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Abstract

Nepal is located at the rim of the Himalayas and houses the highest mountains of the
world. Owing to the complex topography and a seasonal monsoon climate, Nepal ex-
periences precipitation events of considerable intensity. Large amounts of rain lead to
natural hazards like landslides, floods, infrastructure damage, agricultural losses, and
human casualties. It is therefore important to understand whether there are changes in
extreme precipitation in Nepal, and which physical processes lead to an extreme event
while taking into account the spatial variability of rainfall.

To approach these questions the setup of this thesis is threefold. First, a measure-
ment based climatology of precipitation was established and trends in extreme pre-
cipitation were detected. Second, synoptic scale conditions associated with extreme
precipitation in Nepal were revealed, and third, a case study was used to proceed to the
process level and obtain a better understanding of how involved processes interact and
finally end in an extreme event.

The first manuscript (Paper I) aims to assess the rainfall climatology and trends in
extreme precipitation based on rain gauge data in Nepal from 1971-2010. Rain gauge
data show that most of the annual precipitation is recorded during the Indian summer
monsoon with considerable variability in time and space. Upper quantiles and annual
maxima occur mainly during the Indian summer monsoon. The seasonal precipita-
tion varies with the El Niño-Southern Oscillation (ENSO). This correlation vanishes
with increasing quantiles. Trends in precipitation extremes were assessed using linear
regression, quantile regression, and non-stationary extreme value theory. Moreover,
parameter estimation for the non-stationary extreme value distribution was performed
applying a maximum likelihood and a Bayesian approach. Multiple approaches add
information regarding the method sensitivity of the trends. The study concludes that
despite high spatial variability in the trends of extreme precipitation, Far-West Nepal
shows a robust positive trend in extreme precipitation across the different methods.

The significant changes in extreme precipitation found in Paper I urge a better un-
derstanding of the involved physical processes, which motivates the second and third
manuscript (Paper II and Paper III). Paper II investigates atmospheric synoptic scale
conditions and moisture sources related to extreme precipitation events in Nepal. The
high spatial variability in daily rainfall was taken into account by clustering daily pre-
cipitation from rain gauges using K-means clustering. As a result, spatial patterns of
daily rainfall were established dividing Nepal into West, Central, and East Nepal. The
study focuses on extreme precipitation events during which the 99.5 percentile was ex-
ceeded at least at five stations at the same time in one cluster. Based on the resulting set



vi Abstract

of extreme precipitation events, a composite study was conducted for each cluster us-
ing meteorological fields from Era-Interim reanalysis. The study shows that large scale
atmospheric flow was angled toward the Himalayas at the cluster location during an
extreme event following mid- and upper-tropospheric trough structures in geopotential
height. Tracking of low pressure systems indicates that the large scale flow conditions
guided the low pressure systems toward the Himalayas where they rain out. These re-
sults show that the large scale flow conditions mainly determined the location of the
extreme event. A Lagrangian moisture source diagnostic reveals anomalously abun-
dant moisture sources over land, particularly over the Indo-Gangetic plain, along the
path of the low level flow. The moisture was likely provided by foregone precipitation
events over this region preconditioning the soil moisture for additional uptake. It was
further found that monsoon break conditions were prevailing during 25%-43% of all
extreme events during July and August.

To go deeper into the responsible physical processes and their interplay, Paper III
focuses on one case, the extreme precipitation event on 19 July 2007 in Nepal. This ex-
treme event was part of a sequence of precipitation events contributing to the South Asia
flood 2007 affecting 20 million people. The study is based on rain gauge data, TRMM
3B42, Era-Interim reanalysis, Lagrangian trajectories, and a high resolution numerical
simulation. The combination of these different datasets allows a multiscale analysis of
the considered extreme precipitation event. The evolution of the extreme event started
with individual convective cells forming over Nepal that were invigorated by moist
low-level inflow with high convective available energy. The individual cells organized
upscale into an intense wide convective system and resulted in torrential rain with over
250mm within 24 hours. The synoptic scale conditions were similar to Paper II, per-
mitting and orchestrating the development of this extreme event. The following condi-
tions were identified: prior to the extreme event precipitation events preconditioned the
soil moisture along the Indo-Gangetic plain, anomalously high moisture sources were
available along the path of the low level flow which was characteristic for monsoon
break periods, abundant moisture sources enabled the formation of moist airmasses fu-
eling the convective system, and the airmasses were destabilized by topographic and
quasi-geostrophic forcing where the final trigger mechanism was probably the upslope
flow. Besides investigating an interesting extreme precipitation event, this study shows
how synoptic conditions can co-exist and interact to form a system of unusual intensity.

Together, the three studies provide the basis for a comprehensive understanding of
extreme precipitation events in Nepal. The interplay between atmospheric circulation
and moisture sources are of particular importance. The conditions, as described in Pa-
per II and III, have to be just right to provoke an extreme event and should therefore
be usefull to increase the ability of forecasting an extreme event. Challenges result-
ing from the pronounced changes in extreme precipitation (Paper I) can be approached
supported by the conditions found in Paper II and III. The involved processes can be
persued in future studies to gain further insights which will hopefully foster new re-
search and useful findings for Nepal.
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Prologue

The Indian summer monsoon affects over a billion of people. For the societies that
are fine-tuned toward economic profit depending on precicely clocked and appropriate
amounts of the seasonal monsoon precipitation, small variations can bring about severe
consequences. Variations that were not anticipated, can considerably impact crops and
hence the gross domestic product of countries in the affected region. As a result of this,
authorities of concerned countries supported and advocated research aiming at increas-
ing the understanding and predictability of the monsoon, which, for good and bad, is a
remarkably complex circulation entangled in multiple components of the Earth system.
It is therefore not surprising that the amount of research conducted on the countless
aspects of the monsoon is overwhelming, featuring considerable scientific efforts and
important results.

While I was reading up on the literature about the Indian summer monsoon, I found
myself confronted with three challenges: the literature is endless, abstract and presum-
ably complex mechanisms are often taken as given, and their origin and explanation is
sometimes hard to trace back. This makes it challenging to both find out how processes
work and whether someone actually had explored those. I noticed that oftentimes a
bridge was missing between a climatic scale occurrence of events and the processes re-
sponsible for the occurrence of these events. With my work, I hope to shed light, not
only on prevailing conditions during extreme precipitation events in Nepal, but also
on the processes that need to co-exist and interact to make a precipitation event ex-
treme. I attempted to perform a transition from a climatic perspective, quite common
in monsoon literature, to get beyond the what and end with the process oriented per-
spective why. In this way, I strived to build this bridge connecting the climatic scale to
the processes. I wanted to obtain an idea about the important mechanisms and a com-
prehensive understanding of how the mechanisms work without being chained to one
single process.

Since I was dealing with extreme events, I soon asked myself what that really meant;
What is an extreme event? It turned out that the answer to this essential question was
not simple. An extreme event could be defined in myriad of ways, customized to the re-
gion, process, and needs of the study. In the literature, authors justified different ways
on how to define extremes and how to detect changes in extremes. The approaches var-
ied from basic statistics to very advanced statistical methods claiming that the simple
methods were not appropriate. I felt it difficult to judge what would be appropriate and
hence, right from the start of my PhD, I had a tenacious itching, urging me to better
understand statistics of extreme values. I believed this to be crucial for understanding
published work and interpreting changes in extreme events; I ended up with so much
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more. Diving into extreme value statistics was very instructive and helped me to bet-
ter understand famous scientific results e.g. from the International Panel on Climate
Change on the future of extreme weather. I met statisticians at the National Center of
Atmospheric Research in Boulder (NCAR), US, and at a summer school on extreme
value statistics in Lyon, France, that had both an enormous knowledge and the patience
and gift to communicate it. During the summer school in Lyon, I noticed that, although
statistical methods are widely used in climate science and meteorology, the language
is not nearly the same. Together with a french mathematician, I tried to discuss prob-
lems in statistics and likewise his questions about atmospheric physics. It took about
two weeks of laughing and aching stomach muscles due to misunderstandings before
we reached a state, where we could efficiently convey our questions and answers in
connected sentences. Learning to communicate across the borders of those disciplines
together with understanding Bayesian statistics were eureka experiences for me as a
non-statistician.

My stay at NCAR was important in many more aspects. In my research group at
NCAR and outside, I met very capable and helpful people that got me closer to the
world of numerical models and their development. I was lucky enough to work with
the developer of the model ICAR, Ethan Gutmann, and discuss parameterization is-
sues with a main developer of the WRF-model, Jimi Dudhia. Due to their comments,
I could improve my understanding of numerical models as well as the efficiency of my
programming. I inhaled every bit of what the fruitful scientific environment had to of-
fer. Above all, the nature in the Rocky mountains and its fantastic snow conditions
really was the icing on the cake. Together with other PhD-students and postdocs I en-
joyed the best skiing experience of my life.

The research environment at the Geophysical Institute in Bergen and the Bjerknes
Center for Climate Research together was a great place to spend the time of my PhD.
It was a special time for me, not only professionally but also in my private life. I am
grateful for my colleagues, the people I met, and that I could learn so much. Motivated
by scientists crafting impressive publications, I am looking forward to continue my
learning process in the future.
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Chapter 1

Introduction

1.1 Setting the scene

Over the recent years, extreme weather events and particularly extreme precipita-
tion events have become increasingly prevalent in scientific literature. Since extreme
weather events are of societal importance, the Intergovernmental Panel on Climate
Change issued a Special Report on Extreme Events [Field et al., 2012], together with
the Fifth Assessment Report [Stocker et al., 2013], state that the magnitude of precip-
itation extremes and their frequency of occurrence have been increasing over most of
the globe.

Chalise and Khanal [2002] conclude that in Nepal, extreme weather entailing heavy
precipitation is the primary cause of natural disasters. The most common hazards in
Nepal connected to extreme precipitation are glacier lake outburst floods, landslides,
dam breaks, and flash floods [Chalise and Khanal, 2002] with severe consequences in-
cluding human casualties, agricultural loss, pests and diseases, and infrastructure dam-
age.

Climate projections for the future suggest an enhancement of the existing global
spatial pattern, meaning dryer regions become dryer and wetter regions become wetter
[Field et al., 2012; Stocker et al., 2013]. Moreover, extreme events are projected to be-
come more pronounced in the future over most of the globe [Sillmann et al., 2013a,b].
It is clear that for socioeconomic reasons, changes in the hydrological cycle and its ex-
tremes, processes leading to extremes, and inherent spatial patterns need to be under-
stood. While there exists the rather univocal notion of precipitation extremes becoming
more extreme on a global scale, the trends of extreme precipitation in Nepal are not yet
clearly determined.

Various authors conducted studies of changes in extremes over Nepal and South
Asia [Shrestha, 2005; Baidya et al., 2008; Caesar et al., 2011]. However, the focus
was either not on extreme precipitation or it was not on Nepal in particular. Recently,
Shrestha et al. [2016] assessed changes of extreme temperatures and precipitation in
the Koshi river basin in Nepal. Changes in other parts of the country remain to be
explored.
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Not only trends in extreme precipitation but also processes leading to extreme pre-
cipitation in Nepal were not yet systematically investigated. For surrounding countries
such as India and Pakistan, case studies could reveal processes that were critical for the
development of precipitation systems entailing floods (e.g. Houze Jr et al. [2011], Ras-
mussen and Houze Jr [2012], Kumar et al. [2014], Rasmussen et al. [2015], Houze Jr
et al. [2017]). Due to the high spatial and temporal variability of rainfall along the
Himalayas (Section 2.2 and 2.3) it was not clear whether the same processes and con-
ditions would occur, and if, lead to an extreme precipitation event.

In my dissertation, I therefore concentrate on establishing a comprehensive overview
of trends in extreme precipitation in Nepal and the physical processes causing extreme
precipitation events. This set of physical processes then hopefully provides a basis for
future research on extreme precipitation in Nepal.

1.2 Availability of precipitation measurements in Nepal

Nepal is located right at the rim of the Himalayas (Fig. 1.1) and houses the highest
peaks of the world. The extreme topographic features, the inaccessibility of many re-
gions, and the poverty of a developing country had suppressed the installation of a
network of meteorological stations for a long time [Nandargi and Dhar, 2011]. On
this issue, Nandargi and Dhar [2011] illustrate the availability of rain gauge data in
countries along the Himalayas (Fig. 1.2). Unfortunately, for Nepal they used only data
from 1921 to 1990. Nonetheless, compared to the entire Himalaya region, Nepal has
very little coverage along most of the depicted time line where only during the last 60
years significant improvements have taken place. Because measurement stations were
deployed and maintained at that time, we can now harvest the fruits of these efforts as
the record reaches a time scale relevant for climate related research.

A critical step forward in assessing rainfall over the Himalayas was the possibility
to measure rainfall with satellites. The precipitation radar on board the Tropical Rain-
fall Measurement Mission (TRMM) satellite provided coverage of rainfall over these
remote areas for the first time. The extended coverage made it possible that also pre-
cipitation in deep inaccessible valleys became visible. Rainfall in these valleys would
have been shadowed by the surrounding mountains when using a ground based radar
[Houze Jr et al., 2007]. The TRMM datasets span a, in a climatological sense, rather
short period of time (active from 1997). Nonetheless, multiple studies successfully
utilized TRMM output to investigate precipitation systems, climatological rainfall, and
the hydrological budget in the Himalayas [Lang and Barros, 2002; Bookhagen and Bur-
bank, 2006; Houze Jr et al., 2007; Romatschke et al., 2010; Bookhagen and Burbank,
2010; Bookhagen, 2010; Romatschke and Houze Jr, 2011].
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Figure 1.1: Overview map for South Asia. Country abbreviations are displayed in red (ISO
3166-1 alpha-2) for NP = Nepal, IN = India, AF = Afghanistan, PK = Pakistan, BD =
Bangladesh, LK = Sri Lanka. The main topographic features Tibetan Plateau, Himalayas,
and Western Ghats are marked to serve the discussion in this thesis. The Thar desert is indi-
cated as its arid nature is important for the second manuscript. The main river plains, the Indus
Plain and the Ganges Plain, as well as the location of the Arabian Sea and the Bay of Bengal
are highlighted for orientation purposes. Major rivers are indicated in blue.

Figure 1.2: Two panels from Figure 4. from Nandargi and Dhar [2011] displaying the rainfall
data availability in terms of number of stations for Nepal and the entire Himalaya region.
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Chapter 2

Scientific background

2.1 Main processes governing precipitation along the Himalayas

There are various types of precipitation systems along the Himalayas for which dif-
ferent processes cause precipitation. Houze Jr et al. [2007] went about the challenge
of systematically addressing these processes, by defining different types of convective
systems. Facilitating TRMM measurements, they divided precipitation systems into
deep intense convective cores, wide intense convective cores, and broad stratiform sys-
tems. Deep intense convection was defined as a system containing a core of more
than 40 dBZ exceeding an altitude of 10 km. To be classified as wide intense convec-
tive system, the 40dBZ echo core needed to exceed an area of 1000 km2 at its level of
maximum extent. These studies opened up for systematically determined insights into
three-dimensional characteristics of convective systems along the Himalayas [Houze Jr
et al., 2007; Romatschke et al., 2010].

Existing hypotheses and conceptual models were tested which could help to explain
the preferred region of occurrence of convective systems [Sawyer, 1947;Houze Jr et al.,
2007;Medina et al., 2010; Rasmussen and Houze Jr, 2012;Kumar et al., 2014]. Sawyer
[1947] introduced a conceptual model (Fig. 2.1) connecting the monsoonal atmospheric
environment to the location of convection over the northwestern Indian subcontinent.
Houze Jr et al. [2007] added to this model an explanation for the location of the con-
vective systems in this region as defined in their work. Sawyer’s conceptual model
is illustrated in Figure 2.1. During the Indian summer monsoon, moist low-level air
from the Arabian Sea is directed toward the Himalayas, following the Indus-Plain. The
moist low-level flow is capped by warm and dry continental air from the Hindu Kush
mountains in Afghanistan, creating an inversion. This inversion layer prevents prema-
ture convection, as the moist low-level flow gains buoyancy due to insolation over the
warm and arid region. Finally, the low-level air can penetrate the inversion layer and
deep convection develops explosively.

Medina et al. [2010] confirmed this conceptual model with a high resolution nu-
merical modeling study for a single event over Pakistan. They showed that topographic
lifting, rather than increasing buoyancy due to sensible heat fluxes, was the most ef-
ficient process to overcome the inversion layer and consequently triggering deep con-
vection. When the moist low-level air is heading north toward the Himalayas, it will
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finally be trapped in a concave region in Northwest India and North Pakistan where it
accumulates as it breaks against the mountain ridge. Developing convective cells can
tap into abundant moisture and develop extreme intensities [Houze Jr et al., 2007].

Figure 2.1: Illustration from Houze Jr et al. [2007] displaying the conceptual model from
Sawyer [1947]. a) shows South Asia with a low-level moist inflow from the Arabian Sea
crossing the Thar desert. Two cross sections are indicated and schematically illustrated in b)
for distance AB and c) for distance CD.
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Rasmussen and Houze Jr [2012] investigated a flash flood event in Northwest India
over the city Leh, introducing a conceptual model for the intensification of mesoscale
convective systems that formed over the Tibetan Plateau. A constant jet over the Ti-
betan Plateau organized the individual convective cells into a squall line structure and
directed them off the Plateau toward Leh. Synoptic conditions provided two low-level
streams of moist air toward Leh, one from the Arabian Sea and one from the Bay of
Bengal, invigorating the convective systems as they moved over Leh down from the Ti-
betan Plateau. This has been confirmed by Kumar et al. [2014] who performed a high
resolution numerical simulation of this event. The movement of the mesoscale convec-
tive systems was set up by a quasi-stationary situation featuring a wide area of high
geopotential at 500 hPa over the Tibetan Plateau.

Similar large scale conditions accompanied the Pakistan flood 2010. A blocking
high over the Tibetan Plateau and two low pressure anomalies conveyed moist air from
the Bay of Bengal along the Himalayas and from the Arabian Sea to Pakistan [Houze Jr
et al., 2011; Rasmussen et al., 2015]. These highly unusual conditions led to the de-
velopment of a large stratiform system which is usually more common in the humid
environment over the Eastern Himalayas and the Bay of Bengal [Houze Jr et al., 2011].
The arid region was not prepared to take up the large amount of moisture resulting in a
flooding event [Houze Jr et al., 2011]. During a flood in Pakistan in 2012, no stratiform
echoes were identified [Rasmussen et al., 2015]. The high variability in the nature of
the flood producing precipitation systems over South Asia, even over one subregion e.g.
Pakistan, indicates a high complexity of the involved processes, determining whether
an event can develop the intensity needed to entail severe societal consequences.

Comprehensive studies like those introduced above were absent for Nepal in the
published literature. Rather, single processes and conditions and their impact on rain-
fall in Nepal were investigated. For instance, Lang and Barros [2002] described onset
monsoon low pressure systems that created an upslope flow followed by a mixture of
stratiform and convective precipitation. Large amounts of rainfall up to 462mm were
recorded over two days. Nandargi and Dhar [2011] summarized meteorological sit-
uations, like monsoon low pressure systems, related to heavy precipitation along the
Himalayas of which some could be assumed to be relevant for Nepal.

Additional to monsoon low pressure systems, Nandargi and Dhar [2011] mention
monsoon break periods. Monsoon break periods are found to coincide with less pre-
cipitation over central India (therefore the name break period) and excess precipitation
along the Himalayas [Rajeevan et al., 2010]. Break periods coincide with a low-level
flow split at the Western Ghats where the flow bifurcates into a northern and a southern
branch [Joseph and Sijikumar, 2004]. Consequently, the moist flow is no longer di-
rected over Central India which decreases the amount of rainfall in that region. Instead,
the northern branch is directed toward the Himalayas supporting rainfall in Northern
India. Another large scale mechanism influencing seasonal precipitation in Nepal is the
El Niño-southern oscillation (ENSO) although the robustness of this correlation is still
under debate [Trenberth, 1997; Kumar et al., 1999; Shrestha, 2000; Ichiyanagi et al.,
2007; Sigdel and Ikeda] (more in Section 2.3).
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After introducing research conducted for Nepal it becomes apparent that the studies
are scattered across different topics but can be categorized under the subject variabil-
ity of rainfall in Nepal. Let us therefore continue to bundle the studies into spatial and
temporal variability to make the existing research on Nepal more accessible.

2.2 Spatial variability of precipitation in Nepal

Large spatial variability in precipitation has been observed along the Himalayas
[Bookhagen and Burbank, 2006, 2010; Bookhagen, 2010]. This can be partly caused
by various precipitation systems occurring in different regions. Various types of pre-
cipitation systems were characterized and observed by e.g. Houze Jr et al. [2007],
Romatschke et al. [2010], Romatschke and Houze Jr [2011], and Nandargi and Dhar
[2011]. To the west of Nepal deep convective systems prevail whereas to the east strat-
iform precipitation systems are most common. Nepal, however, can experience both
stratiform and convective precipitation systems of varying sizes [Romatschke et al.,
2010; Romatschke and Houze Jr, 2011].

The fact that Nepal is located in this transition zone highlights the importance of
considering spatial variability when investigating processes leading to extreme precip-
itation events in Nepal. In particular, the complex topography in Nepal can strongly
interact with precipitation systems. This has been shown e.g. for monsoon low pres-
sure systems during the onset of the Indian summer monsoon [Lang and Barros, 2002].
Lang and Barros [2002] found that years without low pressure systems colliding with
the Himalayas depict considerably less seasonal rainfall. Studies of low pressure sys-
tems [Lang and Barros, 2002; Krishnamurthy and Ajayamohan, 2010; Sørland and
Sorteberg, 2015a] suggest large variability in their trajectories which consequently af-
fects the rainfall variability in Nepal. On smaller spatial scales, Barros and Lang [2003]
suggest that the diurnal cycle of the precipitation is determined by the diurnal change
in thermally driven circulation. During the night the upslope winds stall and the flow
converges upstream in front of the mountain range lifting the air column and causing
precipitation.

The topography varies considerably along the Himalayas and in Nepal, which
makes the described effects of topography even more important for the rainfall dis-
tribution. Bookhagen and Burbank [2010] describe the difference between a one-step
and two-step topography. A one-step topography means that the mean topography rises
to the Greater Himalayas without a break in the slope. A two-step topography describes
a gradual rise to the lesser Himalayas with a subsequent break in relief followed by a
second rise to the Greater Himalayas. These features translate directly into the amount
of annual rainfall with one peak at places with a one-step topography and two peaks
at places with a two-step topography. In the West and East Himalayas the one-step to-
pography is prevailing whereas in the Central Himalayas the two-step topography is
characteristic. However, within Nepal, although located in the Central Himalayas, both
features can occur.
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The close relationship between rainfall amounts and topography raises the question
whether we can see spatial patterns of rainfall in Nepal associated with topographic fea-
tures. Kansakar et al. [2004] clustered climatological rainfall using a dataset contain-
ing 222 rain gauge stations. They found considerable different rainfall regimes which
aligned with main river basins and the physiographic regions of Nepal (Fig. 2.2). These
results from Kansakar et al. [2004] support the previously discussed findings that the
complex topography in Nepal influences considerably the rainfall distribution in Nepal,
resulting in a high spatial variability.

Figure 2.2: Summary figure from Kansakar et al. [2004] depicting regions dominated by
different clusters of rain gauges. Clusters are oriented along physiographic regions and major
river basins.

2.3 Temporal variability of precipitation in Nepal

Precipitation in Nepal experiences strong temporal variability from an intra-seasonal to
a decadal time scale [Webster et al., 1998]. Climate in Nepal as well as in entire South
Asia is largely determined by the South Asian summer monsoon responsible for most
of the intra-annual variability in rainfall [Nayava, 1980]. The society and economy
in monsoon climates are highly depending on the seasonal monsoon rainfall and con-
sequently slight changes can have severe socio-economic consequences [Gadgil and
Kumar, 2005]. Webster et al. [1998] and Gadgil and Kumar [2005] show the socio-
economic importance of the monsoon performance for India. There is a significant
correlation between crops production and the performance of the Indian summer mon-
soon [Webster et al., 1998]. During bad monsoon years, meaning deficient rainfall,
India produces considerable less crops than during good monsoon years, years with
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abundant rainfall. Changes in crops production directly translates into India’s gross do-
mestic product. Given the importance of the Indian summer monsoon, I will introduce
basic concepts and mechanisms influencing the temporal variability of the monsoon
precipitation in Nepal.

2.3.1 The Indian summer monsoon

The Indian summer monsoon can be seen as a regional monsoon, part of a complex
global monsoon system consisting of a varying thermally driven overturning circula-
tion close to the equator [Trenberth et al., 2000]. The overturning circulation strives to
remove the energy imbalance created by unevenly distributed radiation received from
the sun. In places with a more pronounced Coriolis force as in mid-latitudes, this task
is accomplished by baroclinic instabilities [Trenberth et al., 2005].

There is no agreement on the main driver of the Indian summer monsoon circulation
in the literature, hence, I will briefly describe the most prominent hypotheses. Differ-
ential heating due to land sea distribution in the horizontal and the Tibetan plateau in
the vertical can modulate the position of the overturning circulation comparable to a
land-sea breeze system. The Tibetan plateau and its function as elevated heat source
was thought to be a significant driver on the South Asian monsoon circulation [Web-
ster et al., 1998]. However, in a modeling study it was shown that the pattern of the
monsoon circulation was hardly impaired when removing the Tibetan plateau, only re-
taining the Himalayas [Boos and Kuang, 2010]. Only the strength of the circulation
was reduced resulting in locally reduced precipitation. The large scale monsoon circu-
lation was unaffected. Consequently, elevated heating as the main driver for the Indian
summer monsoon dropped out entailing a void of explanations.

A possible mechanism that could fill this void is latent heat release. Various studies
indicated that latent heat release could be the motor maintaining the monsoon circula-
tion. Vertical velocity fields coincide with the moisture sinks and regions of precipita-
tion supporting this idea [Trenberth et al., 2005]. Other diabatic effects like radiative
cooling in the descending branch of the overturning heated by adiabatic compression,
can strengthen the circulation as a feedback but can hardly be thought of as the driving
mechanism [Trenberth et al., 2005]. Boos and Kuang [2010] show that the subcloud
entropy maximum, illustrated by the equivalent potential temperature maximum, is
aligned with the Himalayas, underlining the importance of moist processes.

In Nepal, the Indian summer monsoon precipitation accounts for approximately
80% of the annual precipitation with considerable variations across the country
[Nayava, 1980; Marahatta et al., 2009]. Typically, Far-West Nepal is less dominated
by the monsoon than East Nepal [Marahatta et al., 2009]. This is due to the develop-
ment of the wind field and the propagation of the moist monsoonal air coming mainly
from the Bay of Bengal. During the monsoon season the monsoon gradually advances
to the west over the subcontinent and retreats until the end of the season. This advance
can be seen in terms of the timing of the monsoon onset [Webster et al., 1998]. How-
ever, the monsoon onset and its progression highly depends on the definition of the
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monsoon and is a complicated issue on its own (e.g. Stiller-Reeve et al. [2015]).

The Indian summer monsoon can be characterized e.g. by the reversal of the wind
system over South Asia. Following the winds, also the propagation of precipitation can
be better understood. As the Inter-Tropical Convergence Zone (ITCZ) moves to the
north, the atmospheric flow funnels moisture to the land, fueling the monsoon precipi-
tation. Trenberth et al. [2005] illustrate the reversal of the low-level winds comparing
the winter season (December to February) with the summer season (June to August).
During the boreal winter, low-level winds are aligned with the Himalayas and point
toward the east before they turn to the south and west in the Bay of Bengal. They sub-
sequently cross the Indian subcontinent and continue to the south-west toward the coast
of Africa where they turn again toward the equator. Upper tropospheric winds exhibit
a strong band of westerlies over Nepal. The moisture in the atmosphere follows the
low-level winds and converges south of the equator consistent with the main precipita-
tion band during winter [Trenberth et al., 2005].

During the boreal summer the low-level flow is organized in the opposite direction
(Fig. 2.3). Manifested as the Somali Jet, the low-level flow curves northeast along the
Somali coast and the Arabian peninsula crossing the Arabian Sea and finally reaching
India. The first barrier is the Western Ghats along the west coast of India (Fig. 1.1)
where a precipitation band is visible due to the topographic forcing (Fig. 2.3a). Af-
ter crossing India the flow veers north again, where it pushes moisture from the Bay
of Bengal in over land, mainly over India, Bangladesh, and Nepal (Fig. 2.3b). Pre-
cipitation forming over India during summer is part of the Indian summer monsoon,
which gradually progresses until it reaches the Himalayas in the north and Pakistan in
the west [Webster et al., 1998]. The Himalayas stand out as an insurmountable bar-
rier, preventing the moisture to pass (Fig. 2.3b) and leaving parts of the Tibetan plateau
arid [Wang and Gaffen, 2001]. The topographic forcing and the abundance of moisture
along the Himalayas allow for the formation of intense convective systems [Houze Jr
et al., 2007].

The direct moisture sources for rain events in Nepal (Fig. 2.3c) are very interest-
ing to examine as they differ considerably from what one would expect based on the
moisture flux (Fig. 2.3b) (investigated and discussed in my second manuscript). I could
find hardly any research done on moisture transport to Nepal. Some studies explored
the origin of moisture for the Indian subcontinent during the monsoon season conclud-
ing with the Arabian Sea as an important moisture source [Ghosh et al., 1978; Cadet
and Reverdin, 1981; Cadet and Greco, 1987a,b]. However, since these studies used a
budget approach comparing precipitation against evaporation, only a pattern of general
moisture sources and sinks could be established. It is not straight forward nor given
that the established regions hold when considering direct moisture sources for Nepal.
Sodemann et al. [2008] developed a moisture source diagnostic to represent the direct
moisture sources for precipitation events. A glimpse of the distribution of moisture
sources for Nepal could be caught in Läderach [2016] where Kathmandu was the tar-
get region for a case study. However, a study comprehensively analyzing this issue was
still missing.
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2.3.2 Other sources of temporal variability

Break monsoon periods [Rajeevan et al., 2010] and the occurrence of monsoon low
pressure systems [Lang and Barros, 2002] can impose intra-seasonal variability. Dur-
ing years where no monsoon depression collides with the Himalayas there can be
considerably less monsoon rainfall in Nepal [Lang and Barros, 2002]. The All-India
Rainfall is also significantly decreased during monsoon break periods as precipitation
amounts over Central India are reduced [Rajeevan et al., 2010]. In South India, over
Sri Lanka, and in the north close to the Himalayas, precipitation is enhanced [Rajee-
van et al., 2010]. Monsoon break periods are associated with a split of the low-level
flow at the Indian west coast with a southern branch around the southern edge of the
Indian subcontinent and a northern branch along the Indo-Gangetic plain toward the
Himalayas [Joseph and Sijikumar, 2004].

Variability on inter-annual and decadal time scales can be related to the ENSO
[Trenberth, 1997; Webster et al., 1998; Kumar et al., 1999; Shrestha, 2000; Ichiyanagi
et al., 2007; Sigdel and Ikeda]. During El Niño years, negative ENSO phase and posi-
tive Southern Oscillation index (SOI), less rainfall is expected, whereas during La Niña
years more rainfall occurs. A physical relationship is assumed to exist between the
Walker Circulation and the lateral and traverse monsoon circulation as illustrated in
Webster et al. [1998], or between the monsoon circulation and the Eastern- and West-
ern Walker Cell as in Yang and Lau [2005]. Modulations of these circulation patterns
can alter the location of precipitation systems. Such a modulation could be imposed
for instance by changes in the Indian Ocean Dipole [Ashok et al., 2001]. On a decadal
time scale the Pacific Quasi-Decadal Oscillation (QDO) was recently found to affect
precipitation in Nepal by modulating moisture fluxes toward the Himalayas [Wang and
Gillies, 2013].
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Figure 2.3: Illustrating the similarities and differences between the following climatologies
for the months June to August. a) depicts wind at 850 hPa and mean daily precipitation. The
equator is marked with a red line. b) shows total column water vapor flux. c) illustrates direct
moisture sources for precipitation events in Nepal obtained with the method from Sodemann
et al. [2008]. The percentiles 75, 50, and 25 are marked with a dotted, a stippled, and a solid
line.
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Chapter 3

Objectives

In my thesis, I aimed at finding ingredients for extreme precipitation events in Nepal.
The knowledge gaps mentioned in Chapter 1 reflect the structure of how I went about
the task of finding these ingredients. Studying the scientific literature, I identified the
main gaps as follows: there was no coherent picture of climatic trends in extremes in
Nepal based on measurements, a systematic study on synoptic conditions leading to
extreme precipitation in Nepal was missing, direct moisture sources and their role for
extreme precipitation events had not yet been investigated in that region, and a com-
prehensive case analysis as existing for neighboring regions was not yet conducted.
Against this background, the following objectives evolved:

1. Investigate whether there are regions in Nepal exhibiting consistent trends in ex-
treme precipitation (Paper I)

2. Find synoptic-scale key processes actuating extreme precipitation in Nepal using
composites of events (Paper II)

3. Explore the location and role of moisture sources supplying additional moisture
during the extreme events (Paper II)

4. Perform high resolution study for one extreme case and proceed to a process level
of understanding (Paper III)

5. Add mesoscale characteristics of the precipitating system on top of synoptic scale
characteristics (Paper III)

6. Assess the composite results for the investigated event (Paper III)

These objectives effectively manifest in a top-down approach, proceeding from the
general to the specific. First, obtaining an overview over the rainfall climatology, vari-
ability, and trends in rainfall. Second, identifying processes actuating extreme precipi-
tation in Nepal and establishing a conceptual understanding of the interplay and effect
of the involved processes. Third, seeking the physical link between the processes and
determine their effect for one extreme event. The top-down approach is also reflected
in the choice of datasets and methods. Starting with rain gauge records to obtain a mea-
surement based view on rainfall in Nepal, I moved from global reanalysis and global
trajectory datasets, to finer-scale satellite data and finally high-resolution modeling.
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Chapter 4

Key findings and discussion

The main findings are condensed in three manuscripts. The first manuscript provides
an overview over rainfall climatology, variability, and trends in extremes in Nepal. The
second manuscript consolidates synoptic-scale key processes and associated moisture
sources in a conceptual sketch (representing the ingredients mentioned in Chapter 3).
The third manuscript reveals how the processes interact and provoke an extreme pre-
cipitation event based on a case study. Moreover, the third manuscript adds mesoscale
characteristics to the synoptic-scale processes found in the second manuscript.

The most prominent findings in the first manuscript are twofold. First, I can show
that the linear correlation between ENSO and the number of extremes vanishes with
increasing percentiles. This means that extreme precipitation events are equally likely
to occur during a La Nina and an El Niño event. Second, modeling trends in extreme
precipitation with quantile regression and extreme value theory results in a robust pos-
itive trend in Far-West Nepal answering to the first objective. For the whole of Nepal,
however, there is no consistent trend in the occurrence of extreme precipitation events.

The second manuscript presents a conceptual sketch of the synoptic-scale key pro-
cesses and moisture sources actuating extreme precipitation in Nepal. During extreme
precipitation events, the large-scale atmospheric flow was directed against the Hi-
malayas at the location of the extreme precipitation. Anomalies in geopotential height
and winds illustrate this for most of the troposphere. The atmospheric flow was further
shown to be able to guide low pressure systems toward the Nepal Himalayas. Conse-
quently, it seems that the atmospheric flow can determine the location of the extreme
event to a considerable degree (second objective). During the extreme events, unusu-
ally high moisture flux was present where the extreme event occurred. The additional
moisture was provided by anomalously abundant moisture sources predominantly over
land (73%-77%), in particular along the Indo-Gangetic plain. The moisture stemmed
probably from foregone precipitation events moistening the soil along the pathway of
the low-level atmospheric flow (third objective). Between 25% and 43% of the ex-
treme events during July and August occur during monsoon break periods which take
up about 24% of the days in July and August. Since this fraction is likely underes-
timated, monsoon break periods considerably affect the probability of occurrence of
extreme events.
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In the third manuscript a single extreme event on 19 July 2007 in Central Nepal
is examined to assess and understand physical links between the key processes from
the second manuscript. The synoptic conditions and moisture source pattern from the
conceptual sketch in the second manuscript can be recognized, enabling the intense
development of the extreme event investigated in the third manuscript. A monsoon
break period with the associated low-level flow conditions were evoked by the Western
Ghats blocking the westerly flow. The northern branch of the resulting bifurcation of
the low-level flow ingested moisture mostly over land, provided by foregone precipita-
tion events. The moist low-level flow, containing large CAPE, was directed against the
Himalayas in Central Nepal. Topographic forcing destabilized the airmasses releasing
the CAPE. Invigorated by the moist inflow a wide intense convective system devel-
oped resulting in torrential rain. The prevailing synoptic conditions created a favorable
environment with a traversing trough aligning the flow against the Himalayas and ex-
erting weak quasi-geostrophic forcing over Nepal. By recognizing and connecting the
processes from the second manuscript and characterizing the mesoscale structure, ob-
jectives four to six were met.

The value of the studies lies not only in the key findings but also in contrasting these
results with existing findings in other regions along the Himalayas. Various features
distinguish extreme precipitation in Nepal from high impact events in Pakistan and
Northwest India (e.g. Houze Jr et al. [2011], Rasmussen and Houze Jr [2012], Kumar
et al. [2014], and Rasmussen et al. [2015]). For the flooding events described in those
studies the atmospheric circulation exhibited a blocking event over the Tibetan Plateau.
Together with low pressure systems in the Bay of Bengal and the Arabian Sea moisture
could be funneled to the location of the respective precipitating system. The low-level
flow was directed along the Himalayas from east to west with an additional branch
from the Arabian Sea. For the extreme precipitation events in Nepal considered in
this thesis, the low-level flow is directed in the opposite direction, from west to east,
along the Himalayas. At the location of the extreme precipitation event the flow turns
north against the mountain barrier. The moisture sources where located along this
flow mainly in the Indo-Gangetic plain. Interestingly, although different dynamical
situations prevailed, the same target was met, namely funneling moisture to the location
of the precipitating system. In the recently accepted paper by Houze Jr et al. [2017],
an eastward propagating trough merged with a low pressure system and organized the
flow against the Himalayas leading to a flooding event in Uttarakhand, India, just west
of Nepal. This result for a region close to Nepal supports the conceptual sketch in
the second manuscript where the guiding role of the upper-level trough as well as the
merging of a trough and a low pressure system is described.
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Concluding remarks and outlook

The three manuscripts resolve the objectives of the thesis providing a comprehensive
picture of trends and key processes of extreme precipitation in Nepal. With my work, I
hope to provide a basis of findings that can foster new research in the future and that can
be evaluated against new results. However, this thesis is by no means exhaustive and
there are many ways to extend the included studies. Given that the moisture sources for
extreme precipitation in Nepal differ considerably from what one would expect from
the column integrated water vapor transport and results from Ghosh et al. [1978] and
Cadet and Reverdin [1981], the moisture sources should be investigated considering
non-extreme precipitation events in Nepal. This could then include the seasonal cycle
and elucidate the variability of the moisture sources. Having in mind the key processes
for extreme precipitation from the second and third manuscript, one can now try to
explore the potential to increase predictability of the extreme events by recognizing
similar conditions in model forecasts. The precipitation event described in Houze Jr
et al. [2017] in Northeast India resulted from the interaction of an eastward propagating
trough and a low pressure system similar to the case described in the second manuscript.
It would be interesting to investigate whether the prevailing precipitation system in
the second manuscript exhibited similar characteristics. In my third manuscript, I use
a Q-vector analysis to assess the contribution of quasi-geostrophic forcing which is
useful for comparison with Martius et al. [2013] and Houze Jr et al. [2017]. However,
the region, season, and respective thermodynamic environment this technique is used
in, is not optimal for the use of quasi-geostrophic theory. The extreme differences
in elevation and the governing diabatic processes during the Indian summer monsoon
could distort the results. It would thus be useful to asses the importance of the quasi-
geostrophic theory for this region and the monsoon season in general.
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Chapter 6

Data and methods

6.1 Data

For this thesis, five datasets were used: rain gauge data, TRMM 3B42 [Huffman et al.,
2007], Lagrangian trajectories [Läderach and Sodemann, 2016], simulations with the
Weather Research and Forecasting (WRF) model [Skamarock et al., 2008; Skamarock
and Klemp, 2008], and Era-Interim reanalysis [Dee et al., 2011]. In the following,
I give a brief introduction to these datasets, the setup for the WRF simulation is de-
scribed in Section 6.2.2.

The measurement network consists of US standard 8 inch diameter manual rain
gauges and are maintained by the Department of Hydrology and Meteorology (DHM)
in Nepal [Talchabhadel et al., 2016]. An overview map of the rain gauges used in this
thesis can be found in Paper I (Fig. 1b). The DHM performs basic quality control
including the removal of outliers and negative values (personal communication with
Ramchandra Karki, working in the DHM data management section at the time of the
purchase). When considering extremes, the removal of outliers could potentially be
problematic. However, this was done in a standard procedure and could not be influ-
enced. Meta data was unfortunately not available such that I could not find out whether
stations have been moved (personal communication with Ramchandra Karki). In the
first manuscript, testing for homogeneity in the time series is performed to account for
this issue. Due to the harsh environment in the mountainous regions in Nepal there
are a lot of data gaps and sometimes stations are not recording for multiple seasons.
Nonetheless, this is a unique dataset giving insights into rain events and climate in
Nepal. Moreover, it allowed me to evaluate model results with ground based measure-
ments, a rare and valuable opportunity for this region.

The TRMM 3B42 product [Huffman et al., 2007] is a result from a joint mission
between NASA and the Japan Aerospace Exploration Agency (JAXA) to study the dis-
tribution and variability of tropical and subtropical precipitation. The TRMM satellite
was launched in November 1997 and re-entered the Earth’s atmosphere on 15 June
2015 over the South Indian Ocean (https://pmm.nasa.gov/trmm). Although origi-
nally designed with a lifetime of three years the TRMM satellite provided valuable
data for 17 years. The TRMM 3B42 product is a level 3 product meaning that the satel-
lite derived raw data has undergone considerable post-processing to result in rainfall
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estimates. In this thesis, the 3-hourly TRMM 3B42 product is used which has a spatial
resolution of 0.25◦ covering the latitudes 50◦N to 50◦S. TRMM 3B42 is a combined
microwave and infrared rainfall estimate with rain gauge adjustment. Rain gauges as
part of the TRMM hydrological network are installed in Central Nepal and evaluated in
Barros et al. [2000]. The network consists of 16 meteorological stations ranging from
500m.a.s.l. to 4400m.a.s.l.. Barros et al. [2000] found that TRMM derived precipita-
tion matched station values better at low elevation compared to high elevation where
values above a rain rate of 0.5mmh−1 where found to be reliable.

The Era-Interim reanalysis dataset [Dee et al., 2011] is a global reanalysis based on
the version Cy31r2 of the Integrated Forecast System (IFS) from the European Centre
for Medium-Range Weather Forecasts (ECMWF). Through assimilating observations
into the simulations, the model is pushed towards measured values which results in a
best guess for the state of the atmosphere. For this thesis, 6-hourly data is retrieved from
Era-Interim’s data server (apps.ecmwf.int/datasets/data/interim-full_daily) on
a horizontal resolution of 0.75◦.

To compute moisture sources (Section 6.2.2) the global trajectory dataset from
Läderach and Sodemann [2016] is used for the period 1979 to 2010. After dividing
the atmosphere into five million air parcels of equal mass, they computed the trajectory
dataset with the Lagrangian dispersion model FLEXPART [Stohl et al., 2005] driven
with winds, specific humidity, and boundary layer height from Era-Interim interpolated
on a 1◦x1◦ horizontal grid.

6.2 Methods

In this thesis, several methods were utilized to approach extreme precipitation in Nepal
from different angles. These methods included various statistical techniques as well
as tools and theory that is more based on the physics and dynamics of processes. In
the following, I describe the different methods and tools to provide a more thorough
introduction and deeper understanding than is possible in the short explanations of the
manuscripts. To keep the thesis to a reasonable size, I focus on explaining the more
advanced techniques which are necessary to reproduce my results. This means that e.g.
a mean value or an ordinary linear regression technique is not explained in detail.

6.2.1 Statistical approaches

Quantile regression

Quantile regression [Koenker and Hallock, 2001] is more flexible than ordinary least
square regression (OLSR) because it offers the possibility to explore the impact of co-
variates on all quantiles of a dataset. It is robust to outliers and leads to reasonable
estimates when the error distribution is non-Gaussian. Quantile regression can be de-
scribed similarly to the OLSR. When performing OLSR the relationship between one
or more covariates and the conditional mean of a response variable is modeled. In
quantile regression the conditional quantiles of the response variable are modeled mak-



6.2 Methods 23

ing the analysis more flexible and independent from assumptions about the parametric
probability distribution of the residuals. Hence the goal is to minimize the sum of the
asymmetrically weighted absolute residuals, and not the squared residuals as is done
in OLSR. The residuals are weighted asymmetrically because, in addition to the ab-
solute residuals, there is a penalty term considering what is above and below the cho-
sen quantile if it is not the median. This means that the penalty term penalizes for
under- and over-prediction. A comparison with the median regression, also known as
last-absolute-deviation (LAD) regression, makes this point clearer. In LAD regression
(50th percentile) the sum of the absolute errors ∑

i
|ei| have to be minimized. An asym-

metric case is just the extension of this using a different quantile (q) than the median
and penalizing under-prediction q|ei| and over-prediction (1−q) |ei|. This results in
the objective function Q (Eq. 6.1) which can be minimized using linear programming
methods.

Q(β ) =
N

∑
i:yi≥βxi

q|yi−βxi|+
N

∑
i:yi<βxi

(1−q) |yi−βxi| (6.1)

q is the chosen quantile, β the parameter to be estimated which consists of an offset
plus a trend, yi represents the response variable and xi the covariate (in this case time).
The sum is taken over all i to N with respect to the potentially asymmetric weighting.
For this thesis, the simplex method is used for minimization. In the first manuscript,
quantile regression is illustrated with rainfall datasets from two exemplary stations.

Non-stationary extreme value statistics

The extreme value statistics in this thesis are based on work from Coles et al. [2001]
and Katz et al. [2002] who describe applications for a hydrometeorological framework.
Extreme value statistics differ from the standard statistics as the argument is not an
empirical one. In fact, it cannot be since extremes are rare by nature. Instead of an em-
pirical argument, extreme value theory is based on an asymptotic rational. However,
this implies that estimates can be made for levels that have never occurred before which
is also what is most criticized. As Coles et al. [2001] points out, at least there is a ra-
tional for extreme value theory, and there is no other competing theory existing. From
the Extremal Types Theorem, it turns out that the only possible distributions for model-
ing block maxima are the Gumbel, Frechet, and Weibull distributions regardless of the
original distribution of the population where the maxima stem from. These three distri-
bution families can be combined into one single distribution, the Generalized Extreme
Value (GEV) distribution.

Block maxima values, like annual or seasonal maxima, follow the GEV distribution
which is defined by a set of three parameters, location (µ), scale (σ ), and shape (ξ ).
From a data set of block maxima these parameters can be estimated for instance by
maximum likelihood or Bayesian approaches. Using time as a covariate, a linear trend
can be imposed on the location parameter to capture changes of block maxima for the
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observation period. The GEV including a time dependent location parameter looks as
follows:

GEV (x;µ (t) ,σ ,ξ ) = e−1
[
1+ξ

(
x−µ(t)

σ

)]− 1
ξ

(6.2)

µ(t) is expressed using a linear relationship with time (Eq. 6.3) but any arbitrary
function could be used.

µ(t) = µ(years) = µ0+a · years (6.3)

Compared to the stationary case the parameter a is now an additional parameter that
needs to be estimated to determine the best statistical model.

Since we now have a statistical model, we can compare the starting value with
the end value of all time series to assess changes in extremes over a certain period of
time. This is illustrated in the example below (Fig. 6.1), depicting annual precipitation
maxima of an exemplary station (s1111) in Nepal (Fig. 6.1a). Including the temporal
change in extremes (Fig. 6.1c) looks much more appropriate to the eye than the station-
ary model (Fig. 6.1b). More objectively, also the model evaluation, represented by the
p-value of a likelihood-ratio test (p= 0.006), suggests that including the trend improves
the model significantly. This means that the uncertainty in estimating the probability of
an extreme event is reduced by a better model.
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Figure 6.1: Figure illustrating the improvement obtained using a non-stationary extreme value
model for modeling extreme precipitation block maxima. The station s1111 in Nepal is chosen
as an example station. a) depicts the time series of annual maxima over 40 years. b) a stationary
GEV-model is used. c) a non-stationary GEV-model is applied with time as covariate. The
black line represents the evolution for the median, the green line the 0.025 quantile and the red
line the 0.975 quantile.

Bayesian statistics

Additional to the quite standard maximum likelihood estimates, Bayesian statistics
were applied to model trends in extremes in the first manuscript. Bayes’ Theorem
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(Eq. 6.4) forms the basis of the Bayesian approach.

P(A|B) = P(A∩B)
P(B)

=
P(B|A)P(A)

P(B)
(6.4)

This formula comprises the conditional probabilities P(A|B) and P(B|A), the joint
probability P(A∩B), and the marginal probabilities P(A) and P(B). Hence, Bayes’
Theorem provides a powerful tool to efficiently manipulate conditional probabilities.
An often used example (e.g. in Bolstad [2007]) is adopted with slight changes to illus-
trate the applicability for a binary variable:

—–
Example: Let’s assume 1% of a population has a disease (P(disease) = 0.01⇒ P(A))
and under a clinical test 95% (P(positive|disease) = 0.95⇒ P(B|A)) of infected per-
sons are tested positively for the disease. However, the imperfect test indicates a pos-
itive result also for 3% of the healthy population (P(positive|notdisease) = 0.03⇒
P(B|notA)). A person being tested might now wonder what is the probability of having
the disease when tested positively (P(disease|positive) =?⇒ P(A|B)).

The solution can be obtained with the Bayes’ Theorem:

P(A|B) = P(B|A)P(A)
P(B|A)P(A)+P(B|notA)P(notA)

=
0.95 ·0.01

0.95 ·0.01+0.03 ·0.99
∼= 24% (6.5)

—–

Instead of inserting a known distribution, a probability distribution expressing the
personal belief can be incorporated in the equation. For instance, if you were the person
that spread the disease and knew that there should be 5% of the population infected and
not 1% you could incorporate this knowledge into the prior distribution (P(A) = 0.05
instead of P(A) = 0.01). This is how incorporating your belief in parameter estimation
works in a Bayesian framework.

The following example applies this for the estimation of the parameter θ of the Pois-
son distribution using a Poisson distributed example dataset from Benjamin Renard’s
lecture in the summer school Extreme Value Modeling and Water Resources 2016 in
Lyon. Of course, any Poisson distributed dataset could be used. The explicit calcu-
lation is done using Eq. 6.4 for an array encompassing a range of possible values for
θ . Further, a uniform distribution is chosen to be the prior distribution, expressing our
lack of knowledge about the outcome, and evaluated for the same range of values. The
unnormalized posterior distribution can be computed explicitly with equation 6.6.

post = exp(ln L(θ ,stationvalues)+ ln prior(θ)) (6.6)

f (y1, ...,yn|θ) =
n

∏
i=1

f (yi|θ) = L(θ |y)⇒ ln L(θ |y) =
n

∑
i=1

ln f (yi|θ) (6.7)

where the log-likelihood (lnL) of the proposed θ is the sum of the logarithms of the
probability densities ( f (yi|θ)) from the Poisson distribution for the proposed θ -values



26 Data and methods

evaluated at the station values yi1 (Eq. 6.7). We do not need to normalize the posterior
because the location of the maximum, which is what we are after, is the same as for the
normalized posterior.

To illustrate this example more clearly, let us compute the maximum value of the
unnormalized posterior distribution. The choice of the maximum is arbitrary but con-
venient since it is easily detectable (Fig. 6.2a). We proceed to fill in values in Equation
6.6. First, we compute the prior distribution of one possible θ . The chosen θ=1.94 is
on the location of the maximum of the posterior distribution and indicated with a red
dot in Figure 6.2a. With the definition of our uniform distribution (min=0, max=366,
θ=1,94) we obtain lnprior = −5.9. Now, we need to determine the log-likelihood for

our θ . ln L(1.94|y) =
n

∑
i=1

ln f (yi|1.94) = −70.1. In the final step, we sum lnprior

and the log-likelihood and compute the posterior with Equation 6.6. This yields an
unnormalized posterior post = 9.85184 · 10−34, which is consistent with Figure 6.2a.
Computing the posterior for each θ value, here 501 values from 0 to 5 with steps of
0.01, will result in the posterior distribution in Figure 6.2a.
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Figure 6.2: Figure illustrating different methods to estimate the parameter λ for the Poisson
distribution on example rainfall data. The explicitly calculated unnormalized posterior is dis-
played in a), the MCMC draws are in (b), and the sampled unnormalized posterior is depicted
in c). The location of the maximum is highlighted with a red dot and is in both cases 1.94.

The above demonstrated analytical or explicit approach is only feasible for such
simple distributions featuring one parameter. For more complicated distributions sam-
pling of the posterior distribution is a very efficient way to obtain the parameter esti-
mates. Figure 6.2 illustrates the above described explicit approach (Fig. 6.2a) versus the
Metropolis-Hastings algorithm (Fig. 6.2c), a widely used Markov chain Monte Carlo
(MCMC) method. An instructive explanation of MCMC sampling and the Metropolis-
Hastings algorithm can be found in Renard et al. [2013]. The results of the explicitly
computed unnormalized posterior and the sampled posterior are consistent and depict
maxima at the same location. This value can then be chosen to be the best guess for our

1yi: 1, 1, 0, 3, 3, 1, 0, 5, 3, 0, 2, 2, 2, 2, 1, 5, 0, 1, 4, 2, 2, 1, 0, 0, 2, 2, 4, 3, 2, 0, 1, 7, 1, 2, 3, 2, 2, 3, 1, 1
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distribution parameter θ with confidence intervals based on the obtained distribution of
θ . These confidence intervals are called credible intervals in Bayesian statistics. The
histogram of the posterior distribution (Fig. 6.2c) is obtained by the sampled values pre-
sented in (Fig. 6.2b). These values reflect the Markov chain randomly walking through
the posterior distribution. Before computing the parameter estimate based on the sam-
pled values from the Markov chain, the first values should be removed until conver-
gence is assumed (burn-in period). Auto-correlation is a known artifact of the Markov
chain where thinning of the values can be applied to remove this auto-correlation if ex-
isting.

The above mentioned Metropolis-Hastings algorithm uses a Markov chain to sam-
ple from the posterior distribution. Using the Bayes’ Theorem, the prior distribution
for each θ is multiplied with the Poisson distribution (P) for each θ (Eq. 6.9). θ has
to be initialized and is subsequently derived from a proposal (or jumping) distribution
which is the normal distribution with θ as its mean N(µ = θ ,σconst). The meaning of
the proposal distribution is to determine the next step of the Markov chain and by this
successively sample the posterior distribution. Drawing from the proposal distribution
represents the Monte Carlo contribution in MCMC sampling. The proposal distribu-
tion changes every time a new θ is accepted. θnew becomes then θold and is plugged
into the proposal distribution. Using the newly accepted θ for the next step a new θ is
drawn from N(θold,σ). If a new θ is rejected the old θ is used. A new θ is accepted if
the acceptance probability α is larger than 1 (Eq. 6.10). If this is not the case, the ac-
ceptance probability is compared against a draw u from a uniform distribution U(0,1)
(Eq. 6.11). The new value of θ is kept when u < α , if not, the new θ is rejected and
the old θ is used (Eq. 6.12). The reason for comparing α against u is that we accept
the newly proposed θ with a probability P that u is less than α , meaning that we have
a rule for this decision. The described decision making process ensures that, given the
data, always the most likely θ is picked. The steps of the Metropolis-Hastings algo-
rithm, as implemented for the first manuscript, are visualized below using a uniform
distribution as prior.

Step 0: Monte Carlo based step in the Markov chain

θnew ← N(θold,σconst) (6.8)

Step 1: Compute ratio of posteriors

r(θnew,θold) =
Ppost(θnew)
Ppost(θold)

=
Uprior(θnew) ·P(θnew)
Uprior(θold) ·P(θold)

(6.9)

Step 2: Compute acceptance probability

α(θnew,θold) = min{r(θnew,θold),1} (6.10)

Step 3: Draw from U to compare with α
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u ← U(0,1) (6.11)

Step 4: Decide on which θ to use

θ =

{
θnew, if u< α(θnew,θold) ⇒ accepted
θold, otherwise ⇒ re jected (6.12)

K-means clustering and cluster sensitivity

The purpose of clustering technique is to reveal patterns in large datasets in a sys-
tematic and automated way. There are two basic approaches: hierarchical and non-
hierarchical clustering. In this thesis, the K-means algorithm is adopted. K-means is a
non-hierarchical cluster technique, relatively simple to use and can be adopted for var-
ious distance metrics. A distance metric is a function defining a distance between pairs
of elements and can be used to measure similarity or dissimilarity of two elements. The
K-means algorithm seeds centroids and computes distances from the centroids to each
object. The distance metric is a matter of choice and often the squared Euclidean dis-
tance is activated by default. After comparing distances an object can be attributed to
its presumed cluster. The smaller the distance between an object and a centroid the
higher the probability that the object belongs to that centroid. The seeding process oc-
curs multiple times where the cluster membership is not fixed and also the centroids are
re-computed. In the following, I discuss some factors that can influence the outcome
of the clustering.

Observational data typically exhibit missing values, challenging statistical meth-
ods. In terms of clustering, missing values have to be dealt with in order to use the
cluster algorithm. There are two basic approaches: fill in missing values (imputation)
or ignore them (marginalization). The rain gauge data used in this thesis had missing
values on different dates and time periods. Therefore, when applying marginalization
instead of imputation, there would be a substantial loss of information. The example
given in the second manuscript shows that for only 4% of missing data, marginaliza-
tion would result in a reduction of the dataset by approximately 43%. Clustering with
missing values using no imputation is possible, described in Wagstaff [2004]. How-
ever, they also show that substituting with reasonable values, for example using the
mean, should not lead to distorted results when only few data is missing. For reducing
the loss of information imputation was chosen for the second manuscript. In general,
introducing artificial values could distort the clustering results which is why in the sec-
ond manuscript a sensitivity tests was performed comparing the results after imputing
the mean, the median, and an arbitrary value. The test result only showed negligible
sensitivity to those changes.

It is indicated above that different distance metrics for the clustering can be chosen.
The choice of the distance metric can influence the outcome of clustering. The sensi-
tivity is tested for the clusters in the second manuscript revealing that only stations at
the cluster rims might switch cluster memberships. The general structure of the clus-
ters remains robust. The following different distance metrics were tested with similar
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outcomes: squared Euclidean, correlation, cosines, and the city-block metric. In this
thesis only correlation as a distance metric is used as this is most intuitive and little sen-
sitive to non-Gaussian distributed values. Since the number of clustered stations can
impact the cluster results, its sensitivity was tested and found to be very low. For in-
stance, clustering only stations that have consistent records for 40 years, instead of the
final dataset of 112 stations, results in a very similar grouping of stations.

Deciding on the number of clusters

Cluster algorithms usually expose the user to the dilemma of choosing the number of
clusters beforehand. Various techniques approach this problem where the alleged ob-
jective methods still need subjective judgment. The methods used to decide whether
a chosen number of cluster was suitable were: comparison of silhouettes [Rousseeuw,
1987] aiming for high silhouette coefficients, and applying gap statistics [Tibshirani
et al., 2001]. In the following, I give a brief description of the methods but recommend
reading the original citations for more information.

A silhouette s(i) (Eq. 6.13) is a measure for how well a cluster member is assigned
to its cluster based on a dissimilarity measure. a(i) is the average distance from the ith

object to all other objects in the same cluster. b(i) represents the minimum distance
from the ith object to objects in the closest cluster. s(i) can range from -1 to 1 where
a value of 1 means that the object lies perfectly in the cluster it is assigned to. Let us
use a simple example to illustrate this logic: if an object o is closer to its own cluster
members compared to members of other clusters, the silhouette s(o) will be larger than
0. If the object o has a larger average distance to its own cluster than to members of
another cluster, the fraction a(o)

b(o) becomes larger than 1 and s(o) < 0. s(o) = 0 means
that the point lies exactly between two clusters. The silhouette coefficient is the average
of all silhouettes and gives an impression of how well cluster members are attributed.
A high silhouette coefficient for a certain amount of clusters indicates that in average
the silhouette values were high which is a sign for well separated clusters.

s(i) =


1− a(i)

b(i) , if a(i)< b(i)
0, if a(i) = b(i)
b(i)
a(i)−1, if a(i)> b(i)

⇒ s(i) =
b(i)−a(i)

max(a(i),b(i))
(6.13)

Gap statistic [Tibshirani et al., 2001] is a more sophisticated method where not only
dissimilarity measures are considered but also whether using more clusters contributes
with additional information. This is measured by calculating the gap (Eq. 6.14) be-
tween the natural logarithm of the within cluster dispersionWk and the expected value
of a set of natural logarithms ofWk of a reference distribution from Monte Carlo repli-
cates. Although the reference dataset could be drawn from any distribution a uniform
distribution was chosen as recommended in Tibshirani et al. [2001].

Gn(k) = E∗n {lnWk}− lnWk (6.14)

The final step is to determine, depending on the gap, which number of clusters k
should be chosen. In Tibshirani et al. [2001], this is decided with the rule in Equation
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6.15, where sk+1 is a measure expressing the standard deviation of the dispersion of the
reference distribution.

k = smallest k such that G(k)≥ G(k+1)− sk+1 (6.15)

6.2.2 Physical approaches

Tracking of low pressure systems

In the second manuscript, trajectories of low pressure systems are obtained using the
tracking algorithm TRACK from Hodges [1994], Hodges [1995] and Hodges [1999].
This algorithm works in multiple steps. At first, the data is divided into objects which
are defined e.g. by local maxima or minima in a meteorological field. This results in
a binary map of objects and background field and the data obtains a hierarchical data
structure. Identified objects are tracked minimizing a cost function to serve the purpose
of smoothness of the trajectories. The cost function is constructed consulting three
consecutive time steps and computing the deviation of the positions of feature points.
Abrupt changes are not allowed or would result in high costs and are therefore omitted.
This tracking algorithm is an established algorithm applied in multiple studies also in
South Asia [Sørland and Sorteberg, 2015a,b; Hodges and Emerton, 2015; Fine et al.,
2016].

For this thesis, we applied TRACK on the vorticity field at 850 hPa. The level of
850 hPa was chosen because monsoon depressions tend to have their vorticity maxi-
mum in that level in the lower troposphere [Tyagi et al., 2012]. Further constraints
were that the low pressure systems must have traveled at least 1000km and exhibit a
vorticity threshold of 5 ·10−6 s−1. The regions of genesis and depletion are consistent
with Sørland and Sorteberg [2015a] and Sørland and Sorteberg [2015b]. However,
probably due to the additional constraints in these studies some low pressure systems
were not detected, e.g. the case described in the second manuscript on 25 Septem-
ber 2005. With the constraints in my thesis, the trajectory of the low pressure system
causing precipitation in West Nepal on 25 September 2005 becomes visible.

Lagrangian moisture source diagnostics

Moisture sources were computed using the moisture source diagnostics from Sode-
mann et al. [2008] on a global trajectory dataset from 1979 to 2010 [Läderach and
Sodemann, 2016]. This dataset was computed with the Lagrangian dispersion model
FLEXPART [Stohl et al., 2005] with input data from Era-Interim [Dee et al., 2011].
The moisture source diagnostics from Sodemann et al. [2008] is illustrated in Figure
6.3. An air parcel is traced back in time while its moisture content is monitored. Ev-
ery change in moisture is assumed to be caused by either evaporation or precipitation.
Another monitored quantity is the height of the parcel to distinguish whether the par-
cel is in the free troposphere or the boundary layer, both defined by Era-Interim. Once
these quantities are known, one can compute changes in moisture and attribute those
changes to evaporation or precipitation. As illustrated in Figure 6.3 the method takes
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into account the history of the air parcel. Hence, this approach prevents the overesti-
mation of sources and sinks along the trajectory and focuses on the moisture sources
directly related to the precipitation event. Taking into account the history of the trajec-
tory is also a major difference and advantage (as introduced in Sodemann et al. [2008])
to the evaporation minus precipitation (E-P) approach and therefore used in this the-
sis. Winschall et al. [2014] and Läderach and Sodemann [2016] evaluated the method
from Sodemann et al. [2008] against Eulerian tracers and concluded that both results
were consistent. Hence, the moisture diagnostics represents a computational efficient
method to determine moisture sources for precipitation events.

Figure 6.3: Figure 1 from Läderach and Sodemann [2016] illustrating the moisture source
diagnostics from Sodemann et al. [2008]. Along the trajectory (black line) of an air parcel
the moisture content is evaluated every 6 hours. Red numbers indicate moisture loss, green
numbers indicate moisture uptake, and blue numbers the moisture content for every time step.

Numerical modeling

In the third manuscript the physics and dynamics of the considered extreme precipita-
tion event are in the focus. To overcome poor resolution, convection parameterization
and large time steps, we simulate the event with the Weather Research & Forecasting
(WRF) model where we use the Advanced Research WRF (ARW) [Skamarock et al.,
2008; Skamarock and Klemp, 2008]. The WRF-model is a numerical model which
solves the moist, compressible, non-hydrostatic Euler equation in flux form along with
the diagnostic equations for inverse density and the equation of state. In the final equa-
tions the map projection is included and the equations are transformed into perturbation
equations to minimize truncation errors. The model is designed with a terrain-following
hydrostatic-pressure vertical coordinate η which is a classical σ -coordinate [Laprise,
1992]. The WRF-model is integrated forward in time using the Runge-Kutta time in-
tegration scheme [Wicker and Skamarock, 2002] with two time step modes, where the
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Table 6.1: Model setup for WRF-ARW v.3.7.1.
Horizontal Resolution 4 km
Horizontal grid 612 x 502 grid boxes
Number of Vertical Levels 50
Microphysics Thompson graupel scheme
Planetary Boundary Layer Scheme MYNN 2.5 level TKE
Surface Layer MYNN
Land Surface Scheme unified Noah LSM

short acoustic time step is separated from the lower frequency integration. In the ARW
solver, the spatial discretization is approached staggering variables on an Arakawa C-
grid.

In this thesis, the simulation was subject to spectral nudging [Waldron et al., 1996],
applied to the wavenumber 1 in the horizontal wind field. Spectral nudging was only
applied above the 12th model level. The lowest model levels were not nudged to re-
tain the advantage of resolving fine scale topographic structures and associated physical
processes. Due to the complex topographic features in the Himalayas, high resolution
and the resulting dynamics and thermodynamics developing in the model can add value
to the simulation.

In the third manuscript a simulated radar reflectivity is derived from the model. The
corresponding computations were done in the Thompson microphysic scheme [Thomp-
son et al., 2004, 2008] which makes use of libraries from Blahak [2008, updated June
2012] to compute quantities related to Rayleigh scattering. The libraries are summa-
rized in module_mp_radar.F in the WRF physics code. This is only possible for a
selection of microphysic schemes as can be seen in the freely available WRF code. In
the Thompson scheme, the reflectivity is derived assuming a radar with a wavelength
λ = 10cm applying the Rayleigh approximation to imitate the use of USA NEXRAD
radars (described in module_mp_radar.F). When using the Rayleigh approximation
one assumes that the diameter of the hydrometeors are much smaller than the wave-
length. In order to be able to measure as many different drops as possible a comparably
large wavelength is chosen (λ = 10cm). The computation of the radar reflectivity fac-
tor (dBZ with Z in mm6m−3) is performed for rain, graupel, and snow particles as well
as for water-coated snow and water-coated graupel particles.

Assessing quasi-geostrophic forcing

Quasi-geostrophy is a useful diagnostic framework which, due to the inherent simplifi-
cation, allows to better understand predominant forcing mechanisms in the atmosphere.
The quasi-geostrophic momentum equation result from scale analysis applied on the
general horizontal momentum equation (Eq. 6.16). When the atmospheric flow is di-
vided into a geostrophic part and an ageostrophic part V = Vg+Va, it turns out that
in the free troposphere the terms describing geostrophic effects are greater than the
ageostrophic terms which therefore can be mostly neglected. I wrote mostly, because
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there is in particular one term that tends to have a similar magnitude as the geostrophic
terms. This term is the ageostrophic Coriolis term (term B2 in Eq. 6.17). Since there
is one ageostrophic component retained and the geostrophic components dominate the
system, the framework is called quasi-geostrophic. Equations 6.16 and 6.17 show the
transition from the horizontal momentum equation to the quasi-geostrophic form in
pressure coordinates. Term A and A’ describe the change of the horizontal winds and
geostrophic winds, respectively. Term B is the Coriolis term which can be split up in
its geostrophic component B 1 and its ageostrophic component B 2. Term C represents
differences in the geopotential and term F is the friction term which can be removed
when assuming free troposphere and large scale conditions.

DV
Dt︸︷︷︸
A

=− f k̂×V︸ ︷︷ ︸
B

C︷ ︸︸ ︷
−∇pΦ+ F︸︷︷︸

D

(6.16)

DgVg

Dt︸ ︷︷ ︸
A’

=− f k̂×Vg︸ ︷︷ ︸
B 1

C︷ ︸︸ ︷
−∇pΦ− f k̂×Va︸ ︷︷ ︸

B 2

(6.17)

Vg is the geostrophic wind, Va the ageostrophic wind, f the Coriolis parameter,
k̂ represents the unit vector in the vertical, and Φ is the geopotential. Since the
geostrophic wind, term B1 and term C, is balanced (Eq. 6.17), it becomes clear that
only the ageostrophic term can cause changes in the geostrophic wind. A change in the
geostrophic wind field has to be compensated with an additional circulation to main-
tain continuity. Diagnosing the forcing responsible for the large scale ascent or descent
is what we are looking for.

Manipulating the quasi-geostrophic thermodynamic energy equation and the quasi-
geostrophic vorticity equation, derived from the quasi-geostrophic momentum equation
[Bluestein, 1992], we can obtain the quasi-geostrophic ω-equation (Eq. 6.18), a diag-
nostic equation for the pressure tendency ω .

(
∇2+

f0
σ

∂ 2

∂ p2

)
ω︸ ︷︷ ︸

A

=
f0
σ

∂
∂ p

[vg ·∇p (ζg+ f )]︸ ︷︷ ︸
B

− 1
σ

∇2
p

[
(vg ·∇p)

(
−∂Φ

∂ p

)]
︸ ︷︷ ︸

C

(6.18)

f0 is the Coriolis parameter on an f-plane, σ is the stability parameter σ =

−T (∂θ)(∂ p)−1 with the potential temperature θ , p is the pressure, ζg the quasi-
geostrophic vorticity, and R the gas constant for dry air.

With the hydrostatic assumption, the definition of the geopotential, and the ideal gas
equation we can arrive at the formulation of the ω-equation used in Bluestein [1992]:(

∇2+
f0
σ

∂ 2

∂ p2

)
ω︸ ︷︷ ︸

A

=
f0
σ

∂
∂ p

[vg ·∇p (ζg+ f )]︸ ︷︷ ︸
B

− R
σ p

∇2
p [vg ·∇pT ]︸ ︷︷ ︸

C

(6.19)
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The disadvantage of the ω-equation is the fact that it has, depending on its formu-
lation, at least two forcing terms. These are under adiabatic conditions the vorticity
advection (termB) and the air mass advection (termC). Both terms can amplify or
dampen each other which can make it difficult to evaluate the combined effect. The
forcing of each term has to be quantified and added to obtain the net-effect on the ver-
tical motion (ω in term A).

Hoskins et al. [1978] expressed the quasi-geostrophic ω-equation in the Q-vector
form. The derivation of the Q-vector form is outlined in Bluestein [1992] and results in
Equation 6.20. The advantage now is that there is only one main forcing term (term B)
which allows to evaluate whether there is rising or sinking motion.(

∇2+
f 20
σ

∂ 2

∂ p2

)
ω︸ ︷︷ ︸

A

=−2∇p ·Q︸ ︷︷ ︸
B

− R
σ p

β
∂T
∂x︸ ︷︷ ︸

C

(6.20)

Bearing in mind that we are almost in mid-latitudes, we can neglect the β -term (term
C) due to scale analysis. Comparing magnitudes also suggests that we can neglect the
vertical change in the pressure tendency (part of the operator in term A). Removing
those two terms, we arrive at an elliptic equation for ω:

∇2ω =−2∇p ·Q (6.21)

Q=− R
σ p

∂vg
∂x ∇pT

∂vg
∂y ∇pT

=

(
Q1

Q2

)
(6.22)

The Q-vectors are a mathematical construct and not real physical entities. It is a diag-
nostic that helps to combine the forcing terms from the quasi-geostrophic ω-equation
to one forcing term, the divergence of Q-vectors. Considering the scales, we are oper-
ating on and the fact that we are rather far up in the troposphere (300 hPa), we assume
a hydrostatic environment when transforming the vertical pressure tendency into the
vertical velocity (Eq. 6.23):

ω =
dp
dt

=
dp
dz

dz
dt

=
dp
dz

w ⇒ insert :
dp
dz

=−ρg ⇒ ω =−ρgw (6.23)

Assuming that most moisture is in the lower troposphere, we obtain a more con-
venient form for the vertical velocity with the help of the ideal gas equation for dry
air:

w=
ωRdT
pg

(6.24)

Due to the applied simplifications, the elliptic equation for ω became a Poisson
equation (Eq. 6.21) and can be solved e.g. by applying the Gauss-Seidel method or the
Successive over relaxation (SOR) [Press, 2007]. To do this, we discretized equation
Eq. 6.21 with central differences on a regular mesh with ∆x = ∆y = h. For better
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comparison with Press [2007], I use the same notation where f represents the field to
be filled with values initialized with zero, h is the horizontal resolution, and the source
function S=−2∇p ·Q.

fi+1, j+ fi−1, j+ fi, j+1+ fi, j−1−4 fi, j = h2Si, j (6.25)

Rearranging for fi, j results in:

fi, j =
1
4
[
fi+1, j+ fi−1, j+ fi, j+1+ fi, j−1−h2Si, j

]
(6.26)

The discretized equation shows that each node in our grid is defined by its neighbor-
ing nodes. This means also that we need some starting values for computing the value
of the mid-node. Using the discretized equation, we can iterate through all nodes using
already updated nodes in the vicinity (Eq. 6.27). This is also known as the Gauss-Seidel
method.

f n+1
i, j =

1
4

[
f ni+1, j+ f n+1

i−1, j+ f ni, j+1+ f n+1
i, j−1−h2Si, j

]
(6.27)

To speed up convergence, I applied the faster SOR method in Paper III. It makes
use of the Gauss-Seidel method by combining the residual similar to Equation 6.27
and an additional relaxation parameter 1 < ω < 2. This ω is not to be confused with
the pressure tendency described above. The letter ω is only used here to be consistent
with Press [2007]. The residual can be formulated in Equation 6.28. If this residual
is larger than a predefined error margin the iteration continues and the field is updated
with Equation 6.29.

Res= f ni+1, j+ f n+1
i−1, j+ f ni, j+1+ f n+1

i, j−1−h2Si, j−4 · f ni, j (6.28)

f n+1
i, j = f ni, j+

ω
4
·Res (6.29)
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Chapter 7

Scientific results

7.1 Summary of the papers

Paper I: A comprehensive view on trends in extreme precipitation in Nepal and their
spatial distribution

We use multiple methods to assess trends in extreme precipitation in Nepal based on
rain gauge stations. Previous studies had either poor station coverage of this region,
did not apply extreme value theory, or did not take into account the possibility for a
climatic change in their statistical model. We address these points by applying quantile
regression and extreme value theory to assess trends in extreme precipitation events and
compare those to trends in mean precipitation. This gives a new comprehensive picture
on measurement based trends in extreme precipitation in Nepal. We find that almost all
extreme precipitation events occur during the Indian summer monsoon reflecting the
highly seasonal climate in Nepal. For Nepal in total, monsoon precipitation does not
depict a significant trend nor does the number of extremes per station. In contrast to
seasonal rainfall, extreme daily precipitation amounts are not linearly correlated with
the El Niño-Southern Oscillation (ENSO). Despite high spatial variability of trends in
extreme precipitation across Nepal, especially Far-West Nepal indicates considerable
positive trends in extreme precipitation. This can be seen across the applied methods
and thus indicate the robustness of our results.

Paper 2: Synoptic conditions and moisture sources actuating extreme precipitation in
Nepal

Realizing in the first manuscript that extreme precipitation in Nepal is changing consid-
erably, a better understanding of the involved physical processes becomes imperative.
In paper II, we focus on direct moisture sources for the extreme events and the pre-
vailing large scale meteorological conditions. The considered large scale conditions
are divided into low pressure systems and mid-level troughs. Rain gauge data, reanal-
ysis, and Lagrangian trajectories form the basis of this study. By clustering rain gauge
data, we take into account the high spatial variability of the occurrence of precipitating
systems along the Himalayas. We establish three cluster regions of similar daily precip-
itation characteristics, West Nepal, Central Nepal, and East Nepal. Subsequently, dates,
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on which extreme precipitation occurred concurrently at multiple stations in each clus-
ter region, are used to investigate atmospheric circulation patterns and moisture sources
in a composite analysis. We find that the atmospheric flow is directed against the Hi-
malayas at the location of the cluster accommodating the extreme event. Further, the
large scale flow conditions guide low pressure systems toward the Himalayas where
they rain out. Anonymously abundant moisture sources along the path of the low-level
flow stems predominantly from land, particularly from the Indo-Gangetic plain. The
additional moisture was likely provided by foregone precipitation events precondition-
ing the soil for enhanced moisture uptake. This complements previous studies in South
Asia focusing on different regions. Moreover, we highlight differences in atmospheric
circulation and moisture sources to flooding events in Pakistan and Northwest India.

Paper 3: Multiscale characteristics of an extreme precipitation event over Nepal

In the third manuscript, we investigate in more detail meteorological conditions and
moisture sources revealed by our second manuscript. We now pick a single case, the
extreme precipitation event on 19 July 2007. Using rain gauge data, TRMM 3B42,
Era-Interim re-analysis, Lagrangian trajectories, and a high resolution numerical sim-
ulation allows us to scrutinize the interplay of the involved meteorological conditions
and understand the physical processes that contribute to the development of an extreme
precipitation event. To attain a comprehensive understanding, we perform a multiscale
analysis covering large scale to mesoscale characteristics of the extreme event. The ex-
treme event on 19 July started with initially separate convective cells over Nepal which
were invigorated with moist low-level inflow housing high convective available po-
tential energy. The individual convective cells organize upscale and an intense wide
convective system with a simulated echo core of 40 dBZ exceeding a vertical extent of
12 km formed over Central Nepal during the late afternoon. The result was torrential
rain with over 250mm within 24 hours. We identify several synoptic scale conditions
that lead to the intense development of the convective system: anonamously high mois-
ture sources along the path of a low-level flow characteristic for monsoon break periods,
this lead to moist airmasses feeding into the convective system, the additional available
moisture was created by foregone precipitation events, and airmasses were destabilized
by upslope flow and quasi-geostrophic forcing where the upslope flow was likely the
main trigger mechanism. While the type of the convective system was not unusual for
the Central Himalayas, its intensity was. This study shows how distinct synoptic scale
conditions can create a system with unusual intensity.
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ABSTRACT: We investigate trends in monsoon and extreme precipitation in Nepal based on rain gauge measurements. We

find that precipitation amounts in Nepal vary considerably in space and time. The number of occurring extremes and the amount

of precipitation are controlled mainly by the Indian summer monsoon. Almost all extreme precipitation events, recorded by

98 considered meteorological stations, occur during the Indian summer monsoon with the maximum in July. For Nepal in

general, we find that the amount of precipitation and number of extreme events per station are neither significantly increasing

nor decreasing between 1971 and 2010. However, on a regional scale we identify areas with positive and negative trends. A

comparison of the combined precipitation time series with the ENSO 3.4 index reveals a connection between ENSO and the

variability in monsoon precipitation. The correlation with the number of monsoon extremes vanishes for increasing percentiles.

We investigate trends of upper percentiles of daily precipitation which pinpoint regions of increasing and decreasing extremes.

These patterns are similar to spatial patterns in mean monsoon precipitation trends, whereas the median of the precipitation

distribution undergoes only minor changes. Further analysis using extreme value theory confirm the prevailing trends from

quantile regression for most stations and depict strong changes in return levels. Especially for Far-West Nepal, we find robust

evidence for a systematic increase in extreme precipitation.

KEY WORDS extreme precipitation; precipitation trends; Nepal; Himalaya; quantile regression; extreme value distribution;

non-stationary
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1. Introduction

The Special Report on Extreme Events of the Intergovern-

mental Panel on Climate Change (Field et al., 2012) and

the Fifth Assessment Report (Stocker et al., 2013) state

that the magnitude of precipitation extremes and their fre-

quency of occurrence have been increasing over most of

the globe. They further conclude that a shift in the dis-

tribution, for instance a shift in the mean, can affect the

extremes. For south Asia a change in return periods to

more frequent extreme precipitation is projected for dif-

ferent emission scenarios. Bookhagen (2010) finds that the

mountainous Himalaya has almost twice as many extreme

events as the Ganges Plain or the Tibetan Plateau. Nepal,

a country with complex topography, home to the high-

est peaks in the world, large glacier systems, and conse-

quently great exposure to natural hazards like flash floods

and landslides needs good estimates of changes in extreme

temperature and precipitation for risk management. In this

study, we comprehensively assess systematic changes in

monsoon and extreme precipitation in Nepal. We hope that

these findings will be useful to risk management which

relies on correct estimations of changes in return values.

*Correspondence to: P. Bohlinger, University of Bergen, Geophys-

ical Institute, Allégaten 70, NO-5020 Bergen, Norway. E-mail:

patrik.bohlinger@gfi.uib.no

Natural variability has to be considered and explored

to understand changes in precipitation and extremes. Sev-

eral studies agree on the connection between the El

Niño-Southern Oscillation (ENSO) and the magnitude of

the monsoon precipitation. The strength of this connection

has been subject to continuous debate (Trenberth, 1997;

Kumar et al., 1999; Shrestha, 2000; Ichiyanagi et al.,

2007; Sigdel and Ikeda, 2013). The general opinion con-

denses to a negative correlation between ENSO and the

precipitation amount with a varying strength over time.

Recently, also a lagged relationship between the Pacific

quasi-decadal oscillation and the monsoon precipitation in

Nepal was found (Wang and Gillies, 2013).

In order to homogenize the efforts to assess extremes

worldwide and implement a common practice approach,

the Expert Team on Climate Change Detection, Monitor-

ing and Indices (ETCCDI) published a list of indices of

climate extremes in the report WCDMP-No. 72 in 2009.

In their report, they state that extreme weather phenomena

are often not directly tied to environmental disasters. The

impact of extremes depends to a large degree on the vulner-

ability and resilience of a system. A systematic change in

extremes, however, is accompanied by a systematic change

in hazardous weather situations leading to disasters with

high socio-economic impact. An important piece of advice

in the ETCCDI report is that changes in very rare extreme

© 2017 Royal Meteorological Society
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Table 1. Overview over conducted research on extreme precipitation in Nepal.

Study Area Years Number of stations Method Trends in extremes

SH05 Basins in India 1971–2000 Nepal: 11 OLSR ✓

Pakistan and Nepal
BD08 Nepal 1961–2006 26 ETCCDI, OLSR ✓

N09 Nepal 1976–2005 166 OLSR, –
EVT: Gumble Type 1

C11 Indo-Pacific 1971–2005 Nepal: 7 ETCCDI, OLSR ✓

SH16 Koshi River Basin 1975–2010 50 ETCCDI, OLSR ✓

BS17 Nepal 1971–2010 98 OLSR, QR, ✓

EVT: Full GEV

Abbreviations of studies: SH05= Shrestha (2005), BD08=Baidya et al. (2008), C11=Caesar et al. (2011), SH16=Shrestha et al. (2017),

BS17=Bohlinger and Sorteberg (this study). Abbreviations for methods: ETCCDI= different ETCCDI climate indices for precipitation,

OLSR=Ordinary Least Square Regression, QR=Quantile Regression, EVT=Extreme Value Theory.

events are not well represented by these indices and should

be treated using the extreme value theory.

Utilizing ETCCDI indices for station-based research

over central and south Asia, Tank et al. (2006) con-

cluded with a warming signal but non-coherent precipita-

tion trends. Zooming in on the Himalayas, limited work

has been done assessing precipitation trends and possible

future changes. This is partly due to limited availability of

rain gauges compared to other surrounding countries (Dhar

and Nandargi, 2000; Nandargi and Dhar, 2011). However,

studies have shown evidence for a systematic increase in

temperature and natural hazards (Shrestha et al., 1999;

Chalise and Khanal, 2001, 2002; Shrestha, 2005). Stud-

ies on changes in annual, seasonal, and extreme precipita-

tion in Nepal produced less univocal results. Both increas-

ing and decreasing trends have been reported at different

sites across the country as well as a sensitivity to ele-

vation, while no consistent trend could be found for the

monsoon season over the entire country (Shrestha et al.,

2000; Shrestha, 2005; Ichiyanagi et al., 2007). Nandargi

andDhar (2011) studied extremes along theHimalayas and

stated that there was a sudden increase in the frequencies of

extreme rainfall events in the 60s, but a decrease in the first

decade from 2000. Nepal, however, was excluded since

the respective dataset did not include the dates of occur-

rence of extreme events. Caesar et al. (2011) investigated

changes in ETCCDI indices across the Indo-Pacific region.

Nepal was only represented by seven stations which indi-

cated an increase in east and west Nepal and a decrease

in central Nepal. Due to data sparseness, however, caution

should be taken when associating trends at single stations

with larger regions of Nepal.

Few studies exist that focus on changes in extreme pre-

cipitation in Nepal. For instance, Shrestha (2005) found

indications of an increasing trend in extreme precipitation

in Nepal. Other studies computed least-square fits on ETC-

CDI indices (Baidya et al., 2008; Shrestha et al., 2017). A

quite comprehensive attempt on assessing rainfall and its

extremes in Nepal was published in 2009 by the Practical

Action Nepal Office in form of a report (hereafter N09)

with the title ‘Temporal and spatial variability of climate

change over Nepal (1976–2005)’ (Marahatta et al., 2009).

Spatial maps of precipitation, return levels and changes of

seasonal and annual rainfall were produced using Ordinary

Least Square Regression (OLSR) for temporal changes

and a Gumble type 1 distribution for computing stationary

return levels. However, this report only computed trends

for the means and not for extreme precipitation. The stud-

ies including Nepal are summarized in Table 1.

We highlight three issues which we complement in our

study. First, we extend trends estimated with OLSR from

N09 to different quantiles of daily precipitation. The rea-

son being that OLSR is very sensitive to questionable val-

ues and outliers especially at the beginning and end of

time series. Secondly, we estimate changes in return values

for block maxima which has not yet been done. Thirdly,

instead of a Gumble type 1 distribution we use the full

Generalized Extreme Value (GEV) distribution, which,

includes a shape parameter. This is because marginal rain-

fall distributions at the stations show shape parameters

which despite large uncertainty, are likely to be different

from zero. This in turn can have considerable impact on

the distribution and consequently the estimation of return

levels.

2. Data and methods

We start out with 278 meteorological stations from the

Department of Hydrology and Meteorology (DHM)

in Nepal (Figure 1). Purchased station data consist of

40 years of 24 h precipitation amounts (9 am previous day

to 9 am local time, UTC/GMT +5:45 hours) for the years

1971 to 2010. Daily rainfall data analysed in this study

was obtained using US standard 8 ‘diameter manual rain

gauges and undergoes basic quality control like removing

negative values and outliers.’ More information about the

different measurement networks in Nepal can be found

in Talchabhadel et al. (2016). Data is not continuously

available and some stations are not measuring precipita-

tion for the entire period but for some years only. Stations

are well distributed over the country although the number

of stations decreases with increasing elevation. Relatively

densely populated areas like Kathmandu and Pokhara have

a higher number of stations close-by while other areas, in

particular the Mid-West and Far-West Nepal stations are

more sparse. For describing regional characteristics in our

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)
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Figure 1. (a) Regions of Nepal with the location of two centres of high

station density, Pokhara and the capital Kathmandu. (b) Location of

the 98 meteorological stations from the Department Of Hydrology and

Meteorology (DHM) in Nepal. Station elevation is in meters above sea

level [m.a.s.l.]. Stations disregarded in this study are marked by a cross.

Underlying topography is displayed in grey for orientation purposes. The

stations 512 and 1111 aremarkedwith a square and triangle, respectively.

results we use the names of the different regions in Nepal

as shown in Figure 1.

Since there is a vast amount of missing values in the

dataset, only stations offering a set of sufficiently repre-

sentative data are chosen for further investigations (see

Section 2.1 for details). We provide a complete table

with station names and their basic meta-data as support-

ing information (Table S1, Supporting Information). In

Section 3.4, two arbitrary stations are used to illustrate the

applied concepts and findings. These two stations with the

identification numbers 512 and 1111 are also marked in

Figure 1.

2.1. Selection of appropriate stations

We selected stations based on aminimum amount of obser-

vations available and a desire to cover most of Nepal’s

climatic zones defined by elevation as sketched in Shrestha

et al. (2017). Considering all available stations, strong pre-

cipitation events happen mostly during the Indian summer

monsoon from June to September (Figure 2). Constraints

for selecting suitable stations are therefore mainly based

on these four months rather than the entire period. The

challenge of choosing representative sites is approached by

allowing only stations which have at least 75% data cover-

age for the period (1971–2010) in each monsoon month.

Since toomany stations disqualify when applying this con-

straint to the entire period of 40 years (100%) we ease

the restriction to 30 years (75%) which is the second con-

straint. An optimal time period of 30 years from the total

40 years is chosen where the number of available stations
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Figure 2. Ratio of number of extreme precipitation events to number of

yearly extremes displayed for different percentiles. Daily precipitation is

considered when computing percentiles.

fulfilling the criteria is maximized. The maximum number

of stations is 112. Of these 112 stations at least 75% (84

stations) have to fulfil the quality criteria over the same

time period (third constraint). The choice of 75% instead of

100% is due to the fact that with 75% we cover all regions

in Nepal and all climatic zones but the High Himalayas

which are higher than 2500m.a.s.l. (Shrestha et al., 2017).

Choosing 30 years as a suitable reference period is mainly

to retain time series that are somewhat representative for

climate and long enough to level out variations that are

associatedwith e.g. ENSO. In our case the reference period

lasts from 1979 to 2008.

The availability of stations is sensitive to the constraints

as illustrated in the following example. Keeping the sec-

ond constraint untouched since we want to retain a 30 year

data record, we can test the sensitivity to the remain-

ing constraints. For instance, using 70% or 80% for the

first criterion results in 112 and 111 stations, respec-

tively. Changing only the third constraint to 70% or 80%

would change the number of remaining stations to 122

and 100, respectively. The position of the optimal time

period varies only by a few years when changing the

constraints above as described. We note that our results

are not very sensitive to the number of stations included.

Ichiyanagi et al. (2007) demanded availability of 80% of

the entire period (1987–1996). Choosing a certain degree

of coverage for an entire period could mean less cover-

age in the monsoon months where most of the extremes

are found and more coverage in the rest of the year. This

is why we introduced an additional availability constraint

for each monsoon month to avoid that potential bias on

our results.

These constraints result in 112 stations which are rather

uniformly spread over the country (Figure 1) and range

from 72m.a.s.l. to 2742m.a.s.l. Higher mountain regions

have unfortunately no stations fulfilling the requirements

and were excluded from further investigations. It would

be of course ideal to have close to full data coverage

instead of 75%. This choice has to be made specifically

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)
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for every study. We aimed for a balance between spatial

and temporal availability. A uniform spatial spread gives

confidence in capturing the total picture of precipitation in

Nepal. Using the constraints we have chosen, we end up

with a set of 112 stations that is largely a subset of the 166

stations used for the N09 report.

2.2. Homogeneity of time series

We tested the remaining 112 stations for homogeneity to

reduce the risk to include artificially induced trends, e.g.

by stations changing location. Due to the sparseness of sta-

tions in highly complex topographywe did not find it feasi-

ble to test against a reference time series or nearby stations

as suggested by Alexandersson (1986). Instead we used

a penalized maximal F test (PMFT) (RHtestsV4, Wang

(2008a,b)). This software for testing homogeneity is freely

available and described in detail on the ETCCDI home-

page (http://etccdi.pacificclimate.org/software.shtml). We

did not adjust time series when a significant (5% signifi-

cance level) break point was found but rather rejected the

respective records. Additionally, time series were visually

inspected and three more stations excluded. Two of them

depicted break points that were not significant but to the

eye a shift in mean seemed to be probable. The third sta-

tion clearly depicted a strong, sudden change in variance

and was excluded due to its heteroscedasticity. In total we

rejected 14 stations and proceeded with a subset of 98 both

plain area and hill stations (Table S1).

2.3. Trend analysis for extreme events

We used twomethods to assess trends in extreme precipita-

tion. Our approach using extreme value theory and specifi-

cations for the Bayesian estimation of theGEVdistribution

parameters are described in Appendix.

In order to determine the trend of different quantiles

we performed a quantile regression on daily precipitation

for each station following the method from Koenker and

Hallock (2001). Advantages of quantile regression versus

OLSR can be summarized as follows. Quantile regression

is more flexible as it is possible to explore the impact

of covariates on all quantiles within a given distribution,

meaning that a different behaviour in different quantiles

can be observed. Additionally, quantile regression is robust

to outliers and leads to reasonable estimates when the

error distribution is non-normal. Based on these advan-

tages quantile regression is well suited for this study to

investigate changes in different quantiles of daily precipi-

tation. Fan and Chen (2016) illustrate some advantages of

this method when calculating trends in extreme precipita-

tion indices across China.

Block maxima values like annual or seasonal maxima

follow the GEV distribution which is defined by the three

parameters for location (�휇), scale (�휎), and shape (�휉). Given

a set of values these parameters can be estimated for

instance by maximum likelihood or Bayesian approaches

which are both used in this study. We computed changes of

the 100 year return level with 1 where Q99 represents the

99th quantile from a GEV with the location parameter for

year 2010 versus 1971 for a single station s:

CHANGEs =

[

Q99 (GEV (x, �휇 (t = 2010) , �휎, �휉))s

Q99 (GEV (x, �휇 (t = 1971) , �휎, �휉))s

· 100%
]

− 100% (1)

3. Results and discussion

The results presented in this chapter are computed with

respect to the reference period explained in Section 2.1.

For percental trends the respective climatological value

is used. This allows us to directly compare stations and

regions without biasing the results with records of different

length. For the following analysis a day is considered a

wet day when precipitation is recorded, irrespective of the

amount.

3.1. Station monsoon climatology

Over a variety of high quantiles, almost all extremes

were measured during the Indian summer monsoon period

(Figure 2). The higher the percentiles the more likely it

is that it is recorded during the monsoon. The distribu-

tion flattens out for lower percentiles. July claims most

extreme events with a substantial difference compared to

June, August, and September.

Most of the annual precipitation is measured during

the Indian summer monsoon, ranging from 412mm up

to 4575mm (Figure 3(a)). The contribution to the annual

precipitation ranges from 54% to 88% depending on the

station (Figure 3(b)). The monsoon mean precipitation

indicates local maxima in the station cluster close to

Pokhara in the north-west (Lumle), north-east of Kath-

mandu (Gumthang), and north in East Nepal (Num)

(Figure 3(a)). The contribution of the monsoon precipita-

tion to annual precipitation is highest close to the Indian

border, close to Pokhara, Kathmandu and north-east of

Kathmandu (Figure 3(b)). There are local minima in the

contribution at the border between Far-West Nepal and

Mid-West Nepal, and central in East Nepal. The spatial

distribution of summer monsoon precipitation and the per-

centage of monsoon rainfall compared to annual rainfall

is in agreement with findings from Shrestha (2000).

The spatial distribution for median values of wet days

depict a similar pattern as described for mean monsoon

precipitation (Figure 3(c)). The 99.5-percentiles of daily

precipitation has the highest values along the Indian bor-

der, close to Pokhara, and north in East Nepal with maxi-

mum values of over 190mm d−1 (Figure 3(d)). Using only

wet days for the extreme percentile calculation does not

change the pattern qualitatively. Extreme values become

higher towards India and seem to be rather constant along

the Indian border where the topography is less complex.

The number of wet days combined with the rainfall

amount indicates whether it rains often or seldom and if

the events are strong or weak. The number of wet days

increases towards China and further into the Himalayas

(Figure 3(e)) with the highest values in West Nepal and

Central Nepal. At stations close to Pokhara and in Central

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)
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Mean monsoon precipitation (mm) Monsoon contribution to annual precipitation (%)

Median daily monsoon precipitation (wet days) 99.5-percentile of daily monsoon precipitation (mm d–1)

Number of monsoon wet days Std of number of monsoon wet days

Figure 3. (a) Mean of monsoon precipitation for the months June to September (mm). (b) Ratio of monsoon precipitation to annual precipitation in

(%). (c) Median of daily precipitation. (d) 99.5-percentile of daily precipitation. (e) Number of wet days (>0mm) during monsoon season and (f)

Standard deviation for the number of wet days. Topography is displayed in grey for orientation with darker colours indicating increasing elevation.

and East Nepal along the northern border, it rains almost

every day on average, whereas at the southern border

and Far-West and Mid-West Nepal there are stations that

register rain on only half of the 122 monsoon days. The

standard deviation of the number of wet days (Figure 3(f))

is probably highly influenced by local topography and

spatially very variable.

3.2. Observed time series and trends

A shift in mean precipitation can affect extremes which

is why we first explore possible changes in means of

monsoon precipitation in Nepal. Precipitation records vary

strongly in time and space. Variability ranges from strong

fluctuations between single days to multi-year and multi-

decadal oscillations. Trends of Indian summer monsoon

precipitation and number of extreme events per station are

challenging to calculate because data are heterogeneous

and exhibits many data gaps. Different stations have

the longest pseudo-continuous record in different time

periods. We use the word ‘pseudo-continuous’ because

stations are used despite exhibiting data gaps as long as

they fulfil the data availability and homogeneity criteria

(Sections 2.1 and 2.2). Estimating OLSR trends for these

different time slices makes the comparison and interpreta-

tion difficult. For this reason we choose only stations that

have been measuring for the entire time period of 40 years

and pass the homogeneity test. This results in a subset of

42 stations.

Figure 4(a) shows trends of the 42 remaining stations.

Although the spatial coverage of stations in Nepal is sparse

when using 42 stations, we still get an impression of

the rainfall trends in various regions. The precipitation

records show a high spatial variability with positive and

negative trends. There are hardly any statistical signif-

icant trends (Figure 4(b)). The significance is estimated

using the student t-test for the 0.05% significance level.

The occurrence of a similar trend at several stations can

indicate real changes in precipitation for a larger region. As

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)
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(a) (b)Trends of monsoon precipitation  (% decade−1) Significant trends of monsoon precipitation (% decade−1)

Figure 4. (a) Precipitation trends for 42 stations from 1971 to 2010. (b) Precipitation trends for only 10 stations which indicate a statistical significant

trend on a 0.05% significance level obtained using a student t-test.

an example for this, around Kathmandu, several negative

trends coincide indicating a decrease of monsoon precip-

itation in that area whereas trends close to the Pokhara

region and in Far-West Nepal indicate an increase.

We merge the seasonal time series of all 98 stations to

overcome data gaps and to obtain a precipitation trend that

can be associatedwithNepal. This is done by creating stan-

dard z-normal scores (z-scores) which make precipitation

sums at different stations comparable. z-Scores are calcu-

lated for 40 years (1971–2010) using a reference period of

30 years to calculate a mean and a standard deviation for

each station. The reference period consists of the 30 years

where most stations fulfil the data availability criteria at

the same time as explained in Section 2.1. z-Scores con-

sist of precipitation anomalies, calculated from the differ-

ence between the seasonal value and the 30 years mean

standardized by the standard deviation of the respective

stations. Monsoon precipitation z-scores from different

stations are merged, resulting in a time series for all of the

40 years (1971–2010).

The estimated trend for the combined time series is not

significantly different from zero at a 95% confidence level

using a student t-test. This means that there are no indica-

tions of a decline or increase in precipitation (Figure 5(a)).

This is consistent with the high spatial variability of

station-based trends and the existence of regions with a

negative trend (around Kathmandu) and regions with pos-

itive trends like Far-West Nepal and close to Pokhara.

We explore the trends in the number of extremes (multi-

ple upper percentiles) and count all extremes registered by

stations from 1971 to 2010. The number of extreme events

is normalized by the number of active stations at the time of

the event. Normalization is necessary since the number of

active stations varies substantially between 1971 and 2010

and thereby also the potential of measuring an extreme

which would bias the result. Figure 5(b) shows time series

of the amount of recorded extreme events with extreme

defined as values higher than the displayed percentiles. We

show results for the three percentiles 99.9, 99.5 and 99. The

similarity between the time series of number of extremes

and the combined precipitation time series increases as the

percentiles decrease. We do not find a statistically signifi-

cant trend. This suggests that occurrences of extremes have

neither increased nor decreased. This conclusion is consis-

tent with findings from Shrestha et al. (2000).

3.3. Variability in the observed time series

The merged time series show strong inter-annual variabil-

ity. In particular ENSO has been associated with vari-

ability in rainfall over India, Bangladesh and other places

around the Indian subcontinent by changing large scale

circulation patterns in the south Asian region (Pant and

Parthasarathy, 1981; Rasmusson and Carpenter, 1983;

Parthasarathy et al., 1988; Kripalani and Kulkarni, 1997;

Lau and Wu, 2001; Ashok et al., 2001). The El Niño

phase is usually associated with less precipitation whereas

the La Niña phase coincides with heavy precipitation and

floods. However, this correlation seems to be subject to

temporal variability as described by Kumar et al. (1999)

indicating the complexity of this relationship. Using the

Niño 3.4 region bounded by 120∘W-170∘W and 5∘S- 5∘N

(Trenberth, 1997), Chowdhury (2003) investigated sea-

sonal flooding in Bangladesh and shows that for strong El

Niño events this relationship is valid, whereas an increase

of precipitation is also observed during moderate El Niño

years underlining the spatial differences in the impact

of ENSO.

In this study, we investigate the relationship between

ENSO and precipitation amounts and the number of

extremes in Nepal. We use the cold and warm ENSO

periods calculated by the NOAA Center for Weather and

Climate Prediction (Climate Prediction Center Internet

Team, 2016) over the Niño 3.4 region using the extended

reconstructed sea surface temperature version 4 (ERSST.

v4) (Huang et al., 2015). We find a significant correla-

tion (r≈−0.6) between our combined seasonal time series

and the ENSO signal (mean June to August, 3.4 region)

(Figure 6(a)). This is consistent with other findings (e.g.

Shrestha, 2000; Shrestha et al., 2000) that related ENSO

to the rainfall in Nepal using for instance the Southern

Oscillation Index (SOI) which is derived from the mean

sea level pressure difference measured in Tahiti and Dar-

win. Shrestha (2000) found a similar correlation of r≈ 0.58

between percentage departure of Nepal monsoon rain-

fall (PNMR) and Monsoon Southern Oscillation Index
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Figure 5. (a) Time series of monsoon z-scores merged from 98 stations. (b) Time series of number of extreme precipitation events (values above the

respective percentiles: 99.9, 99.5, 99) normalized by number of active stations. The red dashed lines are linear regression lines.

(MSOI). For themonsoonmonths June to September a cor-

relation between all-Nepal monsoon precipitation and SOI

of r≈ 0.43 to r≈ 0.63 depending on the time period was

found by Shrestha et al. (2000).

However, the correlation between ENSO and the num-

ber of extreme events per season requires a closer look

(Figure 6(b)). As the percentile increases the correlation

vanishes whereas for events lower than 99th percentile, the

correlation starts to resemble the cross-correlation func-

tion of ENSO and the combined precipitation time series

(Figure 6(a)). This shows that there is in fact a connection

between ENSO and moderate extremes (here: lower than

99th percentile) but no linear correlation for percentiles

even further out in the tail of the distribution.

3.4. Trends for extreme events

In this chapter, we use two different methods to assess

changes of extremes. Comparing results from different

methods gives a notion of sensitivity of observed trends

to the method which goes beyond the obtained standard

errors of a single method. We extend existing work using

quantile regression to investigate and illustrate changes

across a variety of high percentiles of daily precipitation.

Finally, we use extreme value theory with the block max-

imum approach to make inference for very rare extreme

events (100 year event) where the ETCCDI descriptive cli-

mate indices are not considered reliable anymore.

3.4.1. Investigating the evolution of quantiles over time

using quantile regression

Temporal trends in extreme precipitation amounts are

investigated by exploring changes of high quantiles of

daily precipitation over the 40 year period from 1971 to

2010. This will answer questions like, does the value of

the 99.5th percentile shift over time towards stronger or

weaker extremes? Are the trends similar across multiple

quantiles?

Considering station based trends of quantiles, spatial

variability is strong (Figure 7). It is noteworthy that only

negative trends are statistically significant. In a total Nepal

perspective there is no uniform increase or decrease of

percentile values although some regions have several sta-

tions with similar trends indicating the presence of increas-

ing or decreasing values for a given percentile in a larger

area. The percentage of stations with positive and neg-

ative trends is summarized in Table 2. For example sta-

tions around Pokhara depict an increase of higher per-

centile values. A second region showing an increase of

high percentile precipitation values is in most Far-West

Nepal. Around Kathmandu a group of stations show neg-

ative trends. This pattern of regions of prevailing trends is

consistent with the pattern in seasonal precipitation trends

discussed in Section 3.2.

A tendency of stronger trends in the higher percentiles

becomes visible when comparing trends of the 99.9, 99.5,

99, 95, 75 and 50th percentile. The median seems to be

quasi constant for almost all stations which is consistent

with a trend not significantly different from zero for the

combined seasonal precipitation time series of all stations

(Figure 5). Some stations even have a shift in sign for dif-

ferent percentiles. The result of the quantile regression

reveals that the increase and decrease in seasonal precip-

itation (Figure 4) is not due to changes in the bulk of the

distribution but rather caused by changes in the upper tail.

Furthermore, this shows that the dispersion of precipita-

tion amounts increases and decreases with time and that

the conditional distribution of daily precipitation is posi-

tively skewed with a long upper tail.

Figure 8 illustrates the behaviour of a time-dependent

increase and decrease of higher percentiles as described

above for stations 512 and 1111. Both stations show differ-

ent trends in their quantiles. For station 512, trend curves

of different quantiles converge with increasing time. Quan-

tiles at station 1111 are diverging over time, resulting in

a positive trend in seasonal precipitation which is visible

in Figure 4. The fact that the pattern for the trends in the

higher quantiles is similar to the trends in seasonal precipi-

tation for July to September indicates that seasonal precip-

itation trends are strongly influenced by trends in higher

quantiles.
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Figure 6. (a) Cross-correlation between the combined precipitation time series and the June to August mean of the ENSO signal from region 3.4. (b)

Cross-correlation between ENSO and the number of extremes of upper tail percentiles. The black thin lines denote the 0.05 significance level.

Figure 7. Trends from quantile regression for different stations based on quantiles obtained from daily precipitation. Stations that do not indicate a

trend significantly different from zero at the 95% confidence level are marked using a circle, significant stations with a square. Confidence intervals

are obtained using bootstrapping with 500 times of re-sampling. Results are little sensitive to the number of bootstrap samples. For trends in the

median fewer stations are plotted because some have a median of zero which leads to division by zero when calculating the percental change. Their

respective absolute trends are zero (of the order |10−8| mmdecade−1 or smaller) and therefore neglected.

3.4.2. Modelling trends of extremes using extreme value

theory

We extend the previous analysis using a block maximum

approach to detect return level changes and their spatial

distribution over Nepal for 100 year events. For the block

maximum approach we use annual and monsoon maxima

taken from our set of daily precipitation values. Results are

obtained using Bayesian and maximum likelihood param-

eter estimation for the location, scale and shape parameters

of the GEV distribution. Due to strong similarities between
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Table 2. The number and percentage (in parenthesis) of stations with positive and negative trends for different quantiles.

99.9 99.5 99 95 75 50

Pos 52 (46%) 62 (55%) 67 (60%) 64 (57%) 36 (32%) 61 (54%)
Neg 60 (54%) 50 (45%) 45 (40%) 48 (43%) 76 (68%) 51 (46%)
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Figure 8. Daily precipitation (mm) are displayed as black circles. Trend curves (in red) for the percentiles 99.9, 99.5, 99, 95 and 90 depicting the

respective trends. The line for the highest percentile is highest and so on. Dotted lines show the 95% confidence interval for the 99.9th percentile

obtained using the bootstrap method with 500 times of re-sampling.

Bayesian and maximum likelihood estimated parameters

we only use the results from the Bayesian estimation for

illustrating consequences of using time as a covariate for

the location parameter.

The systematic change over time which we described in

the previous sections can also be seen by eye for the block

maximum time series of the same stations 512 and 1111

(Figure 9). For both stations, the annual maximum daily

precipitation depicts a change over time. At station 512 the

annual maxima decrease and at station 1111 the extremes

seem to increase over time, thus matches our assumption

of an underlying linear trend in the location parameter.

Starting from the year 1971 at station 512 a former 12-year

event is now a 100-year event meaning that the probability

of occurrence of such a high value has decreased. At

station 1111 a 580-year event has become a 100-year event

suggesting a higher probability of occurrence. The results

from the block maximum approach are consistent with the

trends in the high percentiles using quantile regression.

After illustrating our approach we fit a GEV distribu-

tion (Equation (A1)) to each station to assess the spatial

distribution of trends in annual maxima. Since we are deal-

ing with 98 stations we proceed with the same simple

covariate for each station. We allow for a linear change

in the location parameter at each station for the tempo-

ral evolution. The scale parameter is held constant as well

as the shape parameter, which is notoriously difficult to

estimate and comes alongwith large uncertainties. A linear

change over time was chosen since many station-specific

time series exhibit a somewhat linear trend, whereas for the

variance we did not discover such systematic changes. Ide-

ally a more physical covariate could be chosen. However,

this would require knowledge about the underlying mech-

anisms for the change which are not yet established. ENSO

as amore physical covariate does not significantly improve

the fit.

Figure 10 illustrates the change of the 100 year return

level in 1971 compared to the same return levels in 2010.

Data from each station have been fitted separately with

the approach described above. The respective change of

the 100 year return level in percent was calculated using

Equation (1) in Section 2.3. For the maximum likelihood

estimated models we performed a likelihood-ratio test to

determine whether the trend contributes to improve the

model. The null hypothesis is that the model without a

linear trend in the location parameter is the same as the

model including the trend. Rejecting this hypothesis there-

fore means that the models are significantly different from

each other and the trend improves the model. Additionally,

we compare the magnitude of the trend estimates and the

respective standard errors. For the Bayesian estimation we

decide on using the 95% credible intervals that come along

with theMCMC sampling of the trend parameter. Since for

the maximum likelihood estimation (MLE) the standard

error approach and the likelihood-ratio test result in the

same significant stations, except one, we just display the

likelihood ratio test results with respect to 95% confidence

interval. Bayesian andMLE estimations agree on the same

significant stations, except one. This adds confidence to the

robustness of the results which is supported by the fact that

when considering only monsoonmaxima instead of annual

maxima the significant stations are the same.

In both estimation methods, the distribution parame-

ters are very similar resulting in return values that are
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Figure 9. Annual maxima of daily precipitation (mm) are displayed as black circles. The black dashed line indicates the time dependent median and

the red line the time dependent 100 year return level. Parameter estimates in this figure are obtained using Bayesian estimation.
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Figure 10. Change of the 100 year return level from 1971 to 2010 in % imposing a linear trend on the location parameter of the GEV-distribution at

each site separately. (a) and (b) consider block maxima during the monsoon period using Bayesian and MLE estimation, respectively. Same for (c)

and (d) but for annual block maxima. Squares depict stations with significant changes considering a 95% credible/confidence interval. For maximum

likelihood figures there is one station indicated by a transparent circle and square for which the parameters could not be estimated and the change is

set to NaN. Topography is displayed in grey shading for orientation purposes with darker grey indicating higher elevation.

much the same which in turn is reflected in the change

of the return values over time. Comparing these meth-

ods reflects the sensitivity of the results to the use of

different methods. The spatial pattern is consistent with

the pattern obtained from quantile regression. Computed

changes are substantial and typically range from −30%

to +30% increase of the 100 year return level. Roughly

55% (Bayes: 53%, MLE: 56%) of the stations indicate

a positive trend whereas 45% (Bayes: 47%, MLE: 44%)

show a decline of annual maxima. Considering monsoon

maxima instead of annual maxima, both methods agree

on a ratio of ca. 61% (Bayes: 60%, MLE: 61%) of the

stations indicating a positive trend. This is comparable

with ratios obtained from quantile regression. The trend
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pattern shows an inhomogeneous trend distribution over

Nepal where only smaller regions agree on the sign of

a trend. For instance between Pokhara and Kathmandu

there is an area with significant negative trends which is

also visible in the results from quantile regression. The

negative trend in the higher quantiles around Kathmandu

is much less univocal in the block maxima. In Far-West

Nepal there are almost exclusively positive trends. Another

important finding is the robustness and significance of the

positive trend in Far-West Nepal. A homogeneous region

in terms of positive trends where some show statistical

significance leads to strong indications for a systematic

change towards higher extremes in western Nepal. Our

results differ partly from the monsoon mean trends in N09

which underlines the importance of considering extremes

in an own framework.

The trends do not seem to depend on the geographical

parameters elevation, latitude and longitude. Using the

parameters from the marginal distributions, we checked

dependencies on geographical or physical parameters.

Scatter plots reveal dependencies for the location off-

set and the scale parameter on latitude and elevation

for both the MLE and Bayesian estimation (not shown

here). Unfortunately, the observed dependencies are not

enough to obtain a reliable fit of a spatial GEV using

the mentioned covariates and creating a map of return

values. The spatial model over- and underestimates

return values compared to the marginal distributions at

the station sites (not shown here). We conclude that a

well-working spatial GEV-model probably has to be more

complex, with spatially variable dependencies on physical

variables.

4. Summary and conclusions

In this study, we investigated previously not considered

elements of monsoon precipitation and extremes in Nepal

on basis of rain gauge stations.We used quantile regression

and extreme value theory to obtain a comprehensive view

on trends in extreme precipitation.

Most events in the tail of the daily rainfall distribution

occur during the Indian summer monsoon between the

months June and September. The highest monsoon precip-

itation amounts were measured in the station cluster close

to Pokhara in the north-west (Lumle), north-east of Kath-

mandu (Gumthang) and north in East Nepal (Num). Most

of the monsoon contribution to annual rainfall is recorded

close to the Indian border, around Pokhara, Kathmandu

and north-east of Kathmandu. The highest absolute upper

tail daily precipitation values can be found along the Indian

border, close to Pokhara, and north in East Nepal.

Monsoon precipitation trends are heterogeneous across

the country where a combined time series of 98 stations

does not exhibit a significant trend. Seasonal monsoon pre-

cipitation is anti-correlated with ENSO (r≈−0.6). The

number of extremes throughout a variety of higher quan-

tiles do not depict a significant trend. There is linear

dependency between ENSO and the number of moderate

extremes (lower than 99th percentile). Percentiles above

are not correlated with ENSO.

Quantile regression reveals a spread in the trends of dif-

ferent upper quantiles which can be responsible for trends

in the seasonal precipitation time series at the same sta-

tions. This means that the upper tail undergoes a change

rather than the bulk of the distribution. This in turn reflects

in the characteristics of the distribution of daily rainfall.

By computing sums or means of strongly skewed distribu-

tions, a trend in seasonal monsoon precipitation can occur.

Results using a block maximum approach from extreme

value theory show a pattern similar to the one obtained

by quantile regression. Especially Far-West Nepal depicts

homogeneously positive trends throughout a variety of

higher quantiles and block maxima where some show

statistical significance at the 5% significance level. This

concludes with robust evidence for a systematic change

towards higher extremes in Far-West Nepal. It is important

to note that trends in the annual and monsoon daily max-

ima differ in parts from the respective mean trends in the

N09 report. This underpins the importance of considering

extremes in an own framework and under non-stationarity

which, due to the observed magnitude (change from−30%

to +30%), should also be included in a spatial model.
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Appendix

Extreme value theory in a non-stationary case

Coles (2001) and Katz et al. (2002) describe applica-

tions of extreme value theory in a hydrometeorological

framework in a very approachable manner. This forms the

basis of our approach where we estimated the distribution

parameters with the software R. The Bayesian and MLEs

were conducted with the support of the freely available

R-packages evd and extRemes (Stephenson, 2002; Gille-

land and Katz, 2011) where the latter was recommended

by the ETCCDI report.

Block maxima values like annual or seasonal maxima

follow the GEV distribution which is defined by the three

parameters for location (�휇), scale (�휎) and shape (�휉). Given

a set of values these parameters can be estimated for

instance by maximum likelihood or Bayesian approaches

which are both used in this study. In this study we use

time as a covariate imposing a linear trend on the location
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parameter to capture the visible changes of block maxima

for the observation period. The GEV including a time

dependent location parameter looks as follows:

GEV (x, �휇 (t) , �휎, �휉) = e
−1

[

1+�휉
(

x−�휇(t)

�휎

)]−
1
�휉

(A1)

As priors for Bayesian estimation we used uniform

distributions for the location offset and trend as well

as for the scale and shape parameter. Additionally, the

scale parameter is not allowed to become negative since

that would make no physical sense. The posterior is

obtained through sampling with a Markov chain Monte

Carlo (MCMC) method where for the MCMC method the

Metropolis–Hastings (MH) algorithm is used. Since sta-

tion specific distributions can be very different the MH

algorithm is initialized with the sample mean for the loca-

tion parameter and the sample standard deviation for the

scale parameter. The trend on the location parameter and

the starting point for the shape parameter are both ini-

tialized with zero. For convergence we sample 90 000

times and use a burn-in period of 30 000 values. From the

remaining values we skim every 10th value which is the

basis for our final posterior distribution.

Supporting information

The following supporting information is available as part

of the online article:

Table S1. Metadata of 98 rain gauge stations in Nepal

including the 90th, 99th and 99.9th percentile of daily

precipitation.
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Abstract. Despite the vast literature on heavy precipitation events in

South Asia, synoptic conditions and moisture sources related to extreme pre-

cipitation in Nepal have not been addressed systematically. We investigate

two types of synoptic conditions —low pressure systems and mid-level troughs

—and moisture sources related to extreme precipitation events. To account

for the high spatial variability in rainfall, we cluster station based daily pre-

cipitation measurements resulting in three well separated geographic regions:

West, Central, and East Nepal. For each region, composite analysis of ex-

treme events shows that atmospheric circulation is directed against the Hi-

malayas during an extreme event. The direction of the flow is regulated by

mid-tropospheric troughs and low pressure systems traveling toward the re-

spective region. Extreme precipitation events feature anomalous high abun-

dance of total column moisture. Quantitative Lagrangian moisture source

diagnostic reveals that the largest direct contribution stems from land (ca.

75%), where in particular over the Indo-Gangetic Plain moisture uptake was

increased. Precipitation events occurring in this region before the extreme

event likely provided additional moisture.

Keypoints:

• Nepal can be divided into three regions of similar daily precipitation char-

acteristics

• We identify synoptic conditions related to extreme precipitation in Nepal

and pinpoint regions of additional moisture sources contributing to extreme

events
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• A conceptual sketch of the involved processes concludes our findings

c©2017 American Geophysical Union. All Rights Reserved.



60 Scientific results

1. Introduction

Recent studies found considerable changes in extreme precipitation in Nepal over the

last 40 years [Baidya et al., 2008; Caesar et al., 2011; Shrestha et al., 2016]. Bohlinger

and Sorteberg [2017] pointed to a statistically robust trend of increasing rainfall extremes

in West Nepal, stressing the need to better understand the involved processes. However,

despite vast literature on heavy precipitation events in South Asia, the role of synop-

tic conditions and moisture sources for extreme precipitation events in Nepal has not

been addressed systematically. As described by Trenberth et al. [2003], three overarching

constituents are crucial for generating precipitation. Ascending air tied to dynamics on

different scales (from planetary scale to synoptic scale and mesoscale), microphysics which

determine the condensation process, and the presence of moisture. We assess the role of

synoptic conditions and moisture sources, and how they effect extreme precipitation in

Nepal.

The spatial precipitation distribution in Nepal exhibits high spatial and temporal vari-

ability and is therefore of high socio-economic interest due to agriculture, natural hazards,

and the use of hydro power. Precipitation in Nepal is heavily influenced by the Indian

summer monsoon [Bohlinger and Sorteberg , 2017]. Based on meteorological stations, early

studies estimated the average monsoon precipitation to approximately 80% of the annual

precipitation across most of Nepal [Nayava, 1980]. In the far western part, the propor-

tion reached only about 60%. Nepal exhibits a spatial pattern of rainfall climatologies

according to its physiographic regions and main river systems [Kansakar et al., 2004]. A
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correlation between elevation and precipitation was found in West Nepal, whereas the

middle and east show no clear dependency [Ichiyanagi et al., 2007]. However, the rainfall

distribution in Nepal is more complex and exhibits large differences on small scales, e.g.

a difference by a factor of 8 in precipitation amounts was observed in the Marsyandi river

basin in Nepal (faktor of 4 on a scale of 10 km) [Lang and Barros , 2002; Barros and Lang ,

2003]. A systematic approach should therefore take into account the spatial variability of

precipitation when attributing synoptic conditions to extreme precipitation events.

Typical synoptic conditions leading to heavy precipitation in Nepal have been summa-

rized to: monsoon low pressure systems, break monsoon conditions, western disturbances,

and a change in the seasonal monsoon trough [Nandargi and Dhar , 2011]. This summary

is largely based on studies of single events with impact along the Himalayas. The listed

features can act on different regions along the Himalayas and are dominant in different

months. For instance, in central Nepal, mesoscale systems are found to strongly interact

with steep terrain at elevations of 1-2 km [Barros et al., 2000] where during the monsoon

onset, monsoon depressions from the Bay of Bengal (Fig. 1), can move close to the Hi-

malayan mountain range and force air upslope causing precipitation [Lang and Barros ,

2002]. However, implications of these studies for Nepal and where to expect which of the

synoptic conditions are not clear.

Another approach in the literature was to relate the occurrence of different convective

systems to synoptic anomalies for various regions along the Himalayas [Romatschke and

Houze Jr , 2011]. Nepal was part of a larger region called central Himalayan foothills and
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therefore not discussed in detail. For the central Himalayan foothills, trough conditions

over the Tibetian Plateau and positive anomalies south of the Himalayas favored medium

convective systems. Houze Jr et al. [2007] described various mechanisms triggering mon-

soon convection in the Himalayas, emphasizing a strong interaction with the complex

terrain and regional differences between West, Central and East Himalayas. Over the

West Himalayas a key feature was a cap of dry air flowing down from the Afghan Plateau

(Fig. 1). This cap prevented premature triggering of convection of moist air coming from

the Arabian Sea (first described by Sawyer [1947]). As the moist air masses approach

the Himalayas they are orographically lifted, finally triggering convection. This was later

confirmed by Medina et al. [2010] in numerical model experiments. Such a systematic as-

sessment remain to be conducted for synoptic conditions related to extreme precipitation

along the Nepalese Himalayas.

The second constituent for precipitation adressed in our study is the availability of

precipitable water. This directly connects to the location and contribution of moisture

sources raising the question: if there is more moisture precipitating, where does the addi-

tional moisture come from? However, various studies investigated the origin of moisture

for the Indian subcontinent. Ghosh et al. [1978] derived water vapor flux from airborne

measurements along different transects in the Arabian Sea concluding that evaporation

along the Arabian Sea is a major moisture source. Cadet and Reverdin [1981] investi-

gated surface water vapor transport for the 1975 summer monsoon season using a budget

approach based on cross-sections. They state that during the monsoon season as much as

70% of the water vapor crossing the west coast of India could originate in the Southern
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Hemisphere while the remaining 30% evaporate from the Arabian Sea. Moisture picked

up by traversing air masses over the Indian Ocean in the Bay of Bengal would mainly

contributes to the development of local weather phenomena. Later studies confirmed

these findings and stress the importance of the Arabian Sea and the Southern Hemi-

sphere as moisture sources [Cadet and Greco, 1987; Wang , 2005]. However, implications

for moisture sources for Nepal are not clear and need to be addressed separately. To our

knowledge there is no study assessing moisture sources for extreme precipitation in Nepal.

Research on single high impact events close to the Nepalese Himalayas hints to synoptic

processes and moisture sources possibly applicable for Nepal. In particular, the city of Leh

flood 2010 [Rasmussen and Houze Jr , 2012; Kumar et al., 2014] and floods in Pakistan

[Medina et al., 2010; Houze Jr et al., 2011; Martius et al., 2013; Rasmussen et al., 2015]

were explored. For the city of Leh flood 2010, moisture from the Arabian Sea and the Bay

of Bengal was funneled to Leh and fed into mesoscale convective systems moving down

from the Himalayan plateau [Rasmussen and Houze Jr , 2012]. For the Pakistan flood in

2010, Martius et al. [2013] found that orographical lifting and atmospheric flow directed

against the Himalayan mountain chain was a main driver. Using the moisture source

diagnostic from Sodemann et al. [2008], they found a considerable contribution from land,

over India and Pakistan, and from the Arabian sea. The scope of their study did not

include the mechanism by which a large amount of moisture could be taken up over an

otherwise relatively dry land area like the Thar desert (Fig. 1). However, they proposed a

possible intense coupling of precipitation and evapotranspiration. It is not known whether

similar mechanisms prevail during extreme precipitation in Nepal. Therefore, we address
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systematically regional aspects and explore the moisture sources in conjunction with the

synoptic conditions leading to extreme precipitation over Nepal.

2. Data

We used data from meteorological stations provided by the Department of Hydrology

and Meteorology (DHM) in Nepal measuring 24 h precipitations sums (from 9 am to 9 am

local time). We picked 112 stations (Fig. 2) that remain after data availability control

with constraints from Bohlinger and Sorteberg [2017]. The main criterion for choosing

a station was that every month in the monsoon season June to September should have

75% of valid data for at least 30 years in the period 1971 to 2010. The 112 chosen

stations are well distributed over the country and cover most of the climatic zones as

defined in Shrestha et al. [2016]. The capital Kathmandu and the city Pokhara stand out

from the otherwise sparsely covered country as more stations are located close-by (Fig. 2).

We used two additional datasets for our analysis: 6-hourly Era-Interim re-analysis [Dee

et al., 2011] at 0.75 degree horizontal resolution and a global particle trajectory dataset

consisting of 5 million particles of equal mass representing the entire atmosphere (from

1979 to 2013) [Läderach and Sodemann, 2016]. This dataset was computed with the La-

grangian dispersion model FLEXPART [Stohl et al., 2005] based on Era-Interim reanalysis

fields.

3. Methods
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3.1. Clustering of the rain gauge stations

We cluster our station based precipitation records to find groups of stations that behave

similarly in terms of precipitation changes. As distance metric for the K-means algorithm

with random seeding, we use correlation between the rain gauge stations based on daily

precipitation amounts during 30 years of monsoon seasons. This distance metric is chosen

since daily precipitation is not Gaussian distributed. A typical dilemma with cluster

algorithms is that one has to know the number of clusters beforehand. There are different

approaches to face this problem but the alleged objective methods still need subjective

judgment. The methods we used to decide whether a chosen number of cluster was suitable

were: comparison of silhouettes [Rousseeuw , 1987], aiming for high silhouette coefficients

and applying gap statistics [Tibshirani et al., 2001].

3.2. Identification of low pressure systems

We identified and tracked low pressure systems (LPS) using the Lagrangian-tracking

algorithm [Hodges , 1994, 1995, 1999]. This algorithm is fed with relative vorticity from

ERA-Interim [Dee et al., 2011] on the Gaussian grid F128 and follows the relative vorticity

maximum on 850 hPa. At this pressure level monsoon LPS are expected to exhibit a

vorticity maximum [Tyagi et al., 2012]. We further consider only systems that last longer

than two days, travel more that 1000km and exceed a vorticity threshold of 5 · 10−6
s
−1.

This tracking algorithm has already been successfully applied for monsoon LPS in South

Asia [Sørland and Sorteberg , 2015a].

3.3. Identification of moisture source regions
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We assess moisture changes along each trajectory from [Läderach and Sodemann, 2016]

with the moisture source diagnostic from Sodemann et al. [2008]. This diagnostic method

allows the attribution of moisture sources by relating each moisture gain or loss along

an air parcel trajectory to the current specific humidity of the same air parcel. In this

methodology, moisture loss counts as precipitation. We follow the trajectory 10 days prior

to the extreme event, which explains on average 91% of the moisture changes over Nepal.

This means that on average 9% of the moisture in the air parcel were already present

when starting the diagnostic and therefore cannot be attributed. The high fraction of ex-

plained moisture changes gives confidence in the applicability of the method in this area

with limitations discussed in the next paragraph. We compute moisture sources only for

trajectories that lose moisture (¿ 0.1mm) in the target region and by this only quantify

sources relevant for precipitation.

The attribution of moisture uptake is divided into two vertical layers [Sodemann et al.,

2008]: contribution from the boundary layer and the free troposphere. Boundary layer

contribution consists of all uptake below 1.5 times the boundary layer height in Era-

Interim. Consequently, everything above is defined as uptake in the free troposphere.

This division is due to the assumption that within the boundary layer vertical mixing is

much stronger than horizontal advection. The origin of the taken up moisture corresponds

to the location of the parcel which is here defined as the moisture source region. This

assumption is less obvious in the free troposphere where moisture can be advected from

far away or introduced by plumes of convection and evaporating rain. For the moisture

diagnostic we use 6 hourly steps for re-calculating the budget for the respective air par-
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cel. During these 6 hours the parcel could cross a convective plume which would change

its moisture content. In this study we only take into account the contribution from the

planetary boundary layer to assess the contribution of regions over which moisture was

picked up by an air parcel.

Winschall et al. [2014] compared the Lagrangian moisture source diagnostic against an

Eulerian moisture source diagnostic using the limited area model COSMO with water

vapor tracers. They focused on a heavy-precipitation event leading to the flood in east-

ern Europe in May 2010 and found that both approaches are generally consistent. They

concluded that the Lagrangian moisture source diagnostic from Sodemann et al. [2008] is

a computational efficient tool for determining moisture source regions. Läderach [2016]

investigated the moisture transport to Kathmandu for a case study (22 days). He com-

pared the Lagrangian diagnostic with Eulerian model results and concluded with a good

agreement in this region, strengthening confidence in our approach.

To attribute moisture sources to extreme precipitation events we divided Nepal into

West, Central, and East Nepal (Fig. 2). The area of Nepal was determined by the area

within 26-31N and 79-89E. West Nepal was defined as 27.5-30.5N and 80-83.5E, Central

Nepal as 26.5-29N and 83-86E, and East Nepal as 26-28.5N and 85.5-88.5E. For the

discussion on moisture in the Thar desert, we chose an area in the Indian state Rajasthan

defined as 25-28N and 71-75E. For all target regions we tracked air parcels back in time

for 10 days to quantify their moisture sources. Only air parcels that enter through the

above defined borders and lose moisture in the target region are tracked.
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3.4. Definition of anomalies and extremes

The Indian summer monsoon is a transient feature with high variability in the onset

date, the progression, and strength. Therefore, the mean state of the Indian summer

monsoon is not representative as a reference field. Hence, anomalies are calculated as the

difference between an event and a mean background state consisting of a 15 day average

centered around the date of the event.

We focus on synoptic conditions related to precipitation events exceeding the threshold

of the 99.5-percentile. We call these events for the rest of the study extreme events as

they are far out in the tale of the distribution of daily precipitation. Fig. 3 illustrates

that Nepal experiences most extremes simultaneously at multiple stations during the In-

dian summer monsoon. Bohlinger and Sorteberg [2017] found that the monsoon is the

dominating season for the exceedence of high percentiles. They further point out that a

relationship between the number of extreme events and the El Niño-Southern Oscillation

(ENSO) have no significant linear correlation above the 99-percentile. Thus we do not

need to treat extreme events in ENSO years in a special way. Examplary time series of

extreme events and the correlation with ENSO together with trends and climatology can

be viewed in Bohlinger and Sorteberg [2017]. Choosing at least five stations indicating

an extreme event should serve as division between very localized convective events and

larger scale systems that trigger extreme precipitation at several stations simultaneously.

We pick a date whenever extreme precipitation is observed at minimum five stations

on the same day (329 dates). Based on this constraint we select extreme dates for each
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cluster (Section 4). We further exclude all extremes that occurred simultaneously at more

than one cluster which leaves us 231 dates to obtain region specific characteristics. This

means that roughly 70% of all extreme dates were confined to a single cluster. Addi-

tionally, we remove all dates prior to the start of Era-Interim in 1979 and use only dates

between June and September. This results in 180 dates (cluster 1: 51, cluster 2: 77,

cluster 3: 52) which despite the thinning process contain high impact events like 19/20

July 1993 and 30 August 1998 [Chalise and Khanal , 2002] in the second cluster. From

the set of remaining dates we create composites of geopotential height to capture features

of atmospheric dynamics (Section 6).

A limitation of this approach is that, due to the seasonal climate of Nepal, most of the

extreme events fall within the monsoon season where also most of the annual precipita-

tion falls [Bohlinger and Sorteberg , 2017]. This leads to an overrepresentation of dates

with extreme events during the monsoon season. However, these are extreme events with

considerable amounts of precipitation meaning that they are likely to be of greater im-

portance to society. This and the fact that contemporaneous extreme events at multiple

stations are concentrated in the monsoon seasons (Fig. 3) are reasons for us to focus on

the monsoon season. Extremes relative to different seasons could be discussed separately

in another study.

4. Regimes of daily precipitation in Nepal

Due to the large variety of processes leading to heavy precipitation events [Nandargi

and Dhar , 2011] and the spatial variability discussed in the introduction, we divide Nepal
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into subregions using clustering. By this, we can focus on the processes for each subregion

with less probability of averaging out important features. Gap statistics suggest a best

gain of information for two or three clusters. Due to the distribution of the silhouettes

for two and three clusters we decide for the latter which leads to a division of Nepal into

three well defined regions (Fig. 4).

The obtained clusters display a division into West, Central and East Nepal. This divi-

sion is similar to results obtained by Kansakar et al. [2004] where precipitation regimes

followed major drainage basins Karnali, Narayani, and Sapta Koshi. This is striking

because their approach differes from ours in various significant points. They applied a

hierarchical, agglomerative cluster analysis, to classify precipitation regimes in Nepal on

a climate time scale. They clustered separately “shape” and “magnitude” as originally

proposed by Hannah et al. [2000]. The classification using the stations “magnitude” was

based on climatic time scale variables such as mean, min, max, etc., whereas clustering

“shape” was based on monthly z-scores to produce an annual precipitation with values of

similar magnitude for each station. Kansakar et al. (2004) first divided Nepal into phys-

iographic regions and major drainage basins resulting in six regions and subsequently

found the dominating precipitation type for this region. This differs substantially from

our approach where we focus on classifying stations using daily precipitation amounts in

order to cluster stations that react concurrently to a synoptic scale forcing. We further did

not impose any constraints on the clustering and yet our study results in a similar division.
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This robust result emerging from clustering station precipitation could be related to

larger scale systems triggering precipitation in the respective region. When increasing the

number of clusters, the stations divide into regions parallel to the Himalayas while mostly

retaining the perpendicular division (not shown). Various studies [Barros et al., 2000;

Lang and Barros , 2002; Barros and Lang , 2003; Bookhagen and Burbank , 2006; Houze Jr

et al., 2007; Bookhagen and Burbank , 2010] illustrate a strong influence of topography on

precipitation. The observed division of the clusters parallel to the mountain chain could

mirror the influence of topography and how far weather systems are able to penetrate

into the mountain chain. A more detailed discussion on the sensitivity of the results due

to changes in the method or ingoing data can be read in the appendix. We investigate in

the coming sections whether the synoptic conditions differ between extreme precipitation

events occuring in the cluster regions.

5. Atmospheric circulation and moisture sources for Nepal during the

monsoon

During the Indian summer monsoon, typically a surface low pressure area prevails over

the Indo-Gangetic Plain covering North India and the Northern Bay of Bengal (e.g. Wang

[2005]; Tyagi et al. [2012]). This is known as the Monsoon Trough. A band of high geopo-

tential height with anticyclonic flow dominates the upper troposphere at 200 hPa (e.g.

Houze Jr et al. [2007]; Romatschke et al. [2010]) reaching from the Arabian peninsula

to Bangladesh along the Himalayas. This zone of low level convergence and upper level

divergence represents the northward-shifted Intertropical Convergence Zone (ITCZ) dur-

ing the Indian Summer Monsoon. In the mid-troposphere, a center of low geopotential
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height resides over North-East India and the Bay of Bengal (Fig. 5a). Winds follow

the geopotential height and veer toward north over the Bay of Bengal. Over Nepal, the

low-level atmospheric flow changes direction from north-westerly to south-easterly and is

consequently steered against the Himalayas (Fig. 5b). In the lower troposphere, an area

of low geopotential height (Fig. 5b) extends from Pakistan to Bangladesh following the

Indo-Gangetic Plain. This region of low geopotential height coincides with the location of

LPS that form during the monsoon season and can influence the strength and direction

of the moisture transport [Krishnamurthy and Ajayamohan, 2010; Sørland and Sorteberg ,

2015b].

Averaged over the entire monsoon season the vertically integrated moisture transport is

aligned with the surface winds and depicts a strong band from the region of the Somali Jet,

crossing the Western Ghats in India (Fig. 1), and turning north in the Bay of Bengal (Fig.

6a). During the Indian summer monsoon the area with the strongest vertical integrated

moisture transport is located over the Indian Ocean in the Southern Hemisphere close to

the equator, over the Arabian Sea, over Sri Lanka, and in the Bay of Bengal. Moisture

is steered toward the Himalayan mountain chain where the flow follows the topography

and bifurcates, one branch to the northwest along the Nepal Himalayas and one to the

northeast (Fig. 6a). Viewing the integrated moisture transport during the monsoon sea-

son in Figure 6a creates the notion that most of the moisture that precipitates along the

Himalayas during the monsoon stems from the Bay of Bengal, the Arabian Sea or as far

as south of the equator. Focusing on moisture sources for the Indian subcontinent, this

has in fact been shown in multiple studies which describe the magnitude of the moisture
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uptake over the ocean (Ghosh et al. [1978]; Cadet and Reverdin [1981]; Cadet and Greco

[1987]; Wang [2005], Chapter 1 and 4). Their findings are based on a moisture budget ap-

proach investigating vertically integrated moisture fluxes or comparing evaporation with

precipitation deducted from measurements. They find that during the monsoon season

water vapor crossing the west coast of India stems mainly from the Southern Hemisphere

(70%) and the Arabian Sea (30%).

With Figure 6a in mind, one could conclude that the moisture sources are similar for

Nepal. Our results challenge this notion when exploring moisture sources computed using

the Lagrangian moisture source diagnostic (Fig. 6b). The method reveals that most of

the moisture precipitating over Nepal is taken up along a the Indo-Gangetic Plain north

of the main branch of moisture transport in Era-Interim. We find that around 25% of all

relevant uptake (solid black line) occurs over Nepal and the direct vicinity. Roughly 50%

(stippled black line) stem from the Indo-Gangetic Plain. In total, 80% of the moisture is

taken up over land and 20% over the ocean. Long range transport seems to be relevant

for a large fraction of the 20% as it originates mainly from the Arabian Sea (15%) and off

the coast of Somalia (details in Table 1).

We suggest that the reason for the difference between results from the budget approach

and our results, obtained with the Lagrangian method, is that the budget approach cannot

take into account recycling of moisture. The budget approach compares all evaporated

moisture with all precipitation within certain borders or a volume. This can describe

whether a region on average acts as a moisture source but cannot attribute moisture
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sources contributing to a certain precipitation event. Specifically for Nepal, this could

mean that originally the moisture had been taken up over sea but thereafter, due to

multiple rain events on the way to Nepal, the moisture that stemmed from the Arabian

Sea had left the air parcel and was gradually replaced by moisture taken up over land.

Hence the direct source for the specific precipitation event over Nepal was over land. This

chain of events would be masked in a budget approach. It becomes clear that the results

of the two different approaches are not contradictory but rather complementary.

6. Synoptic conditions characterizing region specific extreme events

6.1. Composite analysis

After introducing the mean state of the Indian summer monsoon, regarding atmo-

spheric circulation and moisture sources for Nepal, we continue to discuss the distinctive

features characterizing extreme precipitation events. We test whether Era-Interim can

qualitatively reproduce the extreme precipitation events over the respective cluster areas

(Section 4). Fig. 7 depicts Era-Interim total precipitation composites for the dates of

extreme precipitation for each cluster. For the dates of extreme precipitation Era-Interim

produces a significant amount of rainfall over the cluster regions. Central Nepal receives

substantial precipitation in all cases, consistent with the general precipitation distribu-

tion in Nepal [Bohlinger and Sorteberg , 2017]. We suggest that Era-Interim is capable

of reproducing extreme precipitation events at the locations of the clusters. The result

further indicates that mechanisms leading to extreme precipitation are governed by grid

scale features and the synoptic conditions which we focus on are represented well enough

for further investigations.
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We identify synoptic flow patterns for each cluster connected to the extremes. The flow

in the vicinity of the clusters is directed toward the respective cluster at the day of the

extreme event throughout most of the troposphere, illustrated for 500 hPa and 850 hPa

(Fig. 8). For cluster 1 the trough in mid-troposphere is steep and points toward the

Himalayas (Fig. 8a). For cluster 2 and 3, the trough becomes more elongated and the

flow turns gradually toward the cluster regions (Fig. 8b,c). Similarily, in the lower tro-

posphere low geopotential height stretches from Pakistan southeast along the Himalayas

toward Bangladesh. The shape and extent of this low geopotential height region changes

from cluster 1 to 3 to become more aligned with the Himalayas (Fig. 8d-f).

Across the mid and lower troposphere, a dipole structure consisting of a center of high

and low anomaly supports the direction of the flow to the respective cluster region (Fig.

8). For cluster 2 and 3 the flow needs to travel along the Himalayas and veer to the north

farther east compared to cluster 1. This is reflected in the anomalies which support the

respective flow patterns by their location, shape and strength. In the mid and upper tro-

posphere at (500 hPa and 300 hPa) pronounced anomaly patterns help to guide the flow

toward the respective cluster region (Fig. 9a-g) which is much like the trough structure

in Figure 8a-c. The anomaly shows an increased north-south gradient with a negative

anomaly trough at the location of cluster 1. Additonally, a positive anomaly region over

north-east India forces the flow more northward and enhanced winds are directed toward

the Himalayas. For cluster 2 and 3 an elongated band of positive geopotential anomaly

extends from Pakistan across India to Myanmar and Thailand. The positive anomaly is

more pronounced for cluster 3 than for cluster 2 supporting the flow to be parallel to
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the mountains for a longer distance such that the flow does not turn north before east

Nepal is reached. Our anomaly composites for Central and East Nepal are consistent with

results from Romatschke and Houze Jr [2011] who found a negative geopotential height

anomaly at 500 hPa across the Himalayas and south of the mountain chain a positive

anomaly prevailing during the occurrence of medium convective systems over the cen-

tral Himalayan foothills. While their findings include all of Nepal we resolve distinctive

features characteristic for regions of Nepal revealing that the flow toward the Himalayas

seems to be crucial for extreme precipitation events.

6.2. Variability within the cluster composites

The composite analysis indicates that synoptic conditions guide the atmopsheric flow

to the Himalayas and consequently drain the available moisture due to orographic uplift-

ing. Based on the 180 considered cases, various weather features can be associated with

extreme precipitation events recorded at the stations. Prominent synoptic conditions are:

a trough over the Himalayas (Fig. 8, Fig. 11), a low pressure system from the Bay of

Bengal (Fig. 10), and sometimes, although less common, a low pressure system from the

Arabian Sea (Fig. 10c).

Monsoon LPS are known to mainly develop in the Bay of Bengal, travel to the north

or north-west where som of them recurve to the east [Krishnamurthy and Ajayamohan,

2010; Tyagi et al., 2012; Sørland and Sorteberg , 2015b]). We tracked all LPS (Section

3.2) that entered a target region around Nepal and were existing during an extreme event

(Figure 10). Most LPS relevant for extreme precipitation events in Nepal develop in the
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Bay of Bengal and move north-west where some recurve towards the north-east and east.

Despite the difference in the number of extreme precipitation events for each cluster, the

number of LPS that were present varied only little: 9 LPS for cluster 1 (18%), 11 LPS for

cluster 2 (14%), and 11 LPS for cluster 3 (21%). LPS being in the target region during

extreme events in cluster 1 and 2 are characterized by a course farther west over India and

end up close to West Nepal. For cluster 3, most are heading to the north, not undergoing

the described recurving and end up close to the cluster region in East Nepal. We find that

for our cases a trough structure with the accompaning wind field in the mid-troposphere

contributed to guide the LPS to the north which we will elaborate on in the following.

An example of those interactions is the low pressure system that caused extreme precip-

itation in west Nepal on 25 September 2005 (Fig. 11). Originating in the Bay of Bengal a

low pressure system reached the Indian west coast two days prior to the extreme event and

was redirected to Nepal guided by an mid-level trough. Two days prior to the event, the

system had weakened, however, when the trough and the low pressure system started to

interact the storm shifted direction veering to the north and produced significant precip-

itation amounts, exceeding the 99.5 precentile at multiple rain gauges in western Nepal.

We find that the interaction between troughs and monsoon LPS is closely connected to

extreme precipitation events in Nepal.

6.3. Discussion of the synoptic conditions

The fact that mid-tropospheric troughs coincide with the extreme events in Nepal is

consistent with other studies summarized in Tyagi et al. [2012]. They found that these
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troughs considerably influence synoptic systems and rainfall during the Indian summer

monsoon, e.g. by triggering and intensifying LPS and subsequently increasing rainfall.

Westerly troughs can also support guidance to LPS and can cause storms to recurve from

their originally north-west course to the north or north-east (Section 4.4 in Wang [2005];

Tyagi et al. [2012]). Martius et al. [2013] described the effect of an upper level positive

potential vorticity anomaly on the Pakistan flood of 2010, close to the area of cluster 1.

Although the vorticity anomaly exerted quasi-geostrophic forcing on the affected region,

its main effect was to orient the lower-troposphere windfield toward the Himalayas causing

orographic uplift.

In our study, for all three cluster regions the orientation of the wind field and the oro-

graphic uplift seem to play a major role. We identified the orographic uplift along the

air parcels retrieved from the trajectory dataset from Läderach and Sodemann [2016].

Entering the region of cluster 1 and 2, air parcels rise on average over 2000m during their

last two time steps (12 hours) prior to their respective extreme event. For cluster 3 an

uplift of similar magnitude takes place more gradually, happening over the last 5-10 time

steps (30 h-60 h). This is consistent with the orientation of the flow which is directed more

perpendicular to the mountain chain for cluster 1 and 2, whereas for extreme events in

cluster 3, the flow in the lower- and mid-troposphere is oriented almost parallel to the

Himalayas (Fig. 8).

Besides features consistent with literature mentioned above, the meterological context

of the described extreme events differ considerably from those accompanying the floods in
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India and Pakistan [Rasmussen and Houze Jr , 2012; Martius et al., 2013; Kumar et al.,

2014]. These studies consistently describe a blocking high over the Tibetian Plateau which

together with monsoon LPS create an increased pressure gradient generating an easterly

jet along the Himalayas which transports moist air from the Bay of Bengal to the precip-

itating regions. In our case, this feature appears to be reversed. The gradient across the

Himalayan mountain barrier is increased in our cases as well. However, we observe the

atmospheric flow not being easterly but westerly before turning north and rising up the

Himalayas. This result stresses the spatial variations inherent in extreme precipitation

events along the Himalayas.

Houze Jr et al. [2007] and Medina et al. [2010] find evidence for continental air coming

down from the Afghan Plateau, capping low level moist air and consequently preventing

premature convection. This is consistent with Sawyer [1947] who described this feature in

a conceptual sketch. The composites in our study reveal a similar pattern where the flow

in the high- and mid-troposphere emanates down from the Afghan Plateau when at the

same time low level air travels from the Arabian Sea over the Indus valley and veers to

the east. The strength and the covered distance of the mid-level flow coincides with the

location of the extreme events (8a,b,c). Like in the conceptual sketch from Sawyer [1947],

the continental air might contribute to prevent premature convection until the moisture

is finally released at the location of the cluster. To assess this suggestion a separate study

would be needed to investigate the existence of a causal link (beyond the scope of this

manuscript).
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7. Moisture flux and moisture sources

On days of extreme precipitation events, we find considerable positive total column

moisture anomalies over the respective cluster regions (Fig. 12). This is consistent with

Barros and Lang [2003] who measured a peak in total column moisture and atmospheric

instability just before an event. Vertically integrated moisture flux anomalies are directed

to our cluster regions (Fig. 12). For all cluster regions the moisture flux and its anomalies

follow a similar path: coming from the Arabian Sea over Northwest India to Bangladesh

along the Himalayas until they turn to the north at the cluster regions. For the first

cluster the moisture flux anomaly is directed north toward the Himalayas (Fig. 12a).

For cluster 2 and 3 the moisture flux anomaly is directed parallel to the Himalayas until

it gradually veers to the north toward the respective cluster regions (Fig. 12b,c). The

moisture flux is very similar to the anomalies (not shown).

The computed moisture sources for extreme precipitation events in the cluster regions

mirror the pattern of moisture flux coming from the Arabian Sea and continuing along

the Himalayas to the East. Moisture uptake occurs to a significant degree along the

Indo-Gangetic plain (Fig. 13 and Fig. 1 for orientation). For cluster 1, the core area

of moisture uptake (solid black line indicating 25%) includes the area of extreme precip-

itation in Nepal together with a filament along the Indo-Gangetic plain Fig. 13a. For

cluster 2 and 3 (Fig. 13c,e) the 25-percentile is more concentrated around the cluster

regions. For all clusters, roughly half of the moisture evaporated over the Indo-Gangetic

plain (stippled line). The rest of the accounted moisture stems from as far as the equator

region at the east coast of Africa. Moisture over India is the largest contributor supplying
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half of moisture for extreme precipitation in Nepal while Nepal adds 5-10% (Tab. 1).

Although the magnitude of moisture uptake over Nepal is comparably large (blue colors

in Fig. 13 a,c,d) the area is limited and cannot match the moisture supply from India

and Pakistan. In total, moisture uptake over land accounts for ca. 75% which is just

slightly lower than the climatological value (Fig. 6b, Tab. 1). The Bay of Bengal only

plays a minor role while the long tail and the redish colors spread over the Arabian Sea

indicate some contribution from long range transport. However, the fraction of moisture

contribution from the Southern Hemisphere is marginal which means that the budget

derived results assessing moisture sources and sinks for the Indian subcontinent (Cadet

and Reverdin [1981], Cadet and Greco [1987], and Wang [2005]) should be handled with

caution when adressing precipitation and extreme precipitation in Nepal.

We computed moisture source anomalies, to test whether there are different source re-

gions or increased moisture uptake ivolved in extreme precipitation events over Nepal.

The anomaly figures (Fig. 13c,d,f) underline the above discussed results that a consider-

able fraction of the additional uptake occurs over the cluster region and the Indo-Gangetic

plain. Interestingly, the region of cluster 1 is the only region where almost none of the

additional moisture seems to stem from the cluster region itself (Fig. 13c). In this region

the atmospheric flow might interact with the terrain as soon as it comes close to the border

of Nepal. Through the ascend it might be lifted above the defined threshold of 1.5 times

the boundary layer height (Section 3.3). In fact when combining the contribution of the

free troposphere and the boundary layer a maximum over the cluster region appears (not

shown). In complex terrain one should therefore be careful with interpreting the results
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of this method.

The largest positive moisture uptake anomaly is located over the Indo-Gangetic plain.

We find no region with a coherent negative uptake anomaly, whereas a positive anomaly

can be observed across all of the major uptake regions. Compared to the monsoon mean,

there appears to be no specific region with an increase in moisture contribution but rather

a uniform increase of moisture upake prior to the extreme events. The magnitude of the

increase is related to the magnitude of the absolute contribution meaning that regions

that generally contributed more, e.g. the Indo-Gangetic Plain, also show the largest pos-

itive anomaly.

8. The shape of the moisture source patterns for Nepal

An important question that arises when exploring the moisture sources is: why is there

moisture uptake over relatively dry regions like the Thar Desert in the Indus Plain (Fig.

1)? Medina et al. [2010] pointed to the possibility of moisture uptake over land for heavy

precipitation over Pakistan if the soil was moistened by a previous precipitation event.

Martius et al. [2013] detected a large moisture contribution from land for the Pakistan

flood in July 2010. They suggested the possibility of an intense coupling of precipitation

and evapotranspiration but did not further address this issue. However, even if moisture

is abundant uptake will not be relevant for the extreme precipitation event if the air flow

to the target region is not directed over the moist region.
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The soil moisture depicts a considerable intra-seasonal cycle where the Indian subconti-

nent is moistened as the monsoon matures. We illustrate this for extreme events in June

and August as an example on the progression of the monsoon (Fig. 14a,b). Northwest

India, containing arid regions like the Thar desert, experiences an increase of soil moisture

which makes moisture uptake possible later in the monsoon season. A similar pattern is

visible in the precipitation field (not shown). Romatschke et al. [2010] present results

using the TRMM 3A25 product consistent with our findings. They conclude that for the

Indus Plain the predominant convective precipitation features are deep convective and

wide convective cores. Examples for intense precipitation events in the comparably dry

uptake region along the Indus valley are described for instance in Houze Jr et al. [2007],

Houze Jr et al. [2015], and Rasmussen et al. [2015]. Due to a dry capping layer from the

Afghan Plateau and Hindu Kush mountains convection is usually inhibited which is the

reason for the prevailance of deep convective cores and wide convective cores in Northwest

India. Broad stratiform precipitation regions are not able to break through the capping

layer unless they are exposed to forced lifting e.g. onto the Himalayan mountain bar-

rier where they can be activated. In the context of three consecutive years of floods in

Pakistan, Rasmussen et al. [2015] described intense, wide convective cores causing heavy

precipitation over the arid region along the eastern border of Pakistan and the Indian

states Gujarat and Rajasthan (Fig. 1). Such intense convective events can moisten the

otherwise dry region and might subsequently serve as moisture sources for extreme pre-

cipitation events in Nepal.
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While the atmospheric flow changes throughout the season, extreme precipitation events

depict considerable anomalies. To illustrate the seasonal changes we choose extreme events

in cluster 1 (Fig. 14 c,d). During extreme events in June the air crosses India almost

zonally to veer to the north and north-east when reaching the Himalayas. In August

there is a strong northward component from the Arabian sea, crossing Northwest India

and veering to the east along the Himalayas. The flow anomalies might be influenced by

break periods (Section 9) resulting in the depicted pattern.

The progression of the soil moisture and the flow anomalies are reflected in the moisture

sources (Fig. 15) which exhibit a similar pattern. While the moisture sources for extreme

events in June are close to the Bay of Bengal, moisture can be taken up over the dryer

areas later in the monsoon season when soil moisture had already increased e.g. by the

above described precipitation events. Not only the uptake region changes but also the

total amount of moisture that is taken up increases in August compared to June (Fig.

15). For instance, the minimum and maximum daily amounts of all moisture taken up

prior to an event which contributes to the respective extreme precipitation event ranges

from 26mm to 205mm for June and from 34 mm to 383 mm for August. In August, the

Indian summer monsoon is in a more mature state compared to June and has progressed

far into the Indian subcontinent where precipitation events continuously increase the soil

moisture content.

The last discussed factor that could be partly responsible for the shape of the moisture

source pattern is irrigation. The Indo-Gangetic plain is one of the strongest irrigated
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regions in the world [Siebert et al., 2005]. Era-Interim indirectly accounts for irrigation

by using surface observations of humidity and temperature to subsequently correct soil

moisture [Douville et al., 2000; Wei et al., 2013]. Wei et al. [2013] found that taking

irrigation into account significantly changes evaporation over the Indo-Gangtic plain up to

200% or 500mm annually. They further state that up to 25% of the annual precipitation in

this region could stem from the increased evaporation. These are significant contributions

to the moisture uptake and since Era-Interim supplies the boundary conditions for the

used trajectories, the increased evaporation likely contributes to the increased uptake in

our results and hence the shape of the moisture source pattern.

We quantify the moisture sources for the dryer regions to extend our chain of argument

regarding the above mentioned preconditioning precipitation events. We choose an area

in the state Rajasthan in Northwest India (Fig. 1) as an example for an arid region which

cannot offer much moisture in general. Nonetheless, we see uptake of moisture in this

region for precipitation and extreme precipitation events in Nepal, also described by Mar-

tius et al. [2013] for the Pakistan flood 2010. Figure 14 indicates that in the beginning of

June only little moisture precipitates out over this region. From this moisture the largest

contributers are the Arabian Sea with 50% (Tab. 2) and Southeast Pakistan together

with the state Gujarat close to the Indus delta. Close to the delta, there are also lakes

that could serve as moisture sources during the intense insolation in the Indian summer

monsoon. The Southern Hemisphere only contributes with 8%. This is, however, double

the fraction compared to regions in Nepal. The increased contribution from moisture

sources in the Southern Hemisphere is consistent with the argument of residence time.

Following the moisture path, Rajasthan is roughly 1000 km closer to the source regions
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in the Southern Hemisphere than much of Nepal (Fig. 1). Hence, moisture taken up over

the Southern Hemisphere needs to travel at least a day less assuming an average speed of

10ms
−1 which also increases the probability that it does not rain out along the way.

By the end of June more moisture has been transported over land and precipitated

over the arid regions such that uptake can occur. The land fraction increases due to the

increased moisture availability and India now contributes as much as the Arabian Sea

with 37%. The occasional occurence of precipitation in these dry regions is also present

in Era-Interim (not shown). Era-Interim supplies the boundary data for the Lagrangian

trajectories and makes our result in the presented framework physically consistent. Our

result is also consistent with multiple studies which illustrated the occurence of precipita-

tion and intense rain storms in this region [Houze Jr et al., 2007; Romatschke et al., 2010;

Romatschke and Houze Jr , 2011; Houze Jr et al., 2015; Rasmussen et al., 2015]. A large

fraction of moisture contributing to the Pakistan flood in 2010 came from the Arabian

Sea [Houze Jr et al., 2011; Martius et al., 2013].

9. Impact of break periods

A common feature often related to abnormal rainfall over the Himalays and India are

monsoon break periods which are defined by less rainfall over most of central India but

more in the north and south of the country [Tyagi et al., 2012]. Break periods have also

been tied to heavy precipitation along the Himalayas [Nandargi and Dhar , 2011]. A typ-

ical feature of monsoon break periods is a flow splitting west of India where the main

branch curves around the southern edge of the subcontinent veering again to the north
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in the Bay of Bengal [Joseph and Sijikumar , 2004]. A northern branch moves from the

Arabian Sea to the north-west along the Himalayas. Our moisture source regions match

the northern branch that prevails during monsoon break periods.

We test whether the dates of extreme precipitation in our study coincide with break

periods based on the four studies compared in Rajeevan et al. [2010]. The compared

break periods are only listed for the months July and August and do not always overlap.

Therefore we count a date when it coincides with at least one of the defined periods. A

noticeable fraction of the extreme events in July and August (cluster 1: 26%, cluster 2:

25%, cluster 3: 43%) occurs during break periods. If we ease the constraint and allow a

deviation of ± 1 day, bearing in mind the temporal differences that come along with the

different definitions, this fraction increases drastically (cluster 1: 44%, cluster 2: 35%,

cluster 3: 57%). In total we count 7 hits and 12 close hits for cluster 1, 13 hits and

18 close hits for cluster 2, and 15 hits and 20 close hits for cluster 3. Rajeevan et al.

[2010] found that with their definition there are on average 7 days (11%) during July and

August defined as break period. However, counting all days in July and August which

are considered break periods in at least one study compared in Rajeevan et al. [2010],

we find that on average 15 days (24%) are defined as break period in July and August

between 1951 and 1989. In Rajeevan et al. [2010], after 1989, there is only one study

we can use for the identification of break periods which consequently leads to a lower

hit rate. This means that the meaning of the break periods for the extreme events is

likely underestimated. Hence, break periods during July and August appear to be related
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to extreme precipitation in Nepal and may influence the displayed pattern of moisture

sources (Fig. 13) and vertical integrated moisture transport (Fig. 12).

10. Conclusion

We systematically investigated and discussed synoptic conditions and moisture sources

actuating extreme precipitation in Nepal for the time period from 1979 to 2010. The

involved key processes are illustrated in Figure 16 which forms the basis for the following

conclusion. Taking into account the high spatial variability in rainfall in Nepal through

clustering, we revealed an interplay between different synoptic-scale features that act to

direct the atmospheric flow against the Nepalese Himalayas at the location of the extreme

event. Although there are likely more processes involved, we focused on LPS and mid-level

troughs. The mid-level trough could force a low pressure system to change direction and

ultimately lead it to Nepal where extreme precipitation occurred. This was illustrated

for 25 September 2005, and is also evident in the composite analysis of the geopotential

height and atmospheric flow together with the paths of the LPS. In average 14%-21% of

the extreme events were accompanied by LPS. The result from this long-term, composite

approach is consistent with existing studies that have described the influence of troughs on

the path of LPS investigating single events. In a composite analysis we found further a low

level flow from the Arabian Sea and mid-level flow from the Afghan Plateau. A resulting

capping and retarded triggering of convection was described by Sawyer [1947], Houze Jr

et al. [2007], and Medina et al. [2010]. We found indications that this process might be

important for the location of extreme precipitation along the Nepalese Himalayas as well.

Moisture uptake was increased prior to the extreme events explaining the origin of the

emerging positive anomalies in moisture transport and total water vapor. We quantified
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major moisture sources and detected the main moisture uptake over land (ca. 75%) where

India, Pakistan and Nepal were major contributors. The most prominent uptake region

was the Indo-Gangetic Plain where almost half of the precipitating moisture was taken

up. The location of the moisture sources could be related to irrigation processes which are

indirectly taken into acount in Era-Interim. Another reason for the increased moisture

uptake is the progression of the monsoon preconditioning the soil moisture for increased

moisture uptake during anomalies in the low level atmospheric flow. These anomalies

were noticably influenced by break period conditions in July and August. Between 35%

and 57% of the events in July and August occurred close to, or during a break period

where this fraction is likely underestimated. Half of the moisture taken up in our example

region in Rajasthan, representing dryer regions along the main uptake path, stemmed

from the Arabian Sea in the beginning of June. Once the monsoon had matured, by the

end of June, more moisture came from land (62%). Further numerical studies might help

to disentangle the involved processes and shed more light on the role of moisture sources

and their implications for extreme precipitation in Nepal.

Appendix A: Method sensitivity

A challenge when dealing with observations is the presence of missing values. In terms

of clustering there are two basic approaches: fill in missing values (imputation) or ig-

nore them (marginalization). Since all stations used for the study have missing values in

different time intervals there would be a substantial loss of information when applying

marginalization. Although, in our case there is only 4% missing data, marginalization

would result in a reduction of the dataset by approximately 43%. With the aim to min-

imize the loss of information we applied the imputation method. We acknowledge that
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clustering with missing values using no imputation is possible which is described for in-

stance in Wagstaff [2004]. However, from the findings of Wagstaff [2004] substituting

with reasonable values, for example using the mean, should be no drawback when only

few data is missing. Introducing artificial values into a dataset could distort the clustering

results which is why we performed a brief sensitivity tests on this issue. We tested differ-

ent values for imputation as mean, median, and an arbitrary value. However, changing

the substituted values resulted in negligible changes in cluster membership at the rims of

the clusters.

Another factor that can influence the outcome of clustering is the chosen distance metric.

We find that the clusters are little sensitive to changes in distance measures, meaning

that only stations at the cluster rims might switch cluster memberships. Additionally,

the sensitivity to changing the amount of clustered stations is very low, e.g. clustering

only the stations that have consistent records for all 40 years results in a very similar

grouping of stations. Different distance measures like cosine or the city-block metric were

tested with similar outcomes.
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Table 1. Contribution to the total moisture supply and, in parenthesis, the positive moisture

anomaly in [%] for selected countries on the moisture pathway for extreme precipitation events.

country/region Nepal cluster 1 cluster 2 cluster 3

Nepal 12 6 (0) 10 (5) 5 (3)

Pakistan 4 11 (14) 5 (6) 5 (6)

India 38 49 (52) 48 (56) 49 (57)

Over land 80 77 (75) 76 (76) 73 (74)

Bay of Bengal 5 3 (2) 4 (2) 5 (3)

Arabian Sea 15 20 (22) 20 (22) 22 (24)

Southern hemisphere 3 4 (5) 4 (4) 4 (4)
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Table 2. Contribution to the total moisture supply for Rajasthan in [%] for each country that

exceeds a contribution of 5%. To illustrate the temporal change two periods are contrasted, 1-10

June and 21-30 June. Values for the chosen periods are averaged from 1979 to 2010.

Rajasthan 1-10 June 21-31 June

Pakistan 9 13

India 28 37

Over land 49 62

Arabian Sea 50 37

Southern hemisphere 8 7
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Figure 3. Monthly contribution to annual number of extreme events in [%] for a minimum of

1, 5, 10, or 15 stations indicating extreme precipitation at the same day.
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Figure 5. Geopotential height from Era-Interim averaged for June to September from 1979-

2010 at a) 500 hPa and b) 850 hPa. The geopotential height contours are in geopotential decame-

ters [gpdm] and arrows depict the wind at the respective levels.
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Figure 6. a) Vertically integrated moisture flux from Era-Interim (1979-2010) averaged from

June to September. b) Moisture uptake for air parcels raining out over Nepal. The solid line

encloses 25%, the stippled line 50% and the dotted line 75%. Note that the colorbar is logarithmic.
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Figure 7. Composites of total precipitation from Era-Interim for all dates of extreme precip-

itation for cluster 1, cluster 2 and cluster 3. Daily amounts are displayed where the average is

taken from 6 am of the day before to 6 am when the event is recorded. This adjustment was done

to account for the time zone of Nepal.
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Figure 8. Era-Interim geopotential height at 500 hPa averaged over all extreme precipitation

events for the period 1979-2010 from June to September a) for cluster 1 b) cluster 2 and c) cluster

3. The same for d), e), f) but at 850 hPa. The arrows indicate the wind at the corresponding

height.
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Figure 9. Geopotential height anomalies at 300 hPa from Era-Interim averaged for the period

1979-2010 from June to September a) for cluster 1 b) cluster 2 and c) cluster 3. The same for

500 hPa in d), e), and f) and 850 hPa in g), h), and i). The arrows indicate the wind anomalies

at the corresponding height.
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Figure 11. Streamlines illustrating the atmospheric flow field on 850 hPa prior to an extreme

precipitation event in West Nepal on 25 September 2005. Contours represent the geopotential

height at 500 hPa.

c©2017 American Geophysical Union. All Rights Reserved.



7.3 Synoptic conditions and moisture sources actuating extreme precipitation in Nepal111

Cluster 1

100kg m−1 s−1

20°N

30°N

70°E 80°E 90°E

TCWVF and TCWV anomalies, Cluster 1

7.5
6.5
5.5
4.5
3.5
2.5
1.5
0.5

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5

k
g
m
−2

Cluster 2

100kg m−1 s−1

20°N

30°N

70°E 80°E 90°E

TCWVF and TCWV anomalies, Cluster 2

7.5
6.5
5.5
4.5
3.5
2.5
1.5
0.5

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5

k
g
m
−2

Cluster 3

100kg m−1 s−1

20°N

30°N

70°E 80°E 90°E

TCWVF and TCWV anomalies, Cluster 3

7.5
6.5
5.5
4.5
3.5
2.5
1.5
0.5

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5

k
g
m
−2

Figure 12. Vertically integrated moisture flux anomaly (arrows) composites for all extremes

in the respective clusters. Total column moisture anomalies are displayed in contours.
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Figure 13. Composites of moisture uptake for extreme events in each cluster, a) cluster 1, c) cluster
2, and e) cluster 3. b), d), and f) depict the anomalies for these composites. The solid line encloses
25%, the stippled line 50% and the dotted line 75% of the total uptake. For the anomalies, these lines
enclose only positive contributions. Note that the colorbars are logarithmic for a), c), e).
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Figure 14. Monthly Mean (1979-2010) Era-Interim soil moisture for June a) and August b),

and wind anomalies on 850 hPa for extreme events occuring in June c) and August d).
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Figure 15. Moisture uptake for all extreme events at cluster 1 in June a) and b) in August.

The solid line encloses 25%, the stippled line 50% and the dotted line 75%. Note that the colorbar

is logarithmic.
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This study focuses on the analysis of the extreme precipitation event in Central Nepal

on 19 July 2007 which was part of a sequence of rain events leading to the devastating

South Asia flood 2007. We investigate synoptic scale conditions using reanalysis and

attribute moisture sources with a Lagrangian moisture source diagnostic. Further,

we characterize the mesoscale precipitation event with a high resolution numerical

simulation. The simulation reveals an intense wide convective event with a simulated

40 dBZ echo core of considerable horizontal extent (1550 km2) exceeding a height of

12 km. Initially small convective cells were invigorated by high CAPE and a potentially

unstable layer at mid-tropospheric levels. This layer reached conditional instability

adding latent energy to the system. Isolated convective cells organized upscale into

a wide intense convective system, fueled with moist low-level inflow. The result was

torrential rain with over 250mm within 24 hours. Several synoptic scale conditions

contributed to the intense development: 1) supply of moist air with the help of a

typical monsoon break condition flow pattern, 2) anomalously pronounced moisture

sources along this path due to prior precipitation events, 3) an upper tropospheric

trough orienting the atmospheric flow against the Himalayas with associated quasi-

geostrophic forcing creating a favorable environment for convection, and 4) destabilized

stratification due to an upslope flow. This analysis encompasses multiple scales and

shows how a wide intense convective system, not unusual for this region, can be

intensified by distinct synoptic constituents.

Key Words: extreme precipitation, Nepal, South Asian monsoon, convective system, moisture sources, dynamical
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1. Introduction

In the summer of 2007, South Asia (Fig. 1) experienced

unprecedented amounts of monsoon precipitation leading to one

of the worst floods during the past few decades (CNN 2007). By

4 August 2007, 20 million people were affected (CNN 2007).

From 10 July until the end of July, the Nepal Red Cross Society

counted 69 casualties and stated that flood and landslides affected

over 262000 people in 29 districts in Nepal (Nepal Red Cross

Society 2007; reliefweb 2007). During this period a sequence

of precipitation events struck the country, in which one was of

particularly severe magnitude. On 19 July, precipitation amounts

exceeded the 99 percentile at nine stations simultaneously. The

Syangja station (S0805) recorded the highest ever daily rainfall

amount of 257 mm since it was installed in 1973. This paper

characterizes the responsible convective event and describes the

multi-scale meteorological conditions that contributed to the

intense convective development. The conditions are subsequently

contrasted to previous work on conditions leading to heavy

precipitation events in Pakistan and Northwest India.

The occurrence of convective events over Pakistan and

Northwest India have been related to distinct meteorological

conditions by multiple studies. Sawyer (1947) and Houze Jr et al.

(2007) noticed that westerly warm dry flow at mid-tropospheric

levels from the Hindu Kush overran southerly low-level moist

flow from the Arabian Sea and created an inversion preventing

premature convection. Convection developed preferably at the

rim of this inversion layer. Deep intense convection formed when

the inversion was penetrated e.g. by orographic lifting of air at the

foothills of the Himalayas. The low-level moist air subsequently

released latent energy hurtling through the dry inversion layer and

contributed to an intense convective development. Houze Jr et al.

(2007) pointed to the high lightning frequency in the regions of a

concave indent in the Himalays in Northwest India as evidence

for the presence of deep convective systems.

This mechanism was confirmed in a numerical modelling

study of a deep intense convective system over Pakistan (Medina

et al. 2010). Two lids of warm and dry air had to be overcome

by the triggering mechanism in order to develop deep convection.

Medina et al. (2010) described topographic lifting as the primary

cause of convection initiation. Heating over the Thar desert and

forced synoptic scale lifting on the other hand was presumably not

enough to break through the capping layers. Once topographic

ascent caused condensation a potentially unstable mid-level

layer became conditionally unstable and could contribute to the

development of a deep intense convective echo.

The described conceptual model on the occurrence of

convection was followed by the question: what mechanisms

contribute to the intense development of various high impact

events in Pakistan and Northwest India? Enhanced moisture

transport to the affected regions caused by synoptic scale

features was a key ingredient (Houze Jr et al. 2011; Rasmussen

and Houze Jr 2012; Martius et al. 2013; Kumar et al. 2014;

Rasmussen et al. 2015). A mesoscale convective storm system

leading to the flood in Leh 2010 in Northwest India was

invigorated by moisture inflow from the Arabian Sea and the

Bay of Bengal (Rasmussen and Houze Jr 2012; Kumar et al.

2014). Flooding events in Pakistan were accompanied by quasi-

stationary synoptic conditions featuring an anomalous, easterly,

mid-level flow transporting moisture from the Bay of Bengal to

Pakistan (Houze Jr et al. 2011; Martius et al. 2013; Rasmussen

et al. 2015). In 2010, in addition to the occurrence of wide

convective systems, highly unusual stratiform systems developed

in this region, moistening a broad region and contributing to large

runoff (Houze Jr et al. 2011).

Due to the described importance of synoptic conditions,

Rasmussen et al. (2015) investigated reasons for the quasi-

stationary blocking conditions prevailing during the Pakistan

flood 2010. They found signs of a Rossby wave train over Eurasia

preceding the blocking and concluded that the Rossby wave

train as a flood precursor could be exploited to gain skill in

predictability. However, they did not investigate whether the

Rossby wave was directly connected to the blocking situation

and contributed to the intensification of the high pressure system.

How this could be assessed was shown in Takaya and Nakamura

(2005) who used the wave activity flux formulation from Takaya
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and Nakamura (2001). Bohlinger et al. (2017) demonstrated

that large-scale anomalies were related to extreme precipitation

in Nepal. For predictability, it would be interesting to explore

a possible connection between a Rossby wave and the here

investigated extreme precipitation event.

Quasi-geostrophically forced ascent, resulting from the

described synoptic conditions, and orographically forced ascent,

have been linked to triggering and intensification of deep

convective systems in Pakistan (Medina et al. 2010; Martius et al.

2013). The forced ascent resulted in a destabilization of the air

column and created a favourable environment for convection.

For instance, for the Pakistan flood 2010, orographically forced

ascent was assumed to have contributed to destabilization of

the air column and finally triggering of the heavy precipitation

events (Martius et al. 2013). Martius et al. (2013) further found a

weak quasi-geostrophic forcing component which impacted the

organization and initiation of precipitation.

In a composite study for Nepal, Bohlinger et al. (2017)

considered precipitation events that contemporaneously exceeded

the 99.5th percentile at multiple stations from 1979 to 2010.

On average, these events were accompanied by a trough over

the Himalayas and anomalously high moisture sources along

the Indo-Gangetic plain. Approximately 75% of the moisture

in the planetary boundary layer was picked up over land.

Bohlinger et al. (2017) found evidence for precipitation systems

preconditioning the soil moisture along the major uptake region

helping to explain the unusually high moisture abundance. In

addition, a noticeable influence from low pressure systems (LPS)

and monsoon break periods was detected and quantified. The

case study from (Houze Jr et al. 2017) for a flood event in

Northwest India exhibits similar atmospheric flow characteristics

as described in Bohlinger et al. (2017) for extreme precipitation

events in Nepal.

The high variability among the precipitation systems

investigated in the composite study of Bohlinger et al. (2017)

does not allow to see the interaction of the involved processes

for a single case. Moreover, the different nature of high impact

precipitation systems investigated close to Nepal, and the high

spatial variability of rainfall and the occurrence of different

precipitation systems (Houze Jr et al. 2007; Romatschke et al.

2010; Romatschke and Houze Jr 2011) along the Himalayas,

makes it difficult to draw conclusions for Nepal.

In this study, we investigate a single extreme precipitation

event that exceeded high percentiles at multiple stations and

contributed to a devastating flooding period in Nepal and South

Asia. We focus on meteorological conditions accompanying the

event, in particular synoptic scale forcing, moisture sources, and

model derived high resolution characteristics of the precipitating

system. It will be shown how mechanisms on these multiple

meteorological scales could foster an intense wide convective

event. We will start with the synoptic scale context and

subsequently delve into the mesoscale characteristics of the storm.

2. Data and methods

Our analysis is based on five different datasets: 1) 3-hourly

precipitation from the Tropical Rainfall Measuring Mission

(TRMM 3B42) (Huffman et al. 2007) at a quarter degree

horizontal resolution, 2) 6-hourly ERA-Interim reanalysis (Dee

et al. 2011) at 0.75 degree horizontal resolution, 3) a

global trajectory dataset (Läderach and Sodemann 2016) with

trajectories from the Lagrangian dispersion model FLEXPART

(Stohl et al. 2005), 4) the output of a high resolution numerical

simulation (Section 2.1), 5) and rainfall measurements from

meteorological stations. The station dataset contained 273

rain gauge stations from the Department of Hydrology and

Meteorology (DHM) in Nepal (Fig. 1a). The stations recorded

daily precipitation sums from 9 am to 9 am local time. Nepal

time is defined as UTC/GMT +05:45 hours meaning that stations

recorded from 03:15 UTC to 03:15 UTC (Bohlinger and Sorteberg

2017). We used the subset of 112 stations that remained after

quality control (Bohlinger and Sorteberg 2017).

2.1. WRF model setup

We conducted numerical simulations with the Weather Research

& Forecasting (WRF-ARW) model (Skamarock and Klemp

2008; Skamarock et al. 2008) v.3.8.1 to dynamically downscale
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countries and is therefore computed for our study. Räisänen

(1995) assessed the quasi-geostrophic forcing effect on synoptic

scale vertical motion across all latitudes and noticed considerable

contribution to all regions but the tropics (15◦N to 15◦S). Nepal is

located between 25◦N and 30◦N and could therefore experience

a noticeable forcing contribution from quasi-geostrophic motion.

We estimated the theoretical quasi-geostrophic forcing using the

Q-vector form (Eq. 1 and Eq. 2) of the quasi-geostrophic ω-

equation (Bluestein 1992).

(

∇
2
p +

f20
σ
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∂p2

)

ω = −2~∇p · ~Q−

Rd
σp

β
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∂x
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σ is the static stability parameter σ = −T (∂lnθ) (∂p)−1 which

is set to a fixed positive value of σ = 2 · 10−6. The geostrophic

wind vg is computed on an f-plane (f0 ∼ O

(

10−4
)

) from the

geopotential height. Using an β-plane assumption does not

change the result. The temperature field from ERA-Interim is

denoted with T . p is the pressure, ∇p the ∇-operator on a pressure

surface, and Rd the gas constant for dry air.

Applying scale analysis, we neglected the second term on the

left-hand side in Equation 1 because it is at least an order of

magnitude smaller than ω due to
f2

0

σ = O

(

10−2
)

. The second

term on the right hand side is also neglected resulting from

scale analysis. This is reasonable for mid-latitudes where the β

contribution is of the order of O

(

10−11
)

. Both neglected terms

could contribute to effectively dampen the computed omega in

either direction meaning that the quasi-geostrophic forcing effect

might be slightly overestimated. Diabatic processes and forced

ascent due to orographic lifting are not included such that only

the destabilizing component of the trough at a specified pressure

level is evaluated. Nonetheless, the main processes, divergence

of Q-vectors (Eq. 3), are included to assess the effect of quasi-

geostrophic forcing.

∇
2
pω = −2~∇p · ~Q (3)

After the above-described simplifications the resulting elliptic

equation (Eq. 3) for the vertical pressure tendency ω takes the

form of a Poisson’s equation and could be solved iteratively

applying the Successive over relaxation (Press 2007) with Diriclet

boundary conditions (boundary values = 0) and a relaxation

parameter of 1.5. We chose an error tolerance of ǫ = 10−4 as

exit condition for the iterative field relaxation which is reached

within 436 steps. For the transformation of the vertical pressure

tendency ω to the vertical velocity w we assume hydrostatic

conditions which, considering the height of the trough and the

horizontal resolution of ERA-Interim, is a reasonable assumption.

We further assume that at this altitude, no noteworthy amount of

moisture is present and use the gas constant for dry air Rd, and the

Earth’s gravitational acceleration is set to g = 9.81ms−1. These

assumptions yield the equation for the vertical velocity (Eq. 4).

w =
ωRdT

pg
(4)

2.4. Computing wave activity flux for a quasi-stationary Rossby

wave

The value of a variable can be understood as a superposition of its

mean state and a perturbation. This allows us to compute the wave

activity flux as formulated in Takaya and Nakamura (2001). We

use only the horizontal component in the upper troposphere and

assume stationarity which yields a simplified formulation for the

horizontal wave activity flux Wh (Eq. 5).

Wh =
p cos (φ)
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(5)

φ and λ represent latitude and longitude, a is the earth’s radius,

ψ′ is the anomaly of the stream function defined as ψ′ = g
f Z

′

where f is the Coriolis parameter and Z′ the geopotential height

anomaly. |U | represents the magnitude of the zonal wind, U the

zonal wind and V is the meridional wind component at each grid

point.
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With this equation we can explore the impact of quasi-

stationary Rossby waves on the studied extreme event. Following

Takaya and Nakamura (2005), we apply a low pass filter (5

day running mean) to the geopotential height field and compute

the geopotential height anomaly. The anomaly is defined as the

difference between a 5 day mean centered around the date of

interest and a 31 day mean centered around the date of interest

and averaged across the ERA-Interim years 1979 to 2010. A

31 day mean is assumed to embody the background flow. By

computing the 5 day mean, we attempt to remove high frequency

migratory eddies from the energy spectra and by subtracting a 31

day average, we removed the low frequency peak representing the

annual cycle. The residual should then mainly stem from Rossby

waves.

3. Synoptic conditions encompassing the extreme event

Prior to the precipitation event a trough in the upper troposphere

(300 hPa) approached Nepal (Fig. 2a). On 19 July 2007, the

day of the extreme event, this trough traversed Nepal and in

the evening (12:00 UTC) it was situated over Central Nepal at

the location of the extreme event (Fig. 2b). The day after, the

subsequent ridge gained influence over Nepal (Fig. 2c). The

trough structure oriented the flow in the upper troposphere against

the Himalayas. Farther west, air was flowing down from the

Hindu Kush following the isohypses. In the lower troposphere

(850 hPa) a monsoon low pressure system closed in on Nepal

two days prior to the event, was redirected towards the east along

the Himalayas and finally dissipated close to Bangladesh (not

shown). On the day of the event the north-westerly flow, coming

from the Arabian Sea, was oriented parallel to the Himalayas

until it turned toward a center of low geopotential at the location

of the extreme precipitation event. According to ERA-Interim and

the WRF simulation (Section 4), this center of low geopotential

at 850 hPa on 19 July formed after the low pressure system had

turned to East Nepal and weakened. The low geopotential height

on the day of the extreme event was thus the extreme event itself,

mostly independent but possibly influenced by the prior existing

low pressure system. Bohlinger et al. (2017) quantified that for

14% of the considered extreme events in Central Nepal a low

pressure systems was detected in the vicinity of the extreme

precipitation event. For the present case, we note that the low

pressure system was at least not directly involved in producing

the recorded rainfall.

The day prior to the day of the extreme event, low tropospheric

flow was blocked by the Western Ghats and developed a flow

splitting over Central India which prevailed during the extreme

precipitation event, lasting until 22 July (Fig. 3a). The influence of

the flow blocking at 850 hPa is illustrated with the inverse Froude

number (Eq. 6, red line in Fig. 3a).

1

Fr
=

N ·H

U
(6)

N is the Brunt-Vaisala frequency, H the height and U the wind

speed. Based on the constituents of the Froude number, wind

speed and stability, blocking was probably caused by reduction

of the zonal wind speed over the Arabian Sea. The exact cause

of the wind speed reduction is beyond the scope of this study.

The low-level flow bifurcated into a southern branch curving

around the southern edge of India while the northern branch

coming from the Arabian Sea regorged onto the Indo-Gangetic

plain and veered to the east (Fig. 3a). As the flow reached the

Himalayas it was blocked and directed along the mountain range.

The described flow splitting is characteristic of monsoon break

periods (Joseph and Sijikumar 2004) which are connected to less

rain in Central India and excess rainfall along the Himalayas.

Rajeevan et al. (2010) defined a break period lasting from 18

July to 22 July affirming that the extreme precipitation event

occurred in fact during a break period. Bohlinger et al. (2017)

quantified that during July and August at least 26% of the extreme

events in Central Nepal occurred during break conditions.

Our result illustrates this connection for a single event where

the characteristic low-level flow was a consequence of a flow

blocking by the Western Ghats due to a reduction of the zonal

wind.

In the middle (500 hPa) and upper (300 hPa) troposphere, air

emanated from the Hindu Kush onto the Indus plain (Fig. 3b,c).

Over Nepal the flow was directed partly along the Himalayas

and partly directed toward them as dictated by the geopotential
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is in agreement with quasi-geostrophic theory. The estimated

magnitude of the forced ascent constituted 0.5 to 3 cm s
−1 over

Nepal which results in a rise of roughly 100 m to 600 m within the

6 hourly time step in the ERA-Interim output. This makes quasi-

geostrophic forcing a possible contributor for destabilizing the

air columns and by that preparing a favourable environment for

subsequent triggering of convection. Given that we neglected the

β-term and the second term on the left-hand side, our computed

vertical velocity might be slightly overestimated. Entrainment

processes during the ascent will also deteriorate the net forcing

effect.

The pattern of the vertical velocity field in ERA-Interim and

WRF (not shown) is similar to the precipitation field (Fig. 4

b) and hence seemed to be governed by the related diabatic

heat release which is not taken into account in the here applied

Q-vector formulation. Nonetheless, the alignment of precipitation

anomalies in ERA-Interim and precipitation in TRMM with

the upper tropospheric trough is striking (Fig. 4). The quasi-

geostrophic forcing was weak in our case but might still have

prepared a suitable environment for the development of the

considered precipitation event.

During the Indian summer monsoon there is generally

significant precipitation along the Himalayas and in the Bay

of Bengal, visible in rainfall climatologies, e.g. Houze Jr et al.

(2015) and Bohlinger and Sorteberg (2017). Nonetheless, for

our case, not only absolute precipitation but also considerable

positive precipitation anomalies are aligned along the trough

suggesting that a destabilizing component from quasi-geostrophic

forcing was present. The lack of precipitation over large parts of

the Tibetan Plateau despite quasi-gesostrophic forcing might be

related to deficient moisture over this region (Wang and Gaffen

2001). Another hint that large-scale forcing played a role in

triggering the extreme event is that we could not simulate the

event without applying spectral nudging.

Our results are consistent with Martius et al. (2013) who

investigated the influence of upper-level dynamics on the Pakistan

flood in 2010. They found an upper-level potential vorticity (PV)

anomaly with the presumed main effect of orienting the lower-

tropospheric flow against the mountains, forcing orographic uplift.

The related quasi-geostrophic forcing over Pakistan was estimated

applying a PV-inversion technique together with the evaluation

of the quasi-geostrophic omega equation. The forced large-scale

ascent was estimated up to 1 cm s
−1 over Pakistan. Martius et al.

(2013) stated that the upper-level forcing contributed in particular

to the alignment of the low-level flow against the mountains. The

upper-level forcing further impacted the spatial organization and

initiation of precipitation consistent with our findings.

3.2. Rossby wave train from Europe

We dwell on the quasi-geostrophic theory and explore in the

following whether the trough structure was associated with a

quasi-stationary Rossby wave train and where it was excited. As

mentioned in the introduction, a connection between the extreme

event and a Rossby wave could add predictive skill.

Geopotential height anomalies depict the structure of a Rossby

wave train across Eurasia with anomaly maxima propagating

toward east (Fig. 5a,b,c) similar to Rasmussen et al. (2015).

A week prior to the extreme event this pattern had not yet

established (not shown). Two days prior to the extreme event

a negative anomaly west of the British Islands represented a

strong source emitting wave activity flux to the east (Fig. 5a). The

positive anomaly to the east over central Europe was followed by

two negative anomalies farther east which subsequently amplified

(Fig. 5b). A positive anomaly over Russia started to amplify

on the day of the extreme. The wave activity fluxes in Figure 6

(a-b) indicate the maintenance of a negative anomaly over Nepal

as part of the Rossby wave train. The negative anomaly over

Nepal already existed prior to receiving wave activity flux and

therefore did probably not originate west of the British Islands.

Rather, the Rossby wave train may have enhanced the persistency

of the anomaly over Nepal through the period of the extreme

precipitation event (Figure 6a-c).

A measure for the propagation path of the quasi-stationary

Rossby wave (so called the Rossby-wave guide) is the axis of the

zonal westerly background wind (Fig. 5d). The described splitting

c© 2017 Royal Meteorological Society Prepared using qjrms4.cls



7.4 Multiscale characteristics of an extreme precipitation event over Nepal 127



128 Scientific results

10 P. Bohlinger

(Fig. 3), which is characteristic of break periods (Rajeevan et al.

2010). The division into a southern and northern branch enabled

high moisture fluxes to reach the Himalaya mountain barrier and

thus supplied moisture for the observed excess precipitation along

the Himalayas. A large moisture transport along the northern

branch might be a generic mechanism during break periods which

could help to explain the relationship between break periods

and extreme precipitation along the Nepal Himalayas found by

Bohlinger et al. (2017). The precipitation system that developed

on the day of the extreme event could consequently tap into moist

air coming from the Arabian Sea contributing to the intensity of

the event.
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Figure 6. Vertically integrated moisture flux over South Asia from ERA-Interim,

averaged over 19 July 2007 06:00 UTC to 20 July 2007 06:00 UTC.

3.5. Moisture sources

The observed high moisture abundance raises the question where

the moisture originated. Direct moisture sources for precipitation

(Fig. 7a) in Nepal two days prior to the extreme event mirror

the location of the low pressure system described in Section 3.

Moisture sources depict a pathway from the Arabian Sea across

Central and North India to the Bay of Bengal turning north to

Nepal (Fig. 7a). The main weight of moisture sources is situated

around the position of the low pressure system at that stage. In

this phase the low-level flow clearly had not yet fully developed

the splitting characteristics as the pathway of moisture sources

was still crossing Central India. Most of the moisture was picked

up over land (70%) with India (29%) as main contributor (Tab.

2). Although the low pressure system originated over the Bay of

Bengal, the Arabian Sea is a larger moisture source (24%) than

the Bay of Bengal (6%). This indicates that the original moisture

in the low pressure system, possibly from the Bay of Bengal, had

already rained out and was replaced by moisture taken up over

land. The positive anomalies of moisture sources support this

conclusion (Fig. 7c). The anomaly values are weak in absolute

numbers which is matching an ordinary rainy day in Nepal. The

additional moisture sources were located mainly over India (52%)

and the Bangladesh (7%).

As the low pressure system moved east and weakened, the flow

direction shifted and the flow splitting fully developed (Fig. 3a).

The direct moisture sources for the extreme precipitation event

(Fig. 7b) were located along the northern branch of moisture

transport (Fig. 6) over the Indo-Gangetic plain. Most of the

moisture stemmed from the countries India (53%), Pakistan

(17%), and Nepal (13%) which also depicted the largest positive

anomalies (Tab. 2). Almost all of the additional moisture was

taken up over land (97%). The anomalies are more pronounced

and depict a distinct area of high positive values along the Indo-

Gangetic plain. There was only little additional uptake in the Bay

of Bengal, over Bangladesh, and Northeast India for precipitation

(Fig. 7d). These are regions where, during the monsoon, the air

is very moist in general. On the other hand, the moisture sources

over comparably dry regions, such as the Thar desert, exhibited

a strong positive anomaly. How can such an anomaly develop in

these dry regions?

3.6. Preconditioning the soil for moisture uptake

Bohlinger et al. (2017) presented evidence that the soil in the

moisture source region might have been moistened by previous

precipitation events prior to the moisture uptake that was directly

related to extreme events. Medina et al. (2010) and Martius et al.

(2013) discussed the possibility that soil moisture from previous

events might have contributed to heavy precipitation events over

Pakistan. Martius et al. (2013) noticed significant moisture uptake

over land together with wet soil moisture anomalies, possibly

from precipitation events prior to the moisture uptake. In our case,

there was considerable precipitation along the moisture source

region within 15 days before the extreme precipitation event (Fig.

8). ERA-Interim (Fig. 8a) and TRMM (Fig. 8b) depict a long area
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Figure 7. Moisture sources (a,b) and moisture source anomalies (c,d) for FLEXPART parcels entering the domain depicted in Figure 1 for 2 days prior to the event

(a,c) and for the event (b,d). Moisture sources were averaged over 24 hours from 6 UTC to 6 UTC. The 75, 50, and 25 percentiles are marked with a solid, dashed, and

dotted line. Anomalies were calculated against a 15 days climatological mean over 1979-2010 centered around the single event. In the anomaly panels the percentiles are

computed only for the positive anomaly. Note that the colourbar for moisture sources is logarithmic and that for the anomalies linear.

Table 2. Contribution to the total moisture supply and, in parenthesis, the positive moisture anomaly in [%] for selected countries and regions along the moisture

pathway for the extreme precipitation event. Regions are abbreviated in the table below as follows: AS = Arabian Sea, BoB = Bay of Bengal, SH = Southern

Hemisphere.

Country/Region Nepal Pakistan India Bangladesh Land AS BoB SH

2007-07-18

Moisture Sources 4 3 29 4 70 24 6 4

Anomalies 0 3 52 7 66 24 10 3

2007-07-20

Moisture Sources 13 17 53 0 91 9 0 1

Anomalies 10 24 61 0 97 3 0 0

of precipitation stretching along the Himalayas and the region

of increased moisture uptake. TRMM exhibits a pronounced

local precipitation maximum just where the low pressure system

closes in on Central Nepal. The spatial precipitation pattern

in ERA-Interim agrees generally well with TRMM 3B42 data

although ERA-Interim underestimates the highly regional rainfall
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amounts. In particular, the precipitation related to the low pressure

system is underestimated in ERA-Interim. The lower resolution

in ERA-Interim might be responsible for the underestimation and

smoothed precipitation field.

We assess the connection between previous rainfall events and

moisture sources by comparing the location of the Lagrangian

particles with the surface latent heat flux in ERA-Interim. Two

days prior to the precipitation event, the air parcels arriving at

Central Nepal, were located over a region with considerable

surface latent heat flux (Fig. 9a). While they resided or traveled

over the region with pronounced surface fluxes their moisture

content increased. This indicates a moisture source in the applied

method (Section 2.2). As the parcels moved, also the surface

fluxes increased along their way, such that there were constantly

high surface fluxes underneath (Fig. 9b). This co-location of

air parcels and high surface latent heat flux illustrates that the

moisture increase along the FLEXPART trajectories is physically

consistent with ERA-Interim.

To further verify the connection between the surface latent

heat flux and the moisture sources, we test whether the moisture

was taken up close to the ground. On 18 July, 12 UTC, 44% of

the parcels were below 1000 m and 76% were below 2000 m.

On 17 July 12 UTC, 39% of the parcels were below 1000 m

and 76% were below 2000 m. Not only were most parcels close

to the ground, but also most of the moisture was taken up at

low elevation. For instance, on 17 July between 06:00 UTC and

12:00 UTC 82% of the moisture uptake could be assigned to

parcels residing below 1000 m. This supports the assumption that

the moisture evaporated from the surface. Hence, not horizontal

advection in the free troposphere but rather the availability of soil

moisture, established by preconditioning precipitation events, was

crucial for feeding the extreme precipitation event with this large

amount of moisture. The strong surface fluxes are consistently

present in our WRF simulation (not shown) passing on the

information on soil moisture to the high resolution simulation.

4. High resolution characteristics of the extreme event

Although ERA-Interim exhibits a precipitation pattern

qualitatively similar to TRMM it does not develop the same

magnitude of precipitation and underestimates the daily

precipitation recorded by the stations at least by a factor of

four. This might be due to the low horizontal resolution. To

overcome this problem and to gain more insights into the nature

of the simulated precipitation system and its thermodynamic

environment, we simulated the extreme precipitation event with

the WRF model. In the WRF simulation the main precipitating

system was initiated between 09:00 UTC and 12:00 UTC. Smaller

convective cells started to develop and organized upscale such

that at 12:00 UTC a deep and wide convective system was clearly

visible over Central Nepal (Fig. 10). This high convective cloud

top is visible in an Meteo 7 satellite IR image (Fig. 10a) at

18:00 UTC just at the rim of the Himalayas as a round white area

in the middle of Figure 10a. At 12:00 UTC the system was not yet

visible in Meteo 7 images indicating an early initiation in WRF.

In the TRMM 3B42 data this time-lag can be better assessed.

Smaller precipitating systems start to form around 12:00 UTC

and develop into the full size event until 15:00 UTC depicting

considerable precipitation over Central Nepal. This implies a

time-lag in WRF of up to 3 hours.

The daily rain amount is depicted in Figure 11 to show the

similarities between TRMM 3B42 (Fig. 11a), WRF (Fig. 11b),

and rain gauges. WRF simulates an intense rainfall event close

to the region indicated by TRMM and the rain gauges. The

simulated daily rainfall amounts match well with the magnitude

of the measured rain and the horizontal extent is comparable

between TRMM and WRF. There is a slight spatial and temporal

offset in the simulation compared to TRMM. Both TRMM and

the simulation deviate from the station data. TRMM seems to

overlook precipitation amounts up to 50 mm at some single

stations scattered across Nepal (Fig. 11a). WRF overestimates

precipitation in the east of the country where multiple convective

cells were triggered in the simulation (Fig. 11b). Unfortunately,

there was no overpass of the TRMM satellite during the event such

that we could not compare the simulation results with TRMM
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Figure 8. Total precipitation in ERA-Interim (a) and TRMM 3B42 (b) for the period of 15 days prior to the event on the 19 July 2007.
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Figure 9. FLEXPART parcels with their moisture change during the last 6 hours for 2 days prior (a) and 1 day prior (b) to the considered precipitation event. Surface latent

heat flux from Era-Interim is depicted in filled contours.
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Figure 10. a) Meteosat 7 IR image 18:00 UTC from http://www.sat.dundee.ac.uk/ without available scaling. b) WRF simulated cloud top temperature 12:00 UTC. The red

arrow shows the location of the convective event.

high resolution 3D data. However, given the described similarities

and the fact that WRF could simulate an intense rainfall event, we

continue analyzing our WRF simulation.

4.1. Rainstorm characteristics and evolution

The simulated rain storm developed during the afternoon when

single convective cells were initiated (Fig. 12). The main
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a) TRMM 3B42 b) WRF
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Figure 11. Daily precipitation from meteorological stations (filled circles), TRMM 3B42 (a), and WRF 4 km (b). Daily precipitation is defined here from 03:00 UTC to

03:00 UTC to adjust for the measurement period of the stations and time zone in Nepal.

precipitation system reached its maximum in the evening around

12:00 UTC (17:45 Nepal time). Despite the mentioned time-lag

also in TRMM the initiation of the main convective system

occurred in the evening which is consistent with findings from

Romatschke et al. (2010) who investigated the diurnal cycle of

precipitation from deep and wide convective cores over land in

South Asia. They conclude that deep convective cores exhibit

almost exclusively a maximum between noon and midnight.

Wide convective cores were found to have a maximum in the

evening together with a second maximum between midnight and

early morning. Both in the WRF simulation and in TRMM we

find a continuation of precipitation possibly forming a second

local maximum before dawn. However, neither the simulated

reflectivity and cloud top temperature, nor the precipitation

intensity in WRF and TRMM compare with the magnitude of

the first convective system. We will therefore focus on the initial

convective event in the following detailed analysis, continuing to

carve out what processes led to the intense development.

Before noon small convective cells start to develop along

the slope over Nepal as a result of the exposure to the intense

summertime insolation and the moist flow running toward and

along the Himalayas over the Himalayan foothills (Fig. 12).

These individual cells are scattered and not yet connected. As

time progresses they grow and their life cycle depicts a pulsing

pattern rather than a migratory character. While they reside

roughly over the location where they originally developed, they

grow and decline. This was characteristic throughout the event

and probably stemmed from the low-level flow that pushed

against the mountains trapping the convective cells at their

location of origin. The negligible vertical shear and weak winds

could not organize the convective echoes, e.g. in a squall line

structure. In the afternoon and evening (between 09:00 UTC and

12:00 UTC) convective echoes close to the location of the extreme

event became more intense and organized upscale into a large

contiguous, simulated echo region of 40 dBZ at ca. 12:00 UTC.

Later, this intense echo region collapsed into multiple separated

cores as the development of the cells continued (visible in the

panels for 12:00 UTC and 15:00 UTC). Later during the evening

and night more convective cells developed but did not reach the

same magnitude or intensity (not shown).

The simulated convective echoes are vertically erect and do

not tilt after forming the wide convective echo, visible in the

reflectivity cross section of the fully developed convective system

(Fig. 12, 12:00 UTC). This is consistent with Houze Jr et al.

(2007) who investigated a wide and deep intense echo consisting

of multiple vertically erect cells forming an amorphous structure,

a structure of no particular shape. The here considered system

was amorphous and did not show signs of a squall-line. This

structure is consistent with the weak shear environment described

in Section 3 and Houze Jr et al. (2007).

The horizontal extent exhibits characteristics of a deep and

wide intense convective system (Houze Jr et al. 2007). The

core of 40 dBZ exceeds an altitude of 12 km and has a width

of approximately 40 km at the surface along the depicted cross

section (Fig. 12). Houze Jr et al. (2007) defined a contiguous
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Figure 12. Simulated cloud top temperature (upper panels) and simulated reflectivity (lower panels) for the development of the main convective system. The x-axis in the

lower panels describes coordinates along the transection in latitude and longitude.

region of 40 dBZ over a horizontal extent of more than 1000 km
2

as a wide convective system. Counting all grid cells on a model

level that exceed 40 dBZ on the same level yields a maximum

horizontal extent of our system of ca. 1550 km
2, hence it

qualifies for the category of a wide convective system. Wide

intense convective systems preferably develop along the central

Himalayas according to climatologies of occurrence of different

convective systems (Houze Jr et al. 2007; Romatschke et al.

2010; Romatschke and Houze Jr 2011). The system that formed

is thus not very unusual in the region where it occurred, but

did reach a considerable intensity. The simulated convective

system depicted an echo maximum of 62 dBZ at an altitude

of ca. 2900 m.a.s.l. (2200 m above ground) which was below

the melting level at approximately 6 km (Fig. 16). The vertical

location of the reflectivity maximum and the altitude of the zero

degree line is similar to findings from Houze Jr et al. (2007) for

deep convective events. The maximum vertical velocity of 26

ms
−1 is reached at an altitude of 13800 m.a.s.l. (13200 m above

ground). The altitude of the maximum wind speed is consistent

with measurements of mature convective systems over Gadanki

(India) described in Uma and Rao (2009).

The wind field in the WRF-simulation suggests that north-

westerly, moist, low-level flow was directed along the Himalayas,

curving to the north and pushing onto the Siwalik Hills with an

elevation of over 1000 m.a.s.l. (Fig. 13). The flow consequently

underwent a significant lifting, which might have contributed

to destabilize the atmospheric column and thus to triggering

and intensifying the convective system (see also Section 4.2).

Moisture accumulated in the concave shaped topographic

indentation close to Pokhara (Fig. 13). The accumulation of

moisture created an environment where the convective system

was able to tap into moist air, supplying more latent energy. A

similar mechanism on a larger scale was suggested by Houze Jr

et al. (2007) who argued that the concave indent in Northwest

India leads to moisture accumulation from the low-level moist

inflow which could feed deep convection.

Moreover, the low-level moist inflow is warmer than its

surrounding, in particular compared to the low-level monsoon air

from the Bay of Bengal and over Northeast India (not shown). The

low-level monsoon air from the east has been cooled by frequent

monsoon precipitation (Fig. 8) while moving onto the Indian

subcontinent. This feature was also described in Sivall (1977).

The westerly flow has probably gained heat while traveling across

the hot regions in Pakistan and Northwest India. Not only surface

latent heat fluxes were large but also surface sensible heat fluxes

were considerable (up to 180Wm
−1) compensating for cooling

due to moisture uptake.

4.2. Thermodynamic environment

To obtain further insights into reasons for the intense development

of the convective system, we assess the thermodynamic conditions

using the parcel theory. On the day of the extreme event, just

before the initiation, the environment is statically unstable
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Figure 13. Specific humidity (filled contours) and wind at 850 hPa for 09:00 UTC (a) and 12:00 UTC (b). The considered convective system is indicated with the −60◦C

cloud top temperature isotherm and is displayed as black contour. Thermodynamic soundings are taken at the location of the event (E) and upstream (U) evaluated in

Section 4.2.

with a large amount of convective available potential energy

(CAPE = 2335 J kg−1) at the location of the main convective echo

(Fig. 14a). When convection is triggered, CAPE is used up (Fig.

14b), but the convective cell is constantly supplied with energy

from inflow with large CAPE (2431 J kg−1). This can be seen

in the sounding from the point upstream of the event indicated

with the letter U (Fig. 13b and Fig. 14c). When convection occurs

moisture is vertically redistributed. The vertical redistribution

becomes visible in the skew-T diagrams when comparing the

sounding of the inflow with the sounding at the location of the

event. The dryer upper-level indent, at 300 hPa, and the mid-level

indent, at 600 hPa, are removed by convective moistening (Fig.

14).

Medina et al. (2010) show a sounding structure depicting two

layers of dry airmasses below 4 km and above 6 km. Similar

to their study we can relate the dry layer between 700 hPa and

600 hPa to continental air emanating from the Hindu Kush. At

600 hPa, ERA-Interim depicts a maximum of westerly flow just

downstream of the maximum at 500 hPa representing the slight

descent of the continental dry air (not shown). The upper dry

indent in the profile can be related to the planetary westerly flow

(Fig. 3b,c) described in Sivall (1977) and also visible in Medina

et al. (2010).

The question remains, why is there a moist bulge at around

500 hPa? In ERA-Interim, the air at 500 hPa is clearly dryer

than its surroundings as it flows down from the Hindu Kush

meaning that this cannot be the origin of the moisture (not

shown). Just before the flow passes Nepal, the air becomes moist

at the mid-levels. The same can be seen along the Himalayas.

The air is more moist suggesting that not horizontal advection

but other processes were moistening this atmospheric layer.

Medina et al. (2010) suggested that the moist layer in mid-levels

might have been caused by previous convective events injecting

moist monsoonal air into layers at higher altitude. This might be

partly true for our case as well since there are various smaller

convective events developing prior and upstream of the extreme

event primarily along the Himalayas. Another source for the

moisture at the mid-levels could stem from evaporation of cloud

droplets. WRF simulates clouds at that altitude on the day of the

extreme and previous days especially along the Himalayas.

The destabilizing effect of the orographic forcing discussed

in Section 4.1 can be illustrated when comparing the inflow

sounding upstream of the extreme event (marked with the letter U

in Fig. 13) with the sounding at the location of the extreme event

(marked with the letter E). In the lowermost pressure levels, the

sounding depicts static stability indicated by a small amount of

convective inhibition (CIN = 56 J kg−1). In order to release the

large CAPE that is brought along with the flow, the CIN had to

be removed. We described in Section 4.1 that the low-level flow

pushed onto the Himalayan foothills of over 1000 m.a.s.l.. Such

a lift could have removed the low-level stability and led to the
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Figure 15. a) Simulated cloud top temperature and b) equivalent potential temperature in filled contours for 19 July 2007, 12:00UTC. The main convective system is

indicated with the 40 dBZ reflectivity contour. Coordinates for the transection are displayed in b) as latitude and longitude for orientation.

with the strong updraft (Fig. 16b) is consistent with the described

deep wide convective system and the high reflectivity (Section

4.1). The graupel core was probably accompanied by lightning.

Houze Jr et al. (2007) showed that the frequency of lightning was

connected to the frequency of deep and wide convective systems

along the Himalayas with a maximum in Northwest India and

northern Pakistan. Above the melting level a wide area of snow

hydrometeors is present. Below, there is a distinct and strong rain

core.

The vertical velocity core of values greater than 10ms−1 has

a large vertical extent reaching from 8 km to 16 km close to the

tropopause. Vertical velocities exceed 20ms−1 with a maximum

of 26ms−1. The high vertical wind speed can elevate graupel

particles to high altitudes with the 1 gkg−1 isoline reaching 17 km.

Medina et al. (2010) and Kumar et al. (2014) reported similar

updraft and graupel values for a convective event in Pakistan and

Northwest India, respectively.

5. Discussion of similarities and differences to other findings

Given the various scales and diversity of the analyzed

mechanisms, we summarize the main similarities and differences

to other findings and discuss them in a larger context. The

convective type of the extreme precipitation event in Nepal was

classified as a deep and wide convective system which is not

an unusual type of convective system for the considered region

(Houze Jr et al. 2007). Moreover, the system developed in a region

prone to rain events as can be seen in rainfall climatologies from

(Houze Jr et al. 2007; Bohlinger and Sorteberg 2017). However,

the convective cell developed an unusual intensity due to the

described supporting conditions across meteorological scales

which, additional to the discussed results, are worth contrasting

with existing findings.

On the large scales, similarities but also differences to high

impact events over Pakistan and Northwest India became visible

indicating the complex nature and high spatial variability of these

events. Rasmussen et al. (2015) described a blocking situation

over the Tibetan Plateau forcing quasi-stationary conditions.

The long duration enabled a large amount of the moisture being

funneled from the Bay of Bengal across India to Pakistan. This

branch of moisture, additional to moist air from the Arabian

Sea, could fuel convective systems causing floods in Pakistan. A

Rossby wave train over Eurasia was suggested to be associated

with this blocking high. During the extreme event over Nepal,

there was no blocking high pressure system over the Tibetan

Plateau. Instead, an upper-level trough was situated over Nepal

imposing quasi-geostrophic forcing and inducing large-scale

ascent. We detect a weak contribution from a quasi-stationary

Rossby wave possibly sustaining the trough. The Rossby wave,

however, was presumably not the origin of the upper-level trough.

In our case, low-level moist air did not flow from the Bay of

Bengal to the west as described in Rasmussen et al. (2015) but
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Figure 16. Simulated hydrometeors in [g kg−1] (a) and vertical velocity in [ms−1] (b) along the transection in Figure 12 with latitude and longitude on the x-axis for 19

July 2007, 12:00UTC. Graupel is plotted in red, snow in gray, and rain in blue contours. The melting level is marked as dashed black line.

was instead directed the opposite way, from Northwest India

along the Himalayas toward the Bay of Bengal. This came about

as a result of split flow conditions characteristic of break periods.

Despite the described differences, it seems that the conditions in

the contrasted cases met the same target: enabling high moisture

amounts to be transported to the location of a deep convective

system which could consequently develop a high intensity.

Moisture sources were consistent with Bohlinger et al. (2017)

partly contrasting findings from Houze Jr et al. (2007), Medina

et al. (2010), Martius et al. (2013), and Rasmussen et al. (2015).

While Houze Jr et al. (2007) and Medina et al. (2010) discussed

incoming moist airmasses that gain buoyancy over dry and heated

land, we find evidence that for the discussed extreme event almost

all direct moisture sources are located over land. Medina et al.

(2010) and Martius et al. (2013) already suggested the possibility

of preconditioning precipitation events moistening the soil prior

to the main convective event. In fact, for one period of heavy rain

in Pakistan, Martius et al. (2013) determined a major contribution

from moisture sources over land. However, for another period, the

moisture fraction from land was considerably reduced and a large

contribution from the Arabian Sea was detected. For extreme

precipitation events in Nepal, the high moisture contribution from

land seems to be a generic feature as presented in Bohlinger

et al. (2017). Based on a composite study they suggest that

moisture sources were mainly located over land moistened by

foregone precipitation events. This could be shown now for the

here discussed single case supporting their results.

The large-scale flow conditions enabling the build up of

instability are similar to the findings in Houze Jr et al. (2007)

and Medina et al. (2010). Dry and warm continental air emanated

from the Hindu Kush region overrunning the low level flow

from the Arabian Sea as suggested in Sawyer (1947). This

leads to a capping inversion and prevents premature convection

enabling the moisture to arrive and converge in the concave

indent in Northwest India. A forced ascent e.g. by orography

could help to break through the lid resulting in deep convective

echoes. In our case, the moisture reached even farther to the east,

namely to Nepal. Once the air column was destabilized by quasi-

geostrophic forcing and orographic lifting, the continental air

finally contributed to creating a potentially unstable environment

and allowed for the intense development of the convective system.

6. Conclusions

We investigated conditions on multiple meteorological scales

facilitating the extreme precipitation event in Central Nepal on 19

July 2007. This event was part of a series of heavy precipitation

events leading to the devastating South Asia flood 2007. The

involved processes are listed in the following:

1. Quasi-geostrophic forcing, imposed by an upper-

tropospheric trough, prepared a favourable environment

for the development of deep convection. The trough may

have been supported by a Rossby wave train from Europe.
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2. The flow was orographically lifted onto the Siwalik hills

reducing column static stability and possibly triggering the

extreme event.

3. Monsoon break period low-level flow conditions directed

the flow over the preconditioned moisture sources and

supplied the convective system with an unusual warm and

moist inflow. Moreover, the inflow was loaded with a large

amount of CAPE fueling the convective system.

There was not a single dominating process responsible for

the extreme event but the specific interplay and co-existence

of the enumerated meteorological conditions that facilitated

the formation of a deep and wide intense convective system of

significant strength. The sequence of events and how they together

create a favourable environment for the extreme precipitation

event to happen is outlined in the following.

Break period low-level flow conditions and the approach of an

upper tropospheric trough preluded the event. The low-level flow

coming from the Arabian Sea was blocked by the Western Ghats

and bifurcated, where the northern branch reached the Himalayas

and turned east to continue along slope traversing Nepal. On the

way to Nepal, moisture that stemmed from recent precipitation

events allowed for anomalously high moisture uptake along

the path, creating an unusual high moisture flux toward Nepal.

Meanwhile, the upper-level trough exerted quasi-geostrophic

forcing, contributing to destabilize the atmospheric column. A

propagating stationary Rossby wave might have contributed to

sustain the negative geopotential height anomaly. In Central

Nepal, the moist low-level flow turned north, converging in

an concave indent close to Pokhara where moisture could

accumulate. Consequently, air was forced upslope destabilizing

the stratification through orographic lifting. Convective systems

were triggered organizing upscale into a deep and wide, intense

convective system exhibiting an amorphous structure. Triggering

was likely fostered by orographic lifting onto the Siwalik range

in a favourable environment created by weak quasi-geostrophic

forcing. The convective system was fed with potentially unstable

air containing significant levels of CAPE facilitating the intense

development and leading to precipitation amounts exceeding

250mmd
−1. The main moisture sources were located along the

Himalayas where the flow splitting during a break period might

have been crucial for creating these conditions. The large-scale

flow was mainly westerly during the entire lifetime of the

convective event supplying moist low-level air. Rather dry air

advected from the Hindu Kush mountains contributed to creating

potentially unstable airmasses beneficial for the convective

development.

While this case is interesting to study by itself, differences and

similarities with other findings also reveal large spatial variability

of extreme precipitation events and thus the value of an approach

that appreciates regional differences. This case study further

explains how a not unusual type of convective system can develop

into an extreme precipitation event, and is hopefully valuable for

the ultimate goal to better predict these events. Further research

could focus on disentangling more the trigger mechanisms under

different synoptic conditions as well as on the sensitivity of

moisture abundance on the precipitation event.
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