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Preface

This dissertation is submitted as a partial fulfillment of the requirements for the de-
gree Doctor of Philosophy (PhD) at the Department of Mathematics, University of
Bergen. The subject of the thesis is estimation of parameters in dynamical models of
biochemical reaction networks. Parts of the work in the thesis have been performed in
collaboration with the Department of Biological Sciences, University of Bergen.

Paper A, B and E are mathematical papers where the candidate is the first author.
Paper C and D are biological papers where the candidate is the second author and
performed modelling and data analysis, respectively. The candidate did not take part in
the lab work of paper C and D.

The work was supported by the Research Council of Norway through grant 248840,
dCod 1.0, as part of the Centre for Digital Life Norway.

Advisory committee:

• Guttorm Alendal (University of Bergen, Department of Mathematics)

• Hans Julius Skaug (University of Bergen, Department of Mathematics)

• Frank Nilsen (University of Bergen, Department of Biological Sciences)

Outline

The thesis is organised in two parts. Part I gives the background and motivation for the
five papers included in part II.

Ch. 1 in part I contains the motivation for the thesis and gives an introduction to
the biological context. The structure of a general reaction network is defined and stud-
ied in Ch. 2, while the dynamical properties of such networks are discussed in Ch. 3.
Functions for the kinetics of the reactions in the network are introduced in Ch. 4, giv-
ing a system of ordinary differential equations for the concentrations in the network.
This leads to the problem of parameter estimation and identifiability of the kinetic pa-
rameters considered in Ch. 5, which is the main focus of the papers. Ch. 6 is about
data analysis of concentrations from an exposure experiment using statistical methods.
Finally in part I, Ch. 7 contains an overview of the papers.
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Background





Chapter 1

Introduction and biological motivation

The main theme throughout this thesis is mathematical modelling of biochemical re-
action networks. In this chapter we give some motivation and biological background,
while the remaining chapters will be of mathematical character.

1.1 Motivation

There are several applications where mathematical modelling of biochemical reaction
networks could be valuable. Before we give an introduction to reaction networks and
their models, we briefly present the three applications that have motivated this thesis.

1.1.1 Salmon louse

The original motivation of my PhD project was to study growth of the salmon louse
(Lepeophtheirus salmonis) [24, 25, 35]. The salmon louse is a parasite that infects
salmonids, and is a major threat to both farmed and wild salmon [77]. Indeed, sea lice
in general are responsible for large commercial losses for the salmon farming industry
due to control requirements [19, 56]. For this reason, large research projects like the
Sea Lice Research Centre [5] have been initiated to improve future sea lice control.

Figure 1.1: Lice on a salmon (left) and the salmon louse life cycle (right). Courtesy of the Sea
Lice Research Centre [5].
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The growth of salmon louse consists of several stages. Between some stages, a
new exoskeleton has to be formed to enter the next stage. A major component in the
formation of this exoskeleton is chitin [36, 37]. This can be produced either from
the chitin in the old exoskeleton or from nutrients, where the chitin pathway is a part
of the amino sugar and nucleotide sugar metabolism [3]. It would then be of great
interest if we were able to make a good model for the amino sugar and nucleotide
sugar metabolism, and potentially use it to predict the behaviour of the salmon louse
under different treatments designed to limit the growth process by inhibiting the chitin
production. Unfortunately, I did not end up making any such models for the salmon
louse in the thesis.

1.1.2 The dCod 1.0 project

Early in my PhD period, I joined the dCod 1.0 project [7], running from 2016 to 2020,
funded by the Research Council of Norway within the Centre for Digital Life Norway
[1]. The goal of the project is to create a deeper understanding of cods’ adaptations
and reactions to stressors in the environment by combining knowledge within environ-
mental toxicology, biology, bioinformatics and mathematics.

In particular is the behaviour of the cod liver and the fatty acid metabolism [2] of
special interest to model and understand, where precision cut liver slices are extensively
used in the studies [14, 26, 27, 85] in addition to field studies [20].

Unfortunately, the thesis does not contain any modelling directly related to cod.
However, most of the co-authors of the papers included in the thesis are members of
the dCod 1.0 project. This way, the dCod 1.0 project has been the most important
scientific community during the work on the thesis.

1.1.3 Steroidogenesis

The third and final motivation for the thesis is the study of steroidogenesis [6]. The
steroid hormone biosynthesis is an important part of the metabolism for both animals
and humans. However, more than 800 chemicals are referred to as endocrine disrupting
chemicals that may interfere with this system and potentially cause harm [12, 52]. For
this reason, it is of great interest to build a model of steroidogenesis that can be used
to understand the response of the system to various endocrine disrupting chemicals.
The first step in this process is to develop an assay for performing measurements of the
steroids, which is done in paper C and D of this thesis by our biological collaborators
[8, 9]. Based on this, I have created a mathematical model of steroidogenesis in paper C
which is studied in more details in paper E of the thesis.
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1.2 Biochemical reaction networks

To study the phenomena listed above, we need to model the chemical processes that
take place inside the cells of a living organism. The whole set of such chemical re-
actions in an organism is called the metabolism of the organism, and may be divided
into several metabolic pathways. In each of these pathways, one chemical is trans-
formed into another chemical, where these chemicals are referred to as a metabolites.
An overview of all the metabolic pathways in the general metabolism from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [46] is shown in Fig. 1.2.

Figure 1.2: Overview of all the metabolic pathways in the metabolism from KEGG [4].

1.2.1 Reconstruction

We see from Fig. 1.2 that there is an overwhelming number of metabolic pathways in
the metabolism, where each pathway consists of several chemical reactions. However,
which pathways and reactions that are active vary between different biological species
and Fig. 1.2 shows all the possible known pathways.

In a controlled experiment are the sets of active reactions and metabolites in the
metabolism of an organism given by the genes, called the genome of the organism.
An attempt at obtaining these sets is called a reconstruction of the organism, where a
reconstruction of the whole metabolism is said to be a genome scale reconstruction.

Reconstructions were first published in the 1990s, where the E. coli bacteria was
the main model organism [63]. The first genome scale reconstruction of E. coli was
published in 2000 by Edwards and Palsson [23], consisting of 627 reactions and 438
metabolites. However, the improved reconstruction of E. coli in 2011 by Orth et al.



6 Introduction and biological motivation

[62] consists of 2251 reactions and 1136 metabolites. Where the first reconstruction
only models parts of the metabolism, the later reconstructions of E. coli now attempt to
model the whole metabolism.

A good reconstruction for human is of course an important goal within the field,
and the Recon 2 published in 2013 by Thiele et al. [76] consists of 7440 reactions and
5063 metabolites. In total, more and more organisms are now getting reconstructed
with 6239 organisms having been reconstructed as of February 2019 [32].

To illustrate what the result of a reconstruction may look like, we return to the
amino sugar and nucleotide metabolic pathway discussed in Sec. 1.1.1 for the salmon
louse. This pathway is shown in Fig. 1.3 with green coloring of the relevant reactions
for Drosophila melanogaster (fruit fly), which is the available reconstruction assumed
to be most similar to the salmon louse. This implies that only the green parts should be
included in a model of the pathway for the salmon louse.

Figure 1.3: The amino sugar and nucleotide sugar metabolic pathway discussed in relation to
the salmon louse in Sec. 1.1.1. Illustration from KEGG with green colouring of the relevant
reactions for Drosophila melanogaster (fruit fly) [3].

We will in this thesis assume the reaction networks to be given and not focus any
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more on the reconstruction process even though this is an important part in the mod-
elling of biochemical reaction networks. Our models will also only be for smaller
networks, sub-networks or pathways like the steroid hormone biosynthesis pathway
discussed in Sec. 1.1.3, i.e. not for complete genome-scale networks.

1.2.2 Metabolites

Metabolites are made of only six different chemical elements [63, p. 155]. These six are
carbon (C), oxygen (O), nitrogen (N), hydrogen (H), phosphorous (P) and sulfur (S).
Note that an individual metabolite typically does not contain all six elements. It is also
worth mentioning that different metabolites may have the same elemental composition.
Some metabolites from the pathways mentioned in Sec. 1.1 are listed below.

• Amino sugar and nucleotide sugar metabolism [3]:

– Chitin, (C8H13O5N)n

– Chitobiose, C16H28N2O11

• Steroid hormone biosynthesis [6]:

– Pregnenolone, C21H32O2

– Testosterone, C19H28O2

– Cortisone, C21H28O5

The chemical formulas are of less interest for our mathematical modelling, and we
use a generic mathematical notation Xi for the metabolites in the later chapters.

1.2.3 Chemical reactions

Chemical reactions in metabolism are of only three different categories [63, p. 154]. To
illustrate the three categories, let C be a primary metabolite, P a phosphate group and
A a co-factor such as ATP. The first category is a reversible conversion given by

CP PC (1.1)

which is a rearrangement in the molecule without changes in the elemental composi-
tion. The second category of reactions is a bi-molecular association such as

C+P CP (1.2)

where a new compound is formed. The final category is a co-factor-coupled reaction

C+AP CP+A (1.3)

where P is donated from AP to C through an intermediate not included in the chemical
reaction, and the co-factor A is denoted a carrier.

In our models, however, most of the reactions will be modelled as

X1 −→ X2 (1.4)

where X1 and X2 are different metabolites. This will of course affect the models, but
is a common assumption to obtain models of manageable complexity. For more about
this, see e.g. Feliu and Wiuf [29] about simplifying models with intermediate species.
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1.3 Systems biology

To model the large networks described above, we are led to the relatively new field
of systems biology that has emerged in full strength in the 21st century together with
the genome-scale reconstructions [48, 63]. The traditional approach in cell biology
has been reductionism where the components of the biological system are modelled
individually. With systems biology, however, the system is modelled as a whole since
there may be interesting emergent properties only found on a systems level [13].

The transition from so-called components biology to systems biology can be re-
garded as a paradigm shift within cell and molecular biology that has taken place within
the last 20 years. One of the main drivers of this shift has been the ability of new high-
throughput omics technologies to produce large data sets with extensive information
about the cellular functions [21, 81]. Hand in hand with this, there has also been a
computational revolution where the computational power needed to handle the large
amount of data has become available. The data in systems biology typically need a lot
of processing and analysis, which leads to the field of bioinformatics [55]. To help with
these analyses, there also exist toolboxes like COBRA 2.0 [72] and RAVEN 2.0 [82].

The focus in this thesis is on the mathematical modelling of biochemical reaction
networks and parameter estimation in such models. For this reason, we do not go in
further depth about the underlying biology and bioinformatics that lead to our models.
It is, however, important to remember where our models originate from. One thing that
could be of specific interest to remember is the dual causality that makes modelling in
biology more complicated than in e.g. mechanics, as described by the quote below.

While biological functions obey the physical laws,
their functions are not predictable by the physical laws alone.

-Bernhard Ø. Palsson [63, p. 251]

1.4 Balancing of chemical reactions

The reactions will later be assumed given and typically modelled by X1 → X2 as in
Eq. 1.4. Before we move to the network formulation in the next chapter, however, we
show how to make sure that a general chemical reaction obeys conservation of mass,
which later will be an underlying assumption for the reactions.

A reaction is said to be balanced and satisfies conservation of mass if the number of
atoms for each element is the same on both sides. Reactions that do not satisfy this are
said to be unbalanced and the process of making them balanced is called balancing.
This is done by adding integer values called stoichiometric constants in front of the
different compounds in the reactions. For simple unbalanced reactions such as

H2 + O2 H2O (1.5)

this can be done by inspection and we see that

2H2 + O2 2H2O (1.6)

is the balanced reaction. However, for more complicated chemical reactions such as

Pb + Na + C2H5Cl Pb(C2H5)2 + NaCl (1.7)
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it is not as straight-forward to find the balanced reaction. Such a problem is typi-
cally solved by trial and failure in high school chemistry until a solution is obtained,
and in many cases including Eq. 1.7 this could potentially be a satisfactory approach.
However, the balancing of a chemical reaction can be done systematically by a linear
equation system where the stoichiometric constants are the unknowns.

Let s be the vector of unknown stoichiometric constants to be found, where each of
the entries in s is associated with a compound. A substrate compound on the left hand
side of the reaction will have a negative value in s as it is consumed, while a product
compound on the right hand side of the reaction will have a positive value. For the
example of Eq. 1.5, we have s =

[
s1 s2 s3

]T where the interpretation of s is

(−s1)H2 + (−s2)O2 (s3)H2O (1.8)

such that s1 is associated with H2, s2 with O2 and s3 with H2O. Note that the negative
values of s1 and s2 are used in front of their compounds to obtain a positive value.

Now, let E be the elemental matrix of a reaction that is used to find s. The rows of E
correspond to the different elements that participate in the reaction and the columns to
the different compounds of the reaction. Each entry of the matrix is then the number of
a given element in one molecule of a given compound, such that all the entries of the
matrix are non-negative integers. If an entry is zero, the corresponding element is not
part of the corresponding compound. For the example of Eq. 1.5, we have

E =

H2 O2 H2O[ ]
H 2 0 2
O 0 2 1

∼
[

1 0 1
0 1 1

2

]
(1.9)

where the row reduced echelon form is calculated on the right hand side.
Having the matrix E and the vector s, conservation of mass is given by

Es = 0. (1.10)

which is a homogeneous linear equation system where we are interested in the smallest
integer solution. For the example of Eq. 1.5 we obtain the solution

s = γ
[
−1 −1

2 1
]T (1.11)

from Eq. 1.9 where γ ∈ R is a free parameter. The smallest integer solution is given by
γ = 2 which gives s =

[
−2 −1 2

]T and the same balanced reaction as proposed in
Eq. 1.6 if the obtained values for s are substituted into Eq. 1.8.

For the more advanced example of Eq. 1.7 we have the elemental matrix

E =

Pb Na C2H5Cl Pb(C2H5)2 NaCl


Pb 1 0 0 1 0
Na 0 1 0 0 1
C 0 0 2 4 0
H 0 0 5 10 0
Cl 0 0 1 0 1

∼


1 0 0 0 1

2
0 1 0 0 1
0 0 1 0 1
0 0 0 1 −1

2
0 0 0 0 0

 (1.12)
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where the row reduced echelon form again is on the right. This gives the solution

s = γ
[
−1

2 −1 −1 1
2 1

]T (1.13)

of Eq. 1.10 where γ ∈ R is a free parameter, and the the entries in s correspond to the
compounds as seen in E. The smallest integer solution given by γ = 2 is

s =
[
−1 −2 −2 1 2

]T
, (1.14)

which gives the desired balanced chemical reaction

Pb + 2Na + 2C2H5Cl Pb(C2H5)2 + 2NaCl . (1.15)

Note that there is always a free parameter in the solution for s if a non-trivial solution
exists, as Eq. 1.10 is a homogeneous equation. This free parameter is used to find
an integer solution for s, and is only a scaling of all the stoichiometric constants. If
there, however, is more than one free parameter in the solution this implies that several
different reactions are possible for the given compounds which will be of relevance in
the next chapter. Also note that it is not specified in E which compounds that belong
to the left and right hand side of the reaction as all the entries are non-negative. For
this reason, the sign of s is impossible to determine mathematically and additional
information is needed to decide the direction of the reaction.



Chapter 2

Structure of reaction networks

In this chapter we define the stoichiometric matrix S for a reaction network, and ex-
plore some of its features. This matrix is a mathematical representation of the network
structure, and is important for the dynamical models of reaction networks in the next
chapters. The main reference for this and the next chapter is the textbook "Systems
biology" by Palsson [63], and we adopt much of the notation from there.

2.1 Stoichiometric matrix

Assume that we have a network consisting of r irreversible reactions R j involving n
metabolites with chemical names Xi. The network can then be written as

R j :
n

∑
i=1

αi jXi→
n

∑
i=1

βi jXi j = 1, . . . ,r (2.1)

where the stoichiometric coefficients αi j and βi j are non-negative integers [18].
The stoichiometric matrix S =

{
Si j
}
∈ Zn×r is given by the unitless entries

Si j = βi j−αi j (2.2)

which gives the net production of metabolite Xi in reaction R j.
The columns of S correspond to reactions, and the rows to metabolites such that

S =

Reactions R j


M
et

ab
ol

ite
s

X i S11 · · · S1r

... . . . ...

Sn1 . . . Snr

(2.3)

where the labels Xi and R j may be omitted later for simplicity. Note that the network
of Eq. 2.1 could be visualized as a directed graph with the metabolites as the nodes and
the reactions as edges, which we will make use of for the examples following later.
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2.1.1 Relation to balancing of reactions

Before we proceed with the exploration of S, we make one last visit to the balancing of
chemical reactions in Sec. 1.4. The stoichiometric matrix S of Eq. 2.3 can be written

S =
[
s1 . . . sr

]
(2.4)

where the vectors s j are the columns of S. Each of these vectors correspond to a reaction
and is equivalent to the vector s in Sec. 1.4. Let now E be the elemental matrix for all
the n metabolites that participate in the network of Eq. 2.1. If all of the reactions in
Eq. 2.1 are balanced, then all s j satisfy the balance equation in Eq. 1.10 such that

Es j = 0 for j = 1, . . . ,r (2.5)

which can be collected into the matrix equation

E
[
s1 . . . sr

]
= ES = 0 . (2.6)

From now on, however, we are no longer concerned with the balancing of the reac-
tions. The main reason for this is that we may omit some compounds from the models
for simplicity as discussed briefly in Sec. 1.2.3 on chemical reactions.

2.1.2 Some properties of the stoichiometric matrix S

In the typical case where Xi is present only at one side of the reaction R j, we have
Si j = βi j or Si j = −αi j from Eq. 2.2. However, Eq. 2.2 in the general case allows a
metabolite Xi to be present at both sides of a reaction.

When an open system is modelled, we have αi j = 0 or βi j = 0 for all i if the re-
action R j is entering or leaving the system, respectively. A reversible reaction can be
represented in Eq. 2.1 by two irreversible reaction, or one may represent it directly as
a reversible reaction. Some parts of the thesis, however, require all the reactions to be
irreversible. For large networks, most of the αi j and βi j are zero making S a sparse
matrix. This is because only a few metabolites are involved in each reaction indepen-
dently of the number of reactions. For genome-scale models the most common number
of compounds participating in a reaction is four including co-factors [63, p. 165].

Linear maps are networks where the reactions only have one input and one output
like X1 → X2 in Eq. 1.4 such that S has only two non-zeros entries in each column.
Most of the networks in the papers of this thesis are assumed to be such linear maps.

2.2 Example networks

To illustrate some properties of the stoichiometric matrix S, we create some simple toy
networks in this section. These are much smaller than real networks, but are useful to
understand the properties of S.
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X1 X2

R1

R2

Figure 2.1: Example network consisting of a loop. Each node is a metabolite, and each arrow
a reaction. The reactions are given in Eq. 2.7.

2.2.1 Loop network

Our first toy example is shown in Fig. 2.1, and is a loop consisting of two metabolites
and two irreversible reactions that together form a reversible reaction.

We assume for simplicity that all non-zero αi j and βi j are equal to one. The reac-
tions of the network in Fig. 2.1 can then be written on the form of Eq. 2.1 as

R1 : X1 −→ X2
R2 : X2 −→ X1

(2.7)

which gives the 2×2 stoichiometric matrix

S =

R1 R2[ ]
X1 −1 1
X2 1 −1

with Rank(S) = 1. (2.8)

2.2.2 Split network

Our second example consists of four metabolites and six reactions. It is shown in
Fig. 2.2, and the most prominent feature is the split into two branches. The network is
open since it has the entering reaction R1, and also the leaving reactions R5 and R6.

X1 X2

X3

X4

R1 R2

R3

R4

R5

R6

Figure 2.2: Example network consisting of a split. Each node is a metabolite, and each arrow
a reaction. The reactions are given in Eq. 2.9.

By assuming once again that all non-zero αi j and βi j are one as for the previous
example, the reactions of the network can be written on the form of Eq. 2.1 as

R1 : −→ X1
R2 : X1 −→ X2
R3 : X2 −→ X3
R4 : X2 −→ X4
R5 : X3 −→
R6 : X4 −→

(2.9)



14 Structure of reaction networks

where R1 is an entering reaction, R2, R3 and R4 are internal reactions, and finally are R5
and R6 leaving reactions. The 4×6 stoichiometric matrix becomes

S =

R1 R2 R3 R4 R5 R6
X1 1 −1 0 0 0 0

X2 0 1 −1 −1 0 0
X3 0 0 1 0 −1 0
X4 0 0 0 1 0 −1

with Rank(S) = 4. (2.10)

2.2.3 Network of complexes

The two example networks this far have at most one metabolite on each side of all
the reactions. For this reason, we want a network with interactions such that Eq. 2.1
may have more than one non-zero αi j and βi j per reaction. Also, we want a network
where all the non-zero αi j and βi j not necessarily are one. To meet these requirements,
we introduce the example of Fig. 2.3 which is a modified version of a network in Rao
et al. [67]. It consists of four metabolites and five reactions that interact through four
different complexes, which will be discussed in the next section.

2X1 +X2 X3 X1 +2X2

X4

R1

R2

R3

R4
R5

Figure 2.3: Network based on Rao et al. [67]. The nodes are complexes consisting of poten-
tially several metabolites and the arrows are reactions. The reactions are given in Eq. 2.11.

The reactions of the network on the form of Eq. 2.1 are given by

R1 : 2X1 +X2 −→ X3
R2 : X3 −→ 2X1 +X2
R3 : X3 −→ X1 +2X2
R4 : X1 +2X2 −→ X4
R5 : X4 −→ X3

(2.11)

where we see that R1 and R2 together form a reversible reaction, and that the network
is a closed system. The resulting 4×5 stoichiometric matrix for the network is

S =

R1 R2 R3 R4 R5
X1 −2 2 1 −1 0

X2 −1 1 2 −2 0
X3 1 −1 −1 0 1
X4 0 0 0 1 −1

with Rank(S) = 3. (2.12)
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2.3 Complex factorization of stoichiometric matrix S

Metabolites interact in different combinations for the reactions of a network as seen in
the last example of the previous section. One of the reactions in Eq. 2.11 is for instance

2X1 +X2 −→ X3 (2.13)

where we see that two units of X1 and one unit of X2 is transformed to one unit of X3.
This implies that the combination 2X1 + X2 of metabolites can be thought of as a unit
in this reaction. We will in this section describe the reactions of a network in terms of
such units that will be called complexes. Based on this, we also do a factorization of
the stoichiometric matrix S from Rao et al. [67], which is fundamental in paper B.

A complex Ci is any combination of metabolites that occur on either side of the
reactions for a network. The set of complexes for a network is then the union of all left
and right hand sides of the reactions. For the reactions in Eq. 2.11 we e.g. have

C1 C2 C3 C4

2X1 +X2 X3 X1 +2X2 X4
(2.14)

that can be recognized as the four different nodes of Fig. 2.3. Note that e.g. X1 and 2X1
would be different complexes if they both are the left or right hand side of an equation.
Also note that in the case where all the left and right hand sides of the reactions are
single metabolites, the set of complexes are simply the metabolites such that Ci = Xi. It
could also be mentioned that a complex has nothing to do with complex numbers.

Assume that there are nc complexes. These can then be represented by a complex
matrix Z ∈ Nn×nc

0 where n is the number of metabolites as before. The rows of Z
are associated with the metabolites and the columns with the complexes. Each entry
is then the number of molecules for the corresponding metabolite in one unit of the
corresponding complex. For the complexes of Eq. 2.14 we get the complex matrix

Z =

C1 C2 C3 C4
X1 2 0 1 0

X2 1 0 2 0
X3 0 1 0 0
X4 0 0 0 1

(2.15)

where all the entries are non-negative since a complex can not contain a negative
amount of a metabolite. Note that there is no information about the reactions of the
network in Z other than the candidate complexes to be used in reactions. Note that in
the case where Ci = Xi we get the identity matrix for Z.

All the reactions of a network can now be rewritten such that the left and right hand
sides are individual complexes. For the reactions in Eq. 2.11 we get

R1 : C1 −→ C2
R2 : C2 −→ C1
R3 : C2 −→ C3
R4 : C3 −→ C4
R5 : C4 −→ C2

(2.16)
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where the complexes are given by Eq. 2.14. This information can be represented by
a linkage matrix B ∈ Znc×r where nc is the number of complexes and r the number of
reactions as before. The linkage matrix is similar to the stoichiometric matrix S, but
the rows are associated with the complexes instead of the metabolites. The entries of B
are then -1 if the corresponding complex is the substrate of the reaction and 1 if the
complex is the product. All other entries of B are zero, such that there are only three
possible values for an entry in B. For the reactions in Eq. 2.16 we get

B =

R1 R2 R3 R4 R5
C1 −1 1 0 0 0

C2 1 −1 −1 0 1
C3 0 0 1 −1 0
C4 0 0 0 1 −1

. (2.17)

Note that B does not contain any information about which metabolites that are involved
in each reaction, only which complexes. Also note that in Rao et al. [67] and paper B,
only internal reactions are included in B. It is, however, possible to also include ex-
change reactions in B as we will do for the split example of Fig. 2.2 below.

Having defined Z and B, the stoichiometric matrix S of Eq. 2.3 can be factorized as

S = ZB (2.18)

according to Rao et al. [67]. Be aware, however, that potential exchange reactions in S
must also be included in B for Eq. 2.18 to hold. For the example of Fig. 2.3 we get

S = ZB =


2 0 1 0
1 0 2 0
0 1 0 0
0 0 0 1



−1 1 0 0 0

1 −1 −1 0 1
0 0 1 −1 0
0 0 0 1 −1

 (2.19)

which is easy to verify that gives the same value of the matrix S as given in Eq. 2.12.
For completeness, we perform the factorization of Eq. 2.18 also for the two other

examples. For the loop network in Fig. 2.1 we get

S = ZB =

[
1 0
0 1

][
−1 1

1 −1

]
(2.20)

where S is given in Eq. 2.8. For the split network in Fig. 2.2 we get

S = ZB =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 −1 0 0 0 0
0 1 −1 −1 0 0
0 0 1 0 −1 0
0 0 0 1 0 −1

 (2.21)

where S is given in Eq. 2.10. Both of the two latter examples have the identity matrix
as the complex matrix Z since the complexes are the individual metabolites. Also note
that the split example contains exchange reactions included in S and B.
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2.4 Topological network properties and binary stoichiometric matrix

In this section we consider S as a connectivity matrix and explore the elementary topo-
logical properties of a reaction network as in the textbook of Palsson [63, ch. 10].

To do so, we define the binary stoichiometric matrix Ŝ =
{

Ŝi j
}

of S. It is given by

Ŝi j =

{
0 if Si j = 0
1 if Si j 6= 0

(2.22)

such that Ŝi j = 1 if and only if metabolite Xi is involved in reaction R j. Note that
the exact value of the stoichiometric coefficient Si j is not important as we now define
quantities to analyse elementary topological properties of reaction networks based on Ŝ.

The first quantity is the participation number for the reactions given by

π j =
n

∑
i=1

Ŝi j (2.23)

which gives the number of metabolites Xi that are involved in reaction R j. The number
of metabolites involved in a reaction is not affected by adding more reactions, so π j is
small for all reactions independently of the number n of metabolites in the network.

The second quantity is the connectivity number for the metabolites given by

ρi =
r

∑
j=1

Ŝi j (2.24)

which gives the number of reactions R j that the metabolite Xi is involved in. This is a
measure of how connected a metabolite is, or how many links it has. Since a metabolite
can participate in many reactions and appear at different positions in a network, the
number ρi can increase with the number r of reactions in the network.

The participation numbers π j and the connectivity numbers ρi can be computed
directly or by adjacency matrices of Ŝ that also give some additional information. By
pre-multiplication of Ŝ by its transpose we obtain the reaction adjacency matrix

Av = ŜTŜ (2.25)

which is a symmetrical matrix where the entries are inner products of the columns of Ŝ.
The main diagonal of Av will be the participation numbers π j, while the off-diagonal
elements count how many metabolites two reactions have in common.

By post-multiplication of Ŝ by its transpose we get the compound adjacency matrix

Ax = ŜŜT (2.26)

which also is a symmetrical matrix, but the entries are now inner products of the rows
of Ŝ. The main diagonal will be the connectivity numbers ρi, while the off-diagonal
elements count how many reactions two metabolites both are involved in.

We now calculate the quantities above for the three example networks of Sec. 2.2.
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Loop example

The matrix S for the loop network in Fig. 2.1 is given by Eq. 2.8 such that

Ŝ =

[
1 1
1 1

]
⇒ Av = ŜTŜ =

[
2 2
2 2

]
= ŜŜT = Ax (2.27)

where the equality of Av and Ax is due to Ŝ being symmetric. The main diagonals then
give the participation and connectivity numbers

π1 π2

2 2
and

ρ1 ρ2

2 2
(2.28)

where we see that both reactions involve two metabolites, and that both metabolites
are involved in two reactions. This can easily be verified visually from Fig. 2.1.

Split example

The split network in Fig. 2.2 has the matrix S of Eq. 2.10 with binary form

Ŝ =

R1 R2 R3 R4 R5 R6
X1 1 1 0 0 0 0

X2 0 1 1 1 0 0
X3 0 0 1 0 1 0
X4 0 0 0 1 0 1

. (2.29)

The compound adjacency matrix for the metabolites then becomes

Ax = ŜŜT =

X1 X2 X3 X4
X1 2 1 0 0

X2 1 3 1 1
X3 0 1 2 0
X4 0 1 0 2

(2.30)

where the main diagonal gives the following connectivity numbers:

ρ1 ρ2 ρ3 ρ4
2 3 2 2 (2.31)

We see that X1, X3 and X4 are involved in two reactions, while X2 is involved in three.
By the off-diagonal entries of Ax we see that X2 has one reaction in common with each
of the other Xi’s, and that there is no pair of metabolites without X2 where both are
involved in the same reaction. This is easily verified by a visual inspection of Fig. 2.2.

The reaction adjacency matrix for the example will be

Av = ŜTŜ =

R1 R2 R3 R4 R5 R6


R1 1 1 0 0 0 0
R2 1 2 1 1 0 0
R3 0 1 2 1 1 0
R4 0 1 1 2 0 1
R5 0 0 1 0 1 0
R6 0 0 0 1 0 1

(2.32)
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where the main diagonal gives the following participation numbers:

π1 π2 π3 π4 π5 π6
1 2 2 2 1 1 (2.33)

We see that R1, R5 and R6 only involve one metabolite each, while the three remaining
reactions involve two each. The non-zero off-diagonal entries in Av are all one, and
correspond to the reactions that have a metabolite in common. As for the matrix Ax,
the values of the matrix Av can also easily be verified by a visual inspection of Fig. 2.2.

Complex example

The last example is the one of Fig. 2.3 with the matrix S of Eq. 2.12 giving

Ŝ =

R1 R2 R3 R4 R5
X1 1 1 1 1 0

X2 1 1 1 1 0
X3 1 1 1 0 1
X4 0 0 0 1 1

. (2.34)

This gives the compound adjacency matrix

Ax = ŜŜT =

X1 X2 X3 X4
X1 4 4 3 1

X2 4 4 3 1
X3 3 3 4 1
X4 1 1 1 2

(2.35)

where the main diagonal once again gives the connectivity numbers:

ρ1 ρ2 ρ3 ρ4

4 4 4 2
(2.36)

We see that X4 is involved in two reactions, while the remaining three metabolites are
involved in four reactions each. From the off-diagonal entries of Ax we also see that all
pairs of metabolites have at least one reaction in common.

The reaction adjacency matrix for the example will be

Av = ŜTŜ =

R1 R2 R3 R4 R5


R1 3 3 3 2 1
R2 3 3 3 2 1
R3 3 3 3 2 1
R4 2 2 2 3 1
R5 1 1 1 1 2

(2.37)

where the participation numbers from the main diagonal are the following:

π1 π2 π3 π4 π5

3 3 3 3 2
(2.38)
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We see that R5 involves two metabolites, and that the remaining four reactions involve
three metabolites. Also, from the off-diagonal entries of Av we see that all pairs of
reactions have at least one metabolite in common that is involved in both reactions.



Chapter 3

Dynamical properties of reaction networks

This far we have considered the stoichiometric matrix S of Eq. 2.3 only as a topological
map giving the network structure of a reaction network. In this chapter, however, we
start to explore the dynamical properties of a reaction network. To do this, we implicitly
assume a continuum hypothesis such that we can work with the concentrations of the
metabolites instead of molecule counts. An assumption like this is standard, and at least
valid for molar quantities as the Avogadro number for molecules per mole is 6.02 ·1023

[44, p. 30]. For instance are the concentrations in paper C of this thesis in the range
from 1 to 2000 nM, or in the range from 6 ·1014 to 1.2 ·1018 molecules per liter.

Assume that we have a network on the form of Eq. 2.1 with n compounds and r reac-
tions. Let the vector x =

[
x1 . . . xn

]T ∈Rn
≥0 be the concentrations of the compounds

in the network such that xi is the concentration of Xi. Note that all entries of x must
be non-negative since they are concentrations. Similarly, let v =

[
v1 . . . vr

]
∈ Rr be

the fluxes (reaction rates) of the network such that v j is the flux of reaction R j. If the
reaction R j is irreversible, the value of the flux v j must be non-negative.

3.1 Dynamical equations

The concentrations x and the fluxes v are now considered dynamical quantities. It is
assumed that x only can change through the fluxes v, and that these changes satisfy the
mass balance defined by S. The rate of change for x is then given by

dx
dt

= Sv (3.1)

which is the fundamental equation for dynamical modelling of a reaction network [63].
Note that there are no assumptions or restrictions on the fluxes v in Eq. 3.1. In the next
chapter we discuss various kinetic functions v = v(x) such that the fluxes are given by
the concentrations. This will make Eq. 3.1 into a potentially non-linear system

dx
dt

= f(x) (3.2)

of ordinary differential equations where f(x) is given by S and v(x). We will, however,
first look on the dynamical system in the form of Eq. 3.1 and evaluate the mathemati-
cally possible dynamical behaviours. This is determined purely by the matrix S, and in
the next section we evaluate the relevant properties of S using standard linear algebra.
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3.2 Dynamical properties of the stoichiometric matrix

In this section we analyse the stoichiometric matrix S from Eq. 2.3 in light of Eq. 3.1.
This is done by using standard linear algebra, for an introduction see e.g. Lay [53].

The matrix S has four fundamental linear spaces with the following interpretations:

• Null(S), null space, fluxes giving steady-state

• Row(S), row space, fluxes giving dynamic behaviour

• Null
(
ST
)
, left null space, conservation laws

• Col(S), column space, dynamic quantities

Before we explore the individual spaces further, remember that

dim(Row(S)) = dim(Col(S)) = Rank(S) (3.3)

which motivates the calculation of the ranks for the examples in Sec. 2.2. We also have

dim(Row(S))+dim(Null(S)) = r (3.4)

where r is the number of reactions and thus also columns in S. Similarly, we have

dim(Col(S))+dim
(
Null

(
ST))= n (3.5)

where n is the number of metabolites and thus also rows in S. To find bases for the four
linear spaces, we will later make use of the row reduced echelon forms of S and ST.

3.2.1 Null(S)

The null space of S is given by the fluxes vss that satisfy Svss = 0, making them steady-
states of the dynamical system in Eq. 3.1. This space is of particular interest since
networks often are assumed to be in steady-state as in paper A and E of this thesis. The
much used method of Flux balance analysis also explores this space, see Sec. 3.4.

3.2.2 Row(S)

The row space of S is given by the fluxes vdyn that are linear combinations of the rows
in S, and a basis is given by the non-zero rows of the row reduced echelon form of S.

The non-trivial vectors vdyn satisfy Svdyn 6= 0, implying that they are non-steady-
states of the dynamical system in Eq. 3.1. Note that all flux vectors v ∈ Rr have a
unique decomposition v = vdyn+vss where vdyn ∈ Row(S) and vss ∈Null(S) such that
the fluxes can be decomposed into a dynamical part and a steady-state part. Also note
that Svdyn = S

(
vdyn +vss

)
where vss ∈ Null(S), such that a non-trivial vdyn is still a

non-steady-state if a steady-state flux vector vss is added to it.
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3.2.3 Null
(
ST)

The left null space of S is the u that satisfy STu = 0. From Eq. 3.1 we then have

uT


dx1
dt...

dxn
dt

= 0 for all
dx
dt

= Sv (3.6)

such that uTx = c is a conservation law of Eq. 3.1 for some c ∈ R. Note that it is a
conservation law for concentrations, and may or may not be a conservation law for
mass.

3.2.4 Col(S)

The column space of S is given by the u that are linear combinations of the columns
in S, and a basis is given by the non-zero rows of the row reduced echelon form of ST.

The non-trivial u ∈ Col(S) satisfy STu 6= 0, which in contrast to Eq. 3.6 means that

uT


dx1
dt...

dxn
dt

 6= 0 for some
dx
dt

= Sv (3.7)

such that uTx in general is a dynamical quantity and not a conservation law of Eq. 3.1.

3.2.5 Singular value decomposition (SVD)

The Singular Value Decomposition (SVD) of the matrix S is a much used factorization

S = UΣVT (3.8)

of a matrix that gives bases for all the four linear spaces discussed above [78]. The
Rank(S) first columns in the matrix U ∈ Rn×n is a basis for Col(S), and the remaining
columns a basis for Null

(
ST
)
. Similarly is the Rank(S) first columns in V ∈ Rr×r a

basis for Row(S), and the remaining columns a basis for Null(S). The matrix Σ∈Rn×r
≥0

is diagonal with the non-negative so-called singular values in descending order on the
diagonal where the number of non-zero singular values is equal to Rank(S).

The matrix S of Eq. 2.8 for the loop network in Fig. 2.1 and 3.1 has SVD

S =

[
−1 1

1 −1

]
=

(
1√
2

[
−1 1

1 1

])[
2 0
0 0

](
1√
2

[
1 1
−1 1

]T
)

=

(
1√
2

[
u1 u2

])[2 0
0 0

](
1√
2

[
v1 v2

]T) (3.9)

where we see that there is only Rank(S) = 1 non-zero singular value. Then u1 is a basis
for Col(S), u2 a basis for Null

(
ST
)
, v1 a basis for Row(S) and v2 a basis for Null(S).

See the next section for a visual interpretation of all these vectors.
It is possible to calculate the SVD for large networks as efficient algorithms exist,

but the resulting factorization may not be so easy to interpret by manual inspection.



24 Dynamical properties of reaction networks

3.3 Dynamical properties of the example networks

We now calculate the linear spaces of S discussed above for the examples in Sec. 2.2
and interpret the resulting basis vectors visually.

3.3.1 Loop example

We start with the loop example of Fig. 2.1 that is redrawn in Fig. 3.1 with flux labels.

X1 X2

v1

v2

Figure 3.1: The example network in Fig. 2.1 redrawn with labels v j for the fluxes.

From the SVD in Eq. 3.9 we have for the flux vectors v that

Row(S) = Span
([

1
−1

])
and Null(S) = Span

([
1
1

])
(3.10)

such that dynamic vectors vdyn have v1 = −v2 resulting in a net flux from X1 to X2 or
vice versa. Steady-state vectors vss in contrast have v1 = v2 resulting in no net flux.

For the vectors u we see from Eq. 3.9 that the spaces are

Col(S) = Span
([

1
−1

])
and Null

(
ST)= Span

([
1
1

])
(3.11)

such that the sum x1 + x2 of the concentrations is conserved, which is an attribute of
the network being closed without entering or leaving reactions as seen in Fig. 3.1. The
difference x1− x2, however, is a dynamical quantity and changes if there is a net flux.

3.3.2 Split example

As for the loop, we redraw Fig. 2.2 for the split example in Fig. 3.2 with flux labels.

X1 X2

X3

X4

v1 v2

v3

v4

v5

v6

Figure 3.2: The example network in Fig. 2.2 redrawn with labels v j for the fluxes.



3.3 Dynamical properties of the example networks 25

Since we do not have the SVD of S we calculate the row reduced echelon forms

S∼


1 0 0 0 −1 −1
0 1 0 0 −1 −1
0 0 1 0 −1 0
0 0 0 1 0 −1

 and ST ∼



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


(3.12)

to find the four linear spaces. For the flux vectors v this gives us the spaces

Row(S) = Span





1
0
0
0
−1
−1


,



0
1
0
0
−1
−1


,



0
0
1
0
−1

0


,



0
0
0
1
0
−1




and Null(S) = Span





1
1
1
0
1
0


,



1
1
0
1
0
1




(3.13)

where the steady-state basis vectors correspond to a flux through the upper or lower
branch of Fig. 3.2. The row space does not have an equally obvious interpretation,
other than that it gives all the non-steady-state flux vectors. For the vectors u we have

Col(S) = Span




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 and Null

(
ST)= {0} (3.14)

which implies that there are no conservation laws, and that all the concentrations are
independent dynamical quantities without any restrictions.

3.3.3 Complex example

Once again, we start by redrawing Fig. 2.3 with flux labels in Fig. 3.3.

2X1 +X2 X3 X1 +2X2

X4

v1

v2

v3

v4v5

Figure 3.3: The example network in Fig. 2.3 redrawn with labels v j for the fluxes.

As for the split example, we continue by calculating the row reduced echelon forms

S∼


1 −1 0 0 0
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 0

 and ST ∼


1 0 0 −1

3

0 1 0 −1
3

0 0 1 −1
0 0 0 0
0 0 0 0

 (3.15)
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to find the four linear spaces. For the flux vectors v we get the spaces

Row(S) = Span




1
−1

0
0
0

 ,


0
0
1
0
−1

 ,


0
0
0
1
−1



 and Null(S) = Span




1
1
0
0
0

 ,


0
0
1
1
1



 (3.16)

where the steady-state vectors correspond to the two loops in Fig. 3.3, and the row
space gives the remaining possible fluxes. For the vectors u we get the spaces

Col(S) = Span




3
0
0
−1

 ,


0
3
0
−1

 ,


0
0
1
−1


 and Null

(
ST)= Span




1
1
3
3


 (3.17)

such that the quantity x1+x2+3x3+3x4 is conserved, which is a feature of the system
being closed as for the loop example of Fig. 3.1. Since there are no other conservation
laws, the interpretation of the column space is that any set of values for three of the
concentrations may be obtained from Eq. 3.1. The fourth concentration, however, will
then by given by the conservation law.

3.4 Flux balance analysis (FBA)

We continue to study the dynamical system dx
dt = Sv of mass balance from Eq. 3.1.

In the previous section we found all the possible states and behaviours of the system.
Some of these states are, however, biologically unlikely and we now want to find a
biologically feasible flux vector. This leads to flux balance analysis (FBA) where the
first papers leading up to the method were published in the 1980s [30, 64, 65, 83]. In the
last 20 years, FBA has become a popular method to analyse the fluxes in biochemical
networks that works well also on genome-scale networks [47, 61]. One reason for this
is that FBA only requires a limited amount of information about the network, but still
gives valuable information where more complicated approaches may fail.

The main assumption of FBA is that the network is assumed to be in steady-state

Svss = 0 (3.18)

such that the flux vector vss ∈ Null(S) has to satisfy the system of linear equations
in Eq. 3.18. However, the number r of columns (reactions) in S is typically larger
than the number n of rows (metabolites), i.e. r > n. For this reason, Eq. 3.18 will be
underdetermined and Null(S) a non-trivial space with dimension

dim(Null(S)) = r−Rank(S)≥ r−n (3.19)

as we saw for the examples in Sec. 3.3.
To decide a single vector vss ∈ Null(S), more constraints then Eq. 3.18 are needed.

First of all, we assume the fluxes to be bounded such that vss has to satisfy a set

vmin ≤ vss ≤ vmax (3.20)
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of inequality constraints. In the case of irreversible reactions, vmin = 0 which will be
relevant in the next section. The upper bound vmax corresponds to capacity or saturation
limits, and in the lack up such limits may be set to infinity.

The constraints of Eq. 3.20 reduce the set of feasible vss to a subset of Null(S). One
could then impose further constraints to further reduce the set of feasible vss. However,
this is in general still not sufficient to give a single vector. To do so, a criterion to
choose between the various vss in the feasible set must be specified. This criterion will
be based on the assumption that the cells where the reactions take place in some way
are optimized. This can be to maximize the biomass yield, the ATP-yield, end-product
yield or some other cellular function [63].

It is assumed that the optimality condition can be expressed as a linear objective
function cTvss of the fluxes to be maximized where the weights c ∈ Rr are known.
Note that without the constraints of Eq. 3.20, cTvss will in general be unbounded.

With vmin, vmax and c specified, FBA reduces to the linear program

max cTvss

s.t. Svss = 0 (3.21)
vmin ≤ vss ≤ vmax

that is a well studied standard optimization problem and may be solved by the Simplex
method, see e.g. Vanderbei et al. [79]. Solutions are guaranteed to exist if vmin ≤ 0, and
the solution is guaranteed to be bounded if vmax is finite.

In the case of degeneracy, Eq. 3.21 will not have a unique solution and we obtain
Alternative optimal solutions (AOS). This is a common phenomena for genome-scale
networks, and there are different approaches to address this. One of these is to apply a
secondary optimization, e.g. to minimize the total flux of the solution [63].

Note that FBA does not give any information about the concentration vector x other
than that it is constant since the network is assumed to be in steady-state. Since we
are interested in modelling the concentration vector x, the method of FBA has not been
applied in the papers of the thesis. However, both paper A and E assume the network
to be in steady-state such that the first constraint of Eq. 3.18 is satisfied.

As a final comment, we mention that there exist several extensions or modifications
of FBA. Some of these methods are flux variability analysis (FVA) [33], dynamical flux
balance [40] and RAMP [58].

3.5 Extreme pathways

In the previous section we saw that the nullspace of S discussed in Sec. 3.2.1 is of
special interest since it gives the steady-states of the network. A basis for this space is
therefore valuable and may be calculated by standard linear algebra as for the examples
in Sec. 3.3. Such a basis contains dim(Null(S)) = r−Rank(S) basis vectors, and
any steady-state vector vss may be expressed as a unique linear combination of these
vectors. Each vector is a steady-state in itself that satisfies Eq. 3.18, but the individual
flux vectors of the basis may not be biologically meaningful.

For irreversible reactions, we have the condition v j ≥ 0 such that a steady-state
should satisfy vss ∈Rr

≥0 if all the reactions are irreversible which is a common assump-
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tion. The set of feasible steady-state flux vectors vss then becomes the convex space

Svss = 0 and vss ∈ Rr
≥0 . (3.22)

However, the basis vectors for Null(S) may have negative entries. This violates the
non-negativity condition such that a basis vector in itself may be infeasible as discussed
above. For this reason is it beneficial to use a set of convex basis vectors pk when all the
reactions are irreversible. Each of these fulfils the non-negativity condition pk ∈ Rr

≥0
and is a feasible vector. All steady-states vss can then be written as a linear combination

vss = ∑
k

γkpk where γk ≥ 0 for all k. (3.23)

The convex basis vectors pk are called extreme pathways, and are unique up to
scaling [63]. The different pk give the the possible balanced flux vectors in a network,
and are useful for the analysis of possible steady-states. However, the number of pk is
typically much greater than the dimension of Null(S), and grows much faster than the
network size due to a combinatorial nature. A general algorithm for calculation of the
extreme pathways is presented in Schilling et al. [74], but scaling issues make it hard
to calculate the full set for large networks as the computation is N-P hard.

We now calculate the extreme pathways for the examples in Sec. 3.3 and paper A.

Loop example

For the loop example of Fig. 3.1 we only get one extreme pathway

p1 =

[
1
1

]
(3.24)

illustrated in Fig. 3.4 which is the same as the basis vector for the null space.

X1 X2

v1

v2

Figure 3.4: The only extreme pathway for the example network in Fig. 3.1. Both fluxes have
dark blue arrows indicating that they are non-zero.

Split example

The split example of Fig. 3.2 results in the two extreme pathways[
pT

1

pT
2

]
=

[
1 1 1 0 1 0
1 1 0 1 0 1

]
(3.25)

illustrated in Fig. 3.5. We see that the extreme pathways once again are the same as the
regular basis and correspond to the upper or lower branch of the network, respectively.
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X1 X2

X3

X4

v1 v2

v3

v4

v5

v6

X1 X2

X3

X4

v1 v2

v3

v4

v5

v6

Figure 3.5: The two extreme pathways for the example network in Fig. 3.2. The dark blue
arrows indicate non-zero fluxes, and the light gray arrows indicate fluxes with value zero.

Complex example

For the complex example of Fig. 3.3 we once again get two extreme pathways[
pT

1

pT
2

]
=

[
1 1 0 0 0
0 0 1 1 1

]
(3.26)

illustrated in Fig. 3.6. The two extreme pathways are also here the same as the regular
basis for the null space, and correspond to the two loops of the network.

2X1 +X2 X3 X1 +2X2

X4

v1

v2

v3

v4v5

2X1 +X2 X3 X1 +2X2

X4

v1

v2

v3

v4v5

Figure 3.6: The two extreme pathways for the complex example in Fig. 3.3. The dark blue
arrows indicate non-zero fluxes, and the light gray arrows indicate fluxes with value zero.

Example from paper A

For each of the three examples considered above we saw that the extreme pathways
simply were the regular basis vectors for the null space as they did not contain any
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negative values. To illustrate the proposed combinatorial behaviour of the extreme
pathways on a small scale example, we use the example of paper A shown in Fig. 3.7.

X1 X2 X3

X4 X5 X6

v1

v2
v3

v4

v5 v6

v7 v8

v9

v10

v11

v12

v13

Figure 3.7: Example network from paper A. The nodes are metabolites with names X j and the
directed edges are irreversible reactions with reaction rates (fluxes) v j.

This example has the 6×13 stoichiometric matrix

S =


−1 −1 −1 0 0 0 0 0 0 0 1 0 0

1 0 0 −1 −1 0 0 0 0 0 0 1 0
0 0 0 1 0 −1 0 0 −1 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0 1
0 0 1 0 1 0 1 −1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 −1 0 0 0

 (3.27)

with Rank(S)= 6 such that dim(Null(S))= 7. A regular basis {v1, . . . ,v7} for Null(S)
is then given by seven vectors where the natural choice is the rows

vT
1
...

vT
7

=



1 0 −1 0 1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 1 0 0 0 0 0 0
−1 0 1 −1 0 −1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 −1 1 0 0 0
1 0 0 1 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 1 0
1 −1 0 1 0 0 0 0 1 0 0 0 1


(3.28)

of this matrix where we see that there are several negative entries. By the application
of Schilling et al. [74], we obtain the nine extreme pathways pk given by

pT
1
...

pT
9

=



1 0 0 1 0 1 0 0 0 1 1 0 0
1 0 0 1 0 0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 1 0 1 1 0 0
0 1 0 0 0 0 1 1 0 1 1 0 0
0 0 1 0 0 0 0 1 0 1 1 0 0
0 0 0 1 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 0
0 0 0 0 0 0 1 1 0 1 0 0 1


(3.29)

where each row of the matrix is an extreme pathway. All the extreme pathways are
shown in Fig. 3.8 where blue is a non-zero flux and light gray a flux with value zero.
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Figure 3.8: The nine extreme pathways pk in Eq. 3.29 for the example in Fig. 3.7. The dark
blue arrows are non-zero fluxes and the light gray arrows fluxes with value zero.

We see that there are nine extreme pathways in contrast to the dimension seven of
the null space. Since there are no loops in the network of Fig. 3.7, we see in Fig. 3.8
that each of the extreme pathways is a route through the network.

3.5.1 Relation to active reactions in paper A and E

In paper A and E we classify the reactions as active or non-active under the different
input fluxes, which can be done by the use of extreme pathways. To illustrate this, we
continue to use the example of paper A in Fig. 3.7.

The last three fluxes in Fig. 3.7 are input fluxes denoted by b j in paper A such that

v =
[
v1 . . . v10 b1 b2 b3

]T (3.30)

is the full flux vector. Since there are no loops in the network, all extreme pathways pk
have exactly one non-zero input flux and can be associated with a unique input b j. Let
then Pj be the set of extreme pathways pk where the j’th input b j is non-zero. For the
network in Fig. 3.7 we have the extreme pathways of Eq. 3.29 shown in Fig. 3.8 and
see that P1 = {p1, . . . ,p5}, P2 = {p6, . . . ,p8} and P3 = {p9}. If we represent each set Pj
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with a matrix P j containing its extreme pathways pk’s we get

P1 =

pT
1
...

pT
5

 =


1 0 0 1 0 1 0 0 0 1 1 0 0
1 0 0 1 0 0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 1 0 1 1 0 0
0 1 0 0 0 0 1 1 0 1 1 0 0
0 0 1 0 0 0 0 1 0 1 1 0 0

 ,

P2 =

pT
6
...

pT
8

 =

 0 0 0 1 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 0

 and

P3 = pT
9 =

[
0 0 0 0 0 0 1 1 0 1 0 0 1

]

(3.31)

where the rows of P j are the vectors in the set Pj. The last three columns correspond to
the input fluxes b =

[
b1 b2 b3

]T. Note that all b j = 1 in P j.
The set of the active reactions for a given input b j can now be found as the non-zero

columns of P j in Eq. 3.31 with black color. All the resulting sets are shown in Fig. 3.9,
and are in accordance with the active reactions found in paper A.

b
1

b
2

b
3

Figure 3.9: Fig. 3 of paper A. The active reactions are shown in dark blue and the non-active
reactions in light gray for each of the input fluxes b j.



Chapter 4

Kinetics and model reduction

In this chapter we leave the formulation dx
dt = Sv of Eq. 3.1 for the dynamical system

used to model the concentrations and fluxes in the network. This is done by assuming
that the fluxes are given by the concentrations by some function v(x) called kinetics.
The dynamical system of Eq. 3.1 for the network then becomes

dx
dt

= f(x) where f(x) = Sv and v = v(x) , (4.1)

which is a system of ordinary differential equations. Even though v is not explicitly
visible in the differential equations of Eq. 4.1, the system is still dx

dt = Sv from Eq. 3.1
such that the discussion in the previous chapter about the dynamical properties of the
network is still valid. A function v(x) may, however, limit which states of the network
that could be attained by the dynamical system of Eq. 4.1.

The study of kinetics dates back to 1864 and the publication "Studies concerning
affinity" by the Norwegian scientists Cato M. Guldberg and Peter Waage [34]. They
proposed what today is known as the law of mass action that is used to model the
reaction rate of an elementary reaction [57]. Several of the kinetics proposed in the
next section can be derived from this principle, but the law of mass action may not be
applied directly as we do not model all intermediates and co-factors of the chemical
reactions. It is also worth mentioning that the model equations of Eq. 4.1 have much in
common with compartmental models, see e.g. Anderson [10] for an introduction.

4.1 Kinetics

We now discuss some of the most common functions v(x) for the kinetics of reactions.
A dynamical model for a network may use different kinetics for the various reactions,
and we have used several of them in the papers of this thesis.

4.1.1 Michaelis-Menten kinetics

The first kinetics we look at is the Michaelis-Menten [45] for enzymatic reactions

E+S
k f

kb
ES

kcat E+P (4.2)
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where S is a substrate, E an enzyme, ES an intermediate and P a product. The obtained
reaction rate will essentially simplify the chemical reaction of Eq. 4.2 to the reaction

S−→ P (4.3)

without intermediates and enzymes such that only the concentrations of S and P are
explicit variables in the model.

Let [E], [S], [P] and [ES] denote the concentrations of E, S, P and ES, respectively.
By the law of mass action [57] for the elementary reactions of Eq. 4.2, we obtain

d[E]
dt

=−k f [E][S]+ kb[ES]+ kcat[ES] (4.4)

d[S]
dt

=−k f [E][S]+ kb[ES] (4.5)

d[P]
dt

= kcat[ES] (4.6)

d[ES]
dt

= k f [E][S]− kb[ES]− kcat[ES] (4.7)

for the concentrations where k f , kb and kcat are constants. By adding the derivatives for
the concentrations [E] and [ES] in Eq. 4.4 and 4.7 together, we get the derivative

d
dt

([E]+ [ES]) = 0 (4.8)

such that the total amount of enzyme is constant. This gives a conservation law

[E]+ [ES] = E0 (4.9)

for some constant E0 ∈ R≥0. It is further assumed that the substrate S and the complex
ES is in instantaneous chemical equilibrium. This gives the relation

k f [E][S] = kb[ES] (4.10)

and by substituting for [E] from Eq. 4.9 into Eq. 4.10 we obtain

[ES] =
E0[S]

kb
k f
+[S]

(4.11)

which inserted into Eq. 4.6 gives the production rate

d[P]
dt

= kcat[ES] =
kcatE0[S]
kb
k f
+[S]

(4.12)

for the product P of the chemical reaction in Eq. 4.2, which will be the flux v of the
simplified chemical equation in Eq. 4.3.

Let Vmax = kcatE0 and KM = kb
k f

be constants given by the previously used constants.
The flux v from Eq. 4.12 is then a function of the substrate concentration [S] given by

v =
d [P]
dt

=
Vmax [S]
KM +[S]

(4.13)
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KM [S]
0

Vmax

2

Vmax

v

Figure 4.1: The flux value v as a function of the substrate concentration [S] for the Michaelis-
Menten kinetics given by Eq. 4.13. For [S] = KM is the flux v = Vmax

2 .

where the constants Vmax and KM must be positive.
Vmax is the maximum flux, and KM is the concentration [S] that gives a flux

v(KM) =
Vmax

2
(4.14)

of half the maximal flux value such that KM could be regarded a typical concentration
e.g. if the equations were to be made non-dimensional. Also note the properties

v(0) = 0 and lim
[S]→∞

v([S]) =Vmax (4.15)

that can also be seen in Fig. 4.1. The function for v is a linear curve for sufficiently small
values of [S] where there is enough enzyme and the amount of substrate is limiting for
the reaction. For large values of [S], however, the limiting factor is the amount of
enzyme and not the amount of substrate such that the function for v becomes flat. The
information about the enzyme is intrinsic in the constants KM and Vmax, and we see that
the transition from the linear to the constant regime is happening close to the substrate
concentration [S] =KM. If the Michaelis-Menten kinetics is used for the reaction S→ P
of Eq. 4.3 with only a substrate S and a product P, the model will have the rate

d [S]
dt

=− Vmax [S]
KM +[S]

(4.16)

for the consumption of S, in addition to Eq. 4.13 for the production rate of P.
Several of the reactions in the yeast glycosis example model of paper B use

Michealis-Menten kinetics or a slightly modified version of it. As a final comment
on Michealis-Menten, we also mention that Vmax and KM values for some reactions can
be found in databases such as BRENDA [71] and SABIO-RK [84].
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4.1.2 Hill kinetics

A generalization of the Michaelis-Menten kinetics is the Hill equation [39] given by

v =
d [P]
dt

=
Vmax [S]

n

KD +[S]n
(4.17)

where Vmax, KD and n are positive constants. The Hill kinetics shares the properties

v(0) = 0 and lim
[S]→∞

v([S]) =Vmax (4.18)

with the Michaelis-Menten kinetics for all n. It can be non-dimensionalized as

v
Vmax

=

(
[S]
KA

)n

1+
(
[S]
KA

)n (4.19)

where (KA)
n = KD. We see that for [S] = KA is the flux

v(KA) =
Vmax

2
for all n (4.20)

such that KA takes the role of KM in the Michaelis-Menten kinetics.

0 1 2 3[S]
KA

0

1

v
Vmax

n=0.5
n=1
n=2
n=3

Figure 4.2: The flux v as a function of the substrate concentration [S] for the non-dimensional
Hill kinetics in Eq. 4.19 and different n. For [S] = KA is the flux v = Vmax

2 for all n.

The non-dimensional Hill kinetics of Eq. 4.19 is plotted in Fig. 4.2 for different
values of n where n = 1 gives the Michaelis-Menten kinetics of Fig. 4.1.
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4.1.3 Zero and first order kinetics

The last kinetics functions that we will discuss are zero and first order kinetics, which
are used for the fluxes in paper A, C and E. They are also used for the small example
in paper B. A zero order flux v is assumed to be constant such that

v = k (4.21)

for some constant k. This is a reasonable assumption for fluxes that are saturated, and
also for fluxes entering a network from the outside. A first order flux is assumed to be

v = kx (4.22)

where k is a constant and x is the substrate concentration in accordance with the no-
tation of the previous chapters. The assumption of a first order flux is reasonable if
the substrate is the limiting factor of the reaction such that it is far from being satu-
rated. This is the case for the Michealis-Menten kinetics of Fig. 4.1 for low substrate
concentrations, and a first order flux may be used to approximate it in the linear regime.

Remember that the Michaelis-Menten kinetics of Eq. 4.13 has two parameters,
while the first order kinetics of Eq. 4.22 only has one. For this reason, it may be
desirable to use first order kinetics to decrease the number of parameters in a model.

The parameters k in Eq. 4.21 and Eq. 4.22 are called kinetic parameters, and are
the ones that we want to estimate in this thesis. In paper C we do this for first order
kinetic parameters in a model of steroidogenesis using real data from an experiment [8].
In paper A and E we study the identifiability of first order kinetic parameters denoted
by θ instead of k under given zero order input fluxes denoted by b instead of k. See the
next chapter for more about parameter estimation.

4.2 Model reduction

The model equations on the form of Eq. 4.1 for a biochemical reaction network may
have a high degree of complexity, especially if more advanced kinetics than the ones
mention above are applied. For this reason, the model may possess complicated dynam-
ics and be difficult to analyse. One particularly challenging situation is if the model is
highly sensitive to parameter values and at the same time contains a large number of
parameters that need to be estimated. This could e.g. lead to an overfitted model [38].
If the model is too complicated for this or other reasons, it could be beneficial to ap-
ply some kind of model reduction to reduce its complexity. A dynamical model of a
reaction network should, however, be of sufficient complexity to be able to represent
important dynamical features of the network. To guarantee this, a potential model re-
duction should be performed in a controlled manner that does not reduce too much.
This is typically done by requiring that the output of the reduced model is sufficiently
close to the output of the original model by some defined measure.

One common way to reduce a dynamical model of high complexity is by model
order reduction, for a general introduction see e.g. Schilders et al. [73]. A model order
reduction reduces the dimension of the state space, in our case the dimension of the
concentration vector x. This implies that some of the assumptions previously made in
this thesis could actually be viewed as a model order reduction. In Sec. 1.2.3 about
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chemical reactions, we discussed the various types of chemical reactions that we all
model by the irreversible reaction X1 −→ X2 of Eq. 1.4. By leaving the intermediates
and co-factors of the reactions out of the model, this represents a model order reduction
discussed in e.g. Feliu and Wiuf [29] and Sáez et al. [70]. The second part of removing
intermediates in the chemical reactions from the model, is to obtain rate laws for the
simplified reactions used in the model. All of the kinetics discussed in Sec. 4.1 are
mathematically suitable for this, and the derivation of the Michaelis-Menten kinetics
in Sec. 4.1.1 justifies its biological applicability. It could also be viewed as a model
reduction to apply a simplified kinetics like the zero or first order kinetics in Sec. 4.1.3
to decrease the number of parameters in the model.

Assume now that we have a given network and a dynamical model on the form
of Eq. 4.1 that we somehow want to reduce. To perform the model reduction, we
need a method to reduce the model and a method to compare the reduced model to
the original model. There are several ways to do this with the most common being
lumping, sensitivity analysis and time-scale analysis [60, 66, 75]. However, we focus
on the reduction method presented in Rao et al. [67] that paper B is an extension of.
The method applies to a large class of kinetics, including the ones discussed in Sec. 4.1.

The reduction method of Rao et al. [67] starts by specifying a set MI of impor-
tant compounds, e.g. the compounds that are possible to measure the concentration
of. The concentrations of these important compounds will be used to evaluate the re-
duced models. Next, all the complexes (see Sec. 2.3) of the network are divided into
two categories. The first category will be all the complexes containing at least one of
the important compounds MI, and these complexes are not considered for reduction.
The second category is the remaining complexes not containing any of the important
compounds MI, and are the complexes considered for reduction.

The method assumes that the model reaches an asymptotically stable steady-state
that can be found be integrating the system for a long enough time. A complex is then
reduced by setting the concentration constant equal to its steady-state value, which
can be done simultaneously for any given set of complexes. For a discussion about
the possibility of multiple steady-states in a model such that the method can not be
applied, see e.g. Conradi et al. [18]. Being able to reduce the model for any given set
of complexes, Rao et al. [67] presents an iterative procedure to select which complexes
to reduce. At each step, the complex yielding the smallest error between the reduced
and original model is added to the set of reduced complexes until a certain value for the
error is reached and the process stopped. The error is computed by the integral

IT
(
xr,x f

)
= ∑

i∈MI

1
T n(MI)

∫ T

0

∣∣∣∣1− xir(t)
xi f (t)

∣∣∣∣dt (4.23)

where T is length of the time interval considered, n(MI) is the number of compounds in
MI, xir(t) is the concentration of compound number i in the reduced model with vector
notation xr and xi f (t) with vector notation x f is the same for the full model. This gives
the relative difference between the concentrations of the important compounds MI in
the reduced and original model over the given time interval [0,T ].

One drawback of the method of Rao et al. [67] is that it does not consider parameter
uncertainty as the error in Eq. 4.23 only is computed for a single parameter set. In
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paper B [31] we address this, and start by defining the symmetric error measure

ET (x1,x2) =
1
2
(IT (x1,x2)+ IT (x2,x1)) (4.24)

based on Eq. 4.23 that can be computed for any two models without favouring one of
them. Our method assumes that we have a given number of parameter sets, and that all
possible reduced models are calculated for all parameter sets. By using single linkage
clustering and Eq. 4.24 as dissimilarity measure, we cluster the original and reduced
models for all the parameter sets which can be visualized in a dendrogram [43] like the
ones shown in Fig. 4.4. A given reduction will then have some distribution throughout
the dendrogram for the various parameter sets that can be visualized by coloring.

To evaluate a reduction, we use a Kolmogorov-Smirnov (KS) test [17] for the dis-
tributions of the reduction and the original model. Reductions with a test score below
some threshold are said to be consistent with the original model. The best reduced
model is then chosen to be the consistent model that is reduced the most.

Figure 4.3: Fig. 2 of paper B, the yeast glycosis example network from Rao et al. [67]. The
nodes are compounds and the arrows reactions. The pink compounds are the important com-
pounds not considered for reduction, while the black ones are candidates for reduction. For a
more detailed description of the figure, see the original figure in paper B.

To test the method, the yeast glycosis example network of Fig. 4.3 from Rao et al.
[67] is considered in paper B with the resulting dendrograms in Fig. 4.4. Each panel of
Fig. 4.4 is the result for a sample of 100 parameter sets from a log-normal distribution.
The expectation of each parameter is equal to its reference value, and the standard de-
viation of each parameter is equal to its reference value divided by a scaling factor. We
see that for high parameter uncertainty (scaling 3) the original models are distributed
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throughout the whole dendrogram such that all models are equally good and the model
may be maximally reduced. For low parameter uncertainty (scaling 100) the original
models are clustered closely together and the model should not be reduced much. This
illustrates the need to consider parameter uncertainty when doing model reduction to
obtain a suitable model complexity compared to the parameter uncertainty.

It is also shown for a toy example in paper B that it could sometimes give a lower
error to reduce two complexes than only one, such that the iterative method of Rao et al.
[67] may not reduce the model even though an acceptable reduction exists.
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Figure 4.4: Fig. 5 of paper B. Dendrograms for the example in Fig. 4.3 where parameters were
sampled from a log-normal distribution with standard deviation equal the reference value of
the parameter divided by the scaling factor given in the title of each panel. The original models
are colored in red, models where F16BP is reduced in purple and all other models in blue.



Chapter 5

Parameter estimation and identifiability

A dynamical model for the concentrations in a reaction network contains several kinetic
parameters defined by the kinetics. If θθθ is the parameter vector, Eq. 4.1 can be written

dx
dt

= f(x,θθθ) (5.1)

to make the dependence on the parameters explicit. For some reactions, the parame-
ter values from a controlled experiment can be found in databases such as BRENDA
[71] and SABIO-RK [84]. However, the parameters must in general be estimated if a
dynamical model for a reaction network is to be made. This is done in paper C for a
model of steroidogenesis, and we start the chapter by looking at this example.

5.1 Parameter estimation in paper C

The steroidogenesis pathway [6] discussed in Sec. 1.1.3 is studied in paper C [8] for
forskolin stimulated cells. It consists of the 19 steroids shown as boxes in Fig. 5.1. In
the experiment of paper C, cells were exposed to 1.5µM forskolin. The concentrations
of the steroids were then measured at the nine different time points tk of Tab. 5.1 af-
ter the forskolin exposure. We see that the time span of the whole experiment is 72
hours, and that the measurements are more frequent in the first part of the experiment.
The concentrations were measured for three independent biological replicates with two
technical replicates each such that we have six observations for each concentration.
However, some values were undetected and are considered as missing in the following.

k 0 1 2 3 4 5 6 7 8
tk [h] 0 2 4 6 12 24 36 48 72

Table 5.1: The nine time points tk for the measurements of the steroids with unit hours.

For each of the steroids, the average concentration at each time point is calculated
where missing values are omitted from the calculations. The resulting average concen-
trations for all the steroids except Pregnenolone are shown as the circles in Fig. 5.2. We
see that some of the early data points e.g. for Estriol are missing, which implies that all
the observations are missing for the steroid at that time point.
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Figure 5.1: A redrawing of Fig. 4 in paper C showing the dynamical model for steroidogenesis.
The boxes are steroids and the arrows reactions with reaction rates (fluxes) v j. Some reaction
indices are not used since some fluxes are removed in paper C, see the manuscript for details.

Figure 5.2: Fig. 5 in paper C. The circles are the average measured concentrations at the
time points of Tab. 5.1 and the lines the values from the dynamical model of Eq. 5.2 with the
parameter values of Tab. 5.2. The unit of the time is hours and the unit of the concentrations
is nanomolar, i.e. nM = 10−9 mol/L.
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The dynamical model of Fig. 5.1 for steroidogenesis is proposed in paper C, and
studied further in paper E using the results of paper A.

Since there are no inputs to the system, the concentration of Pregnenolone is mod-
elled as given and interpolated from the average concentrations. The remaining con-
centrations are modelled by a dynamical system on the form discussed in the previous
chapters, where the fluxes v j are given by the first order kinetics of Eq. 4.22. This gives

dx2
dt = v1 − v2 = θ1x1 − θ2x2

dx3
dt = v2 − v3 − v22 = θ2x2 − θ3x3 − θ22x3

dx4
dt = v3 − v4 = θ3x3 − θ4x4

dx5
dt = v4 = θ4x4

dx6
dt = v5 − v7 − v11 = θ5x1 − θ7x6 − θ11x6

dx7
dt = v7 − v8 = θ7x6 − θ8x7

dx8
dt = v8 − v9 = θ8x7 − θ9x8

dx9
dt = v9 − v10 = θ9x8 − θ10x9

dx10
dt = v10 = θ10x9

dx11
dt = v11 − v12 − v13 = θ11x6 − θ12x11 − θ13x11

dx12
dt = v13 − v14 − v16 = θ13x11 − θ14x12 − θ16x12

dx13
dt = v16 − v18 − v19 = θ16x12 − θ18x13 − θ19x13

dx14
dt = v19 = θ19x13

dx15
dt = v12 = θ12x11

dx16
dt = v15 = θ15x17

dx17
dt = v14 − v15 − v20 = θ14x12 − θ15x17 − θ20x17

dx18
dt = v20 = θ20x17

dx19
dt = v18 = θ18x13

(5.2)

as model equations where xi is the concentration of steroid i, and the various θ j are the
kinetic parameters to be estimated. Note that k is used instead of θ in paper C.

Let now x̄i (tk) be the average measured concentration of steroid i at time tk. To run
the dynamical model of Eq. 5.2 we use the initial values

xi (t0) = x̄i (t0) (5.3)

where the initial value for a steroid is set to zero if all the measurements were missing.
Further, let x̂i be the maximal average concentration for steroid i given by

x̂i = max
k
{x̄i (tk)} (5.4)

which is used as normalization constant in paper C. Note that paper E also uses similar
normalization constants, but these are given by the final dynamical model of paper C.

The estimated values θ̂θθ of θθθ in paper C are by the minimization

θ̂θθ = argmin
θθθ

8

∑
k=1

19

∑
i=2

x̄i(tk) exists

(
xi (tk)− x̄i (tk)

x̂i

)2

(5.5)



44 Parameter estimation and identifiability

of a weighted least squares objective function. The minimization was performed nu-
merically by using the package TMB in R [51] which calculates point estimates and
standard errors for the estimates. The resulting values are shown in Tab. 5.2.

Estimate [h−1] Error [h−1]
θ1 2.94 ·10−1 1.02 ·100

θ2 1.24 ·101 4.36 ·101

θ3 3.43 ·10−4 2.15 ·10−4

θ4 1.02 ·10−2 6.12 ·10−3

θ5 5.99 ·10−1 1.43 ·10−1

θ7 6.49 ·10−2 4.24 ·10−2

θ8 6.78 ·10−1 4.10 ·10−1

Estimate [h−1] Error [h−1]
θ9 4.29 ·10−3 3.19 ·10−3

θ10 5.67 ·10−4 5.12 ·10−4

θ11 7.94 ·10−2 4.74 ·10−2

θ12 1.89 ·10−1 1.32 ·10−1

θ13 1.03 ·10−1 6.91 ·10−2

θ14 6.54 ·10−3 3.94 ·10−3

Estimate [h−1] Error [h−1]
θ15 3.98 ·10−2 3.00 ·10−2

θ16 3.31 ·10−3 2.19 ·10−3

θ18 5.79 ·10−3 4.89 ·10−3

θ19 3.33 ·10−3 2.66 ·10−3

θ20 1.84 ·10−4 1.49 ·10−4

θ22 6.12 ·10−1 2.32 ·100

Table 5.2: Parameter estimates from Tab. 4 in paper C including point estimate and estimated
standard error of the estimate. The parameters are denoted by k j instead of θ j in paper C.

We see that the standard errors of the estimates are large compared to the estimates,
which is reasonable due to the limited amount of data. In particular are the errors for
the parameters θ1, θ2 and θ22 large, which are associated with the leaving flux v22.
However, we see from Fig. 5.2 that the model captures the main trends of the data.

Even though the quality of the resulting dynamical model may be questionable, it
illustrates how data can be used to fit a dynamical data. This motivates the need to
develop experimental assays that are able to obtain time-course data of concentrations,
which was the main objective of paper C. It could also be noted that the dynamical
model could only be valid for a limited time interval as it contains seven terminal nodes
where the concentrations would accumulate. For this reason, an adjusted model is
presented in paper E to allow for interesting steady-states.

5.2 Identifiability

An important question when doing statistical inference to estimate model parameters
is whether or not the true parameter values could be obtained from data. Assume some
model is given where g(θθθ) is the model output for parameter values θθθ . The output
could be either a dynamical function of some other variable or a vector of fixed values.
The model parameters θθθ are said to be identifiable if the output g(θθθ) satisfies

g(θθθ 1) = g(θθθ 2) ⇒ θθθ 1 = θθθ 2 (5.6)

where the equality for g(θθθ) is an identity in the case of g(θθθ) being a function of
some other variable. The definition of identifiability in Eq. 5.6 is often referred to
as structural identifiability as it is purely a property of the model structure. In paper
A, we say that the parameters θθθ are globally identifiable if Eq. 5.6 holds for all θθθ 1
and θθθ 2. If Eq. 5.6 holds for all θθθ 2 for a fixed θθθ 1, we say that the parameters θθθ are
locally identifiable at θθθ 1. Note that with these definitions, the parameters are globally
identifiable if they are locally identifiable for all values.

There are several publications about identifiability of dynamical models relevant to
reaction networks [11, 16, 49, 50, 59, 68, 69, 80]. Most of these assume a general
dynamical function g(θθθ), and do not assume any special structure of the model. Some
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of the papers also have slightly different definitions of identifiability than the ones used
in paper A, at least for the local identifiability.

In paper A, we study the identifiability of first order kinetic parameters in a reac-
tion network at steady-state. We assume that the input fluxes to network are known
design parameters, and that the model output g(θθθ) is the steady-state concentrations of
the metabolites for different values of the input fluxes. We present an identifiability cri-
terion using the stoichiometric matrix and the active reactions discussed in Sec. 3.5.1
that is easy to check. We also provide a criterion to check if there exists a set of values
for the input fluxes such that identifiability is attained.

In paper E, the method of paper A is applied to the dynamical model of paper C
in the previous section. To do so, the method is extended and generalized to networks
with a tree structure like the model of paper C. See the manuscript for more details.

5.3 Fisher information matrix and experimental design

The structural identifiability of a model is considered in the previous section, which
implicitly assumes that the output g(θθθ) from the model is known without errors. This
is, however, rarely the case as g(θθθ) must be observed and the observations will contain
errors. For this reason, one should also consider the practical identifiability of the
parameters even though the model is structurally identifiable. One method to explore
the practical identifiability of a model is the profile likelihood, see Raue et al. [68].

In paper A, the kinetic parameters θθθ are estimated using maximum likelihood es-
timation. The observations are assumed to be the steady-states for m different sets of
known input fluxes given by a vector bl for each case where l ∈ {1, . . . ,m}. For each
input vector bl , the true steady-state is denoted zl and the observed steady-state yl . It is
assumed that the vector yl is a realization of stochastic variable Yl with a normal distri-
bution Yl ∼ N

(
zl,σ2I

)
where σ2 is the variance of each observation and I the identity

matrix. In addition are all the different Yl assumed to be mutually independent. This
gives a joint density f

(
y1, . . . ,ym|θθθ ,b1, . . . ,bm,σ2

)
for all the observations Yl .

The likelihood function L for given observations y1, . . . ,ym is then given by

L
(
θθθ |y1, . . . ,ym,b1, . . . ,bm,σ2)= f

(
y1, . . . ,ym|θθθ ,b1, . . . ,bm,σ2) (5.7)

which is a function of θθθ . The maximum likelihood estimate θ̂θθ for θθθ is then

θ̂θθ = argmax
θθθ

[L(θθθ |x)] . (5.8)

Having defined the joint density, we compute the Fisher information matrix (FIM)
Iθθθ =

{
Ii j
}

analytically in paper A [15, 54]. The entries Ii j of the matrix are given by

Ii j = EY

[(
∂ ln f
∂θi

)(
∂ ln f
∂θ j

)]
(5.9)

where θθθ is given and the expectation is taken with respect to the density f of the Yl’s.
The FIM is a measure of the parameter information in the observations, and is com-

puted for a given parameter value θθθ . If Iθθθ is non-singular for a given value of θθθ , the
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parameters are locally identifiable at this value. This implies that Iθθθ is non-singular for
all θθθ if the parameters are globally identifiable. The asymptotic covariance matrix for
the estimate θ̂θθ of Eq. 5.8 is given by I−1

θθθ
. In particular is the asymptotic estimation

variance ∑
j

Var
(
θ̂ j
)

given by Tr
(
I−1

θθθ

)
which we calculate in paper A for an example.

Having an analytical expression for the FIM is uncommon, as it usually must be
calculated numerically. In paper A we use it to find D-optimal [28] inputs bl

∗ given by[
b1
∗, . . . ,b

m
∗
]
= argmax

b1,...,bm
[det(Iθθθ )] (5.10)

where some constraint must be applied to the input vectors to keep the maximization
from being unbounded. In paper E, optimal input fluxes are found by this method for
the steroidogenesis pathway using the parameter values discussed in Sec. 5.1 that are
estimated from real data in paper C.



Chapter 6

Data analysis in paper D

So far have we considered dynamical models of reaction networks, and all the papers
except paper D are based on such models. In paper D, however, experimental data are
analysed using traditional statistical methods without a dynamical model.

The aim of Paper D [9] was to assess exposure effects of chlorinated, brominated
and perflourinated chemicals to the steroidogenesis pathway [6] discussed in Sec. 1.1.3
and shown in Fig. 6.1. Both single and combined mixtures were considered, giving
a total of seven different mixtures. Each of these mixtures have four different con-
centrations denoted low, medium, high and very high corresponding to 1, 10, 100 and
1000 times the estimated concentration in human blood, respectively. For the bromi-
nated and perflourinated mixture, the low concentration is replaced by a concentration
10 000 times the blood value. In addition to the four different concentrations is the
experiment performed both for unstimulated (treated with DMSO) and forskolin stim-
ulated cells, which can be viewed as two different conditions. This gives a total of

(7 mixtures) · (4 concentrations) · (2 conditions) = 56 cases . (6.1)

For each of these, the concentrations of 16 steroids were measured after 48 hours ex-
posure. Each concentration was measured a total of nine times using three independent
biological replicates with three technical replicates each. Undetected values and con-
centration values below the detection limit were replaced by half the detection limit.

Since the main objective of the study is the response to the various exposures, the
actual concentrations values may not be too interesting. In addition, there could be
differences between the biological replicates such that the concentration values from
different replicates not necessarily are comparable. For this reason, we transform all
the concentrations to fold changes before doing any analyses. The fold change (FC) for
a measurement of a steroid concentration is given by the fraction

FC =
measurement

control
(6.2)

where the control value for the measurement is the average concentration of the steroid
for the same biological replicate without any exposure.

Since all concentrations are positive, the FC will also be a positive value. A value
below one is referred to as a downregulation and a value above one an upregulation.

When working with FC values it is common to do a log-transform since the range
for downregulation is given only by the interval (0,1), while an upregulation is given
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Figure 6.1: Fig. 2A of paper D. Average fold change values of the steroids in the steroidogen-
esis pathway for forskolin stimulated cells under exposure of a chlorinated and perflourinated
mixture. The box for each steroid is divided into four parts corresponding to (from left to right)
low, medium, high and very high mixture concentration. Each value is colored according to
the log2-value of the fold change of Eq. 6.3, where the colorbar is shown at the bottom and a
value of log2 (FC) = 0 corresponds to no mixture effect. Gray boxes are missing data.

by (1,∞). In paper D, we use the logarithm with base 2 giving

log2 (FC) = log2

(
measured
control

)
= log2 (measured)− log2 (control) (6.3)

which can be any number in R. Downregulation is then given by a negative value and
upregulation by a positive value. Note that log2 (FC) is symmetric in the sense that a
value of -1 corresponds to half the control and a value of 1 to double the control, which
is desirable since the two values correspond to what can be seen as inverse events. Also
note that some texts refer directly to what we denote log2 (FC) as the fold change.

The average fold change values for the four different concentrations of the chlori-
nated and perflourinated mixture and forskolin stimulated cells are shown in Fig. 6.1.
The averages were computed after transforming to the fold change values of Eq. 6.1,
but before performing the log-transform of Eq. 6.3.

Since there are 16 steroids measured for each of the 56 cases, the experiment results
in 896 different average fold change values. To test for significant effects, we use a
standard t-test [41] for each of the 896 different values. For each of these we use
the nine replicates after they are transformed to the fold change values of Eq. 6.1, but
without the log-transform of Eq. 6.3. The null hypothesis for the test of no effect then
corresponds to a fold change value of one. All the 896 tests result in a p-value where
a p-value below the significance value of α = 0.05 is considered a significant effect.
However, due to the large number of tests we need to perform a correction for multiple
testing to reduce the number of false positives. This was done using the method of
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Figure 6.2: Fig. 1 of paper D. Average fold change values for all the 16 measured steroids
in unstimulated (DMSO) and forskolin stimulated cells. Each value is colored according to
the log2-value of the fold change of Eq. 6.3 where the colorbar is shown at the bottom of the
figure. The abbreviations for the mixtures are B for brominated, C for chlorinated and F for
perflourinated. The abbreviations for the levels (concentrations) are L for 1, M for 10, H for
100, VH for 1000 and VH10 for 10 000 times the concentration in human blood. An asteriks (*)
indicates a significant effect with p≤ 0.05 and a double asterisk (**) a strong significant effect
with p≤ 0.01 where the p-values are adjusted for multiple testing. The coloring of the steroid
names is according to a classification of the steroids.

Holm [42] that calculates adjusted p-values and keep the significance level.
The average fold changes for all the 896 concentrations are plotted in Fig. 6.2 to-

gether with significance indicators from the adjusted p-values. We see that most of
the significant effects are for the highest concentration of the brominated and perflouri-
nated mixture, but this mixture has a 10 times higher concentration than the highest
concentration of the other mixtures. This could also affect the p-values of the other
tests since the p-values for this mixture are much lower than for the other mixtures. It
should also be noted that there are only nine replicates for each test, with what seems
to be a high natural variability. For this reason is it natural that we do not get many
significant effects for the lower mixture concentrations.

In paper D, we also tested if the effect for a combined mixture of two compounds
could be predicted by the effects of the corresponding single mixtures. The null hy-
pothesis is that the effect is additive in the fold changes such that

FC = FC1 +FC2−1 (6.4)
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where FC is the fold change of Eq. 6.1 for the combined mixture and FC1 and FC2 are
the fold changes for the two single mixtures. To test for significant non-additive effects,
we performed ANOVA for linear models with and without interaction [22]. Also here,
the resulting p-values were adjusted for multiple testing using Holm [42]. The result
for the brominated and chlorinated mixture and the forskolin stimulated cells are shown
in Fig. 6.3. We see that there is only one statistically significant non-additive effect.
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Figure 6.3: Fig. 4 of paper D. Average fold change values for the steroids in forskolin stimu-
lated cells for the brominated and chlorinated mixture. The four values for each steroid is for
the low, medium, high and very high concentrations that correspond to 1, 10, 100 and 1000
times the concentration in human blood, respectively. The red circles are fold change values
predicted from the single mixtures by Eq. 6.4, while the blue crosses are the observed values.
The 17-hydroxyprogesterone for the high concentration has the only statistically significant
non-additive effect with p≤ 0.05, and is marked with an asterisk (*).



Chapter 7

Overview of the papers

We end part I of the thesis by a short overview of the papers and how they are connected.
This is visualized in Fig. 7.1 where both existing and potential connections between the
five papers are included in the figure.
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Figure 7.1: Overview of the papers in the thesis and the connections between them. A solid
line represents an existing connection, while a dashed line represents a possible connection.
The papers on the left hand side have a mathematical focus, while the papers on the right hand
side have a biological focus. Paper E is mathematical, but uses measurements from paper C.

Paper A is the most theoretical work and develops a framework for experimental
design. The framework assumes a dynamical model with zero order kinetics for the in-
put fluxes and zero order kinetics for the remaining fluxes. Such a model is constructed
in paper C for the steroidogenesis pathway where the parameter estimates are obtained
from measurements. This is made use of in paper E where the framework developed in
paper A is applied to the model presented in paper C.
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Paper B is a mathematical paper and develops a method to evaluate model reduction
under parameter uncertainty. As indicated in Fig. 7.1 could it potentially be combined
to the method in paper A, e.g. by reducing the network to obtain identifiability.

Paper D could be viewed as an alternative approach to the remaining papers. In this
paper, no dynamical model is assumed or created. Instead, measured concentrations
are evaluated using statistical methods and there is no attempt to give a mechanistic
description of the system. The experimental setup, however, is completely different
to paper C where a dynamical model is constructed. Instead of measuring the con-
centrations at different times in the same experiment, the concentrations in paper D
are measured at a given time for different experiments. Both papers, however, contain
measurements of concentrations for steroidogenesis such that the data are comparable.

The dashed lines in Fig. 7.1 suggest some candidates for further work. Another
option could be to apply some of the methods in the papers to other pathways than
steroidogenesis. Obvious candidates for this are pathways that are relevant for salmon
louse or cod based on the biological motivation of Sec. 1.1.
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Evaluating model reduction under
parameter uncertainty
Håvard G. Frøysa*, Shirin Fallahi and Nello Blaser

Abstract

Background: The dynamics of biochemical networks can be modelled by systems of ordinary differential equations.
However, these networks are typically large and contain many parameters. Therefore model reduction procedures,
such as lumping, sensitivity analysis and time-scale separation, are used to simplify models. Although there are many
different model reduction procedures, the evaluation of reduced models is difficult and depends on the parameter
values of the full model. There is a lack of a criteria for evaluating reduced models when the model parameters are
uncertain.

Results: We developed a method to compare reduced models and select the model that results in similar dynamics
and uncertainty as the original model. We simulated different parameter sets from the assumed parameter
distributions. Then, we compared all reduced models for all parameter sets using cluster analysis. The clusters revealed
which of the reduced models that were similar to the original model in dynamics and variability. This allowed us to
select the smallest reduced model that best approximated the full model. Through examples we showed that when
parameter uncertainty was large, the model should be reduced further and when parameter uncertainty was small,
models should not be reduced much.

Conclusions: A method to compare different models under parameter uncertainty is developed. It can be applied to
any model reduction method. We also showed that the amount of parameter uncertainty influences the choice of
reduced models.

Keywords: Model reduction, Parameter uncertainty, Clustering, Systems biology

Background
Modelling of biochemical networks
Biochemical networks consist of chemical reactions
between compounds, such as enzymes and metabolites.
Through these reactions, the various compounds are con-
sumed and produced. Each of these reactions has a reac-
tion rate (flux) that typically depends on the compound
concentrations, giving a dynamical behaviour of the sys-
tem. The compound concentrations can thus be modelled
by systems of ordinary differential equations (ODEs) and
such dynamical models of biochemical networks may give
biological insight that could not be obtained by mod-
elling the compounds individually. However, the network
dynamics may be complex and difficult to model accu-
rately. The chemical reactions could possess advanced

*Correspondence: havard.froysa@uib.no
Department of Mathematics, University of Bergen, Mailbox 7803, 5020, Bergen,
Norway

kinetics such as activation and inhibition. In addition, the
dimensions of the network may be large, for example the
central energy metabolism in E. coli consists of more than
50 metabolites and 100 reactions [1].

Model reduction
The potential high complexity of the ODEs in the model
represents a major challenge in analysing the dynam-
ics of the system. Model reduction is a method for
studying biochemical networks as it aims to identify the
main components governing the dynamics of the sys-
tem. The reduced model should be simpler to analyse,
but retain the dynamical behaviour of the original model.
There are different approaches to reduce the complexity
of biochemical reaction networks, with the most com-
mon ones being lumping, sensitivity analysis and time-
scale analysis [2–4]. Lumping combines compounds with

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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similar behaviour into pseudo-compounds and consid-
ers differential equations involving these lumped pseudo-
compounds [5, 6]. By performing parameter sensitivity
analysis, the parameters with the least effect on the system
output are neglected [7, 8]. In time-scale separation, bio-
logical processes are split into fast and slow processes and
then the focus is put on the relevant time scale [9–15].
Another challenge in the analysis of complex net-

works is the lack of information on the kinetic prop-
erties of the reactions and parameter values. Reduction
approaches that are not influenced by parameter uncer-
tainty or incompleteness are called parameter indepen-
dent reduction methods. For example, some reduction
techniques based on exact lumpingmethods [5, 6] or qual-
itative reduction methods [16, 17] are parameter indepen-
dent. Such reduction methods have been used extensively
for signalling networks. For most reduction techniques,
including methods based on time-scale separation or sen-
sitivity analysis, the full parametrization of the model
is required. In parameter dependent reduction, model
parameters can play a significant role in selecting the
elements for reduction. For some biochemical networks,
the accuracy and validity of the reduced model can be
influenced by changing the range of parameters so that
the reduced model is only valid locally [3]. For reaction
networks with well separated parameter values, reduced
models capture the dynamical behaviour of the original
model with an acceptable level of accuracy for an exten-
sive range of parameter values [11, 18]. This, however, is
not the case for general networks.
While there is a large literature on model reduction

techniques, there is a lack ofmethods for evaluatingmodel
reductions. Some ad-hoc methods are the difference or
scaled difference between the full and reduced model [5,
9], an error integral [14] and a criterion based on the initial
values [10]. We are not aware of any criteria for evaluation
of model reductions that takes parameter uncertainty into
account. We present a new way to evaluate model reduc-
tions that takes parameter uncertainty into account and
show the benefit of this method on two example networks.

Methods
Mathematical framework
The state variables of the dynamical model are the con-
centrations of the compounds. These compounds occur
in different combinations on the left and right hand side
of the chemical reactions of the network, where such a
combination is called a complex [14]. For example, the
chemical reaction X1 + X2 → X3 consists of the com-
pounds X1, X2 and X3, and the complexes X1 +X2 and X3.
The complex on the left hand side of an equation being
consumed is called the substrate complex of the reaction
and the complex on the right hand side of the reaction
being produced is called the product complex. All this

information can be represented mathematically by a sto-
ichiometric matrix [1] which gives the structure of the
network.
In the notation of Rao et al. [14] the complexes are given

by a matrix Z where the columns are the non-negative
integer stoichiometric coefficients of the different com-
plexes. The internal reactions are given by the linkage
matrix B where each column corresponds to a reaction.
This column is zero except in the rows corresponding to
the substrate and product complex where it is -1 and 1,
respectively. Let xi(t) be the concentration of compound
i at time t and x(t) the corresponding vector quantity.
The dynamics of any biochemical network is given by the
system

ẋ = ZBv + Zvb (1)

of ODEs where Z and B give the network structure as
described above. The vector v provides the internal fluxes
of the network and vb the boundary fluxes, i.e. the fluxes
entering or leaving the network. As the fluxes typically are
functions of x, we restrict the internal fluxes v to the form

vj(x) = kjdj(x) exp
(
ZT
SjLn(x)

)
(2)

considered in [14] where kj is a kinetic proportionality
constant of reaction j, dj(x) is any function of x, ZSj is the
column of Z corresponding to the substrate complex of
reaction j and Ln(x) is the mapping defined by (Ln(x))i =
ln(xi). Further, let ZS be the matrix where column j is ZSj ,
i.e. the substrate complex of the reaction.
The dynamical model (1) now has the parameters kj in

addition to potential parameters in vb(x) and the func-
tions dj(x). A given set of values for such a parametriza-
tion will be called a parameter set. The unreduced model
described by (1) will be referred to as the full or original
model.

Reduction
Weuse the reduction procedure of Rao et al. [14] to reduce
the model for a given parameter set. The first step in this
procedure is to specify a set MI of compounds consid-
ered to be important in the view of experimental design,
e.g. the ones that are possible to measure. Note that the
choice of MI is subjective, but plays a major role in the
reduction as the dynamics of the compounds in MI are
the ones used to compare the different reduced models.
Then, the complexes of the network are divided into two
categories. The first category is the complexes containing
at least one of the compounds in MI. These complexes
will not be considered for reduction. The other category
is the complexes not containing any of the compounds in
MI, and these will be the complexes considered for reduc-
tion. The reduction is then based on the assumption that
the model approaches some steady state that can be found
by integrating the system for a long enough time and that
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the model is asymptotically stable around the steady state.
A complex is reduced by setting its concentration constant
equal to the corresponding steady state value of the full
model. This can be done simultaneously for any number
of complexes.
Having the possibility to reduce any given set of com-

plexes, an iterative method to choose the complexes to
be reduced is presented in Rao et al. [14]. It is a greedy
method that reduces one complex at the time, always
choosing the one yielding the smallest error as defined
below. Finally, it stops when an error threshold is reached.
However, since the reduced models are independent of

the order of reduction, we consider all possible simulta-
neous reductions of complexes. Assume now that there
are c complexes eligible for reduction. It is then possible
to reduce anywhere from 0 to c complexes, where reduc-
ing 0 gives the full model. In total there are 2c possible
reduced models for a given original model and parame-
ter set. For each of these models, the concentrations of
the compounds inMI are then used to compare the mod-
els. When having n different parameter sets for the same
original model, we perform the described reduction pro-
cedure for all the parameter sets. This yields 2c possible
reduced models for each parameter set and a total of n · 2c
different reduced models.

Comparing models
We need to be able to compare the dynamics of the dif-
ferent reduced models. In Rao et al. [14] the difference
between the original model and a given reduced model
is measured by an error integral. Let the concentration
at time t of compound number i be xir(t) and xif (t) for
the reduced and the full model, respectively. Further, let
xr and xf be the corresponding vector quantities for all
the compounds. Finally, let n (MI) be the number of com-
pounds inMI and [0,T] the time interval that we evaluate
the dynamics over. The error integral is then given by

IT
(
xr , xf

) =
∑
i∈MI

1
Tn (MI)

∫ T

0

∣∣∣∣1 − xir(t)
xif (t)

∣∣∣∣ dt (3)

which gives the average relative difference between the
full and reduced model for all the compounds inMI over
the given time interval. Note that the error integral is
non-symmetric in its arguments. However, we need to
compare any two (reduced) models without favouring one
of them. For this reason we introduce the symmetric error
measure

ET (x1, x2) = 1
2

(IT (x1, x2) + IT (x2, x1)) (4)

where x1 and x2 are the compound concentrations of any
two (reduced) models. Note that this errormeasure can be
calculated also for twomodels having different parameters
as long as they have the same setMI.

Clustering
We use single linkage clustering [19] with the symmet-
ric error as dissimilarity measure to cluster all the n · 2c
models with different parameter sets and reductions.
Single linkage clustering is an agglomerative clustering
method, which means that initially every model is in
its own cluster. The dissimilarity d(C1,C2) between two
clusters C1 and C2 is calculated as the minimal symmet-
ric error minx∈C1,y∈C2 ET (x, y). The two clusters with the
lowest dissimilarity are combined into one cluster at a
hight given by their dissimilarity. Clusters are iteratively
combined until only one cluster remains. This stepwise
process can be visualized in a dendrogram [20]. A den-
drogram provides a complete description of the single
linkage clustering. From such dendrograms it is appar-
ent which models are most similar and which models are
more different.
We then color the dendrogram according to the used

reduction. Each reduction is mapped to a color and
each leaf of the dendrogram receives the color asso-
ciated to its reduction. Model reductions that cluster
together with the original model do not change the model
behaviour, whilemodel reductions that are separated from
the original model changed the model behaviour. So if
the dendrogram separates colors, we consider the model
reduction that causes the separation to change the model
behaviour. The reduced models that are distributed in
a similar way as the original model in the dendrogram
are considered to be consistent for the given parameter
uncertainty.
In order to analytically compare the distributions of

different models in the dendrogram, we calculate the
positions in the dendrogram for each model. We then
use the test statistics of a Kolmogorov-Smirnov test [21]
between a given model and the full model as score for
the model. For a given threshold α, we say that mod-
els with a score lower than the threshold are consis-
tent with the full model at threshold α. Finally, the best
reduced model is then chosen to be the consistent model
that uses the most reductions. In the case of several
consistent models having the same number of reduc-
tions, the best model is the one with the lowest score.
For the remainder of this article we use a threshold
of α = 0.2.

Simple example
To illustrate the method, we created a small example net-
work consisting of four compounds as shown in Fig. 1.
Each compound occurs only one place in the network
and never in combination with other compounds, imply-
ing that the complexes are just the compounds. The set
MI of important compounds is chosen to be number 1
and 4 such that the intermediate compounds 2 and 3 are
considered for reduction.
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Fig. 1 Example network. Each node is a compound and each arrow a
reaction. The kj ’s are the kinetic parameters of the reactions.
Important compoundsMI and candidate compounds for reduction
are specified by pink and black rectangles, respectively. External fluxes
are indicated by blue arrows

We apply mass action kinetics. Then kj is the only
kinetic parameter of reaction j. In the notation of [14]
introduced earlier in the article, we have the matrices

Z=

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦B=

⎡
⎢⎢⎣

−1 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 1

⎤
⎥⎥⎦ZS =

⎡
⎢⎢⎣
1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

(5)

for the network. Usingmass action we have dj(x) = 1 such
that (2) becomes

vj(x) = kj exp
(
ZT
SjLn(x)

)
, j ∈ {1, 2, 3, 4} (6)

for the internal fluxes of v. The boundary fluxes are
given by

vb = [
k5 0 0 −k6x4

]T (7)

where the last entry is negative since the flux is leaving the
network.
The dynamics are now given by (1) and we have six

kinetic parameters kj associated with one of the six

fluxes each. We sampled several parameter sets, which as
expected lead to different reduction results. The parame-
ter set that was chosen as reference because it gives par-
ticularly interesting reduction results is shown in Table 1.
Then, 100 new parameter sets were sampled using this
reference set by assuming the parameters to be indepen-
dently log-normally distributed with the logarithm of the
reference values as mean on the log scale and 0.1 as log
standard deviation. We applied the reference initial values
for all of the parameter sets, and the models were then
reduced and clustered as described above.

Yeast glycolysis example
We also tested our method on a kinetic model of yeast gly-
colysis [22] shown in Fig. 2. This model was used in Rao et
al. [14] to demonstrate themodel reductionmethodwhich
ignores parameter uncertainty. The model is asymptot-
ically stable around the steady state and the governing
equations of the system can be represented in the form
of Eqs. 1 and (2) such that the reduction procedure can
be applied. The important compounds to form MI are
Glci, TRIO, BPG, PYR, AcAld and NADH. Accordingly,
the six candidates for reduction are F6P, G6P, P2G, P3G,
PEP and F16BP, which leads to a total of 26 = 64 possi-
ble reductions for a given parameter set including the full
model.
The model has 89 parameters for the different reactions

of the network. Each of these parameters should be non-
negative, and have a reference value used in [14]. To study
the effect of parameter uncertainty on the reduction we
sampled parameter sets using these reference values. We
assumed the parameters to be independently log-normally
distributed with mean equal to the reference value and
standard deviation equal to the reference value divided
by a scaling parameter. The parameters with reference
value zero were set to zero in the sampling. We sampled
100 parameter sets for each of the values 3, 5, 10, 20, 50
and 100 of the scaling parameter. For each of the param-
eter sets we performed model reduction and clustered
all the 100 · 64 = 6, 400 resulting models for each scal-
ing parameter as described above. We ended up with six
dendrograms containing 6400 models each.

Table 1 Initial values and reference kinetic parameter values for
the example network of Fig. 1

Parameter Value Initial value Value

k1 0.44 x1(0) 0.4

k2 0.03 x2(0) 0.0

k3 0.55 x3(0) 0.5

k4 0.44 x4(0) 0.4

k5 0.42

k6 0.33
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Fig. 2 Yeast glycolysis network. Each node is a compound and each arrow a reaction. Important compoundsMI and candidate compounds for
reduction are specified by pink and black rectangles, respectively. NAD indicated by a cyan rectangle is not explicitly included in the model as the
total amount of NAD and NADH is conserved. External fluxes are indicated by blue arrows. ∗, � and † show an irreversible reaction from NADH to
NAD, a reversible reaction between NADH and NAD and an irreversible reaction from NAD to NADH, respectively. As indicated in the network,
different types of these reactions bind to some of the fluxes

In order to check the sensitivity of the method to
the number of parameter sets sampled, we also sampled
1000 parameter sets for the model with scaling parame-
ter 50. For each parameter set we considered all model
reductions with a Kolmogorov-Smirnov test score below
a threshold of 0.5 for the 100 previous parameter sets. We
performed model reduction and clustering as above.
All analyses were performed in MATLAB [23]. All code

used to generate the results is available in the online
supplementary material.

Results
Simple example
For the used parameter values, the model with both com-
pounds number 2 and 3 reduced clustered together with
the original model and had a Kolmogorov-Smirnov score
of 0.17. Both the model with only compound 2 removed
and the model with only compound 3 removed had a
Kolmogorov-Smirnov score of 1.00. The models with only
compound 3 reduced were the furthest from the cluster
including the original model. Figure 3 shows the single
linkage cluster dendrogram. The behaviour changes sub-
stantially for different parameter values and parameter
uncertainties.

Yeast glycolysis example
The trajectories of the full model and all reduced mod-
els using the parameter set from [14] show no effect for
Glci, two groups for TRIO, PYR and NADH, but no clear
picture for BPG and ACALD (Fig. 4). For the reference
parameter set, we found two big clusters. The first clus-
ter contained the full models as well as all the models with
compound F16BP not reduced, and the second cluster
contained all models with F16BP reduced.
The clusterings for a distribution of parameters

depended on the parameter distribution. When the stan-
dard deviation was high, there were no clear clusters
and the full models were evenly distributed between the
reduced models (Fig. 5, top left). This means that the
uncertainty in the parameters had more effect than the
model uncertainty due to reduction. The more certain the
parameters were, the more we saw a clear picture emerge,
with all models that had compound F16BP reduced clus-
tering together and all other models forming a separate
cluster (Fig. 5, top right, bottom left). When decreasing
parameter uncertainty even further, the original models
started forming a cluster of models where both com-
pounds PEP and F16BP were not reduced (Fig. 5, bottom
right).
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Fig. 3Model clustering. Dendrogram from single linkage clustering of all model reductions with 100 parameters sets. Parameters were sampled
from a log-normal distribution with log standard deviation 0.1

In addition to finding clusters that are inconsistent with
the model uncertainty, we studied the distribution of the
reduced models in the dendrogram. In the case of large
parameter uncertainty (scaling parameters 3, 5, 10) the
distribution of the fully reduced model in the dendrogram

was similar to the distribution of the original model
(Kolmogorov-Smirnov 0.11 or smaller). In the case of rel-
atively large uncertainty (scaling parameter 20), all the
models that did not reduce F16BP were distributed sim-
ilarly to the original model (Kolmogorov-Smirnov 0.01).

Fig. 4 Yeast trajectories. TheMI states are shown for the reference parameters. Each color corresponds to a different model reduction
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Fig. 5Model clustering of F16BP reduced models. Dendrogram from single linkage clustering of all the model reductions using 100 parameters
sets. Parameters were sampled from a log-normal distribution with standard deviation as reference value divided by 3 (top left), 5 (top right), 10
(center left), 20 (center right), 50 (bottom left) and 100 (bottom right). The original models are shown in red, models where F16BP was reduced are
purple and all other models are blue

When the uncertainty was relatively low (scaling parame-
ter 50), all models with F16BP and PEP not reduced clus-
tered together with the full model (Kolmogorov-Smirnov
0.01 or 0.02). However, in the case of very low uncertainty
(scaling parameter 100) the only model whose distribu-
tion in the dendrogram was similar to the distribution
of the original model was the one where only F6P was
reduced (Kolmogorov-Smirnov 0.01). The sensitivity anal-
ysis showed that whether or not a reduction was con-
sistent for a given uncertainty did not dependent on the
number of parameter sets (Fig. 6).

Discussion
Wedeveloped a newmethod to evaluatemodel reductions
under parameter uncertainty based on the symmetric
error measure in (4). In the yeast glycolysis example we
showed that the amount of parameter uncertainty influ-
ences the model reduction. In particular, model uncer-
tainty and parameter uncertainty are positively related.
When the model parameters are uncertain, the model can
be reduced further without increasing uncertainty in the
model dynamics. We have also demonstrated empirically
that if a model can be reduced to a certain degree for a
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Fig. 6 Kolmogorov-Smirnov test scores. Kolmogorov-Smirnov test scores for all the model reductions using 100 parameters sets as well as the
sensitivity analysis with 1000 parameter sets (50L). The compounds in gray are reduced in the model of the corresponding row. Parameters were
sampled from a log-normal distribution with standard deviation as reference value divided by the scaling factor. Models that are consistent with the
original model are shown in light green and the best reduced model for each case is shown in dark green

given amount of uncertainty, then it can be reduced to
at least the same degree if the uncertainty increases. If a
model is used to analyse different scenarios, the param-
eters for all the scenarios should be considered when

reducing a model. A full model should only be reduced to
a model that is consistent for all considered scenarios. In
addition to parameter values, uncertainty in initial values
should also be considered. Our analysis shows that the
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reduction of Rao et al. [14] for the yeast model agrees with
our best reduction for a relatively high amount of uncer-
tainty, but becomes inappropriate for low or very large
uncertainty.
In the simple example we demonstrated that it is some-

times better to reduce two complexes than just one. This
also shows that even without parameter uncertainty the
iterative approach used in [14] may not find the best
reduction. Whether or not the best reduction is found
depends on the symmetric error cut-off value. In the
example, the reduced model would be found with sym-
metric error cut-off value at least 0.04, even though the
symmetric error is only 0.02. The reference values in
Table 1 for the parameters were chosen to illustrate this
behaviour.
The novelty of our approach is a new way to eval-

uate model reduction. This model reduction evaluation
criterion can be applied together with any model reduc-
tion method. Our criterion does not assume that the full
model with a given parameter set is optimal. Instead it
compares the full model with a wide range of param-
eter values to reduced models with the same range of
parameter values to find a reduced model with the same
properties, includingmodel uncertainty. A reducedmodel
with lower uncertainty in the trajectories could lead to
overconfidence in the results.
A limitation of our method is that we need to choose a

setMI of important compounds. This choice is subjective
and affects the resulting reduced model. However, there
are some natural choices for the set MI, which depend
on the model purpose. Of course MI should contain all
the compounds the study is investigating. It should also
contain all the compounds whose concentrations are mea-
sured experimentally. Another limitation of our approach
is that we have to choose the length T of the time series.
It is important that at time T the trajectories are close to
the steady state, because otherwise the error integral does
not cover the entire model dynamics. On the other hand T
should not be too large because otherwise the error inte-
gral reduces to the difference in steady states. If the model
does not approach a steady state the dissimilarity measure
we use may not be appropriate. There may also be some
scaling issues with our proposed approach. Already in the
case where we have to evaluate 64 models, we have to cal-
culate a 6400×6400matrix of dissimilaritymeasures using
100 parameter sets. For most practical examples, however,
it is possible to reduce the sample space of reductions to
a manageable size. In our sensitivity analysis with 1000
parameter sets, we have solved the issue by using the first
100 parameter sets to exclude some model reductions,
which lead to a 32, 000× 32, 000 dissimilarity matrix. The
calculation of this matrix is the computational bottleneck
of the method, but parallel computing can be applied.
Moreover, it is possible to iteratively compare only a few

models at a time. We suggest that investigators adapt
their strategies for model reduction based on model size,
complexity and choice of the set MI. The Kolmogorov-
Smirnov score leads to an automatic way of choosing
the best reduced model. However, we believe that it is
important to look at the dendrograms and not choose the
model reduction only based on the Kolmogorov-Smirnov
scores.

Conclusions
We presented a new method for evaluating models under
parameter uncertainty and applied it for comparing full
models to reduced models. We showed that multiple
reductions can result in better models than individual
reductions and that the amount of parameter uncertainty
influences the choice of reduced models.
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A B S T R A C T

Endocrine disrupting chemicals have been reported to exert effects directly on enzymes involved in steroid
biosynthesis. Here, we present a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for
profiling the steroid metabolome of H295R human adrenocarcinoma cells. Our method can simultaneously
analyse 19 precursors, intermediates and end-products, representing the adrenal steroid biosynthesis pathway.
In order to obtain better insights into the processes of steroidogenesis, we investigated the dose-response re-
lationship of forskolin, an activator of adenylate cyclase, on steroid production in H295R cells. We observed that
1.5 μM forskolin stimulated steroid production at approximately 50% of the maximum rate for most steroids.
Hence, we studied the time course for steroid synthesis over 72 h in H295R cells that were stimulated with
forskolin. At 24 h, we observed a peak in steroid levels for the intermediate metabolites, such as progesterone
and pregnenolone, while end-products such as testosterone and cortisol continued to increase until 72 h. Finally,
we show how global data provide a unique basis to develop a comprehensive, dynamic model for steroidogenesis
using first order kinetics. The timeline data made it possible to estimate all reaction rate constants of the net-
work. We propose this method as a unique and sensitive screening tool to identify effects on adrenal ster-
oidogenesis by endocrine disrupting compounds.

1. Introduction

Endocrine disrupting chemicals (EDCs) are chemicals which can
interfere with hormonal systems of animals and humans (WHO, 2012).
Production and use of such chemicals inevitably leads to their release as
environmental contaminants (Fox, 2004; Toppari et al., 1996). Earlier
studies have been focusing on the actions of EDCs on hormone receptors
such as estrogen receptor (ER) and androgen receptor (AR). However, it
has been established that EDCs can exert effects directly on enzymes
involved in steroid biosynthesis and metabolism (Cai et al., 1995). In
order to screen the large number of chemicals being produced for po-
tential endocrine disrupting effects, programs such as REACH (Regis-
tration, Evaluation, Authorization and Restriction of Chemicals) of the

European Commission and the United States Environmental Protection
Agency (EPA) 's EDSP (Endocrine Disruptor Screening Program) were
implemented (Odermatt et al., 2016).

The EDSP program consists of a battery of in vitro and in vivo assays
that assess the capability of xenobiotic compounds to act as agonists or
antagonists to the ER, AR and steroidogenesis (O'Connor et al., 2002).
Assays targeting aspects of female and male steroidogenesis exist, but
are expensive and time consuming. The rat uterotropic assay utilizes
the uterine weight as parameter for evaluating estrogenic activity of
compounds (Kanno et al., 2001; Tomoya et al., 2003), and the minced
testis assay measures the production of testosterone from testicular
tissue which is harvested and incubated in cultured media (Charles,
2004). Hence, there is a need for more accurate, high throughput and
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less expensive assays (Odermatt et al., 2016). As an alternative, many
researchers use cell culture systems such as bovine adrenocortical pri-
mary cells (Cheng and Hornsby, 1992), the mouse Y1 cell line or the
human H295R cell line (Cohen et al., 1957; Gazdar et al., 1990) to
study steroid biosynthesis. The H295R cell model has been proposed as
an alternative assay to be used by EPA for screening programs to in-
vestigate the effect of pesticides and other chemicals on the human
population (Harvey and Everett, 2003; Hecker et al., 2006a;
Hilscherova et al., 2004; Zhang et al., 2005), and the Organisation for
Economic Co-operation and Development (OECD) has developed a test
guideline for use of this assay (Guideline 456, (OECD, 2011)).

The H295R cell line originated from the parent NCI-H295 cell line,
which was established from excised adrenocortical carcinoma (Gazdar
et al., 1990). Previous analysis showed that H295R cells have all of the
adrenocortical enzyme systems which give them the capacity to pro-
duce 30 different steroids (Bird et al., 1996; Gazdar et al., 1990; Rainey
et al., 1994, 1993). In adrenal steroidogenesis, physiological stimula-
tion of the steroidogenesis pathway occurs by binding of adrenocorti-
cotropic hormone (ACTH) to the ACTH receptor, initiating a cyclic
adenosine monophosphate (cAMP)-dependent response. However,
H295R cells express low levels of the ACTH receptor. This leads to low
response or even a complete resistance to ACTH stimulation (Mountjoy
et al., 1994). Therefore, stimulation of the cAMP-pathway in these cells
can be performed using a cAMP-elevating agent such as forskolin
(Rainey et al., 1993). Forskolin stimulation of H295R cells results in a
rapid up-regulation of cytochrome P450 (CYP) enzymes and subsequent
steroid production (Denner et al., 1996; Weisser et al., 2016).

Steroids are commonly measured using immunological approaches
such as radioimmunoassays (RIA), enzyme-linked immunosorbent as-
says (ELISA), and fluoroimmunoassays (FIA) (Gracia et al., 2006;
Kjærstad et al., 2010; Szécsi et al., 2004). Different steroids have highly
similar structures that differ only by their hydroxyl or carbonyl groups,
which can cause significant cross-reactivity with specific antibodies
(Heald et al., 2006; Hecker et al., 2006b; Middle, 2007; Penning et al.,
2010). Moreover, immunoassays are prone to interference by the bio-
logical matrix, in particular when measuring steroids at low con-
centrations (Kushnir et al., 2011). Also, studies have revealed that
immunoassays suffer from poor accuracy at low concentrations (Singh,
2008).

The use of liquid chromatography-tandem mass spectrometry (LC-
MS/MS) can overcome many of the immunoassay deficiencies. By im-
plementing LC-MS/MS methods, multiple analytes can be measured
simultaneously during the same run (Rauh, 2010). Moreover, in the last
decade newly developed triple quadrupole LC-MS/MS instruments
provide a high precision and sensitivity enabling the quantitation of
steroids at low concentrations with imprecisions of< 10% (Faupel-
Badger et al., 2010; Hoofnagle and Wener, 2009; Stanczyk et al., 2007;
Stenman, 2013). These methods are robust and can be used in a high-
throughput environment (Alder et al., 2006; Guo et al., 2006).

In order to improve the interpretation of data from in vitro ster-
oidogenesis assays, mechanistic mathematical models are useful tools
(Breen et al., 2011). Such models may be used to assist with estimating
the effects of EDCs in H295R cells and their concentration-response
behaviour (Breen et al., 2010). In addition, by utilizing these me-
chanistic models the interpretation of data from H295R steroidogenesis
assays could be improved by helping to define mechanisms of action for
poorly characterized environmental toxicants (Breen et al., 2011, 2010;
Mangelis et al., 2016). Moreover, guided by such mechanistic models
more accurate extrapolations of toxic response of low dose exposures
can be achieved (Conolly and Lutz, 2004).

Although the OECD guideline 456 only focuses on the production of
estradiol and testosterone as endpoints, there is a need for a method
that can detect and quantitate all steroids, many of which have phy-
siological importance, in H295R cells (Hecker et al., 2006b; Winther
et al., 2013). Here, we have developed an LC-MS/MS-based method to
measure the biosynthesis of 19 steroids in H295R cells. Additionally, we

have investigated steroid production in relation to time and chemical
stimulation with forskolin. Finally, we present a mathematical model
for steroid biosynthesis, which take into account this comprehensive
overview of the steroidogenesis pathway.

2. Materials and methods

2.1. H295R cell culturing

The H295R cell line was purchased form American Type Culture
Collection (ATCC). Cells were cultured in 75 cm2

flasks in Dulbecco's
modified Eagle medium/HamF12 (DMEM/F12) containing HEPES
buffer, L-glutamine and pyridoxine HCl (Gibco, Invitrogen, Paisley, UK).
Additional supplements were added to the medium, including 1% in-
sulin, human transferrin and selenous acid (ITS + premix) (BD
Biosciences, Bedford, MA) and 5% charcoal stripped fetal bovine serum
(F7524, Sigma Aldrich). H295R cells were incubated at 37 °C with 5%
CO2 in a humidified atmosphere. The medium was changed every
2–3 days and cells passaged at approximately 80% confluence by brief
exposure to 0.25% trypsin/0.53mM EDTA (Gibco, Invitrogen). The
cells from passages 4–6 were used in experiments.

2.2. Forskolin exposure

After seeding H295R cells for 24 h in 6 well plates at a cell density of
1.2× 106 cell per well, fresh medium containing different forskolin
concentrations, (0.312 μM, 0.625 μM, 1.25 μM, 2.5 μM, 5 μM, 10 μM,
20 μM) was added to the cells for 48 h. Each concentration had 6 re-
plicate wells.

2.3. Steroid production timeline

H295R cells (1,2× 106) were seeded in 6-well plates in 6 replicate
wells per treatment condition and incubated for 24 h. Fresh medium
containing 1.5 μM forskolin was added after 24 h of incubation and
media was collected at 0, 2,4, 6, 12, 24, 36, 48, 72 h for analyses.

2.4. Cell viability

Cell viability was evaluated using Alamar Blue TM assay
(Invitrogen) on the 96-well microplates (VWR, USA). Approximately
50,000 cells were seeded for 24 h before exposure for 48 h. DMSO
control, 10 μM forskolin exposure was performed in triplicate. The
medium was removed and replaced with 100 μl of fresh medium for 3 h
at 5% CO2 at 34 °C. A PerkinElmer (EnSpire 2300 Multilabel Reader)
spectrophotometer was used to read the plates. The absorbance was
read at 570 nm and 600 nm and viability was expressed as percentage
of control (medium with 0.25% DMSO). Triton X-100 (10%) was used
as a positive control of cell death.

2.5. Steroid-profiling by LC-MS/MS

2.5.1. Sample extraction
Samples of H295R cell medium were extracted using liquid-liquid

extraction on a Hamilton Star pipetting robot, and 85 μl of sample was
used for analysis in addition to 10 μl of internal standard that was
added to all samples. Samples were equilibrated for one hour, and then
extracted with 850 μl ethylacetate:hexane (80:20). 650 μl organic phase
was evaporated under a stream of nitrogen at 45 °C, and samples re-
constituted with 50 μl 25% methanol.

2.5.2. LC-MS/MS analysis
LC-MS/MS analysis was carried out on a Waters Xevo TQ-S triple

quadrupole mass spectrometer that was coupled to a Waters i-class
Acquity UPLC. Ionization was achieved by electrospray ionization (ESI)
in positive and negative mode. The following LC conditions were used:
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chromatographic separation was achieved on a Waters Acquity BEH-
C18 column (2.1×100mm, 1.7 μm particle size, pore-size 130 Å). The
column temperature was set at 60 °C. Mobile phase A consisted of Milli-
Q water with 0,05% (vol/vol) ammonium hydroxide solution (25%),
and mobile phase B consisted of methanolwith 0,5% (vol/vol) ammo-
nium hydroxide solution (25%). The sample injection volume was 4 μl.
Steroid hormones were detected and quantitated by isotope-dilution
mass spectrometry by multi-reaction monitoring (MRM). Quantifier and
qualifier MRM-transitions are listed in Table 1.

Methanol was used to dissolve all steroid hormones separately be-
fore they were added together. The mixture used for the standard curve
had concentration of 100 times that of the highest working solution.
The standard curve was prepared by serial diluting the mixture 1:4 in
methanol and then adding 2ml of each dilution to 198ml of H295R
growth medium with FBS serum. The final standard curve range is
shown in Table 2. The standard curve has six levels for each steroid and
a blank control that consist of H295R growth medium with FBS serum.

The internal standard was made of several labelled hormones that
were dissolved separately in methanol. Quality control (QC) consist of
H295R growth media of stimulated cells. Steroids in the media were
measured and each steroid was added to a final concentration corre-
sponding to 0.5, 1.56 and 25% of the highest standard level. The
standard curve, internal standard and QCs were stored in −80 °C.

Our standard curve was run in parallel with a second serum based
standard curve, which is fully validated with external quality control
program (Methlie et al., 2013).

2.6. Dynamic model

Obtaining timeline data for the extracellular concentrations of
steroids enabled us to construct a dynamic model for all the metabolites
of steroidogenesis. The model has one compartment where the con-
centration of each steroid is assumed to be its measured extracellular
concentration. A schematic overview of the network considered for

Table 1
Multiple reaction monitoring (MRM) based analytical parameters for 19 steroid analytes measured in H295R cells and deuterium-labelled internal standards, MRM
transitions (Quantifier and Qualifier), analyte retention times, ionization for each analyte.

Analyte Precursor > Quantifier/Qualifier
(m/z)

Internal standard IS Precursor > Quantifier/Qualifier
(m/z)

Retention time
(min)

Ionization

Aldosterone 361.1 > 189/331 D8-aldosterone 367.2 > 304/194 3.32 ESI-
Androstenedione 287.1 > 97/109 D7-androstenedione 294.1 > 100/113 5.60 ESI+
Corticosterone 347.0 > 121/97 D2–11 deoxycortisol 349.2 > 97/109 4.85 ESI+
Cortisol 363.1 > 297/282 D4-cortisol 335.3 > 301/286 3.97 ESI−
Cortisone 361.1 > 137/123 D4-cortisol 335.3 > 301/286 3.69 ESI−
11-Deoxycortisol 347.0 > 97/109 D2–11 deoxycortisol 349.2 > 97/109 5.00 ESI+
Dehydroepiandrosterone 271.2 > 253/213 D6-DHEA 277.2 > 219/258 6.18 ESI+
Dehydroepiandrosterone

Sulfate
271.2 > 96/79 D6-DHEA sulphate 373.2 > 98/80 1.68 ESI−

Estrone 269.1 > 145/183 D4-estrone 273.2 > 187/147 5.36 ESI−
Estrone Sulfate 349.1 > 269/145 D4-E1sulphate 353.1 > 273/147 1.07 ESI−
Estriol 522 > 145/171 13C3-estriol 290.1 > 174/148 2.70 ESI−
Estradiol 255.2 > 145/183 D4-estradiol 275.2 > 187/147 5.31 ESI−
17-hydroxyprogesterone 331.1 > 97/109 13C3–17-hydroxy-

progesterone
334.2 > 112/100 6.17 ESI+

17-hydroxypregnenolone 297.1 > 303/287 13C3–17-hydroxy-
progesterone

334.2 > 112/100 6.13 ESI−

Progesterone 315.2 > 97/109 D9-progesterone 324.2 > 100/113 7.26 ESI+
Pregnenolone 299.1 > 159/281 D9-progesterone 324.2 > 100/113 7.76 ESI+
Testosterone 289.1 > 97/109 D3-testosterone 292.1 > 97/109 5.91 ESI+
Dihydrotestosterone 291.2 > 159/255 D3-testosterone 292.1 > 97/109 6.71 ESI+
21-hydroxyprogesterone 331.1 > 97/109 D3-testosterone 292.1 > 97/109 5.82 ESI+

Table 2
Illustrates R2 coefficient of determination, lower limit of detection (LLoD) and calibration ranges.

Metabolites Range standard curve(ng/ml) Limit of Detection
(nM)

Regression Coefficients (R2) Average of Slope (m) Standard deviation of Intercept (b)

Aldosterone 0.02–20 0.11 0.999 2.077 0.07
Pregnenolone 0.39–400 23.80 1.000 0.0002 0.002
Progesterone 0.19–198 0.03 1.000 0.065 0.001
Dihydrotestosterone 0.10–100 2.39 1.000 0.001 0.001
21-Hydroxyprogesterone 0.20–200 0.05 1.000 0.203 0.003
17-Hydroxypregnenolone 0.49–500 9.07 0.999 0.0005 0.001
17-Hydroxyprogesterone 0.43–435 7.46 0.999 0.034 0.076
Testosterone 0.09–88 0.03 1.000 0.269 0.002
Estrone 0.49–500 2.77 1.000 0.042 0.035
Estrone Sulphate 0.88–901 12.02 1.000 0.013 0.048
Cortisone 0.36–372 0.12 1.000 0.049 0.001
Cortisol 0.73–742 0.15 1.000 0.002 0.043
Dehydroepiandrosterone 1.95–2000 23.01 0.999 0.208 1.448
Dehydroepiandrosterone

Sulphate
0.49–500 1.21 1.000 0.035 0.013

Estradiol 1.47–1500 0.53 1.000 0.009 0.001
Corticosterone 0.20–200 2.77 0,999 0.095 0.08
Estriol 0.49–500 0.46 1.000 0.007 0.001
11-Deoxycortisol 0.10–100 1.03 0,998 0.106 0.033
Androstenedione 0.32–219 0.32 1.000 0.07 0.006
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modelling is shown in Fig. 1, where each box is a measured steroid and
each arrow a reaction (flux) with a reaction rate vi. Note that the
starting point of the model is pregnenolone.

The model equation for the concentration of e.g. DHEA will then be

= − −

dC
dt

v v vDHEA
11 12 13

where the different reaction rates vi of the network must be specified.
Here, all reaction rates vi of the model are taken to be first-order. Each
reaction rate is then given by a rate constant ki and the concentration of
its precursor, e.g. v13= k13CDHEA.

The replicated measurements were averaged to get a single con-
centration value for each steroid at the various time points. For each
steroid, the first time-point was taken as the initial value for the con-
centration. The initial concentrations of steroids that were not detected
at the start point were set to zero. The pregnenolone concentrations
between the measurements were interpolated to give a time continuous
input to the rest of the network. Having the pregnenolone concentration
and initial concentrations for the remaining steroids, the system can be
integrated for given reaction rate constants ki. To find the ki that best

fitted the data, a weighted least square estimate was calculated using
the R package Template Model Builder (TMB)(Kristensen et al., 2016).

3. Results

3.1. Cell viability

Cell viability was evaluated using the Alamar Blue assay. No de-
viation from control was observed with 10 μM forskolin exposure,
whereas the positive control triton X-100 showed decrease cell viability
(data not shown).

3.2. LC-MS/MS analysis

Successive chromatographic separation of 19 adrenal steroids syn-
thesised by H295R cell was achieved within 11min for sample elution,
column washing and re-equilibration (Table 1). With the exception of
17OH-pregnenolone and 17OH-progesterone, baseline separation of all
other metabolites was achieved with a C18 column over the entire
concentration range (Supplementary Fig. 1).

Fig. 1. Schematic overview of steroidogenesis used
for modelling. The boxes are the steroids measured
experimentally and the arrows represent reactions
with reaction rates vi. The reaction rates are mod-
elled by first order kinetics such that each rate vi is
proportional to its precursor with kinetic parameter
ki, e.g. v13= k13CDHEA. An adjusted model is shown
in Fig. 5.

Table 3
Quality control parameters for LC-MS/MS H295R cells steroid hormone measurements assay. Three different concentrations of quality controls (QC) were run in
replicates of 6 in each experiment. Average concentrations (CONC) reported in Nano-molar (nM). (N) number of actual readings for each QC. Precision was
calculated as the relative standard deviation (%RSD) of the standards.

Quality control levels Low Medium High

Metabolites Average CONC Precision (% RSD) N Average
CONC

Precision (% RSD) N Average
CONC

Precision (% RSD) N

Aldosterone 0.95 14.7 21 2.6 13 21 20.2 12.1 21
Pregnenolone 13.5 8.8 18 23.3 11.7 21 135 8.3 20
Progesterone 6 9.3 19 8.8 8.5 18 42.7 7.3 18
Dihydrotestosterone 3.2 15.8 18 5.7 11.7 13 32.2 10.4 15
21-Hydroxyprogesterone 7 14 18 12.9 13.5 17 74.1 10.8 17
17-Hydroxypregnenolone 17 14.8 16 31.2 12.2 17 207.3 10.2 16
17-Hydroxyprogesterone 14 9 20 22 11.4 21 115.7 9.2 21
Testosterone 3.2 10 21 6 9.7 20 37.6 14.9 19
Estrone 19.1 14.3 19 41 13.2 19 271 8.8 16
Estrone Sulphate 30.2 13 22 44.4 8.2 18 219.3 8.6 20
Cortisone 11 7 21 17.2 6.7 21 91 8 22
Cortisol 24.2 5 21 40.3 5 21 222.7 6 22
Dehydroepiandrosterone 67.6 11.9 20 98.2 7.2 18 430.7 9.9 20
Dehydroepiandrosterone Sulphate 23.6 11.5 20 61 9.4 20 494.6 9 18
Estradiol 66 8.2 19 166.8 6.6 19 1312.7 9.7 18
Corticosterone 6 12 18 8.8 25.8 17 41.5 13.3 12
Estriol 20.3 6 21 48.3 6.1 20 370.4 6.3 22
11-Deoxycortisol 31.9 7.5 21 123.9 12.1 21 1775.3 20.4 6
Androstenedione 16.4 8.1 18 55.4 7.5 21 216.7 15.4 13
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The chromatographic separation starts with estrone sulfate in negative
mode at 1.26min followed by dehydroepiandrosterone sulfate (DHEAS),
estriol, aldosterone, cortisone, cortisol and estradiol respectively all in
negative mode (Supplementary Fig. 1 A). Furthermore, corticosterone
(CCST), 11-deoxycortisol, androstenedione, testosterone, dihydrotestosterone

(DHT), dehydroepiandrosterone (DHEA), 21-hydroxyprogesterone (21OHP),
17-hydroxypregnenolone (17OH-PREG), 17-hydroxy-progesterone (17OHP),
progesterone and pregnenolone follow in positive mode (Supplementary
Fig. 1).

Assay coefficients of variation (CV) were determined from repeated

Fig. 2. Steroid production in the H295R cell line in 48 h of forskolin stimulation. Following the OECD guideline, steroids were extracted and analysed using the
developed method. Each data point represents 6 samples from three independent experiments (n=6). Error bars are standard deviations. Note the difference in y-
axis scale.
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measurements of in-house prepared quality control (QC) samples at
three different levels (Table 3). Lower limit of detection (LLOD) were
determined as recommended by Armbruster and Pry, (2008). Estimated
LLOD values can be found in Table 2. The accuracy of cortisol,

cortisone, 11-deoxycortisol, progesterone, testosterone, 17-OH-proges-
terone, androstenedione and aldosterone have been determined
(Supplementary Table 1).

Fig. 3. Profile of steroid metabolites in H295R cells over a time course study after forskolin stimulation. Cells were treated with 1.5 μM forskolin, and measurements
were taken at several time points from 0 to 72 h. Each data point represents 6 samples from three independent experiments (n= 6). Error bars are standard
deviations. Note the difference in y-axis scale.
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3.3. Forskolin exposure

Measured concentrations of steroid levels in media of H295R cells
after 48 h of exposure to different concentrations of forskolin showed
that levels of the majority of analytes increased with elevated forskolin
concentration as shown in Fig. 2. As expected the increase in steroid
secretion reached a saturation level at around 10 μM of forskolin ex-
posure (Fig. 2). The half-maximum production for most steroids oc-
curred at approximately 1.5 μM forskolin, which was chosen to stimu-
late H295R cells for the timeline study.

3.4. Steroid production timeline

In the timeline experiment, precursors such as pregnenolone and
progesterone reached peak production at 24 h (Fig. 3). On the other
hand, levels of end products like testosterone, cortisol and aldosterone
showed a continuous increase for up to 72 h. In addition, we observed
that androstenedione and 11-deoxycortisol and DHEAS constitute
around 86% of total steroids secreted by H295R cells, while estriol and
aldosterone contributed only around 0.01% of the total steroid hor-
mone production (Fig. 3).

3.5. Dynamic model

Based on the timeline data, optimization showed that the best fit for
the dynamic model was attained by k6= k17= k21= 0 (Fig. 1), sug-
gesting that the corresponding fluxes can be deleted from the model. In
addition, the concentrations of corticosterone and aldosterone were too
small to match the degradation of 11-deoxycorticosterone that takes
place after 24 h. To compensate for this, an extra exchange flux from
11-deoxycorticosterone leaving the system is introduced. This could e.g.
indicate leakage to another pathway. Finally, v10 can under the current
conditions be modelled as an irreversible reaction from cortisol to
cortisone due to the propagation of cortisone. Altogether this suggests
the adjusted model of Fig. 4, for which we again performed parameter
estimation using TMB.

The optimized reaction rate constants are listed in Table 4. TMB
calculates standard deviations for each parameter in addition to the
point estimates. These calculations show that k1, k2 and k22 are highly
uncertain while the rest of the parameters have smaller standard de-
viations.

The concentrations predicted by the dynamic model are plotted in
Fig. 5 together with the measured values.

4. Discussion

The H295R cell line is considered a unique model for the study of
steroidogenic pathways, but also for the evaluation of endocrine dis-
ruption caused by xenobiotics (OECD, 2011; Rijk et al., 2012; Wang
et al., 2014). Here we report a new steroidogenesis assay to profile the
adrenal steroid metabolome of H295R cells. We have developed a ro-
bust and high throughput method to simultaneously analyse 19 pre-
cursors, intermediates and end-products of the steroid biosynthesis
pathway. Our assay can be used to study metabolite fluxes in steroid
biosynthesis, and to identify the targets of substances that interfere with
this pathway. The low sample volume, combined with an automated
sample extraction, and a short a chromatographic run-time of 11min
(Table 1) provide a throughput capacity of 130 samples per 24 h with
minimal hands-on time by a single operator.

Baseline separation was achieved for all steroids in the liquid
chromatography step, with the exception of 17OH-PREG and 17OHP.
We did not observe any spectral interference between 17OH-PREG and
17OHP, but the continuous polarity switching required for their con-
current measurement may contribute to an increased imprecision
(Table 1). The majority of calibration curves were linear, as shown by
the coefficient of determination (r2) being ≥0.99 (Table 2). However,
similarly to previous reports (Abdel-Khalik et al., 2013), our data show
poorer precision and non-linearity at low concentrations for DHT,

Fig. 4. Adjusted schematic overview of ster-
oidogenesis used for modelling. The boxes are the
steroids measured experimentally and the arrows
represent reactions with reaction rates vi. The reac-
tion rates are modelled by first order kinetics such
that each rate vi is proportional to its precursor with
kinetic parameter ki, e.g. v13=k13CDHEA. The
original model is shown in Fig. 1.

Table 4
Estimated reaction rate constants with standard deviation for the adjusted
model shown in Fig. 4. The values are estimated from the measurements (cir-
cles) in Fig. 5 and used to make the model predictions (lines) in Fig. 5. For
technical details of the estimation see the subsections “Dynamical model” in the
sections “Methods” and “Results”.

Parameter Point estimate Standard deviation

k1 2.94·10−1 h−1 1.02·100 h−1

k2 1.24·101 h−1 4.36·101 h−1

k3 3.43·10−4 h−1 2.15·10−4 h−1

k4 1.02·10−2 h−1 6.12·10−3 h−1

k5 5.99·10−1 h−1 1.43·10−1 h−1

k7 6.49·10−2 h−1 4.24·10−2 h−1

k8 6.78·10−1 h−1 4.10·10−1 h−1

k9 4.29·10−3 h−1 3.19·10−3 h−1

k10 5.67·10−4 h−1 5.12·10−4 h−1

k11 7.94·10−2 h−1 4.74·10−2 h−1

k12 1.89·10−1 h−1 1.32·10−1 h−1

k13 1.03·10−1 h−1 6.91·10−2 h−1

k14 6.54·10−3 h−1 3.94·10−3 h−1

k15 3.98·10−2 h−1 3.00·10−2 h−1

k16 3.31·10−3 h−1 2.19·10−3 h−1

k18 5.79·10−3 h−1 4.89·10−3 h−1

k19 3.33·10−3 h−1 2.66·10−3 h−1

k20 1.84·10−4 h−1 1.49·10−4 h−1

k22 6.12·10−1 h−1 2.32·100 h−1
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estrone and corticosterone. According to the FDA guidelines from 2001,
the precision of measurement relative standard deviation (RSD) should
not exceed 15%. Our data indicated that the LC-MS/MS assay had an
RSD lower than 15% for most measured steroids, although corticos-
terone in the medium concentration and 11-deoxycortisol at the high
concentration showed an RSD of 25.8% and 20.4% respectively
(Table 3).

Several studies that utilize the H295R cell line as a model use 10 μM
forskolin to stimulate steroid production (Seamon et al., 1981; Winther
et al., 2013). However, several publications showed a dose related in-
crease of steroid production with forskolin exposure (Hecker et al.,
2006b; Weisser et al., 2016). Our results showed a similar increase in
steroid production, but we observed a maximum stimulation point at
10 μM forskolin exposure for the majority of steroids. We chose a for-
skolin concentration of 1.5 μM to induce steroid production at ap-
proximately the half-maximum rate, to obtain more insights into the
dynamics of steroid production in H295R cells.

By measuring the steroid metabolome at several different time
points, we gain a more accurate assessment of the impact of pharma-
ceutical compounds and environmental toxicants on steroidogenesis
(Mangelis et al., 2016). In the second part of this study, we measured
changes in the 19 steroids from the metabolome from H295R cells
cultured at multiple time points from 0 to 72 h. We found that precursor
steroids such as progesterone, pregnenolone, dehydroepiandrosterone
and 21-hydroxyprogesterone reached their highest production point at
24 h after treatment with 1.5 μM forskolin. Moreover, hormone pro-
duction of end-products such as estradiol, testosterone and cortisol
continue to increase until 72 h after treatment similar to previous re-
ports (Rainey et al., 1993).

Although this method provides a comprehensive overview of the

steroidogenesis pathway in H295R cells, it lacks the measurement of
cholesterol, which is the primary precursor for this process (Cherradi
et al., 2001). In steroidogenic cells, sources for cholesterol are de novo
synthesis, intracellular cholesteryl ester and lipoprotein cholesterol
from the blood, with the latter being the primary source of cholesterol
used in steroidogenic cells (Preslock, 1980; van Leusden and Villee,
1965). Extracellular cholesterol has been reported to account for
around 80% of adrenal steroid production (Borkowski et al., 1970;
Gwynne and Strauss, 1982), which suggests that any reduction in blood
cholesterol or in cell culture medium may affect steroid production
(Azhar et al., 1981; Christie et al., 1979). However, this key aspect of
hormone biosynthesis has not been addressed in previous studies of
steroidogenesis (Boggs et al., 2016; Weisser et al., 2016).

In our modelling approach, we have assumed first order kinetics.
This was also used by Mangelis et al. (2016), and is valid for reactions
under the Michaelis-Menten assumption that are not saturated
(Johnson and Goody, 2011). The forskolin concentration of our ex-
periment was 1.5 μM compared to 10 μM in Mangelis et al. (2016). This
justifies that the assumption could be applied also here, which our re-
sults support (Fig. 2). Furthermore, we only consider the extracellular
concentrations and treat the system as one compartment. This as-
sumption can be justified since the intracellular concentrations of
steroids are small compared to the extracellular concentrations and the
reaction rates then are likely to be governed by the extracellular con-
centrations. In addition, the main point of this work is not to study the
exact reaction rates of steroidogenesis, but rather motivate how mea-
surements of all the steroids could help build more complete models for
the steroidogenesis.

The obtained parameter values show that some of the reactions are
not needed to fit the data and were therefore deleted. These reactions,

Fig. 5. Steroid production of H295R cells after 1.5 μM forskolin stimulation, based on measurements (o) and dynamic prediction (line). The x-axes are time [h] and
the y-axes are concentration [nM]. The circles represent measurements performed experimentally and the lines are predictions made using the dynamical model
presented in the paper. A schematic overview of the model is shown in Fig. 4. The measured data points are used to estimate the kinetic parameters of the model and
the resulting values are shown in Table 4. For technical details of the model see the subsections “Dynamical model” in the sections “Methods” and “Results”.
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however, may be active and of importance in vivo. The large standard
deviations of k1, k2 and k22 are due to the introduction of the flux v22.
There is no restriction on how much that should flow out of the system,
making several parameter values possible (Uemura et al., 2010). To
compensate for this, one could for instance introduce an extra term in
the objective function to penalize large outflows. However, this flux is
necessary to be able to fit the concentrations on the left branch of Fig. 4.

We have shown that the data produced by this approach can be used
to build a dynamic model for all the steroid concentrations of ster-
oidogenesis. Our model is able to predict the main trends of the mea-
surement data using first order kinetics. Other mathematical models of
steroidogenesis have previously been presented elsewhere (Breen et al.,
2011; Mangelis et al., 2016). Both of these studies model the in-
tracellular and extracellular concentrations of the various steroids and
apply more advanced kinetics. However, these models do not include
all the steroid hormones as considered in our model.

5. Conclusion

Using the adrenocortical H295R cell model we have developed a
sensitive LC-MS/MS based method that enables us to measure all the
components of the total steroidogenesis pathway except for its pre-
cursor cholesterol. Based on timeline studies of H295R cells treated
with forskolin at 50% of saturation, we showed that such data can be
used to develop a dynamic model. This dynamic model can enhance our
understanding of the steroidogenesis process and our ability to predict
the effects of drugs and environmental toxicants on this pathway. This
method can be used in mechanistic studies of H295R adrenal steroid
production as well as for a more in-depth view of the intermediate
metabolome which could be of environmental and toxicological im-
portance.
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h i g h l i g h t s

� We assessed effects of environmentally relevant mixtures of contaminants on steroidogenesis.
� We utilized the H295R cell line model and LC-MS/MS to analyze all steroids in the pathway.
� The highest concentration of the combined brominated and perfluorinated mixture produced the strongest effect.
� Indication of synergistic effects were observed when a statistical model was used to analyze the data.
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a b s t r a c t

The presence of environmental pollutants in our ecosystem may impose harmful health effects to
wildlife and humans. Several of these toxic chemicals have a potential to interfere with the endocrine
system. The adrenal cortex has been identified as the main target organ affected by endocrine disrupting
chemicals. The aim of this work was to assess exposure effects of defined and environmentally relevant
mixtures of chlorinated, brominated and perfluorinated chemicals on steroidogenesis, using the H295R
adrenocortical cell line model in combination with a newly developed liquid chromatography tandem
mass spectrometry (LC-MS/MS) method. By using this approach, we could simultaneously analyze 19 of
the steroids in the steroid biosynthesis pathway, revealing a deeper insight into possible disruption of
steroidogenesis. Our results showed a noticeable down-regulation in steroid production when cells were
exposed to the highest concentration of a mixture of brominated and fluorinated compounds (10,000-
times human blood values). In contrast, up-regulation was observed with estrone under the same
experimental condition, as well as with some other steroids when cells were exposed to a perfluorinated
mixture (1000-times human blood values), and the mixture of chlorinated and fluorinated compounds.
Interestingly, the low concentration of the perfluorinated mixture alone produced a significant, albeit
small, down-regulation of pregnenolone, and the total mixture a similar effect on 17-
hydroxypregnenolone. Other mixtures resulted in only slight deviations from the control. Indication of
synergistic effects were noted when we used a statistical model to improve data interpretation. A
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potential for adverse outcomes of human exposures is indicated, pointing to the need for further
investigation into these mixtures.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Environmental pollution has detrimental consequences to our
ecosystem and imposes harmful health effects to wildlife and
humans (Bergman et al., 2013b). Approximately 16 million human
deaths per year are reported to be attributed to chemical pollutant
exposure (Landrigan et al., 2017). These pollutants include legacy
and emerging persistent organic pollutants (POPs), which are
persistent in the environment and resist degradation for decades
(Bar�on et al., 2015), and can be found in various environmental
compartments in low concentrations. Some compounds have the
potential to interfere with the endocrine system (Rhind, 2008), and
are designated as endocrine disrupting chemicals (EDCs) (Bergman
et al., 2013a; Schug et al., 2016). Previous work have identified
the adrenal cortex as the main target organ affected by endocrine
disrupting chemicals (Bergman et al., 2013b).

The presence of POPs in the food chain is a consequence of their
lipophilic characteristics, which accelerate their uptake by plants or
animals (Guillette et al., 1996; Nimrod and Benson, 1996). Some
POPs have the ability to disrupt endocrine functions, even when
they are present in very low concentrations (Li et al., 2006). The
Stockholm Convention on Persistent Organic Pollutants (SCPOP) is
an international treaty aimed to eliminate or reduce POPs in the
environment. The majority of POPs listed in SCPOP are halogenated
molecules and comprise chlorinated, brominated, and fluorinated
compounds (UNEP, 2008). Also, it is reported that exposure to POPs
have been linked to adverse health effects including cancer,
metabolic disorders, and reproductive defects (Berg et al., 2016;
Hotchkiss et al., 2008; Zimmer et al., 2011).

Perfluorinated chemicals such as perfluoroalkyl acids, are
commonly used in consumer products as a stain, water repellent
material in clothing or as non-stick coatings on cookware (Stahl
et al., 2011). Perfluorooctanoic acid (PFOA) was reported to in-
crease estradiol levels in exposed humans and decrease testos-
terone levels in isolated rat Leydig cells (Olsen et al., 1998; Zhao
et al., 2010). Also, decreased gene expression of key enzymes
associated with steroidogenesis was observed in mice and rats
exposed to perfluorododecanoic acid (PFDoDA) and per-
fluorooctanesulfonic acid (PFOS) (Gorrochategui et al., 2014; Wan
et al., 2011). Due to the global distribution and persistence of the
perflourinated compounds in the environment concerns were
raised over their potential human toxicity, especially their ability to
act as endocrine disrupters (Du et al., 2013; Hines et al., 2009).

Chlorinated compounds encompass industrial chemicals such as
polychlorinated biphenyls (PCBs) and pesticides such as dichlor-
odiphenyltrichloroethane (DDT). Although they are now banned in
most of the world, they still persist in the environment due to their
resistance to degradation (Craig et al., 2011; Tiemann, 2008), and
continued uses in certain countries. DDT and its main metabolite,
1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene, DDE, was reported
to increase progesterone production in low concentration expo-
sures and block progesterone synthesis at high concentration ex-
posures in vitro (Craig et al., 2011; Crellin et al., 2001, 1999).
Moreover, PCBs are reported to cause reproductive abnormalities,
carcinogenicity and endocrine disruption (Folmar et al., 1996;
Guillette et al., 1996; Ropstad et al., 2006; Safe, 1994).

Brominated flame retardants (BFRs) are utilized widely for their

fire-resistance. They are applied to plastics used in electronic
equipment and many household items such as curtains, furniture
covers and carpets. Due to their chemical properties they may leak
into the environment (Alaee et al., 2003; de Wit et al., 2010). The
toxic effects of BFRs have been investigated in several in vitro and
in vivo studies, most of which is caused by targeting androgen and
oestrogen receptors (Hamers et al., 2006; Kitamura et al., 2005;
Lilienthal et al., 2006). In humans, exposure to BFRs has been linked
to congenital cryptorchidism (Darnerud, 2008; Main et al., 2007).

In a realistic exposure scenario, humans are exposed to multiple
EDCs simultaneously, albeit in low concentrations (Diamanti-
Kandarakis et al., 2009). Based on their mode of action, mixture
toxicity can be sorted in two groups: 1) mixtures that show no
direct interaction between compounds when they exert their ef-
fects and 2) mixtures that show interaction between compounds.
Effects caused by the first category are normally explained by
addition, which means that chemicals act independently of each
other targeting the same tissue with similar modes of action. In the
second category, compounds can act in a synergistic manner indi-
cating higher than additive effect predictions, or an antagonistic
manner, which indicate lower than predicted additive effects
(McCarty and Borgert, 2006; Monosson, 2005; Rizzati et al., 2016).
Current policies concerning EDC risk assessment regulation is
based on single compound exposure (Bars et al., 2012; Fuhrman
et al., 2015; Kortenkamp et al., 2007).

The United State Environmental Protection Agency (EPA) and
the Organization for Economic Co-operation and Development
(OECD) have developed guidelines for screening and examining
EDCs (Gelbke et al., 2004). Among recommended assays are the
Hershberger assay (Owens et al., 2007) and Uterotrophic assay
(OECD, 2007), which are both in vivo assays utilizing rats. In addi-
tion, the in vitro minced testis assay, which is a rat primary cell
model is also used. These models' need for animal sacrifice or
acquisition of human tissue present a limitation for a high
throughput screening. Therefore, there is a demand for alternative
in vitro cell models for the growing number of chemicals that
require testing for potential endocrine disrupting effects. The
H295R cell line has been suggested by both the EPA and the OECD
as a screening tool for investigating possible EDCs (Hecker and
Hollert, 2011; Hilscherova et al., 2004; Karmaus et al., 2016;
Zhang et al., 2005).

The H295R adrenocortical cell line originated from an excised
adrenocortical carcinoma (Gazdar et al., 1990). H295R cells have all
of the adrenocortical enzymes, which give them the capacity to
produce 30 different steroids (Bird et al., 1996; Gazdar et al., 1990;
Rainey et al., 1994, 1993). The H295R cells express low levels of the
adrenocorticotropic hormone (ACTH) receptor, and thus unre-
sponsive to ACTH, the physiological stimulus of adrenal steroido-
genesis. However, stimulation of steroidogenesis can be initiated
via forskolin, a natural diterpene compound and a cyclic adenosine
monophosphate (cAMP)-dependent activator (Mountjoy et al.,
1994; Rainey et al., 1993). Stimulation of H295R cells with for-
skolin leads to a rapid increase in steroid production (Denner et al.,
1996; Weisser et al., 2016; Ahmed et al., 2018).

The triple quadrupole liquid chromatography tandem mass
spectrometer (LC-MS/MS) is rapidly taking place as an instrument
of choice to measure steroid hormones (Rauh, 2010). In this paper,
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we utilized a newly developed steroidogenesis assay, which com-
prises both LC-MS/MS and the H295R cell linemodel. This assay has
ultra-high performance and is capable of simultaneously assessing
and quantifying 19 analytes in the steroidogenesis pathway,
providing a comprehensive insight into steroid biosynthesis
(Ahmed et al., 2018).

In the present paper, we investigated the endocrine disrupting
potential of carefully defined environmentally relevant mixtures
and sub-mixtures of POPs with known compositions. The selection
of POPs was largely based on the compounds listed as such under
the SCPOP, and further on a literature review of recent publications
on POPs occurring at the highest levels in Scandinavian blood
(Berntsen et al., 2017). We used the H295R cell line and studied
effects of several POP mixtures on the steroidogenesis by analysing
the steroid metabolome using our newly developed LC-MS/MS
system, which take into account active and dormant condition of
H295R cells (Ahmed et al., 2018).

2. Materials and methods

2.1. Chemicals

All PBDEs, PCBs and other organochlorines were originally
purchased from Chiron As (Trondheim, Norway). All perfluorinated
compounds were obtained from Sigma-Aldrich (St. Louis, MO, USA)
except perfluorohexanesulfonic acid (PFHxS) that was obtained
from Santa Cruz (Dallas, US). Hexabromocyclododecane (HBCD),
phosphate buffered saline (PBS) and dimethyl sulfoxide (DMSO)
were obtained from SigmaeAldrich (Dorset, UK). More details
about the chemicals can be found in Berntsen et al. (2017). Cell
culture reagents were supplied by Life Technologies (Paisley, UK)
and Sigma-Aldrich.

2.2. POP mixtures

Mixtures of the test POPs were designed in concentration ratios
relevant to human exposure and premade at the Norwegian Uni-
versity of Life Sciences, Oslo as described (Berntsen et al., 2017).
Seven mixtures were used in the cell assays (Table 1): (1) total
mixture, containing all the 29 test compounds (B þ C þ F), (2)
perfluorinated mixture (F), (3) brominated mixture (B), (4) chlori-
nated mixture (C), (5) brominated and perfluorinated mixture
(B þ F), (6) chlorinated and perfluorinated mixture (C þ F) and (7)
brominated and chlorinated mixture (B þ C). The chemicals
included in the mixtures and their respective concentrations in the
stock solution are shown in Table 1.

2.3. Cell culture

The H295R cell line was purchased from American Type Culture
Collection (ATCC). Cells were cultured in 75 cm2

flasks in Dulbecco's
modified Eagle medium/HamF12 (DMEM/F12) containing HEPES
buffer, L-glutamine and pyridoxine HCl (Gibco, Invitrogen, Paisley,
UK). Additional supplements were added to the medium which
included 1% ITS þ premix (BD Biosciences, Bedford, MA) and
charcoal stripped foetal bovine serum 5% (F7524, Sigma Aldrich).
H295R cells were incubated at 37 �C with 5% CO2 in a humidified
atmosphere. The medium was changed every 2e3 days and cells
passaged at approximately 80% confluence by a brief exposure to
0.25% trypsin/0.53mM EDTA (Gibco, Invitrogen). The cells were
used between passages 4e6.

2.4. Mixture exposures

After seeding H295R cells for 24 h in 6 well plates at a cell

density of 1.2� 106 cells per well, fresh medium was added con-
taining different mixture concentrations based on tenfold dilution.
Concentrations were designated (Low, Medium, High, Very high)
corresponding to 1, 10, 100 and 1000 times the estimated concen-
trations in human blood. The combined B þ F sub-mixture was ten
times more concentrated than the other mixtures (Berntsen et al.,
2017), and tested at 10000x human blood levels as the highest
concentration (denoted VH10). H295R cells were exposed to the
mixtures for 48 h. Each concentration had a total of 9 replicatewells
acquired from three independent experiments. Parallel exposures
were performed with unstimulated (DMSO-treated) and 1.5 mM
forskolin stimulated cells.

2.5. Cell viability

Cell viability was evaluated using Alamar Blue TM assay (Invi-
trogen) on the 96-well microplates (VWR, USA). Approximately
50,000 cells were seeded for 24 h before exposure for 48 h. Each
exposure was performed in triplicate. The medium was removed
and replaced with 100 ml of freshmediumþ10 ml Alamar Blue assay
solution for 3 h at 5% CO2 at 34 �C. A PerkinElmer (EnSpire 2300
Multilabel Reader) spectrophotometer was used to read the plates.
The absorbance was read at 570 nm and 600 nm and viability was
expressed as percentage of control (medium with 0.25% DMSO).
Triton X-100 (10%) was used as a positive control of cell death.

Table 1
The composition and measured concentrations of the various compounds in the
total mixture stock in mg/ml. The estimated concentration of POPs in the C (Chlo-
rinated compounds), F (Perfluorinated compounds) B (Brominated compounds)
stock solutions, prepared as described in Berntsen et al. (2017).

Compound Mixture stock concentration (mg/ml)

B þ C þ F F B C B þ F C þ F B þ C

Perfluorinated compounds (F)
PFOA 1.743 1.743 17.43 1.743
PFOS 22.348 22.348 223.48 22.348
PFDA 0.193 0.193 1.93 0.193
PFNA 0.507 0.507 5.07 0.507
PFHxS 3.422 3.422 34.22 3.422
PFUnDA 0.190 0.190 1.90 0.190
Brominated compounds (B)
BDE-209 0.009 0.009 0.09 0.009
BDE-47 0.009 0.009 0.09 0.009
BDE-99 0.004 0.004 0.04 0.004
BDE-100 0.002 0.002 0.02 0.002
BDE-153 0.001 0.001 0.01 0.001
BDE-154 0.002 0.002 0.02 0.002
HBCD 0.035 0.035 0.35 0.035
Chlorinated compounds (C)
PCBs
PCB 138 0.155 0.155 0.155 0.155
PCB 153 0.252 0.252 0.252 0.252
PCB 101 0.008 0.008 0.008 0.008
PCB 180 0.134 0.134 0.134 0.134
PCB 52 0.006 0.006 0.006 0.006
PCB 28 0.008 0.008 0.008 0.008
PCB 118 0.045 0.045 0.045 0.045

OCPs
p, p'-DDE 0.339 0.339 0.339 0.339
HCB 0.065 0.065 0.065 0.065
a-chlordane 0.010 0.010 0.010 0.010
oxychlordane 0.014 0.014 0.014 0.014
trans-nonachlor 0.044 0.044 0.044 0.044
a-HCH 0.005 0.005 0.005 0.005
b-HCH 0.022 0.022 0.022 0.022
g-HCH (Lindane) 0.005 0.005 0.005 0.005
Dieldrin 0.021 0.021 0.021 0.021
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2.6. LC-MS/MS

LC-MS/MS analysis was carried out by isotope-dilution mass
spectrometry as described previously (Ahmed et al., 2018). Briefly,
samples of H295R cell medium were extracted using liquid-liquid
extraction on a Hamilton Star pipetting robot, and 85 ml of sample
was used for analysis in addition to 10 ml of internal standard that
was added to all samples. LC-MS/MS analysis was performed on a
Waters Xevo TQ-S triple quadrupole mass spectrometer that was
coupled to a Waters i-class Acquity UPLC. Ionisation was achieved
by electrospray ionisation (ESI) in positive and negative mode.
Steroid hormones were detected and quantitated by isotope-
dilution mass spectrometry by multi-reaction monitoring (MRM).

2.7. Data analysis and statistical testing, and mixture effect
modeling

All values were transformed to fold change values prior to data
analysis. First, undetected values and concentration values below
the low limit of detection were replaced with half the lowest limit
of detection. The concentrations were then divided by the average
concentration in the corresponding control group to obtain fold
change values. Finally, the average fold change values across all the
biological and technical replicates were calculated. To test if a
treatment had an effect on a steroid a standard t-test was per-
formed with a null hypothesis of no change (fold change of 1) and
significance level a¼ 0.05. The t-tests were adjusted for multiple
testing to reduce the number of false significances (Holm, 1979).

Using the single mixtures, predictions for their combined expo-
sure were made by assuming additive effects (Groten et al., 2001).
We assume that FC1 and FC2 are the fold changes for exposure of
single mixture 1 and 2, respectively. The additive model then pre-
dicts the fold change for their combined exposure to be FC ¼
FC1þ FC2 - 1. Observed values loweror greater than these predictions
are regarded as antagonistic or synergistic, respectively. To test if the
observed effects were significantly non-additive an ANOVA was
performed for linear models with and without interaction. Also,
these tests were adjusted for multiple testing (Holm, 1979).

3. Results

3.1. Cell viability

Cell viability was evaluated using the Alamar Blue assay. All
mixtures in all concentrations were tested. Fluorescence from the
formed resorufin was measured and no deviation from solvent
control was observed with any of the mixtures in any concentra-
tions, whereas the positive control Triton X-100 showed an ex-
pected decrease in cell viability (Supplementary Figs. 1 and 2).

3.2. Separate exposures with brominated (B), chlorinated (C) and
perfluorinated (F) mixtures

Unstimulated H295R cells exposed to the low concentration of
perfluorinated mixture (F) showed a down-regulation in preg-
nenolone production (p¼ 0.05) (Fig. 1, Supplementary Table 1). In
the high concentration exposure, an up-regulation of pregnenolone
was indicated, although not statistically significant (p¼ 0.39).
Forskolin-stimulated H295R cells showed up-regulation of aldo-
sterone levels (p¼ 0.002) when exposed to the highest concen-
tration of the F mixture (Fig. 1, supplementary Table 1). Steroid
production in unstimulated and stimulated H295R cells did not
show any statistically significant deviation from the control when
exposed to either brominated mixture (B) or chlorinated mixture
(C) (Fig. 1).

3.3. Combined exposure with the brominated and chlorinated
mixture (B þ C)

Forskolin-stimulated H295R cells exposed to the B þ C mixture
showed no statistically significant deviation from the control,
although a non-significant up-regulation of aldosterone production
(p¼ 0.13) was observed in the highest concentration exposure.
Steroid production in unstimulated H295R cells showed no differ-
ence from control (Figs. 1 and 3).

3.4. Combined exposure with the brominated and perfluorinated
mixture (B þ F)

Unstimulated H295R cells exposed to the highest concentration
of the B þ F mixture showed statistically significant down-
regulation of all glucocorticoid steroids, as well as dehydroepian-
drosterone (DHEA) and testosterone (Fig. 1, Supplementary
Table 1). Significant up-regulation of hormone production was
noticed for 11-deoxycorticosterone with the highest concentration
of Bþ F mixture and progesterone in the high concentration (Figs. 1
and 2-A). Forskolin-stimulated H295R cells exposed to the highest
concentration of this mixture showed a significant down-
regulation for most steroids (Fig. 3). In the high concentration,
up-regulation of hormone production was observed in corticoste-
rone showing the strongest response, in addition to down-
regulation of cortisone (Figs. 1 and 2-B, Supplementary Table 1).

3.5. Combined exposure with the chlorinated and perfluorinated
mixture (C þ F)

In unstimulated H295R cells no deviation from control was
observed in steroid production (Fig. 1). In the forskolin-stimulated
H295R cells a significant up-regulation of aldosterone was
observed after exposure to the very high concentration of C þ F
mixture. Other exposure concentrations did not cause any de-
viations from the solvent control in steroid production (Figs.1, 2C, 3).

3.6. Exposure with the total mixture (B þ C þ F)

Unstimulated H295R cells exposed to the highest concentration
of the total mixture showed up-regulation trends in mineral and
glucocorticoids, but not statistically significant (Fig. 1). Similarly,
trends of down-regulation of androgens in the low concentration
exposure were found. In the forskolin-stimulated H295R cells
production of 17-hydroxy-pregnenolone was significantly down-
regulated in the low concentration exposure. In the highest con-
centration exposure aldosterone indicated an up-regulation
(p¼ 0.19) (Fig. 1, Supplementary Table 1).

3.7. Additive effect predictions

Additive effect predictions were made and compared to
observed responses using the model described in Materials &
Methods. Fig. 4 shows the additive effect predictions from single
mixtures and the observed values for the chlorinated and per-
fluorinated (C þ F) mixture in the forskolin stimulated condition.
We observed a more than additive response in the 17-
hydroxyprogesterone levels in the high exposure of this mixture
when compared to single mixture levels of F and C compounds
(p < 0.05). A similar deviation could be observed in aldosterone
levels upon exposure to the very high concentration of the C þ F
mixture (Figs. 3 and 4). This non-additive effect had a p-value of
0.07 in the statistical test for interaction after correcting for mul-
tiple testing. In non-stimulated C þ F cells, a less than additive
response (p < 0.05) was observed with cortisone in the low
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exposure group. This and all other model predictions are shown in
Supplementary Fig. 4.

4. Discussion

Data from laboratory studies and exposed wildlife populations
indicate that both the HPA axis and the adrenal glands are highly
susceptible to endocrine disruption caused by POPs at environ-
mentally relevant concentrations (Bergman et al., 2013b). In this
study, we have used the H295R adrenocortical cell model and a
recently established LC-MS/MS based method as an approach to
identify changes in steroidogenesis after exposure to mixtures of
POPs in various combinations. The most noteworthy finding was a
significant down-regulation in glucocorticoids and mineralocorti-
coids in forskolin stimulated H295R cells when they were exposed
to the highest concentration of a mixture of brominated and fluo-
rinated compounds (10,000-times human blood values).

When exposed to brominated compounds alone, no changes in
steroid production were observed in the H295R cells, although
previous studies on BFRs using numerous in vitro and in vivo sys-
tems are indicative of endocrine disrupting effects (Hamers et al.,
2006; Harju et al., 2007; Kitamura et al., 2005). For example, in
rats exposed to BDE-99 for eight days during pregnancy a

significant decrease in estradiol levels in blood of the offspring was
reported (Lilienthal et al., 2006). Also, similar effects have been
reported in studies of BDE-47 exposed rat offspring (Talsness et al.,
2006). Both of these compounds are present in our brominated
mixture. However, the previous reports investigating BFRs using
in vitro models indicated harmful effects only when used in much
higher concentrations than in our mixture. For example, HepG2
cells exposed to 10 mM of BDE-209 showed decreased cell viability
(Hu et al., 2007). This is an order of magnitude higher than the
highest BDE-209 concentrations used in our mixture. Also reactive
oxygen species formation increased in SH-SY5Y neuroblast cells
when exposed to 2 mM BDE-47 which is 100 times more concen-
trated than in our exposure (He et al., 2008; Shao et al., 2008). Thus,
the lack of endocrine disrupting effects in our results may be due to
the lower concentrations used, but may also be due to the shorter
duration of exposures as well as differences caused by using a
mixture.

With regard to perfluorinated (F) compounds several in vivo
experiments have reported endocrine disrupting potential
(Benninghoff et al., 2011; Wang et al., 2011; Yang et al., 2009). PFOA
and PFOS have caused an increase in estradiol levels and decrease
in testosterone levels in a steroidogenic assay (Du et al., 2013). Kang
et al. (2016) suggested that they target CYP19 (aromatase), which is

Fig. 1. Heat map of steroid production after mixture exposure of H295R cells, with and without forskolin stimulation. The fold change (FC) values for all the steroids and ex-
periments. The mixture abbreviations are B for brominated, C for chlorinated and F for perfluorinated such that e.g. BC is the combined mixture of B and C. The level abbreviations
are L for low, M for medium, H for high and VH for very high mixture concentrations. The colouring of the steroid names are according to their classification in steroidogenesis. Each
value is coloured according to its log2-value where log2(FC) ¼ 0 corresponds to no difference from control. An asterisk (*) indicates a significant effect with p � 0.05 and a double
asterisk (**) indicates a strong significant effect with p � 0.01. All the p-values can be found in Table 1 in supplementary material. zVH10: concentration in this combined mixture is
10 times higher than the VH concentration of B and F separate mixtures.
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Fig. 2. Changes in steroid production in H295R cells after mixture exposures, plotted as fold change (FC) in a network representation. The box for each steroid is divided in four
parts, corresponding to low, medium, high and very high mixture concentration from left to right. Each value is coloured according to its log2-value where log2(FC) ¼ 0 corresponds
to no effect. The grey boxes are missing data. A) brominated and perfluorinated (B þ F) mixture in forskolin-stimulated H295R cells. B) brominated and perfluorinated (B þ F)
mixture in unstimulated cells. C) chlorinated and perfluorinated (C þ F) mixture in stimulated cells.
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the enzyme responsible for the biosynthesis of estrogens from
androgens, such as testosterone. Also, H295R cells were previously
exposed to PFOA, PFOS and perfluorononanoic acid (PFNA) alone,
and only PFOS had effects on hormone levels, again at higher (20
times) concentration than used in our mixture (Kraugerud et al.,
2011). In the current study, we observed aldosterone being
elevated at the highest F exposure concentration in the forskolin
stimulated condition.

Regarding the chlorinated Cmixture, our data showed no effects
in either stimulated or unstimulated conditions. These results
contradict previous reports of PCBs affecting H295R cell hormone
production by Tremoen et al. (2014), who found that exposure of
PCB 118, 153 severely down-regulate testosterone production in
H295R cells, while PCB 126 up-regulate cortisol production by 40%.
In addition Kraugerud et al. (2010) reported significant up-
regulation in estradiol and aldosterone production in single expo-
sure of H295R cells to PCB 118, PCB 153 and PCB 126. In a previous
study, a co-culture of theca and granulosa cells, an ovarian cell
model, was exposed to a defined PCB mixture in addition to DDE,
which caused a 15-fold increase in estradiol secretion and a strong
inhibitory effect on testosterone levels (Gregoraszczuk et al., 2008).
Also, Xu et al. (2006) reported a significant up-regulation of
CYP11B1 and CYP11B2 in H295R cells, which could be correlated to
production of cortisol and aldosterone respectively. However, the
exposure concentrations used in those studies were more than 30
times higher than the highest concentrations used in the current
study, again suggesting that the lack of responses observed here are
due to the use of lower and more realistic concentration ranges.

A key issue, when dealing with compound mixture exposures is
chemical interaction. Interaction could take place in several ways
such as affecting the toxicokinetic phase, which include means of
uptake, distribution, metabolism and excretion. In addition, inter-
action could modify responses of a receptor or a target organ to one
chemical in the presence of another. Moreover, in reality we would
be dealing with all previously mentioned scenarios of interaction at
the same time, especially if the mixture contain more than two
compounds (Groten, 2000; Spurgeon et al., 2010; Tipping, 1994).

The combination of the brominated and perfluorinated (B þ F)
mixtures resulted in the most severe changes in the steroid
metabolome, especially at the highest concentration (VH10,10,000
times blood levels), but also in the VH concentration, which is
comparable to the very high concentration of the single mixtures
where only a few effects were observed. Clear differences could also
be observed between unstimulated and forskolin-stimulated cells
(Fig. 1). Most notable is the shift from upregulation to down-
regulation of estrone and down-regulation of mineralocorticoids
in the stimulated cells. Previous studies on HepG2 cells that were
exposed to the same mixture showed diminished cell viability,
higher ROS production and decreased mitochondrial membrane
potential (MMP) using the same concentrations (Wilson et al.,
2016).

We observed a more than additive response in aldosterone
levels upon exposure to the very high concentration of
chlorinated þ perfluorinated (C þ F) mixture when compared to
single mixture levels of C and F compounds (Fig. 3). This effect is
also indicated in Fig. 4, where predicted vs observed responses are
presented (p¼ 0.07 after correcting for multiple testing). In addi-
tion, in the same exposure concentration we observed antagonism
in aldosterone levels, when we compared perfluorinated and
brominated mixture to the single exposures (Fig. 3). A deviation
was also observed for 17-hydroxyprogesterone in the high C þ F
group, which showed a significantmore than additive effect (Fig. 4).
These results correlate with previous work on the samemixtures as
significant synergistic effects were observed for the increase of ROS
production and MMP decrease in HepG2 cells (Wilson et al., 2016).

These results could lead us to speculate that there is some inter-
action between chemicals in the different mixtures causing more
than additive or synergistic effects.

It is worth commenting, that in our results all p-values are
corrected for multiple testing due to the high number of acquired
measurements according to the Holm method (Holm, 1979). This
procedure increases the p-values obtained from the t-tests for
significant effects. Thus, effects that would be considered signifi-
cant in individual mixture experiments could become non-
significant with this approach. This can be observed in the bar
graphs for aldosterone and cortisol where the p-values are cor-
rected for multiple testing, but not the confidence intervals (Fig. 3).
However, the correction strengthens the confidence in the effects
classified as significant since stronger evidence is needed for a p-
value to be significant after the correction.

In primary neonatal porcine Leydig cells, testosterone hormone
production increases by more than 140-fold when stimulated with
luteinizing hormone (LH) (Lervik et al., 2011). Exposure to 3-
MeSO2-DDE caused a dose dependent increase in testosterone
levels in unstimulated Leydig cells and a down regulation in LH
stimulated cells (Castellanos et al., 2013; Kalayou et al., 2016).
Forskolin plays a similar role to LH in stimulating H295R cells to
significantly increase the basal hormone production, e.g. an in-
crease up to 17-fold in testosterone levels was observed in Ahmed
et al. (2018). In the present study, we noticed a difference in
response to the same mixture exposure depending on the physio-
logical status of the cells. For example, progesterone and aldoste-
rone showed a complete different secretion profile in the
stimulated condition compared to the unstimulated one after
exposure to the same mixture (Figs. 1, 2A and 2B). Moreover, in
some instances apparently contradictory result appeared, such as
the case with estrone and corticosterone (Fig. 1). These results
indicate the need to use both stimulated and unstimulated H295R
cells when testing for endocrine disrupting potential.

The H295R cell model is commonly used to assess in vitro impact
of drugs and toxicants, such as environmental endocrine dis-
ruptors, on the steroidogenesis (Hecker et al., 2006; Rijk et al.,
2012). Moreover, toxicological studies utilizing this model gener-
ally expose the cells unstimulated and use 10 mL forskolin as a
positive control (van den Dungen et al., 2015; Wang et al., 2014).
From our point of view, the use of forskolin to induce hormone
production in H295R cells is necessary to utilize the full potential of
the H295R assay. In the unstimulated condition several key me-
tabolites such as aldosterone and estradiol are produced at unde-
tectable levels (Fig.1). In our previous work (Ahmed et al., 2018), we
found that hormone secretion in H295R cells reaches 50% satura-
tion when cells are stimulated with 1.5 mM forskolin. This is sug-
gested to represent an optimal condition to investigate the effect of
EDC mixtures on steroidogenesis, when cells are already stimu-
lated, but steroid production is not saturated. Extrapolating to the
in vivo situation, the unstimulated H295R cell would simulate a
resting adrenal cortex, whereas the stimulated cell would reflect a
stressed situation. Different toxicological responses under these
conditions could be highly relevant for real life exposure situations.

There is a possibility that forskolin may interact with any of the
compounds present in the mixtures and add to the complexity of
the interpretation of the results. In order to address this point, we
have for each mixture exposure a corresponding exposure in the
DMSO condition, which we are taking into account. Several previ-
ous studies used forskolin induced H295R cells in their exposures
as a base condition, e.g. Gracia et al. (2006) used 10 mM forskolin
stimulation, while Krogh et al. (2010) used 5 mM forskolin. Other,
more complex interactions, can of course not be excluded, but are
not considered in this set-up. As one example, forskolin has been
shown to interact with the transcription of several gene sets,
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Fig. 3. Alterations in A) aldosterone and B) cortisol production after mixture exposure of H295R cells. Fold change is plotted for all mixtures used with forskolin-stimulated H295R
cells. The mixture abbreviations are B for brominated, C for chlorinated and F for perfluorinated such that e.g. BC is the combined mixture of B and C. A star (*) indicates a significant
effect with p � 0.05. In addition, a 95% confidence interval is plotted for each value. Note that the confidence intervals are not corrected for multiple testing such that an effect may
not be significant even though the confidence interval does not contain 1.
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including estrogen receptor in breast cancer cells. Upon activation
by forskolin, cAMP binds to protein kinase Awhich in turn activates
the estrogen receptor (Al-Dhaheri and Rowan, 2007). This could,
potentially, change the toxicodynamic properties of EDCs in some
cell types.

Statistical models provide an ideal platform to strengthen our
understanding of data acquired from mixture experiments.
Rajapakse et al. (2002) reported corroborating findings as they used
the human breast cancer cell proliferation assay to assess a mixture
of four low potency estrogenic chemicals at low effect concentra-
tions. The excellent agreement between prediction response model
and experimental observations, implied that every component in
the mixture contributed to the total mixture effect, even when
present at concentrations below zero effect levels (Rajapakse et al.,
2002, 2001; Silva et al., 2002). In addition, a mixture of 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD), PCB-126 and 2,3,4,7,8-
pentachlorodibenzofuran (PeCDF), which are aryl hydrocarbon re-
ceptor (AhR) agonists, were used in a 2-year rodent cancer bioassay,
acted in agreement with the additive effect model (Khetan, 2014;
Walker et al., 2005). In the current work, using an additive pre-
diction model, deviations between measured and predicted results
were noted (Fig. 4).

For a better insight and more comprehensive overview of
mixture effects, models such as dose additivity and the isobole
method could be considered (Bosgra et al., 2009; Groten et al.,
2001). Both these models require exposures with more diverse
dose combinations of the different mixtures, for instance the high

concentration of C mixture combined with low concentration of B
mixture. However, the amount of laboratory experiments needed
to be carried out in order to provide the comprehensive data
necessary for such models would be expensive and not feasible
within normal project budgets (Bosgra et al., 2009; Groten, 1996).

Some EDCs are suggested to have effects on gene expression in
the steroidogenesis pathway, however these effects are not always
translated into effects on enzyme activity (Gracia et al., 2006;
Maglich et al., 2014). This means that the H295R in vitro assay used
here would not detect compounds that modulate only gene
expression of steroidogenesis enzymes, if they do not affect hor-
mone production levels. There is a high probability that a com-
pound can target several points in the steroidogenesis pathway
simultaneously. In order to get a clearer and deeper overview of
mechanisms by which compounds exert their endocrine disrupting
effects, measuring all or most of the metabolites in the steroido-
genesis pathway would be the best approach (Nielsen et al., 2012).
In addition, if we take into account both gene expression of key
enzymes and hormone production levels of H295R cells as end-
points to predict endocrine disrupting potential of xenobiotic
compounds, a more accurate prediction could be established
(Maglich et al., 2014).

Translating these in vitro findings into hazard predictions for
human exposure should be performed with caution, but some risk
potentials emerge. A small, but significant down-regulation of
pregnenolone production was observed in the low and environ-
mentally relevant exposure of the F (perfluorinated) mixture.

Fig. 4. Predicted (o) and observed (x) fold change (FC) values for all the steroids after exposure to the chlorinated and perfluorinated (C þ F) mixture in H295R forskolin-stimulated
cells. The predicted values are calculated using the single mixtures and assuming additive effects. The values are plotted on log2-scale such that log2(FC) ¼ 0 corresponds to no
effect. The difference between the predicted and observed value of 17-hydroxyprogesterone in the high concentration was the only statistically significant difference (p � 0.05) and
is marked with an asterisk (*).
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Pregnenolone is a known neuro-steroid that is involved in cognitive
and memory abilities in humans and animals, hence decreased
pregnenolone levels may be linked to impaired memory perfor-
mance and Alzheimer's disease (Cheney et al., 1995; Vall�ee et al.,
2001). Aldosterone is an important hormone associated with
increasing blood pressure and elevated aldosterone levels could
lead to hypertension (Basavanagowdappa et al., 2016). An up-
regulation in aldosterone production was observed with expo-
sures to the very high concentration of both the F mixture and Cþ F
mixture. The exposure to the B þ F mixture at VH10 concentrations
caused an overall down-regulation of steroidogenesis. Implications
of such changes could involve induction of cancer, male infertility,
reproductive disorders in females, metabolic and cardiovascular
complications (Fernandez and Olea, 2012; Thayer et al., 2012;
Vuorinen et al., 2015). Hence, cognitive defects as well as metabolic
and endocrine disruption may be possible adverse outcomes of
human exposures to these environmentally relevant mixtures.

5. Conclusion

The highest concentration of the combined brominated and
perfluorinated (B þ F) mixture produced a strong steroidogenesis
disrupting effect with H295R cells. Also, the very high concentra-
tion of the C þ F combination produced apparent non-additive
effects, which were not predicted from the single mixtures.
Otherwise, smaller and mostly non-significant changes were
observed, with the perfluorinatedmixture and combinations of this
with other mixtures giving the most significant responses. Inter-
estingly, the low concentration of the perfluorinated mixture alone
produced a significant, albeit small, down-regulation of pregnen-
olone, and the total mixture a similar effect on 17-
hydroxypregnenolone. Stimulating the cells with forskolin pro-
duced a marked shift in effects towards mineralocorticoids being
down-regulated compared to unstimulated cells in the B þ F
response. Also, an upregulation of estrone in unstimulated cells
disappeared after forskolin stimulation. The difference in results
observed in stimulated and unstimulated conditions indicates the
need to use both conditions in future toxicological screening ex-
periments. The use of statistical models is of great importance to
better interpret data from mixed exposure regimes. The potential
for adverse outcomes of human exposures is indicated, pointing to
a need for further investigation into these mixtures, as several of
the single compounds present in the mixtures have been reported
previously to be endocrine disrupting chemicals, but at higher
concentrations than used in the present study.
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