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Abstract

The future upgrade of the Large Hadron Collider accelerator, the High-Luminosity
LHC, has its goal of increasing the beam luminosity by ten times. This will lead
to a corresponding growth of the amount of data to be treated by the data ac-
quisition systems, and an increase in radiation. The GigaBit Transceiver ASICs
and transmission protocol was developed to provide a high radiation tolerant, high
speed, optical transmission line capable of simultaneous transfer of readout data,
timing and trigger signals in addition to slow control and monitoring data. The
GBT system can be separated into two parts: the on-detector part (GBT custom
made ASICs) and the off-detector part (Common Readout Unit).

The primary objective of this thesis has been to design a control interface software
for the CRU, along with the design of a PCB that provides physical connection
between the CRU and the GBT ASICs. A hardware module was written for the
control interface to allow for communication between the software and the CRU.
The communication involves a UART and the RS-232 protocol, and the CRU is
connected to the PC using an RS232 adapter cable with voltage conversion. The
control interface was written in the C-language and is cross-platform compatible.
The PCB connects to the CRU using a HSMC contact, and has 10 HDMIs and a
SFP-module which allows for connection with the on-detector GBTx ASIC using
e-link or fiber-optical connection. The software is not completed, but is well on
its way to become usable. The PCB is completed, but some testing remains. In
addition, a full system test remains involving the software and PCB together with
the GBT ASICs.
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Chapter 1

Introduction

1.1 Large Hadron Collider

The Large Hadron Collider (LHC) is the largest and most powerful particle collider in
the world. It was built by the European Organization for Nuclear Research (CERN)
[1] between 1998 and 2008, and had its first start-up on 10 September 2008. This
massive machine lies 175 metres under ground, beneath the France-Switzerland
border near Geneva, Switzerland; and consists of a 27 km long circular tunnel of
superconductor magnets with additional accelerating structures. Its basic operation
is to accelerate particles (protons and heavy ions, e.g. Pb) in bunches! to near
the speed of light in opposite directions and collide them. The particle bunches
are accelerated along two parallel beam lines running through the superconductor
magnets, and collided at four locations were experiments like; ATLAS[2], ALICE[3],
CMS[4] and LHCD[5] take place. As of 20 May 2015, the LHC can achieve beam
energies up to 13 TeV, or 6.5 TeV per beam. Figure 1.1 shows an overall view of
the LHC experiments.

1.2 High-Luminosity LHC

The future upgrade of the LHC accelerator, the High-Luminosity LHC (HL-LHC),
has its goal of increasing the beam luminosity by ten times. This will lead to a
corresponding growth of the amount of data to be treated by the data acquisition
systems, and an increase in radiation. This will thus require high rate data links and
Application Specific Integrated Circuits (ASICs) capable of tolerating high doses of
radiation.

To address these needs, the GigaBit Transceiver (GBT) ASICs and transmission
protocol was developed to provide a high radiation tolerant, high speed, optical
transmission line capable of simultaneous transfer of readout data, timing and trigger
signals in addition to slow control and monitoring data.

IThe particles are accelerated in bunches to increase the probability that a collision will occur.
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2 Chapter 1. Introduction

Overall view of the LHC exeriments.

\c‘\n

Figure 1.1: LHC overview [6].
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1.3 The Gigabit Transceiver system

As illustrated in figure 1.2, the GBT system can be separated into two parts: The
on-detector part, and the off-detector part of the system. The below sections gives
a brief description of these:

1.3.1 On-detector

The on-detector part consists of radiation hard GBT ASICs that will provide inter-
face and data transmission to the detectors and will thus be located in the radiation
zone. These ASICs are used to implement bi-directional multipurpose 4.8 Gbit/s
optical links for the high-energy physics experiments.

GBTx

The GBTx ASIC is a serializer-de-serializer chip responsible for the high speed bi-
directional optical link. It has a bandwidth of 3.2 — 4.8 Gbit/s, and combines three
data paths for Trigger and Timing Control (TTC), Data Acquisition (DAQ) and
Slow Control (SC) information in one physical link; using two optical fibers. The
GBTx encodes and decodes this information into what is known as the GBT-Frame,
and provides interface to the front end electronics embedded in the detectors. [8]

GBT frame formats

The GBTx transmits a 120-bit frame every 25 ns (40 MHz), which is triggered by
LHC particle bunch crossings. The GBTx supports three different encoding modes:
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"GBT-Frame”, "8B/10B” and ”Wide-Bus” mode. Figure 1.3 illustrates the "GBT-
Frame” mode. The frame is divided into four parts: Header (H), Slow Control (SC),
User Data (D) and Forward Error Correction (FEC). The Header field is a 4-bit field
transmitted at the beginning of each frame, used to synchronize the data stream
at the frame level. The header field can be set to ”idle” (0110) or "data” (0101).
The Slow Control field is a 4-bit field dedicated for routine and control operations
that do not require precise timing. The User Data field is a 80-bit field reserved for
generic transmission of data with a corresponding bandwidth of 3.2 Gbit/s. The
remaining field reserves 32 bits for Forward Error Correction. This involves using
Reed-Solomon encoding capable of correcting up to 16 concecutive corrupted bits.
To achieve DC-balancing, a self-synchronizing scrambler distributes the 0’s and 1’s
in the data stream.

The ”8B/10B” and ”"Wide-Bus” mode share simularities with the ” GBT-Frame”
mode, but favors data width over reduced error correction (the ”Wide-Bus” has
none). Both modes are only available in the transmitter part of the GBTx, but re-
quires less resources from the FPGA (1.3.2) than the ”GBT-Frame”. The ”"8B/10B”
does not require scrambling because it is in itself DC-balanced [8]. These two modes
are not yet available in the GBT FPGA example design. Both GBTx encoding and
decoding operations can be done within a single clock cycle at 40 MHz.
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and monitoring
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|
|
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) |: |
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Figure 1.2: The GBT-link in its entirety. The on-detector (Embedded electronics)
consists of custom made ASICs with an optical link connecting the
off-detector (control room) Field-Programmable Gate Array (FPGA)
with the GBT-FPGA implemented. [7, Figure 1].
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120bit@40MHz (4.8Gbps)
<« >
Header
Bl o e T
< >« >« >« >
4bit 4bit 80bit@40MHz (3.2Gbps) 32bit

Figure 1.3: The GBT-Frame format. [9, Figure 4].

GBT-SCA

The GBT - Slow Control Adapter (GBT-SCA) ASIC is the part of the GBT chipset
which distributes control and monitoring signals to the front-end electronics embed-
ded in the detectors. It connects to the GBTx through a dedicated 80 Mbit/s e-link

(1.5) and provides a number of user interface options for the front-end detectors,
which includes: SPI, 12C, JTAG and a number of GPIOs [10].

All chips have been implemented using a commercial 130 nm process because of
benefits regarding inherent resistance to ionising radiation [11].

1.3.2 Off-detector

The off-detector part is located in the counting room and consists of a Common
Readout Unit (CRU), that will provide an interface between the detector ASICs and
an online computer farm, with the GBTx as the middle joint. The CRU consists of
Commercial Off-The-Shelf (COTS) components, mainly an FPGA, and will through
optical links receive the data from the radiation detector.

FPGA - Cyclone V GT

Altera’s Cyclone V GT FPGA board was chosen for use in this thesis. It was chosen
mainly because of the on-board transceivers that are capable of reaching speeds that
surpass the requirements of the GBT-FPGA Multi-Gigabit Transceiver (MGT), i.e
4.8 Gbit/s; "GT” indicates that the FPGA has transceivers that support speeds up
to 6 Gbit/s [12].

Originally, a Terasic Cyclone V SX development board was aquired for use with
this thesis. The Terasic board has advantages over the Cyclone V GT board in terms
of communication with the outside world, such as an on-board Usb-to-Uart interface
(more on this in chapter 4). However, it was discovered that the transceivers on
the Terasic board were not fast enough for the GBT MGT; maximum supported
transceiver speed is only 3.125 Gbit/s [12]. Because of this, the more powerful
Cyclone V GT FPGA development board was ordered, replacing the Terasic.
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GBT-FPGA project

The GBT-FPGA project provides a firmware library for Altera and XilinX FPGAs
for communication with the GBTx chipset. It allows for one or several GBT links
of type ”Standard” or ”Latency-Optimized” (The latter providing low, fixed and
deterministic latency). Each GBT link is composed of three components: a GBT
Rx, a GBT Tx and an MGT. The GBT Rx is responsible for receiving, decoding and
de-scrambling the data from the MGT. The GBT Tx is responsible for scrambling
and encoding data before transmitting it through the MGT. The MGT is responsible
for the actual transmitting, receiving, serialization and de-serialization of the GBT
data. It is divided into a transmitter and a receiver: The transmitter shifts in 40 bit
words from the GBT Tx, serializes the data and sends it out with the help of a
dedicated PLL that generates a serial clock of 2400MHz. The receiver de-serializes
the incoming data before shifting it to the GBT Rx. The receiver contains a Clock
& Data Recovery (CDR) block to recover the clock signal directly from the incoming
data stream 2. The MGT requires an external clock of 120 MHz [9].

The GBT link supports all three encodings described in section 1.3.1.

GBT-example design

The firmware library comes with an example design that incorporates a single GBT
link of the ”Standard” type. Included in the example is a pattern generator, con-
nected to the GBT Tx; a pattern checker, connected to the GBT Rx; and a user con-
trol interface implemented using the Quartus-bound In-System Source And Probe
Editor (ISSP). The example enables for external and internal loopback testing.

1.4 Versatile Link Demo Board

The Versatile Link Demo Board (VLDB), shown in figure 1.4, is the evaluation kit
for the radiation hard optical link. It includes the main elements of the GBT Link,
the radiation hard ASICs; GBTx, GBT-SCA and VTRx/VTTx (optical-link mod-
ules), in addition to radiation hard DC/DC converters. The VLDB has 20 e-links
reachable through HDMI-connectors that connects to the front-end electronics, and
a fiber-optical link that connects to the off-detector FPGA.

1.5 E-Links

E-links are electrical local duplex serial links suitable for transmission over PCBs
or cables, within a distance of a few meters, and can operate at any data rate up

2To be able to recover the clock using a CDR, it is important that the serial data has even
transitions of 1’s and 0’s. This is one of the reasons why scrambling the data is important.
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to 320 Mbit/s 3. It was designed with the GBTx in mind, having radiation hard
and single event upset (SEU) resistant transmitter and receiver blocks. The e-
links supports both SLVS and LVDS electrical standards [14]. Each E-link consists
of three differential signal lines: a clock line (dClk+/dClk-), a downlink output
(dOut+/dOut-) and a uplink input (dIn+/dIn-).

The GBTx arranges e-links in 5 groups, with up to 8 e-links per group corre-
sponding to 16 bits in the uplink and the downlink frames; making a total of 80
bits [8]. Each group can be programmed to data rates of 80 Mbit/s, with 8 e-links
per group; 160 Mbit/s, with 4 e-links per group; or 320 Mbit/s, with 2 e-links per
group. Faster data rates comes with the expense of less physical e-link connections
available for the front-end detectors.

1.6 Primary objective

The primary objective of this thesis has been to design a CRU control interface
software, along with the design of a Printed Circuit Board (PCB) that provides
physical connection between the CRU (FPGA) and the VLDB card. The control
interface was developed with the goal of one day replacing the Quartus-bound ISSP,
which is used today to manipulate the GBT control-signals; and instead introduce
a cross-platform, open-source solution. The software is not completed, but well on
its way to become usable. The PCB is completed, but some testing remains along
with a full system test with the GBTx involved.

3The GBTx can only handle 320/160/80 Mbit /s

Figure 1.4: Versatile Link Demo Board overview [13].
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1.7 Outline

This thesis is devided into six chapters, including this one. Chapter 2 gives a brief
description of the transceiver technologies that enables communication between the
GBTx and the CRU. Chapter 3 gives a brief overview over the process of designing
a PCB that connects the FPGA and the VLDB togheter using e-links and optical
link. Chapter 4 gives a brief overview of the development of the PC to CRU software
design, both on the software and hardware side. Chapter 5 presents the different
tests performed on the developed PCB, software and hardware. Finally, chapter 6
summarizes and concludes the thesis.
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Chapter 2

Cyclone V Transceiver Technology

For the FPGA to be able to transmit and receive serial data in the gigahertz domain,
a high-speed transceiver is required. The Cyclone V GT-series supports a number
of transceiver technologies through the High-Speed Mezzanine Card (HSMC) phys-
ical interface that can reach speeds up to 5.0 Gbit/s. This section gives a general
description of some of these protocols.

2.1 Differential Signals

Common for all protocols described here is the fact that the signals are treated differ-
entially. While a single ended signal involves one conductor between the transmitter
and receiver, with the signal swinging from a given voltage to ground; differential
signals involve a conductor pair of two signals that are identical, but with oppo-
site polarity. The pair would ideally have equal path lenghts in order to have zero
return currents, avoiding problems like Electromagnetic Interference (EMI). In ad-
dition, placing the signals as close as possible to one another will give benefits in
terms of common-mode noise rejection [15].

When implemented correctly, differential signals have advantages over single
ended signals such as effective isolation from power systems, minimized crosstalk
and noise immunity through common-mode noise rejection. It also improves S/N
ratio and effectively doubles the signal level at the output (+v — (—v) = 2v), which
makes it especially useful in low level signal applications. The disadvantage comes
in an increase in pin count and space required, since differential signals consists of
two wires instead of one [15].

2.2 Low-Voltage Differential Signaling

Low-Voltage Differential Signaling (LVDS) is said to be the most commonly used
differential interface. The interface offers a low power consumption with a voltage

9



10 Chapter 2. Cyclone V Transceiver Technology

swing of 350 mV and good noise immunity. With the right conditions, the standard
can be able to deliver data rates up to 3.125 Gbit/s [16].

The Cyclone V GT board has 17 LVDS channels available on the HSMC port A
connector. The channels have the ability to transmit and receive data at a rate up
to 840 Mbit /s, with support for serialization and de-serialization through internal
logic [12].

2.3 Current-Mode Logic

For data rates that exceeds 3.125 Gbit/s, Current-Mode Logic (CML) signaling is
preferred. This is due to the fact that certain communication standards such as PCI-
express, SATA and HDMI, shares consistency with CML in signal amplitude and
reference to Vee. CML can reach a data rate in excess of 10 Gbit/s, but has a higher
power consumption than LVDS, with a voltage swing of approximately 800 mV [16].

The Cyclone V GT board has 4 Pseudo-CML (PCML) channels available on
both port A and B HSMC connectors. The channels have the ability to transmit

and receive data at a rate up to 5.0 Gbit/s, just over the 4.8 Gbit/s range required
by the GBT MGT [17].



Chapter 3
HSMC-to-VLDB PCB Design

In order to test the GBTx chip, a PCB that acts as a connecting bridge between
the FPGA and the VLDB is needed. As mentioned in section 1.4, the VLDB has
a optical link which will provide connection to the FPGA in the counting room, in
addition to twenty e-links reachable through physical HDMI contacts, which will be
available connections to the front-end detectors.

A basic test example is to transmit test data from the FPGA to the GBTx via
e-links. The data will represent data sent from the front-end detectors. The GBTx
will then transmit the same data back to the FPGA via the fiber-optic cable, making
it possible to analyze the received data and also compare it to the transmitted data.

Because of limited available physical LVDS connections on the FPGA board,
the 320 Mbit/s data rate was chosen for the e-link connections. The required LVDS
connections would thus be 20 receiver pairs (for input and clock pairs) and 10
transmitter pairs (for output pairs). As mentioned in section 2.2, the HSMC port A
connection on the board has only 17 available LVDS channels, or 17 transmitter and
17 receiver pairs. Since the clock on each e-link will be the same during testing, the
10 clock pairs can be reduced to just one, reducing the total receiver pairs needed
on the FPGA from 20 to just 11 pairs.

The resulting PCB has 10 individual High-Definition Multimedia Interface
(HDMI) connector with each having a receiver and a transmitter pair. The J4
HDMI contact contains an additional receiver reserved for an input clock from the
VLDB. Figure 3.1 illustrates the connection between the FPGA and the VLDB
using the PCB as a connection board between the two.

This chapter explains the design process of this PCB; beginning with the dis-
cussion of different design approaches, to the theory behind designing a high speed
PCB. It then explains the final PCB design parameters and discusses the resulting
product.

11



12 Chapter 3. HSMC-to-VLDB PCB Design

HSMC<| optical (PCML) |>

GBT-FPGA to

VLD< e-links (LVDS)
|

Figure 3.1: Block diagram showing the basic connection between the FPGA and
VLDB using the HSMC-to-VLDB PCB as a connection board.

VLDB

3.1 Design Discussion

The design discussion and planning of the PCB was done together with Ph. D.
student Arild Velure.

The initial plan was to design a PCB with a male Small Form-Factor Pluggable
HSMC board (SFP)-contact in one end connected with two HDMI connectors, one
on each side of the PCB, making an adapter that can be plugged directly into the
SEFP-connectors on a SFP-board with HDMI cables connected to the VLDB. This
design was quickly scrapped as there was no loose male SF'P connectors available on
the marked, only female. The design plan was then changed to use only one PCB
board with female SFPs-connectors on one side, wired to HDMI-connectors on the
other side, acting as a middle joint between the SFP-board and the VLDB with
SFP- and HDMI-cables connecting the three boards together.

The end result was a design that could be directly mounted on the FPGA through
the HSMC connector. By copying one of the SFP-to-HSMC connections from the
original SFP-board design files (the XCVR based SFP connectors, see [18]), we
found that we could remove the SFP-board completely from the connection chain
and eliminate the resulting need for electrical SFP-cables. This would also remove
the middle joint in the chain, reducing complexity and lowering the chance of signal
reflections.

3.2 High Speed PCB Design

This section gives a brief explanation of high frequency signal behavior and the
compensation methods that was practiced during the design of the HSMC-to-VLDB
PCB.

3.2.1 Transmission Lines

When signal rise/fall times becomes comparable with the propagation delay of the
conductor, the signal can no longer be assumed to change immediately. The con-
ductor becomes what is known as a transmission line, with the signals voltage and
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‘ertical GND Plane

Samtec ASP-122952-01
Mezzanine Card Connector

Samtec ASP-122953-01
HSMC Host Board Connector

Figure 3.2: Male (ASP-122952) and female (ASP-122953) HSMC-connectors. The
male type is to be connected at the bottom of the HSMC-to-VLDB
PCB [19, Figure 2-1].

current behaving like waves propagation through the conductor. The rule of thumb
for determining if a signal is propagating along a transmission line is when the rise/-
fall time of the signal is less than 1/4 of the signal period, so that the high and low
states are recognizable [20].

The propagation velocity of a signal is given by:

c
NG

, where €, is the dielectric constant of the dielectric material, FR4, often used as

a material to separate the copper layers on the PCBs. ¢, = 4.05 @ 5 GHz [21]. A sig-

nal thus propagates through the conductor at a velocity of approximately 15 cm/ns
[20, example 13.7].

(3.1)

v =

If assuming a constant transmitting frequency of 4.8 Gbit/s (208 ps period),
the conductor becomes a transmission line if the length of the conductor stretches
longer than 3.1 cm between the transmitter and receiver. This short length is very
difficult to avoid when designing a PCB with microstrip traces running from one
connector out to eleven other connectors. The traces on the HSMC-to-VLDB PCB
are therefore considered as transmission lines.

3.2.2 Reflections and Characteristic Impedance

Since the signals no longer changes immediately, the transmitter is not directly
loaded by the receiving end at the time it sends a pulse down the conducting chan-
nel, but is instead loaded by the impedance coming from the channel itself. This
impedance is called the characteristic impedance, Zy, of the channel [20].

Since the signals no longer changes immediately, the transmitter can not see what
is connected at the receiving end at the time it sends a pulse down the conducting
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channel. All it sees is the channel impedance, called the characteristic impedance,
Zy, of the channel [20].

The type of trace that is used in the HSMC-to-VLDB PCB design is called a
microstrip, which is when the signal traces run along traces on the outer layers of
the PCB with the ground plane on the layer underneath.

A microstrip has a characteristic impedance that is given by:

60 4h
ZO = X In
v 0.475¢, + 0.67 0.67(0.8w + t)

(3.2)

, where ¢, is the dielectric constant, h is the height of the microstrip seen from
the ground plane, i.e the thickness of the FR4 layer, w is the width of the microstrip,
and t is the thickness of the copper [20].

It is important to match the impedance of the trace to that of the load impedance
at the receiving end, or vice versa. With these being different, the energy of the
signal cannot be fully absorbed at the receiving end, resulting in a partly reflection
of the signal wave back to the transmitter. The ratio of the wave reflected back is
given by:

 Zy— Z,
7L+ Z

, where 7}, is the load impedance and Zj is the characteristic impedance.

Ideally the Z;, and Z; should be equal to avoid reflections. Impedance mismatch
can cause waste of signal energy and interference with other signal pulses being
transmitted through the channel [20].

When looking at the datasheet for cables with differential signals, such as HDMI-
cables, it is often supplied a differential impedance between the cables instead of
a characteristic impedance for each cable. Knowing the characteristic impedance,
it is possible to calculate the corresponding differential impedance between two
microstrip traces (or vice versa):

Zairr =2 % Zo[1 — 0.48¢70-96%7)] (3.4)

, where Zj is the characteristic impedance of the individual microstrips (assuming
they are equal and have the same length), s is the spacing between the microstrips
and h is the same as in the equation above [22].
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1/ 1/
/ /

(a) Single-ended. (b) Differential.

Figure 3.3: Microstrip, cross-section. The microstrip is the copper trace(s) on top,
followed by a dielectric layer and a ground plane. h is the thickness of
the dielectric, t is the copper thickness, | is the microstrip length, and
w is the copper width. s is the spacing between the differential strips.

3.2.3 Routing

As mentioned in section 2.1, differential signals have noise advantages over single
ended signals. This is the case only if the pairs have equal path lengths and the
individual wires in each pair are routed as close to one another as possible. In
addition, to keep cross-talk to its minimum, individual pairs has to be routed a
distance away from other wires (In reality, this only becomes a problem when dealing
with wiring in the micro-scale domain). Twisting the individual wires in each pair
to some extent will also contribute to common-mode noise rejection [20]. This was
taken into consideration when routing the PCB.

The individual wires in each pair was kept as close as possible, with a space
constraint (See table 3.1) according to the required differential impedance Zg;¢s of
approximately 100 Q (See equation 3.6). When routing, twisting the wires (where
possible) was achieved by purposely making the wires overlap at the viases. After
routing the wires, attempts were made to separate the pairs a distance from one
another, to further reduce the cross-talk.

3.3 PCB Design Parameters

The PCB schematic was designed using Orcad Capture CIS and the layout using
Orcad PCB Editor, with design parameters meeting Elprint’s capabilities [23]. The
PCB layout was then exported into Gerber-files and imported into Macaos for fur-
ther manufacture specification and validation. The PCB was then ordered from
Elprint.

To avoid signal reflections, the PCB needed a characteristic impedance matching
that of the cables and termination, in this case a single wire impedance of 50 €2, and
a differential impedance of 100 €2. This was derived from the fact that the HDMI-
cables were specified to have a differential impedance of approximately 100 €2, and
that the individual transceiver lines from the FPGA has a characteristic impedance
of 50 €2, with a selectable termination resistance at the receiving end of 100 €2,
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connected between the lines.

The PCB was chosen to be four layers, with signals running on the top and bot-
tom copper layers, and the two middle planes for voltages and ground respectively.

For thicknesses of the different PCB copper layers and the FR4 in between,
Elprint has a set of predefined stack-ups available in Macaos. It is possible to define
custom stack-ups as well, but this will result in a more costly PCB. The 4036 pre-
defined stack-up has a copper thickness of 18 um on the two outer layers following
an FR4 thickness of 65 pm between the outer layers and the power planes, with the
power planes having a thickness of 35 um. Between the power planes is another
FRA4 layer with a thickness of 1.4mm making the total PCB thickness of a standard
1.6mm. With a mircostrip width of 100 um, the formula for characteristic impedance
yields:

00 In3.96 (3.5)
V/(0.475 x 4.05) + 0.67

Ly =

, which gives a characteristic impedance Z; of 51.3 2 @ 5 GHz. With a 300 um
spacing between the differential traces, the formula for differential impedance yields:

300

Zaigr =2 x 51.3 Q1 — 0.48¢(~09% 5] (3:6)

, which gives a differential impedance Zg;r¢ of 102 2 @ 5 GHz.

Table 3.1 shows data extracted from Orcad PCB Editor, which has a built-in
impedance calculator that yields similar results as shown above:

Layer | Type t [um] | e, w [um] | Zo[?] | Spacing [um] | Zgsr[]
1 | Surface | Air 1
2 | Top Conductor | 18 100 51.3 | 300 102
3 Dielectric | 65 4.05
4 | Voltage | Plane 35
5 Dielectric | 1400 4.05
6 | Gnd Plane 35
7 Dielectric | 65 4.05
8 | Bottom | Conductor | 18 100 51.3 | 300 102
9 | Surface | Air 1

Table 3.1: The layers of the PCB and their traits, where t is the layer thickness
and w is the width of the trace. The PCB has an overall thickness of
1.6 mm
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Figure 3.4: HDMI-to-VLDB PCB with components soldered on.

3.4 Pads and Footprints

All pads and footprints were custom made using Cadence Pad Designer, with di-
mensions collected from datasheets of the different components. The only exception
was for the HSMC footprint and pads, which were acquired from the manufacturer.
The pads were dimensioned a bit longer than the actual pins, making it easier to
make contact with the soldering iron when soldering by hand.

3.5 Soldering Process

All the components on the PCB were soldered, with the exception of the ground
pads underneath the HSMC, which had to be soldered in hot air using solder paste.
See appendix E for more details about the soldering process.

The finished PCB is shown in figure 3.4. The HSMC contact is located at the
bottom of the PCB.

3.6 PCB Faults and Compensations

During the process of hand soldering, it was discovered that the HSMC pads were
dimensioned for re-flow soldering using a solder oven. This meant that the pads were
dimensioned to match exactly that of the pins, making it very difficult to solder by
hand. With 160 individual pins to be soldered to the PCB board, this resulted in
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a time-consuming work with a lot of effort trying to keep the pins from shorting.
To ease the soldering process of the HSMC, the pads should be dimensioned a bit
longer.

After receiving the PCBs, further inspection revealed that all viases had missing
solder mask due to a design flaw. This exposes the metal of the vias to the surface
of the PCB and can possibly cause connections between the viases and the pads
and/or metallic casings when soldering. A solution to fix this in a future PCB print
would obviously be to include a solder mask in the pad file. With the current PCB
print, however, a temporary solution would be to apply thin kapton tape where most
critical.

The exposed viases later showed not to be as critical as first thought, due to the
following points:

e The viases that are exposed underneath the HDMI casings are in fact con-
nected to ground, making the possible shorts between the viases and the al-
ready ground connected casing not a critical problem.

e The exposed viases underneath the HSMC-connector could potentially con-
nect to the ground pads when applying solder paste to the pads. This was
avoided by carefully applying a thin line of solder paste in the middle of the
ground pads. This prevented the solder paste to float over to the neighboring
viases when melting it in the oven. A possible drawback to this would be bad
connection between the ground pads and the HSMC-connector, but a quick
check using a multimeter proved that the HSMC was indeed connected to all
the ground pads.

In fact, when testing the PCB, the exposure of viases on the transmitter and
receiver lines revealed to be quite useful probe points when using an oscilloscope to
measure the signal integrity. Due to the lack of extra added probe points, measuring
signals at the PCB viases became the most convenient way of directly measuring
the signals on the transmitter and receiver lines during signal measurement. A les-
son learned is to include easily accessible probe points on lines that are relevant for
oscilloscope measurement.



Chapter 4

PC to CRU control interface

In order to connect and control the CRU from a user PC, some sort of serial com-
munication between the user PC and the FPGA is needed. The purpose of the serial
link in this thesis is mainly to monitor and manipulate the GBT control signals (see
appendix C for an overview). Because of this, the speed requirements of the link is
not crucial.

Figure 4.1 illustrates the different blocks that make up the serial interface: The
interface on the PC side consists of a terminal-like interface that lets the user type
in "requests” that enables the user to read and/or write to the GBT control signals
via the link. These requests are essentially reserved byte-codes that are sent out
via the transmitter of the PC COM port to the Universal Asynchronous Receiver/-
Transmitter (UART) receiver on the FPGA side. Here, the requests are stored in
a FIFO-buffer before they get interpreted by a decoder. The decoder can change a
value in the GBT control register (write operation), or send out a byte-code contain-
ing data (Most Significant Bit (MSB)) and the address of the data-value (remaining
7 bits) to the UART transmitter for further transmission to the PC COM port. The
PC interface stores the data-values in arrays that imitate the GBT control registers.

i Interface | i UL UART top |
i } '| decoder ;
3 3 tr i 3
‘| COM port [ 7 | UART s
| ; ‘ example |
. PC | 3 FPGA j

Figure 4.1: Simplified diagram over the PC to CRU serial interface. The VLDB
and PCB bridge is not included (see figure 3.1).
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4.1 Readily Available Standards

The FPGA board used in this thesis (section 1.3.2) has various forms of communica-
tion standards readily available. The following sections starts off with an evaluation
of the different communication standards available on the FPGA, and continues
with a description of the final implementation of the serial communication software
and hardware.

When choosing the serial communication between the FPGA and the PC, factors
like physical compatibility, implementation, availability and complexity were taken
into consideration. The FPGA board has the following communication capabili-
ties readily available: Peripheral Component Interconnect (PCI)-express, Ethernet,
JTAG UART (through the USB Blaster II), and an SDI-transceiver. The following
short sections describe advantages and disadvantages of using one of the standards
mentioned above in context with the thesis.

PCI-Express

The PCl-express connection requires the FPGA to be directly mounted on the moth-
erboard of the PC, which is in this situation impractical and not necessary for a sim-
ple communication link. This option also limits the compatibility with some FPGA
boards and PCs that do not have a PCl-express connection available. It does, how-
ever, enable very fast data transmission and removes potential noise generated by
using external cabling.

Ethernet

The ethernet connection is integrated in most FPGA boards, but requires layers
of protocols in order to communicate (no direct serial communication). While it
is possible to send serial data over ethernet, it would require a serial-to-ethernet
adapter [24]; It would just be easier to send serial data directly from the FPGA-
pins using an USB-to-RS232 adapter! (see section 4.2). The upside is that an
ethernet connection offers long distances between the PC and FPGA, either through
networking or long cabling. Using ethernet for communication only requires a known
[P-address between the devices for connection and transmission.

SDI-Transceiver

The SDI-transceiver is meant for audio/video transmission and uses BNC-connectors
for this task. It therefore requires special audio/video equipment on the PC side
for connection and transmission, which is not necessary for a simple communication

link.

! Adapter to convert between USB and Rs-232 signaling and voltages.
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Altera JTAG

Serial communication through the Altera JTAG UART IP is possible through the
only USB-connection on the board; the USB Blaster II, which is primary used
for programming the FPGA. This requires the implementation of the Nios II soft
processor. A soft processor is a microprocessor implemented into the FPGA with the
help of logic synthesis only. While it is also possible to use a Hard Processor System
(HPS), only a few FPGA-boards (SoC-boards) comes with one implemented. There
is no support for HPS on the FPGA board used in this thesis. A Nios II-extension
for the Eclipse IDE in combination with the C programming language is commonly
used to program the soft processor. Using this approach not only limits the user to
send and receive data through a dedicated Altera System Console [25]: the Nios II
also occupies a large portion of the FPGA.

Host PC FPGA Board
Terminal Program Nios II/ARM Processor
| I
JTAG Server { UsB Biaster 111 Cabie | JTAG UART IP Core

Figure 4.2: JTAG UART communication link between the host PC and the FPGA
board [25, Figure 1].

Attempts were made to implement the Nios II and write a simple send- and
receive routine in C through the Altera JTAG, but was quickly abandoned due to
issues with debugging using the Eclipse Nios IT IDE. The most serious debugging
issue was the fact that the compiler continued displaying errors after the errors
were corrected. Even after the actual bugged function or line of code were deleted
completely, the compiler would still complain on the same errors as before it was
deleted. This made the dedicated Nios II compiler unreliable, and the code impos-
sible to debug. Not only did this approach make it a whole lot more complicated,
but it was also more error prone and permitted the use of user defined software for
communication with the FPGA.

4.2 User Defined Communication

In addition to the communication standards described above, which in turn requires
specific cable- and socket types for connection, it is possible to connect the transmit
and receive signals directly to the FPGA pinout. The only requirement is that the
given FPGA has unoccupied transmitter and receiver signal pins available for the
user; either through a HSMC-port (with the help of an additional GPIO-extension
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Figure 4.3: J10 header from the Cyclone V GT board schematic. The SCL and
SDA signals can be used as single-ended transmitter and receiver sig-
nals.

board), or through a prototype area or header.?

The FPGA board used in this thesis has no dedicated prototyping area for exter-
nal signal connection. It instead comes with an GPIO-extension board that connects
to one of the two on-board HSMC-ports.> However, if removing the on-mounted
LCD-display, it is possible to use the exposed header for signaling. The header (J10
in the board schematic, as shown in figure 4.3) is connected to a transmitter- and
receiver pair (both running on a voltage of 5 V), several 5 V output pins and a
ground pin. By using the transmitter- and receiver pair from the available header
on the FPGA, it is possible to implement a type of asynchronous serial protocol.
Most FPGA developement boards, including the Terasic Cyclone SX board (see
section 1.3.2), comes with a built-in UART-to-USB interface. This allows you to
connect the board directly to the USB-port of the PC as a serial connection. The
FPGA board used in this thesis has no integrated UART interface, so this has to
be implemented manually.

4.3 Duplex Systems

Common to all communication systems considered is that they are all duplex sys-
tems, which simply means two connected devices that can both transmit and receive
signals. While full-duplez enables both devices to transmit and receive simultane-
ously (like a telephone), half-duplex only enables one device to transmit at a time
(like a walkie-talkie). Common to both the duplex systems is that they have two
communication channels.

2The user has to assign the available pins to the associated transmitter and receive signals in
the Pin Planner program, as part of the Quartus II suite.

3By using both the HSMC-ports on the FPGA, the GPIO-PCB could not fit properly side-by-
side with the HSMC-to-VLDB PCB (see chapter 3) because the latter PCB is a bit to wide.
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4.4 Choosing Communication Protocol

Perhaps the most well-known and supported serial communications protocol out
there is the RS-232 standard. It supports both synchronous and asynchronous
transmission, and only requires a single transmit- and receiver pair (if excluding
the data control signals, which are not crucial). It is compatible over a wide range
of voltage levels, and can be connected directly to the serial port of a PC (if one
is available) or through a USB-to-RS232 adapter. The RS-232-standard was chosen
mainly because it only requires two wires (one for transmitting and the other for
receiving), and can be easily implemented using available C-libraries. See appendix
A.2 for more information about the RS-232 standard.

The standard will be used for asynchronous transmission of data between the PC
and FPGA. A simple UART with a byte-decoder will be implemented on the FPGA-
side, while a dedicated C-program with access to the COM port will be implemented
on the PC-side. A USB-to-RS232 adapter with a voltage converter will be used as
the connection between the FPGA and the PC. The following chapters describe the
implementation of the serial interface, first on the FPGA side (section 4.5) and then
on the PC side (section 4.6).

4.5 Hardware Design on the FPGA Side

The FPGA hardware design is responsible for treating incoming requests made by
the user PC. It will essentially become a module to connect with the GBT example
design, were it replaces the ISSP-module that is used today. The module must have
access to the GBT control signal register, and this is done by re-connecting the
already defined probe and source signals, which is connected to the ISSP, to this
module. The module is mostly completed; what remains is to implement it in the
GBT example design and connect the probe and source registers to the module,
effectively replacing the ISSP module. For now, the module uses dummy registers
instead of the real probe and source registers.

4.5.1 Specification

When finished, the implemented hardware logic is to contain the following specifi-
cations:

e Communication with the user PC using UART and RS-232.

— Receive requests sent from the user PC. The requests are reserved byte-
codes in which the decoder translates to read or write commands to use
on the GBT control registers.

— Send out data from the GBT control-register to the user PC when told.
The address of the data must be specified and sent from the user PC.
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— Manage to send and receive data at a reasonable speed, so that the control
register information is updated at a practical rate on the user PC.

4.5.2 Hardware Components

The below sections gives a brief description of each part of the module design.

The UART itself was based on the UART-design by Pong P. Chu, found in chapter
7 from his book FPGA Prototyping By VHDL Ezamples [26]. The Baud Rate Gen-
erator was borrowed from the Uart2Bus VHDL-design by Arild Velure [27]. The
UART-decoder was written in conjunction with the C-program on the PC side, and
is the one component that ties the communication together.

The end result forms a design that uses a UART to receive and transmit 19200 —
8 — N —1 RS-232 data-bytes. The received bytes are stored in a FIFO until treated
by the UART-decoder. The ”decoder” translates the received bytes into requests,
i.e a read-request if 0xDD or a write-request if OxXEE (write value 0) or OxFF (write
value 1), and manipulates or sends out data-bits from the GBT-register according
to the received requests. The UART itself is optimized for 19200 bit/s, but has been
tested to work at speeds up to 57600 bit/s.

UART

Simply put, a UART is a circuit that transmits and receives parallel data through
a serial line [26]. Since it has no dedicated clock line, it uses the concept of over-
sampling to synchronize with the incoming data. This involves using a sample-clock
which is 16 times faster than the transmitted/received data; the transmitting and
receiving end must thus have matched data rates.

The UART-design is divided into five parts:
e A Receiver that receives the serial data and reassembles it into parallel data.
e A Transmitter that sends parallel data bit by bit out the serial line.
e A Baud Rate Generator that generates the right amount of ticks relative to
the baud rate and global clock.
e Two FIFO-buffers connected to the transmitter and receiver to temporary
store the bytes in the order of arrival.

Oversampling and the Baud Rate Generator

To obtain an accurate sampling of the received signal, an asynchronous system
like the UART uses what is referred to as oversampling. Figure 4.4 illustrates the
oversampling technique. With a typical rate of 16 times the baud rate, the receiver
listens for the line to go from idle to the first start bit. When pulled low or high
(depending on the system), a counter starts counting from 0 to 7. When the counter
reaches 7, the received signal is roughly in the middle of the start bit. By sampling
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the bit in the middle of its time frame, the receiver avoids the noise and ringing
that are generated whenever a serial bit changes [28]. When in the middle of the
start bit, the counter needs to tick 16 times before it reaches the middle of the first
data bit, the Least Significant Bit (LSB). The LSB can now be sampled, and the
procedure is repeated N — 1 times until reaching the last data bit, the MSB. If there
is a parity bit, the same procedure is repeated one more time to retrieve it. After
retrieving all the data bits, the same procedure is used one last time to sample the
M stop bits at the end of the signal. After this, the line is held high until a new
start bit arrives.

Middle Sample LSB Sample d1 Sample d2
! v v v
| = ¢ bit ’ ! ’
Data 1 ar§ I l( do X dl X dz
Sample ticks
8 cycles 16 cycles 16 cycles 16 cycles

Figure 4.4: UART receive synchronisation and data sampling points with 16 times
the sampling rate.

To achieve a sampling rate of 16 times the baud rate, a Baud Rate Generator
module is implemented into the design. The module generates a one-clock-cycle
tick once every mxd"d“ clock cycles. This is achieved by counting in certain

baud rate
steps given by the formula below:

16 x baud rate
GCD(clock, 16 x baud rate)

, where baud frequency is the count steps, and GCD is the greatest common
divisor between the global clock and the baud rate times 16 [27].
For a baud rate of 19200 bit/s and a clock of 50 MHz, the counter must count to 96
per clock cycle.

Once the counter reaches a given baud limit, the counter resets and the tick-
signal is pulled high. After one clock cycle, the tick-signal is pulled low and the
counter starts to count upwards again. The baud limit is given by:

Baud frequency = (4.1)

clock
Baud limit = — baud 4.2
aud GCD(clock, 16 x baud rate) aud frequency (42)

, where clock is the global clock of the system and GCD is the greatest common
divisor between the global clock and the baud rate times 16 [27].
For a baud rate of 19200 bit/s and a clock of 50 MHz, the counter must count in
steps of 96 up to the baud limit of 15565, before pulling the tick-signal high and
start over again.
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Figure 4.5: UART receiver state machine.

Receiver

The receiver is essentially a finite state machine, divided into four states: the idle-,
start-, data- and stop state. It uses the Start and Stop bits to reset the state machine
in an attempt to synchronize the clock phase to the incoming signal. For this, the
receiver contains three registers: the s- and n registers for counting, and a b register
for data storing. The s-register keeps track of the sample ticks and n-register the
number of data bits sampled. There are two constants defined for the receiver: the
C_DBIT constant, which indicates the number of data bits; and the C_SB_TICK
constant, which indicates how many ticks that is required for the stop bit(s) (see
uart_gbt_pkg.vhdl).

Transmitter

The UART transmitter has a similar design to that of the receiver; it uses the same
state machine structure, but for the purpose of shifting out data. In addition to
the s-, n-, and b-registers used for counting, the transmitter contains a din-register
for parallel input data and a 1 bit tx-register for shifting out the data. To prevent
multiple clocks, the baud rate generator is also used to clock the transmitter. For
the transmitter to be properly synchronized with the receiver, it instead uses the
counter registers to slow down the operation 16 times. This is because there is no
oversampling involved in transmitting a signal.

FIFO Buffers

Both the UART transmitter and receiver has FIFO-buffers that stores the incoming
data sequentially in a ”First In, First Out” manner. On the receiver side, the
incoming data is stored until it gets the read-out signal (rd_uart goes high). It then
places the first stored byte on the (r_data)-line for one clock cycle. As long as the
read-out signal remains high and there is bytes stored, the FIFO will spew out data
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Figure 4.6: UART transmitter state machine, similar to that of the receiver.

on the (r_data)-line with the rising edge of the clock. The rz_empty signal indicates
whether there is one or more bytes stored in the FIFO. On the transmitter side, when
data from the FPGA is written into the FIFO, it sends a signal to the transmitter
to start shifting out the data stored in the buffer, oldest byte first. Having FIFOs
to store data between the UART and the rest of the FPGA logic is necessary to
prevent data loss, as the FPGA logic operates at a much higher clock speeds than
the UART can transmit and receive data. If a FIFO gets filled up, no new data will
be written to it until data is read out of it, freeing one slot.

Decoder

The UART decoder is a state machine connected to the other end of the UART
receiver- and transmitter FIFOs. It reads out the stored received bytes and does
tasks according to the order and value of the bytes. Starting at the idle state, the
decoder waits for a request byte from the FIFO followed by an address byte. Legal
request bytes are 0xDD, for read; OxEE, for write value '1’; and 0xFF, for write
value 0’. The request-bytes must then be followed by a byte containing an legal
address between 0x00 - 0x40. If all requirements are met, the state machine will
perform the requested action on the probe and source registers of the GBT example
design. A read of a given address will result in the decoder instructing the UART
to transmit a byte containing the data value (stored in the MSB of the byte) and
the register address of the data value (stored in the last seven bits of the byte). A
write of a given address will result in the decoder changing the value of the given
address in the source register of the GBT example design. The address must thus
be smaller than 0x24. See appendix C for more information about the GBT source
and probe registers.
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Figure 4.7: UART decoder state machine.

4.5.3 Conclusion

The goal of this hardware design was to develop a module that would eventually be
integrated into the GBT example design, and together with a custom made software,
manipulate the GBT control signals, effectively replacing the already existing ISSP
module. The custom made module communicates well with the software; receiving
requests and sends out information accordingly. During testing, it was discovered
that the UART would hang after a random period of time. This was fixed by having
a reset timer that would reset the UART if it did not respond for a given time period
(see section 5.3.2).

4.6 Software on the PC Side

The program was written with the goal of one day replacing the Quartus-bound In-
System-Source-And-Probe Editor, which is used today to access the GBT control-
signals; and instead introduce a cross-platform, open-source solution. It was written
in conjuction with the custom hardware, with the intention of communicating with
the hardware to send and retrieve information from the GBT probe and source
control registers. To access the serial port on the PC, the software uses free and
cross-platform C-libraries (see appendix B). The software communicates with the
hardware using the RS-232 protocol, using 8 data bits, no parity and 1 stop bit, and
a baud rate at 19200 bit/s. The hardware module must have the same specification
in order for this to work. The C programming language was chosen for this task
mainly because of previous experience with the language.

4.6.1 Specification

The program specifications are as follows:

e The ability to send and receive bytes from the UART on the FPGA.
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e An user interface that makes it easy to control and monitor the FPGA, i.e a
command console.

e Cross-platform. This was not a critical requirement, but was added later
because of the language the program was written in and also the already
cross-platform libraries used.

4.6.2 Software Structure and Flowchart

The software is divided into two modules; one module for sending and receiving
data, to and from the FPGA; and one module that acts as the actual software in-
terface. Both these modules were intended to be merged together into one program,
both because of time constraints were left separated. The below sections describes
the inner workings of each of the two modules, and provides flowcharts to further
illustrate the behaviour.

Interface module

Figure 4.8 illustrates the behaviour of the interface module. The main loop start by
checking for any changes in screen size of the main terminal window. This allows the
user to freely change the window size, although full screen is preferred. If a resize
has occurred, the program stores the size-parameter and uses it to further resize and
properly align all the internal windows (” Command History”, ” Commandline” and
”Signals”) using wresize, and clears the content using wclear. The content will later
be redrawn with coordinates aligned according to the new size.

With ncurses, by using getch in conjunction with nodelay, one can check for
key-presses without having to pause the entire program (see section B.4). If a key
is pressed, the program analyses the input: If a character is typed, it is appended
to a command-string and displayed in the ”Commandline” window.

If it is a return-character ("\n’), the program processes the command-string and
compares it up against a table of legal commands. The legal commands has associ-
ated functions that executes if there is a match between the input and an entry in
the table. For it to be a match, the first word of the input-string must be a legal
command followed by legal arguments. To see the usage of a command, one can
just type in the command without any arguments. It is also possible to type in just
a letter or a partial word to print out possible commands that contain the letter or
partial word typed in. Legal commands include: write, which writes a bit value to
one or more of the switch-signals; read, which sends read requests for one or more
signals to the FPGA; open, which opens the COM port if it is not already open;
close, which closes the comport if it is open; status, which prints out information
about the COM port and its current status; and ezit, which closes the COM port
and exits the program.

If either return or a character has been typed in, the program checks the input



30

Chapter 4. PC to CRU control interface

Change in
screen size?

Key
pressed?

Resize all
windows and

clear content

no

Process input, Process
character print input special
to buffers to window key, if any

Redraw all
windows

l

Figure 4.8: Flowchart over the main loop of the interface module.

for a special key. Special keys include: "Page Up” and "Page Down”, that selects
which signals to display in the ”Signals” window (probes, switches or both); and
7 Arrow up” and ” Arrow down”, that browse previous typed commands and displays
them in the ”Commandline” window.

After checking for key-presses, the program redraws the windows using wrefresh
and sleeps with a small delay (to prevent screen flickering and unnecessary cpu
loads). It then returns to the top of the main loop and the process starts over again.

Send/Receive module

Figures 4.9 and 4.10 illustrates the behaviour of the main transmitter and receiver
functions of the send/receive module. The basic operation goes as follows: The pro-
gram sends a data-pattern from a 2d-array via the COM port to the GBT-registers
on the FPGA side. It then sends a read request to read all values of the GBT-
register back to confirm that the data pattern was transmittet properly. There are
five different patterns that are sent in sequence to the registers, and each time a
pattern is sent it is read back to the program on the PC side and displayed. This is
to confirm that the communication link is working properly.

There are four variables that controls the transmitter: tzStatus, txReq, txData[2]
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and trAdr. The tzStatus variable controls the behaviour of both transmitter and
receiver function. For the program to be able to send a new byte out the COM port,
the tzStatus variable must either be flagged as idle (0x00) or as repeat (0xFD). When
flagged idle, the program is not waiting for any received address-byte and is ready to
transmit a new request-byte to the COM port. When set to repeat, the program has
already sent a request, but has not received the desired data and address byte, and
must send the same read-request again. The txReq variable determines what request
is to be sent to the FPGA. When equal to a read-request (0xDD), both tzStatus and
tzData[0] is set to 0xDD. If tzReq is equal to a write-request (0xEE), however, data
from the GBT data table is copied into tzData[0] using trAdr as index. trDatafl]
is set always equal to tzAdr, which is now the desired address to the GBT-register
in which to read from or write to. Sending data to the COM port involves using
the RS232_Sendbuf-function (see section B.1). tzAdr is then incremented by one or
reset to 0 if it exceeds the width of the GBT data-register. If the latter is the case,
it means that the read/write operation is finished, and tzReq is set to the opposite
operation. If a write operation is done, the pattern index is also incremented, so that
the next write operation sends out a different pattern. The transmitter function is
always called before the receiver function, with a specified delay in between the two
function calls.
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Figure 4.9: Flowchart over the transmitter function.

For the receiver function to read out what is stored in the COM port buffer,
tzStatus must be set to read (0xDD). The process of reading out a byte from the
COM port involves using the RS232_PollComport-function (see appendix B.1). The
n variable is equal to the number of bytes read from the COM port. If no bytes are
present, this means that the previous read-request has not been received or processed
properly by the FPGA UART state machine. tzStatus is therefore set equal to repeat
(0xFD), signaling the transmitter function to send the same previous read-request
to the COM port. If n is larger than 0, the data and address values are filtered out
of the byte(s); the data bit being the MSB and the address the remaining bits.
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Figure 4.10: Flowchart over the receiver function.

4.6.3 Conclusion

The goal of the software was, together with the hardware design, to one day replace
the Quartus-bound In- System-Source-And-Probe Editor, which is used today to
access the GBT control-signals, and instead introduce a cross-platform, open-source
and thus customizable software solution.

As for now, the serial interface software consists of two modules: the sending and
receiving module, and the ncurses command interface. Both modules work more or
less as they should: The send/receive module writes a pattern to the GBT-register
in the FPGA and reads it back to the terminal, and the interface module allows
you to perform write- and read-commands and monitor the GBT control signals.
What remains is to fully integrate the send/receive module into the interface mod-
ule. They are partly integrated in terms of merging the two into one program.
What is left undone is to rewrite the main transmit and receive routines from the
send /receive module, which are not completed. In addition, some adaptations needs
to be made to the write- and read command-entries in order for them to invoke and
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direct the send /receive module. Also, a final test of the software as a whole remains.

A useful software feature to be added in future updates would be the ability to
log the GBT register information into date-sorted files. This feature was intended
to be integrated, but because of time constraints it had to be dropped. Figure 4.11
shows a snapshot of the GBT control interface.
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Figure 4.11: Snapshot of the GBT control interface in action. The colors in this

picture has been inverted for a better visual representation.
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Chapter 5

Testing and Verification

The follow sections gives a brief overview over the tests that were conducted on the
PCB, software and hardware designed during this thesis. Loopback testing with the
PCB was conducted using the GBT example design.

5.1 120 MHz Reference Clock

To be able to conduct a proper loopback test using the GBT example design, the
GBT Link MGT and Phase-Locked Loops (PLLs) must have an input clock fre-
quency of 120 MHz. There are a number of ways to achieve this on the Cyclone V
GT board:

e Using an external clock, like a square wave signal generator.

e Using one of the onboard programmable oscillators.

e Implementing a PLL into the design that multiplies the onboard 50 MHz global
clock up to the desired frequency of 120 MHz.

The original approach is to use an external signal generator with differential
output to generate the reference clock, as shown in the GBT tutorial videos [29].
However, at the time of conducting the first tests, there was no available signal gener-
ators that could generate a 120 MHz square wave clock for the experiment. Because
of this, some time was spent to investigate how to use the internal programmable
oscillator as a reference clock.

The approach of implementing an extra PLL into the GBT-example design was
also investigated, but attempts of doing so resulted in conflicts between the already
implemented transceiver PLLs in the design.

The below sections gives the following descriptions:

e How to configure the onboard oscillator on the Cyclone V GT board for use
as reference clock.

37
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e How to configure the Si5338 external oscillator for use as reference clock.

5.1.1 Configuring the onboard Oscillator on the Cyclone V
Board

To achieve a reference clock of 120 MHz without an external clock, the FPGA has
an onboard programmable oscillator; the Si570 from Silabs. It uses Inter-Integrated
Circuit (I2C) for serial communication and can be programmed to output frequen-
cies up to 810 MHz +50ppm. To program the oscillator, Altera provides a dedicated
software called ”Clock Control”. The Clock Control software is part of the Java
based ”Board Test System” software, included in the Cyclone V kit which can be
found at Altera’s websites [17]. The Cyclone V kit is board specific, so it is therefore
important to use the right kit with the right board.

To make use of the Clock Control software has proven to be difficult, mainly
because of the software being outdated in relevance to the current version of Quartus
(at the time of writing, Quartus 15.0 is the newest edition). The solution was to
install an older Quartus (version 13.1) and specify the right paths for the related
environment variables. See appendix D for a description on how to setup the clock
control software using Windows.

5.1.2 Configuring the Si5338 External Oscillator

For an external clock, the Si5338 evaluation board was used (see figure 5.1). It has
an onboard 25 MHz crystal oscillator in addition to six SMA connectors reserved
for external input clocks. For simplicity, the onboard oscillator was used in the
thesis experiments. The remaining eight SMA connectors is reserved for differential
output clocks. The evaluation board communicates with 12C and connects to the
Personal Computer (PC) via Universal Serial Bus (USB) cabling. A dedicated clock
builder software [30] lets you select clock outputs and type of signaling. For the
experiments, a 2.5 V LVDS clock with 120 MHz was selected, and connected to the
Cyclone V GT board using SMA cabling. To enable the SMA connectors as input
to the reference clock on the Cyclone V GT board, CLKSEL on DIP switch SW4
must be selected ON (default is OFF).
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Figure 5.1: The Si5338 evaluation board [31].

5.2 Testing and Verification of the HDMI Daugh-
ter Card

To verify a working PCB, the HDMI daughter card underwent a series of tests, as
summarized in the following sections.

5.2.1 Connectivity Test

Since all the components on the PCB were hand soldered (with the exception of the
ground pads underneath the HSMC' contact), it was particularly important to check
for accidental shorts between pins and/or pads.

Purpose of Test
e Verify that there are no shorts between the pins and/or pads of the PCB.

e Check for current draw to confirm that there are no short on the power-lines.

Experimental Setup

The setup involves the use of a multimeter to probe all pins and check for connection
faults according to the schematic. After all shorts have been eliminated, the PCB
is to be connected to an external power supply to verify current-draw.
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Results

Using a multimeter, all connections were checked and verified that there were no
shorts (Some pins on the HSMC were indeed shorted and had to be re-soldered).
The PCB was then connected to an external power supply, with a 3.3 V output
and a current output limited to 100 mA. It was verified that the current draw,
with all HDMI-connections left open, were no more than the current drawn from
the power-LED and the 1.25 V voltage divider, i.e around 40 mA.

To confirm connectivity and that there were no further connecting shorts be-
tween the pads and/or pins, a simple test-circuit was written in Quartus. Beginning
with the transmit-signals: all the relevant LVDS transmit-signals that are physically
connected to the HSMC (port A) connector of the FPGA were connected to a given
clock signal. The PCB was then connected to the Cyclone V board, and the HDMI
connectors were probed with the help of an oscilloscope and verified that there was
an output signal on every HDMI-transmitter.

The PCB is now ready for connection with the host FPGA for further testing of
the transmitter and receiver signals.

5.2.2 External Loop-back Test for the Fiber-Optic Connec-
tor

To verify that the HDMI daughter card SFP-connector for fiber-optic communication
15 working correctly, an external loop-back test was conducted.

Purpose of Test

e Test the dedicated SFP-connector on the HDMI-daughter card for fiber-optic
communication and see that it is capable of sending and receiving information
at speeds corresponding the GBT-standard of 4.8 Gbit/s.

Experimental Setup

A fiber-optic cable connected from the transmitter to the receiver using a fiber-
module, forming an external loop through the cable, was connected to the SFP-
connector of the HDMI-daughter card PCB. Using the GBT Quartus-example to-
gether with the ISSP and SignalTap II, it was possible to perform a pattern check
test by comparing the transmitted signals with the received signals. To achieve this
test, ISSP was used to setup the pattern generator of the GBT example to count
with increments of one (PATTERN SELECT = ”1h") and the receiver to receive
signals through external cabling (LOOPBACK = ’0’). SignalTap II was used to
monitor and verify that the receiver line received the same incremented counter
that the transmitter sent out.
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Results

Running the test resulted in a continuous stream of bits sent from the transmitter
to the receiver. Using SignalTap II as a monitor limits to only observe parts of the
transmission, but it was sufficient enough to see that the received sum of bits were
indeed incrementing by one each time. The results are comparable with the same
test using internal loopback (LOOPBACK = ’1’), i.e observing that the receiving
end is counting by increments of one. This concludes that the SFP-connector on
the HDMI-daughter card works as intended at the desired speed of 4.8 Gbit/s.

5.2.3 External Loop-back Test for the HDMI Connectors
Purpose of Tests

e Measure the quality of the signal (eye-diagram) at different frequencies up to
300 MHz and see how reflections affects the signal.

e Measure crosstalk between neighboring signal paths.

e Create a test environment using Quartus II in conjunction with SignalTap II
to:
— See if it is possible to sample the received signals at different frequencies
up to 300 MHz.

— Calculate the bit-error rate at different frequencies up to 300 MHz.

Experimental Setup

Each HDMI-connector has at least one transmitter- and receiver line. To simulate
signal transmission over a distance, a HDMI cable was cut in half and the transmit-
and receive lines were soldered together, creating an external loop-back. VHDL code
was written to simulate a data-stream using a pseudo-random generator to generate
random bit-patterns. The data-stream would travel out via one of the transmitters
of the FPGA, out through the HDMI-connector, following the cable back into the
same HDMI-connector into the receiver input. This would simulate the transmission
path to the VLDB card. The transmitted and received bits would then be compared
using xor-logic. A bit-counter register would count each transmitted bit, and a bit-
error register would count each time two bits are different in comparison. The bit
error rate is thus given by mfnizei—%.

Because of the trace- and cable-lengths and the fact that a signal has a finite
propagation time, a delay is introduced between the transmitted and received bit-
signals . To cope with the delay differences, a delay chain is added in parallel with
the transceiver line: While a bit-signal is travelling through the cable, the same

! As mentioned in chapter 3, a signal propagates through the conductor at a velocity of approx-
imately 15 mm/ns.
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Figure 5.2: Transmitter and receiver delay chains.

bit-signal is delayed through a series of D Flip-Flops (DFFs). For each clock cycle,
the value at the receiver input is compared with the output of each DFF using
XOR-logic. The individual outputs of the XORs are connected to Light-Emitting
Diodes (LEDs). The LED that has the least amount of toggling is the one XOR, and
thus selected DFFs, that is most synchronized with the receiver (ideally, it should
be toggle-free), and can be used to count bit errors. A smaller delay-chain was also
added at the receiver line to synchronize the incoming bits with the clock. Figure
5.2 a and b illustrates these delay chains.

Cables with different lengths were used to see how this would affect the bit-error
rate. This would thus introduce varying delay differences between the transmitter
and receiver, and would therefore produce different results comparing the signals
in the delay chain. A series of attempts were therefore made to find the most
synchronized outputs of the delay-chains at different cable lengths.

Results

During the first samplings using SignalTap II, it was suspected that when running at
a 300 MHz clock, the received signal were being sampled when in a metastable state,
i.e in the middle of the rising edge of the bit. To compensate for this, a new delay
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Figure 5.3: Muxed delay chain on the receiver line.

clock
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Clock | sync# Signal Rising/Falling | Comments

[Mhz] path [cm| | DFF

100 1 110 Rising Some spikes occur.

200 2 110 Rising No spikes.

300 4 110 Both No spikes.

100 1 220 Rising Some spikes occur.

200 3 220 Rising Some periodical spikes.
300 5 220 Rising No spikes.

Table 5.1: SignalTap IT measurements on the J10 HDMI connector of the HDMI
daughter card. "sync#” is the most synchronized XOR~output in the
delay chain. Length is the approximate traveling path (cable and trace)
for the signal. The ”Rising/Falling DFF” tab shows which edge trig-
gered DFF that worked best as the first stage at the receiver delay
chain.

chain was designed on the receiver line (figure 5.3): two DFFs that would trigger
on different clock edges (rising and falling), were placed in parallel as the first stage
of the receiver delay chain. By using a MUX, one of the DFF outputs were selected
to go into a third DFF, and the output of this third DFF was then compared with
all outputs in the transmitter delay chain. The ”Rising/Falling DFF” tab in table
5.1 states which of the clock edges that caused less toggling on the first delay stage
on the receiver.

With the help of SignalTap II it was possible to sample the delay chain signals
and produce the results displayed in table 5.1.

5.2.4 Conclusion and Discussions

When doing the external loopback test for the HDMI connectors (section 5.2.3),
while sampling the LEDs using SignalTap II, some ”spikes” occurred at the one
LED that seemed toggle-free when observing it, and thus what seemed the most ”in
sync”. The "spikes” were narrower than the 300 MHz clock, and seemed to occur
randomly. Whether this is a interference or will affect the error-counter hasn’t been
confirmed, as the test was aborted due to an accident with the FPGA. The accident
caused two of the pins on one of the current regulators on the FPGA board to
short, resulting in a burned regulator. This rendered the FPGA useless and halted
all remaining tests. Due to time constraints, the FPGA was not repaired in time
for the delivery of the thesis.

What remains of this test is to use the most synchronized XOR-output for an
error-count measurement over a certain time interval to calculate the bit error rate.
Further investigation is also needed to see whether this way of synchronizing the
transmitter and receiver produces credible error-counts at all.
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Figure 5.4: Small clamps caused huge reflections when measuring the high-speed
signal.

(a) Using clamps. (b) Using stubs.

Figure 5.5: 100 MHz transmitter signal measured with differential probes.

When measuring a high-speed signal, the way you measure the signal can have
a major impact on the result. This was experienced when attempting to measure
the LVDS signals using the differential probes. On the first attempt, small clamps
connected to each of the differential probes (figure 5.4) were coupled to a differential
pair that were running from one end of a hdmi-cable, with a terminating resistor in
between; in to a transmitter on the HDMI-daughter card. A clock signal was sent
from the FPGA through the HDMI-daughter card to the end of the hdmi-cable.

The measurement resulted in signals that were heavily distorted by reflections. It
was first thought that these reflections might originate from the traces on the FPGA
itself, since the same results were produced when sending the clock signals through
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a different PCB (a GPIO-card) in place of the HDMI-daughter card. However, the
theory was quickly rejected when using a completely different FPGA board produced
the same reflections. The cause was in fact due to the small clamps that was used
to connect the differential probes. By replacing these with small stubs and redo the
measure, the result was quite different, as shown in figure 5.5.

By doing the same measurements again on different probe-points (viases) and
with both the GPIO-card and the HDMI-daughter card on both available FPGAs,
the reflections remained somewhat the same. It was concluded that the most notable
signal reflections is caused by the measurement setup, and will not affect the digital
data when transmitting or receiving signals. However, measuring signal integrity
and creating an eye-diagram could not be done with this measurement setup. This
lead to the loop-back test using SignalTap II in an attempt to sample the signals
(see chapter 5.3).

5.3 Testing and Verification of the Serial Interface

5.3.1 Hardware Simulation using Testbench in Modelsim

To verify that the hardware design was working properly in terms of correct signal
timing between the baudrate, UART and decoder, a testbench was developed. The
testbench was made using the Bitvis Utility Library and the design simulation was
done using Altera’s Modelsim.

Purpose of Tests

e Verify correct timing between the baudrate generator, clock and uart.
e Verify correct timing for the uart decoder.

e Verify that the design is working correctly in simulation.

Bitvis Utility Library

The Bitvis Utility Library by Bitvis is an open source VHDL testbench infrastruc-
ture library for verification of FPGAs and ASICs [32]. It was developed with the
aim of simplifying the testbench development process when testing VHDL designs.
It was chosen for this test because of the ease of use and fast implementation (see
uart_tb.vhd for testbench implementation).

Experimental Setup

The main testbench process goes as follows: Send a request byte to the rx-signal,
followed by a register-address. The request can be a read-request (0xDD) or a write-
request (OxEE for '1” and 0xFF for '0’), and the address must be between 0x00 -
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Figure 5.6: Three read operations followed by a write.

0xC1. Then, the tx-signal are sampled and compared with the requested address
byte and checked for equality. If it is not equal, the test goes to a halt with a cor-
responding fault-message. The UART_-WRITE_BYTE and UART_-READ_BYTE
testbench procedures were written with this in mind. To simulate an incoming byte
at the receiver, UART_WRITE_BYTE inputs a vector of 8 bits as the data-byte.
With the period of a transmitted bit, which is equal to 1/baudrate, it outputs first a
start bit, then the data bits and finally the stop bit. The rx-line takes the output of
UART WRITE BYTE as input. UART_READ_BYTE takes the tx-line as input,
and with the period of a transmitted bit shifts the tx-value into a data vector. Using
the Bitvis check_value-function, the data vector is then checked and compared with
the address-byte previously sent to the receiver. The UART_READ_BYTE proce-
dure must be executed after the UART_WRITE_BYTE procedure.

Other test procedures involves checking the constants found in wart_gbt_pkg.vhd
up against legal values, and also make sure that the tx- and rx-lines are in an idle
state at the start of the test, i.e a high state.

Results

Figure 5.6 shows three read operations followed by a write operation. The
tx_data_compare vector compares the address received with the address transmit-
ted to confirm that the UART decoder does what it is requested to, i.e send out
the correct addresses when receiving a read-request and write a bit-value to the
GBT register when receiving a write-operation. The data-bit (MSB of the trans-
mitted signal) is not included in the tz_data_compare comparison, nor is the write
operation.

5.3.2 Running the PC software design together with the
FPGA hardware design

Check if the FPGA design is responding correctly to the bytes sent from the C-
program on the PC side.

Purpose of Tests

e Verify that the C-program is in control of the COM port.

e Verify that there is communication between the FPGA UART and the PC
COM port.
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e Confirm that the FPGA design and C-program is working together the way
they should.

Experimental Setup

The Cyclone V Gt FPGA was programmed with the hardware design (section 4.5)
and connected to the user PC using a USB-to-RS232 cable with a 5 V voltage
converter between the FPGA and the cable. The software was granted PC admin
access so that it was allowed access to the COM port. The PC COM port itself
was configured in device manager (Windows) with a baud rate corresponding to the
baud rate set in the hardware design and software.

Results

The software on the PC side was able to communicate with the FPGA via the COM
port, and was able to read the registers as well as write to them. In some occurrences
the software did not receive all addresses it requested a read on, resulting in some
values not being read as often as others. To fix this, the repeat-functionality was
implemented into the software (see section 4.6.2), and this fixed the problem.

While testing the hardware module together with the send /receive module, when
instructing the UART to continuously send data from the GBT registers (by sending
read-requests using the software), the UART would stop responding after a random
period of time. To make it respond again, the UART had to be hard-reset. The
reason why this is happening is not known, but it might be caused by a possible
design flaw. A quick fix to this, however, was to simply implement a timer that would
reset the UART unit on the condition that no bytes arrives in a given amount of time
when it is in the idle state; this time period are larger than the time it takes for two
bytes to arrive. This is not a permanent fix, since there is a chance that the UART
might reset while a byte is under transmission. This might give an explanation as
to why the C-program in some cases did not receive all the data it requested during
transmission.

To further investigate this fault, one could use SignalTap II to probe the UART
signals and identify and correct irregular behavior in relevant signals. Due to time
constraints, the quick fix was preferred.

5.3.3 Conclusion and Discussion

By using a testbench, it was possible to verify that the hardware design behaved
correctly. The decoder performed as it should in terms of reading and writing to
the registers with correct timing. The C program (send/receive module) was able
to send and receive information from the hardware registers located in the FPGA,
confirming a working communication between the PC software and FPGA hardware.
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While doing continuous read and write operations, the UART would eventually
stop responding. This was fixed by implementing a timed reset on the UART unit.
The timed reset approach is not a permanent fix, and should be investigated further.



Chapter 6

Summary and Conclusion

The future upgrade of the Large Hadron Collider accelerator, the High-Luminosity
LHC, has its goal of increasing the beam luminosity by ten times. The GigaBit
Transceiver ASICs and transmission protocol was developed with this in mind, and
provides a high radiation tolerant, high speed, optical transmission line capable of
simultaneous transfer of readout data, timing and trigger signals in addition to slow
control and monitoring data. This thesis has had its focus on designing a control
interface for the off-detector part of the GBT, the Common Readout Unit, along
with a PCB that connects the CRU to the GBTx chip to allow for testing of the chip
detector. The PCB was developed with high-speed transmission in mind, allowing
for 4.8 Gbit/s optical transmission with minimum reflections using an SFP-contact.
In addition, it has 10 HDMI-contacts allowing for e-link interface to the GBTx with
a 320 Mbit /s transmission rate. The control interface was written in the C-language,
using freely available libraries. A library was also written for the purpose of this
thesis, with the GBT control signals in mind (Appendix B). A hardware module
was implemented in the FPGA to allow the software to read and write information
to the GBT probe and source registers. The software consists of two modules: the
sending and receiving module, and the ncurses command interface. Both modules
work more or less as they should: The send/receive module writes a pattern to the
GBT-register in the FPGA and reads it back to the terminal, and the interface
module allows you to perform write- and read-commands and monitor the GBT
control signals. What remains is to fully integrate the send/receive module into the
interface module.

When attempting to measure the signal integrity directly from the traces on the
PCB, the measurement equipment caused major reflections, making the measure-
ments unreliable. The reflections remained constant when measuring at different
probe points, but varied when changing the probe-tips for the differential probes.
External loopback tests were conducted on the HDMIs and SFP-contact using the
GBT example design. The SFP-contact had a fiber-optic cable arranged in a loop-
back manner. Using the GBT example design, a counter was transmitted and re-
ceived with the same increment at 4.8 Gbit/s, confirming a working SFP-contact.
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The HDMI connection were tested by having a HDMI cable cut in half an soldering
the transmitter and receiver pairs in a loopback manner. A pseudo-random signal
was sent through the cable and a delay chain attempted to synchronize the two
signals so that an bit errors could be counted and thus determine the bit error rate.
The delay chain was completed, but because of an accident that lead to a damaged
FPGA board, the bit error-count test was not conducted. Other remaining tests
includes measure of crosstalk between paths and determining the signal integrity
using eye-diagram.

The communication hardware on the FPGA side was tested and approved by
writing a testbench using the Bitvis Utility Library. Correct timing between the
UART and the decoder were confirmed, and the design was confirmed to be working
in simulation. The send/receive software module were tested by connecting the
COM port of the PC to the FPGA using a USB-to-RS232 cable, and by running
the custom hardware on the FPGA, the software was able to communicate with the
FPGA and was able to read the GBT probe and source registers as well as write to
them.

The hardware module is not yet implemented into the GBT example design
itself. During testing, dummy registers were therefore used instead of the actual
GBT registers. The module should be integrated by removing the ISSP module
in the GBT example design and connecting the leftover probe and source registers
signals to the hardware modules dummy register signals.



Appendix A

Basics

This chapter contains information about basic concepts and devices used in this
thesis.

A.1 Field Programmable Gate Array

A FPGA is a high density Integrated Circuit (IC) that is designed to be com-
pletely programmable by the customer after manufacturing (i.e. when the chip is
shipped and ”in the field”). The chips are shipped completely ”blank”, meaning
that there are no pre-programmed logic'. An FPGA can either be re-programmed
using SRAM technology?, or one-time programmed by burning antifuses. The latter
method makes it less prone to soft errors when exposed to radiation.

FPGASs are composed of arrays of Configurable Logic Blocks (CLBs) surrounded
by programmable routing resources and I1/O pads. A CLB consists of a LookUp
Table (LUT) together with a clock and simple write logic, and uses the address
bus of the LUT as the function input pins and the value at the selected address
as the function output. LUTs are considered fast logic, since computing a complex
function only requires a single memory lookup. The LUT can be made out of an
SRAM memory-block [20].

The FPGA (section 1.3.2) used in this thesis is a re-programmable type. It
stores the user hardware setup in an SRAM memory to configure routing and logic
functions. For a permanent program storage, the FPGA can be configures to store
the hardware setup in the on-board flash memory?, which then programs the SRAM

'With the exception of FPGA evaluation boards, which comes shipped with a pre-programmed
hardware setup for demo purposes.

2Short for Static Random Access Memory, SRAM is a type of volatile memory that uses internal
feedback to keep on its data.[20] Volatile meaning that the memory loses all the data once the power
is switched off.

3 A nonvolatile memory type known by its name because of its ability to erase memory blocks
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when powered on.

A.1.1 Hardware Description Language

The most common way to program an FPGA is by Hardware Description Language
(HDL), with the major ones being Verilog and VHDL. HDLs consist of text-based
expressions used to describe digital hardware and use this to further simulate and
synthesize the hardware described. A hardware module is simulated by applying
information at the inputs and then do a check on the corresponding outputs and
verify that they behave as intended. Synthesis of hardware means transforming the
HDL code into a netlist of logic and wire connections describing the hardware. This
can then be compiled into an FPGA which re-wires the available internal CLBs
according to the given instructions. HDLs have become more and more useful as
system complexity have increased [20]. The hardware described in this thesis is done
using VHDL, a strongly typed HDL that is known for its capability of describing
parallel processes.
Below is a small example describing the logic of a D Flip-Flop using VHDL:

—— FEzample of a D Flip—Flop triggered on the rising edge of the clock.
library IEEE;
use IEEE.std_logic_1164.all;

entity DFF_high is
port (
D : in STDILOGIC;
Q : out STDILOGIC;
Qbar : out STDLOGIC;
RESET : in STD LOGIC;
CIK : in STDLOGIC
)5
end DFF high;

architecture rtl of DFF_high is

begin
process (CLK,RESET)
begin
if (RESET='1’) then
Q<= "07;
Qbar <= ’17;
elsif (CLK’event and CLK='1’) then — Can also wuse rising_edge(clk)
Q <= D;
Qbar <= not D;
end if;

end process;

end rtl;

all at once ”in a flash”.[20] Nonvolatile meaning that the memory will keep all its data even if the
power is switched off.
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A.2 RS-232

RS-232 standard is a transmission protocol for full duplex, serial transmitting and
receiving of data. The standard defines electrical characteristics and timing of sig-
nals, the "meaning” of the signal, and also physical size and pin-out for connectors.
For communications to work properly, the Data Terminal Equipment (DTE), in
this case the PC; and the Data Communication Equipment (DCE), in this case the
FPGA, needs to agree on the same data-packet settings, i.e the baud rate, the num-
ber of data bits, any additional parity bit and the number of stop bits.

A typical RS-232 data-packet consists of a start bit, followed by 5, 7 or 8 data
bits; 1 parity bit, for error checking; and 1 or 2 stop bits, indicating that the trans-
mission is done. The start bit is typically a logical low and the stop bit(s) high (this
is usually the case, but can be system dependent). The transmission line remains
high until the start bit pulls it down low, and the data transfer begins until the
stop bit is reached. The line is then kept high until a new start bit pulls it low
again for a new byte to be transfered. Data-packets are often described in the form:
19200 — 8 — N — 1, which simply means 19200 bit/s, 8 data bits, No parity and
1 stop bit. Figure A.1 demonstrates a typical RS-232 signal.

Idle

A Dy X D, X D, X Dy X Dy X Ds X Dg X D+ XP(Lr‘ityYStop Idle

Start

Figure A.1: Example of an RS-232 signal with 8 data bits, 1 parity bit (Odd, Even
or No parity) and 1 stop bit.
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Appendix B

Non-standard C-Libraries

The control interface software was developed with the help of a few non-standard
libraries; non-standard meaning that the libraries are not a part of the C standard
libraries. In addition, the ”Signals” library was written, which is dedicated to hold
the GBT control-signal information. The following sections gives brief descriptions
of each of these libraries and the associated functions used in the control interface
software:

B.1 RS232

The RS232 library (rs232.h and 1s232.c) is a cross-platform C-library for sending
and receiving bytes from the COM of a PC. It was written by Teunis van Beelen,
and is licensed under the "GPL version 3” licence [33]. The library compiles with
GCC on Linux and Mingw-w64 on Windows. By specifying baud rate, the name
of the relevant COM, and the transmission mode (8N1 is standard), the library
provides access to the COM and allows for both reading and writing to it. For more
information about the library and functions, visit http://www.teuniz.net/RS-232/

g

B.1.1 Associated functions

int RS232_OpenComport (int comport_number, int baudrate, const char x mo

le)

Opens the COM. The user must specify a COM number, a baudrate number and
the transmission mode (see list of valid inputs in rs232.c¢). It is important that the
user grants super-user/administration priveliges to the program, or it might not be
able to open the COM or change the baudrate correctly. The function returns 1 if
it does not succeed in opening the COM.

int RS232_PollComport(int comport-number, unsigned char xbuf, int size)
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Returns the amount of bytes (in integers) received from the COM. The received
bytes are stored in a buffer and pointed to by buf. One must specify the size of the
buf pointer. It is recommended to call this function routinely from a timer.

int RS232_SendBuf(int comport_-number, unsigned char xbuf,int size)

Sends a buffer of bytes via the COM. The buf pointer must point to an array of
bytes, and size must specify the correct size of the array pointed to by the buf.

void RS232_CloseComport (int comport_-number)

Closes the COM. To prevent errors, it is important to disable any timers that calls
COM related functions before closing the COM.

B.2 Timer

The Timer library (timer.h and timer.c) is a library for handling timers in a C
environment. It was written by Teunis van Beelen, and is licensed under the ” GPL
version 3” licence [33]. The accuracy of the timer is system dependent. It supports
a resolution down to 1 ms on the Windows platform and a resolution down to
1 us on the Linux platform (though, in real-life situations, the timer might not be
as accurate). The timer function is used with the RS232_PollComport-function in
mind (see function definition above). For more information about the library and
functions, visit http://www.teuniz.net/RS-232/#.

B.2.1 Associated functions

int start_timer (int milliSeconds, void (x)(void))

Starts the timer. At a given time interval of milliSeconds (milliseconds in Windows,
microseconds in Linux), it calls a given function. The call-function must be a void
function with no inputs (just like a standard main function without the argument
calls). The start_timer function are called only ones in main, and repeats calling
the given function every milliSeconds interval until the stop_timer is called.

int stop_-timer( void )

Stops the timer if start_timer has previously been called. If the timer routinely calls
RS232-functions, stop_timer must be called before closing the COM at the end of
the program to prevent errors.
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B.3 Signals

The Signals library (signals.h and signals.c) was written with the GBT control-
signals in mind. It features methods for storing and manipulating the control-signal
information, and in some extent encapsulates the information by partly hiding the
information from the user. This is done by defining the main information-structure
inside the signals.c-file, instead of defining it in the header file (and thus exposing
it to the main program). A dedicated pointer is used to point to the structures
namespace, and the functions defined in the header file calls the pointer as input
instead of the structure itself. The main program only have access to what is defined
in the header, thus limiting the user to only have access to the structure through
dedicated library functions.

B.3.1 Associated structures

typedef struct {
char xname;
char xindex;
Byte type : 1;
} Type;

struct _Signal {
Type type;

int i;

Byte data;

};

The Type-structure contains the signal name and index in string-form, and a 1-bit
type variable that defines the signal as either a probe (0) or a switch (1). _Signal-
structure is the main structure and contains the Type-structure along with a "real”
index, i, which is the actual data-address used to access the correct register-address
on the FPGA; and the data byte, data, which stores the data bit of the signal. If
the structure is defined as a probe, the data can only be read from the FPGA. If
it is defined as a switch, on the other hand, it can be both read from the FPGA or
the main program can write data to the FPGA.

B.3.2 Associated functions

Signal Signal New (void)

Assigns a new pointer to the _Signal-structure and allocates enough memory.

Signal Signal_Init (char xindex, char #xname, Byte data)

Uses Signal_New to define a new signal, and in addition assigns values to the signal
variables. The indez string must contain either an 'S’ or a 'P’ character followed
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by two number-characters. This is to indicate that the signal is either a probe or a
switch with a given register address, for example: ”P00”, 7S35”.

The first letter is used to assign the type-variable and the two number-characters
are converted to an integer and assigned to the "real” index, i, of the structure.
The name string should contain a descriptive name of the signal, for example:

"TX_FRAMECLK PHASE ALIGNER - PLL LOCKED”.

void Signal_InitFromFile(Signal s[], int width, char xfilename)

Uses Signal_Init to define a signal-array using information given from a file. The
array has a width given by the width-variable. Refer to signal_probe.tzt or sig-
nal_switch.txt for examples on how to set up a text-file. In the program, the
Signal_InitFromFile-function is used twice to define two signal-arrays; one for the
Switches and one for the Probes of the GBT control-signals. Defining two signal-
arrays makes it more convenient when separating what is writeable and what is
read-only.

void Signal_Free (Signal s)

Frees the given signal-pointer and all the associated variables.

void Signal FreeArray (Signal xs, int n)

Uses Signal_Free in a loop to free up an array of signal-pointers.

int Signal_PrintSet (WINDOW xwin, int *gy, Signal s[], int width)

Prints out all printable signal information of a signal-array to a curses-window (see
section B.4) with a row-position given by gy. gy is defined as a pointer because it re-
ports back to the program on which line in the window the information is printed on.

void Signal_setData(Signal s, Byte value)
Byte Signal_getData (Signal s)

Functions related to reading and writing to the data-variable, data, of a given signal.

void Signal_setIndex (Signal s, int i)
int Signal_getIndex (Signal s)

Functions related to reading and writing to the "real” index-variable, i, of a given
signal.

void Signal_setType (Signal s, Byte type, char xname, char xindex)
void Signal_getType (Signal s, Byte xtype, char xname, char xindex)




B.4. ncurses 29

Functions related to reading and writing to the Type-structure of a given signal.

void Signal_setTypeType(Signal s, Byte type)
Byte Signal _getTypeType(Signal s)

Functions related to reading and writing to the type-variable, type, of the Type-
structure of a given signal.

void Signal _setTypeName (Signal s, char xname)
char xSignal getTypeName (Signal s)

Functions related to reading and writing to the name string, name, of the Type-
structure of a given signal.

void Signal_setTypelndex (Signal s, char xname)
char xSignal getTypelndex(Signal s)

Functions related to reading and writing to the index string, indez, of the Type-
structure of a given signal.

B.4 ncurses

The ncurses library is a terminal control library commonly used with Unix-systems.
It is "freely redistributable in source form” [34], and enables you to construct in-
terfaces using the terminal as the base. The main purpose of using ncurses for the
GBT software interface was to enable multiple windows; one window to continu-
ously update and display the GBT control signals, and another window for the user
to write commands. To compile ncurses-based programs in Windows, one can use
the pdcurses library. The pdcurses library has the same function names and overall
functionality, so no alterations of code is needed. The following library and func-
tion information has been taken from http://linux.die.net/man/, which is a website
collection of Linux-related documentation (ncurses is integrated into the Linux sys-
tem).

B.4.1 Associated functions - Initialization

WINDOW =« initscr (void);

Initialization function that sets up a new ncurses window. This needs to be called
once, and before any other ncurses related function.

int noecho(void)



http://linux.die.net/man/

60 Appendix B. Non-standard C-Libraries

Disables the user input from being printed back on screen, i.e being echoed.

int cbreak(void)

Disables line buffering, making characters typed by the user available to the pro-
gram one-by-one.

int keypad (WINDOW xwin, bool bf)

Function that, when TRUE, allows the program to capture special keys using the
function getch(), like backspace and the arrow keys. For this software, win is defined
as stdscr, which is the main terminal screen.

int nodelay (WINDOW xwin, bool bf)

Function that keeps the input capture function, getch(), from blocking the program
when no input has been received. When bf is TRUE, getch() will return ERR
instead of waiting for a key to be pressed. This function was necessary to allow one
window to update freely while another window handled input. win is defined as
stdscr.

void getmaxyx (WINDOW *win, int y, int x)

Function that store the current beginning coordinates and size of the specified win-
dow. In the case of the GBT software interface, win is specified as the main terminal
screen, stdscr. These coordinates are needed when adding individual windows inside
stdscr.

WINDOW snewwin (int nlines, int ncols, int begin_y, int begin_x)

Function used to initiate a new window within the main terminal screen, stdscr,
where nlines a ncols is the number of lines and columns the window is to contain,
and begin_y and begin_z is the upper left hand corner of the window. This function
is used to initiate the three windows, ”Command History”, ”Commandline” and
”Signals” in the control interface software.

int scrollok (WINDOW swin, bool bf)

Function that, if TRUE, enables scrolling of typed in characters, either by using
the additional scroll-function, or when the cursor reached the last column of the last
line in the specified window win. This function is only used with the ”Command
History” window to scroll commands that are read in.

int leaveok (WINDOW xwin, bool bf)
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Function to disable the cursor at the specified window. It is used to disable the
cursor in the "Command History” and ”Signals” windows in the control interface
software.

B.4.2 Associated functions - Various

int wresize (WINDOW xwin, int lines, int columns)

Enables for resizing of the initiated windows.

int wclear (WINDOW #win)

Clears the specified window of its content.

int mvwprintw (WINDOW xwin, int y, int x, const char xfmt, ...)

Analogous to the printf routine, found in the C standard library. However, this
allows to print output in a specified window with coordinates. mowprintw is used
when printing information out on the different windows.

int wrefresh (WINDOW swin )

Function to update the individual windows. This function must be called to get
actual output to the terminal, preferably at the end of the main loop.

int wmove(WNDOW xwin, int y, int x)

Function that allows for repositioning of the cursor at the specified window. This
function is called to reposition the cursor in the "Commandline” at the end of an
input string.
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Appendix C
GBT Control Signals

The Quartus-bound ISSP offers a way for the user to control and monitor the control
signals of the GBT example design. Table C.2 and C.1 gives a brief description of
these control signals. Since the latency optimized version of the GBT is not covered
in this thesis, the signals related to this version is not described. The information
was obtained from the GBT FPGA video tutorials [29]. The source (S) signals are
described as switches that can be manipulated by the user, like resets and pattern
selects. The probe (P) signals are emulated measuring probes that monitors the
different components of the GBT-FPGA.
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Index Name Description
S00 LOOPBACK Select internal loopback inside the transceiver
('1"), or an external loopback via cabling (’0’).
S01 GENERAL RESET Main reset signal of the example design.
S02 MGT TX PLL RESET Individual reset signal for the MGT pll.
S03 TX RESET Individual reset signal for the transceiver.
S04 RX RESET Individual reset signal for the receiver.
S[05..06] | PATTERN SELECT Selects the pattern that is sent through the
transmitter line. It can send a counter value
(”1h”) that increments by 1, or a static value
(72h”).
S07 TX HEADER SELECTOR Chooses the header of the frame: ’0’ for idle and
"1’ for data.
S08 RESET DATA & EXTRA | Resets P26.
DATA ERROR SEEN
FLAGS
S09 RESET RX GBT READY | Resets P25.
LOST FLAG
S10 TX_FRAMECLK PHASE | Related to the latency optimized version.
ALIGNER - MANUAL
RESET
S[11..16] | TX_.FRAMECLK  PHASE | Related to the latency optimized version.
ALIGNER - GBT LINK 1
STEPS
S17 TX_FRAMECLK PHASE | Related to the latency optimized version.
ALIGNER - ENABLE
S18 TX_ FRAMECLK PHASE | Related to the latency optimized version.
ALIGNER - TRIGGER
S[19..26] | TX-WORDCLOCK  MON- | Related to the latency optimized version.
ITORING - THRESHOLD
UP
S[27..34] | TX_-WORDCLOCK  MON- | Related to the latency optimized version.
ITORING - THRESHOLD
LOW
S35 TX_-WORDCLOCK  MON- | Related to the latency optimized version.
ITORING - TX RESET
ENABLE

Table C.1: GBT control signals overview, switches.
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Index Name Description
P00 LATENCY-OPTIMIZED Indicates whether the GBT example design is
GBT LINK - TX using the latency optimized (’1’) version or not
(0.
PO1 LATENCY-OPTIMIZED Indicates whether the GBT example design is
GBT LINK - RX using the latency optimized (’1’) version or not
(0.
P02 MGT TX PLL LOCKED Shows the status of the MGT pll, and remains
high (’1’) if the pll is locked.
P03 TX FRAMECLK PHASE | Related to the latency optimized version.
ALIGNER - PLL LOCKED

P04 TX_FRAMECLK PHASE | Related to the latency optimized version
ALIGNER - PHASE SHIFT
DONE

P[05..12] | TX_-WORDCLOCK MONI- | Related to the latency optimized version
TORING - STATS

P13 TX_WORDCLOCK MONI- | Related to the latency optimized version
TORING - TX_WORDCLK
PHASE OK

P14 MGT READY Asserted high ('1’) to show that the MGT
transceiver is ready.

P15 RX_WORDCLK READY Asserted high ('1’) to show that the
RX_WORDCLK is ready.

P16 RX_FRAMECLK READY Asserted high (’1’) to show that the
RX_FRAMECLK is ready.

P17 RX GBT READY Asserted high (’1’) to show that the receiver of
the GBT-link is ready.

P[18..23] | RX BITSLIP NUMBER Related to the latency optimized version, and
must remain at "00h” to indicate that the RX
and TX are properly aligned.

P24 RX HEADER IS DATA | Indicates whether the received data has a header

FLAG of the frame that is idle (’0’) or data (’1’).
P25 RX GBT READY LOST | Indicates that the connection has been lost, and
FLAG remains high until S09 is asserted high.
P26 RX DATA ERROR SEEN | Is asserted high (’1’) if the pattern checker de-
FLAGS tects an indifference in the transmitted and re-
ceived pattern.
P27 RX EXTRA DATA WIDE- | Same as for P26, only related to the wide-bus
BUS ERROR SEEN FLAG mode.

P28 RX EXTRA DATA | Same as for P26, only related to the 8B10B
GBT8B10B ERROR SEEN | mode.
FLAG

P29 ISSP PLL Locked Shows the status of the issp pll. This signal does

not need to be monitored by the serial interface.

Table C.2: GBT control signals overview, probes.
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Appendix D

Clock Control Software Setup

The Cyclone V GT kit is dependent on a number of Quartus related files, including
the USB Blaster II device driver, the jtagconfig software and various device libraries
included in the Quartus environment. It is therefore important to have the right
version of Quartus installed for the Clock Control program to work properly. The
version number of the kit (13.0.0.1 at the time of writing) corresponds to the sup-
ported version of Quartus, in this case Quartus 13.x. Newer versions of Quartus
have not proven to be backwards compatible with the Cyclone V GT kit.

By using Windows, the following steps have been proven to be the best approach
to make the Clock Control software work properly. The installed path to Quartus
is in this case: D:\Quartus_13.1.

D.1 Steps for Configuring Windows to run the
Clock Control Software

1. Install Quartus 13.x (includes jtagconfig) together with the Cyclone V device
support [35].

2. Set appropriate environment variables. In Windows, this should be set auto-
matically.
e PATH — "D:\Quartus_13.1"

e QUARTUS_ROOTDIR — "D:\Quartus_13.1\quartus"
e SOPC_KIT_NIOS2 — "D:\Quartus_13.1\nios2eds"

3. Connect the Cyclone V board to the PC using USB Blaster II (Refer to the
manual for instructions on how to install the USB Blaster II [36]).

4. In Command Prompt (cmd.exe):
e Navigate to the "board_test_system” folder located inside the Cyclone V
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kit.

e run "jtagconfig” and confirm connection with the board. If the Command
Prompt cannot find jtagconfig, navigate to D:\Quartus_13.1\quartus\
bin using a file explorer and manually start jtagconfig.exe from there

e run "java-Djava.library.path="D:\Quartus\_13.1\bin" -jar clk_cont.jar”.
The library path is to ensure that the Java environment have access to
the appropriate Quartus libraries it needs to connect with the board.

If done correctly, the Clock Control software will start up and display ”Con-
nected to the target” in the message window. The default output frequency of the
S1570 oscillator is 100 MHz. The output frequency is calculated using the following
equation:

Fout = Jxrar X REFREQ
" "HSDIV x N1

, where fxrar is a fixed frequency of 114, 2857 MHz; RFREQ is a floating point
38-bit word; and HSDIV and N1 is the output dividers [37]. The parameters are
determined by the Clock Control software based on the user typed frequency. The
parameters are then sent serially via the USB Blaster II to the Si570 chip, where
the above formula is used to set the internal registers for the new frequency. Figure
D.1 shows the Clock Control software after a new frequency of 120 MHz is set.

X4 (%3

(D.1)

Serial port registers

HS_ DNV 11
Target frequency(MHz
N1 4 g equency(] )
120.00| MHz
RFREQ 0223332d01

Valid frequency range values are

FKTAL: 114,2857 MHz 10.00000000 to 810.00000000 MHz

’ clear “ Set New Frequency

Messages System MAX ver: 4

Connected to the target

afm |

Figure D.1: Clock Control software by Altera used to program the Si570.

The Si570 is volatile, meaning that the output frequency is reset back to 100 MHz
if power is lost. The procedure must therefore be repeated every time the FPGA is
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powered on.

To confirm correct operation, a quick measurement of the output clock was done
using an oscilloscope. Figures D.2 and D.3 shows the output frequency, before and
after configuration.

(@ 200mv s )l
vall ~stdpev | nts

7-4.00mv

Figure D.2: 5i570 Before configura- Figure D.3: Si570 After configuration:
tion: 100 MHz. 120 MHz.
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Appendix E

Soldering the Ground Pads
Underneath the HSMC Contact

The HSMC-connector has several ground pads underneath the connector itself, mak-
ing it impossible to reach when soldering by hand. The solution was to use a solder
oven with solder paste on the pads. The solder paste was applied on the pads with
the help of the dispenser module on the Martin Rework Station, which was available
in the lab. The dispenser module forces the solder paste out of the syringe using
pressurized air. By pressing a foot pedal connected to the dispenser, you apply a
controlled air pulse that pushes on the piston of the solder paste syringe. The force
of the air pulse can be adjusted using the dispenser GUI. For the ground pads, an
air flow of 2.50 CM M (Cubic Meter per Minute) was suitable.

The solder oven that was used had the option to set up a Ramp-Soak-Spike type
thermal profile. Samtec, the manufacturer for the HSMC contact, recommends a
maximum peak temperature of no more than 260 °C' with no more than 30 seconds
above 255°C'. The thermal profile setup is based on the profile recommended by
EFD, the manufacturer for the particular solder paste used (see figure E.1). After
some trial and error with a dummy-PCB, the oven was set to a activation tem-
perature of 150°C' for 60 seconds, and then a reflow temperature of 220°C' with a
climb-time of 120 seconds.
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Preheat Activation Reflow Cooldown
. Peak Poak Temp:

iquid
[ Liquidus . Plastic
— Solidus =] g

Temp: 20°C to 130°C

Ramp Rate: 0.5-3°C / sec.
Recommended: 1°C/sec.
Time: 40-240 sec.
Nominal: 110 s

alnjesadwa|

Time

Figure E.1: EFD reflow thermal profile recommendations [38].



Appendix F
Code Files

F.1 C Code

Table F.1 lists the different C files that make up the GBT control interface module
and the send/receive module. For more information about the actual functions
described in the files, see appendix B. The files are available at https://github.com/
a0e033/GBT _control_interface.

File Description

cmds.h/cmds.c Contain functions and definitions related to
analysis, treatment and excecution of user in-
put.

main.h Contains global variables and structures,

such as the signal structures and rs232 re-
lated variables.

main.c Main program. There are one main.c for each
module.
rs232.h/rs232.c Contains functions related to rs232 commu-

nication (See B.1)

signals.h/signals.c Contains the signal structure and related
functions (See B.3).

timer.h/timer.c Contains functions related to the program
timer. (See B.2)

Table F.1: List of C files used in the GBT Control Interface module and the
Send/Receive module
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F.2 VHDL Code

Table F.2 lists the different VHDL files used in this thesis. For more information,
see section 4.5.2. The files are available at https://github.com/a0e033/GBT _control-
interface.

File Description

baudGen.vhd Baud generator that generates a tick signal
every 16. clock cycles.

fifo_buffer_chu.vhd Describes the fifo-buffers used in the uart
unit.

uart.vhd Combines fifo_buffer_chu.vhd, baudGen.vhd,
uart_rx.vhd and uart_tx.vhd into an uart
unit.

uart_decoder.vhd  Reads bytes from the uart and manipulates
the gbt registers (not done).

uart_gbt_pkg.vhd  Defines constants (request-bytes and uart
data bit width) and records.

uart_rx.vhd Uart receiver.

uart_tx.vhd Uart transmitter.

uart_top.vhd Combines all components together into one
entity.

Table F.2: List of VHDL files used in this thesis.
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Appendix G

Schematic and PCB Layout

The schematic of the HSMC-to-VLDB PCB is shown in figures G.1, G.2 and G.3.
The PCB layout is shown in figures G.4 and G.5. Notes: Do not solder R51 —
R52, R91 — R92, R95 — R97, R99 — R101.
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Figure G.4: PCB Layout, top and bottom layers.
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(b) Inner layer: ground.

Figure G.5: PCB Layout, inner layers.
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