Parameter Calibration of a System

Dynamics Model

A Comparison of Three Evolutionary Algorithms

by Felipe Haro — July 2013

ABSTRACT

This research seeks to improve the parameter calibration process of a
System Dynamics model. A “movie release strategies” model has been
developed in 2012 using a gradient-based optimization algorithm to
estimate all the parameters. On this research, three modern optimization
algorithms are initially compared using mathematical benchmark
functions and then tested with the model to compare results. The tested
algorithms are modifications of the Artificial Bee Colony algorithm, the
Cuckoo Search and the Genetic Sampler. The results show that by using
the Artificial Bee Colony algorithm, better performance is achieved in
terms of speed and fitness. It is also shown how the optimization problem

definition was improved resulting from a better optimization process.

Acknowledgments

This project and would not have been possible without the support of some
people. First of all, thanks to my family for supporting each step of the process,
thanks to Ryan Hughes for building the bridge between PwC and the Erasmus
Mundus System Dynamics program and PwC itself for giving support to this
project. Also thanks to Rushil Mistry for giving me access to a real research
database. Thanks to Pal Davidsen for being my supervisor and to all the people

that I met during these two years that made a difference in my life.

Contents

ACKNOWLEDGMENTS 2
CONTENTS 3
ABBREVIATIONS 5
LIST OF FIGURES 6
LIST OF TABLES 7
1 INTRODUCTION 8
1.1.1 RESEARCH OBJECTIVE 10
1.1.2 RESEARCH QUESTIONS 10
1.1.3 RELEVANCE 10
1.1.4 THESIS OUTLINE 12
2 LITERATURE REVIEW 13
2.1 EVOLUTIONARY ALGORITHMS OVERVIEW 13
2.1.1 ANTCOLONY 13
2.1.2 ARTIFICIAL BEE COLONY 14
2.1.3 CUCKOO SEARCH 16
2.1.4 DIFFERENTIAL EVOLUTION 18
2.1.5 EVOLUTION STRATEGY 19
2.1.6 FIREFLY ALGORITHM 19
2.1.7 GENETIC ALGORITHMS 19
2.1.8 PARTICLE SWARM OPTIMIZATION 20
2.1.9 SCATTER SEARCH 21
2.1.10 TABU SEARCH 21
2.2 COMPARISON 21
2.3 APPLICATIONS 22
3 METHODOLOGICAL APPROACH 24
3.1 MOVIE RELEASE STRATEGIES MODEL 24
3.1.1 THE MODEL 24
3.1.2 OPTIMIZATION PROBLEM 24
3.1.3 DATA AND PARAMETERS 26
4 THE ALGORITHMS 27
4.1 PEST 27
4.2 MODIFIED ARTIFICIAL BEE COLONY ALGORITHM FOR CONSTRAINED OPTIMIZATION

PROBLEMS 27
4.2.1 INITIALIZATION 28
4.2.2 EMPLOYED BEES PHASE 29
4.2.3 DEB’S METHOD 29
4.2.4 CALCULATE PROBABILITIES FOR ONLOOKERS 30
4.2.5 ONLOOKER BEES PHASE 30
4.2.6 SCOUT BEES PHASE 31

4.3 GENETIC SAMPLER

31

4.3.1 INITIALIZATION 32
4.3.2 SELECTION 32
4.3.3 CROSSOVERS 32
4.3.4 REPLACEMENT 33
4.4 MODIFIED CUCKOO SEARCH 33
4.4.1 THE ALGORITHM 34
4.4.2 INITIALIZATION 35
4.4.3 ABANDONING PHASE 35
4.4.4 TOP NESTS PHASE 35
445 LEVYFLIGHT 36
5 RESEARCH RESULTS 37
5.1 BENCHMARK FUNCTIONS 38
5.1.1 DE]JONG’S FUNCTION 38
5.1.2 AXiSPARALLEL HYPER-ELLIPSOID FUNCTION 39
5.1.3 ROSENBROCK’S VALLEY 39
5.1.4 RASTRINGIN’S FUNCTION 39
5.1.5 SCHWEFEL’S FUNCTION 40
5.1.6 ANALYSIS 41
5.2 GENETIC SAMPLER INTO THE MOVIE MODEL 41
5.3 BENCHMARK FUNCTIONS FOR CONSTRAINED OPTIMIZATION 43
5.3.1 FUNCTION 1 43
5.3.2 FUNCTION 2 43
5.3.3 FUNCTION 3 44
5.3.4 ANALYSIS 45
5.4 NEW ALGORITHMS IN THE MOVIE MODEL 46
5.4.1 FIRST RUN 46
5.4.2 SECOND RUN 47
5.4.3 THIRD RUN 47
6 DISCUSSIONS / CONCLUSIONS 49
6.1 THE OPTIMIZATION 50
6.2 LIMITATIONS AND FUTURE RESEARCH 50
7 REFERENCES 51
8 APPENDIX 56
8.1 BENCHMARK FUNCTIONS INSTRUCTIONS 56
8.1.1 HOW TO RUN THE SIMULATIONS 56

Abbreviations

ABC: Artificial Bee Colony

Al: Artificial Intelligence

CS: Cuckoo Search

DE: Differential Evolution

EA: Evolutionary Algorithm

ES: Evolution Strategy

FA: Firefly Algorithm

GA: Genetic Algorithms

GML: Gauss-Marquardt-Levenberg
GS: Genetic Sampler

MPAA: Motion Picture Association of America
PSO: Particle Swarm Optimization
PwC: PricewaterhouseCoopers

SD: System Dynamics

TS: Tabu Search

vSBX: version of Simulated Binary Crossover

List of Figures

FIGURE 1: DE JONG’S FUNCTION OPTIMIZATION

FIGURE 2: AXIS PARALLEL HYPER-ELLIPSOID FUNCTION OPTIMIZATION
FIGURE 3: ROSENBROCK'S VALLEY OPTIMIZATION

FIGURE 4: RASTRINGIN'S FUNCTION OPTIMIZATION

FIGURE 5: SCHWEFE'S FUNCTION OPTIMIZATION

FIGURE 6: CONSTRAINED FUNCTION OPTIMIZATION

FIGURE 7: CONSTRAINED FUNCTION OPTIMIZATION

FIGURE 8: CONSTRAINED FUNCTION OPTIMIZATION

FIGURE 9: PERCENTAGE OF AWARENESS VS MARKETING BUDGET

38
39
40
40
41
44
44
45
46

List of Tables

TABLE 1: PSEUDOCODE FOR STANDARD ABC ALGORITHM 14
TABLE 2: PSEUDOCODE FOR CUCKOO SEARCH 18
TABLE 3: PSEUDOCODE FOR GENETIC ALGORITHMS 20
TABLE 4: GS VS PEST FOR THE ORIGINAL OPTIMIZATION PROBLEM 42
TABLE 5: OPTIMIZATION RUN, ABC ALGORITHM 47
TABLE 6: FINAL RESULTS AND FINAL OPTIMIZATION PROBLEM DEFINITION: CS, ABC AND PEST
COMPARISON 48

TABLE 7: CS AND ABC COMPARISON OVER 154 MOVIES 48

1 Introduction

Building System Dynamic (SD) Models comes along with the process of
searching and analyzing data to support the development. And it can be said out of
common sense that the more precise and detailed the collected information is, the
higher is the potential quality of the quantitative model built. But sometimes the
data is not measurable, not observable or simply too difficult or expensive to get.
What is to be done with the unavailable information then? If the unavailable data is
seen as a group of parameters with uncertain value, one way to deal with this issue
is to make for instance an educated guess of each parameter in order to fulfill the
requirements of the model. A second way is to define a range in which each of
these parameters can move and calibrate them so the model replicates the
observed data as close as possible. This is called “parameter calibration” and it’s a

common practice in SD.

[t is known that for the human mind it’s very difficult to understand and
learn about the simpler of the models (Kopainsky et al. 2009). Hence the process of
calibrating the parameters is very difficult for a human to be done in an effective
way because of the infinite amount of possible combination of parameters that
lead to an infinity of different outcomes. It is possible in certain occasions from a
mix of luck, expertise and a trial and error process to choose a set of parameters
that represents an acceptable solution depending on the modeler’s needs.
Nevertheless it is unthinkable that among all the combinations, a manual

calibration can result in the best of all possible outcomes.

The set of parameters ¥, with their particular possible range defined by the
lower boundary x™ and the higher boundary x"** for each parameter i can be
called the parameter search space, which is an N-Dimensional cube. But on this
search space there are certain combinations that are not feasible and thereby not a
solution for the problem. The combinations of parameters that are suitable and
feasible belong to the feasibility region. This defines a typical constrained
optimization problem with an objective function defined by how well the data is

represented by the model and a set of restrictions defined by the parameters

search space and the feasibility region. This can be portrayed as the following

standard constrained optimization problem with n parameters and m restrictions

max f(x)
subjectto l;<x;<u; fori=1,..,n
h(X)<0 forj=1,..,m

Solving an optimization problem can be done in many ways and several
different techniques exist in the literature such as the very basic simplex
algorithm. But in the last years, a number of new modern methods meant to solve
non-linear problems, among them the meta-heuristic optimization, have appeared.
Bianchi et al (2009) defines a meta-heuristic as a procedure designed to find a
good solution to a difficult optimization problem. Meta-heuristics are indeed an
approach to deal with non-linear systems and to search for near-optimal solutions
and have been proven to work in many areas and for many optimization problems.
Luke (2009) defines it as a stochastic optimization and describes a large number of
meta-heuristic methods among which evolutionary algorithms for optimization

problems can be found.

In Artificial Intelligence (AI), an evolutionary algorithm (EA) is a
population-based meta-heuristic optimization process where biological
mechanisms such as reproduction, mutation, recombination and selection are
used. Candidate solutions to the optimization problem play the role of individuals
of the population and the fitness or objective function draws the world where the
population lives. There is a good amount of evolutionary algorithms in the
literature that have been applied in a large number of applications for different

kind of optimization problems.

Modern algorithms inspired by nature use a trade off between
randomization and local search (exploration and exploitation). A good
combination of these components improves the opportunity to get global
optimality, but usually, near-optimal solutions are found and there is no guarantee

that the optimal solution will be reached.

PwC as a company was concerned about the parameter calibration options

available and proposed to use one of their models (a “movie release strategies”

model that will be treated later in this document) to test a number of new
optimization algorithms to not only gain some knowledge about the ones that are
out there and are applicable to SD and Agent based modeling, but also to try to

improve this model in terms of speed, results and optimization problem definition.

1.1.1 Research Objective

This research seeks to compare three nature-inspired optimization
algorithms for the parameter calibration of an SD model provided by PwC. This
model has previously been calibrated with the objective of obtaining the best
possible representation of the data using a gradient-based algorithm. To make the
comparison, the EA’s are tested against mathematical benchmark functions with
characteristics similar to that of the objective function of the tested model. This
test allows the finding of the best candidate algorithm to be applied to the model
measuring its performance in terms of speed and fitness and helps to find possible

improvements of the optimization problem definition.

1.1.2 Research Questions

The following questions are important to evaluate the improvement of the
results of the new algorithms applied to the SD model:
* Which algorithm performs better with benchmark functions that are similar
to the one of the SD model?
o Which algorithm requires less iterations?
o Which algorithm finds a closer solution to the optimal value?
* How well do the new algorithms perform compared to the previous
calibration work?
o What is the difference of the results in terms of mean, median and
minimum in the “movie release strategies” model?
o What are the improvements in terms of feasibility of the solution?
o How well is the optimization problem definition improved resulting

from the comparison of the EA’s?

1.1.3 Relevance

Experimenting with new ways to solve optimization problems for particular

applications is a way to improve the potential results that can be achieved in the

future. In particular for the field of SD, the major part of the existent modeling
Software currently available such as Vensim™ and Powersim™ deal with the
parameter calibration problem as a black box with the objective function and
restrictions characteristics as an input and with the solution as an output. For
commercial reasons, the methodology is not publically available. In particular
OptQuest™, an optimization tool used by AnyLogic™, used to combined the meta-
heuristics of Tabu Search, Neural Networks, and Scatter Search into a single search
heuristic (Kleijnen & Wan 2007).

This research shows transparent procedures to reach suitable solutions for
an SD model and it is also an overview of different methods explained with detail
to be used by future developers who need to solve optimization problems. The
research also gives a comparison of three different evolutionary algorithm
variations that have never been compared before for global or constrained
optimization problems. This adds value to the existent algorithms comparison
research and helps to ease the decision when it comes to choose an algorithm to
apply it in similar applications.

This work is also relevant for developers who want a detailed cookbook on
how to implement some optimization algorithms and for AnyLogic™ users who
want to use the Java code or the pseudo-code used and developed on this research
to optimize not only SD models with the aim of calibrating parameters, but also for
other applications including Agent-based Modeling, Discrete Event Modeling or
hybrids, without the limitations of black box tools with no transparency.

This research also shows in a practical way the process of improvement of
the optimization definition problem and its importance to effectively perform the
parameter calibration of a model. It is well known by the optimization community
that one of the most difficult and most important things to take into consideration
to get good results is the definition of the fitness function and the definition of the
constraints and parameter boundaries. This requires a very good understanding of
the problem that is being faced and this work shows the process of obtaining good

solutions.

1.1.4 Thesis Outline

This thesis is divided in the following chapters. The first chapter gives a
general overview of the concept of optimization and the algorithms available along
with a clear definition of the research questions and objective. The second chapter
gives a review of some of the most popular meta-heuristic methods available to
solve different kinds of optimization problems and shows some of the existent
literature that compares them. The third chapter explains in general terms the
movie model used to make the analysis, how the optimization problem was
defined initially for this model and what data is used. Chapter 4 gives a detailed
explanation of the algorithms used on this research and the algorithm used by PwC
to generate the parameters of the model. Chapter 5 explains what kind of
benchmark functions were used to test the different algorithms and show the
results obtained. It also portrays the process lived through meetings with PwC to
improve the optimization problem definition and finally it shows the final results
and the comparison between the EA’s and the gradient-based algorithm used by
PwC. Chapter 6 contains the final conclusions with its limitations and the
discussion of the results. Added to this, a seventh chapter contains the references
and chapter 8 contains the instructions to use the some of the files that were

developed during this research.

2 Literature Review

To understand the extent of the existent research on EA’s it is necessary to
give an overview of all the most popular algorithms, the existent comparison work

and the use of them in SD applications.

2.1 Evolutionary Algorithms Overview

The power of all modern meta-heuristics comes from the fact that they
imitate the best characteristics of nature. Algorithms that imitate those nature
features are becoming increasingly popular. Two characteristics of the nature
behavior are the selection of the fittest (intensification) and adaptation to the
environment (diversification). Intensification seeks to select the best candidates
for next generations and diversification ensures that the landscape is explored
efficiently.

Some of the most popular meta-heuristic algorithms are briefly reviewed as
part of the research effectuated to choose the suitable algorithms for the
application where the optimization process is applied. More emphasis is put on the

three algorithms that are finally chosen to run the comparisons.

2.1.1 Ant Colony

The ant colony optimization (ACO) was first proposed by Dorigo et al
(1991) and it is a probabilistic technique for solving optimization problems that
can be reduced to finding good paths through graphs, for instance for path
planning in robotics (Haro & Torres 2006).

In nature the ants wander initially randomly and when food is found return
to their colony leaving pheromone trails for other ants to follow the trail. Over
time the pheromone trail starts to evaporate reducing its attractive strength. For
ants, short trails tend to be more attractive than long paths because of the
pheromone evaporation time. The ACO mimics this behavior with virtual ants
walking on the problem landscape.

ACO has a number of variations that can be used to solve different kind of

optimization problems and for some of them it has been proved that the algorithm

can find a global optimum in finite time (Negulescu et al. 2008, Stiitzle & Hoos

2000, Bullnheimer et al. 1997, Hu et al. 2008, Katteda et al. 2011).

2.1.2 Artificial Bee Colony

As defined by Karaboga & Basturk (2007), in the Artificial Bee Colony (ABC)

model, the colony consists of three groups of bees: employed bees, onlookers and

scouts. It is assumed that there is only one artificial employed bee for each food

source. Employees bees go to their food source and come back to hive and dance

on this area. The employed bee whose food source has been abandoned becomes a

scout and starts searching to find a new food source. Onlookers watch the dances

of employed bees and choose food sources depending on dances.

The classic ABC pseudo-code of the algorithm is as follows:

Initialize the population of solutions x;

i=1.5N,j=1..D

Evaluate the population

1
2
3. cycle=1
4

REPEAT

d.

g.
h.

Produce new solutions v;; for the employed bees by using

Vii = xi'j + (pi‘j(xi,j - xi,k) where k € {1,2, ,SN}

Lj
Apply the greedy selection process.

Calculate the probability values P;; for the solutions x; ; by using

fiti
b = .

TN fitn

Produce the new solutions v; ; for the onlookers from the solutions
x; j selected depending on P; ; and evaluate them

Apply the greedy selection process
Determine the abandoned solution for the scout, if exists, and

replace it with a new randomly produced solution x;; using

! + rand (0,1)(x),,, — X)

— aJ
=X min

x min
Memorize the best solution achieved so far

cycle = cycle + 1

5. UNTIL (requirements are met)

Table 1: Pseudocode for standard ABC algorithm

Where SN is the number of food sources, which is equal to the number of
employed or onlooker bees, ¢; ; is a random number between [-1,1], fit; is the
fitness value of the solution i which is proportional to the nectar amount of the
food source in the position i. The greedy selection process is defined by the fact
that each candidate source position v;; is produced and then evaluated by the
artificial bee and its performance is compared with the old one. If the new food has
an equal or better nectar level than the old source, it is replaced with the old one in
the memory. Otherwise, the old one is retained in the memory.

In ABC, the position of a food source represents a possible solution to the
optimization problem and the nectar amount of a food source corresponds to the
fitness of the associated solution. The number of the employed bees is equal to the
number of solutions in the population. At the first step, a randomly distributed
initial population (food source positions) is generated. After initialization, the
population is subjected to repeat the cycles of the search processes of the
employed, onlooker and scout bees, respectively. An employed bee produces a
modification on the source position in its memory and discovers a new food source
position. Provided that the nectar amount of the new one is higher than that of the
previous source, the bee memorizes the new source position and forgets the old
one. Otherwise it keeps the position of the one in its memory. After all employed
bees complete the search process they share the position information of the
sources with the onlookers on the dance area. Each onlooker evaluates the nectar
information taken from all employed bees and then chooses a food source
depending on the nectar level of the source. As in the case of the employed bee, it
produces a modification on the source position in its memory and checks its nectar
amount. Providing that its nectar is higher than that of the previous one, the bee
memorizes the new position and forgets the old one. The sources abandoned are
defined and new sources are randomly produced to be replaced by the abandoned
ones by artificial scouts.

Bolaji et Al. (2013) have done a survey on the ABC algorithm, giving an
overview of all the existent variants and applications since its creation in 2005. A
lot of modifications of this algorithm have been developed during the years mostly
to solve constrained and unconstrained optimization problems. But there is no

conclusion on which modification is better and depending on the chosen

parameters of the algorithm and the characteristic of the problem, different
modifications can lead to better results. This work will be done with the latest
version of the ABC algorithm for constrained problems proposed by Karaboga &
Akay (2011), which has been compared with some benchmark functions against

some other modern algorithms.

2.1.3 Cuckoo Search

An obligate parasite is a parasitic organism that cannot complete its life
cycle without exploiting a suitable host. If an obligate parasite cannot obtain a host
it will fail to reproduce. Obligate parasites have evolved a variety of parasitic
strategies to exploit their hosts. The cuckoos are birds that are included in the
“obligate brood parasites” type and require nests and parental care of other
passerines in order for their young to grow into a stage of development where they
can fly. Cuckoo Search is an optimization algorithm inspired by some cuckoo
species that lay eggs in the nests of other host birds. These hosts can identify these
eggs as parasites and take an action such as throwing them away or moving to a
new place building there a new nest. In particular, the striped cuckoo, which is a
brood-parasitic cuckoo specie present in the American continent have evolved in
such a way that the females are specialists in choosing hosts with very similar
color and pattern (Payne et al. 2005). Other species remove others’ eggs to put
their own. Cuckoo Search, developed by Yang & Deb (2009) has taken this
behavior and idealized it to apply it in optimization problems.

To idealize it, Cuckoo Search works in the following way: each egg (from
any bird) in a nest represents a solution for the optimization problem, and a
cuckoo egg represents a new solution. The objective is to replace with cuckoo eggs
(that are potentially better solutions) the other eggs in the different nests. The
algorithm can be extended to more complicated cases in which each nest has
multiple eggs representing a set of solutions. Alkallak (2012) uses this extension to
solve a combinatory problem.

Cuckoo Search is based on three idealized rules:

1. Each cuckoo lays one egg at a time and dumps its egg in a randomly chosen

nest.

2. The best nests with high quality of eggs will carry over to the next
generation.

3. The number of available hosts nests is fixed, and the host bird discovers the
egg laid by a cuckoo with a certain probability. In this case the host bird can
either throw the egg away or abandon the nest, and build a completely new
nest.

In comparison to other meta-heuristic algorithms, Cuckoo Search is very
simple since there are only two parameters to adjust: the fraction of the worse
nests that are abandoned for new ones to be built and the population size. The
choice of the setting of that fraction does not affect the convergence rate and the
authors of CS propose to use 0.25.

A random walk is a mathematical formalization of a path that consists of a
succession of random steps. CS uses Lévy flight, which is a random walk where the
step length has a probability distribution that is heavy tailed. According to
Asmusssen & Sgren (2003) the distribution of a random variable X with
distribution function F is said to have heavy right tail if: lim,_,., e** Pr[X > x] = oo
forallA >0

The basic principle of this kind of random walk is that it consists of long
travels to different regions of the landscape, meaning that there is a long
movement to a random area, and then small movements at that area. According to
Yang & Deb (2009), the random walk via Lévy flights is more efficient in exploring
the search space as its step length is much longer in the long run.

The following is the pseudo code for Cuckoo Search:

1. Initialize a population of n hostnests x;,i = 1,2, ...,n
2. fori=1ton
a. Calculate fitness F; = f(x;)
3. end for
4. while NumberObjectiveEvaluations < MaxNumberEvaluations
a. Generate a cuckoo egg (x;) by taking a Lévy flight from random nest
b. F = f(x)
c. Choose arandom nest i

d. if F; > F; then

i. the nestx; is replaced by x; with its associated fitness
e. end if
f. Abandon a praction p, of the worst nests
g. Build new nests at new locations via Lévy Flights to replace nests
lost
h. Evaluate fitness of new nests and rank all solutions

5. end while

Table 2: Pseudo-code for Cuckoo Search

The algorithm works as follows as shown in Yang & Deb (2009):
When generating new solutions X (¢t + 1) for a cuckoo i, a Lévy flight is performed
using the stochastic equation for random walk.
Xi(t+1) =X;(t) + a®Lévy(1), where a > 0 is the step size which should be

related to the scales of the problem of interests (a =1 can be used in most cases).

The product @ is a Hadamard product, which is a binary operation that takes two

matrices of the same dimensions and produces a new matrix where each element
ij is the product of elements ij of the original two matrices. The Lévy flight
provides a random walk while the random step length is drawn from a Lévy
distribution with an infinite variance and an infinite mean.

Lévy ~u=t—-1,(1<1<3)

Here the steps form a random walk process with a power-law step-length
distribution with a heavy tail. Some of the new solutions should be generated by
Lévy walk around the best solution obtained so far speeding the local search.
However a good fraction of the new solutions should be generated by far field
randomization and whose locations should be far enough from the current best

solution, avoiding being trapped in a local optimum.

2.1.4 Differential Evolution

Differential Evolution (DE) is another meta-heuristic optimization method
born in 1997 that uses agents as the population (Storn & Price 1997). The agents
are subjected to recombination, evaluation and selection. The recombination
approach involves the creation of new candidate solution components based on

the weighted difference between two randomly selected population members

relative to the spread of the broader population (Brownlee 2011). DE has a
nomenclature to define the configuration/variation of the algorithm of the form
DE/x/y/z where x represents the solution to be perturbed, y represents the
number of difference vectors used in the perturbation x and z represents the

recombination operator.

2.1.5 Evolution Strategy

Evolution Strategy (ES) was developed in 1973 and is one of the oldest
evolutionary algorithms. It uses recombination, mutation, evaluation and selection
as the methodology to produce new and improved population (Rechenberg 1973).
The different selection and mutation methodologies define the different variations

of this method (Karaboga & Akay 2009).

2.1.6 Firefly Algorithm

The Firefly Algorithm (FA) is a meta-heuristic algorithm inspired by the
flashing behavior of fireflies. The firefly’s flash works as a signal system to attract
other fireflies. Yang (2011) formulates the algorithm by assuming:

1. All fireflies are unisex so that one firefly will be attracted to other fireflies
regardless of their sex

2. Attractiveness is proportional to their brightness, thus for any two flashing
fireflies, the less brighter one will move towards the brighter one. The
attractiveness is proportional to the brightness and they both decrease as
their distance increases. If there is no brighter one than a particular firefly,
it will move randomly

3. The brightness of a firefly is affected or determined by the landscape of the
objective function.

There are a number of variations of this algorithm depending on the

particular application.

2.1.7 Genetic Algorithms

This is the most popular type of EA. As described by Brownlee (2011),
Genetic Algorithms (GA) is inspired by population genetics and evolution at the
population level, as well as the Mendelian understanding of the structure and

mechanisms. Individuals of a population contribute their genetic material (called

the genotype) proportional to their suitability of their expressed genome (called
their phenotype) to their environment, in the form of offspring. The next
generation is created through a process of mating that involves recombination of
two individuals genomes in the population with the introduction of random
copying errors (called mutation). This iterative process may result in an improved
adaptive-fit between the phenotypes of individuals in a population and the
environment.

The objective of the Genetic Algorithm is to maximize the payoff of
candidate solutions in the population against a cost function from the problem
domain.

The classic pseudo-code for minimizing a cost function is as follows, even

though in the literature a big number of variations exist:

1. Define inputs: Populationg;,., Problemg;,e, P.rossoverr Pmutation
2. [InitializePopulation(Populationg;,,., Problemg;,,)
3. EvaluatePopulation(Population) and get best solution S,; from Population
4. While (Stop condition)
a. Select Parents
b. foreach Parent,, Parent, € Parents
i. Get Child,, Child, through crossover(Parent,, Parent,, P,
ii. Get Children through Mutation(Child,, Pyytation)
iii. Get Children through Mutation(Child,, Pyytation)
c¢. End foreach
d. EvaluatePopulation(Children)
e. Getbest solution Sy,
f. Getnew Population through Replace(Population, Children)
5. End while

6. Return S, ;

Table 3: Pseudo-code for Genetic Algorithms

2.1.8 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is one of the most popular meta-
heuristic optimization algorithms and for that reason a large number of variants
exist in the literature. The most basic variant works by having a swarm of particles

that move around the search space guided by their own best position and the

entire swarm best position. This algorithm is inspired by the social foraging
behavior some animals such as flocking behavior of birds and the schooling

behavior of fish (Brownlee 2011).

2.1.9 Scatter Search

Scatter Search is a meta-heuristic and a global optimization algorithm
associated with the field of evolutionary computation given the use of population
and recombination (Brownlee 2011). It is a flexible method where all its elements
can be implemented in a variety of ways and degrees of sophistication. It contains
a diversification generation method to generate an initial collection of solutions, an
improvement method to enhance the initial solution, a reference set update
method to guild and maintain a reference set of best solutions, a subset generation
method to create a base to create combined solutions and a solution combination

as arecombination procedure (Marti et al. 2006).

2.1.10 Tabu Search

Tabu Search (TS) is a meta-heuristic local optimization method that was
formalized by Glover (1989) and Glover (1990). It uses a local search procedure to
move to better solutions in a defined neighborhood. The objective for the TS is to
constrain an embedded heuristic from returning to recently visited areas of the
search space, referred as cycling. It maintains a short-term memory of the specific
changes of recent moves within the search space and preventing future moves
from undoing those changes. Additional intermediate-term memory structures
may be introduced to bias moves toward promising areas of the search space, as
well as longer-term memory structures that promote a diversification of the

solutions. TS has been mostly applied to discrete domains (Brownlee 2011).

2.2 Comparison

In general in the literature (Civicioglu & Besdok 2011, Karaboga & Akay
2009), meta-heuristic optimization methods are compared in simple landscapes
that present different kind of shapes with known optimal solution. This is good to
test general behavior of algorithms and prove how well they work, and it has also

been done during this research.

Karaboga & Akay (2009) tested the performance of the standard ABC
algorithm with the standard versions of GA, PSO, DE and ES optimization
algorithms on a large set of unconstrained test functions. It is discussed how new
candidate solutions are generated and how difficult it is to tune the parameters of
the algorithms. It is concluded on this research that the performance of the ABC
algorithm is better than the others or at least similar.

Civicioglu & Besdok (2011) compares the algorithmic concepts of CS, PSO,
DE and ABC algorithms using 50 different benchmark functions. It concludes that
the problem solving success of CS is very close to the DE algorithm, but the DE
requires less function evaluations. The CS and DE algorithms supply more robust
and precise results than the PSO and ABC algorithms.

Hegerty et al. (2009) compares DE and GA algorithms for combinatorial
problems and it concludes that even though DE has a higher level of computational
complexity, it provides more stability while GA gets stuck in local optima.

Jones (2005) compares GA and PSO concluding that GA is superior because
it is faster, gives more accurate results and it arrives to its final parameter values
in fewer generations than the PSO.

Sayadi et al. (2010) explores the FA to solve an NP-Hard optimization
problem and compares it with a version of the ACO obtaining better results in
almost all the benchmark functions tested.

For this work, Pw(, as the client, requested using a variation of GA’s called
Genetic Sampler, and according to the comparison research review, the other two
algorithms chosen to develop for this thesis are variations of CS and ABC. These
algorithms are chosen because of their potential even though there is not enough
research to conclude that one algorithm is better that all the others for any case
and it depends highly on the author of the research and his biases towards a

preferred algorithm, the tunable parameters used and the application.

2.3 Applications

[t is quite trivial to notice that since parameter calibration is an optimization
problem, any meta-heuristic algorithm previously explained is suitable for the task

if a good variation exists or is developed. In particular for the field of SD, most of

the research on this topic is old, for instance Graham (1976) and there is little new

research for the parameter calibration process with modern algorithms and it
generally works as a black box in private Software such as Vensim™ or AnyLogic™.

Oliva (2003) gives a model calibration strategy, saying that usually the
calibration of the model is done “by hand” in an iterative process He proposes two
approaches for parameter estimation: full-information maximum-likelihood via
optima filtering (FIMLOF) and model reference optimization (MRO), discarding the
first one because of the need of system linearization. The use of a module from
Vensim developed in 1995 is proposed.

Yicel & Barlas (2011) study an automated approach for parameter search
based on behavior patterns. To generate parameters it uses a standard GA. The
approach is somehow different in this case because it seeks to match pattern
behaviors and the intention is to use it even if historical data doesn’t exist.

LY 3 (2012) compares three optimization methods for a system dynamics

model with the objective of obtaining the best fit of the model to the reference
data. The three methods are: Excel optimization, manual optimization and
Vensim™ with the Euler optimization method. It is concluded that Vensim™ gives

better results.

3 Methodological Approach

3.1 Movie Release Strategies Model

This work has been requested by the company PwC and seeks to explore
new algorithms for the parameter optimization process for not only SD models,
but also for others such as agent-based and discrete events modeling. Using
AnyLogic™ as the developing Software, some JAVA functions were programmed
and applied to the “movie release strategies” model as a step forward to use these

techniques in different projects and models in the future.

3.1.1 The model

A “movie release strategies” model has been developed by Hughes (2012)
aiming to explain the variance in box-office revenue between movies and to
forecast the expected revenue as a function of a dynamic diffusion structure, the
movie’s intrinsic attributes, the movie’s release strategy, and the competitive

environment the movie is released on.

This model includes an optimization process that aims to maximize the R?
value of the box-office revenue, where a number of parameters have to be
calibrated. The author specifies that the optimization method used on his work
was not the right one because the algorithm gets stuck on local minima throughout
the mathematical landscape, making it difficult to find an optimal solution and in
certain cases, making the manual calibration more effective than the result given
by the algorithm. And because of the complexity of an SD model, a manual
parameter calibration process to find an optimal or a near-optimal solution is far
from being as effective as a good optimization method. Moreover, complex non-
linear systems, among which SD models can be found, cannot be solved with

Simplex or other linear programming methods.

3.1.2 Optimization Problem

As stated by Steel & Torrie (1960), in statistics, the coefficient of

determination, denoted by R? or R-Squared, indicates how well data points fit a

curve or in other words, it gives information about how well the model fits a set of
observations. It is a statistic used in the context of statistical models with the
purpose of testing hypotheses. This index provides a measure of how well
observed outcomes are replicated by the model, as the proportion of total
variation of outcomes explained by the model.

R? is defined by the data set of observed values y; each of which is
associated to a modeled value f;. The variability of the data set is measured with
SSior = Xi(yi — ¥)?, where ¥ corresponds to the mean of the n observed data
valuesasy = % i=1 Vi- The discrepancy between the data and the estimated values
thrown by the model are measures by the residual sum of squares as SS,.; =

Zi(yi — fl.)z. The most general definition of the coefficient of determination is

SS, . . .
R? = 1 — =% The closer this value is to one, the better the model explains the
tot

observed data.

In some cases it is possible that the coefficient of determination as the
fitness function is enough, but for this model in particular it leaded to unfeasible
solutions. For this reason Hughes (2012) adds a new characteristic in the objective
function, which is that the movie awareness peaked after the movie’s initial
release. With this, the final optimization problem was defined as follows, where

peakAwTest is a binary variable that defines if the mentioned condition is

fulfilled.

iy — fi)z
Xi (}’i —% i=1)’i)

Max<| 1— + 10(peakAwTest — 1)

2

Subject to model constraints defined as:
l; < parameter; < u;

Where y; is the revenue i, f; is the revenue obtained through the model, n is
the number of observations of y, [; is the lower boundary of parameter i and u; is
the upper boundary of parameter i. The detailed parameters are not shown here

because of privacy requirements from PwC.

3.1.3 Data and Parameters

All the data for all the analyzed movies were provided directly by PwC. It
was proposed to perform an accurate comparison to work exclusively with all the
movies from 2009 because the model was optimized only for that year in the
previous work using the gradient-based algorithm. There was no additional data
research during this project and PwC chose all the parameter boundaries in all the
steps of the process. New changes on the optimization problem definition were
discussed in meetings but most of the analysis work to come up with new
constraints or new parameter boundaries to improve the feasibility of the
solutions was done by PwC. This because some of the data was not possible to

share and most of the expertise with movie release strategies was there.

4 The Algorithms

Beyond what has already been explained by the definition of various meta-
heuristic algorithms and the comparison of some of them, it is necessary to use
modifications to correctly apply them into a particular problem. The following

lines explain how the different algorithms have been implemented.

4.1 PEST

PEST is a model-independent Software specially designed for parameter
calibration. It was the optimization tool used in the “movie release strategies”
model to estimate the parameters for each movie using the Gauss-Marquardt-
Levenberg (GML) algorithm. Opposed to meta-heuristic methods, the GML
algorithm uses gradients to obtain results.

As described by Skahill & Doherty (2006), and more generally, X being the
action of a linear model, p its m parameters, h the n observations and the vector € a
representation of the noise associated with h, the relationship of these variables
can be represented by Xp = h + €. And knowing an objective function defined by
¢ = (h— Xp)tQ(h — Xp), it can be shown that the minimization of that objective
function for p can be calculated asp = (X*QX)"1X*Qh. When a model is non-
linear, the implementation of this function becomes an iterative process, which
starts with a defined set of initial parameters requiring linearization and
upgrading the parameters for each iteration.

The best advantage of the GML algorithm is its speed, but it is very

susceptible to find local optimality instead of global optimality.

4.2 Modified Artificial Bee Colony Algorithm for Constrained

Optimization problems

The algorithm developed by Karaboga & Akay (2011) is explained as

follows:

The parameters to adjust for this algorithm are the maximum number of
cycles for the algorithm MCN, the size of the population sn, MR as a value in the
range [0,1] which controls the number of parameters to be modified, the cost
function ¢ defined here as a uniformly distributed random real number in the
range of [—1,1], the penalty function penalty defined in this case as the number of
violations to the constraints, the scout production period SPP and limit as the
maximum allowed number of cycles for the Scout bees phase.

The solution is presented asx, withi = 1,2...sn, and each solution has
associated a value failure; as a counter of the times the solution x; has not been
improved, a value violation; associated with the penalty function penalty, a
fitness value fitness; defined as the objective function of the optimization
problem, change; as an auxiliary variable assigned to a solution i for the employed

bees phase with initial value 0,

J

The number of optimization parameters is D. For every x;, x,, ... is the lower

bound of the parameter j and x,{mx the upper bound of the parameter j, with
j=12..D.
With cycle as the number of the current iteration number, the structure of
the pseudo-code is as follows:
1. Initialization
2. cycle=1
3. while cycle < MCN
a. Employed Bees Phase
b. Calculate Probabilities for Onlookers
c. Onlooker Bees Phase
d. Scout Bees Phase
e. Memorize the best solution achieved so far
f. cycle =cycle+1
4. end while

4.2.1 Initialization
Being rand (0,1) a random number between 0 and 1:

1. fori=1tosn
a. Generate a solution X; as follows:

b. forj=1toD

i. Generate a parameter x/ = x .+ rand (0.1)(x1{1ax - x1]1'1in)

min
c. end for
d. failure; =0
e. Evaluate fitness; and violation;

2. end for

4.2.2 Employed bees phase
With R; a uniformly distributed random real number in the range [0,1]

1. fori=1tosn

a. change;=0
b. Produce a new food source ¥; for the employed bee of the food
source X; as follows:
c. Choose k # i randomly from {1,2 ... sn}
d. forj=1toD
Loy {xl-j + ¢ij(xij — xxj) IfR; < MR
Y Xij otherwise
ii. if R; < MR, make change; =1
e. end for
f. if change; =0
i. Choose j randomly from {1,2 ... D}
i vy = x5 + ¢y (i — X))
g. end if
h. Apply the selection process between ¥; and X; through Deb’s
Method.
i. If solution X; does not improve failure; = failure; + 1, otherwise
failure; = 0.
2. end for

4.2.3 Deb’s Method
Deb’s method works as follows:

* Any feasible solution (violation; < 0) is preferred to any infeasible solution

(violation; > 0) (solution i is dominant)

* Between two feasible solutions (violation; < 0, violation; < 0), the one
having better objective function value is preferred (fitness; = fitness;,
solution i is dominant)

* Between two infeasible solutions (violation; > 0, violation; > 0), the one

having smaller constraint violation is preferred (violation; < violation;,

solution i is dominant).

4.2.4 Calculate Probabilities for Onlookers
With the probability values for the solutions p;:
1. fori=1tosn

fitness;

2?21 fitness;

0.5+ 0.5 <) if solution is feasible

a. Calculatep; = violation.
0.5—-0.5 <—l> if solution is infeasible

2?21 violation;

2. endfor

4.2.5 Onlooker bees Phase
1. t=0,i=1

2. whilet < sn
a. ifrand(0,1) < p; then
L t=t+1
ii. Produce a new food source 7; for the onlooker bee of the food
source X; as follows:

iii. Choose k # i randomly from {1,2, ..., sn}

iv. forj=1toD
xij + ¢i(xi; — xx;) ifR; < MR

1. Calculate v;; = { X otherwise

ij
v. end for
vi. Apply the selection process between ¥; and X; through Deb'’s
Method.
vii. If solution ¥; does not improve failure; = failure; + 1,
otherwise failure; = 0.
b. end if
c. i=i+1
d. i=imod(sn+1)

3. end while

4.2.6 Scout bees phase
1. ifcycle mod SPP = 0 And max (failure;) > limit then

a. Replace X¥; with a new randomly produced solution xij :xrjnin +
rand (0;1)(xr];lax - xilin)

2. endif

4.3 Genetic Sampler

Genetic Sampler (GS) is a new Real-parameter Genetic Algorithm that
successfully characterizes the parameter space by locating multiple unconnected
optimal regions. Ballester & Carter (2006) use this algorithm to characterize the
parameter space of an inverse problem.

In GS, two parents are selected from the current population of size N to
produce A children through the crossover operator. The objective function value
associated with each child is thereafter evaluated. Offspring and current
population are then combined so that the population remains at a constant size
through the replacement operator. Selection, crossover, fitness evaluation and
replacement form a GA iteration (as seen in the table 3). Even though genetic
algorithms are generally related to binary coding, it is possible to use real coding
to solve continuous search space problems and this is what GS does. More
specifically, the algorithm works as follows:

The GS contains five tunable parameters: the population size N (which
remains constant always), the amount of children to produce through the
crossover operator A, the number of individuals that competes against the
offspring for a place in the population NREP, the maximum number of cycles for
the algorithm MCN and 7 is a tunable parameter that defines how concentrated
the search must be around the parents (with a high n, more concentration). In
particular for GS, there is no mutation operation, and only the crossover operation
is performed to obtain a new generation of the population.

As presented in Deb & Agrawal (1995), in real-coded GAs, the variables are
directly used. In binary-coded GAs, the string length must be chosen to achieve
certain precision. The more precision required, the larger the string length

increasing then the population, which increases the computational complexity. For

this particular algorithm, real-coded GAs is used so the string is composed by the
solution itself. The pseudo-code presented here is based on the global optimization
because of its characteristics, it is not able to effectively find optimal solutions
when constraints are added.
The pseudo-code:
1. Initialization
2. fori=1to MCN
a. Selection
b. Crossovers
c. Replacement

3. end for

4.3.1 |Initialization
Being D the number of optimization parameters and rand(0,1) a random

value in the range [0,1]:
1. Create the initial population as follows:
2. fori=1toN
a. Generate a chromosome X; as follows:

b. forj=1toD
: J_] A |
i. Generate a parameter x] = x. ..+ rand(0,1)(x},qx — %)

c. end for

3. end for

4.3.2 Selection

1. Selectk,l as random integer numbers from the range [1,2, ..., N] with k # [

2. Parent,, Parent, are selected from the population.

4.3.3 Crossovers

A version of the Simulated Binary Crossover (vSBX) is used as stated in

Ballester & Carter (2004), with xj(i)is the j** component of the i*" parent. 2°TPis

the offspring.
1. fori=1toA
a. Calculate w = rand(0,1)

b. forj=1toD

4.3.4

i. Calculate u; = rand(0,1)

1
(=) o<w=os
.. Z‘U.j
ii. Calculate g; =)

(:)"“ 05<y <1

2(1-uj)

“((+8)xY +(1-8)x?) 0<u; <05
iii. y; =41 o @ w <05
S((B=8)x" +(1-B)x7) 05<wy; <1
Vi =
(=) +(1+8)xP) 0<w <05

> 0.5
g(—(1 — ﬁj)xj(l) +(3- ﬁj)xj(z)) 05<y <1 v

c. end for
d #7=3
end for

Replacement

Select NREP individuals #°** randomly from the current population
Define f;.¢; as the best function value of the best individual in the offspring

and the NREP individuals
fp

->CSt

¥“"and %°’? compete for a place in the population according to the

f(fafp)_fbest ->CSt
F(ETP)+F(25) -2 pese”)

following surviving likelihoods: p (fofp) =

f(fCSt) —fpest
FETP) (25) -2 pest

4.4 Modified Cuckoo Search

Walton et al. (2011) proposes a modified cuckoo search algorithm, which

according to classical benchmark functions gives overall better results. This is

what is going to be used to apply it in the movie model.

The modification presents two modifications

1.

The size of the step size in CS is constant and in this modification the value
of the step size decreases when the number of generations increases,

allowing more localized searching, as the eggs get closer to the solution.

The initial value is a step size 4, and each generation, a new Lévy flight step

is calculated as A/ N where G is the generation number.

2. Adding information exchange between eggs to speed up convergence. A
fraction of the eggs with best fitness are put into a group of top eggs. For
each of the top eggs, a second egg in this group is picked at random and a

new egg is then generated on the line connecting these two top eggs. The

. : : : 5
new egg is located at a distance equal to the inverse of the golden ratio %,

so it is closer to the egg with best fitness. If both eggs have same fitness, the

new egg is place in the midpoint. If the same egg is picked twice, a local
Lévy flight with step size A/ G2 starting from the picked nest.

There are two parameters: the fraction of nests to be abandoned and the
fraction that are put in the top nests. The authors propose to use 0.75 and 0.25

respectively. Deb’s rules for constraint violations are added to this modification.

4.4.1 The algorithm

A nest x; is represented by the string of solution parameters. The first step
is to define the tunable parameters of the algorithm. These are the maximum Lévy
step size A, the fraction of nests put in the top nests p;, the fraction of nests to be

abandoned p,, the maximum number of evaluations MNE and the population size n

(number of nests). The golden ratio is defined as ¢ = 1+T\/§ and the penalty function

violation; is defined as the number of constraint violations of the solution i.
The pseudo-code is constructed as follows:
Being G the number of the iteration
1. Initialization
2. for Evaluation = 1to MNE
a. G=G+1
b. Sortnests by order of fitness
c. Abandoning Phase
d. Top Nests Phase

3. end for

4.4.2 Initialization

Being D the number of parameters of the solution, x’ . the lower bound of the

min

parameter j and x,{mx the upper bound of the parameter j

1. =0

2. fori=1ton

a. forj=1toD

I.

J = o+ rand(O,l)(xr];lax - xrjnin)

x min

b. end for

c. Calculate fitness F; = f(x;)

d. Calculate violation;

3. end for

4.4.3 Abandoning Phase

1. fori=1ton*p,

a. Calculate Lévy Flight step size ox= A/\/E

b. Perform Lévy flight from x; to generate new egg x;

C. X=X

d. Calculate fitness F; = f(x;) and violation;

2. end for

4.4.4 Top nests phase

1. fori=n—nx*p,ton

a. Pickjas arandom integer value in the range [n — n * p;, ..., n]

b. if (xl' = xj)

i.
ii.
iii.
iv.

V.

Calculate Lévy Flight step size «x= A/GZ

Perform Lévy flight from x; to generate new egg x;
F, = f(x;), Calculate violation;
Pick [as a random integer value in the range [O,...,n]
if ((violation, = violation; and F, > F;) or violation; <
violation;)
1. x;=x

2. Calculate fitness F; = f(x;) and violation_l

vi.

c. else

il

iii.

iv.

Vi.

d. endif

2. end for

4.4.5 Lévy Flight

end if

dx = lzxi;]
¢

Move distance dx from the worst nest to the best nest to find
Xy considering Deb’s rules.
F, = f(x;), Calculate violation;
Pick [as a random integer value in the range [O,...,n]
if ((violation, = violation; and F, > F;) or violation; <
violation;)

1. x;=x

2. Calculate fitness F;, = f(x;) and violation,

end if

The modified CS uses a simplification of the Lévy Flight. Being randn a

Gaussian distributed value in the range [0 1], the function returns newx; with x;

and < as inputs.

1. fori=1to D

a. newx;

2. end for

= x;;+X randn

5 Research Results

The optimization process had to be applied to more than 150 movies. And it
is only after applying the parameter calibration to all the movies that it is possible
to make new conclusions about the model and to define new characteristics of the
optimization problem. It is also a matter of common sense to understand that
being this an SD model, the parameter values that optimize the R-Squared value
are not necessarily the parameter values that exist in real life, and for that reason it
is reasonable to assume that getting a parameter set that defines a very high R-
Square (if possible) is enough to accept that the model effectively represents the
data. This means that it is not necessary to look for the best existent solution, but
for a solution that is good enough. This allows some flexibility in terms of reducing
the amount of iterations the optimization algorithm needs and strengthens the the
fact that meta-heuristic algorithms only assure the finding of near-optimal
solutions.

If the idea is to learn about the model and to improve the optimization
problem to get better and more feasible solutions, and knowing that more than
150 movies have to be optimized, it is needed that the algorithms run fairly fast,
getting good solutions in a small amount of time. The first step was then, after the
literature review and selection of 3 suitable algorithms for the problem, to run
these algorithms with a maximum of iterations using mathematical functions
similar to the movie model problem with known optimal solution:

max f(x)
subjectto |;<x;<u; fori=1,..,n

Validation of the algorithms and the optimization are done through testing
with mathematical benchmark functions, meetings with the client where the
problem definition was improved and data analysis covered by PwC.

The functions are taken from Molga & Smutnicki (2005) and the results are

shown in this work.

5.1 Benchmark Functions

The functions tested are limited to a maximum of 2000 iterations because the
objective is to find good results in a very short time. It has to be taken into
consideration that an evaluation of the mathematical function is much faster than
the evaluation of an SD model. 2000 iterations assure that all the movies can be
optimized in less than 24 hours. It has to be noted also that all the algorithms get
very near to the optimal solution in all cases at some point over 2000 iterations.
The following results don’t show that, but they show how the algorithms evolve in

terms of fitness for each iteration.

5.1.1 De Jong’s Function

This function was tested with two parameters, with the test area restricted to
—5.12 < x <5.12,-5.12 < y < 5.12. The global minimum f(x) = 0 is obtainable

for x = 0,y = 0. Figure 1 presents the results for all the algorithms.

fx,y) =x%+y?

| -
. De Jong's Function
1 T T T T T T T T 1
QO%%E 400 600 800 1000 1200 1400 1600 1800 2000

0,%8%‘5)8%% iteration
0,0009766
0,0002441
6,104E-05
1,526E-05
3,815E-06 -
9,537E-07 -
2,384E-07 -
5,96E-08 -
3185000 -
2,328E-10 - S
5,821E-11 -
1,455E-11 - cs
3,638E-12 -
9,095E-13 -
2,274E-13 -
5,684E-14 -
1,421E-14 -
3,553E-15 -
8,882E-16 -
2,22E-16 -
5,551E-17 -
1,388E-17 -
3,469E-18 -
8,674E-19 -
2,168E-19 - -

Figure 1: De Jong’s Function optimization

5.1.2 Axis Parallel Hyper-Ellipsoid Function

This function was tested with two parameters, with the test area restricted to
—5.12 < x <5.12,-5.12 < y < 5.12. The global minimum f(x) = 0 is obtainable

for x = 0,y = 0. Figure 2 presents the results for all the algorithms.

fx,y) =x*+2y?

xis Parallel Hyper-Ellipsoid Function

400 600 800 1000 1200 1400 1600 1800 2000

iteration

NOWR OO

CS

RRRRR R RO
WNRROOWO

Figure 2: Axis Parallel Hyper-Ellipsoid function optimization

5.1.3 Rosenbrock’s Valley

This function was tested with two parameters, with the test area restricted to
—2<x<2,-2<y<2. The global minimum f(x) =0 is obtainable for

x = 1,y = 1. Figure 3 presents the results for all the algorithms.

f(x,y) =100(y — x*)* + (1 — x)?

5.1.4 Rastringin’s Function

This function was tested with two parameters, with the test area restricted to
—5.12 < x <5.12,-5.12 < y < 5.12. The global minimum f(x) = 0 is obtainable
for x = 0,y = 0. Figure 4 presents the results for all the algorithms.

f(x,y) =20+ [x? — 10 cos(2mx)] + [y? — 10 cos(2my)]

4194304
1048576
262144
65536
16384
4096
1024
256

64

16

4.

Rosenbrock’s Valley

Iteration

e ABC

a3 S

CS

0039063
0009766
0002441
,104E-05
,526E-05
815E-06
,537E-07
,384E-07
5,96E-08
1,49E-08

I
-1086
0,0625
0,015625 -

Fithess

000 3000 0 7000 9000 11000 13000

15000

Figure 3: Rosenbrock's Valley optimization

IS EEER S S e

RSN N
P

Rastringin’s Function

1000 1200 1400 1600

Iteration

(O T N N T T T T T T T T T T T T T T O T — O O

1800 2000

e ABC

a3 S

CS

Figure 4: Rastringin's Function optimization

5.1.5 Schwefel’s Function

This function was tested with two parameters, with the test area restricted to

—500 < x <500,-500 <y <500. The global minimum f(x) = —837.9658 is

obtainable for x = 420.9687 y = 420.9687. Figure 5 presents the results for all the

algorithms.
n
Feoy) =) [~xsin (/T
i=1
’ -
Schwefel’s Function
-300
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration
-400
-500
8
£
k=) e ABC
L]
-600 GS
CS
-700
1
-800
R D
-900
Figure 5: Schwefel's Function optimization
5.1.6 Analysis

All the algorithms give very good results in the first 2000 iterations. It can be
seen that in general GS has a slower convergence but arrives to a better result in
the long term. In particular for Rosenbrock’s Valley, it doesn’t converge well in the
first 2000 iterations, but it converges to the solution in a longer time. ABC and CS
are quite competitive and at this point, it seems like a good idea to test one of the
algorithms with the movie model to check the results. The GS was chosen to
perform the first movie model analysis using the original optimization problem

definition.

5.2 Genetic Sampler into the movie model

The GS was tested for all the movies of 2009 with the following results
compared to PEST (Table 4):

Genetic Sampler | PEST
median 1,00 0,98
mean 0,99 0,91
min 0,80 0,05
Movies with r-squared over 0.75 | 1,00 91%

Table 4: GS vs PEST for the original optimization problem

These results show an amazing improvement over the PEST
implementation, meaning that the GS was able to explore the search space more
and find better solutions for 100% of the movies. It has to be considered that
Hughes (2012) has artificially chosen an initial condition for the algorithm that
forced it to get stuck in local optima, but with feasible results. With the GS and with
this simulation run, a feasibility dilemma was shown. For example, according to
the optimization, 100% of the US audience thought that the “Fast and Furious”
movie was an appropriate movie for their tastes (theme acceptability parameter).

New restrictions were then needed to solve this problem, changing the
optimization problem to the following one with d parameters and m restrictions:

max f(x)
subjectto l;<x;<u; fori=1,..,d
hi(X)=0 forj=1,..,m

PwC expressed the fact that due to these results, and according to the
existent data, it was important to add the concept that the intention to view peaks
after the movie’s initial release, often almost doubled between the first and second
week. To add this idea, the following restriction was added where pctIWV is the
percentage of people who intended to view that actually went to see the movie in a

defined week:
hi (%) = pctIWV (week 1) — pctIWV (week 2) = 0

This change required modifications on the algorithms to be able to handle
restrictions of the form h;(X) = 0. The algorithms were changed adding the Deb’s
rule for constraints violations mentioned in the algorithms descriptions. This rule
was tested on ABC in previous research (Karaboga & Basturk 2007), but not in CS,
which could be an interesting test for a new modification for that algorithm. The

GS doesn’t have a version for constraint optimization so the application of Deb’s

rule is also new.

5.3 Benchmark Functions for Constrained Optimization

All the benchmark functions tested are taken from Runarsson & Yao (2000)

5.3.1 Function 1

The following functions has the bounds 0 <x; <1(i=1,..,9),0<x; <
100 (i = 10,11,12) and 0 < x43 < 1. The global minimum is at f(x)=-15 with
x=(1,1,1,1,1,1,1,1,1,3,3,3,1). Figure 6 presents the results for all the algorithms.

Minimize:

Subject to:

g1(x) = 2x; +2x, + x40+ x4, —10 <0
g2(x) = 2x; +2x3 + X190 + %, — 1050
g3(x) = 2x, + 2x3 + %11 + %, —10<0
—8x; +x,0=<0
—8x, +x11, <0
—8x;+x,, <0
—2X, — X5+ X100
—2X — X7 +x11 <0
—2Xg —Xg+x1, <0

5.3.2 Function 2

The following function has the bounds in 78 < x; <102,33<x, <
45and 27 < x; < 45 (i = 3,4,5) . The optimum solution is
x = (78,33,29.995256025682,45,36.775812905788) with f(x) = —30665.539.
Figure 7 presents the results for all the algorithms.

Minimize:
f(x) = 5.3578547x% + 0.8356891x; x5 + 37.293239x, — 40792.141
Subject to:

g1(x) = 85.334407 + 0.0056858x,x: + 0.0006262x,x, — 0.0022053x3xs — 92 < 0
g,(x) = —85.334407 — 0.0056858x,x; — 0.0006262x,x, + 0.0022053x,x5 < 0
gs(x) = —80.51249 + 0.0071317x,%5 + 0.0029955x,x, + 0.0021813x2 — 110 < 0
ga(x) = 80.51249 — 0.0071317x,x5 — 0.0029955x,x, — 0.0021813x2 + 90 < 0
gs(x) = 9.300961 + 0.0047026x;x5 + 0.0012547x, x5 + 0.0019085x5x, — 25 < 0
ge(x) = —9.300961 — 0.0047026x5x5 — 0.0012547x,x5 — 0.0019085x5%, + 20 < 0

4 Function 1

iteration

0 T T T T T T T 1
1000 2000 3000 4000 5000 6000 7000 8000

N
fitness

e ABC
(S

Figure 6: Constrained function optimization

Function 2

-23000 -
200 400 600 800 1000 1200 1400 1600 1800 2000

-24000 iteration

-25000
-26000
-27000
-28000
-29000

-30000

-31000

Figure 7: Constrained Function Optimization

5.3.3 Function 3
The following equation has the boundaries in 13 < x; < 100,0 < x, < 100,

with the optimum at x=(14.095, 0.84296) where f(x)=-6961.81388. Figure 8

presents the results for all the algorithms. GS fails to find a feasible solution unless
a feasible solution is randomly chosen in the initialization.
Minimize
f(x) = (1 — 10)° + (x2 — 20)°
subject to:
g1(x) = —(x; = 5)2 = (x, —5)2+100<0
g, (x) = (x;, —6)2+ (x, —5)2—8281 <0

Function 3

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-2000 iteration

-3000

-4000 e ABC
(S

-5000 €S

-6000

-7000 -

Figure 8: Constrained Function Optimization
5.3.4 Analysis

GS fails to solve the optimization problems. This is understandable due to
the fact that the algorithm was initially not meant to handle restrictions and was
designed to solve global optimization problems. The addition of Deb’s rules to
handle restrictions doesn’t work well with this algorithm mainly because the
crossover operation doesn’t take into consideration the fitness function, hence it
can’t take into consideration the restrictions. This leads to unfeasible results most
of the time. More research is needed if there is any interest in making this
algorithm work for constrained optimization problems, but it’s not the goal of this
research to do that.

On the other hand, ABC and CS are able to converge to a solution and look

quite competitive.

5.4 New Algorithms in the movie model

5.4.1 First run

The ABC algorithm was applied to the movie with the new restriction and
run again for all 2009 movies. The optimization resulted in extremely high values
of pctIWV for week one, with values of 100% in some cases. Also, things didn’t
change with the other parameters in relation with the previous run. For that
reason a new analysis was made to improve the restrictions.

In the first place, because of lack of data, the audience flow patterns were
restricted instead of directly restricting the playability (the level of interest the
movie generates after it has been released) and the marketability (the level of
interest the movie generates before it is released). Figure 9 shows this pattern
where it can be seen how the percentage of awareness (meaning the percentage of
the population that is aware of the existence of the movie) changes with the money
spent in marketing. The restriction associated to this was chose as:

marketingBudget
10000000

h,(X) = 0.08() + 0.25 — percentage of awareness = 0

percentage of awareness

0,6
% =7E-09x-0,0178
y
0,5 R? = 0,67433
0,4
0,3
0,2 ® / ¢ max_aware
' 4 -
0,1 ¥ _o° Lineal (max_aware)
0
Q Q Q Q Q
® ® ® SN
0900 0900 09@ 0900)
v > © ® Marketing Budget

Figure 9: Percentage of awareness vs Marketing Budget
Due to the high values of theme acceptability resulting from the

optimization, the value was restricted to a maximum 0.65. Leaving the following

new constraint boundaries:

0.65 = theme acceptability = 0

5.4.2 Second Run

The results obtained with the new restrictions where described by the
client as “dramatically better” than PEST, but the playability, marketability and

theme acceptance parameters were still unrealistic. The following results were

obtained:
Peak Platform Limited
box_rSq Aware Wide Release Release Release
MIN 0.5586 0.0296 0.5586 0.9223 0.8879
MEAN 0.9855 0.1748 0.9881 0.9781 0.8920
MAX 0.9996 0.6566 0.9996 0.9991 0.8960
COUNT 154 154 131 21 2
rSqover 0.9 | 0.9675 0.9771 1 0
rSq over 0.8 | 0.9870 0.9847 1 1

Table 5: Optimization run, ABC algorithm

[t was proposed after this batch to add new characteristics to the
optimization problem. To avoid marketability and playability to have unfeasible
values, it was decided to use the rotten tomato values available at

http://www.rottentomatoes.com/. Meaning that marketability was fixed to the

rotten tomato critics and playability to the rotten tomato user. Also some of the
parameters with innocuous effect were fixed and others had their range increased.
Also the pctIWV values were limited to 0.65 for the first week and 0.4 for the
second week resulting in the following new restrictions:

hs(X) = 0.65 — pctIWV (week 1) = 0
h,(X) = 0.4 — pctIWV (week 2) = 0

5.4.3 Third Run

ABC algorithm was run with the described restrictions and had better
results than PEST and also was able to achieve total feasible results. The modified
Cuckoo Search algorithm was also run to compare ABC, CS and PEST. GS was not
tried because of its failure trying to solve the benchmark functions with
restrictions. The comparison of CS, ABC and PEST algorithms are shown in table 6
and 7. CS and ABC were run for the 154 movies from 2009 obtaining clear better

results for the ABC algorithm.

CS ABC PEST

median 0,97 0,99 0,98

mean 0,90 0,93 0,91

min -0,13 -0,24 0,05

Movies with r-squared over 0.75 90% 92,81% 91%

Table 6: Final results and final optimization problem definition: CS, ABC and PEST comparison
Number of Movies

CS has better performance: 11
ABC has better performance: 131
Both have a performance over 0.999 12
Total number of movies 154

Table 7: CS and ABC comparison over 154 movies

6 Discussions / Conclusions

This work begun as an attempt to find new valuable methods to solve the
parameter calibration problem usually present in SD models, using modern
evolutionary algorithms in a transparent way and compare them to other
optimization packages present in the market. The use of self-made Software allows
a deeper analysis and a customization for the particular problem; meaning that
there are no limits in the ways it can be implemented.

Previous work on the movie model was done using AnyLogic™ as the
modeling Software and PEST as the optimization tool. AnyLogic™ is and advanced
Software that contains as a possible additional package an optimization tool called
“OptQuest”. This tool, as powerful as it can be, works as a black box and for that
reason it has certain limitations. The movie model uses three different types of
movie releases within 154 movies for the year 2009 and the test required reading
the data and optimizing all those movies to assure that the model effectively works
for any kind of release. According to the PwC, the limitations of OptQuest made
impossible to work with this model because the execution speed was extremely
low and it didn’t allow a single procedure in which all the movies could be
optimized together. And for that reason, PEST was chosen. It didn’t solve the speed
issue but it solved the fact that it was able to run all the movies together.
Nevertheless, the low speed using OptQuest or PEST was due to the fact that
AnyLogic needed to load various Excel files each time the model was executed and
it wasn’t necessarily a problem with the algorithms themselves. This issue was
solved on this work increasing this way the optimization speed dramatically.

During the implementation of the evolutionary algorithms, the model itself
was modified in order to run more efficiently and as fast as possible, allowing the
optimization of all 154 movies in less than one day, which was tenths times faster
than the PEST implementation. This allowed to not only find a better and more
suitable algorithm for the problem at hand, but also to make several runs to be
able to analyze the outputs and to refine the optimization problem definition with

its fitness function and its restrictions.

6.1 The Optimization

One of the most difficult things of any optimization problem is to
appropriately define it, including the fitness function, the restrictions and the
boundaries of the parameters that have to be tuned or estimated. During this work,
the process of defining the problem is shown with a successful outcome. With
PEST optimization, analyzing the results was very difficult because of the time it
took for the optimization to run, and the author of that work used additional
objective functions to test results instead of using constraints. According to PEST
documentation and the GML algorithm, the only constraints allowed are the
parameter’s lower and upper boundaries. It was not possible to add more
sophisticated constraints. The EA’s applied in this work are an improvement also
in that sense.

This research explored three modern optimization algorithms for the
parameter calibration of an SD model, and during this work it was also possible to
test these algorithms for global and constrained optimization problems.

GS showed very good results for global optimization but failed when Deb’s
rules for constrained optimization were added. To handle constraints, other
versions of Genetic Algorithms should be therefore used. The CS and the ABC
algorithms showed a very competitive performance for the optimization of not
only the benchmark functions, but also for the movie model, meaning that they can
be suitable to use in other models when high levels of customization are required.

Overall, ABC showed the best performance in most of the movies analyzed.

6.2 Limitations and Future Research

Unfortunately, due to the limitations of the OptQuest tool, it was not
possible to test it against the ABC. It remains to be studied if the OptQuest tool is
better than the ABC or other algorithms when it comes to calibrate the parameters
of a model. AnyLogic limits the development slightly, not allowing the creation of
user interfaces for custom experiments, meaning that the algorithms cannot be
used directly in other models and have to be reprogrammed and customized for

any new problem.

7 References

Alkallak, 1. (2012). A Hybrid Algorithm from Cuckoo Search Method with N-Queens
Problem. Raf. J. of Comp. & Math's, Vol. 9 No. 2, 2012

Asmussen, S. (2003). Applied probability and queues (Vol. 2). New York: Springer.

Ballester, P. J., & Carter, J. N. (2004, January). An effective real-parameter
genetic algorithm with parent centric normal crossover for multimodal
optimisation. In Genetic and Evolutionary Computation—-GECCO 2004 (pp. 901-
913). Springer Berlin Heidelberg.

Ballester, P. J., & Carter, J. N. (2006). Characterising the parameter space of a
highly nonlinear inverse problem. Inverse Problems in Science and
Engineering, 14(2), 171-191.

Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2009). A survey on
metaheuristics for stochastic combinatorial optimization. Natural Computing: an
international journal, 8(2), 239-287.

Bolaji, A. L., Khader, A. T., Al-Betar, M. A., & Awadallah, M. A. Artificial bee colony
algorithm, its variants and applications: A survey,"Journal of Theoretical and Applied
Information Technology, 47(2) Pages 434-459, January 2013.

Brownlee, J. (2011). Clever Algorithms: Nature-Inspired Programming Recipes. Jason

Brownlee.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1997). A new rank based version of the Ant

System. A computational study.

Civicioglu, P., & Besdok, E. (2011). A conceptual comparison of the Cuckoo-search,
particle swarm optimization, differential evolution and artificial bee colony

algorithms. Artificial Intelligence Review, 1-32.

Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search

space. Complex Systems 9 115-148.

Dorigo, M., Colorni, A., & Maniezzo, V. (1991, December). Distributed optimization by
ant colonies. In Proceedings of the first European conference on artificial life (Vol. 142,
pp. 134-142).

Glover, F. (1989). Tabu search—part I. ORSA Journal on computing, 1(3), 190-206.

Glover, F. (1990). Tabu search—part Il. ORSA Journal on computing, 2(1), 4-32.

Graham, A. K. (1976). Parameter formulation and estimation in system dynamics
models. In The System Dynamics Method, The Proceedings of the 1976 International

Conference on System Dynamics, Geilo, Norway, August(Vol. 8, No. 15, pp. 541-580).

Haro, F., & Torres, M. (2006, October). A comparison of path planning algorithms for
omni-directional robots in dynamic environments. In Robotics Symposium, 2006.
LARS'06. IEEE 3rd Latin American (pp. 18-25). IEEE.

Hegerty, B., Hung, C. C., & Kasprak, K. A (2009). Comparative Study on Differential
Evolution and Genetic Algorithms for Some Combinatorial Problems. Available for free
at: http://www.micai.org/2009/proceedings/complementary/cd/ws-
imso/88/paper88.micai09.pdf

Hu, X. M., Zhang, J., & Li, Y. (2008). Orthogonal methods based ant colony search for
solving continuous optimization problems. Journal of Computer Science and
Technology, 23(1), 2-18.

Hughes, R. (2012), Movie Model: an SD/ABM model of box-office performance”,

Proceedings of the 30th International Conference, St. Gallen, Switzerland.

Jones, K. O. (2005). Comparison of genetic algorithm and particle swarm optimization.
In Proceedings of the International Conference on Computer Systems and

Technologies.

Karaboga, D., & Basturk, B. (2007). Artificial bee colony (ABC) optimization algorithm
for solving constrained optimization problems. In Foundations of Fuzzy Logic and Soft

Computing (pp. 789-798). Springer Berlin Heidelberg.

Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee colony
algorithm. Applied Mathematics and Computation, 214(1), 108-132.

Karaboga, D., & Akay, B. (2011). A modified artificial bee colony (ABC) algorithm for
constrained optimization problems. Applied Soft Computing,11(3), 3021-3031.

Katteda, S. R., Raju, C. N., & Bai, M. L. (2011). Feature Extraction for Image
Classification and Analysis with Ant Colony Optimization Using Fuzzy Logic

Approach. Signal and image processing, An International Journal (SIPIJ), 2(4).

Kleijnen, J. P., & Wan, J. (2007). Optimization of simulated systems: OptQuest and
alternatives. Simulation Modelling Practice and Theory, 15(3), 354-362.

Kopainsky, B., Alessi, S. M., Pedercini, M., & Davidsen, P. |. (2009, July). Exploratory
strategies for simulation-based learning about national development. In 27th
International Conference of the System Dynamics Society, Albuquerque, NM.

Luke, S. (2011). Essentials of Metaheuristics. Lulu (2009). Available for free at

http://cs. gmu. edu/_sean/book/metaheuristics.

Marti, R., Laguna, M., & Glover, F. (2006). Principles of scatter search.European
Journal of Operational Research, 169(2), 359-372.

Molga, M., & Smutnicki, C. (2005). Test functions for optimization needs. Available for

free at www.zsd.ict.pwr.wroc.pl/ffiles/docs/functions.pdf

Negulescu, S. C., Oprean, C., Kifor, C. V., & Carabulea, I. (2008, August). Elitist ant
system for route allocation problem. In Proceedings of the 8th Conference on Applied

Informatics and Communications (pp. 62-67).

Oliva, R. (2003). Model calibration as a testing strategy for system dynamics

models. European Journal of Operational Research, 151(3), 552-568.

Payne, R. B., & Sorensen, M. D. (2005). The cuckoos (Vol. 15). OUP Oxford.

Rechenberg , I., (1973). Evolution strategie: optimierung technisher systeme nach

prinzipien der biologischen evolution.

Runarsson, T. P., & Yao, X. (2000). Stochastic ranking for constrained evolutionary

optimization. Evolutionary Computation, IEEE Transactions on,4(3), 284-294.

Sayadi, M. K., Ramezanian, R., & Ghaffari-Nasab, N. (2010). A discrete firefly meta-
heuristic with local search for makespan minimization in permutation flow shop
scheduling problems. International Journal of Industrial Engineering

Computations, 1(1), 1-10.

Skahill, B. E., & Doherty, J. (2006). Efficient accommodation of local minima in
watershed model calibration. Journal of Hydrology, 329(1), 122-139.

Steel, R. GD, and JH Torrie. 1960. Principles and procedures of statistics: with special

reference to the biological sciences. McGraw Hill, 1960, pp.187, 287.

Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for
global optimization over continuous spaces. Journal of global optimization, 11(4), 341-
359.

Stitzle, T., & Hoos, H. H. (2000). MAX-MIN ant system. Future Generation Computer
Systems, 16(8), 889-914.

Walton, S., Hassan, O., Morgan, K., & Brown, M. R. (2011). Modified cuckoo search: A

new gradient free optimisation algorithm. Chaos, Solitons & Fractals,44(9), 710-718.

Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. InNature &
Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on (pp. 210-214).
IEEE.

Yang, X. S. (2011). Nature-inspired metaheuristic algorithms. Luniver Press.

Yucel, G., & Barlas, Y. (2011). Automated parameter specification in dynamic feedback
models based on behavior pattern features. System Dynamics Review, 27(2), 195-215.

® E . (2012). Comparison of Three Optimization Methods Using Korean Population
Data. 322 AL ®(Ttof Ui £ 22, 13(2), 7.

8 Appendix

This appendix explains how to use all the AnyLogic files. Complicated
procedures are needed because for custom experiments AnyLogic doesn’t allow
visual interfaces. For that reason many changes have to be done by hand, changing
the JAVA code directly.

Privacy issues do not allow the presence of the model source code or
detailed data. This is because of previous agreements between PwC and the

Erasmus Mundus Masters Program on the “movie release strategies” model.

8.1 Benchmark Functions Instructions

The files attached contain a folder named “benchmark functions” where the
file “training2.alp” can be found. This file is the AnyLogic model that has all the
classes and experiments of the benchmark functions. The file “resultbook.xlsx”
contains the output of the simulations of the functions without constraints and
“resultbookC.xlsx” contains the output of the simulations of the functions with
constraints. The data has to be erased manually on the Excel files before
simulating if there is interest in seeing the results graphically. The program does
not erase the files automatically.

The “training2.alp” file has classes and experiments that are related with
the particular algorithm and the optimization modality. The class ABC corresponds
to the ABC algorithm without constraints and the class ABCC corresponds to the
ABC algorithm with constraints. The class Fitness contains the unconstrained
functions and the class FitnessC contains the constrained functions. The same
format works for CuckooSearch and GeneticSampler.

Bees experiment uses the ABC algorithm to solve the fitness functions
without constraints whiles the BeesC experiments does the same using

constraints. The same format works for Cuckoo and Genetic experiments.

8.1.1 How to run the simulations

For unconstrained simulations, the Fitness class has to be open to choose

which function to choose:

//@://De Jong’s function

//case 1://Axis parallel hyper-ellipsoid function
//case 2://Rotated hyper-ellipsoid function NOT USED
//case 3://Rosenbrock’s valley

//case 4://Rastrigin’s function

//case 5://Schwefel’s function

int function=5;

All the simulations were tested only with two parameters for the
unconstrained functions, even though there is potential to use up to 17
parameters. To modify the two parameters boundaries the following lines have to
be modified (where in this example the lower and upper boundaries are -500 and
500 respectively for each parameter:
params_1b.put("theme",-500.0); //lower boundary of parameter 0
params_ub.put("theme",500.0); // upper boundary of parameter 0
params_1b.put("mktg",-500.0); // lower boundary of parameter 1
params_ub.put("mktg",500.0); // upper boundary of parameter 1

To run the algorithm, the associated experiment without constraints has to
be chosen. The console will show the evolution of the best solutions obtained and
those solutions will be written in the output file “resultbook.xlsx”. This Excel file
contains the results in the tab with the name of the algorithm followed by the
number of the function. For instance, the ABC algorithm with the function 4 will
have its results shown in the tab ABC4.

For constrained simulations the FitnessC class has to be modified in the
same way choosing the function. For instance public int function =2; will
run the simulations using function 2. (Where function 0 in the code corresponds to
function 1 in this document, function 1 to function 2 and function 2 to function 3).
The boundaries are set as defined by the literature previously mentioned and

therefore shouldn’t be changed.

