first we need to check that l(t) ∈ Tubτ = {x ∈ Rd | δX(x) <

< τ}, so that πX(l(t)) is well-defined.
Since y1, y2 ∈ BRd(aα, rα) with rα ≤ τ , and by the Triangle Inequality, we get

that

‖y1 − y2‖ ≤ ‖y1 − aα‖+ ‖aα − y2‖ < 2τ.

We have that l(t) is a point in the line segment connecting y1 and y2, for any
t ∈ [0, 1], so as illustrated in Figure 2.1 from Claim 2.12, either ‖l(t)− y1‖ < τ or
‖l(t)− y2‖ < τ .

So, since y1, y2 ∈ X,

δX(l(t)) ≤ min{‖l(t)− y1‖, ‖l(t)− y2‖} < τ

and we have by definition that l(t) ∈ Tubτ .
Therefore, let
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γy1,y2 : [0, 1] −→ X

t 7→ πX(l(t))

where πX : Tubτ → X is the projection from a point x ∈ Tubτ to its nearest
point in X. This projection is continuous by Proposition 2.2, hence γy1,y2 is also
continuous. Moreover, since l(t) ∈ Tubτ with τ positive, the projection of l(t) for
all t ∈ [0, 1] is well-defined, and so is γy1,y2 .

We want to check that γy1,y2 is contained in BRd(aα, rα) for all t ∈ [0, 1].
In order to do this, we apply Claim 2.12, where aα ∈ A ⊆ Rd and y1, y2 ∈

∈ X ∩BRd(aα, rα) with ‖aα − y1‖ < rα ≤ τ , ‖aα − y2‖ < rα ≤ τ , and we get:
‖aα − γy1,y2(t)‖ = ‖aα − πX(l(t))‖ ≤

√
λ‖aα − y1‖2 + (1− λ)‖aα − y2‖2 <

<
√
λr2

α + (1− λ)r2
α = rα.

Hence, γy1,y2(t) ∈ BRd(aα, rα) for all t ∈ [0, 1], so γy1,y2(t) ∈ X ∩BRd(aα, rα) for
all t ∈ [0, 1].

Now we fix y0 ∈
⋂
aα∈A BRd(aα, rα)⋂X and we give the following continuous

and well defined map:

H : (⋂aα∈A BRd(aα, rα)⋂X)× [0, 1] −→ ⋂
aα∈A BRd(aα, rα)⋂X

(y, t) 7→ γy0,y(t) = πX(ty0 + (1− t)y)

We see that this is a homotopy, sinceH(y, 0) = y for all y ∈ ⋂aα∈A BRd(aα, rα)⋂⋂
X, which is the identity map in ⋂aα∈A BRd(aα, rα)⋂X; and H(y, 1) = y0 for all

y ∈ ⋂aα∈A BRd(aα, rα)⋂X, which is the constant map cy0 .
Hence, id∩aα∈A BRd (aα,rα)∩X ' cy0 .
So by definition (Appendix A1), ⋂aα∈A BRd(aα, rα) ∩X is contractible.

In this theorem 2.13 we have shown that a finite intersection of subspace balls
is either empty, or contractible, in the case of being non-empty.

Note that we have not stated that we have a good cover, because we did not
suppose at any moment that such collection of subspace balls covers our space
X ⊆ Rd. Such assumption is only included in the next corollary 2.14, and there
we apply this theorem to such cover, getting a good cover from where to reconstruct
the homotopy type of X through the Nerve Lemma 1.20.
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Corollary 2.14. Let X ⊆ Rd with positive reach τ , A ⊆ Rd and suppose that
{BX(aj, rj)}aj∈A is a cover of X, where r = {rj | aj ∈ A} is a set of radii.
If supaj∈A rj ≤ τ , then X is homotopy equivalent to the geometric realization of
CX(A, r).

Proof. We need to show that {BX(aj, rj)}aj∈A is a good cover of X. In order to do
that, we take any finite subset σ ⊆ A, and sincemaxaj∈σ rj ≤ τ , we apply Theorem
2.13, setting that A as our finite set σ. Therefore, we get that ⋂aj∈σ BX(aj, rj) is
either contractible or empty.

Also, x ∈ ⋂aj∈σ BX(aj, rj) if and only if x ∈ BX(aj, rj) for every aj ∈ σ.
To check that each of the subspace balls forming such cover is contractible, we

take a finite subset of A consisting of just one point, that is, σ = {aj} ⊆ A. Then,
x ∈ ⋂aj∈{aj} BX(aj, rj) if and only if x ∈ BX(aj, rj).

Hence, BX(aj, rj) = ⋂
aj∈{aj} BX(aj, rj), where rj ≤ τ , so by Theorem 2.13,

such subspace ball is contractible.
Therefore, we have by definition that {BX(aj, rj)}aj∈A is a good cover of X, so

by the Nerve Lemma 1.20,

|N({BX(aj, rj)}aj∈A)| ' X.

Then, by identifying N({BX(aj, rj)}aj∈A) with the Čech complex CX(A, r) (as
explained in Example 1.24), we get that

|CX(A, r)| ' X.

2.3 Reconstruction of the homotopy type of a
Euclidean subspace using the directed Haus-
dorff distance.

Here we present a new theorem, Theorem 2.16, which reconstructs the homotopy
type of an underlying Euclidean subspace using the directed Hausdorff distance
and a Čech complex of an appropriate radius. It is a strong result, because it
recovers the homotopy type without having to include in its statement that we
have a cover of such subspace, since we find one along the proof which is a good
cover. We also mention some future work and a discussion regarding the well-
known result Proposition 2.18 ([17] Proposition 3.1).
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The intuitive idea of the directed Hausdorff distance is that two sets are close
in the Hausdorff distance if every point of either set is near to some point of the
other set. Hence, the Hausdorff distance can be defined as the supreme distance
of all the distances from a point in one set X to the nearest point in the other set
Y .

Definition 2.15. Let X, Y ⊆ (M,d) be two metric subspaces. We define the
directed Hausdorff distance between X and Y by:

−→
dH(X, Y ) := supx∈X infy∈Y d(x, y),

Where −→dH(X, Y ) = 0 if X ⊆ Y .

Theorem 2.16. Let X ⊆ Rd with positive reach τ , and let A ⊆ Rd be compact. If
α ∈

(−→
dH(X,A), τ

]
, then the geometric realization of CX(A,α) is homotopy equiv-

alent to X.

Proof. We notice that
(−→
dH(X,A), τ

]
6= ∅ if and only if −→dH(X,A) ≤ τ .

We first check that the set of subspace balls {BX(aj, α)}aj∈A forms a cover of
X, i.e, X ⊆ ⋃aj∈ABX(aj, α).

For every x ∈ X, we have the following inequalities by definition of the directed
Hausdorff distance and by hypothesis:

infaj∈A dE(x, aj) ≤
−→
dH(X,A) < α.

We take the restriction of the Euclidean distance to {x} × A ⊆ Rd × Rd,
dE : {x}×A→ R, which is a continuous function defined on a compact subspace,
since the topological product of two spaces is compact if and only if each of them
is compact ([21], Theorem 13.21).

A continuous function defined on a compact reaches its infimum ([21], Corollary
13.18), hence, there exists an element a0 ∈ A such that

dE(x, a0) = infaj∈A dE(x, aj) < α.

So, by definition of subspace ball, x ∈ BX(a0, α) and x ∈ ⋃aj∈A BX(aj, α).
Since {BX(aj, α)}aj∈A is a cover of X and α ≤ τ , we apply Corollary 2.14 and

get that |CX(A,α)| ' X. Moreover, we implicitly obtain that {BX(aj, α)}aj∈A is
a good cover of X.

Remark 2.17. Theorem 2.16 also holds if we take different radii, that is, if r =
= {rj | aj ∈ A} such that infaj∈A rj >

−→
dH(X,A) and supaj∈A rj ≤ τ , instead of

taking a unique value α ∈
(−→
dH(X,A), τ

]
.
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The only change in the proof is that there exists a0 ∈ A such that dE(x, a0) =
= infaj∈A dE(x, aj) < infaj∈A rj ≤ r0, so x ∈ BX(a0, r0) and x ∈ ⋃aj∈A BX(aj, rj).
Hence, {BX(aj, rj)}aj∈A is a cover of X and since supaj∈A rj ≤ τ , we apply Corol-
lary 2.14 and get that |CX(A, r)| ' X.

Some future work can be to find new bounds for the radii that are larger than
the reach of the subspace, so that we still recover its homotopy type. For that, in
the original paper [12] (Theorem 5 and Corollary 6), our main reference in Chapter
2, it is also discussed the case when A ⊆ X, since for this particular case, Theorem
2.13 and Corollary 2.14 also hold for a bound of the radii slightly bigger than the
reach τ > 0 of the subspace X, which is supaj∈A rj ≤

√
2τ .

We can also look at the new paper [13] from the same authors of [12], where
they give the bound rj ≤

√
τ 2 + (τ − δX(aj))2 for every aj ∈ A, providing a new

version for Theorem 2.13 and Corollary 2.14 ([13] Theorem 9 and Corollary 10).

2.3.1 Discussion and contributions.
We now compare our Theorem 2.16 with the well-known result from [17] (Propo-
sition 3.1), which states the following:

Proposition 2.18. For X a compact submanifold in Rd with positive reach τ ,
and A a finite subspace in Rd such that −→dH(X,A) = ε <

√
3
20 τ , then for all

α ∈ (2ε,
√

3
5 τ), the open set U := ⋃

aj∈A BRd(aj, α) deformation retracts into X.
Therefore, X ' ⋃aj∈A BRd(aj, α).

First of all, we notice that ⋃aj∈A BRd(aj, α) is homotopy equivalent to |CRd(A,α)|
by the convex version of the Nerve lemma 1.22.

Hence, this result is showing us that under such conditions, the ambient Čech
complex CRd(A,α) recovers the homotopy type of a compact submanifold X ⊆ Rd.

Let us proceed with our discussion.

1. We have found in our theorem 2.16 a larger interval
(−→
dH(X,A), τ

]
which

contains (2ε,
√

3
5 τ) from Proposition 2.18, so we have a wider range of choice

from where to pick the values α that will determine the radius of the subspace
balls which form the Čech complexes we reconstruct the homotopy type of
X from.

2. Proposition 2.18 works with a somehow trivial good cover ofX, {BRd(aj, α)}aj∈A,
since it consists of Euclidean open balls which are convex, and therefore con-
tractible (as we have shown in Proposition 1.21). We instead construct a
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cover {BX(aj, α)}aj∈A in the proof of Theorem 2.16, where X does not need
to be convex, and by the previous results presented along this chapter, we
show that it is indeed a good cover.

3. We work with a more general Euclidean subspace X, instead of just compact
submanifolds in a Euclidean space, even though in both cases we require the
reach to be positive.

4. We proved that the sample A can be infinite, as long as it is compact.
This might only be relevant in more theoretical contexts, since it is more
convenient to stick to finite samples in applied topological problems, as these
are easier to compute. Also, recovering the homotopy type from CRd(A,α)
by Proposition 2.18 makes it possible to do computations, since we know the
spaces A and Rd; whereas recovering the homotopy type from CX(A,α) does
not allow us to compute the topological space |CX(A,α)|, since the subspace
X is unknown.
However, it might be more interesting to work with this last simplicial
complex theoretically, and approximate its computation through inclusions
with other Čech complexes that are possible to compute. For example, if
A ⊆ X ⊆ Rd, then we have the following inclusions

CA(A,α) ↪→ CX(A,α) ↪→ CRd(A,α)

where CA(A,α) and CRd(A,α) are possible to compute. We will study this
in the next chapter.

38



Chapter 3

Topological reconstruction.
Geometric reconstruction of
geodesic subspaces.

In this chapter we consider the topological reconstruction of a Euclidean subspace,
that is, the reconstruction of its homology and homotopy groups.

In Section 3.1 we present inclusions of filtered Čech complexes, which form
commutative diagrams (Proposition 3.3). We work with the length metric and the
restriction of the Euclidean metric on X ⊆ Rd, and by the distortion of X and
Dowker’s Theorem 3.10, we find homotopy equivalences and new commutative
diagrams (Corollay 3.11).

In Section 3.2 we define geodesic subspace and we reconstruct the homotopy
type of such subspace using its convexity radius and a dense enough sample
(Lemma 3.18).

In Section 3.3 we define persistence modules and groups, and interleavings
between them. We show interleavings between homology and homotopy groups
constructed from Čech complexes by a geodesic subspace and a dense enough
sample, understanding such groups as persistences (Proposition 3.25), and we
conclude giving an isomorphism between fundamental groups of the geometric
realizations of different Čech complexes, paying attention to the critical values
of such persistences (Theorem 3.31), and an analogous isomorphism for the first
homology groups with coefficients in an abelian group (Corollary 3.34) applying
Hurewicz Theorem 3.33 and the Universal Coefficient Theorem for Homology A.25.
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3.1 Filtrations via Čech complexes.

Now we study how different Čech complexes form a filtration, that is, a nested
sequence of increasing subsets. We recall that the definition of Čech complex was
given in 1.23.

Definition 3.1. The Čech filtration of a metric space (X, d) is the collection
of Čech complexes {C d

X(X, p)}p>0 with the inclusions ip,q : C d
X(X, p) ↪→ C d

X(X, q),
for all 0 < p < q, that are identities on the vertex sets.

We say that K := ⋃
p C d

X(X, p) is a filtered simplicial complex, where Kp :=
= C d

X(X, p) for each p > 0.

We also see in the next results other inclusions different from this previous
definition, where the Čech complexes are for example of the form {C d

X(A, p)}p>0
and {C d

X(X, p)}p>0 for A ⊆ (X, d), and therefore we can get inclusions of filtered
complexes C d

X(A, p) ↪→ C d
X(X, p) for each p > 0. On the other hand, we work

with two metrics on an Euclidean subspace X where one is greater than the other,
obtaining an important parameter, called the distortion of X, which leads to some
particular inclusions between Čech complexes, as shown in Corollary 3.11.

Lemma 3.2. Let α ∈ R>0. For A ⊆ X ⊆ (M,d) and B ⊆ (M,d), where M is a
metric space with a distance d, we have the following two inclusions:

C d
B(A,α) ↪→ C d

B(X,α) C d
A(B,α) ↪→ C d

X(B,α).

Proof. On the one hand, C d
B(A,α) = {σ ⊆ A | ∃b ∈ B such that d(b, a) <

< α ∀a ∈ σ} and C d
B(X,α) = {σ ⊆ X | ∃b ∈ B such that d(b, x) < α ∀x ∈ σ},

so since A ⊆ X, then every simplex σ ⊆ A is a simplex in X.
Hence, C d

B(A,α) ↪→ C d
B(X,α).

On the other hand, C d
A(B,α) = {σ ⊆ B | ∃a ∈ A such that d(a, b) < α ∀b ∈

∈ σ} and C d
X(B,α) = {σ ⊆ B | ∃x ∈ X such that d(x, b) < α ∀b ∈ σ}, so since

A ⊆ X, then for every element a ∈ A, we have that a ∈ X.
Hence, C d

A(B,α) ↪→ C d
X(B,α).

Proposition 3.3. Let α ∈ R>0. For A ⊆ X ⊆ (M,d), we obtain the following
inclusions of Čech complexes, and therefore we have commutative diagrams.
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C d
X(A,α)� s

&&

� � // C d
M(A,α) � � // C d

M(X,α)� t

''
C d
A(A,α)

+ �

88

� s

&&

C d
X(X,α)

* 


88

� t

&&

C d
M(M,α)

C d
A(X,α)

+ �

88

� � // C d
A(M,α) � � // C d

X(M,α)
* 


88

Proof. We just replace the spaces X,A and M in Lemma 3.2 accordingly, so that
we have the same inclusions as in this proposition.

We proceed giving definitions related to paths, since we will be working in this
chapter with a particular type of paths, which are the geodesics.

Definition 3.4. Let X be a topological space and I = [0, 1]. A path in X is a
continuous map γ : I → X, whose endpoints are γ(0) and γ(1).

A loop in X is a path γ : I → X such that γ(0) = γ(1).
The length of a path γ is defined by

L(γ) := supΣk
i=1‖γ(ti−1)− γ(ti)‖

where the supremum is taken over all partitions P = {0 = t0, . . . , ti, . . . , tk = 1}
of I.

A path γ is called rectifiable if L(γ) <∞.
The space X is path-connected if for any two points x, y ∈ X, there exists a

path γ : I → X connecting them, i.e, γ(0) = x and γ(1) = y.

From now on we follow the terminology of [5].

Definition 3.5. For a path-connected subspace X ⊆ Rd, we define the length
metric, or geodesic metric, on X by

dL(x, y) := infγ L(γ) for all x, y ∈ X

where the infimum is taken over all continuous paths γ : I → X connecting x
and y.

Remark 3.6. Since in the definition of length metric we take the length of a path,
which is the supremum of Euclidean metrics, we have that

dL(x, y) ≥ dE(x, y) for all x, y ∈ X.
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Now we detail how we must take samples of data when we are working with
a subspace X ⊆ Rd that has both the length metric and the restriction of the
Euclidean metric.

If we want to define the restriction of the length metric on the sample A, then
A must be contained in X, since dL is a metric specifically defined on X.

If we are working with the restriction of the Euclidean metric on X ⊆ Rd, and
we are just interested in a sample with the restriction of the Euclidean metric,
then it suffices to have A ⊆ Rd (the same applies in a more general context where
X ⊆ (M,d)).

Corollary 3.7. Let α ∈ R>0. For A ⊆ (X, d), we have the following inclusions
of Čech complexes (although we will be particularly interested in the length metric
dL of X, and its restriction to A).

C d
X(A,α)� s

&&
C d
A(A,α)

+ �

88

� s

&&

C d
X(X,α)

C d
A(X,α)

+ �

88

Proof. Follows from Lemma 3.2.

We now present an important sampling parameter, which is the distortion of
a subspace X ⊆ Rd that has both the length metric and the restriction of the
Euclidean one. Intuitively, this can be understood as the best Lipschitz constant
K ∈ R>0 for the map f : (X, dE) → (X, dL) where f(x) = x, since by definition
of f and by Remark 3.6, dE(f(x), f(y)) = dE(x, y) ≤ dL(x, y) for all x, y ∈ X. So,
there must exist K > 0 such that dL(x, y) ≤ KdE(x, y).

Definition 3.8. The distortion of X ⊆ Rd is defined by

δ := supx 6=y
dL(x, y)
dE(x, y) for x, y ∈ X.

The distortion is bounded below by 1, and bounded above by +∞, where both
bounds can be achieved.

Remark 3.9. We observe that by the definition of distortion being a supremum,
we have that δ ≥ dL(x, y)

dE(x, y) for any x, y ∈ X.
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We also have dL(x, y) ≥ dE(x, y) by Remark 3.6, so that we get the following
inequalities:

dE(x, y) ≤ dL(x, y) ≤ δdE(x, y) for all x, y ∈ X. (3.1)

Now we give the statement of Dowker’s Theorem, which can be found together
with its proof in [2] (Theorem 3, page 4).

For a subset R ⊆ X × Y , the transpose of R, denoted by RT , is defined by
RT := {(y, x) ∈ Y ×X | (x, y) ∈ R} ⊆ Y ×X.

Theorem 3.10 (Dowker’s Theorem). Let R ⊆ R′ ⊆ X×Y be subsets, and RT , R′T

be the transpose subsets of R and R′, respectively.
Let i : N(R) ↪→ N(R′) and iT : N(RT ) ↪→ N(R′T ) be inclusions, where

N(R) := {σ ∈ P(X) | ∃y ∈ Y such that (x, y) ∈ R ∀x ∈ σ} is the Dowker
simplicial complex of R.

Then, there exist the homotopy equivalences |ΓR| : |N(R)| → |N(RT )| and
|ΓR′ | : |N(R′)| → |N(R′T )| such that the following diagram commutes up to homo-
topy (that is, |ΓR′ | ◦ |i| ' |iT | ◦ |ΓR|).

|N(R)|
|ΓR|
��

� � |i| // |N(R′)|
|ΓR′ |
��

|N(RT )| � � |i
T | // |N(R′T )|

Corollary 3.11. Let X ⊆ Rd with both the length metric dL and the restriction of
the Euclidean distance dE, δ be the distortion of X, A ⊆ X and α ∈ R>0. Then,
there is the chain of inclusions

C dL
X (A,α) ↪→ C dE

X (A,α) ↪→ C dL
X (A, δα)

and the following homotopy equivalences and commutative diagram, up to ho-
motopy:

|C dL
X (A,α)| � � //

'
��

|C dE
X (A,α)| � � //

'
��

|C dL
X (A, δα)|

'
��

|C dL
A (X,α)| � � // |C dE

A (X,α)| � � // |C dL
A (X, δα)|.

Proof. Since dE ≤ dL ≤ δdE by Remark 3.6, we directly obtain such chain of
inclusions.

Then, to show the square on the left, let us define the subset Rα := {(a, x) ∈
∈ A×X | dL(a, x) < α}, with transpose RT

α := {(x, a) ∈ X × A | (a, x) ∈ Rα}.
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Similarly, R′α := {(a, x) ∈ A×X | dE(a, x) < α}, with R′Tα := {(x, a) ∈
∈ X × A | (a, x) ∈ R′α}.

Taking the Dowker complexes of such subsets, we obtain directly the Čech
complexes we need:
N(Rα) := {σ ⊆ A | ∃x ∈ X such that (a, x) ∈ Rα ∀a ∈ σ} =
= {σ ⊆ A | ∃x ∈ X such that dL(a, x) < α ∀a ∈ σ} = C dL

X (A,α).

N(RT
α) := {σ ⊆ X | ∃a ∈ A such that (x, a) ∈ RT

α ∀x ∈ σ} =
= {σ ⊆ X | ∃a ∈ A such that dL(a, x) < α ∀x ∈ σ} = C dL

A (X,α).

Similarly, N(R′α) = C dE
X (A,α) and N(R′Tα ) = C dE

A (X,α).

Since dE ≤ dL by Remark 3.6, we have that Rα ⊆ R′α ⊆ A×X, together with
the inclusions i : N(Rα) ↪→ N(R′α) and iT : N(RT

α) ↪→ N(R′Tα ).
Therefore, we apply Dowker’s Theorem 3.10 and get the commutative diagram

corresponding to the left square, together with the homotopy equivalences

|C dL
X (A,α)| ' |C dL

A (X,α)| and |C dE
X (A,α)| ' |C dE

A (X,α)|.

To show the square on the right, we can define the subset Rδα := {(a, x) ∈
∈ A×X | dL(a, x) < δα}. Since dL ≤ δdE, we have that R′α ⊆ Rδα ⊆ A×X and
by applying Dowker’s Theorem 3.10 to these two subsets, we get the commutativity
of the right square and the homotopy equivalence

|C dL
X (A, δα)| ' |C dL

A (X, δα)|.

3.2 Convexity radius: geometric reconstruction
of geodesic subspaces.

Here we define geodesic subspace and we reconstruct the homotopy type of such
subspace using its convexity radius and a dense enough sample (Lemma 3.18).

Definition 3.12. A subspace X ⊆ Rd is a geodesic subspace if for any two
points x, y ∈ X, there always exists a rectifiable path γ on X connecting them such
that L(γ) = dL(x, y).

We call such path γ a length-minimizing geodesic, or simply a geodesic.

Example 3.13. Manifolds are a particular case of geodesic subspaces.
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We introduce now the concept of convexity radius in a geodesisc subspace. This
is an intrinsic property of geodesic spaces, and determines which is the largest
possible radius such that we have the property of being geodesically convex in
a local neighborhood of such geodesic space (a space is geodesically convex if for
every two points in such space, there exists a unique geodesic connecting them that
lies entirely inside such space, and that is continuous with respect to its endpoints).

Definition 3.14. The convexity radius of a geodesic subspace X ⊆ Rd is the
supremum of all the real values r > 0 with the following two properties: for any
x ∈ X and y1, y2 ∈ BdL

X (x, r),

1. there exists a unique length-minimizing geodesic γ joining y1 and y2, and γ
lies entirely inside BdL

X (x, r);

2. this unique geodesic is continuous with respect to its endpoints.

Lemma 3.15. Let X ⊆ Rd be a geodesic subspace and {BdL
X (x, r)}x∈X , for r > 0,

be a collection of geodesically convex subspace balls. Then, such collection forms
a good cover of X.

Proof. It is clear that {BdL
X (x, r)}x∈X forms a cover of X, and each BdL

X (x, r) ⊆ X
is open.

Now, for each subspace ball, we define a homotopy by the following way :

H : BdL
X (x0, r)× I → BdL

X (x0, r); (x, t) 7→ γ(t) geodesic from x to x0

where H is continuous and well-defined, since γ(t) is continuous with respect to
its endpoints, and γ(t) is contained in BdL

X (x0, r) as it is geodesically convex. We
have that H(x, 0) = γ(0) = x = id

B
dL
X (x0,r)

(x) and H(x, 1) = γ(1) = x0 = cx0(x)
for every x ∈ BdL

X (x0, r), where cx0 denotes the constant map. Hence, BdL
X (x0, r)

is contractible (as defined in Appendix A1).
We check that finite intersections of geodesically convex balls are contractible,

in the case of being non-empty. We fix a point y ∈ ⋂ki=0 BdL
X (xi, r), and we define

a homotopy

H :
k⋂
i=0

BdL
X (xi, r)× I →

k⋂
i=0

BdL
X (xi, r); (x, t) 7→ γ(t) geodesic from x to y

where H is continuous since γ(t) is continuous with respect to its endpoints,
and γ(t) is contained in every ball that contains both x and y, since each ball is
geodesically convex, hence γ(t) is contained in a finite intersection of these balls
(this implies that ⋂ki=0 BdL

X (xi, r) is geodesically convex), so H is also well-defined.
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We have that H(x, 0) = γ(0) = x = id∩ki=0 B
dL
X (xi,r)

(x) and H(x, 1) = γ(1) =
= y = cy(x) for every x ∈ ⋂ki=0 BdL

X (xi, r).
Hence, ⋂ki=0 BdL

X (xi, r) is contractible, so {BdL
X (x, r)}x∈X forms a good cover

of X.

Definition 3.16. Let X ⊆ Rd be a geodesic subspace and s ∈ R>0, then A ⊆ X is
an s-dense subset if for every x ∈ X there exists a ∈ A such that dL(x, a) < s.

Or equivalently, if {BdL
X (a, s)}a∈A is a cover of X.

Remark 3.17. It is interesting to notice that having an s-dense subset A ⊆ X,
implies that the directed Hausdorff distance (Definition 2.15) is −→dH(X,A) < s.

The following lemma consists of a geometric reconstruction result for geodesic
subspaces ([5], Lemma 2.7):

Lemma 3.18. Let X ⊆ Rd be a geodesic subspace with the length metric dL and
positive convexity radius ρ. Let A be an s-dense subset of X, where 0 < s ≤ ρ.
Then, |C dL

X (A, s)| is homotopy equivalent to X.

Proof. Since A ⊆ X is s-dense, we have by definition that {BdL
X (a, s)}a∈A is a

cover of X.
Since s ≤ ρ, the definition of convexity radius implies that each ball BdL

X (a, s)
is geodesically convex, hence by Lemma 3.15, {BdL

X (a, s)}a∈A is a good cover of X.
Identifying C dL

X (A, s) with the nerve complex of {BdL
X (a, s)}a∈A (as done in

Example 1.24) and applying the Nerve lemma 1.20, we get that

|C dL
X (A, s)| ' X.

3.3 Persistences: homotopy and homology groups.
In this section we define persistence modules and persistence (abelian) groups,
and interleavings between them. We show interleavings between homology and
homotopy groups induced by Čech complexes constructed from a geodesic sub-
space and a dense enough sample, and we understand such groups as persistence
groups (Proposition 3.25). We conclude giving an isomorphism between fundamen-
tal groups (Theorem 3.31) and an analogous isomorphism for the first homology
groups with coefficients in an abelian group (Corollary 3.34).

Definition 3.19. A persistence module M is a set of vector spaces {Mt}t∈R so
that for each s ≤ t ∈ R there is a linear map ϕM(s, t) : Ms →Mt such that for all
r ≤ s ≤ t ∈ R, ϕM(t, t) = idMt and ϕM(r, t) = ϕM(s, t) ◦ ϕM(r, s).
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Definition 3.20. A morphism of persistence modules f : M → N is a
collection of morphisms {ft : Mt → Nt}t∈R such that for every s ≤ t ∈ R, the
following diagram commutes

Ms
ϕM (s,t)//

fs
��

Mt

ft
��

Ns
ϕN (s,t)// Nt.

Example 3.21. The homology groups with coefficients in a field F, denoted by
Hn(_,F) for n = 0, 1, 2, . . ., are vector spaces, and therefore persistence modules
(we discuss this in Appendix A2, in particular in Remark A.27).

We can also define persistence abelian groups by taking abelian groups
instead of vector spaces, and by taking homomorphisms ϕ(s, t) as the morphisms
verifying the same conditions as for the case of persistence modules. We can
consider as persistence abelian groups the simplicial homology groups Hn(|K|)
for an abstract simplicial complex K, the singular homology groups Hn(X) for a
topological space X, the homology groups with coefficients in an abelian group
G, Hn(_, G), and the homotopy groups for higher dimension πn(_, •), since for
n ≥ 2 these are always abelian ([9], page 340). We present homotopy groups and
simplicial and singular homology in Appendix A2.

Moreover, we can define persistence groups by taking groups (without hav-
ing to be abelian) as the persistence objects, and homomorphisms ϕ(s, t) as the
morphisms like for the case of persistence modules. We can consider the fun-
damental group π1(_, •) as a persistence group. The fundamental group is also
defined in Appendix A2.

However, in the definition of persistence modules we work over all real numbers,
but for the homology or homotopy groups of Čech complexes we only take values
greater than zero. Hence, we establish that if 0 ≥ t ∈ R, then Mt = 0.

We use the term persistences when we are including persistence modules and
persistence (abelian) groups.

Definition 3.22. For δ, ε ≥ 0, a (δ, ε)-interleaving between persistences {At}t∈R
and {Bt}t∈R consists of a collection of morphisms ft : At −→ Bt+δ and gs : Bs −→
−→ As+ε such that the following diagrams commute:

Bs
gs //

� q

ϕB(s,s+ε+δ) ##

As+ε

fs+ε
��

At
ft //� q

ϕA(t,t+δ+ε) ##

Bt+δ

gt+δ
��

Bs+ε+δ At+δ+ε

and in case of having s < t, the following two diagrams also commute:
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Bs
gs //

� _

ϕB(s,t)
��

As+ε� _
ϕA(s+ε,t+ε)
��

As
fs //

� _

ϕA(s,t)
��

Bs+δ� _

ϕB(s+δ,t+δ)
��

Bt
gt // At+ε At

ft // Bt+δ.

Also, we can denote As(ε) := As+ε and Bt(δ) := Bt+δ.

For X a geodesic subspace, A ⊆ X an s-dense subset and B ⊆ X, we present in
the following Proposition 3.25, a (0, s)-interleaving between the persistence groups
{πn(|C dL

B (A, p)|, •)}p>0 and {πn(|C dL
B (X, p)|, •)}p>0, and a (0, s)-interleaving be-

tween {Hn(|C dL
B (A, p)|)}p>0 and {Hn(|C dL

B (X, p)|)}p>0, for any n ≥ 1.
But it order to prove such result, we need to introduce contiguous simplicial

maps together with the well-known result Lemma 3.24 (whose classical proof can
be found in [19], Chapter 3.5, Lemma 2):

Definition 3.23. Two simplicial maps F,G : K1 → K2 are contiguous if for
every simplex σ ∈ K1, F (σ)⋃G(σ) is a simplex in K2.

Lemma 3.24. If F,G : K1 → K2 are contiguous simplicial maps, then
|F |, |G| : |K1| → |K2| are homotopic.

The next result is from [23] (Proposition 3.3), in a new version for Čech com-
plexes, with a different proof working at the level of simplicial complexes and for
homology and homotopy in higher dimension.

Proposition 3.25. Let X ⊆ Rd be a geodesic subspace, A ⊆ X an s-dense subset
with a base point • ∈ A, B ⊆ X (although B would typically be X) and p > 0.
Then, we get the following commutative diagrams for any n ∈ N:

πn(|C dL
B (A, p)|, •)

ϕπnA (p,p+s)
//

iπn,Ap
��

πn(|C dL
B (A, p+ s)|, •)

iπn,Ap+s
��

πn(|C dL
B (X, p)|, •)

ϕπnX (p,p+s)
//

νπn,Ap

33

πn(|C dL
B (X, p+ s)|, •)

and

Hn(|C dL
B (A, p)|)

ϕHnA (p,p+s)
//

iHn,Ap
��

Hn(|C dL
B (A, p+ s)|)

iHn,Ap+s
��

Hn(|C dL
B (X, p)|)

ϕHnX (p,p+s)
//

νHn,Ap

33

Hn(|C dL
B (X, p+ s)|)
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Proof. The idea is to prove that both the upper and lower triangles of the two
diagrams commute, and so the two whole diagrams are commutative.
We first define a projection map from the vertex set of C dL

B (X, p) to the vertex set
of C dL

B (A, p+ s), by the definition of A being an s-dense subset of X:

π : X → A; x 7→ π(x) s.t. dL(x, π(x)) < s and π|A = idA.

Now we define the following simplicial map:

νAp : C dL
B (X, p)→ C dL

B (A, p+ s)

such that for a simplex σ ∈ C dL
B (X, p) we have that σ ⊆ X so that there exists an

b ∈ B with dL(b, x) < p for all x ∈ σ. We define the image of σ to be νAp (σ) :=
= {π(x) | x ∈ σ}, so that there exists an b ∈ B with dL(b, π(x)) ≤ dL(b, x) +
+ dL(x, π(x)) < p+ s, for all π(x) ∈ νAp (σ). Hence νAp (σ) ∈ C dL

B (A, p+ s).
For the upper triangle, we have the following diagram at the level of simplicial

complexes:

C dL
B (A, p) � � ϕA(p,p+s) //
� _

iAp
��

C dL
B (A, p+ s)

C dL
B (X, p)

νAp
55

where ϕA(p, p+ s) is the inclusion from the filtration of {C dL
B (A, p)}p>0 and iAp

is the first inclusion of Lemma 3.2 for α = p.
We can compose iAp with νAp , getting νAp ◦ iAp : C dL

B (A, p)→ C dL
B (A, p+s), where

σ ∈ C dL
B (A, p) goes to (νAp ◦ iAp )(σ) = σ (since π|A = idA).

Hence, νAp ◦ iAp = ϕA(p, p + s), so this upper triangle is commutative, with
(νAp ◦ iAp ) and ϕA(p, p + s) inducing equal maps on the homotopy and homology
groups.

So for any n, we can denote such homomorphisms by νπn,Ap ◦iπn,Ap = ϕπnA (p, p+s)
for the homotopy groups and νHn,Ap ◦iHn,Ap = ϕHnA (p, p+s) for the homology groups.

For the lower triangle, we have the following diagram at the level of simplicial
complexes:

C dL
B (A, p+ s)� _

iAp+s
��

C dL
B (X, p) � �

ϕX(p,p+s)
//

νAp
55

C dL
B (X, p+ s)
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where ϕX(p, p + s) is the inclusion from the filtration of {C dL
B (X, p)}p>0 and iAp+s

is the first inclusion of Lemma 3.2 for α = p+ s.
We compose νAp with iAp+s, getting iAp+s ◦ νAp : C dL

B (X, p)→ C dL
B (X, p+ s) where

σ ∈ C dL
B (X, p) goes to (iAp+s ◦ νAp )(σ) = νAp (σ) ∈ C dL

B (X, p+ s).

We want to show that (iAp+s ◦ νAp ) and ϕX(p, p + s) are contiguous. In order
to do so, we have to show that νAp (σ) ∪ σ is a simplex in C dL

B (X, p+ s), for every
simplex σ ∈ C dL

B (X, p).
We procede taking a point b ∈ B such that for any x ∈ νAp (σ) ∪ σ, then we

have either x ∈ νAp (σ), which implies dL(b, x) < p + s; or x ∈ σ, which implies
dL(b, x) < p < p+ s. Therefore, νAp (σ)∪ σ ∈ C dL

B (X, p+ s) for any σ ∈ C dL
B (X, p),

so (iAp+s ◦ νAp ) and ϕX(p, p+ s) are contiguous.

By Lemma 3.24, |iAp+s ◦ νAp | ' |ϕX(p, p + s)|, and by Propositions A.18, such
homotopic maps induce equal maps on the homotopy and homology groups . So
for any n, we can denote the homomorphisms between the homotopy groups by
iπn,Ap+s ◦νπn,Ap = ϕπnX (p, p+s), and iHn,Ap+s ◦νHn,Ap = ϕHnX (p, p+s) for the homomorphisms
between the homology groups.

We proceed to define piecewise linear paths in abstract simplicial complexes
and to discuss how they are determined by a sequence of vertices.

Definition 3.26. Let K be an abstract simplicial complex with vertex set V . Let
f : I → |K| be a path such that there exists a sequence of vertices v0, . . . , vk ∈ V ,
and a subdivision 0 = a0 < . . . < ak = 1 of I, so that for every i = 0, . . . , k we
have:

1. f(ai) = vi.

There, f(ai) is a map f(ai) : V → I such that

f(ai)(v) :=
{

1 if v = vi
0 if v 6= vi

and α ∈ |K| is a vertex if there exists vi ∈ V such that α(vi) = 1, where for
any other v ∈ V with v 6= vi, α(v) = 0. So we can write α = vi.
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2. f((1− t)ai + tai+1) = (1− t)vi + tvi+1 for all t ∈ I, where

((1− t)vi + tvi+1)(v) =


(1− t) if v = vi
t if v = vi+1

0 otherwise.

Such f is called a piecewise linear path.

Piecewise linear loops are defined in an analogous way as for the case of usual
loops. Moreover, two paths are path homotopic if they are homotopic relative to
the subspace {0, 1}, as defined in Appendix A2.

Proposition 3.27. If two piecewise linear paths go through the exact same ver-
tices, following the same order, then they are path homotopic.

Therefore, we can say that the sequence of vertices uniquely determines the
piecewise linear path, up to path homotopy.

Proof. We take two piecewise linear paths f, g : I → |K| through the vertices
v0, . . . , vk, and two respective subdivisions of I given by 0 = a0 < . . . < ak = 1
and 0 = b0 < . . . < bk = 1, so that f(ai) = g(bi) = vi.

Then, the map h : I → I defined by h((1 − t)ai + tai+1) = (1 − t)bi + tbi+1,
is a reparametrization such that f = g ◦ h, and since both paths have the same
endpoints, we obtain f '{0,1} g.

Definition 3.28. Let X ⊆ Rd be a geodesic subspace and A ⊆ X.
An l-loop is a piecewise linear loop L : I → |C dL

X (A, p)|, for p ≥ l > 0,
determined by a sequence of vertices a0, . . . , ak = a0 ∈ A with dL(ai, ai+1) < l, for
all i = 0, . . . , k.

A filling of an l-loop L : I → |C dL
X (A, p)| is a loop γ : I → X obtained by

connecting ai to ai+1 by a geodesic, for every i = 0, . . . , k.
An r-sample of a loop γ : I → X is a choice 0 ≤ t0 < . . . < tm ≤ 1 with γ(ti) ∈

A for all i, γ([ti−1, ti+1]) ⊆ BdL
X (γ(ti), r), γ([0, t0] ∪ [tm−1, 1]) ⊆ BdL

X (γ(tm), r) and
γ([0, t1] ∪ [tm, 1]) ⊆ BdL

X (γ(t0), r).
An r-sample of a loop γ : I → X induces an r-loop determined by the vertices

γ(t0), . . . , γ(tm) = γ(t0) in C dL
X (A, p).

The next result is from [25] (Proposition 3.2 (4)).

Proposition 3.29. Let X be geodesic, A ⊆ X and p > 0.
Given a loop γ : I → X, then two r-loops induced by any two r-samples of γ

are path homotopic in |C dL
X (A, p)|.
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Proof. Consider two r-samples 0 ≤ t0 < . . . < tm ≤ 1 and 0 ≤ t′0 < . . . < t′m′ ≤ 1.
We claim that each of the r-loops induced by them are path homotopic to the
r-loop obtained by the r-sample {ti}mi=0 ∪ {t′i}m

′
i=0, and since being homotopic is a

transitive property, both r-loops are path homotopic between them.
Using induction, we can add one element at a time, so, it suffices to prove the

following claim: given an r-sample α determined by 0 ≤ s0 <, . . . , < sk ≤ 1 and
y ∈ [0, 1]\{si}ki=0, the r-sample α′ obtained by adding y to the collection {si}ki=0,
induces an r-loop, denoted as well by α′, which is path homotopic to the r-loop
induced by α, and which we denote as well by α.

In order to prove the claim, we consider two cases:

• if y ∈ (si, si+1) for some i, then both r-loops are identical except for the
interval [si, si+1]. Hence, the path homotopy required by the claim is induced
by the triangle consisting of the vertices {γ(si), γ(y), γ(si+1)} in C dL

X (A, p)
(since {γ(si), γ(y), γ(si+1)} ⊆ A and all of them are in the ball BdL

X (γ(y), p))).
We denote such triangle by T , and since T is contractible, every path in T
is homotopic to a point. Hence, the paths α|[si,si+1], α

′|[si,si+1] : [si, si+1]→ T
are path-homotopic.
That is because idT ' cx0 for cx0 : T → {x0} ⊆ T the constant map, and
if we have a path γ : I → T , then c̃x0 = cx0 ◦ γ : I → {x0} is the constant
path. Clearly, idT ◦ γ = γ, so

c̃x0 = cx0 ◦ γ ' idT ◦ γ = γ.

• If y /∈ (si, si+1), then the triangle {γ(s0), γ(y), γ(sk)} does the job.

Definition 3.30. Given a persistence {At}t∈R, we say that c > 0 is a:

• left critical value, if for all small enough ε > 0 the morphism
ϕA(c− ε, c) : Ac−ε → Ac is not an isomorphism;

• right critical value, if for all small enough ε > 0 the morphism
ϕA(c, c+ ε) : Ac → Ac+ε is not an isomorphism.

We call c > 0 a critical value if it is either of the above.

For X a geodesic subspace and r > 0, let c be the largest critical value of the
persistence {π1(|C dL

X (X, p)|, •)}p>0, that is smaller than r (if no critical value is
smaller than r, we set c ∈ (0, r)) such that there are no critical values in (c, r].
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Therefore, for all ε > 0 such that c+ ε < r, c+ ε is a non-critical value, so we
can pick an ε′ > 0 such that ϕπ1

X (c+ ε− ε′, r) : π1(|C dL
X (X, c+ ε− ε′)|, •) −→

−→ π1(|C dL
X (X, r)|, •) is an isomorphism.

Hence, we can pick c′ > 0 very close to c, making ϕπ1
X (c′, r) an isomorphism.

The following theorem is based on Theorem 4.2 and Proposition 4.1 in [23],
but for the case of Čech complexes.

Theorem 3.31. Under the conditions above, let A ⊆ X be (r − c′)-dense, with
• ∈ A. Then,

iπ1,A
r : π1(|C dL

X (A, r)|, •) −→ π1(|C dL
X (X, r)|, •)

is an isomorphism.

Proof. First we notice that every loop in |K|, forK an abstract simplicial complex,
is path homotopic to a piecewise linear loop ([27], Theorem 3.6).

By Proposition 3.25 for B = X and n = 1, we have the following commutative
diagram:

π1(|C dL
X (A, r)|, •)

i
π1,A
r
��

π1(|C dL
X (X, c′)|, •)

ϕ
π1
X (c′,r)

//

ν
π1,A
c′

44

π1(|C dL
X (X, r)|, •)

and ϕπ1
X (c′, r) being an isomorphism implies that iπ1,A

r is surjective.

To show that iπ1,A
r is injective, we need to prove that νπ1,A

c′ is surjective, because
for such commutative diagram, if νπ1,A

c′ and iπ1,A
r are surjective and ϕπ1

X (c′, r) is
injective, then iπ1,A

r is injective.
We take an r-loop LA : I −→ |C dL

X (A, r)| representing an equivalence class on
π1(|C dL

X (A, r)|, •), and determined by the vertices • = a0, . . . , ak = • ∈ A.
Let γ : I −→ X be a filling of LA, so that we take a c′-sample of γ such that no

vertex of γ lies in the midpoint of γi, where γi is the geodesic segment of γ between
ai and ai+1. Hence, we can consider the c′-loop induced by such c′-sample, and we
denote it by L.

Now, L : I −→ |C dL
X (X, c′)| is a c′-loop such that νπ1,A

c′ maps each vertex of L
on γi to the closer endpoint of γi, which is either ai or ai+1. This implies that L
is mapped to LA with repetitions of points, so the image of L under νπ1,A

c′ is, for
example, given by • = a0, a0, a1, a2, a2, . . . , ak = • ∈ A, which is the composition
of paths (as defined in Appendix A2) [a0, a0] ∗ [a0, a1] ∗ [a1, a2] ∗ . . ., where [ai, aj]
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denotes the path from ai to aj. Moreover, if i = j, then [ai, ai] is the constant
path c̃ai , and c̃ai ∗ [ai, aj] is path homotopic to [ai, aj]. We can also write LA as
the composition of paths [a0, a1] ∗ [a1, a2] ∗ . . . ∗ [ak−1, ak]. Therefore, the image of
L under νπ1,A

c′ is path homotopic to LA in |C dL
X (A, r)|, so νπ1,A

c′ is surjective.

We proceed showing the injectivity of iπ1,A
r . Since iπ1,A

r is surjective, for all [L′] ∈
π1(|C dL

X (X, r)|, •) there exists [LA] ∈ π1(|C dL
X (A, r)|, •) such that iπ1,A

r ([LA]) = [L′],
and since νπ1,A

c′ is surjective, let

[LA1 ] = νπ1,A
c′ ([L1]) and [LA2 ] = νπ1,A

c′ ([L2]) in π1(|C dL
X (A, r)|, •) (3.2)

with [L1], [L2] ∈ π1(|C dL
X (X, c′)|, •).

If iπ1,A
r ([LA1 ]) = iπ1,A

r ([LA2 ]) ∈ π1(|C dL
X (X, r)|, •), then by (3.2), iπ1,A

r (νπ1,A
c′ ([L1])) =

= iπ1,A
r (νπ1,A

c′ ([L2])), which by the commutativity of the diagram is ϕπ1
X (c′, r)([L1]) =

= ϕπ1
X (c′, r)([L2]), and since ϕπ1

X (c′, r) is in particular injective, we have that
[L1] = [L2]. Then, since νπ1,A

c′ is well-defined, νπ1,A
c′ ([L1]) = νπ1,A

c′ ([L2]), which
by (3.2) is precisely [LA1 ] = [LA2 ].

Definition 3.32. For a group H, a subgroup N of H is a normal subgroup if
hnh−1 ∈ N , for all h ∈ H and n ∈ N .

The commutator subgroup of H is the smallest normal subgroup such that
the quotient group of H by this subgroup is abelian. It is denoted by [H,H], and it
is generated by all commutators, i.e, elements of the form [g, h] := g−1h−1gh, for
g, h ∈ H.

The abelianization of the fundamental group of a topological space can be
identified with the first homology group of such space. This is shown in Hurewicz
Theorem ([9], Theorem 4.32).

Theorem 3.33 (Hurewicz Theorem). If X is a path-connected space and n ≥ 1,
then there exists a group homomorphism h∗ : πn(X) −→ Hn(X).

Moreover, for n = 1, such homomorphism induces an isomorphism

h̄∗ : Ab(π1(X)) := π1(X)
[π1(X), π1(X)] −→ H1(X)

between the abelianization of the fundamental group and the first homology
group.
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Corollary 3.34. Let X be a geodesic subspace and A ⊆ X be (r − c′)-dense with
(r− c′) < r/2 for the same conditions as in Theorem 3.31, and let G be an abelian
group. Then,

iH1,A
r : H1(|C dL

X (A, r)|;G) −→ H1(|C dL
X (X, r)|;G)

is an isomorphism.

Proof. By Theorem 3.31 we have that iπ1,A
r : π1(|C dL

X (A, r)|, •) −→ π1(|C dL
X (X, r)|, •)

is an isomorphism.
Then, we define an isomorphism between their commutator subgroups as fol-

lows:
for any [g, h] ∈ [π1(|C dL

X (A, r)|, •), π1(|C dL
X (A, r)|, •)], then iπ1,A

r ([g, h]) =
= [iπ1,A

r (g), iπ1,A
r (h)] ∈ [π1(|C dL

X (X, r)|, •), π1(|C dL
X (X, r)|, •)].

And for any [g, h] ∈ [π1(|C dL
X (X, r)|, •), π1(|C dL

X (X, r)|, •)], then [(iπ1,A
r )−1(g),

(iπ1,A
r )−1(h)] ∈ [π1(|C dL

X (A, r)|, •), π1(|C dL
X (A, r)|, •)].

So, the quotients of such fundamental groups by their respective commutator
subgroups, are isomorphic between them, and we denote them by Ab(π1(_, •)):

Ab(π1(|C dL
X (A, r)|, •)) ∼= Ab(π1(|C dL

X (X, r)|, •)) (3.3)

The subspace X is geodesic, which implies being path-connected. Hence,
|C dL

X (X, r)| is also path connected.
Let a1 and a2 be two arbitrary points in |C dL

X (A, r)|, and since A ⊆ X and
|C dL

X (X, r)| is path-connected, there exists a piecewise linear path LX : I −→
−→ |C dL

X (X, r)| connecting a1 to a2. There exists a vertex x1 in LX such that
dL(a1, x

1) = r− c′, and since A ⊆ X is (r− c′)-dense, there must exist an element
a1 ∈ A such that dL(x1, a1) < r − c′ and hence dL(a1, a

1) < 2(r − c′). We can
take such a1 as the next vertex in a piecewise linear path in |C dL

X (A, r)| connecting
a1 with a2. We continue on the path LX until we find a point x2 such that
dL(x2, a1) = r − c′, so there must exists a2 ∈ A such that dL(x2, a2) < r − c′ and
dL(a1, a2) < 2(r − c′). We repeat the process until we find xk in LX such that
dL(xk, a2) < r − c′.

Then, we have obtained a piecewise linear path LA : I → |C dL
X (A, r)| given by

the vertices a1, a
1, a2, . . . , a2 such that the distance between consecutive vertices is

less than 2(r − c′) < r, by hyptothesis. So |C dL
X (A, r)| is path-connected.

By Hurewicz Theorem 3.33,

Ab(π1(|C dL
X (A, r)|, •)) ∼= H1(|C dL

X (A, r)|)

and
Ab(π1(|C dL

X (X, r)|, •)) ∼= H1(|C dL
X (X, r)|)
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so from (3.3), H1(|C dL
X (A, r)|) ∼= H1(|C dL

X (X, r)|).
And finally Corollary A.26 in Appendix A2 gives us that

H1(|C dL
X (A, r)|;G) ∼= H1(|C dL

X (A, r)|)⊗G

and
H1(|C dL

X (X, r)|;G) ∼= H1(|C dL
X (X, r)|)⊗G

so that we obtain the desired isomorphism between the first homology groups
with coefficients in G.
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Chapter 4

Example: the square.

We want to study a particular example of a Euclidean subspace whose reach is 0,
where our results from Chapter 2 cannot be applied (as in most cases we are not
able to find radii in order to construct subspace balls and get a good cover). This
space is going to be the square.

However, we find that for a simple case where the balls have centers inside the
square and these centers are selected in such a way that they are at a particular
distance from their consecutive one, and the radius is the same for every ball, then
we can reconstruct the homotopy type of the square. We also present different
counterexamples, and we finish with a different approach where the square is con-
sidered as a geodesic subspace, with other sampling parameters rather than the
reach (like the convexity radius), and so we can find a good cover that reconstructs
its homotopy type. We also work with the thickening of the square in the cases
where the centers of the balls are outside the square.

Let X be the square, that is, the boundary of [0, 1] × [0, 1] ⊆ R2, with the
restriction of the Euclidean metric, and let O be the geometric point situated in
its center. The two diagonals form the set Y (Definition 1.3) of all points y ∈ Rd

such that there exist x1, x2 ∈ X with d(x1, y) = d(x2, y) = d(X, y). Hence, its
closure Y is the two diagonals with their four end points as the vertices of the
square. So the reach τ = d(X, Y ) is zero.

Case 1: Centers of the balls in the square and equal
radii.

Let A = {a1, . . . , aN} ⊂ X where ‖ai − ai+1‖ = l > 0 for every ai ∈ A, such
that {BR2(ai, r) ∩ X}ai∈A is a good cover of X (and therefore r must be bigger
than l

2 so that X is covered).
Then, by the Nerve Lemma 1.20,
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|N({BR2(ai, r) ∩X}ai∈A)| ' X. (4.1)
We now take the collection of balls {BR2(ai, r)}ai∈A with A as before. Since

they are convex and finite intersections are again convex, by Proposition 1.21, we
have a good cover of the union of such balls, and by the convex version of the
Nerve Lemma 1.22, we have

|N({BR2(ai, r)}ai∈A)| '
⋃
i

BR2(ai, r). (4.2)

It is known that arbitrarily small perturbations in the location of points can
have serious effects on the topology of the simplicial complexes, that is why the
nerve of a cover is not always homotopy equivalent to the nerve of another similar
cover.

We want to study when the nerve of {BR2(ai, r)∩X}ai∈A is homotopy equivalent
to the nerve of {BR2(ai, r)}ai∈A by determining the radius r.

By Figure 4.1, sin45 = r

l
, hence r = l√

2
.

Figure 4.1: Case 1

So if r ∈
(

0, l√
2

]
, then the two nerves are equal, because each simplex in

N({BR2(ai, r)∩X}ai∈A) with vertices two lines in the square Li := BR2(ai, r)∩X
that have non-empty intersection, corresponds to a simplex in N({BR2(ai, r)}ai∈A)
with vertices the correspondent open balls BR2(ai, r) which do also have non-empty
intersection. By renaming in the nerve complexes the line Li in the same way as
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the open ball BR2(ai, r) for each i, we get the same vertex sets and the same
simplices (as explained more generally in Example 1.24).

Therefore, N({BR2(ai, r) ∩X}ai∈A) is equal to N({BR2(ai, r)}ai∈A) when
0 < r ≤ l√

2
, for l = ‖ai − ai+1‖ for all ai ∈ A.

Following the notation of Figure 4.1, if r >
l√
2

but small enough so that
{BR2(ai, r)}ai∈A does not cover completely the interior area of X, then we see in
Figure 4.2 that the subcomplex with vertices the lines Li, Li+1 and Li−1 in the
nerve complex of {BR2(ai, r)∩X}ai∈A is contractible, and the simplex with vertices
BR2(ai, r), BR2(ai+1, r) and BR2(ai−1, r) in the nerve of {BR2(ai, r)}ai∈A, is a filled
triangle, and also contractible.

Figure 4.2: Nerves case 1

Therefore, they are homotopy equivalent, and |N({BR2(ai, r)}ai∈A)| ' |N({BR2(ai, r)∩

∩X}ai∈A)|.
So, by (4.1) and (4.2),

X '
⋃
i

BR2(ai, r)

or equivalently by identifyingN({BR2(ai, r)}ai∈A) with CR2(A, r),X ' |CR2(A, r)|.
A counterexample that we can present when the radius is too big and {BR2(ai, r)}ai∈A

covers completely the interior area of X, is Figure 4.3, where we take A ⊂ X as
the set of the four vertices of the square, so that l = 1 and r > 1√

2 .
Here we have that N({BR2(ai, r)}ai∈A) is the tetrahedron with its interior,

which is contractible and hence homotopy equivalent to a point; whileN({BR2(ai, r)∩

∩X}ai∈A) is just the square, and therefore is not contractible.
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Figure 4.3: Counterexample case 1

Case 2: Centers of the balls in the square and dif-
ferent radii.

Following the reasoning of Case 1, we find the following counterexample where
A ⊂ X consist of the four vertices of the square.

Figure 4.4: Counterexample case 2
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According to the notation of Figure 4.4, we have the two following nerve com-
plexes

N({BR2(ai, ri)}ai∈A) = {{B1, B2}, {B1, B4}, {B4, B3}, {B3, B2}, {B1, B3}, {B1}, {B2},
{B3}, {B4}}

N({BR2(ai, ri)∩X}ai∈A) = {{L1, L2}, {L1, L4}, {L4, L3}, {L3, L2}, {L1}, {L2}, {L3}, {L4}}
which can be represented by Figure 4.5

Figure 4.5: Nerves case 2.1

The first one are two triangles, homotopy equivalent to two circles touching at
one point, and therefore its fundamental group is a free group (defined in Appendix
A2) with two generators. The second nerve is the square, which is homeomorphic
to the circle, and therefore its fundamental group is a free group with one gen-
erator. So, the fundamental groups are not isomorphic between them, and the
geometric realizations of the nerve complexes cannot be homotopy equivalent (by
Proposition A.18).

Such counterexample can also happen at a more local level, when we have a
hole in the union of Euclidean balls. We take A ⊆ X, with no further conditions
on the distance between its consecutive points.
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Figure 4.6: Counterexample case 2.2

As seen in Figure 4.7, the subcomplex in N({BR2(ai, ri)∩X}ai∈A) with vertices
the lines L1, L2, L3 is contractible, whereas the simplex in N({BR2(ai, ri)}ai∈A)
with vertices B1, B2, B3 is a non-filled triangle, and therefore is not contractible.
So these two nerves are not homotopy equivalent.

Figure 4.7: Nerves case 2.2

Case 3: Centers of the balls in the square or on its
proximity, and equal radii.

In this case we want to show that the thickening of the square is homotopy
equivalent to the union of some Euclidean balls, and that the square is a defor-
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mation retract of such union of balls, therefore, the square and its thickening are
homotopy equivalent. However, that fails, because we find collections of balls
whose nerve is not homotopy equivalent to the nerve of such balls intersected with
the thickening.

Let X be the square and let

Xr := {p ∈ R2 | d(p,X) < r} (4.3)
be the thickening of X, where 0 < r ≤ 1

4 .
We take A ⊆ Xr and r′ ∈

(−→
d H(Xr, A), 1

4

)
such that {BR2(ai, r′)∩Xr}ai∈A is

a good cover of Xr.
We also take the collection of balls {BR2(ai, r′)}ai∈A forming a good cover of⋃

ai∈A BR2(ai, r′).
The union of such Euclidean balls can present holes, hence we have the following

situation:

Figure 4.8: Counterexample case 3

which is the same as in the previous counterexample 4.6.

Nevertheless, for this case of equal radii, we have seen in [1] a corollary (Corol-
lary 6.6) which applied to a long exact sequence of homology groups constructed
from [9] (page 117), can give a (0, ε)-interleaving between the persistence groups
Hn(|CXr(A, r′)|) and Hn(|CR2(A, r′)|), for n ∈ N, where ε seems to take the value
log2. So, if we have more time to work on it and formalize it better, we could
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conclude that even though the nerve complexes N({BR2(ai, r′) ∩ Xr}ai∈A) and
N({BR2(ai, r′)}ai∈A) are not homotopy equivalent, they are very close in terms
of their homology, understanding their homology groups as persistence abelian
groups.

Case 4: Centers of the balls in the square or on its
proximity, and different radii.

This case leads to the same counterexample as in Case 3, just setting the radii
of {BR2(ai, ri)}ai∈A as −→d H(Xr, A) < ri < dE(O, ai), for each i.

Case 5: Generalization.
We show that for other figures with reach 0, we can also find a counterexample,

and therefore this reconstruction approach is difficult to generalize.
We take the rhomboid, whose reach is 0 by the same argument as for the square.

The following picture shows that we can find balls that cover the space, but whose
union contains holes, and therefore the nerve of such collection of balls would not
be homotopy equivalent to the nerve of the balls itersected with the rhomboid, as
seen in detail in the counterexample of Figure 4.6.

Case 6: Square as a geodesic subspace.
Now we consider the square X = ∂([0, 1]× [0, 1]) ⊆ R2 as a geodesic subspace.

In particular, it is an embedded metric planar graph, that is, a subset of R2 that
is homeomorphic to a 1-dimensional simplicial complex, where the length metric
dL is the shortest path distance on X.

The square X has a finite number of vertices, so since b = 4 is the length of
its shortest simple cycle (that it, a loop that passes only one time through each
vertex), then, in [5] it appears that the convexity radius is given for this case by
the formula ρ = b

4 = 1.
We take an s-dense subset A ⊆ X, whose points are going to be the centers of
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the balls that form a cover of X, and such balls have all equal radii s. We choose
s to be 0 < s ≤ ρ = 1. By definition of s-dense subset, the collection of open
intervals {BdL

X (ai, s)}ai∈A is a cover of X, and by Lemma 3.18, |C dL
X (A, s)| ' X,

or equivalently, |N({BdL
X (ai, s)}ai∈A)| ' X.

Hence, we have successfully achieved a geometric reconstruction of the square
X, since we have found a simplicial complex C dL

X (A, s) whose geometric realization
has the same homotopy type as X.

Let now Xr be the thickening of X, as defined in (4.3), with 0 ≤ r ≤ 1
4 and

convexity radius ρ. We understand Xr as a geodesic subspace, so that we can take
an s-dense subspace A ⊆ Xr, with 0 < s ≤ ρ, such that {BdL

Xr(ai, s)}ai∈A is a good
cover of Xr. By Lemma 3.18 and by definition of good cover, we get:

|C dL
Xr (A, s)| ' Xr,

⋃
ai∈A

BdL
Xr(ai, s) = Xr. (4.4)

Figure 4.9: Case 6

Now we define the map f : Xr → X such that f(p) := s
⋂
X, where s is the
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half-line with the geometric point O placed in the center of the square as its initial
point, and that passes through p ∈ Xr. It is clear that f restricted to X is the
identity in X, so we just have to show that f is continuous in order to be a retract.
Hence, for any closed interval J ⊆ X, we have to check that f−1(J) ⊆ Xr is closed.

By Figure 4.9, the preimage of J is R := C
⋂
Xr, where C is the cone from O

including J , and C ⊆ R2 is closed. Therefore, R is closed in Xr (since Xr ⊆ R2

has the subspace topology, so if C is closed in R2, then C ⋂Xr is closed in Xr).
We can also consider Xr ⊆ Rd with the restriction of the Euclidean metric dE,

and following the notation of Figure 4.9, the distortion of Xr is

δ := supx 6=y
dL(x, y)
dE(x, y) = dL(x̃, ỹ)

dE(x̃, ỹ) = 2
√

4r2 + 1√
2(1 + 2r)

=

√
2(4r2 + 1)
1 + 2r <∞

and from the inequalities dE(x, y) ≤ dL(x, y) ≤ δdE(x, y) presented in (3.1), we
deduce that since the distortion is finite, then the metric topology in Xr induced
by dL is the same as the metric topology in Xr induced by the restriction of
the Euclidean distance. So, the geodesic γ(t) between two close enough points
x, y ∈ Xr is precisely the straight line segment tx + (1 − t)y. Hence, the square
X is a deformation retract (defined in Appendix A1) of its thickening Xr by the
following homotopy relative to X:

H : Xr × I −→ Xr; (p, t) 7→ γ(t) = tf(p) + (1− t)p.
So, by Proposition A.7, X is homotopy equivalent to Xr. Finally, by (4.4), we

obtain that ⋃
ai∈A

BdL
Xr(ai, s) ' X and |C dL

Xr (A, s)| ' X.

Moreover, the square and the circle as geodesic subspaces are isometric, i.e,
there exists a bijective map between them that preserves distances, but the thick-
ening of the square is not isometric to the thickening of the circle, because for any
two points in the square, the goedesic in its thickening connecting them has not
the same length as the geodesic of the thickening of the circle connecting their
corresponding points lying in the circle. This shows that we can follow this last
approach for other geodesic subspaces that are isometric to the square, but not if
their thickenings are involved.
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Appendix A

Appendix.

The goal of this appendix is to explain concepts and results that have been used
throughout the thesis. In Section A1 we present basic notions of algebraic topology.
In Section A2 we begin defining the fundamental group and higher homotopy
groups, continuing with ∆-complexes and their relation with abstract simplicial
complexes, and afterwards we define simplicial and singular homology, together
with singular homology with coefficients in an abelian group. We also state some
results showing properties of induced maps on homotopy or homology groups from
maps between topological spaces, and we conclude with the Universal Coefficient
Theorem for Homology, which determines when homology groups (defined with
integer coefficients) tensored by an abelian group are isomorphic to homology
groups with coefficients in that abelian group. In Section A3 we give the definitions
of convergence, continuity and gradient in a metric space. Finally, in Section A4
we briefly introduce Rips complexes.

A.1 Basic notions in algebraic topology.
This section is guided by Hatcher’s Algebraic Topology [9] and [18].

Let X, Y be topological spaces and A ⊆ X a topological subspace.

Definition A.1. A homotopy is a continuous map H : X × [0, 1]→ Y .
It is understood as a family of continuous maps {ht} for each t ∈ [0, 1], with

ht : X → Y such that H(x, t) = ht(x).
Two continuous maps f, g : X → Y are homotopic if there exists a homotopy

H connecting them, which means that H(x, 0) = f(x) and H(x, 1) = g(x) for all
x ∈ X. We denote it by f ' g.

Definition A.2. A retraction of X onto A is a continuous map which fixes A,
that is, r : X → A continuous, with r(X) = A, such that r|A = idA. Equivalently,
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r ◦ i = idA where i : A ↪→ X is the inclusion map. We can also say that A is a
retract of X.
Definition A.3. For two continuous maps f, g : X → Y , a homotopy relative
to the set A is a homotopy H : X × [0, 1] → Y such that H(a, t) = H(a, 0) for
all a ∈ A and t ∈ [0, 1]. We say that f and g are homotopic relative to A, and we
denote it by f 'A g.

It is clear that in order to have the possibility to define a homotopy relative to
A ⊆ X between f, g : X → Y continuous, f and g must agree in A.
Definition A.4. A deformation retraction of X onto A is a retract taken
as r : X → X (since r(X) = A) such that r 'A idX , where such homotopy
H : X × [0, 1] → X relative to A verifies that H(x, 0) = idX and H(x, 1) = r(x),
for every x ∈ X; and H(a, t) = idA, for every a ∈ A and t ∈ [0, 1].

We say that A is a deformation retract of X.
Remark A.5. A deformation retract of X onto A ⊂ X can also be defined as a
retract r : X → A such that i ◦ r ' idX , where i : A ↪→ X is the inclusion map.
Definition A.6. A continuous map f : X → Y is a homotopy equivalence if
there exists g : Y → X continuous such that f ◦ g ' idY and g ◦ f ' idX .

The map g is said to be an homotopy inverse of f , and the spaces X and Y to
be homotopy equivalent or to have the same homotopy type. We denote
it by X ' Y .
Proposition A.7. If A is a deformation retract of X, then X and A have the
same homotopy type.
Proof. There exists a retraction r : X → A such that i ◦ r ' idX , with i : A ↪→ X
continuous, by Remark A.5. We also have that r ◦ i = idA, hence we get the
definition of r : X → A homotopy equivalence, with i as its inverse.
Remark A.8. Being homotopic, homotopy equivalent or homotopic relative to A
are equivalence relations.
Definition A.9. The space X is contractible if the identity map on X is homo-
topic to a constant map cx0 : X → {x0} ⊂ X, for x0 ∈ X.

A.2 Homotopy groups, simplicial and singular
homology.

The next definitions are guided by [9] (page 21 for the fundamental group, page
340 for higher homotopy groups, and page 130 for ∆-complexes).

We recall that paths were introduced in Definition 3.4.
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Definition A.10. Let f, g : I → X be two paths such that f(1) = g(0). The
composition of paths f and g, denoted by f ∗ g, is again a path defined by

(f ∗ g)(t) :=
{
f(2t) if 0 ≤ t ≤ 1

2
g(2t− 1) if 1

2 ≤ t ≤ 1.
The paths f, g : I → X are path homotopic if f '{0,1} g, and such relative
homotopy is called a homotopy of paths.

The fundamental group, or first homotopy group, of X with base point x0 ∈
X, denoted by π1(X, x0), is the set of path homotopic classes of loops based on x0,
together with the operation [f ] ∗ [g] := [f ∗ g] for any [f ], [g] ∈ π1(X, x0).

Definition A.11. Let In be the n-dimensional unit cube. Let f, g : In → X be
continuous maps, so that we can define the following operation:

(f + g)(t1, . . . , tn) :=
{
f(2t1, t2, . . . , tn) if 0 ≤ t1 ≤ 1

2
g(2t1 − 1, t2, . . . , tn) if 1

2 ≤ t ≤ 1.
where f + g is also a continuous map from In to X.
Two maps f, g : In → X are said to be homotopic if f '∂In g, where ∂I denotes

the boundary of I.
The equivalence class of homotopic maps f : In → X is denoted by [f ].
For x0 ∈ X, the higher homotopy groups for n ≥ 2 are defined by

πn(X, x0) := {[f ] | f : In → X s.t. f(t1 . . . , tn) = x0 ∀(t1, . . . , tn) ∈ ∂In}

together with the operation [f1] + [f2] = [f1 + f2].

Definition A.12. Let

∆n := {(t0, . . . , tn) ∈ Rn+1 |
∑
i

ti = 1, ti ≥ 0 ∀i}

with the subspace topology from the Euclidean space Rn+1, be the standard n-
simplex, where ti are the barycentric coordinates.

An n-simplex is the smallest convex set in an Euclidean space containing n+ 1
points v0, . . . , vn which are affinely independent. The points vi are the vertices of
the simplex [v0, . . . , vn].

If we delete one of the n + 1 vertices of an n-simplex [v0, . . . , vn], then the
remaining n vertices span an (n− 1) simplex, called a face of [v0, . . . , vn].

The union of all the faces of ∆n is the boundary of ∆n, denoted by ∂∆n. The
open simplex of ∆n is its interior, defined by ∆̊n := ∆n\∂∆n.
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Definition A.13. A ∆-complex structure on a topological space X is a collection
of continuous maps σα : ∆n → X, with n depending on the index α, such that:

1. The restriction σα|∆̊n is injective and each point of X is in the image of
exactly one such restriction σα|∆̊n.

2. Each restriction of σα to a face of ∆n is one of the maps σβ : ∆n−1 → X.
Here we are identifying the face of ∆n with ∆n−1 by the canonical linear
homeomorphism between them that preserves the ordering of the vertices.

3. A set A ⊂ X is open if and only if σ−1
α (A) is open in ∆n for each σα.

The idea of ∆-complexes is to decompose a space into simplices allowing dif-
ferent faces of a simplex to coincide, and dropping the requirement of simplicial
complexes where simplices are uniquely determined by their vertices. Therefore,
it is said that ∆-complexes are a mild generalization of simplicial complexes.

We now explain such relationship between abstract simplicial complexes and
∆-complexes, so that we can justify defining simplicial homology for simplicial
complexes in this thesis, as simplicial homology is in principle defined for ∆-
complexes.
Claim A.14. An abstract simplicial complex K induces a ∆-complex structure on
its geometric realization |K|.
Proof. From a simplicial complex K with vertex set V , we obtain the topological
space |K|. For each q-simplex σ ∈ K, by the expression (1.3) in the construction
of geometric realization in Chapter 1, |σ| = {α : V → I | α(v) 6= 0 ⇒ v ∈ σ}
is in one-to-one correspondence with ∆q, and since |σ| ↪→ |K| =: X, we get a
continuous map ∆q ↪→ X.

We proceed giving the definitions of simplicial and singular homology, from [9]
(pages 106 and 108). We define free abelian group later in Definition A.19.
Definition A.15. We define simplicial homology for a ∆-complex.

To do that, it is necessary to give an order to the simplicies. Such order is the
induced one by the ordering of the vertices of ∆n.

Let Cn be the free abelian gorup generated by the maps σα : ∆n → X of the
∆-complex. The elements of Cn are called simplicial n-chains, where a simplicial
n-chain is a finite formal sum

∑
α

cασα

with cα ∈ Z as the coefficients.
We obtain a simplicial chain complex C, that is, the following sequence of

homomorphisms of abelian groups:

70



. . .
∂n+1 // Cn

∂n // Cn−1
∂n−1 // . . . . . .

∂1 // C0
∂0 // 0

where ∂n is the boundary homomorphism defined by

∂n(σα) =
n∑
i=0

(−1)iσα|[v0,...,v̂i,...,vn]

such that ∂n ◦ ∂n+1 = 0, for each n. Such composition is equivalent to saying
im(∂n+1) ⊆ ker(∂n).

We define the nth-cycle group by Zn := ker(∂n), and the nth-boundary group by
Bn := im(∂n+1).

Therefore, the nth-simplicial homology group is defined as the quotient
group Hn := Zn

Bn

.
The elements of Hn are called homology classes, and two cycles representing the

same homology class are said to be homologous, which means that their difference
is a boundary.

Remark A.16. By Claim A.14, abstract simplicial complexes K induce ∆-complex
structures on their geometric realizations |K|, so we can define their simplicial
homology groups in the same way as for ∆-complexes, and we denote them by
Hn(|K|).

By [9] (Theorem 2.27), these simplicial homology groups are isomorphic to
singular homology groups for the topological space |K| (with coefficients in Z),
which we proceed to define.

Definition A.17. A singular n-simplex in a topological space X is a continuous
map

σ : ∆n → X

where ∆n := {(t0, . . . , tn) ∈ Rn+1 | ∑i ti = 1, ti ≥ 0 ∀i} is the standard n-
simplex.

Let Cn(X) be the free abelian group generated by singular n-simplices in X.
The elements of Cn(X), called singular n-chains, are finite formal sums∑

i

ciσi

for ci ∈ Z and σi : ∆n → X.
The boundary homomorphism ∂n of the singular chain complex C(X)

. . .
∂n+1// Cn(X) ∂n // Cn−1(X) ∂n−1 // . . . . . .

∂1 // C0(X) ∂0 // 0
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is defined by ∂n(σi) = ∑n
k=0 (−1)kσi|[v0,...,v̂k,...,vn], for each n.

We have that ∂n ◦ ∂n+1 = 0, so as for the simplicial homology case, the nth-
singular homology group of X is Hn(X) := ker∂n

im∂n+1
.

We can also generalize homology groups using chains of the form∑
i giσi where

σi is a singular n-simplex in X as in the previous definition of singular homology,
and now gi ∈ G for an abelian group G, rather than Z.

Such n-chains form an abelian group Cn(X;G) = Cn(X)⊗G, for Cn(X) as in
the previous definition. Then, following the same construction, we get Hn(X;G)
called the nth-homology group with coefficients in an abelian group G.

The following discussion and proposition contain elementary results in homo-
topy theory ([9], page 111, page 340 and page 34 with Proposition 1.18 for the
case of the fundamental group) and in homology theory ([22], Theorem 1.7 and
Proposition 1.11).

A map ϕ : X → Y between topological spaces induces a map in the homo-
topy groups ϕ∗ : πn(X, x0) → πn(X,ϕ(x0)), for a base point x0 ∈ X; defined by
ϕ∗([f ]) := [ϕ ◦ f ], where f : In → X continuous.

It also induces a map in the homology groups, by first inducing a chain map
in the singular chain complexes ϕC∗ : C(X)→ C(Y ), defined by ϕCn(∑ ciσi) :=
= ∑

ci(ϕ ◦ σi) for each n, where ci ∈ Z and σi : ∆n → X, or we can also write it
by ϕCn(σi) := ϕ◦σi in terms of the basis of Cn(X). Then, we denote by ∂(X) and
∂(Y ) the boundary homomorphisms in the singular chain complexes of X and Y ,
respectively. It holds that ϕC∗ commutes with such boundary homomorphisms,
that is, ∂n(Y ) ◦ ϕCn = ϕCn−1 ◦ ∂n(X). Hence, ϕC∗ sends cycles to cycles and
boundaries to boundaries, inducing a map on homology ϕH∗ : Hn(X)→ Hn(Y ).
Proposition A.18. Let X and Y be two topological spaces, then for every n:

1. if ϕ : X → Y is a continuous map, then the induced maps ϕ∗ : πn(X, x0)→
→ πn(X,ϕ(x0)) and ϕH∗ : Hn(X) → Hn(Y ) are well-defined homomor-
phisms.

2. If ϕ, ψ : X → Y are homotopic, then ϕ∗ = ψ∗ : πn(X, x0) → πn(X,ϕ(x0))
and ϕH∗ = ψH∗ : Hn(X)→ Hn(Y ).

3. If ϕ : X → Y is a homotopy equivalence, then ϕ∗ : πn(X, x0)→ πn(X,ϕ(x0))
and ϕH∗ : Hn(X)→ Hn(Y ) are isomorphisms.

Now we discuss how the homology groups defined with coefficients in Z can
determine the homology groups with coefficients in an abelian groupG. We present
the following definitions and results from [8].
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Definition A.19. An abelian group G is free if it has a basis, i.e, a set of linearly
independent elements that generate G.

Example A.20. The group of integers Z under addition and with 0 as its identity
element, is a free abelian group with the basis {1}.

Definition A.21. For G an abelian group, a free presentation of G, denoted
by F , is a short exact sequence of abelian groups

0 −→ F1 −→ F0 −→ G −→ 0

such that F0 and F1 are free.

For B an abelian group, letH1(F⊗B) denote the first homology group ker(F1⊗

⊗B → F0⊗B). More generally, Hn(F⊗B) ∼=
ker(fn ⊗ idB)
im(fn+1 ⊗ idB) , for fn : Fn → Fn−1

([9] page 263).

Definition A.22. For A,B abelian groups, the torsion product Tor(A,B) is
the abelain group defined by:

Tor(A,B) := H1(F ⊗B) ∼= ker(F1 ⊗B → F0 ⊗B)

for some choice of a free presentation F of A.

Remark A.23. If A is a free abelian group, then 0→ 0→ A
idA−−→ A→ 0 is a free

presentation of A, so Tor(A,B) ∼= 0 for any abelian group B.

The next lemma is from [9] (page 147).

Lemma A.24 (Splitting Lemma). For a short exact sequence of abelian groups
0→ A

i−→ B
j−→ C → 0, the following statements are equivalent:

1. there exists a homomorphism p : B → A such that p ◦ i = idA.

2. There exists a homomorphism s : C → B such that j ◦ s = idC.

3. There exists an isomorphism B ∼= A⊕ C.

If these conditions are satisfied, the exact sequence is said to split.

Now we state the following result from [8] (Corollary 14) (also found it [9]
Corollary 3A.4).
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Corollary A.25 (Universal Coefficient Theorem for Homology). For a topological
space X and an abelian group G, there is a natural short exact sequence

0 −→ Hn(X)⊗G −→ Hn(X;G) −→ Tor(Hn−1(X), G) −→ 0 for all n > 0.

Moreover, this short exact sequence splits (but not naturally).

Corollary A.26. For an abstract simplicial complex K, if its geometric realization
|K| is path-connected and G is an abelian group, then

H1(|K|;G) ∼= H1(|K|)⊗G.

Proof. From Lemma A.24, the existence of a splitting in the short exact sequence
of the Universal Coefficient Theorem for Homology A.25 implies that, for n = 1,

H1(|K|;G) ∼= (H1(|K|)⊗G)⊕ Tor(H0(|K|), G).

Since |K| is path-connected, H0(|K|) ∼= Z (by [22] Proposition 1.4), so by
Example A.20 and Remark A.23, Tor(H0(|K|), G) ∼= 0. Hence,

H1(|K|;G) ∼= H1(|K|)⊗G.

Remark A.27. A field is a particular case of abelian group, hence if we have a
path-connected space X or |K|, the homology groups with integer coefficients also
determine homology groups with coefficients in a field, and these last homology
groups are vector spaces. We recall that they can be considered persistence modules,
as explained in Section 3.3.

For example, if m ∈ Z is prime, then (m) is a maximal ideal, and so Z/(m) is
a field. Then,

Hn(_,Z/(m)) ∼= Hn(_)⊗ Z/(m)

is a vector space.

A.3 Definitions in metric spaces.
Definition A.28. Let (M,d) be a metric space. A sequence of points {xn}n∈N in
M is a convergent sequence to a point x ∈ M if for every ε > 0, there exists
N ∈ N such that d(xn, x) < ε, for every n ≥ N . We denote it by {xn}n∈N → x
when n→∞.

Definition A.29. We present three definitions of continuous map:
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1. Let X, Y be topological spaces. A map f : X → Y is continuous if for every
open (or closed) subspace V ⊆ Y , f−1(V ) is open (or closed) in X.

2. Let (X, d1) and (Y, d2) be metric spaces. A map f : X → Y is continuous at
a point x0 ∈ X if for every ε > 0 there exists δ > 0 such that if d1(x, x0) < δ,
then d2(f(x), f(x0)) < ε, for every x ∈ X (assuming X is the domain of f).
We say that f is continuous if it is continuous at every x ∈ X.

3. Let (X, d1) and (Y, d2) be metric spaces. A map f : X → Y is continuous if
for every convergent sequence {xn}n∈N → x in X, then {f(xn)}n∈N → f(x)
in Y .

These three definitions are all equivalent between them if X and Y are metric
spaces. In [16] (Theorem 21.1) it is proven that (1) is equivalent to (2), and also
in [16] (Theorem 21.3), it is proven that (1) is equivalent to (3).

Definition A.30. The gradient of a multivariable function f : Rd → R at a
point p ∈ Rd is the map gradf : Rd → Rd, that evaluated at p consists of the vector
whose components are the partial derivatives of f at p, i.e,

gradf(p) =
(
∂f

∂x1
(p), . . . , ∂f

∂xd
(p)
)
.

A.4 Rips complexes.
In this part of the appendix we present another type of simplicial complexes, the
Rips complexes, together with some results relating them to Čech complexes from
[24] and [25]. We also present Hausmann’s Theorem A.32, which works as an
equivalent result to the Nerve lemma but for the case of Rips complexes.

The motivation is mainly to help the reader to follow the bibliography of this
thesis, since most of our results are new versions for Čech complexes of original
ones for Rips complexes.

We have chosen the Čech complex as our tool to reconstruct a Euclidean sub-
space, rather than the Rips complex, because it is exactly the nerve of a cover,
and therefore it can be more interesting from a geometric or theoretical point of
view. However, Rips complexes are used more frequently because they are easier
to compute, and from a more applied point of view, they can be preferable.

Definition A.31. For X a metric space with metric d and r > 0, the Rips
complex is an abstract simplicial complex defined by

Rips(X, r) := {σ = [x0, . . . , xk] ⊆ X | Diam(σ) < r}

where Diam(σ) := supxi,xj∈σ d(xi, xj).
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We now present Hausman’s Theorem (Theorem 4.9 in [24]) which works as
a reconstruction result in an analogous way as the Nerve Lemma does for Čech
complexes.

Theorem A.32 (Hausman’s Theorem.). Suppose X is a geodesic space with con-
vexity radius ρ > 0 (for example, a compact Riemannian manifold). Then
X ' |Rips(X, q)|, for 0 < q ≤ ρ/2.

By the definitions, we always have for a metric space X and r > 0 the following
inclusions:

C d
X(X, r/2) ↪→ Rips(X, r) ↪→ C d

X(X, r).
The following result ([24], Theorem 5.6) shows that these Rips and Čech com-

plexes coincide locally.

Theorem A.33. Let X be a geodesic space with convexity radius ρ > 0 and
0 ≤ r ≤ ρ

2 . Then, the inclusions

C dL
X (X, r/2) ↪→ Rips(X, r) ↪→ C dL

X (X, r)

induce homotopy equivalences.

The following result gives an isomorphism between the persistence groups of
Čech complexes and persistence groups of Rips complexes ([25], Theorem 10.6).

Theorem A.34. For X a geodesic space and G an Abelian group, there are iso-
morphisms of persistences

{π1(|C dL
X (X, 3r)|, •)}r>0 ∼= {π1(|Rips(X, 4r)|, •)}r>0

and
{H1(|C dL

X (X, 3r)|;G)}r>0 ∼= {H1(|Rips(X, 4r)|;G)}r>0.
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