
Supersymmetric Cascade Decays

at the LHC

by

Are R. Raklev
U

 N

 I V
 E R S I T A S

B E R G E N S I 
S

Dissertation for the degree of
Philosophiae Doctor (PhD)

Submitted March 2007

Department of Physics and Technology
University of Bergen

Bergen, Norway

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bergen

https://core.ac.uk/display/479088114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




To Bæ-Bæ



iv



Acknowledgements

The research presented in this thesis has been funded by the Norwegian Research Council
and the European Community through a Marie Curie Fellowship for Early Stage Research
Training.

I would like to take this opportunity to thank all the good physics teachers and
lecturers I have had over the years. There have been too many of you to mention all, but
in particular Carl Axel Husberg, Sigmund Waldenstrøm and Kjell Mork have been great
sources of inspiration and knowledge.

There are also many people at the Department of Physics and Technology in Bergen
who deserve to be thanked. Most of all my fellow PhD students Bjarte A. Mohn and Ola
K. Øye, who have been constant supports and great fun to work — sometimes even live
— alongside. Thank you for the good times we have had, at workshops and conferences,
and at CERN. Amongst the permanent staff I would like to mention specifically my
co-supervisor, professor Anna Lipniacka, and some of the very friendly people in the
Department administration and technical staff: Gjert Furhovden, Villy Nielsen and K̊are
Slettebakken.

During long stays at CERN in 2005 and 2006 I have had the great fortune to get to
know many very kind people and good scientists. In particular, the constantly fluctuating
mass of people in and around room 4.2.037 deserve to be thanked for good companionship:
James Bedford, Cedric Delaunay, Tanju Gleisberg, Stefan Hohenegger, Johanna Knapp,
John Ward, Marlene Weiss and Jan-Christopher Winter. The secretaries of the Theory
Unit must be mentioned here and I wish to give a particularly warm thank you to the
Suzy theory has lost: Suzy Vascotto, under whose absence the English language at CERN
will deteriorate significantly. I also wish to thank Diana De Toth — the Marie Curie
coordinator at CERN — for her cheerful spirits and all her kind help during my last stay.

I am also very grateful to my collaborators outside of the Department over the past
three years: Jonathan M. Butterworth, John R. Ellis, Sabine Kraml, Smaragda Lola and
David J. Miller. First of all for their patience with me and for the fun we have had doing
everything from physics to Christmas plays, but also for the invaluable advice and help I
have had in trying to start a career of my own in physics.

Finally, I would like to express my deep gratitude to my PhD supervisor, professor
Per Osland, whose constant support and help has made this thesis possible. I hope that
we will have the opportunity to continue doing physics together for many years to come.
If I have learnt nothing else from you, I have learnt the importance of an open office door.

v



vi ACKNOWLEDGEMENTS



Preface

The research presented in this thesis is the result of work done as a PhD student at the
Department of Physics and Technology, University of Bergen, in the period 2004-2007,
and during a year spent in the CERN Theory Unit as a Marie Curie Early Stage Research
Training Fellow in 2006.

The research focuses on extending the CERN Large Hadron Collider (LHC) potential
for the discovery of supersymmetry in a wide range of possible supersymmetry models,
and in investigating the LHC potential for the measurement of model parameters should
a discovery be made, such as the masses of supersymmetric particles (sparticles). This is
facilitated by exploring several benchmark models of supersymmetry, some suggested by
other authors [1, 2], and mainly by looking at the cascade decays of sparticles.

The view taken in these investigations focuses on the phenomenology of the various a

priori possible models of supersymmetry at the LHC. This is partially in contrast and cer-
tainly in complement to an experimental view focusing on the details of the detectors and
their construction in this pre-LHC period, or on the experimental data itself during the
running of the LHC, and it is also in complement to the more theoretical model building
from which these models of supersymmetry have surfaced. To discover supersymmetry at
the LHC it is not enough to know how the detectors of the experiments work and what
supersymmetry is, but we need also to know what supersymmetry will look like at the
LHC, in all of its many disguises. To do this we take advantage of Monte Carlo event
generators to model proton–proton collisions, and in many cases use fast simulations of
generic LHC detectors to get an idea of the potential of the LHC experiments.

This thesis presents the research in the form of a few introductory chapters on the
physics involved, and four papers, three of which have been published in refereed journals.
Below follows a short summary of these papers:1

Paper 1: We investigate the improvements made possible in measuring the masses of
sparticles from the invariant mass distributions of cascade decay products, by considering
not only the endpoints of these distributions, but also their full shapes. The shapes are
derived for generic decay chains with two intermediate sparticles, most of them for the
first time. We find that knowledge of the shapes helps cure several problems with the
endpoint method, such as multiple solutions for masses and the existence of feet: small
features in the distributions close to the endpoints that are easily mistaken for background

1Papers 1 and 3 are reprints of papers published in the Journal of High Energy Physics [3, 4], repro-
duced with the kind permission of SISSA, c©2006 SISSA. Paper 2, published in Physical Review D [5], is
reprinted with permission from the Americal Physical Society, c©2006 by the Americal Physical Society.
Paper 4 [6] has been submitted for publication to the Journal of High Energy Physics.

vii



viii PREFACE

or smearing effects in an experiment.

Paper 2: This paper explores the possibility of detecting the scalar partner of top
quarks (stops) predicted in supersymmetry models, when these are relatively light (lighter
than the top quark). Such scenarios are preferred in models of baryogenesis and can help
explain the value of the dark matter density of the universe. They also have the added
advantage of less fine tuning for the Higgs mass. The idea of the paper is to look for
events with a pair of same-sign top quarks, the result of the decays of a pair of gluinos
into pairs of top and stop. We show that the signal is observable in a wide area of the
parameter space, and for gluino masses up to 900 GeV. Using the shapes of the invariant
mass distributions for the decay products of the top and the stop we can also constrain
the masses of the sparticles involved.

Paper 3: Here we investigate models where the gravitino is the lightest sparticle
and a dark matter candidate. Due to the gravitino’s weak gravitational coupling, the
next-to-lightest sparticle will have a long lifetime, and in the cosmologically preferred
scenarios this is the charged scalar partner of the tau, the stau. This leads to distinctive
signatures for the LHC, consisting of a pair of “muon”-like tracks made by two staus that
are relatively slow due to the high mass of the staus when compared to muons. Similar
signatures can be found in other models of supersymmetry, featuring long-lived sparticles,
and indeed in many non-supersymmetric models as well. We find that such particles are
easily discovered and that their masses can be measured to a very high precision, down
to 0.1% in the best case scenarios. From the staus we successfully reconstruct heavier
sparticles, partially with the help of invariant mass distributions.

Paper 4: The last paper deals with measuring sparticle masses in decay chains with
exclusively hadronic final states, involving also the decays of massive bosons. We use the
kT jet-algorithm to reconstruct the bosons, finding that it effectively suppresses back-
ground in the cases where the bosons are highly boosted and the decay product jets are
collimated. This allows us to constrain the sparticle masses involved by using the end-
points of invariant mass distributions formed from jets in the events.
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Chapter 1

Introduction

’Where shall I begin, please your Majesty?’ he asked
’Begin at the beginning,’ the King said, gravely, ’and go on till you come to

the end: then stop.’

Lewis Carroll
Alice’s Adventures in Wonderland

At the end of 2007 the Large Hadron Collider (LHC) at CERN, Geneva, is set to
see its first proton–proton collisions. Due to its unprecedented high energy regime and
high collision rate, the results of the LHC experiments are eagerly awaited by the particle
physics community.

Among the most exciting areas under study is the search for supersymmetry (SUSY),
a symmetry between the boson force carriers and the fermion matter particles of the
universe. First suggested as an extension of the so-called Standard Model (SM) as early
as the seventies [7], its presence at the energy scales accessible at the LHC is believed to
hold the solution to several of the more vexing problems in today’s high energy physics. It
can incorporate natural candidates for dark matter consistent with the recent spectacular
measurements of the dark matter density of the universe, based in part on data from the
WMAP satellite [8–10]. Supersymmetry further points to the unification of the strong and
electroweak forces at a high energy scale [11–13]. In addition, it reduces the fine tuning
of the SM required to give a mass, consistent with measurements of other electroweak
parameters, for the Higgs boson [14–16], the one missing particle of the SM and another
candidate for discovery at the LHC.

If hints of supersymmetry are indeed found at the LHC they may come in the form
of a discovery of one or more of the plethora of new particles predicted even in the
most minimal of SUSY models. However, supersymmetry may also manifest itself only
indirectly in the properties of SM particles measured at the LHC. Whichever choice
Nature has made, the LHC experiments will be sensitive to the effects up to energy
scales in the multi-TeV range. If the conclusions should be negative, this weakens the
case for supersymmetry, even at energy scales accessible to us in the distant future, as
it removes the central underpinning of reduced fine tuning and makes the prospects of
a supersymmetric dark matter candidate dim. This implies that the LHC constitutes a
significant test of low-energy supersymmetry.

1



2 CHAPTER 1. INTRODUCTION

The LHC experiments have a variety of search strategies for supersymmetry. If the
symmetry known as R-parity holds for a SUSY model, this implies that the decay of
a supersymmetric particle (sparticle) must result in another sparticle among the decay
products, and it implies that the sparticles produced in high energy collisions must come
in pairs. In turn this predicts the existence of a stable sparticle, as we will see in Chapter 3.
If uncharged, this particle is a good dark matter candidate, but it will escape the LHC
detectors. The production of heavier sparticles thus result in decay chains down to the
lightest supersymmetric particle (LSP): a cascade decay. Summing the momenta of the
detected particles in such an event will give an imbalance due to the missing LSPs.
This missing momentum, combined with energetic jets and/or leptons from the cascade,
constitute the main search channels for SUSY at the LHC.

With escaping LSPs the standard technique of measuring the masses of new particles
by reconstruction from their decay products becomes impossible. One must instead rely
on the distributions of the detectable particles and their relation to the mass of the
sparticles involved in the cascade decay. This will be one of the main subjects of this thesis.
However, missing energy is not the unique direct signal of SUSY that may appear at the
LHC. There are scenarios where the next-to-lightest supersymmetric particle (NLSP)
is long lived and charged, so that the SUSY signature is a pair of tracks from massive
charged particles. This intriguing possibility is also discussed. Another alternative is that
R-parity is broken, leaving some sparticles to decay solely to SM particles, and possibly
to be produced singly. While presenting important search channels for the LHC, these
scenarios will not be discussed extensively here due to their different nature.

Following this Introduction we will start with a discussion of the present Standard
Model of particle physics in Chapter 2, first looking at its great successes in predicting
the behaviour of the universe on the most fundamental scales, and then why we, despite
these successes, have to look further for a more complete model of the world we inhabit.
This is followed by a short introduction to supersymmetry in Chapter 3, and how it can
answer some of the questions raised in the previous Chapter. Chapter 4 focuses on the
phenomenology of the detection and mass measurement of sparticles at the LHC, and
gives an introduction to the papers presented in the following chapters.



Chapter 2

The Standard Model

These metaphysics of magicians,
And necromantic books are heavenly;
Lines, circles, letters and characters;

Christopher Marlowe
The Tragical History of Doctor Faustus

Our unceasing efforts to understand the world around us in terms of its most fun-
damental laws and basic components have led us from paradigm to paradigm in the
physical sciences, advancing into worlds very different from the experiences of our every-
day lives. We describe these worlds with mathematical models, and from the models we
make testable predictions to confirm our beliefs. From developments that may arguably
reach back to the ancient Greek philosophers, we have arrived at a Standard Model (SM)
of particle physics that successfully describes the physics of the very small distances and
high energies. Here we will give a condensed, but necessarily incomplete exposition of the
SM, hopefully sufficient for the discussions to follow.

2.1 A Brief History of the Standard Model

The question of the nature of matter was contended among the ancient Greeks. On one
side were those that believed that matter was infinitely divisible and continuous, on the
other was the view represented by Democritus and Leucippus, that there were indivisible
units of matter, in ancient Greek atomos. While not popular in its own time, the idea
was strengthened in the 19th century by the work of people like John Dalton, Amedo
Avogadro and Dimitri Mendeleev. Their developments in chemistry led to the description
of all matter as being built out of a finite number of elementary particles, atoms. While
the atoms of the periodic table of the elements still constitute the basic building blocks
of chemistry, the atom has long since been split into more fundamental components.

The first sub-atomic particle, the electron, was discovered by J.J. Thomson in 1897 [17]
by cathode-ray experiments, and in 1911 his one-time student Ernest Rutherford pro-
posed [18], on the basis of scattering experiments of α particles and electrons on gold foil,
that the structure of the atom is that of a positively charged nucleus containing the bulk
of its mass, surrounded by electrons. Further developments led to the discovery of the

3



4 CHAPTER 2. THE STANDARD MODEL

Leptons Quarks
Flavour Mass Charge Flavour Mass Charge
νe < 2 eV 0 u 1.5− 3.0 MeV 2

3

e 0.51099892(4) MeV -1 d 3− 7 MeV − 1
3

νµ < 2 eV 0 c 1.25(9) GeV 2
3

µ 105.658369(9) MeV -1 s 95(25) MeV − 1
3

ντ < 2 eV 0 t 174.2(3.3) GeV 2
3

τ 1776.99±0.29
0.26 MeV -1 b 4.20(7) GeV − 1

3

Table 2.1: The spin- 1
2

matter particles of the SM with masses and charges adapted
from [26]. Errors for masses are given in parenthesis where symmetric. The neutrino
masses are unknown, but are believed to be non-zero due to the existence of neutrino
flavour oscillations. The given limit is taken from tritium decays. With the exception of
the top quark the quark masses are MS masses, for the light quarks (u, d and s) they
are so-called current quark masses.

proton in 1919 [19] and the neutron in 1932 [20], that make up the nucleus. The meaning
of atom was stretched even further in 1964 with the proposal that nucleons have struc-
ture themselves in the form of constituent quarks [21, 22], to explain the veritable zoo of
heavier particles found as the result of collider experiments at ever increasing energies.

Meanwhile Wolfgang Pauli had proposed the existence of a neutral and very light
particle, the neutrino, in 1930 to explain the missing energy in β decays. However, it was
not found experimentally until 1953 by Clyde Cowan and Frederick Reines [23]. Also, the
theories of Paul Dirac on quantum mechanics had lead him to postulate the existence of
anti-particles in 1928 [24], in turn confirmed by Carl Anderson [25] by the observation of
the positron, the anti-particle of the electron, in 1933. A particle and its anti-particle have
the exact same masses in the SM, but opposite charges. However, it is worth noticing that
elementary particles can also be classified according to a quantum number called spin,
and that both the electron and the positron are fermions — particles with half-integer
spins — and have spin- 1

2
, as have all the other matter particles we have seen.

Over time it also became clear that one generation of leptons — the electron and
neutrino — and one generation of quarks — the up and down quarks — were not enough
to explain all the exotic beasts observed in experiments. Three generations with different
masses are needed in the SM, and experimental searches indicate that there are no more.1

This leads to the prediction of six leptons: the electron, muon and tau with their corre-
sponding neutrinos, and six quarks: the up, down, strange, charm, bottom and top. All of
these have now been found in high energy experiments together with their anti-particles.
A table showing the matter particles of the SM with their masses and electric charges
can be found in Table 2.1.

In the SM the interactions of elementary matter particles are represented by the ex-
change of force mediating particles that are quantisations of the fields of the forces. The

1E.g. the number of generations of neutrinos was measured by the LEP experiments to be 2.994 ±
0.012 [26]. If more neutrinos should exist they would either need to be very heavy so that they do not
contribute in the LEP measurement, or their couplings to other particles need to be different from the
SM neutrino couplings.
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Force Particle Mass Charge
Electromagnetic γ 0 0
Weak Z0 91.1876(21) GeV 0

W± 80.403(29) GeV ±1
Strong g 0 0

Table 2.2: The spin-1 force mediating particles of the SM with masses and charges adapted
from [26]. Errors for masses are given in parenthesis.

electromagnetic field has been known since James Maxwell’s 1864 paper [27] and its quan-
tisation is the photon of Quantum Electro Dynamics (QED), the so-called gauge theory
of electrodynamics which we shall discuss further below. In addition to the electromag-
netic force the SM describes the two nuclear forces: the weak and the strong nuclear
force. Inspired by the gauge theory nature of QED, the description of the weak force
was developed in the combined electroweak framework by Sidney Glashow, Abdus Salam
and Steven Weinberg during the 1960’s [28–30]. The electro-weak force is mediated by
the massive vector gauge bosons W± and Z0, discovered at CERN in 1983 [31–34], in
addition to the massless photon. The strong force is not unified with the other two forces,
and it is mediated by the massless gluon, g. However, the force-mediating particles share
a common feature in that they are bosons — particles of integer spin — with spin-1. We
show some of the properties of the force mediating particles in the SM in Table 2.2.

Parallel to the experimental discoveries theoretical models were naturally being built,
describing what had been found and predicting what should be out there. At times
experimental findings have demanded theoretical explanation, as can be seen in the case of
the particle zoo and the quark sub-structure of the nucleons, at other times theorists have
been more or less certain of the existence of particles before they are found experimentally.
We turn now to describing these theoretical frameworks, on which the SM is built.

2.2 Quantum Electro Dynamics

Attempts to understand the nature of light played a central role in the striking develop-
ments in physics at the beginning of the 20th century. The particle–wave debate, going
back to Isaac Newton’s corpusculars and Christiaan Huygen’s waves in the 1600s, was fi-
nally resolved in the particle–wave duality of quantum mechanics, laying the foundations
for the field theoretical description of electromagnetic interaction in Quantum Electro
Dynamics (QED) by people such as Freeman Dyson, Richard Feynman, Julian Schwinger
and Sin-Itiro Tomonaga [35–38], in the late 1940s. Here we will focus on the gauge aspects
of QED.

Maxwell’s successful field description of electromagnetism ruled the ground at the
end of the 19th century, but two major problems were on the horizon. The radiation
predicted from a black body was found to be ultraviolet divergent, i.e. divergent at short
wavelengths. Additionally, light was assumed to propagate in some medium, dubbed the
aether, but experimental searches for medium effects were negative. The suggestion by
Max Plack in 1901 of a quantised electromagnetic energy [39] to explain the black-body
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spectrum, together with Albert Einstein’s model for the photoelectric effect in 1905 [40],
favoured a particle description of light. At the same time Einstein’s theory of special
relativity [41] did away with an absolute frame of reference, and as a consequence the
necessity of the aether, at the expense of some added mathematical work in transforming
between frames of reference.

Developments in quantum mechanics at the beginning of the 20th century by the
likes of Bohr, de Broglie, Heisenberg, Pauli and Schrödinger extended the quantisation
of Planck into a particle–wave duality and culminated in the first relativistic quantum
mechanical description of a spin- 1

2
particle by Dirac in 1928 [24]. Here a free particle with

mass m is described by the Lagrangian density

L0 = ψ̄(x)(iγµ∂µ −m)ψ(x), (2.1)

where ψ(x) is the four-component spinor representation of the spin- 1
2

particle and γµ

are gamma matrices (see Appendix A). The interaction of this free particle with the
electromagnetic field can correctly be described by the so-called minimal substitution

∂µ → Dµ = ∂µ + iqAµ(x), (2.2)

where q is the charge of the particle and Aµ(x) = (φ(x),A(x)) is a covariant description
of the electric and magnetic fields of Maxwell’s equations given by

E(x) = −∇φ(x)− ∂A(x)

∂t
and B(x) = ∇×A(x). (2.3)

Dµ is sometimes called the covariant derivative. It is important to notice that there is a
group of transformations of Aµ that leave the electric and magnetic fields unchanged for
all space-time coordinates x, namely

Aµ(x)→ Aµ(x) + ∂µf(x), (2.4)

where f(x) is some analytic function. This can be shown by insertion into Eq. (2.3). A
corresponding phase transformation of the ψ(x)

ψ(x)→ ψ(x)e−iqf(x), (2.5)

will leave the Lagrangian, including the interaction term created by (2.2), invariant un-
der the combined effects of both transformations. Because the phase of ψ(x) is not
an observable in quantum mechanics, the physics of the particle is invariant under this
transformation, as the electric and magnetic fields are under (2.4). The transformations
of Eqs. (2.4) and (2.5) are called local gauge transformations, and reflect a symmetry in
the system described by the Lagrangian, which is called a local gauge symmetry. Here
local indicates the dependence of the transformations on the space-time coordinate x. We
say that the phase transformation of (2.5) is a representation of the U(1) group of unitary
transformations, since the exponential involved is just a one-dimensional unitary matrix.

Alternatively one could demand the invariance of Eq. (2.1) under the gauge trans-
formation of (2.5). This would imply that the covariant derivative should have the form
given in (2.2), with a field Aµ(x) transforming as in Eq. (2.4), and thus give the coupling
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of a matter particle with charge q under the unitary gauge transformation of (2.5) to the
gauge field Aµ(x).

Inserting the minimal substitution of Eq. (2.2) into the Lagrangian in Eq. (2.1) and
adding a term for the free electromagnetic field results in the complete QED Lagrangian

L = ψ̄(x)(iγµDµ −m)ψ(x) +
1

4
F µνFµν, (2.6)

where
Fµν = ∂µAν − ∂νAµ, (2.7)

is the electromagnetic field strength tensor, which is obviously invariant under Eq. (2.4)
for a well-behaved f(x). Interpreting ψ(x) as the field of the spin- 1

2
particle, introduc-

ing creation and annihilation operators both for the matter particle and the photons
through second quantisation, and using renormalisation techniques to deal with the in-
finities predicted by the theory, this Lagrangian gives a complete quantum field theoretical
description of a spin- 1

2
particle and its interaction with the electromagnetic field, where

the interaction comes about through a gauge mechanism. The elegance of this approach
inspired tremendous efforts to give similar descriptions of the other forces between the
elementary particles.

2.3 The Electroweak Theory

By the mid-1950s weak charged interactions had been observed in nuclear decays, e.g. the
neutron conversion to proton, electron and anti-neutrino: n→ p+ e− + ν̄e, leading to the
β decays of nuclei, from which Pauli had predicted the existence of the neutrino. In 1956
it was observed that weak processes were parity violating [42], meaning that they are not
invariant under the sign reversal of all three spatial coordinates. The consequence of this
breaking of space symmetry is that only certain components of particle (anti-particle)
states ψ(x), which are denoted left (right) handed, are involved in weak interactions.
We can introduce the chirality operators PL and PR (see Eqs. (A.11) and (A.12) of
Appendix A) that by construction project out the left- and right-handed components of
a state:

ψL/R(x) = PL/Rψ(x). (2.8)

It is easiest to write the gauge transformation of the weak interactions by the use of
weak isospinors, combining the left-handed neutrino and lepton states in doublets, and
treating the right-handed states as singlets:

ΨL
l (x) =

(

ψL
νl
(x)

ψL
l (x)

)

, ψR
νl
(x), ψR

l (x). (2.9)

While we will only consider leptons here for reasons of simplicity in notation, correspond-
ing results hold for quarks, with doublets consisting of left-handed up and down family
quarks, as long as one carefully takes into account the differences in charge. We start from
the free-lepton Lagrangian corresponding to (2.1), using Eq. (A.7) to simplify notation,2

L0 = iΨ̄L
l (x)6∂ ΨL

l (x) + iψ̄R
l (x)6∂ ψR

l (x) + iψ̄R
νl
(x)6∂ ψR

νl
(x). (2.10)

2Note that no mass terms are included in this Lagrangian. We will later demonstrate that lepton
mass terms are not gauge invariant in the electroweak model.
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The gauge transformation of weak interactions is then given by

ΨL
l (x) → U(ω(x))ΨL

l (x), (2.11)

ψR
l (x) → ψR

l (x), (2.12)

where U(ω(x)) is a local SU(2) transformation by a unitary matrix with detU(ω(x)) = 1.
The representation of U(ω(x)) acting on the weak isospinor doublets is

U(ω(x)) = eigω(x)σ/2, (2.13)

where σi are the Pauli matrices (see Appendix A), ωi(x) is a vector of real-valued dif-
ferentiable functions and g is identified with the coupling constant of weak interactions,
corresponding to the charge in QED. We could continue the procedure of Section 2.2 for
making the Lagrangian invariant under this gauge transformation by introducing a covari-
ant derivative which couples the leptons to gauge fields and by giving the corresponding
transformations for the gauge fields. However, the resulting model of weak interactions
has the unfortunate property that it is ruled out by experiment.

The solution is to introduce a U(1) gauge transformation similar to that of QED. If
we require that all the fields of the Lagrangian in (2.10) are also invariant under the U(1)
transformation

ψ(x)→ e−ig′Y f(x)ψ(x), (2.14)

where Y is a charge called hypercharge, g ′ is the second coupling constant of a combined
electroweak theory and f(x) is a real-valued differentiable function, then the gauge in-
variant leptonic Lagrangian density for the combined electroweak gauge theory is given
by

L = iΨ̄L
l (x)6DΨL

l (x) + iψ̄R
l (x)6DψR

l (x) + iψ̄R
νl
(x)6DψR

νl
(x). (2.15)

where

DµΨL
l (x) = [∂µ + igωj(x)W

µ
j (x)/2 + ig′Y Bµ(x)]ΨL

l (x), (2.16)

DµψR
l (x) = [∂µ + ig′Y Bµ(x)]ψR

l (x), (2.17)

DµψR
νl
(x) = [∂µ + ig′Y Bµ(x)]ψR

νl
(x). (2.18)

This has coupled the leptons to four gauge fields W µ
i (x) and Bµ(x) that must transform

as3

W µ
i (x) → W µ

i (x)− ∂µωi(x)− gεijkωj(x)W
µ
k (x) (2.19)

Bµ(x) → Bµ(x)− ∂µf(x) (2.20)

to ensure gauge invariance.
From Noether’s theorem [43], stating that all symmetries of the Lagrangian density

under continuous transformations imply corresponding conserved currents and charges,
one can show, using global gauge transformations, that the hypercharge is given in terms
of the electric charge q and the weak isocharge IW

3 (the charge under the SU(2) gauge
group), as

Y = q − IW
3 . (2.21)

3For simplicity we give the transformations for infinitesimal values of ωi(x).
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The weak isocharge IW
3 takes the values ( 1

2
,−1

2
) for the doublets and 0 for the singlets,

giving hypercharges of (− 1
2
,−1, 0) for the fields ΨL

l (x), ψR
l (x) and ψR

νl
(x) respectively.

The resulting electroweak theory has SU(2)L × U(1)Y as its gauge group, where the
indices denote the chirality of the weak interactions and the charge of the U(1) gauge
group. The natural question is then how to interpret the gauge fields. We change the
basis of the fields, introducing the four fields Wµ(x), W †

µ(x), Zµ(x) and Aµ(x), by the
substitutions

W1µ(x) =
1√
2
[Wµ(x) +W †

µ(x)], (2.22)

W2µ(x) =
i√
2
[Wµ(x)−W †

µ(x)], (2.23)

W3µ(x) = cos θWZµ(x) + sin θWAµ(x), (2.24)

Bµ(x) = − sin θWZµ(x) + cos θWAµ(x), (2.25)

where θW is the so-called Weinberg angle. By further demanding that the gauge field
Aµ(x) is the electromagnetic field with the usual coupling to a charge q, which amounts
to requiring

g sin θW = g′ cos θW = q, (2.26)

one can show that the total Lagrangian density, sans terms for free field gauge bosons
and gauge boson self-interactions, becomes

L = L0 + LI, (2.27)

where the interaction term LI is given by

LI = −qsµ(x)Aµ(x)− g

2
√

2
[Jµ†(x)Wµ(x) + Jµ(x)W †

µ(x)]

− g

cos θW
[Jµ

3 (x)− sin2 θW s
µ(x)]Zµ(x). (2.28)

In the quantisation of the fields we interpret the W (x) fields as the charged W± vector
bosons and the Z(x) as the neutral vector boson Z0. The covariant quantities sµ(x),
Jµ(x), Jµ†(x) and Jµ

3 (x) are linear combinations of conserved currents from the gauge
symmetries, and are given in terms of the fields by

sµ(x) = −ψ̄l(x)γ
µψl(x), (2.29)

Jµ(x) = ψ̄L
l (x)γµψL

νl
(x), (2.30)

Jµ†(x) = ψ̄L
νl
(x)γµψL

l (x), (2.31)

Jµ
3 (x) =

1

2
[ψ̄L

νl
(x)γµψL

νl
(x)− ψ̄L

l (x)γµψL
l (x)]. (2.32)

The first of these is the electromagnetic current that also appears in QED, the next two
are the expected charged currents that should govern the charged weak interactions, but
the fourth current is a neutral current in the sense that it can couple neutral leptons. The
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existence of a neutral current in weak interactions was a prediction of the electroweak
theory, and it was a great confirmation of the theory when this current was subsequently
found in 1973 [44].

There remains, however, one problem with the electroweak model. The bosons in an
un-broken gauge theory must be massless, since mass terms in the Lagrangian of the type

1

2
m2Xµ(x)X

µ(x), (2.33)

for a gauge field Xµ(x), are not invariant under gauge transformations such as (2.19) and
(2.20). The lack of mass implies that the forces carried by the gauge bosons could have
infinite range, as the electromagnetic interactions have. This is in clear contradiction to
the experimental evidence for weak interactions that limit them to the small distance
scales of a nucleus and indicate that the force-mediating particles should be very massive.
Furthermore, for the electroweak theory mass terms for the leptons are also not gauge
invariant. This can be easily seen by rewriting the potential lepton mass term

−mlψ̄l(x)ψl(x) = −ml[ψ̄
L
l (x)ψR

l (x) + ψ̄R
l (x)ψL

l (x)], (2.34)

where we have used the completeness property (A.15) of the chirality operators. The
right-hand side is clearly not gauge invariant under SU(2)L× U(1)Y , since the terms are
a mixture of isoscalars and isospinors that transform differently. In addition to these
problems, models with massive bosons are not normalisable, meaning that infinities that
are not removable occur in the theory when calculating physical observables.

Early attempts at constructing a gauge theory for the weak interactions had stranded
at these problems of massless particles. We shall see in Section 2.5 how this can be
resolved by breaking the SU(2)L × U(1)Y gauge symmetry using the Higgs mechanism,
but we will first give a short description of the last piece of the SM force puzzle, the
strong nuclear force.

2.4 Quantum Chromo Dynamics

Early in the development of a model of strong interactions the quark constituent model of
the nucleons proposed by Murray Gell-Man and George Zweig in 1964 [21,22], to explain
the large number of new particles found in collider experiments, faced difficulty from the
observation of one particle, the ∆++, that could only be explained by three quarks in the
same spin state. Quarks were assumed to be spin- 1

2
fermions and Pauli’s exclusion prin-

ciple explicitly forbids two fermions to occupy the same quantum state simultaneously.
The solution to the problem was the introduction of a new quantum charge for quarks,
the colour charge — thereby the name of the emerging theory: Quantum Chromo Dy-
namics (QCD) — independently by Moo-Young Han and Yoichiro Nambu, and by Oscar
W. Greenberg [45, 46]. The assignment of a colour charge to each quark, out of three
possible, avoids the exclusion principle. The coloured quarks then form a basis for the
three-dimensional representation of the symmetry group SU(3) operating on their colour
charges. The gauge theory resulting from this group was subsequently found to be able
to provide a theory for the strong interactions. Below we give a brief overview of the
structure of QCD on the basis of its Lagrangian.
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If we denote the quarks by three-component spinors ψi
q(x), where q is one of the six

quark flavors and where the components, indexed by i, represent the colour content of
the quark, we can again start from the free-field Lagrangian density, this time for quarks,

L0 =
∑

q

ψ̄i
q(x)(i6∂ −mq)ψ

i
q(x). (2.35)

We require invariance under the local SU(3) gauge transformation

ψq(x)→ e−igsθa(x)λa/2ψq(x), (2.36)

where λa are the eight 3× 3 matrix generators of SU(3) given in (A.22), gs is identified
with the strong coupling constant and θa(x) are eight differentiable functions.4 One can
show that the resulting QCD Lagrangian is given by

L =
∑

q

ψ̄q(x)(i6D −mqI)ψq(x)−
1

4
Faµν(x)F

µν
a (x). (2.37)

Here

F µν
a (x) = ∂µGν

a(x)− ∂νGµ
a(x)− gsfabcG

µ
b (x)Gν

c (x) (2.38)

are the field strength tensors for the gluon fields Gµ
a(x) and fabc are the structure constants

of the SU(3) gauge group (see Appendix A). The covariant derivatives Dµ(x) are given
by

Dµ(x) = I∂µ + igsG
µ
a(x)λa/2, (2.39)

giving the quark–gluon interaction when the gluon is interpreted as the quantum of the
field Gµ

a(x).

Since there are eight gluon fields there are eight gluon colour charges that transform
under SU(3), albeit in a different representation than the quarks. This is strikingly dif-
ferent from photons, which have no electromagnetic charge, and the gluon colour charge
is believed to result in confinement, i.e. that colour charges cannot be isolated due to the
structure of gluon fields that form around them. However, despite strong experimental
evidence, confinement in QCD still lacks analytic proof. A consequence of colour con-
finement is that it would allow us to live with massless gluons, because the range of the
strong force would be very limited by the confinement mechanism, in agreement with
experiment.

The physics interpretation of the last term in (2.38) is that the gluons, unlike photons,
have self-interactions. The implication is that the strong coupling is small at high energies
due to its running with energy being dominated by the gluon, it has asymptotic freedom

as first showed by David Gross, David Politzer and Frank Wilczek in 1973 [47, 48]. This
means that we can reliably calculate interactions of quarks and gluons at high energies us-
ing perturbation theory, expanding the quantities in terms of power series of the coupling
strength.

4For clarity we suppress color indices, and use the identity matrix I where appropriate.
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2.5 The Higgs Mechanism

As we saw in Section 2.3, the gauge theory for electroweak interactions predicts zero
masses for both the gauge bosons and the leptons, in contradiction with experimental
evidence. The question is then where the masses of the elementary particles originate.5

To solve the problem of masses in gauge theories the so-called Higgs mechanism of spon-
taneous symmetry breaking was independently suggested by a number of people around
1964 [49–51].

In its application to electroweak theory the Higgs mechanism consists of introducing
an extra weak isospin doublet,

Φ(x) =

(

φa(x)
φb(x)

)

, (2.40)

with complex scalar spin-0 fields φa(x) and φb(x) as components and the same transfor-
mations, (2.11) and (2.14), under SU(2)L × U(1)Y as the other weak isospin doublets.
This is called the Higgs doublet. The additional terms LH introduced in the Lagrangian
that contain the Higgs field are

LH = [DµΦ(x)]†[DµΦ(x)]− µ2Φ†(x)Φ(x)− λ[Φ†(x)Φ(x)]2, (2.41)

where λ > 0 and µ2 < 0. To keep the gauge invariance of the Lagrangian density the
covariant derivative acting on Φ(x) is defined analogously to (2.16) with hypercharge
Y = 1

2
.6 The last two terms of (2.41) are the so-called Higgs potential. The shape of the

Higgs potential
V (Φ(x)) = µ2Φ†(x)Φ(x) + λ[Φ†(x)Φ(x)]2, (2.42)

for the given range of λ and µ, is illustrated in Fig. 2.1.
In a field theory, the state of lowest energy is given by the stable vacuum, corre-

sponding to the lowest potential. This explains why we must require λ > 0, so that the
potential is bounded from below. For the Higgs potential (2.42), the classical minimum
is realised by a field with

Φ†Φ =
−µ2

2λ
, (2.43)

and the vacuum is degenerate, i.e. a global phase transformation

Φ(x)→ eiαΦ(x) (2.44)

of the field leaves the potential unchanged, which can be seen as a rotation around
the origin in Fig. 2.1. Breaking this symmetry of the potential, by fixing the vacuum
expectation value for one of the fields is the fundamental mechanism behind spontaneous

5Note that this is not the question of where most of the mass around us originates from. We know that
while the atoms of our world take their masses mainly from the protons and neutrons that constitute
them, their masses are in turn not made up from the masses of the quarks, but rather their binding
energy.

6From (2.21) it then follows that the φb(x) field is electrically neutral. Since the φb(x) component
will be the source of the spontaneous symmetry breaking, the symmetry breaking will occur only for the
neutral component of the vacuum, leaving charge conserved and the photon massless.
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Figure 2.1: Illustration of the Higgs potential (2.42) for λ > 0 and µ2 < 0, setting φa = 0.

symmetry breaking. Without loss of generality we can choose the vacuum to be given by
the vacuum expectation values (VEVs) 〈0|φa(x)|0〉 = 0 and 〈0|φb(x)|0〉 = v/

√
2 of the

Higgs fields, where v = (−µ2/λ)1/2. The Higgs doublet can then be parametrised as a
perturbation of the vacuum by

Φ(x) =

(

η1(x) + iη2(x)
1√
2
[v + σ(x) + iη3(x)]

)

, (2.45)

in terms of four real fields ηi(x) and σ(x). Using the gauge freedom of the SU(2)L×U(1)Y

group we can apply (2.11) to transform this isospinor into a spinor with only a lower
component and (2.14) to remove the imaginary part of the remaining component. Thus
there exists a gauge so that

Φ(x) =

(

0
1√
2
[v + σ(x)]

)

, (2.46)

where we identify the σ(x) field with the Higgs particle. The leptons can now be given
masses by the addition to the Lagrangian of so-called Yukawa terms LY , invariant under
the SUL(2)× U(1)Y gauge transformations, and involving the Higgs field:

LY = −λl[Ψ̄
L
l (x)ψR

l (x)Φ(x) + Φ†(x)ψ̄R
l (x)ΨL

l (x)], (2.47)

where the λl are the dimensionless Yukawa coupling constants. Similar terms can be
added for neutrinos to arrive at non-zero neutrino masses. When (2.46) is substituted
into the sum of the Lagrangian in (2.27), and the terms of (2.41) and (2.47), a somewhat
tedious calculation gives the complete Lagrangian density L of the electroweak theory,
with mass terms for both leptons and bosons. We write

L = L0 + LI, (2.48)

where the free field terms L0 for the leptons, gauge bosons and the real scalar Higgs field
σ(x), are given by

L0 = ψ̄l(x)(i6∂ −ml)ψl(x)
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−1

4
Fµν(x)F

µν(x)

−1

2
F †

Wµν(x)F
µν
W (x) +m2

WW
†
µ(x)W µ(x)

−1

4
Zµν(x)Z

µν(x) +
1

2
m2

ZZµ(x)Z
µ(x)

+
1

2
∂µσ(x)∂µσ(x)− 1

2
m2

hσ
2(x). (2.49)

The resulting mass terms are given in terms of the parameters of the Higgs potential’s
minimum, the Yukawa couplings and the gauge couplings:

ml =
1√
2
vλl, mW =

1

2
vg, mZ =

mW

cos θW
, mh =

√

−2µ2 (2.50)

We omit the even more lengthy interaction terms of the complete theory, the interested
reader can find these in e.g. Chapter 14 of [52].

Since the parameter v can be expressed in terms of the Fermi coupling constant,
and the gauge coupling constants are given in terms of the Weinberg angle (2.26), both
of which are experimentally well known, the masses of the W and Z bosons could be
predicted from the Higgs mechanism, and their later discovery at these masses is one of
the greatest triumphs of the SM. However, the parameter λ that enters in the Higgs mass
is unknown. As the issues surrounding the value of the Higgs mass and our failure to
discover the quanta of the Higgs field — the Higgs particle — is both one of the major
problems and most exciting challenges of physics today, we will discuss this further in the
next section.

2.6 Beyond the Standard Model

While it has had fantastic success in explaining observations on a wide range of energy
scales accessible to current experiments, the Standard Model is by no means a com-
plete theory of everything. Most importantly perhaps, it does not include gravity, which
any theory that pretends to describe physics up to energies around the Planck scale
(∼ 1019 GeV) must, since we know that quantum effects of gravity will become impor-
tant at or before this scale. So the SM cannot, and does not claim to describe physics at
all scales.

There is little if any direct and significant evidence that contradicts the SM on the
energy scales probed up to now. 7 However, in addition to the absence of gravity, there are
a handful of very good reasons for extending the SM, as we shall see below. Furthermore,
we also have reason to believe — as opposed to gravity — that these may show up in the
near future, at energy scales that will be accessible to us at the LHC.

2.6.1 Tuning the Higgs Mass and a Hierarchy Problem

In (2.50) we gave the tree level (no quantum loop corrections) Higgs mass resulting from
the VEV of the Higgs field. If one assumes that the Higgs potential coupling λ is naturally

7One possible exception here are the recent results for the anomalous magnetic moment of the muon,
for which there seem to be at present at 3.3σ deviation from the SM [53–55].
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Figure 2.2: Bounds on the Higgs mass at two loops from the self-consistency of the
SM [56]. The upper bound is from the perturbativity of the coupling λ. The lower bound
is the requirement that the electroweak minimum remains the actual minimum after loop
corrections. For both bounds a top mass of mt = 175 GeV is assumed. The hatched
area of the upper bound shows the dependence on varying the top mass between 150 and
200 GeV.

of O(1), this results in a Higgs mass of O(100 GeV). While, as stated in the previous
Section, λ cannot be directly determined in terms of measured electroweak parameters,
bounds can be found from quantum corrections to the electroweak masses and the Higgs
potential. Requiring that the SM Higgs sector is self-consistent, Fig. 2.2 shows the bounds
from the perturbativity of λ and the minimum of the electroweak potential at some energy
scale Λ.

While this still allows for masses above the direct search limits set by the LEP ex-
periment,8 the Higgs mass has a disturbing sensitivity to quantum loop corrections from
every particle it couples to. From a lepton9 it gets a correction

m2
h = −|λl|2

8π2
Λ2

cut + . . . , (2.51)

where Λcut is a cutoff used to make the corresponding loop integral finite, and which rep-
resents the scale at which some new physics enters to regulate the high-energy behaviour
of the theory. The dots represent less divergent terms ∝ ln (Λcut). If no new physics is
present between the electroweak scale and the Planck scale this correction is 16 orders
of magnitude greater than the naive expectation for the Higgs mass. This is often called
a hierarchy problem, which can be more generically described to occur when the scale of
parameters used to explain other parameters — the Planck scale explaining the Higgs
mass — are vastly different from the scale of the parameters to be explained.10

8For a SM Higgs boson a combined but preliminary fit gives mh > 114.4 GeV at the 95% confidence
level [57].

9This holds more generally for any Dirac fermion.
10Or in other words, why are elephants afraid of mice?
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For bosons with a coupling λB to the Higgs the loop correction is given by

m2
h =

λB

16π2
Λ2

cut + . . . , (2.52)

where λB must be positive for the potential to be bounded from below. Although the
contributions from bosons and fermions have opposite signs, a very fine tuning of the
SM masses is needed to arrive at a mass within the narrow limits that can be found
from electroweak precision measurements, considering the enormous size of the individual
corrections.

While quantum corrections to the SM fermion and gauge boson masses from the
cutoff scale are only indirect through the Higgs, with a logarithmic dependence on the
Higgs mass, the effects on precision measurements of electroweak observables, mainly
W and top masses, and Z decay data, allows the Higgs mass to be predicted to be
mh = 85+39

−28 GeV [58], assuming a top quark mass of mt = 171.4± 2.1 GeV. Comparing
with Fig. 2.2 this is still consistent with the SM being valid up to GUT scales, but only
barely.

What is needed to avoid this fantastic fine-tuning of the cancellations is a symmetry
that predicts the existence of two bosons for every SM fermion, with couplings λB = |λl|2.
Such a symmetry exists, and the exact cancellation of all quadratic divergences to all
orders is unavoidable once unbroken supersymmetry is assumed. We shall see in Chapter 3
that supersymmetry must be broken to some degree, i.e. the supersymmetric particles
cannot have the same masses as their SM partners. This will lead to further corrections,
but of a logarithmic nature. To avoid reintroducing the fine-tuning problem of the SM the
supersymmetric masses should at most be an order of magnitude above the electroweak
scale, and should thus be within reach of the LHC.

2.6.2 Unification of Forces

The Standard Model has 19 free parameters that need to be determined experimentally.
For a fundamental theory of nature this does seem a lot. It is tempting to search for a
more unified theory which can explain some — if not all — of these parameters. The
term Grand Unified Theory (GUT) describes such a theory that unifies the gauge groups
of the SM: the weak, hypercharge and colour gauges. The idea first suggested by Howard
Georgi and Sheldon Glashow [59] in 1974, is that since the coupling constants of the three
gauge groups change with energy scale due to the effects of renormalisation, they could
unify at some high energy scale — the GUT scale — to the coupling constant of a larger
group G containing the SM gauge groups11

SU(3)c × SU(2)L × U(1)Y ⊂ G. (2.53)

One can calculate the behaviour of the coupling constants as a function of energy in
a given model and its particle content using Renormalisation Group Equations (RGEs).
The result for the SM is shown in Fig. 2.3a and for the Minimal Supersymmetric Stan-
dard Model (MSSM), which we will discuss further in Section 3.4, the result is shown in

11Originally Georgi and Glashow suggested SU(5) as the unification group, but this predicts proton
decay at rates that are incompatible with experimental limits.
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Figure 2.3: Running of α−1
i = 4π/g2

i with energy scale Q/µ, where gi are the coupling
constants of the SM gauge groups. In (a) we display the result for the SM model, in (b) for
the MSSM. The error bands show the propagation of the experimental uncertainty from
measurements of the coupling constants at low energy. The figures are taken from [60].

Fig. 2.3b. While the SM shows little sign of unification, the MSSM is very promising if
one assumes that the supersymmetric particles enter into the running slightly above the
electroweak scale (seen as kinks in Fig. 2.3b), up to ∼ 1 TeV. Again these are energy
scales that will be fully explored by the LHC.

2.6.3 Dark Matter

Dark matter (DM) was first observed as unexplained mass in the Coma galaxy cluster in
1933 by Fritz Zwicky [61], estimating the mass of the cluster by the movement of galaxies
at its edges. The majority of a galaxy’s mass that can be described within the SM comes
from baryons, mainly protons and neutrons in atomic nuclei, that make up the stars and
the large amounts of hot gas present in most galaxies. Since then many other clusters
and single galaxies have been observed to contain more mass than can be explained by
baryonic matter.

While direct observations of the gravitational dynamics of galaxies is difficult and
fraught with possible sources of errors, there is also very strong indirect evidence for cold
dark matter12 in combined fits to Cosmic Microwave Background (CMB) data from the
WMAP satellite and other astrophysical data on e.g. supernovae [8–10]. In particular
from fits to the ΛCDM model of cosmology, using the WMAP third year data, [10] arrives
at a cold dark matter density ΩCDM:

ΩCDMh
2 = 0.111± 0.006, (2.54)

where h is the Hubble constant.13

12By “cold” we mean that the DM is composed of non-relativistic particles.
13The model also predicts an acceleration of the expansion of the universe, represented by a non-zero

cosmological constant Λ, or more generally so-called dark energy. This has very interesting cosmological
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To understand what could constitute this mass, which has about five times the abun-
dance of the baryonic matter we know today and describe in the SM, we can look at
the properties of DM. First of all it must be electrically neutral as we have very strict
limits on charged dark matter from cosmic ray searches. It must be stable on the scale
of the age of the universe, and it must also only interact weakly with matter. If the
DM had electromagnetic interactions it would not be dark, and strong interactions are
very disfavoured due to direct searches with massive detectors. The only remaining SM
candidates are massive neutrinos, unfortunately these will be very relativistic due to their
low masses (see Table 2.1), which has consequences for structure formation in the early
universe. This allows very stringent limits to be put on their contribution to the dark
matter. The suggestion then is to suppose the existence of some new Weakly Interacting
Massive Particle (WIMP).

One can calculate the current density of a DM candidate χ, originally in thermal
equilibrium with the SM particles at the end of inflation, which subsequently freeze out to
a constant density as the universe expands. Kolb and Turner [62] give the approximation

Ωχh
2 ' 0.1pb · c

〈σv〉 , (2.55)

where σ is the total annihilation cross section of a pair of DM particles, v is their relative
velocity in the centre of mass reference frame, and the brackets denote an average over
the velocity distribution at the freeze-out temperature. The remarkable feature of this
estimate is that a mDM ∼ 100 GeV weakly interacting particle will have an averaged cross
section of the order

〈σv〉 ∼ α2

8πm2
DM

∼ 0.1pb · c. (2.56)

Thus a WIMP with a mass sitting right at the edge of the energies explored by previous
and current high energy collider experiments such as LEP and the Tevatron, and well
within the reach of the LHC seems to be a very likely DM candidate. We shall see in the
next Chapter that supersymmetry has such a WIMP candidate.

2.6.4 Genesis

There is wide agreement on a hot and dense Big Bang model for the early cosmology
of the universe. However, such a model should naively predict the existence of equal
amounts of matter and anti-matter. Yet the observable universe seems to prefer baryons
over anti-baryons to an astounding degree. To explain this difference Andrei Sakharov
proposed a set of three necessary conditions in 1967 [63] for a model of baryogenesis:

• There must exist processes that violate baryon number conservation.

• There must be a sufficient violation of CP-symmetry.

consequences, but will not be dealt with further in this thesis. The fact that the cosmological constant is
very small compared to the scales of the parameters one is tempted to explain it with, is another example
of a hierarchy problem.
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• The baryon-asymmetry generating processes must be out of thermal equilibrium,
i.e. the rate of the reaction must be less than the rate of the expansion of the
universe.

The first of these conditions is the rather obvious requirement that there are processes
which actually create more baryons than anti-baryons. The second requirement is needed
because on the basis of CP-symmetry one can show that for any process that creates an
excess of baryons there will be a complementary process that creates more anti-baryons.
The final criterion is necessary since a particle in thermal equilibrium would be destroyed
and recreated through pair annihilation, washing out the asymmetry.

The baryon number and CP-violation found in the SM is too small to account for the
present-day dominance of baryons, which extensions like supersymmetry may be able to
explain. One of the most studied models is electroweak baryogenesis where Sakharov’s
third criterion can be satisfied during the electroweak phase transition, which occurs at
the energy scale where the electroweak symmetry is broken. The requirement is that the
electroweak phase transition is a strongly first order phase transition. Detailed calcula-
tions show that for this to occur in the MSSM, both the Higgs and the supersymmetric
partner of the top quark, the scalar top, must be light [64–71]. The scalar top should
have a mass well within the reach of the LHC. We will return to this point in Chapter 4.

Further models for baryogenesis have also been discussed. In GUT baryogenesis the
asymmetry can come about from the decay of some super-heavy particle at GUT scale.
Other models feature a leptogenesis mechanism that creates a lepton/anti-lepton asym-
metry, which in turn is converted to a baryon asymmetry through so-called sphaleron
processes. However, also in this case the SM is unable to quantitatively explain the
observed asymmetry.
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Chapter 3

Supersymmetry

Tiger, Tiger, Burning Bright
In the Forest of the Night
What Immortal Hand or Eye
Could Frame Thy Fearful
Symmetry

William Blake
Tiger

In the previous chapter we saw that the development of the Standard Model of particle
physics over the last century has focused on symmetries, and in particular on the sym-
metry groups SU(2)L × U(1)Y and SU(3)C , that are the basis of the gauge field theory
descriptions of the electroweak and strong forces respectively. In addition to these internal
symmetries of quantum charges — weak, hypercharge, colour — the external space-time
symmetries of the Poincaré group, introduced by Einstein in the special theory of relativ-
ity [41], i.e. those of rotations and translation of four-dimensional space-time, have been
central to the development of particle physics.

It is then natural to pose the question whether the internal and external symmetries
could be united in a larger symmetry group, giving a more fundamental description of
nature — perhaps even reducing the number of free parameters in the SM. Unfortunately,
in 1967 Coleman and Mandula showed the so-called “no-go” theorem [72], that under
reasonable assumptions1 about the structure of the larger theory it can at best have a
symmetry group that is the direct product of the Poincaré group and an internal symmetry
group. As a result of the direct product structure the Poincaré group and the internal
symmetry group act on particle states independent of each other and foils the attempt
at any real unification of internal and external symmetries.

Not to be defeated by a mathematical proof physicists found a way around the “no-
go” theorem by redefining the problem. In 1975 Haag, Lopuszanski and Sohnius [73]
showed that if the conditions on the generators of the symmetry groups are relaxed we
can indeed have a non-trivial unification of internal and external symmetries. What

1The underlying assumptions are those of locality, causality, positive energy and a finite number of
particles, and that the theory is a quantum field theory. In addition there are also some assumptions on
the generators of the symmetry.

21
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was done was to extend the notion of Lie algebras that define the basic structure of the
symmetry groups, to graded Lie algebras, also called Lie superalgebras.2 In this way the
algebra of the Poincaré group can be extended to the Poincaré superalgebra, the basis of
supersymmetry. This was the algebraic birth of supersymmetry.

In this chapter we will first look at the algebraic structure of supersymmetry in Sec-
tions 3.1 and 3.2, giving the full supersymmetry algebra and the properties of its represen-
tations. We will then turn to constructing a supersymmetric Lagrangian in Sections 3.3
and 3.4 with the help of superfield formalism, finally arriving at the Lagrangian of the
Minimal Supersymmetric Standard Model (MSSM), the basis of most current phenomeno-
logical investigations of supersymmetry.

3.1 The Poincaré Superalgebra

The Poincaré group is the basis of any relativistic field theory. It is the symmetry group for
all transformations of Minkowski space-time coordinates that leave the distance between
two points in Minkowski space invariant. Thus it describes all the symmetries of special
relativity: translations, rotations and boosts. We discuss the generators of the Poincaré
group in Appendix B, and give the Poincaré algebra consisting of these generators in
Eqs. (B.6)–(B.8).

The Poincaré algebra is a Lie algebra, and we make the observation in Appendix B
that a Lie superalgebra is the direct sum of a Lie algebra and a vector space. This opens
up the possibility of extending the Poincaré algebra into a Lie superalgebra. We do this
by construction, letting the Poincaré algebra play the role of the original Lie algebra,
and taking its direct sum with a vector space L1 spanned by a set of generators Qa,
a ∈ {1, 2, 3, 4}. We take these generators to be Majorana spinors with the following
algebraic structure:

{Qa, Q̄b} = 2γµ
abPµ, (3.1)

[Qa, Pµ] = 0, (3.2)

[Qa,M
µν ] = σµν

ab Qb. (3.3)

The central point here is that the definition of composition between two elements of the
algebra is done by anti-commutators in (3.1). This allows the resulting algebra to satisfy
the definition of a superalgebra, given in Section B.2, which requires one of the two vector
spaces in the direct sum to have a symmetric composition rule and the other to have one
that is anti-symmetric. To check that both properties 1. and 2. of Section B.2 hold is
straight forward. We have thus constructed a Poincaré superalgebra, the algebraic basis
of supersymmetry.

This is, however, not the most general supersymmetry extension we can construct from
the Poincaré algebra. The content of a theorem by Haag, Lopuszanski and Sohnius in [73]
is that the most general symmetry group one can have based on superalgebra extensions of
the Poincaré algebra has N sets of spinor generators Qα

a , α ∈ {1, . . . , N}, that themselves
transform under an internal symmetry group with generators Bl, according to

{Qα
a , Q

β
b } = {Q̄α

a , Q̄
β
b } = 0 (3.4)

2For a more technical discussion of Lie algebras and superalgebras see Appendix B.
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{Qα
a , Q̄

β
b } = 2δαβγµ

abPµ (3.5)

[Qα
a , Pµ] = [Q̄α

a , Pµ] = 0 (3.6)

[Qα
a ,M

µν ] = σµν
ab Q

α
b (3.7)

[Qα
a , Bl] = iSαβ

l Qβ
a (3.8)

[Bk, Bl] = icklmBm, (3.9)

where cklm are the structure constants of the internal symmetry group and Sαβ
l are the

matrices of its representation. One can also have a further generalisation by introducing
central charges Zαβ, objects that commute with everything in a Lie algebra, so that

{Qα
a , Q

β
b } = εabZ

αβ, (3.10)

Zαβ = −Zβα, (3.11)
[

Zαβ, Bl

]

= 0. (3.12)

What we constructed in (3.1)–(3.3) from the Poincaré algebra is the N = 1 super-
symmetry algebra or the minimal supersymmetric algebra, where the central charges
disappear along with the internal symmetry group. This is the algebra that we will use
to construct a supersymmetric Lagrangian, as it seems to be the one that might have
physical relevance, at least at low energies.3 One may perhaps see some irony in that the
dream of unifying internal and external symmetries ends up with extending and compli-
cating the symmetry group of the external symmetries, but leaving internal symmetries
out.

3.2 Representations of the Supersymmetry Algebra

Having constructed the N = 1 supersymmetry algebra (3.1)–(3.3), which fixes the sym-
metry group of our supersymmetric theory, we turn to looking at the properties of particle
states in this theory by looking at the possible representations of the algebra.

The irreducible representations of an algebra are characterised by the eigenvalues of
its Casimir operators, i.e. operators that commute with every element in the algebra. In
what follows we shall restrict the discussion to massive particles in their rest frame.4 For
the case of the N = 1 supersymmetry algebra these can be shown to be the operators P 2

and J2 = JkJ
k, where Jk is given by

mJk = mSk +
1

8
Q̄γkγ5Q, (3.13)

in terms of the spin operator Sk (see Section B.3 of the Appendix) and the mass of the
particle m, and where we have suppressed the spinor indices of the Q.

3Typically higher N supersymmetry algebras are not phenomenologically viable because they predict
a multitude of particles, of which many should have been observed experimentally.

4Massless states can be treated in a similar manner, see e.g. page 16 of [74]. However, restricting
the discussion to the rest frame is not completely trivial. We will only find the representations of the
sub-group that leaves momentum unchanged and have to rely on the method of induced representation,
i.e. that the properties of a particle are entirely determined by its properties in a given frame. See e.g.
page 31 of [75].
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In the rest frame the action of P µ on a state is given by P 2 = m2. The Jk can be
shown to fulfil the SU(2) algebra, given in (A.19) for reference. This implies that Jk is an
angular momentum operator and that there exists a representation of the algebra where
J2 has eigenvalues of the form j(j+1), where the j are half-integral. Thus we can specify
the irreducible representations of the N = 1 supersymmetry algebra by the values of the
mass m and the spin eigenvalues j(j+1). For each representation there are at least 2j+1
different states, corresponding to the eigenvalues j3 of the J3 operator, which as an angular
momentum operator can assume the values j3 ∈ {−j,−j + 1, . . . , j}. However, there are
more states. Using (3.1) and (3.13), and letting the four supersymmetry generators Qa

act on a state |m, j, j3〉 with definite eigenvalues of m, j and j3, can be shown to yield
four different states with eigenvalues s3 = j3 (two states), and s3 = j3 ± 1

2
of the spin

operator S3. There are only four different states because of the Majorana nature of the
supersymmetry generators. Thus, for a given irreducible representation of the algebra,
characterised by values of m and j, we have 4(2j+1) states. Independent of whether j3 is
of integral or half-integral value, this gives us two states of half-integral spin, fermions, and
two of integral spin, bosons. The representations of a larger N supersymmetry algebra
will of course have more states, because they have more supersymmetry generators Q.

Two important properties of the representations should be noticed. Firstly that all
the states in a given irreducible representation of supersymmetry have the same mass.
This is blatantly not the case in nature. There are no spin-0 partners of our fermions with
the same masses. Thus if supersymmetry is realised there must also be a mechanism for
breaking the symmetry, so that a sensible spectrum of masses results. This will be dealt
with in Section 3.3.6. The second property is the equal number of bosonic and fermionic
states in a supersymmetric theory. We have already seen that this is the case for the
N = 1 supersymmetry algebra, but this can be shown to hold for any N .

3.3 Towards a Supersymmetry Lagrangian

We would now like to formulate a supersymmetry Lagrangian suitable for phenomeno-
logical investigations. It turns out to be very useful to introduce so-called superfields to
aid in the construction, a formalism first described by Salam and Strathdee [76].

3.3.1 Superfields

Before we can describe superfields we must comment on the generalised coordinates on
which they are defined, the coordinates of superspace. Superspace is formally an 8-
dimensional manifold parametrised by the coordinates xµ of ordinary Minkowski-space
and four anti-commuting Grassmann numbers θ. In Appendix C we give a short super-
space calculus, with the most central definitions and properties used in this thesis, and
we discuss the notation for the Grassmann numbers in terms of Weyl spinors θA and θ̄Ȧ

used here.

A general superfield is an operator-valued function Φ on superspace, Φ(x, θ, θ). We
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Component field Type
f(x), n(x), m(x) Complex scalar or pseudo-scalar fields
ψA(x), φA(x) Left-handed Weyl spinor fields

χ̄(x)Ȧ, λ̄(x)Ȧ Right-handed Weyl spinor field
Vµ(x) Lorentz 4-component field
d(x) Scalar field

Table 3.1: Properties of superfield component fields.

can expand a superfield as a power series in terms of the Grassmann variables5

Φ(x, θ, θ̄) = f(x) + θAφA(x) + θ̄Ȧχ̄
Ȧ(x) + (θθ)m(x) + (θ̄θ̄)n(x)

+(θσµθ̄)Vµ(x) + (θθ)θ̄Ȧλ̄
Ȧ(x) + (θ̄θ̄)θAψA(x) + (θθ)(θ̄θ̄)d(x), (3.14)

where the f(x), φA(x), et cetera are component fields. This expansion is complete. We
have here all possible terms since higher powers than two of θ and θ̄ will vanish due to the
anti-commutation of Grassmann numbers, and the σµ constitute a basis for the space of
2× 2-matrices so that (θσµθ̄)Vµ(x) completes the possible combinations of θ and θ̄. Note
that all superfields commute since the anti-commuting Weyl spinors operate in pairs.

The properties of the component fields can be deduced from requiring that Φ(x, θ, θ̄)
is a Lorentz scalar or pseudo-scalar field. The results are listed in Table 3.1. We can see
that superfields are a concise way of treating a multiplet of different fields, all at once.
It is useful to classify the fields in terms of the following properties, using the covariant
derivatives DA and D̄Ȧ defined in (C.19) and (C.20),

D̄ȦΦ(x, θ, θ̄) = 0 (3.15)

DAΦ†(x, θ, θ̄) = 0 (3.16)

Φ(x, θ, θ̄) = Φ†(x, θ, θ̄). (3.17)

Superfields that satisfy the first two restrictions are respectively called left- and right-
handed chiral or scalar superfields, while the third equation describes a vector superfield.

The above constraints (3.15)–(3.17) can be shown to all result in superfields that form
linear representations of the supersymmetry algebra.6 The different constraints are then
ways of categorising the representations, an alternative to using the Casimir invariants
demonstrated in Section 3.2. We show how to build supersymmetric Lagrangians out
of these superfields, but first we will briefly discuss the properties of the two types: the
scalar and vector superfields.7

5For simplicity of notation we will often suppress Lorentz and Weyl spinor indices, in particular when
contracting, when we are reasonably sure no confusion can arise.

6See e.g. Section 6 of [77].
7This may seem somewhat ad hoc, since the above restrictions (3.15)–(3.17) appear to lack a clear

connection to particle representation. However the component fields that will result from equations
(3.15)–(3.17) have been directly derived from irreducible particle representations of the supersymmetry
algebra. See page 397 of [77] and its reference to [78].
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3.3.2 Scalar Superfields

To construct phenomenologically sensible Lagrangians we need to know the field content
of the scalar and vector superfields. By a change of variables

yµ = xµ − iθσµθ̄, (3.18)

we can write the covariant derivatives as

DA =
∂

∂θA
, (3.19)

D̄Ȧ = − ∂

∂θ̄Ȧ
− 2i(θσµ)Ȧ

∂

∂yµ
. (3.20)

We see from (3.16) and (3.19) that in the new coordinates the right-handed chiral super-
field is independent of θ. Thus in a power series expansion we can write the most general
right-handed chiral superfield as

Φ†(y, θ̄) = A∗(y) +
√

2θ̄ψ̄(y) + (θ̄θ̄)F ∗(y), (3.21)

where we have three independent component fields, the two complex scalar fields A∗ and
F ∗, and the right-handed8 chiral Weyl spinor field ψ̄. As expected we have an equal
number of bosonic and fermionic degrees of freedom in the scalar fields and the Weyl
spinor, respectively. Having identified the field content of the right-handed superfields,
we can change back to ordinary Minkowski space coordinates:

Φ†(x, θ, θ̄) = A∗(x)− i(θσµθ̄)∂µA
∗(x)− 1

4
(θθ)(θ̄θ̄)�A∗(x)

+
√

2θ̄ψ̄(x) +
i√
2
(θ̄θ̄)θσµ∂µψ̄(x) + (θ̄θ̄)F ∗(x). (3.22)

The left-handed chiral superfield can by a similar change of coordinates be found to
depend solely on θ:

Φ(y, θ) = A(y) +
√

2θψ(y) + (θθ)F (y), (3.23)

or in xµ coordinates

Φ(x, θ, θ̄) = A(x) + i(θσµθ̄)∂µA(x)− 1

4
(θθ)(θ̄θ̄)�A(x)

+
√

2θψ(x) +
i√
2
(θθ)θ̄σ̄µ∂µψ(x) + (θθ)F (x). (3.24)

As the notation suggests the right- and left-handed superfields are Hermitian con-
jugates. We can show that the product of two or more scalar superfields of the same
“handedness” is again a scalar superfield. Since the covariant derivative is a linear differ-
ential operator, we have for two left-handed superfields Φi and Φj:

DA(ΦiΦj) = DA(Φi)Φj + ΦiDA(Φj) = 0, (3.25)

and thus the product of left-handed superfields satisfy the restriction (3.15) of a left-
handed superfield.

8Hence the name right-handed chiral superfield.
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Component field Type
f(x), d(x) Real scalar fields
φ(x), λ(x) Weyl spinor fields
Vµ(x) Real vector field
m(x) Complex scalar field

Table 3.2: Properties of the vector superfield’s component fields.

3.3.3 Vector Superfields

By taking the Hermitian conjugate on the component field expansion of the generic super-
field (3.14) we see that the condition (3.17) for a vector superfield requires the following
relations for the component fields:

f(x) = f ∗(x), (3.26)

φA(x) = χA(x), (3.27)

m(x) = n∗(x), (3.28)

Vµ(x) = V ∗
µ (x), (3.29)

λA(x) = ψA(x), (3.30)

d(x) = d∗(x). (3.31)

Thus a generic vector superfield, V (x, θ, θ̄), has a component field expansion of

V (x, θ, θ̄) = f(x) + θφ(x) + θ̄φ̄(x) + (θθ)m(x) + (θ̄θ̄)m∗(x)

+(θσµθ̄)Vµ(x) + (θθ)θ̄λ̄(x) + (θ̄θ̄)θλ(x) + (θθ)(θ̄θ̄)d(x), (3.32)

where the component fields are of the types listed in Table 3.2.
Again the degrees of freedom of the bosonic fields f(x), d(x), Vµ(x) and m(x), equal

those of the fermionic fields φA(x) and λA(x). We also note that from the definition (3.17)
and the fact that superfields commute it is easy to see that the product of two vector
superfields is also a vector superfield. The same is true for the sum of two vector fields.

For a vector superfield we define the supersymmetric field strength in analogy with
SM field strengths. To be general, we include the self couplings of a possibly non-abelian
gauge group with generators ta, under which a vector multiplet V a transforms. We write
the field strength as a Weyl spinor,

WA ≡ −1

4
D̄D̄e−qtaV a

DAe
qtaV a

, (3.33)

W̄Ȧ ≡ −1

4
DDe−qtaV a

D̄Ȧe
qtaV a

, (3.34)

It is easy to check that each component of these spinors is itself a scalar superfield. From
(C.23) we get

D̄ȦWA = 0, (3.35)

DAW̄Ȧ = 0, (3.36)
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so that WA and W̄Ȧ are left- and right-handed chiral superfields respectively. An explicit
component expansion of the WA and W̄Ȧ will turn up a SM-like field strength tensor

F a
µν = ∂µV

a
ν − ∂νV

a
µ + qf abcV b

µV
c
ν , (3.37)

as one component field, where f abc are the structure constants of the gauge group.

3.3.4 Lagrangian Densities in Terms of Superfields

To construct a Lagrangian density L for a supersymmetry model one needs to be able to
write down terms that result in an action invariant under supersymmetry transformations,
among others. The ordinary action S is an integral over some space-time region R where
the fields that make up L are defined,

S =

∫

R

d4xL(x). (3.38)

This action is invariant if the Lagrangian transforms as a total derivative, i.e. that under
a transformation the new Lagrangian L′(x) is given by

L′(x) = L(x) + ∂µfµ(x) (3.39)

for some well behaved9 function fµ(x), necessarily also a function of the fields of the
model.

Instead of writing down a Lagrangian consisting of explicit component fields we wish to
use superfields. The question is then what combinations of superfields, scalar and vector,
result in Lagrangian densities that transform into themselves plus a total derivative under
supersymmetry transformations. It can be shown that only the highest order component
field of a superfield, in a θ and θ̄ expansion, behaves in this manner.10 Thus for all
superfield terms we want to have in the Lagrangian density we must project out the
highest-order component field.

The machinery for doing this can be found in the short superspace calculus of Ap-
pendix C, and consists of integrals over superspace. From (C.13) and (C.16)–(C.18) we
see that we can write the action as

S =

∫

R

d4x

∫

d4θ
[

Lθθθ̄θ̄ + (θ̄θ̄)Lθθ + (θθ)Lθ̄θ̄

]

, (3.40)

where the three L terms can be any functions of superfields where each term is itself a
superfield, and where the indices indicate the highest power of θ in the component field
expansion.

Renormalisation puts further restrictions on what terms L can contain. It has been
shown, see for instance [79], that at most third powers of scalar fields Φ can be used.
Thus the most general Lagrangian density LS we can construct with scalar superfields 11

is
LS = Φ†

iΦi + (θ̄θ̄)W (Φ) + (θθ)W (Φ†), (3.41)

9It is differentiable and it vanishes at the surface of R.
10For computational details see e.g. Sections 6.8, 7.1 and 7.2 of [77].
11Note that the so-called kinetic term Φ†

iΦi is a vector field created by the combination of two scalar
fields.
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with i ∈ {1, . . . , n}, where n is the number of scalar superfields in the model, and where
the function

W (Φ) = giΦi +mijΦiΦj + λijkΦiΦjΦk, (3.42)

is the superpotential. The superpotential is in turn a scalar superfield since it is a sum
and product of scalars. Since superfields commute, mij and λijk are symmetric under an
exchange of indices.

3.3.5 Supergauge Transformations

If we are to construct a gauge theory, similar to that of the SM, out of the superfields in the
Lagrangian (3.41) we need to define a supersymmetric generalisation of gauge transfor-
mations, supergauge transformations, for both scalar and vector superfields in such a way
that the Lagrangian is invariant, or can be made invariant, under the transformations.

We start by defining the local gauge transformation of a multiplet Φ(x) of scalar (left-
handed) superfields — or scalar supermultiplet — transforming under a gauge group G
that may in general be non-abelian, as

Φ(x)→ e−iqtaΛa(x)Φ(x), (3.43)

or in terms of the component superfields of Φ,

Φi(x)→ (e−iqtaΛa(x))ijΦj(x) = Uij(x)Φj(x). (3.44)

The matrices ta are the generators of the representation R of G that satisfy the algebra

[ta, tb] = if abctc, (3.45)

where f abc are the structure constants of G. Furthermore, q is the charge of the multiplet
Φ(x) under the gauge transformation, and is proportional to the strength of the gauge
coupling to that supermultiplet. If the Φi are to remain scalar superfields after the gauge
transformation we must require

DAΛa(x) = 0, (3.46)

thus the Λa must also be scalar (left-handed) superfields.
For the superpotential W (Φ) to be invariant under (3.43) it must obey certain restric-

tions:

gi = 0 if giUir 6= gr, (3.47)

mij = 0 if mijUirUjs 6= mrs, (3.48)

λijk = 0 if λijkUirUjsUkt 6= λrst. (3.49)

Kinetic terms of the form Φ†Φ can be made invariant by, as in the SM gauge theories,
introducing a compensating vector field. We rewrite the kinetic term as an interaction
term between the scalar supermultiplet and a multiplet of vector superfields V ,

LI = Φ†eqtaV a

Φ. (3.50)
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This term is invariant if the result V ′ of the supergauge transformation of the vector
supermultiplet satisfies

eqta(V a)′ = e−iqtaΛa†

eqtaV a

eiqtaΛa

. (3.51)

One can show that for infinitesimal transformation parameters Λa this has the solution

(V a)′ = V a + i(Λa − Λa†)− 1

2
qf abcV b(Λc† + Λc)

− i

12
q2fabcf cdeV bV d(Λe − Λe†) + . . . (3.52)

It is easy to check that this new field is a vector superfield as it should be.
In the special case of an abelian gauge transformation, i.e. zero structure constants,

the transformation of the vector superfield is particularly simple and we can write

V ′ = V + (Φ + Φ†), (3.53)

with a slight redefinition of the transformation parameter Φ = iΛ. Inserting the generic
expressions for the scalar superfields, (3.22) and (3.24), into (3.32), and with the help of
a change of variables

λ(x) → λ(x)− i

2
σµ∂µφ̄(x), (3.54)

d(x) → d(x) +
1

4
�f(x), (3.55)

one sees that the component fields transform as

f(x) → f(x) + A(x) + A∗(x), (3.56)

φ(x) → φ(x) +
√

2ψ(x), (3.57)

m(x) → m(x) + F (x), (3.58)

Vµ(x) → Vµ(x) + i∂µ(A(x)− A∗(x)), (3.59)

λ(x) → λ(x), (3.60)

d(x) → d(x). (3.61)

The main point to notice is that the component vector field Vµ(x) transforms as one
expects from a gauge vector field in the SM under an abelian gauge transformation, see
(2.4) and (2.20). We also see that the choice of variables for the generic vector field
V (x, θ, θ̄) in (3.54) and (3.55) implies that the components λ(x) and d(x) are invariant
under supergauge transformations.

Our new-found gauge freedom also allows us to pick a particular gauge, the Wess-

Zumino gauge, to simplify some calculations. In this gauge the components of the scalar
field Φ in (3.53) are chosen to be

2ReA(x) = −f(x), (3.62)

F (x) = −m(x), (3.63)√
2ψ(x) = −φ(x), (3.64)
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so that the generic vector superfield can be written

VWZ(x, θ, θ̄) = (θσµθ̄)[Vµ(x) + i∂µ(A(x)− A∗(x))]

+(θθ)θ̄λ̄(x) + (θ̄θ̄)θλ(x) + (θθ)(θ̄θ̄)d(x). (3.65)

Notice that we have only fixed the real part of A(x), so we still have the gauge freedom of
SM abelian gauge theories. Unfortunately, the Wess-Zumino gauge is non-supersymmetric
in the sense that following a generic supersymmetry transformation the vector field will
no longer be in this gauge. The component fields φ(x) and m(x) have transformations
under the supersymmetry operators that are non-zero, even if the fields themselves are
zero.

One of the main benefits of the Wess-Zumino gauge is the ease with which we can
compute powers of VWZ. Since θn = 0 for n > 2, we have that

V 2
WZ(x, θ, θ̄) =

1

2
(θθ)(θ̄θ̄)[V (x) + i∂(A(x)− A∗(x))]2, (3.66)

V 3
WZ(x, θ, θ̄) = 0, (3.67)

thus

exp(VWZ) = 1 + VWZ +
1

2
V 2

WZ. (3.68)

Yet again in analogy with the SM we would like to add field strength terms for the
vector fields to the Lagrangian (3.41). Unfortunately the field strength is not invariant
under non-abelian gauge transformations. Using V = qtaV a and Λ = qtaΛa to simplify
notation, and inserting (3.51) into the definition of the field strength (3.33), we can show
that it transforms as,12

WA → −1

4
(D̄D̄)e−iΛe−V eiΛ†

DAe
−iΛ†

eV eiΛ

= e−iΛWAe
iΛ. (3.70)

However, the trace of WAWA is invariant due to its cyclic property:

Tr (WAWA) → Tr (e−iΛWAeiΛe−iΛWAe
iΛ)

= Tr (WAWAe
iΛe−iΛ)

= Tr (WAWA). (3.71)

Thus we have

LV =
1

4T (R)
Tr [WAWA(θ̄θ̄) + W̄ȦW̄

Ȧ(θθ)], (3.72)

as the term for a free vector superfield in the Lagrangian. The extra numerical factor
T (R)−1 appears because of the matrix structure of (3.72), and it is included to take care of

12We also find use for repeated applications of (3.46) and from (C.22)

{D̄Ȧ, DA} = εȦḂ{DA, D̄Ḃ} = −2σµ

AḂ
εȦḂPµ. (3.69)
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the normalisation of the generators ta of the representation R, so that the energy densities
of the gauge fields are correct.13

As a side remark, one would perhaps assume that the term W̄ȦW̄
Ȧ is needed to make

the Lagrangian real. However one can prove that the term containing W AWA is real
and thus that W̄ȦW̄

Ȧ is strictly speaking superfluous in LV , although this is sometimes
overlooked in the literature.

3.3.6 Supersymmetry Breaking

What we have achieved at this point is to give a gauge invariant Lagrangian density
for supersymmetry in terms of vector and scalar superfields, consisting of the terms in
(3.42), (3.50) and (3.72). In doing so we have created an interaction between scalar field
multiplets Φi and a gauge field multiplet V .

As was discussed in Section 3.2, supersymmetry predicts equal masses for particles in
the same representation, and it predicts that all fermions have bosonic partners in their
representation. One should then expect to find bosonic partners to the known fermions
with equal mass. This is certainly not the case in nature. Thus we need some sort of
mechanism that breaks supersymmetry, to give the needed mass differences. Furthermore,
one would wish that this mechanism was not entirely ad hoc, and that it in some way
explained why these partners have not yet been found in experiments. On this basis we
now go on to discuss how supersymmetry breaking terms can be accommodated in the
Lagrangian formulation.

One of the earliest suggested approaches is the so-called spontaneous breaking of su-
persymmetry. The mechanism is a parallel to the spontaneous symmetry breaking of the
electroweak symmetry in the SM, as discussed in Section 2.5. It does not actually break
supersymmetry in the Lagrangian, but it has a vacuum that is not supersymmetric, thus
splitting the masses of the particles within a supermultiplet. This relies on a component
field having a non-zero VEV, whilst being an auxiliary field that can be removed by the
equations of motion that result from the Lagrangian. There are two ways of bringing
this about. The O’Raifeartaigh mechanism [80], or F -term breaking, has 〈0|F (x)|0〉 6= 0,
where F (x) is the highest order, in θ, component field of a scalar superfield, while the
Fayet-Iliopoulos mechanism [81], or D-term breaking, uses 〈0|d(x)|0〉 6= 0, with d(x) being
the highest-order component field of a vector superfield.

Spontaneous symmetry breaking seems an elegant way of solving the problem of de-
generate masses. However it has been shown [82] that for a very general class of sponta-
neous supersymmetry breaking models,14 the so-called supertrace STr (M2) of weighted
squared-mass eigenvalues of the mass matrix M, vanishes at tree-level. The supertrace
is given by

STr (M2) =
∑

s

(−1)2s(2s+ 1)Tr (M 2
s ), (3.74)

13The generators are normalised by the relation

Tr [tatb] = T (R)δab. (3.73)

The factor T (R) is the Dynkin index of the representation R.
14The exception is models with so-called axial gauge invariance. However, these have problems with

renormalisability.
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where Ms is the mass matrix of particles with spin s. For the masses of a particular scalar
supermultiplet of the Lagrangian we have the following relationship,

Tr
[

M2
0 − 2M2

1/2

]

= 0. (3.75)

The consequence is that at least one of the scalars must be lighter than the corresponding
fermions at tree-level.15 Other calculations have shown that this formula does not change
substantially when computed to higher orders.16 This indicates that the boson partners
should not all be very far away in mass from the known fermions, and makes models of
spontaneous supersymmetry breaking very constrained.

The alternative route is to simply parametrise our ignorance of the real mechanism
and break supersymmetry explicitly by the addition of terms to the Lagrangian that are
not invariant under supersymmetry transformations, and that can give rise to the needed
mass differences. In the Minimal Supersymmetric Standard Model that we will describe
in the next Section, supersymmetry is broken in this manner. Such terms are restricted to
so-called soft breaking terms, meaning that they do not give rise to quadratic divergences,
or worse, in quantum corrections to scalar masses. Thus this supersymmetry breaking will
not reintroduce the quadratic divergences for the Higgs mass described in Section 2.6.1.

Girardello and Grisaru [84] list all possible soft supersymmetry breaking terms, and
show rigorously that they are free from quadratic divergences. Written as superfields they
are

Lsoft = −1

6
aijkθθθ̄θ̄ΦiΦjΦk −

1

2
bijθθθ̄θ̄ΦiΦj − tiθθθ̄θ̄Φi

− 1

4T (R)
Mθθθ̄θ̄Tr

[

WAWA

]

+ h.c.

−m2
ijθθθ̄θ̄Φ

†
iΦj. (3.76)

Here the aijk, bij, ti, M and m2
ij are the parameters of the soft breaking, while Φi and

WA are scalar superfields in the model and field strengths for vector fields that belong to
the gauge group of the theory. From the θθθ̄θ̄-factors we see that it is the lowest order
component of the various fields that are projected out. For the scalar superfield Φi this is,
in our notation, the component field Ai. For the trace of WAWA, an explicit calculation
in component fields shows that this yields λAλA, where λA is the spin-1

2
component field

of the vector superfield for which WA is the field strength. In terms of component fields
the soft breaking terms can then be written

Lsoft = −1

6
aijkAiAjAk −

1

2
bijAiAj − tiAi −

1

2
MλAλA + c.c.−m2

ijA
∗
iAj. (3.77)

The new parameters introduced into the theory by the addition of these extra terms
are not arbitrary. They must be chosen so that we avoid large effects from supersymmetric
particles in loops, for instance in giving flavor changing neutral currents or a CP-violating
dipole moment for the neutron, that contradict current experimental bounds and SM pre-
dictions. Thus it is natural to believe that there must be some organising principle behind

15Note that to have an equal number of fermionic and bosonic degrees of freedom there must be two
scalars in this sum for every fermion.

16As noted in [83] there is an exception here for very large couplings.
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these parameters. Models of supergravity, a generalisation of (rigid) supersymmetry where
the supersymmetry transformations are local, i.e. the parameters of the transformations
depend on space-time coordinates, can provide such an organising principle and a connec-
tion to a theory of gravity. There are a multitude of other viable models on the market,
such as Gauge Mediated Symmetry Breaking (GMSB) [85–87] and Anomaly Mediated
Symmetry Breaking (AMSB) [88, 89], and different variations of these. We will not go
into details on any of these mechanism, and be satisfied with a parametrization of our
ignorance.

3.4 The Lagrangian of the MSSM

In Section 3.1 we commented on our restriction of the discussion to an N = 1 super-
symmetry algebra. Here, we will further restrict ourselves to constructing a superfield
Lagrangian with the minimal field content that still contains all the SM fields. This is
the Minimal Supersymmetric Standard Model (MSSM). While non-minimal models may
be found to solve some problems that the MSSM cannot, most of the physics inherent to
phenomenologically realistic models of supersymmetry are to be found in the MSSM.

3.4.1 Field Content

As we saw in (3.24), a left-handed scalar superfield Φ has one left-handed Weyl spinor
ψA(x), and two complex scalar fields A(x) and F (x) as component fields. The field F (x)
can always be eliminated from the equations of motion resulting from the Lagrangian
because it contains no derivatives of F (x). This can be seen in a component field expansion
of (3.41), using (3.22) and (3.24). Thus, a left-handed scalar superfield can represent a
left-handed fermion with spin- 1

2
, by the spinor ψA, and a scalar particle, a boson of spin-0,

by the field A(x). Similarly the right-handed superfield Φ† contains a right-handed Weyl

spinor ψ̄Ȧ and a scalar field.

We have seen that in the Wess-Zumino gauge (3.65) the vector superfields have three
independent component fields, the real vector field Vµ(x), the Weyl spinor field λA(x)
and the real scalar field d(x). This still leaves open one degree of gauge freedom in
fixing the imaginary component of the field A(x) from (3.24). Thus, we can put our
vector superfields in the Wess-Zumino gauge and still have the freedom of SM gauge
transformations. The component field Vµ(x) can then describe a spin-1 field with three
degrees of freedom, with one degree of freedom set aside for the gauge freedom, and can
thus represent a vector boson. The Weyl spinor spin- 1

2
field λA(x) is the supersymmetric

partner of the gauge boson — the gaugino — and the field d(x) is another auxiliary
field that can be eliminated. This is again because there are no derivatives of d(x) in
the Lagrangian, as can be seen in a component expansion of the terms containing vector
fields, Φ†

ie
V Φi and WAWA.

We see that the superfields can provide us with both the boson and fermion fields
necessary to reconstruct the SM. Anticipating the gauge structure of the SM with its
gauge group

SU(3)c × SU(2)L × U(1)Y , (3.78)



3.4. THE LAGRANGIAN OF THE MSSM 35

we know that for each generation of leptons, we need a supermultiplet that transforms as
a doublet under SU(2)L. One component should be a left-handed superfield e, µ and τ ,
representing the left-handed leptons eL, µL, τL, and their scalar supersymmetry partners,
and the other component a left-handed superfield νe, νµ, ντ , representing the neutrinos
νeL, νµL, ντL and their supersymmetric partners, the left-handed sleptons l̃L. We write
these three doublets as

Ll =

(

νl

l

)

, (3.79)

where l = 1, 2, 3 for the three generations of leptons. We will also need three singlet right-
handed superfields E l†, to represent the right-handed electrons eR, µR and τR and their
slepton partners.17 El are then the left-handed superfields containing the anti-particles
of the right-handed leptons. All of these supermultiplets are singlets under the colour
group SU(3)c.

The quarks are treated in a similar manner, corresponding to their SU(2)L transforma-
tion properties, in doublets of left-handed superfields, one representing up-type quark uL,
cL or tL, and one down-type quarks dL, sL or bL. The doublets containing the left-handed
quarks and their supersymmetric partners the left-handed squarks q̃L are written

Qf =

(

uf
L

df
L

)

, (3.80)

where f = 1, 2, 3 labels the three generations of quarks. The right-handed superfield
singlets that contain the right-handed quarks and squarks are Df† and Uf†. Df is then
the various left-handed superfields containing the anti-particles of the right-handed down-
type quarks and similarly U f for the up-type quarks. We have suppressed the colour index
these superfields have as they transform as triplets under SU(3)c. If we require this index,
we will write Qf

i , and so on, where i = 1, 2, 3.
To take care of the gauge sector we need vector supermultiplets. From (3.50) we find

that we need one vector superfield per generator of the gauge group. For U(1)Y this vector
superfield is called B. For SU(2)L, with three generators, we need three superfields W i,
i = 1, 2, 3. Mixing of the component gauge fields, with the gauge symmetry broken by
the VEVs of Higgs fields, will result in the massive vector bosons W± and Z, and the
massless photon, just as in the SM. However, in addition we will also get the fermionic
superpartners of the gauge fields. The colour group SU(3)c has eight superfields named
Cj, j ∈ {1, . . . , 8}, representing the gluons and their supersymmetry partners, the gluinos

g̃. The field strength superfields of these vector superfields are from (3.33) given by

BA = −1

4
D̄D̄DAB, (3.81)

WA = −1

4
D̄D̄e−WDAe

W , (3.82)

CA = −1

4
D̄D̄e−CDAe

C , (3.83)

17We assume here that the neutrinos are massless, so that we do not need their right-handed singlets
under SU(2)L. Since there is convincing evidence for non-zero neutrino mass this is just a statement of
our ignorance of how the neutrinos are given mass.
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where W = gσiW i and C = gsλ
jCj contain the SM coupling constants and generators of

the gauge groups.

Finally, we need Higgs fields to provide spontaneous electroweak symmetry breaking,
giving mass to the gauge bosons and also to the fermions. For the Higgs mechanism to
work these could be separate doublets of scalar superfields transforming under SU(2)L,
containing the Higgs particle(s) and their fermionic supersymmetry partners, the higgsi-

nos. Alternatively, there is the very intriguing notion that the Higgs fields could be the
scalar partners of some of the known SM fermions. In this case we must be able to write
down mass terms for the SM fermions in the MSSM superpotential, using only the scalar
superfields discussed above.

3.4.2 The MSSM Superpotential

With the field content of the MSSM Lagrangian in hand, we want to know what terms are
possible in the MSSM superpotential (3.42), given the restrictions of Eqs. (3.47)–(3.49).
Writing the superpotential as a function of the superfields needed to describe the known
particles,18 W (Lk, Qf , El, Ug, Dh, B,W i, Cj, H1, H2, . . .), where the Hn refer to possible
Higgs superdoublets, we first note that there can be no linear (tadpole) term in W . By
(3.47) this would require that one of the scalar superfields is a gauge singlet under all
the factor groups of the SM gauge group. This is not the case as all quarks and leptons
have a non-zero hypercharge, see Table 3.3, and any Higgs doublets have a non-zero weak
isospin charge. Such a term could however appear in non-minimal models.

The possible direct mass terms of the superpotential on the formmijΦiΦj are restricted
to the cases where mijUirUjs = mrs for all gauge transformations. For the U(1)Y case
this condition reduces to

Yi + Yj = 0, (3.84)

where Yi and Yj are the hypercharges of the two multiplets. In Table 3.3 we give the
hypercharges of the quarks and leptons in the SM, which can be found from Eq. (2.21)
and Table 2.1. The only possible combinations that satisfy the hypercharge requirement
are particle and anti-particle combinations. Since these are in different handed super-
fields no bilinear terms with supermultiplets containing SM fermions can appear in the
superpotential. The exceptions to this is that a separate Higgs superfield doublet H can
couple to one of the superfield doublets containing SM fermions. For instance we can
have superpotential terms such as

κijL
iT iσ2Hj. (3.85)

Two Higgs superdoublets can also, if they have opposite hypercharge, couple to each
other. This last possibility will result in terms of the form

µijH
T
i iσ

2Hj. (3.86)

18Note that we use only left-handed superfields, containing the anti-particles of the right-handed leptons
and quarks, in the superpotential.
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Particle Hypercharge
νl, lL −1

2

lR −1
uL, dL

1
6

uR
2
3

dR −1
3

Table 3.3: Hypercharges of the SM fermions.

The factor iσ2 that appears in both these terms is necessary to contract the two doublets
to a singlet, invariant under SU(2)L.19

We are then left with one last possibility, to introduce mass through Yukawa terms
λijkΦiΦjΦk. These must satisfy the restriction (3.47), which for U(1)Y is equivalent to

Yi + Yj + Yk = 0. (3.90)

With a careful investigation of all the possible combinations one can see that this is only
realised by the three terms

λijkL
iiσ2LjEk, λ′ijkL

iiσ2QjDk, λ′′ijkD
iDjUk. (3.91)

These terms also satisfy the corresponding constraints from the other two gauge groups
of the SM,20 They can also potentially generate fermion masses through loop diagrams.

However, these terms are the source of phenomenological problems. Non-zero values of
the λ-couplings lead to lepton number violating (the first two terms) and baryon number
violating (the last term) interactions. In addition, bilinear terms of the form (3.85) also
violate lepton number. Such interactions have strict experimental bounds. Should for
example both lepton and baryon number violating terms be present the consequence is
rapid proton decay. For these terms to be present, the couplings must be small enough
to evade experimental bounds, such as the measured lower limit on the lifetime of the
proton. Thus they cannot be used to replace the Higgs mechanism in generating masses
for all the SM fermions.21

19This is easily seen from from the SU(2)L transformation of the supermultiplets, e.g.

LiT → LiT eigσkT
Λ

k

, (3.87)

Hj → eigσk
Λ

k

Hj , (3.88)

which implies

LiT iσ2Hj → LiT eigσkT
Λ

k

iσ2eigσk
Λ

k

Hj

= LiT iσ2Hj , (3.89)

where we have used that from (A.5) σ2σk = −σkT σ2.
20Again the terms are all singlets under SU(2)L. Invariance under the colour group SU(3)c is ensured

because the multiplets Qf belong to a 3 particle representation of SU(3)c, and the Dg and Uh belong to
a 3̄ anti-particle representation. These terms form colour singlets in the same manner as pairs of quark
and anti-quark can form colour singlets as mesons, and three anti-quarks can form a colour singlet as an
anti-baryon.

21Thought the lepton-violating terms can potentially be used to give small masses to the neutrinos [90].



38 CHAPTER 3. SUPERSYMMETRY

Since there is no apparent a priori reason for these couplings to be small, the addition
of a extra symmetry called R-parity has been suggested [91], with the multiplicatively
conserved quantum number R defined as

R = (−1)2s+3B+L, (3.92)

where s, B and L are the spin, baryon and lepton number of a particle. This gives R = 1
for all SM particles and R = −1 for the supersymmetric particles, or sparticles. One
usually defines the MSSM to conserve this parity, meaning it can only have interactions
with a total of R = 1, disallowing the terms in (3.85) and (3.91). While this evades
experimental bounds, the introduction of an extra symmetry seems somewhat artificial.
However, it has three extremely important phenomenological consequences:

• The lightest supersymmetric particle (LSP) is absolutely stable.

• Every other sparticle must decay into the LSP.

• Sparticles will always be produced in pairs in collider experiments.

The first of these implies that the LSP, if it is neutral and only weakly interacting, is a good
dark matter candidate, as we discussed in Section 2.6.3. With a neutral LSP, the next
two points indicate that experimental production of sparticles should be accompanied by
missing energy in the form of pairs of escaping LSPs.

3.4.3 Higgs Superfields

The discussion of the previous Section leaves us with no other choice than to introduce
separate Higgs superfield doublets to the Lagrangian. In the SM we needed one such
doublet, and since we are working in the MSSM, our model should be made with the
least possible redundancy in fields. Here however, one Higgs doublet will not suffice. As
in the SM, we need the Higgs field to generate masses for the leptons and quarks through
Yukawa terms. With only one Higgs doublet it turns out that we cannot give masses to
all the quarks.

Because of the fractional charges of the quarks and the effect this has on the hy-
percharge, and the differences in hypercharge between the right-handed up-type quarks
and the down-type, it is impossible to balance hypercharge combinations that satisfy the
restriction (3.90), with only one Higgs doublet. The most field efficient thing we can do
is to combine the left-handed quark superdoublets, with the Hermitian conjugate of the
right-handed singlets, which are the left-handed scalar superfield singlets. From Table 3.3,
we see that combinations of Q and D, and Q and U give a collective hypercharge of ± 1

2
.

It is then sufficient to have two Higgs multiplets H1 and H2 with hypercharges ± 1
2
. The

H2 doublet with hypercharge − 1
2

can also give masses to the leptons.
The resulting superpotential has the following terms, including the possible bilinear

Higgs superfield terms given in (3.86),

W (Lk, Qf , El, Ug, Dh, H1, H2) =
∑

k,l

Y kl
e LkT iσ2H2E

l
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+
∑

f,g,i

Y fg
u QfT

i iσ2H1U
g
i

+
∑

f,h,i

Y fh
d QfT

i iσ2H2D
h
i

+µHT
1 iσ

2H2, (3.93)

where Y kl
e , Y fg

d and Y fh
u are the Yukawa parameters rewritten to account for one of the

indices having been determined by the Higgs superfield used. The resulting 3×3-matrices
will be proportional to the mass matrices of the quarks and leptons. It should be pointed
out that the quarks in the doublets transforming under SU(2)L are not the same as the
quarks observed in strong interactions under SU(3)c. This is taken care of by the usual
Cabbibo-Kobayashi-Maskawa mixing of eigenstates found in the SM, here incorporated
in the matrices Y fg

d and Y fg
u .

Another way of showing the necessity of two Higgs superfield doublets, is through
anomaly cancellations. In the SM triangle loops with fermions have ultra-violet infinities
that cancel against each other. Introducing a Higgs superdoublet also introduces new
fermions as the Higgs’ supersymmetry partners. These will upset the anomaly cancella-
tion. The solution is to introduce a second doublet, with opposite hypercharge, which is
the condition for mutual cancellation of their contributions.

With two Higgs doublets the MSSM Higgs potential, and finding its minimum, be-
comes more complicated than for the SM Higgs potential. Here, we will only briefly
comment on the construction of a spontaneous symmetry-breaking Higgs potential in the
MSSM. We have already concluded that the Higgs doublets must have opposite hyper-
charge, Y = ± 1

2
. By (2.21) this means that we can write them in terms of their component

fields as

h1 =

(

h+
1

h0
1

)

, h2 =

(

h0
2

h−2

)

, (3.94)

where we write the scalar component field of the Higgs superfield doublet H as h. As in
the SM the SU(2)L gauge freedom allows us to rotate away one of the component fields.
After setting h+

1 = 0 in the potential, one finds that any minimum must have h−
2 = 0.

This is fortunate since by giving VEVs only to the uncharged Higgs fields we ensure that
we do not break electromagnetic symmetry. By setting the VEVs to be 〈0|h0

1|0〉 = v1/
√

2
and 〈0|h0

2|0〉 = v2/
√

2, we give masses to the electroweak gauge bosons and through
Yukawa terms to the SM fermions, and also to their supersymmetric partners. One can
show that these VEVs are related to the Z mass and the electroweak coupling constants,
and to the Fermi scale of weak interactions, through

v2
1 + v2

2 =
2m2

Z

g2 + g′2
' (246 GeV)2. (3.95)

However, their absolute value is unknown, and this is parametrised in the MSSM by the
ratio

tanβ =
v1

v2
. (3.96)

The two-doublet Higgs model used in the MSSM has a richer phenomenology than the
SM Higgs sector. Of the eight total degrees of freedom in the Higgs doublets, three are
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absorbed into the gauge bosons just as in the SM. The remaining degrees can be shown
to give two neutral, CP-even, Higgs states, the lighter h and the heavier H, two charged
Higgs H± and one CP-odd Higgs A.

Because of the spontaneous symmetry breaking the spin- 1
2

components of the Higgs
superfields will mix with the spin- 1

2
partners of the electroweak gauge bosons in the vector

superfields that have the same quantum numbers. Writing the supersymmetric partners
of the Higgs and gauge fields by the corresponding superfield sporting a tilde, the H̃0

1

and H̃0
2 neutral higgsinos mix with the B̃0 and W̃ 0 gauginos to form four states χ̃0

i called
neutralinos. The charged higgsinos H̃+

1 and H̃−
2 mix with W̃+ and W̃− to form two

charged states, the charginos χ̃±
j .

3.4.4 Gauge Terms

Now that we have fixed the superpotential, what remains in the construction of the MSSM
Lagrangian is the rather easy job of writing down the Lagrangian terms for the gauge
superfields, and the interaction terms coupling the gauge fields to the matter and Higgs
fields. The pure gauge terms are given in terms of the field strengths in (3.72), and for
the MSSM this is

LV =
1

2
Tr
[

WAWA(θ̄θ̄) + CACA(θ̄θ̄)
]

+
1

4
BABA(θ̄θ̄) + h.c. (3.97)

were the field strengths can be taken from (3.81), (3.82) and (3.83).22

From (3.50) we can write down the interaction terms for the scalar superfields under
the familiar gauge transformations of the SM,

LI =
∑

l

Ll†e(gW iσi/2+g′B/2)Ll +
∑

l

El†e(−g′B)El

+
∑

f

Qf†e(−gsCiλi/2+gW iσi/2−g′B/6)Qf

+
∑

f

Uf†e(−gsCiλi/2+2g′B/3)Uf +
∑

f

Df†e(−gsCiλi/2−g′B/3)Df

+H†
1e

(gW iσi/2−g′B/2)H1 +H†
2e

(gW iσi/2+g′B/2)H2, (3.100)

where we have used the coupling constants and generator representations as given in
Eqs. (2.13), (2.14) and (2.36).

3.4.5 Supersymmetry Breaking Revisited

We have now constructed a supersymmetric and gauge invariant Lagrangian for the
MSSM. The final piece of the complete model is to add soft supersymmetry breaking

22The correct numerical factor can be found from (3.73), leading to, in a natural notation, the following
Dynkin indices for the non-abelian groups:

T (RL) =
1

4
Tr

[

σ1σ1
]

=
1

2
, (3.98)

T (Rc) =
1

4
Tr

[

λ1λ1
]

=
1

2
. (3.99)

The Pauli and Gell-Mann matrices, σ and λ, are given in Appendix A.
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terms to lift the mass degeneracy between the SM particles and their supersymmetric
partners as described in Section 3.3.6.

For the sake of clarity we will write down the soft breaking Lagrangian in terms of
the component fields involved, thus avoiding the numerous projections by factors of θθθ̄θ̄
in (3.76). What we are then writing down is the

∫

d4θ-projection of the supersymmetry
breaking parts of the Lagrangian density in terms of superfields. The available terms
were given in equation (3.77). Though we break supersymmetry with these terms, we
do not wish to break gauge symmetry explicitly. This limits the possible terms to those
that mirror the terms already in the Lagrangian. This excludes tadpole terms, and most
bilinear terms, with the exception of a pure Higgs term µBHT

1 iσ
2H2. Note again the

appearance of the factor iσ2 to make the term an SU(2)L singlet. We can have trilinear
Yukawa terms of the type ajkÃjiσ

2HÃk, were one of the fields is a Higgs doublet and
where Aj is an SU(2)L doublet. The partners of the gauge bosons, the fermionic spin- 1

2

gauginos of the vector superfields B, W i and Cj, can generate additional mass from terms
of the type 1

2
Mλ̃Aλ̃A, where λ̃A is the spin-1

2
component field of a vector superfield. For

each of the scalar superfields we can write down a mass term of the form m2
ijÃ

∗
i Ãj, where

m2
ij is the corresponding mass matrix and the Ãi are the spin-0 component fields of the

scalar superfields. The m2
ij may in general have complex entries and mixing between

generations, but must be hermitian to make the Lagrangian real. 23

The resulting Lagrangian for the soft breaking terms is then

∫

d4θLB = −1

2

(

∑

j

M3C̃
jAC̃j

A +
∑

i

M2W̃
iAW̃ i

A +M1B̃
AB̃A + h.c.

)

−
(

∑

f,g

(aU)fgQ̃
fT iσ2H̃1Ũ

g +
∑

f,h

(aD)fhQ̃
fT iσ2H̃2D̃

h + h.c.

)

−
(

∑

k,l

(aE)klL̃
kT iσ2H̃2Ẽ

l + h.c.

)

−
∑

k,l

(mL)2
klL̃

k†L̃l −
∑

k,l

(mE)2
klẼ

kẼl†

−
∑

f,g

(mQ)2
fgQ̃

f†Q̃g −
∑

f,g

(mU )2
fgŨ

f Ũg† −
∑

f,g

(mD)2
fgD̃

fD̃g†

−(mh1
)2h†1h1 − (mh2

)2h†2h2 − (µBhT
1 iσ

2h2 + h.c.) (3.101)

The number of parameters of the MSSM is very large, and the vast majority of these
appear in the soft terms. Careful counting shows that in addition to the 19 free parameters
of the SM, there are 105 more parameters in the MSSM. Supersymmetry as a more
fundamental theory seems at first glance to be rather far fetched. The huge number of
parameters also mean that most experimental bounds can be avoided by a tuning of the
right parameters, and most experimental discoveries can likewise be explained by some
version of the MSSM. Thus the predictive power of the MSSM is in some sense limited.

23Note that the right-handed leptons and quarks are in right-handed supermultiplets, which means
that the structure of their mass terms is changed by hermitian conjugation.
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There are important exceptions to this. As we noted in Section 2.6, if we want to avoid
reintroducing the fine-tuning problem for the Higgs mass, the scale of SUSY masses must
be close to the electroweak scale, something which also seems necessary for a successful
unification of forces at high energies for the simplest GUT models. Also, electroweak
baryogenesis requires that some sparticles are light and supersymmetric dark matter
seems most natural with candidate sparticles having a mass of the order of O(100 GeV).

There are also strong hints of organising principles that would reduce the number
of free parameters. Most of the soft parameters imply flavour mixing and CP violation
that is restricted by experiments, preferring diagonal or near diagonal mass matrices.
The apparent unification of coupling constants at high energies opens the possibility of
unification of the soft parameters at the same high scales. The simplest such models, such
as the popular minimal supergravity (mSUGRA) models of supersymmetry assume very
few fundamental parameters at GUT scale. In mSUGRA there are only four, a common
scalar mass m0, a common gaugino mass m1/2, a common trilinear parameter A0 and
tanβ (in addition the sign of the Higgs parameter µ is a free parameter).24 As one moves
down in energy from the GUT scale the masses of the sparticles run differently depending
on their couplings to gauge fields. The result is a low energy model with great variation
in sparticle masses.

In exchange for providing a SUSY breaking mechanism that supplies universal soft
breaking terms at the high scale, these models receive a lot of predictive power. So
much that mSUGRA models are now highly constrained by experimental lower bounds
on Higgs and sparticle masses, and by requiring consistency with the dark matter density
measured by WMAP. If supersymmetry is discovered at the LHC, one of the greatest
goals of particle physics will be to determine how the parameters are organised, and what
the SUSY breaking mechanism is.

As we commented on in the Introduction, the LHC experiment will constitute an
important test of low energy supersymmetry. In the next Chapter we will discuss various
approaches to searching for supersymmetry at the LHC, and attempts to measure some
of the parameters discussed in this Chapter, by using the cascade decays of sparticles.

24There are slight differences in terminology regarding mSUGRA. Some authors use the term Con-
strained Minimal Supersymmetric Standard Model (CMSSM) for these models, imposing a relation be-
tween the soft trilinear and bilinear supersymmetry breaking parameters: A0 = m0 + B0, in mSUGRA.
This fixes one free parameter in the electroweak symmetry breaking, allowing tan β to be determined
from the other parameters in mSUGRA models.



Chapter 4

Supersymmetric Cascade Decays

‘Though this be madness, yet there is method in ’t’

William Shakespeare
Hamlet, Prince of Denmark

In the previous Chapter we saw that the conservation, or near conservation, of R-
parity leads to the pair production of supersymmetric particles and their cascade decays
into pairs of the lightest supersymmetric particle (LSP). There are strong bounds on a
stable charged LSP from dark matter searches in cosmic rays, thus the generic signal of
supersymmetry at the LHC is missing energy from escaping LSPs, alongside an abundance
of high momentum hadronic jets — the collimated showers of particles that result from
the production of quarks or gluons — and leptons from the cascade decays.

In this Chapter we will discuss the search for supersymmetry and the measurement
of its parameters, in particular the mass of supersymmetric particles, at the LHC. This
discussion aims at placing the four papers included at the end of the thesis in a wider
context, and at showing how they are connected in a broad investigation of cascade decays
at the LHC.

4.1 Supersymmetry at the LHC

In this Section we start with a short overview of the LHC experiment, and continue
with a discussion of the standard Monte Carlo simulation techniques we have used to
study the potential of the LHC in searching for supersymmetry. Then we go on to finally
look at cascade decays and their importance in measuring the masses of supersymmetric
particles.

4.1.1 The Machine and the Detectors

The LHC (Large Hadron Collider), being built at CERN, Geneva, is mainly a proton-
proton collider, with a centre of mass energy of 14 TeV [92]. It has also been designed
with the ability to collide heavy ions. The LHC machine consists of a series of proton
accelerators, feeding a final 26.7 km circumference ring of superconducting magnets cooled

43
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down to temperatures of 1.9 K and with vacuum of 10−10 Torr, making the LHC colder
than outer space, and almost as empty.

The machine is capable of handling two trains consisting of 2800 bunches of 1011

protons, with a separation of 25 ns, going in opposite directions, giving a total design
luminosity of roughly 1034 cm−2s−1. This means that the experiments could potentially
record data equivalent to an integrated luminosity of 100 fb−1 per year at optimal running.
It is however planned that the machine will run at lower luminosity for the first years in
a start up phase, roughly estimated at 10 fb−1 per year. At the design luminosity the
focused beams will provide approximately 20 proton-proton collisions per bunch crossing,
making reconstruction of events a very challenging task for the experiments.

In addition to the central machinery of the proton/heavy-ion accelerator, the LHC
consists of four major experiments. The large detectors ATLAS (A Toroidal LHC Appara-
tuS) [93,94] and CMS (Compact Muon Solenoid) [95,96], are designed as general-purpose
detectors, while the smaller LHCb (Large Hadron Collider beauty) [97] and ALICE (A
Large Ion Collider Experiment) [98,99] are specialised b-physics and heavy-ion detectors,
respectively. In addition there are also the smaller TOTEM [100] and LHCf [101] exper-
iments, designed to measure the total cross section and to do so-called forward physics
measurements, near the beam axis.

The general-purpose detectors ATLAS and CMS will have the best reach for direct
discoveries of supersymmetry at the LHC. They are designed to reconstruct high energy
jets and leptons well using several layers of sub-detectors. In particular, they have the
ability to perform very accurate measurements of high-energy muons, due to their large
size and strong magnetic fields. They have also been built to fully utilise the very high
collision rates of the LHC, withstanding the strong radiation from running at the highest
design luminosity, and being able to record data at a rate of around 100 collisions per
second, triggering on those events that are deemed interesting.

The LHCb detector takes a different approach. Optimised for identifying individual
hadrons and reconstructing the decays of B-mesons, it will test the SM predictions for
physics with bottom quarks, to look for deviations due to the loop effects of New Physics,
including supersymmetry. Although direct identification of supersymmetry will be diffi-
cult, this allows for a complementary sensitivity in areas that may be difficult to probe
for the general-purpose detectors, such as scenarios with very heavy supersymmetric par-
ticles.

The work presented in this thesis has focused on the possibilities of direct searches,
mainly by ATLAS and CMS, for new particles produced in proton-proton collisions.

4.1.2 Monte Carlo Simulation

To investigate the LHC potential we depend on computer tools to help simulate the
complicated physics involved in hadron collisions. We have mainly used various versions of
the PYTHIA [102] Monte Carlo event generation program to simulate proton collisions, both
for signal supersymmetry events and for possible backgrounds. The PYTHIA simulation
is based on leading-order matrix elements for hard 2 → 2 parton processes involving
quarks or gluons as estimated from parton distribution functions, evolved with higher
order effects in parton showering and hadronization, and also including an estimation of
the underlying event, i.e., the collision of the proton remnants after the hard interaction.
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The leading order (LO) approach has its limitation in that higher order QCD effects
are predicted to become important at the LHC. The expected increase in cross sections
can be compensated for by the use of so-called K-factors, multiplying the LO cross sec-
tions by results from next-to-leading order (NLO) calculations, e.g. for MSSM events by
Prospino [103], but this does not correct for the predicted differences in the kinematical
distributions of the produced partons [104]. Another issue with the 2 → 2 parton pro-
cesses is that the addition of parton showers underestimates the production of multiple
hard partons which are the result of 2→ n processes. For Papers 1 to 3 these effects are
believed to be fairly small, while they are discussed in greater detail in Paper 4 where
hadronic jets is the central topic.

Tied in to the simulation of collisions is the simulation of detector response. For
the first three papers we base ourselves on the modelling of a generic LHC detector by
AcerDET 1.0 [105]. This gives a fast simulation of a simplified detector with realistic
geometrical acceptances and jet reconstruction from calorimeter cells. The smearing of
momentum measurements and the identification of b- and τ -jets are parameterised based
on early full simulations of the ATLAS detector. While not sufficient for the demanding
task of comparison to actual data taken by the experiments, the fast simulation of LHC
detectors is a good tool for phenomenological investigations of the LHC discovery reach.

4.1.3 Discovery

There are several candidates for dark matter in the MSSM, but most of the work pub-
lished has focused on a neutralino LSP. For much of the mSUGRA parameter space the
lightest neutralino is the natural candidate since it is the lightest sparticle. The mSUGRA
alternatives are the lightest scalar tau τ̃1, the stau, or the lightest scalar top quark t̃1, the
stop, which are both unfeasible as dark matter due to their charges.

While the neutralino is the lightest sparticle in these models, it is not directly produced
in proton collisions to any significant degree. There will be some slepton Drell–Yan pair
production and neutralino–chargino production, but the wast majority of the supersym-
metry cross section at the LHC will be the production of strongly interacting particles,
squarks and gluinos, if they have kinematically accessible masses.

The implications of this is that if supersymmetry is realised in nature, the LHC is
likely to see an excess of events with missing energy from escaping neutralinos, and, as a
minimum, two jets from the high momentum quarks produced in the decays of squarks
into neutralinos, q̃ → χ̃0

1q. This is reflected in the planned searches, where the so-called
effective mass defined by

Meff =6ET +
∑

jets

pT,i, (4.1)

in terms of the missing transverse energy 6ET and the sum of the transverse momentum
of the jets in an event, is one of the main search channels.1 Other important channels
included one or more leptons. The distribution of effective mass has been found to be a
good discriminator between SUSY and the SM [106, 107]. In Fig. 4.1 (left) we show the

1Only the missing transverse momentum is measurable since the longitudinal momenta of the colliding
partons are unknown.
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Figure 4.1: The distribution of effective mass for the LHC5 benchmark point (left) and
the distribution of SUSY mass scale versus effective mass for mSUGRA scenarios (right).
The figures are taken from Chapter 20 of the ATLAS TDR [94].

distribution for the LHC5 mSUGRA benchmark point.2 The SUSY distribution (open
circles), dominates at large effective masses over the SM background, shown here for tt̄
(solid circles), W+jet (triangles), Z+jet (downward triangles) and QCD 2 → 2 events
(squares). If this is the case, the discovery of SUSY at the LHC should be easy, and could
be done with a few months of integrated luminosity for sparticle masses below 1 TeV.

The effective mass also gives an indication of the scale of supersymmetry, through the
masses of the produced sparticles. The peak of the effective mass distribution is effectively
correlated with the SUSY mass scale MSUSY, shown in Fig. 4.1 (right) as the minimum
of the gluino and down squark masses. For more general MSSM models the correlation
weakens, but is still present. In [107] the precision of the mass scale measurement is
estimated to be 15% and 40% for mSUGRA and MSSM scenarios, respectively, with one
year of running at low luminosity (10 fb−1), and 7% and 20% after one year at high
luminosity (100 fb−1).

However, these measurements will require a good understanding of the SM at previ-
ously unexplored energies. In particular the NLO effects on the effective mass distribution
should be properly accounted for, and experimental effects on the measurement of missing
energy and the jet energy scale must be well known. This will certainly take more than
the few months required to reach the necessary luminosity.

4.1.4 Invariant Mass Distributions

Following a significant excess in some search channel that is inconsistent with the SM,
the season for new particle hunting will be open. The missing LSP of supersymmetry
means that the standard method of reconstructing particles from the invariant mass of

2See [94] for details.
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their decay products, looking for resonance peaks, is not available.3 The effective mass
distribution, and variations of it, also have a limited accuracy in determining individual
sparticle masses.

The well studied alternative to this is to look at the endpoints of invariant mass
distributions [106, 108–113]. For a number of cascade decay chains the positions of the
endpoints of the various possible combinations of SM decay products has been calculated
in terms of the sparticle masses involved. In particular the decay chain

q̃ → χ̃0
2q → ˜̀q`n → χ̃0

1q`n`f (4.2)

has received a lot of attention. Simple kinematical considerations, ignoring the finite
width of the sparticles, initial- and final-state radiation, spin effects and any experimental
smearing, lead to the following expression for the endpoint of the di-lepton invariant mass
distribution for this decay chain, see e.g. [110],

(mmax
`` )2 =

(m2
χ̃0

2

−m2
˜̀)(m

2
˜̀−m2

χ̃0

1

)

m2
˜̀

. (4.3)

Tables over the more complicated expressions for other endpoints, including also the
possibility of a gluino decaying to the squark of Eq. (4.2) and assuming the experimental
indistinguishability of the two leptons, can be found in [112, 113].

Given that the number of linearly independent endpoints is equal to or larger than the
number of sparticle masses involved, the masses can in principle be solved for. However,
a number of complications can arise. The quadratic structure of the endpoint expressions
opens up the possibility of additional false solutions. There is also a strong correlation
between the sparticle mass measurements because the endpoints are expressed as mass
differences. Thus mass differences will be much better measured through endpoints than
absolute masses [112]. The possible appearance of small structures in the distributions
near their endpoints, so-called “feet” that can be mistaken for background, result in
systematic errors that are difficult to estimate.

The main thrust of Paper 1 is to extend the work on invariant mass distributions
by calculating the full shape of the experimentally observable distributions from (4.2),
and not just the endpoints. We show that knowing the distribution shape removes the
problem of “feet” by predicting their existence, and allows for more sophisticated fits
to the endpoints. In a recent conference proceedings contribution we have also showed
the successful use of the derived shapes to remove false solutions [114]. Using the full
distributions is not without additional complications. Effects from the mis-identification
of decay products can be significant in the high multiplicity environment of the LHC
colliders, and the cuts used to isolate SUSY events from SM background may affect the
distributions, in particular at low invariant masses. However, it should be emphasised
that it is not necessary to fit whole distributions to take advantage of knowledge of the
theoretical shape.

3Since at least two high momentum particles will be missing, the assignment of the missing momentum
is not unique.
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4.1.5 Seeing SUSY and Seeing that it is SUSY

While the discovery of significant excesses over SM predictions and the measurement
of the masses of new particles, may be attributed to SUSY, the same results may also
be interpreted as other New Physics (NP) scenarios. It was shown in [115] that Uni-
versal Extra Dimension (UED) scenarios can mimic supersymmetry, where the lightest
Kaluza–Klein excitation of the photon takes the role of the LSP, and the conservation of
a KK-parity ensures its stability. Other suggestions for SUSY-like NP models are Little
Higgs scenarios with so-called T-parity [116]. While the mass spectrum of these models
tends to be more degenerate, and the models predict somewhat different cross sections,
the existence of this possibility precludes any totally convincing argument for a super-
symmetry interpretation. The question is then, how can we identify the New Physics as
actually being SUSY?

What is needed is to look for a property peculiar to supersymmetry, and from the
discussions of Chapter 3 it should be clear that this is the spin of the particles. If the
newfound particles are shown to be the bosonic partners of fermionic SM particles or vice
versa, the SUSY interpretation will be greatly strengthened. The measurement of particle
spin at the LHC is difficult due to the unknown — on an event by event basis — nature of
the parton collision participants and their charges, and to the difficulty of measuring the
charges of jets. However, it was shown by Barr in [117] that due to the charge asymmetry
in proton–proton collisions, with more positive than negatively charged quarks, the spin
of the χ̃0

2 in the decay chain (4.2) can be shown to be non-zero by looking at the differences
between the invariant mass distributions for ql− and ql+ combinations.

In Paper 1 the derivations of the invariant mass distributions was consciously made
very generic, in the sense that they can be applied to any decay chain

D → Cc→ Bcb→ Acba (4.4)

where the capital letters signify particles in some NP model and the small letters are the
SM decay products. We gave specific distributions for the SUSY decay chain (4.2) with
spin effects included, but a change to different spin configurations is easily accommodated
by the formulae.

4.2 Light Stops

Paper 2 extends the investigation of invariant mass distributions to the more complicated
decay chain

g̃ → t̃1t→ χ̃0
1cWb→ χ̃0

1c`ν`b, (4.5)

where b and c are heavy quarks. The loss of information from the escaping neutrino means
that there is no edge structure at the endpoints of the useful invariant mass distributions.
The alternative at hand is to make fits to the shapes of the distributions, and for this
purpose we derive the shapes of the mlc and mbc distributions.

While the decay (4.5) may occur in mSUGRA models, we focus on more generic
MSSM scenarios with a light stop, mt̃1 < mt, which is the next-to-lightest supersymmetric
particle (NLSP). These scenarios can be motived both from cosmological considerations
on dark matter and baryogenesis, and from the Higgs mass fine-tuning problem.
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4.2.1 Motivation

The issue of dark matter is discussed extensively in Paper 2. It focuses on the predicted
tendency for a slight over-density of dark matter in SUSY scenarios when compared to
the WMAP measurement given in Eq. (2.54). This is solved by picking scenarios with an
efficient annihilation mechanism, increasing the cross section of Eq. (2.55). In particular
an NLSP that is close in mass to the LSP can provide a high co-annihilation cross section
at freeze-out. Such scenarios with a stop NLSP are called stop-coannihilation scenarios.

As we noted in Section 2.6.4 successful electroweak baryogenesis requires larger CP-
violation than what is found in the SM. It also needs the electroweak symmetry breaking
to be a strongly first order phase transition to avoid washing out the created baryon
asymmetry. This condition can be given as [118],

v(Tc)

Tc
& 1, (4.6)

where Tc is the critical temperature of the transition and v is the Higgs vacuum expec-
tation value at this temperature. By studying the Higgs potential at finite temperature
one finds that

v(Tc) ∝
1

µ
∝ 1

mh
, (4.7)

which necessitates a very light Higgs in the SM, lighter than the LEP bounds [57]. Loop
effects in the Higgs potential from bosonic particles with masses around the electroweak
scale can help alleviate the situation, but the SM bosons have too weak couplings [119,
120]. In MSSM models the large number of new bosons, and in particular the existence of
a stop with a large Yukawa coupling inherited from the heavy top, can allow Higgs masses
below 120 GeV [64–71]. This opens up a small window for electroweak baryogenesis above
the LEP lower bound of 114.4 GeV [57].

The second prediction of electroweak baryogenesis is that the lightest stop mass must
be low, somewhere below the top mass, to increase the Higgs VEV sufficiently. This has
implication for the Higgs fine-tuning problem. As we commented on in Section 2.6.1, while
supersymmetry removes quadratic corrections to the Higgs mass, its breaking introduces
logarithmic ones, whose size depends on the SUSY mass scale. In the MSSM the most
important loop contributions to the Higgs mass come from the top and stop because
of their large Yukawa couplings, see Eqs. (2.51) and (2.52). The opposite signs of the
contributions mean that scenarios with a naturally light stop have reduced fine-tuning.

4.2.2 Searches

With the stop lighter than the top quark its decay channels are limited. The parameter
space with a significant decay rate to a chargino t̃1 → χ̃±

1 b is very restricted in scenarios
with GUT unification of gaugino masses as these predict a mass for the lightest chargino
of about double the LSP mass, which means that the chargino is very likely heavier than
the stop.4 The decay t̃1 → χ̃0

1Wb, is likewise restricted because of the W mass, but may

4GUT scenarios predict

M2 = (g2/g1)
2M1 ' 2M1 (4.8)
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Figure 4.2: Tevatron reach for the cc 6ET -channel for various integrated luminosities. The
hatched areas are excluded, by a stop LSP (red) or LEP bounds (blue). The yellow
and green areas shows the results of a scan over MSSM parameter space, where green
represents points found with CDM density within WMAP first-year bounds and yellow
points with too low CDM density. The figure is taken from [71].

occur as a four-body decay with an off-shell W . In this case the one-loop decay t̃1 → χ̃0
1c

will be competitive, particularly for the lightest stops in stop-coannihilation scenarios.

Searches for a light stop decaying to a c-quark and the LSP are being performed
at the Tevatron with the signature cc 6ET from stop pair-production, using c-jet tagging.
Figure 4.2 shows the reach of the Tevatron for total integrated luminosities of 2 fb−1, 4 fb−1

and 20 fb−1. While the Tevatron can cover significant parameter space not excluded by
LEP, we can see that it has little sensitivity in the stop-coannihilation region where the
stop–LSP mass difference is small, due to the soft nature of the c-jets.

At the LHC c-jet tagging abilities will be very limited due to the higher energies and
larger jet activity. As a result the cc 6ET -channel will be very difficult to use. The main
new idea presented in Paper 2 is to instead search for stops produced in the decays of

at the electroweak scale, which means that a mostly wino (W̃±) chargino should have double the mass
of a mostly bino (B̃0) neutralino.
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gluinos. If lighter than the squarks, with the exception of the stop, gluinos will decay
nearly 100% into pairs of top and stop, as in (4.5). Since the gluino is a Majorana particle,
it does not distinguish between a stop and anti-top pair, and its charge conjugate, which
implies that the production of gluino pairs should lead to a large rate of same-sign top
production. In Paper 2 we show that this search channel can be very efficient, and in a
later conference proceedings contribution [121] we show that it has a reach up to gluino
masses of mg̃ . 900 GeV, largely independent of the stop mass.

Same-sign top production also holds the possibility of demonstrating the Majorana
nature of the gluino. If the SM tt̄ background can be subtracted, an equal number of
same- and opposite-sign top-pair events from the decay (4.5) of gluino pairs shows that
the gluino is indeed a Majorana particle. This is the subject of ongoing investigations.

4.3 Hadronic Decay Chains

Most investigation into cascade decays have looked at decay chains with some leptonic
content, such as (4.2) and (4.5). The expected large number of jets in SUSY events at the
LHC means that purely hadronic decay chains have been thought difficult to reconstruct
due to large combinatorial backgrounds from selecting the wrong jets in an event. Yet
there are important decay chains such as

q̃ → χ̃±
1 q

′ → χ̃0
1q

′W, (4.9)

where the leptonic decays of the W makes reconstruction very difficult, that could benefit
greatly from the ability to successfully reconstruct the hadronic decays of the W . For
scenarios where mχ̃0

2
' mχ̃±

1

,5 the left-handed squark typically decays 60% of the time as

q̃L → χ̃±
1 q

′ and 30% as q̃L → χ̃0
2q. This is the case for most of the mSUGRA parameter

space, but also in many, more general, MSSM models. Given that the chargino will tend
to decay into a W and the LSP if there is enough mass difference between the two, we
see that the decay (4.9) will be important in many scenarios.

In mSUGRA scenarios that are consistent with the WMAP results for the CDM
density (2.54), the decays of χ̃0

2 tend to be dominated by decays into slepton-lepton pairs,
as found in (4.2). This is due to the limited allowed range for the scalar mass m0 in the
so-called stau-coannihilation region, where the near degeneracy of the lightest stau and
the LSP is the mechanism for keeping the CDM density below the WMAP bound. In
Fig. 4.3 we show the branching ratio of χ̃0

2 as a function of the gaugino mass m1/2 along
a line spanning the stau-coannihilation region.

We see that the branching ratio to Z and the lightest Higgs is consistently low. How-
ever, this need not be the case for more generic scenarios. By relaxing the mSUGRA
unification requirement on the scalar masses for the Higgs doublets, in so-called non uni-
versal Higgs mass (NUHM) scenarios, a far larger range of scalar mass values is allowed.
This is shown in Fig. 4.3 by the NUHM benchmark points α and β, that are dominated
by the Z and Higgs decay of χ̃0

2 respectively.
In Paper 4 we study the invariant mass distribution qB for decay chains similar to

(4.9), where B is a massive boson, either W , Z or h, that decays hadronically. By using

5In the limit where the electroweak masses are a small perturbation on the neutralino and chargino
mass matrices both χ̃0

2 and χ̃±
1

will be wino-like, with quite degenerate masses given mainly by M2.
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Figure 4.3: Branching ratios for χ̃0
2 along the mSUGRA line m0 = 13.57 + 0.142m1/2 +

4.90× 10−5m2
1/2, where A0 = 0, tan β = 10, µ > 0. Also shown are the branching ratios

for the benchmarks α, β and δ, used in Paper 4. The figure and parametrisation are
taken from [122].

a sophisticated jet algorithm, the kT -algorithm, that gives information on the internal
structure of jets, we find that for highly boosted bosons, where the jets initiated by the
quarks in the boson decay are very collimated and form a single jet, we can successfully
identify the correct jet. This allows us to reconstruct the invariant mass distribution, and
to extract endpoints that relate the SUSY masses involved.

We also make an extensive investigation into possible background contributions from
the production of one or two massive vector bosons with multiple jets, which is not well
simulated by the 2→ 2 production with added partons showers found in PYTHIA. For this
we use the ALPGEN Monte Carlo event generation program [123–125]. While we find that
there can be significant background contribution from such processes for our signal, we
are still able to reconstruct endpoints by modelling and removing the background through
so-called sideband subtraction, using events with jet-masses away from the boson mass
in question.

4.4 Gravitino Dark Matter

In previous sections we have looked at the phenomenology of SUSY scenarios with a
neutralino dark matter candidate. Theories of supergravity, such as mSUGRA, imply
the existence of a supersymmetric partner of the spin-2 graviton, the gravitational force
carrier. This is the gravitino G̃, a fermion with spin- 3

2
. Since there is no a priori reason

for the gravitino to necessarily be heavier than the other sparticles, one should consider
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the possibility of a gravitino LSP, resulting in Gravitino Dark Matter (GDM) scenarios.

4.4.1 Cosmology

The gravitational coupling to matter is ∝ 1/MP , where MP is the reduced Planck mass,
given in terms of Newton’s constant GN as

MP =
1

8πGN
' 2.4 · 1018 GeV. (4.10)

Since the gravitational coupling is very weak, the next-to-lightest sparticle (NLSP) can
be quite long-lived in GDM scenarios.

In a generic MSSM model almost any sparticle could be the NLSP, but cosmological
considerations can limit the field of candidates considerably. If we look at mSUGRA
models with gravitino dark matter, the former LSP candidates are now the NLSP can-
didates. The most stringent constraints on the NLSP come from its decay after the Big
Bang Nucleosynthesis (BBN) period in the first three minutes of the universe, where light
elements such as Deuterium, 3He, 4He, 6Li and 7Li were formed. The late injection of
energy may change the current abundances of these elements significantly. By comparing
BBN calculations for a given model with the observed abundances, one finds that the
electromagnetic energy released by the decay χ̃0

1 → G̃γ strongly constrains the param-
eters of models with a neutralino NLSP. The calculations instead favour a stau NLSP,
since the stau decay τ̃1 → G̃τ releases less electromagnetic energy, loosing a significant
part of its energy to harmless neutrinos. The effect of the hadronic energy release from
tau decays is found to be unimportant for NLSP lifetimes over 104 s [126–132].

Recent investigations have shown that a stop NLSP is excluded for strict mSUGRA
models, but may be allowed in small sections of the parameter space for NUHM sce-
narios [133]. Going outside of the mSUGRA NLSP candidates, the decays of sneutrinos
release little electromagnetic and hadronic energy and sneutrinos thus seem to be good
candidates [128, 134]. For a recent investigation into sneutrino NLSP phenomenology at
the LHC, see [135].

In the BBN allowed areas of parameter space for a stau NLSP the gravitino dark
matter density produced from the decays of staus after freeze-out is lower than the WMAP
limits (2.54). However, the thermal production of out-of-equilibrium gravitinos at the high
temperatures of the early universe can account for the missing dark matter [136, 137].

4.4.2 Signatures

In Paper 3 we have studied three GDM benchmarks with a long lived stau NLSP. The
long lifetime of the stau —relative to the scale of a detector — means that R-parity
conserving GDM scenarios do not have the standard SUSY signature of missing transverse
momentum at the LHC. Instead there will be two charged tracks in every event due to the
staus. If these have enough momentum to leave the detector they will appear as tracks
in the muon system, and will be reconstructed by detector software as muons.

Compared to the highly relativistic muons, a significant number of the staus will have
low velocity due to their much larger masses. While this may be a challenge to detector
triggers and track reconstruction that assumes v ' c for all particles, this opens up some
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spectacular possibilities. If the stau velocity can be measured through its Time-of-Flight
(ToF) in a detector, the stau mass can be very precisely determined from

m =
p

βγ
, (4.11)

where β = v/c and γ = (1 − β2)−1/2. Furthermore, requiring two low velocity tracks in
the muon system should be a very efficient way of reducing the SM background. Other
properties, such as the larger loss of energy to ionisation due to the lower velocity, can
also help separate staus from muons.

We show in Paper 3 that we can extract an effectively background-free sample of
events with two slow-moving staus in all three benchmarks, and that it may be feasible
to measure the stau mass in GDM scenarios down to a precision of 0.1%. Starting from
the identified staus we find that we can reconstruct many heavier sparticles from their
cascade decays into staus, even for difficult low cross section scenarios with squark and
gluino masses above 1.5 TeV.

Current methods for measuring stau velocity at the LHC detectors depend on re-fitting
tracks in the muon systems with different assumptions on the velocity, minimising the χ2

of the fit quality as a function of velocity [138,139]. We have suggested a complementary
method using direct timing information from the muon trigger system, and this is now
under full simulation study in ATLAS [140].

4.4.3 Supergravity

Since a fraction of the staus will be produced at low momenta simply by kinematical
coincidences, there is a chance that energy loss in detector material will stop some of
them, in particular in the calorimeters. When the beam is turned off one could hope to
see their decays inside the detectors if a sufficient number is stopped and if their lifetime is
of the order of the break in the LHC running. Should the detector material be insufficient
to stop a significant number, suggestions have been made for building separate stopping
detectors in the experimental caverns [141, 142], or even boring out holes in the cavern
walls to extract rock samples with embedded staus [2].

By watching the decays of stopped staus their lifetime can be determined, and if the
gravitino mass is not very much lighter than the stau, it could be measured from looking
at the tau recoil energy Eτ ,

m2
G̃

= m2
τ̃1 +m2

τ − 2mτ̃1Eτ . (4.12)

At the same time one can calculate the lifetime of a stau NLSP from the Feynman rules
for the gravitino, given in e.g. [143]. The partial width of the decay τ̃1 → G̃τ can be
found to be

Γτ̃1→G̃τ =
1

48π

1

MP

m5
τ̃1

m2
G̃

(

1−
m2

G̃

m2
τ̃1

)4

, (4.13)

where we have used mτ � mτ̃1 . Since the stau lifetime is only dependent on the stau and
gravitino masses, and the reduced Planck mass, a measurement of both the lifetime and
the two masses will amount to a microscopic measurement of the gravitational coupling



4.4. GRAVITINO DARK MATTER 55

and through it Newton’s constant. If this is found to be consistent with the macroscopic
gravity determination of GN this is clear evidence for the realisation of supergravity in
nature.

While speculations into stopping detectors and hole boring may seem a little far
fetched, if the gravitino is dark matter and the scale of supersymmetry is anywhere near
electroweak energies, such a monumental discovery does lie in our future, if not at the
LHC, then at a future International Linear Collider.
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Appendix A

Notation

Let me begin with some general notes on the notation used. We consistently work in
natural units, setting ~ = c = 1. The index notation uses small Greek letters for Lorentz
indices and capital Latin letters, dotted and un-dotted according to representation, for
two-component spinor indices. Four-component Dirac spinors are indexed by small Latin
letters. Unless otherwise stated we imply a sum over repeated indices. For Lorentz
vectors the usual sign-rules for contractions with upper and lower indices apply, using the
Minkowski space-time metric tensor gµν given by

gµν = gµν = diag(1,−1,−1,−1), (A.1)

to raise or lower indices. For two-component Weyl spinors the indices are handled by the
anti-symmetric tensor εAB, where

εAB = −εAB =

[

0 −1
1 0

]

. (A.2)

Gamma matrices

The γ-matrices are matrices that satisfy the Clifford algebra

{γµ, γν} = 2gµν. (A.3)

The γ-matrices have several representations convenient for different purposes. Here we
will use the Dirac representation where

γ0
D ≡

[

σ0 0
0 σ̄0

]

, γi
D ≡

[

0 σi

σ̄i 0

]

, (A.4)

and where the σµ-matrices are the Pauli matrices defined by

σ0 =

[

1 0
0 1

]

, σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

, (A.5)

and where

σ̄µ = −σµ. (A.6)

57



58 APPENDIX A. NOTATION

The σ-matrices constitute a basis for the vector space of 2×2-matrices. The subscript on
the γ-matrices will be dropped when no confusion is likely to occur. To simplify notation
we will also use Feynman’s notation for contractions with γ-matrices,

6p ≡ pµγ
µ. (A.7)

A fifth γ-matrix can be defined as the product

γ5 = iγ0γ1γ2γ3, (A.8)

and can be shown to have the property

(γ5)† = γ5. (A.9)

We also define a commutator between two γ-matrices,

σµν =
i

4
[γµ, γν]. (A.10)

Chirality operators

We define the chirality operators PL and PR as

PL =
1

2
(1− γ5) (A.11)

PR =
1

2
(1 + γ5). (A.12)

One can easily show that these are projection operators, satisfying the projection relations

P 2
L = PL (A.13)

P 2
R = PR (A.14)

PL + PR = 1, (A.15)

which in turn lead to the orthogonality relation

PLPR = 0, (A.16)

and from Eq. (A.9) we have that

P †
L = PL (A.17)

P †
R = PR. (A.18)

SU(2)

The generators Ji of the SU(2) group must satisfy the Lie algebra

[Ji, Jj] = iεijkJk, (A.19)

where εijk is a totally anti-symmetric tensor. For a two-dimensional representation this
algebra is satisfied by the Pauli matrices σi of Eq. (A.5).
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SU(3)

The generators λi of SU(3) transformations must satisfy the Lie algebra

[λa, λb] = 2ifabcλc, (A.20)

where fabc are the anti-symmetric structure constants for the algebra. For a detailed
listing of the fabc, see e.g. Section 36 of [26]. The three-dimensional representations
commonly used are the eight Gell-Mann matrices λ1–λ8, given by

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 , (A.21)

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 = 1√
3





1 0 0
0 1 0
0 0 −2



 .

Spinors

In the four-dimensional representation used here a Dirac spinor ΨD is a four component
spinor with complex entries1, that can be decomposed into two so-called left-handed and
right-handed Weyl spinors, ψA and χ̄Ȧ, as

ΨD =

(

ψA

χ̄Ȧ

)

. (A.22)

A Majorana spinor ΨM is a four-component spinor that is its own charge conjugate, i.e.
Ψc

M = ΨM , implying that

ΨM =

(

ψA

ψ̄Ȧ

)

. (A.23)

We define the adjoint of a spinor as

Ψ̄ = Ψ†γ0. (A.24)

1Formally a Dirac spinor is an element of the fundamental representation of the complex Clifford
algebra, see Eq. (A.3).
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Appendix B

Algebra

In the following we give some details on definitions and basic properties of some of the
algebraic terms used in the main text. We assume that the reader is familiar with vector
spaces and groups.

B.1 Lie Algebras

Lie algebras are defined as a vector spaces L over some field1 with an added composition
rule ◦, often called product, defined by the binary operation

◦ : L× L→ L. (B.1)

This mapping is required to have the properties that if uj, uk, ul ∈ L, then

1. uj ◦ uk ∈ L (closure of algebra),

2. uj ◦ (uk + ul) = uj ◦ uk + uj ◦ ul and
(uk + ul) ◦ uj = uk ◦ uj + ul ◦ uj (bilinearity),

3. uj ◦ uk = −uk ◦ uj (antisymmetry),

4. uj ◦ (uk ◦ ul) + uk ◦ (ul ◦ uj) + um ◦ (uj ◦ uk) = 0 (Jacobi relation).

Vector spaces with only the first two properties are called algebras.

B.2 Superalgebras

The general definition of a graded algebra, called a ZN graded algebra, is a vector space
L that is the direct sum of N vector spaces Lk:

L =
N−1
⊕

k=0

Lk, (B.2)

1Usually taken to be R. If the field is C we have a complex Lie algebra.
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on which a composition rule ◦ is defined so that for ui ∈ Li we have

uj ◦ uk ∈ Lj+k mod N , (B.3)

and where ◦ is a bilinear operation.
In supersymmetry we focus on Z2 graded algebras, so-called superalgebras, where

L = L0 ⊕ L1. (B.4)

If we additionally demand that the composition rule ◦ has similar properties to that in a
Lie algebra, i.e. that for ui, vi, wi ∈ Li,

1. uj ◦ vk = −(−1)jkvk ◦ uj (supersymmetrization),

2. uj ◦ (vk ◦ wl)(−1)jl + vk ◦ (wl ◦ uj)(−1)kj + wl ◦ (uj ◦ vk)(−1)lk = 0
(generalised Jacobi relation),

then this algebra is a generalisation of a Lie algebra, called a Lie superalgebra. Notice
that with the above properties the subspace L0 spans an ordinary Lie algebra, while the
vector space L1 does not, since the properties 1. and 2. in this section are equivalent to
3. and 4. in Section B.1 for elements in L0.

B.3 The Poincaré Group

Formally the Poincaré group is the group of all isometries of the Minkowski space-time.
This means that it governs all transformations of external coordinates that preserve dis-
tance. The most general transformation that leaves (xµ − yµ)2 invariant, where xµ and
yµ are two points in Minkowski space, is

xµ → x′µ = Λµ
νx

ν + aµ, (B.5)

where det Λµ
ν = 1 for transformations that do not contain discrete space or time reflec-

tions. The generators of this group are Pµ and Mµν , where the Pµ are the generators
of translations, and Mµν are the anti-symmetric generators of rotations and relativistic
“boosts” (change in velocity). These form the Poincaré algebra where the composition
rule is given by the commutators

[Pµ, Pν] = 0, (B.6)

[Mµν , Pλ] = i(gνλPµ − gµλPν), (B.7)

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ). (B.8)

From this it is an easy, but somewhat menial task to show that the Poincaré algebra is
indeed a Lie algebra.

We will not go into details on the derivations of these relations from the transforma-
tion (B.5), or on the matrix representations of the generators. For the interested reader
this can for example be found in Section 1.4 of [144] or Sections 1.1 and 1.2 of [77].
However, we note that from the above the Poincaré algebra is a semi-direct sum of two
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sub-algebras: the algebra formed by the translation generators Pµ with composition rule
(B.6) and the algebra formed by the Mµν and (B.8), the Lorentz algebra.

The representations of the Poincaré algebra can be found from its Casimir operators
P 2 = PµP

µ and W 2 = WµW
µ, where the Pauli-Ljubanski vector Wµ is given by

Wµ =
1

2
εµνρσM

νρP σ. (B.9)

In the rest frame of the particle this is

Wk =
1

2
εkνρσM

νρP σ =
1

2
mεkνρ0M

νρ = mSk, (B.10)

where Sk is the spin operator

Si =
1

2
εijkMjk. (B.11)

So the particle representations of the Poincaré algebra are characterised by their mass,
the eigenvalue of P 2, and their spin, the eigenvalue of S2.
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Appendix C

A (short) Superspace Calculus

Superspace is formally an 8-dimensional manifold that can be constructed as a coset space
formed from the supersymmetry group and the Lorentz group, but we will not go into
the formal details here.1 For our uses it suffices to say that the superspace coordinates
are given by an 8-vector zπ = (xµ, θA, θ̄Ȧ), where xµ are the ordinary Minkowski 4-vector

coordinates, while θA and θ̄Ȧ represent four anti-commuting Grassmann numbers, θ1, θ2,
θ̄1̇ and θ̄2̇, in terms of two Weyl spinors. Collectively we can also write these as the four
component Majorana spinor θ = (θA, θ̄

Ȧ)T .
The anti-commutation property of Grassmann numbers amongst themselves gives the

following commutation properties for the coordinates of superspace,

[xµ, xν] = 0, (C.1)

[xµ, θa] = 0, (C.2)

{θa, θb} = 0. (C.3)

From this is it easy to see that the square of any Grassmann number vanishes, (θ1)
2 =

(θ2)
2 = 0. One should also note the following contraction properties for the Weyl notation:

θθ ≡ θAθA = −θAθ
A = −2θ1θ2, (C.4)

θ̄θ̄ ≡ θ̄Ȧθ
Ȧ = −θȦθȦ = 2θ1̇θ2̇. (C.5)

where we have used Eq. (A.2) to raise and lower the indices of the Weyl spinors.

C.1 Differentiation and Integration

The operations of differentiation and integration in superspace are defined as normal on
the xµ-coordinates. On the Grassmann numbers differentiation is symbolically defined as

∂Aθ
B ≡ ∂

∂θA
θB ≡ δB

A , (C.6)

with a product rule

∂A(θB1θB2 . . . θBn) = (∂Aθ
B1)θB2 . . . θBn − θB1(∂Aθ

B2)θB3 . . . θBn

+ . . .+ (−1)n−1θB1θB2 . . . θBn−1(∂Aθ
Bn). (C.7)

1For a more comprehensive discussion of superspace and its properties, see [75].

65



66 APPENDIX C. A (SHORT) SUPERSPACE CALCULUS

Integration over the Grassmann variables is defined by
∫

dθA ≡ 0, (C.8)
∫

dθA θA ≡ 1, (C.9)
∫

dθA {af(θA) + bg(θA)} ≡ a

∫

dθA f(θA) + b

∫

dθA g(θA) (C.10)

where a and b are some complex numbers, and f and g two complex valued functions of
the Grassmann number.2 The function f of a Grassmann number θA can be written

f(θA) = a0 + a1θA, (C.11)

because higher powers of θA vanish as a result of anti-commutation. The integral of this
function is then

∫

dθ f(θA) = a1 =
∂

∂θA

f(θA), (C.12)

so the operations of integration and differentiation have in fact identical effect, and they
both have the property of projecting out the component of the highest power of the
Grassmann variable.

Integration over several Grassmann numbers follows directly from the definition given.
As with the integration over one Grassmann variable this has interesting projective prop-
erties. For superspace we define volume elements by the following relations

d4θ ≡ d2θd2θ̄, (C.13)

d2θ ≡ −1

4
dθAdθA, (C.14)

d2θ̄ ≡ −1

4
dθ̄Ȧdθ̄

Ȧ. (C.15)

As a result we have that
∫

d2θ (θθ) = 1, (C.16)
∫

d2θ̄ (θ̄θ̄) = 1, (C.17)
∫

d4θ (θθθ̄θ̄) = 1, (C.18)

so that the integral operator
∫

d4θ works to project out the highest order component of
a power series expansion in θ and θ̄. All other terms than the one containing θθθ̄θ̄ will
be zero as a consequence of (C.8). The operators

∫

d2θ and
∫

d2θ̄ have similar properties
for functions involving only θ or θ̄. The projection operators are useful for constructing
supersymmetric Lagrangian densities in superspace.

2While the definitions for differentiation and integration have been written down for the left-handed
Weyl spinor components here, the corresponding definitions for the right-handed spinor is a trivial change
of indices, using Eq. (A.2) to raise or lower indices.
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C.2 Covariant Derivatives

In the construction of a supersymmetric Lagrangian it is useful to have a derivative that
is invariant under supersymmetry transformations. The ordinary momentum operator
Pµ = i∂µ is invariant, which is easily seen from (3.2). However, we can make a more
general covariant derivative. We define, in Weyl spinor notation,

DA ≡ ∂A + i(σµθ̄)A∂µ, (C.19)

D̄Ȧ ≡ −∂̄Ȧ − i(θσµ)Ȧ∂µ. (C.20)

These covariant derivatives are invariant under supersymmetry transformations and sat-
isfy the following relations

{DA, DB} = {D̄Ȧ, D̄Ḃ} = 0, (C.21)

{DA, D̄Ḃ} = −2σµ

AḂ
Pµ, (C.22)

D3 = D̄3 = 0, (C.23)

DA(D̄D̄)DA = D̄Ȧ(DD)D̄Ȧ. (C.24)

For detailed proofs see [77].
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