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1

Introduction

In this thesis, we will study a new stream cipher, Grein, and a new cryptoprimitive used
in this cipher.
The second chapter gives a brief introduction to cryptography in general.
The third chapter looks at stream ciphers in general, and explains the advantages and
disadvantages of stream ciphers compared to block ciphers.
In the fourth chapter the most important building blocks used in stream ciphers are
explained. The reader is excepted to know elementary abstract algebra, as much of the
results in this chapter depend on it.
In the fifth chapter, the stream cipher Grain is introduced.
In chapter six, the new stream cipher, Grein, is introduced. Here, we look at the different
components used in the cipher, and how they operate together.
In chapter seven, we introduce an alteration to the Grein cryptosystem, which hopefully
have some advantages.
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2

Cryptography

The main goal of cryptography, is to enable two parties, commonly called Alice and Bob,
to communicate over an insecure channel, without their adversary, Eve, being able to
understand what is being said. This channel could be a telephone line, a military radio,
or the internet.

The basic model of cryptography is that the sender, Alice, has some plaintext that
she wants to send. This is then encrypted, and the resulting ciphertext is sent to the
receiver, Bob, who decrypts the ciphertext to get the plaintext.
If Eve is able to evasdrop, she should not be able to learn anything about what is in the
message. See figure 2.1 for an illustration.

The following definition is taken from [30, p. 1]:

Definition 1. A cryptosystem, is a five-tuple (P, C,K, E ,D) where the following condi-
tions are satisfied:

1. P is a finite set of possible plaintexts,

2. C is a finite set of possible ciphertexts,

3. K, the keyspace, is a finite set of possible keys,

4. For each K ∈ K, there is an encryption rule eK : P → C and dK : C → P are
functions such that dK(eK(x)) = x for every plaintext element x ∈ P.

2



Chapter 2. Cryptography 3

Figure 2.1: The communication model

The security of a cryptosystem is measured by how difficult it is to recover the plaintext.
If the only way to find this plaintext is to do an exhaustive search of the keyspace, it is
commonly agreed upon that the system is secure.

2.1 Classical Cryptography

The need for secure communication is not a new idea. Unreadable Hieroglyphs from
ancient Egypt indicate that people have been wanting to hide information for millenia.
One of the more well known cryptosystems is named after Julius Caesar, who is known
to have sent his military orders using this system.

Definition 2. The Caesar cipher is one of the oldest, known, cryptosystems.
The set of plaintexts and ciphertexts are the same (P = C), which is all possible strings
of characters from the latin alphabeth.
The keyspace is Z+, the group of all positive integers.
If the plaintext x is a string x1x2 . . . xn of characters, encryption is

eK(x) : (xi +K) (mod 26), 1 ≤ i ≤ n (2.1)

Similarly, decryption is

dK(x) : (xi −K) (mod 26), 1 ≤ i ≤ n (2.2)

Example 2.1.1. If our plaintext is “ATTACK AT DAWN” and our key K = 4, the
encrypted message becomes “EXXEGO EX HEAR”.

Fortunately for Caesar, most of his enemies were illiterate, and would not have been
able to read his messages even if they were unencrypted.
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There is however one major drawback with the caesar cipher, and that is the size of the
keyspace. By having only 26 possible keys, and only 25 of these will actually work as a
key (the first key, A, will return the plaintext.), even a novice cryptanalysist is able to
test all keys within an hour. By using a computer, this time is reduced to seconds.

Seeing how easy it is to break the Caesar cipher, it is obvious that something more
secure is needed.
Most, if not all, of the cryptography invented before 1900 is too easy to break.

2.2 Modern Cryptography

Up until the second world war, cryptography was not a very large research field, and as
a result, most of the cryptosystems were easily broken.
In the second world war however, things changed.
All of the major countries involved had their own cryptosystems, with the most known
being the German armys Enigma machine.
Some historians speculate that the war ended a couple of years earlier, because of the
allied breaking of the cipher.
The major breaktroughs didn’t come until the mid ’70s, with public key cryptography.
Before the discovery of public key cryptography, both sender and receiver needed the

same key to encrypt and decrypt messages. This key had to be sent over a secure channel
(as seen in figure 2.1).
With public key cryptography, you have two keys, one private key and one public key.

The public key can be distributed widely, so that anyone can send an encrypted message,
but only those who know the private key are able to decrypt and read the message.

Public key cryptography depends on that some mathematical problems are hard to
solve within reasonable time, such as factoring of large numbers (used in RSA [25])
and the discrete logarithm problem (used in ElGamal [11]). Public key cryptography is
sometimes referred to as asymmetrical cryptography, because the key used for encryption
is different from the key used for decryption.
In symmetrical cryptography, the same key is used for both encryption and decryption.
Symmetric ciphers are commonly divided into two further classes; stream ciphers and

block ciphers, a distinction that is sometimes a bit confusing, as block ciphers can operate
as stream ciphers.
In the next chapter we will look further into the designs of stream ciphers.
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Stream Ciphers

Stream ciphers are one of the two major classes of cryptosystems, with block ciphers
being the other major class.

Stream ciphers are mainly used in applications where speed of encryption / decryption
are a priority. Another area where stream ciphers are prevalent, are systems with low
hardware complexity, such as RFID tags. It is simply not possible to implement a block
cipher like AES on an RFID tag, due to the constrained memory and power.

The most well known stream ciphers are, in no particular order, A5/1, used in the GSM
cellular network, E0, used in Bluetooth and RC4, used in WEP.

Stream ciphers are also commonly used in military encryption, but few, or none details
surrounding these stream ciphers exist, for natural reasons.

3.1 Stream Cipher Fundamentals

In July of 1919, Gilbert Vernam patented one of the most fundamental building blocks
of stream ciphers, which we know today as the XOR operation, often denoted by ⊕.

It is usually said to operate on the two elements of F2, 0 and 1, such that

0⊕ 0 = 1⊕ 1 = 0

5
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and
1⊕ 0 = 0⊕ 1 = 1.

This is clearly the same as addition in F2.

By representing the letters of the alphabeth as 5-bit groups (25 = 32 is the smallest
sequence of bits that allows us to represent all 26 letters of the alphabeth), this enables
us to encrypt messages of arbitrary length.

Example 3.1.1. Representing the letter M as 01101 and F as 00110, and then XORing
these together, we get

01101

⊕ 00110

= 01011,

which is the letter K.

Because XOR is the same as addition over F2, adding the key to the ciphertext, we get
the plaintext.

Example 3.1.2. XORing F with K, we get

01011

⊕ 00110

= 01101,

which is the letter M, that we started with.

3.2 Classification of Stream Ciphers

Stream ciphers can, in general, be divided into two classes.
These are synchronous stream ciphers and self-synchronizing stream ciphers.

Synchronous stream ciphers depend only on plain-text and key to produce the cipher-
text.
If synchronization is lost, decryption from that point on becomes impossible.
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Self-synchronizing stream ciphers on the other hand, depend on both the plain-text and
the key, but also N of the previous cipher-text bits.
This enables a self-synchronizing stream cipher to regain synchronization if something
should happen to it.

3.3 One-Time Pad

The One-time Pad (OTP), sometimes called the Vernam Cipher, after one of its inven-
tors, was invented in 1917, and is the first example of a stream cipher using the XOR
operation.

In the first version of the OTP, the key was read from a punched tape.
However, once the tape had been read, the cipher started again from the start, creating
a loop.

A little later, Joseph Mauborgne realized that this was a potential weakness, and to-
gether with Vernam, he introduced randomness in to the key.

This was later proven by Shannon [28] to provide perfect secrecy.
Perfect secrecy means that, given the ciphertext, a cryptanalysist will gain no informa-
tion about the plaintext, except its length.

There is, however, a major drawback with the OTP.
In order to guarantee perfect secrecy, a random key of the same length as the plaintext
is needed, both for encryption and decryption.
For both sender and receiver to get a copy of the key, they either need to meet in person,
or they need a secure channel to exchange the key.
However, if they have access to a secure channel, why not let all communication go
through this channel?
Clearly, a more practical cryptosystem is needed.
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Building Blocks

In order to build a cipher, we need a certain mathematical foundation. In this chapter,
we will give a brief introduction into the theory used in creating a stream cipher.

4.1 Boolean Functions

A Boolean function in n variables, is a function f : Fn2 → F2,

The operations in F2 are addition and multiplication modulo 2.
There are several ways to represent a Boolean function. One that is frequently used in
the literature is Algebraic Normal Form or ANF.

Definition 3. The ANF of a Boolean function f in n variables is

f(x1, x2, . . . , xn) = a0 + a1x1 + · · ·+ anxn+

a1,2x1x2 + a1,3x1x3 + · · · a1,nx1xn+

a1,2,3x1x2x3 + · · ·+ an−2,n−1,nxn−2xn−1xn

...

a1,2,...,nx1x2 · · ·xn

(4.1)

where the ai is either 0 or 1, depending on whether the corresponding xi is part of the
Boolean function.

Example 4.1.1. A Boolean function in 3 three variables is

f(x0, x1, x2) = 1 + x0 + x1 + x0x2 (4.2)

8
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The algebraic degree, or just degree, of a Boolean function is equal to the greatest degree
of its ANF. The degree of the function in example (4.1.1) is 2.
If the degree of a function is 1, it is a linear or affine function.

Another common way of representing a Boolean function, is by its truth table.
This is a vector (f(v0), f(v1), . . . , f(v2n−1)), where vi is the binary representation of the
number i, 0 ≤ i ≤ 2n − 1.

Example 4.1.2. The truth table of the function in example (4.1.1) is (1, 1, 0, 0, 0, 1, 1, 0).

The truth table can also be represented as a 2n × (n + 1) table, where the rows are all
possible inputs, sorted lexicographically, the n first columns are the n variables and the
last column is the output of the function.

x0 x1 x2 f(x0, x1, x2)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Table 4.1: Truth table of function from (4.1.1)

A Boolean function f(x) in n variables, is balanced if the Hamming weigth, denoted
d(f),

d(f) =
∑
x∈Fn

2

f(x),

is equal to 2n−1.
The Hamming weigth of the function from example (4.1.1) is 4, so this function is bal-
anced.
The Hamming distance between two Boolean functions f and g is the number of oc-
curences where their output differ, or

d(f, g) = wt(f ⊕ g)

where ⊕ is the sum modulo 2 of the truth tables of f and g.
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4.1.1 Cryptographic Properties

When Boolean functions are used in a cryptographic setting, we want them to be cryp-
tographically secure.
Some properties of the Boolean function are more important than others if we wish for
them to be cryptographically secure.

Definition 4. A Boolean function f(x1, x2, . . . , xn) in n variables is correlation im-
mune of order k, if every subset of k or fewer variables in x1, x2, . . . , xn is statistically
independent of the value of f(x1, x2, . . . , xn).

Boolean functions with low correlation immunity are weaker against the correlation at-
tack [29], an attack on stream ciphers.
As a result, Boolean functions used in stream ciphers should have as high correlation
immunity as possible.

Definition 5. If we have a Boolean function in n variables, with degree d, Siegenthaler
showed that the correlation immunity k is upper bounded by k + d ≤ n, so the higher
the degree is, the lower the possible correlation immunity is.

Example 4.1.3. Returning to the Boolean function from example 4.1.1, we first fix the
value of x1 to either 0 or 1.
The resulting truth table has the same distribution as the original.
Next, we do the same with the variable x2.
We now get a truth table with a different distribution, meaning that this Boolean func-
tion is not correlation immune.

Another measure used for Boolean functions, is the nonlinearity, denoted Nf .
Nonlinearity is the minimal Hamming distance between the function f and all affine
functions, or

Nf = min
φ∈An

d(f, φ),

where An is the set of all affine functions in n variables.

Example 4.1.4. If we again look at the Boolean function from 4.1.1, we list the affine
functions in the variables x1, x2, x3, and find the Hamming distances.
By looking at the last row of table 4.2, we see that the function x2 + x3 only differs in
two positions, so the nonlinearity of f is 2.
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0 x1 x2 x3 x1 + x2 x1 + x3 x2 + x3 x1 + x2 + x3 f

0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 1 1
0 0 1 0 1 0 1 1 0
0 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 0
0 1 0 1 1 0 1 0 1
0 1 1 0 0 1 1 0 1
0 1 1 1 0 0 0 1 0
4 4 6 4 6 4 2 6 0

Table 4.2: Hamming distances for all affine functions

There are many other properties of Boolean functions, but not all of these are important
when designing a stream cipher.
For an excellent overview of the different properties related to cryptography, the book
by Cusick and Stănică [10] is recommended.

4.2 Linear Feedback Shift Registers

Figure 4.1: Feedback shift register with five registers

A shift register is a collection of n stages s0, s1, . . . , sn−1, each stage si containing either
the value 0 or 1.

The contents of the register are shifted to the left, so that si takes on the value of
si+1, 0 ≤ i < n−1, and sn−1 is updated with the output of some function f(s0, s1, . . . , sn−1).
The output is taken from the leftmost stage, s0. This produces the infinite sequence

(st) = s0, s1, s2, . . . , sp, s0, . . .

with period p.

If the function f is linear, it is called a Linear Feedback Shift Register or LFSR for short.



Chapter 4. Building Blocks 12

Figure 4.2: A Linear Feedback Shift Register

4.2.1 The Recurrence Relation

Any LFSR can be defined as a recurrence relation , with

sn+i = c0si + c1si+1 + · · ·+ cn−1sn+i−1

where the coefficients ci are either 0 or 1, with the restriction that c0 6= 0, otherwise it
would in effect be a n− 1-stage register, with the output being delayed.

Another way of saying this is that

Example 4.2.1. The recurrence relation of an LFSR of length 3 is given below:

si+3 = si+2 + si

Here, the last stage is updated with the sum of the first and last register.

Figure 4.3: The LFSR from example 4.2.1

4.2.2 The Matrix Method

Every n-stage LFSR can also be represented by an n× n matrix.
This matrix takes a special form, as seen below.
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M =



0 0 0 · · · 0 0 c0

1 0 0 · · · 0 0 c1

0 1 0 · · · 0 0 c2

0 0 1 · · · 0 0 c3
...

...
... . . . ...

...
...

0 0 0 · · · 1 0 cn−2

0 0 0 · · · 0 1 cn−1


(4.3)

By multiplying the initial vector (s0, s1, . . . , sn−1) with the matrix, the subsequent vector
(s1, s2, . . . , sn) is found.
Furthermore, taking the t-th power of the matrix, M t, and multiplying it with the initial
vector, we get the state at time t.

(s0, s1, . . . , sn−1) ·M t = (st, st+1, . . . , sn+t−1)

Example 4.2.2. If we take the matrix corresponding to the recurrence relation from
the previous example, this is the corresponding matrix:

M =


0 0 1
1 0 0
0 1 1


If the initial vector (s0, s1, s2) is set to (1, 0, 0), and we multiply this with the matrix
M , we get a new vector (0, 0, 1).
Multiplying the initial vector by M2 we get (0, 1, 1). Repeating this with increasing
powers of M , and looking at the first element, st at time t of the vector, we get the
output sequence

. . . , 1, 0, 0, 1, 1, 1, 0, . . .

with period 7.

4.2.3 Characteristic Polynomial

Alongside the recurrence relation and the matrix, there is one other common way of
representing LFSRs, and that is as a polynomial mod 2.
This polynomial can be found by finding the characteristic polynomial of the matrix
defined in 4.3, or

det(M − Ix),
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Figure 4.4: Pure cycling register

where I is the n × n identity matrix. This gives a polynomial of degree n that can be
used to further analyse the properties of the given LFSR.

Example 4.2.3. Calculating the characteristic polynomial of the matrix from example
4.2.2, we get x3 + x2 + 1, which is a primitive polynomial of degree 3.

The characteristic polynomial is a very useful method to represent LFSRs, for instance,
when we want to determine the periode of the sequence it generates.

4.2.4 Period of a Sequence

Let the period of a sequence (st) be denoted by p.
p is upper bounded by 2n− 1, and lower bounded by n, where n is the number of stages
in the LFSR.

The reason for this upper bound is that a LFSR of maximum period will cycle through
all possible states between 1 and 2n− 1. The all-zero state is not a possibility, as it will
only generate the all-zero sequence.
Similarly, if we look at the pure cycling register, as seen in figure 4.4, where the rightmost
register is updated with the contents of the leftmost register, we get a period of n.

Definition 6. If the sequence is generated by a recurrence relation with corresponding
polynomial f(x), the period is the number p such that f(x) divides 1− xp

This simple definition gives us an easy way of finding the period of a sequence, given
that we know the corresponding polynomial.

Example 4.2.4. The polynomial f(x) = x4 + x3 + x2 + x+ 1 is irreducible. By trying
increasing values of p, we find that f(x) divides 1 − x5, so the period of the sequence
generated by this feedback polynomial is 5.

For a sequence to have maximal period 2n − 1 it is a necessary, but not sufficient con-
dition, that the feedback polynomial is irreducible. This means that the polynomial can
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not be factored into polynomials of lower degree.

There are
Ψ2(n) = 1

n

∑
d|n

2dµ(n
d

)

irreducible polynomials modulo 2 of degree n, where the sum is taken over all d that
divides n and µ(n) is the Möbius µ-function.

Example 4.2.5. The polynomial f(x) = x4 + x3 + 1 is irreducible modulo 2, and it
is also a primitive polynomial. Doing the same as in (4.2.4), we find that the period
p = 15, which is the longest possible for polynomials of degree 4.

If the polynomial is also primitive, the corresponding sequence is guaranteed to be of
maximal length.

There are
λ2 = ϕ(2n − 1)

n

primitive polynomials of degree n. ϕ(n) is Euler’s totient function.

The period is also equal to the smallest p such that Mp = I, where M is the matrix
defined in 4.2.2 and I is the n× n identity matrix.

Example 4.2.6. The matrix corresponding to the feedback polynomial x4 + x3 + 1 is

M =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1



Raising this matrix to the 15th power we get


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1



15

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


which is indeed the 4× 4 identity matrix, as expected.
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4.3 Linear Complexity

The linear complexity, or linear span, of a sequence st, is defined as the shortest LFSR
able to generate the sequence st, and is denoted by L(st). The following definition is
taken from [10, p.20],

1. If st is the all-zero sequence, then L(st) = 0

2. If no LFSR generates st, then L(st) =∞

3. If there is at least one LFSR that generates st, then L(st) is the length of the
shortest LFSR that generates st. Equivalently, L(st) is the degree of the minimal
polynomial of st.

We want the linear complexity to be as high as possible. If the linear complexity of
a sequence is n, we only need 2n consecutive bits to be able to uniquely recover both
the feedback polynomial and initial state. The reason we are able to do this, is the
Berlekamp-Massey algorithm.

4.4 The Berlekamp-Massey Algorithm

In 1968, Elwyn Berlekamp designed an algorithm [3], [4] to decode Bose-Chaudhuri-
Hocquenghem (BCH) codes.
A year later, James Massey discovered [23] that the same algorithm is very powerful
when analysing LFSR sequences.

The algorithm works by viewing the sequence generated by the LFSR as a set of equa-
tions.
If we know the size n of the LFSR, and can obtain 2n consecutive bits of the output,
we know that the bits sn, sn+1, . . . , s2n−1 are all linear combinations of the n preceding
bits.
Using this information, it is fairly easy to solve this as a set of equations.

Example 4.4.1. Given the sequence . . . , 1, 0, 0, 1, 1, 1, 0, . . . generated by some LFSR
of length three.
We then know that the fourth bit is a linear combination of the three first bits, the fifth
bit is a combination of the second, third and fourth bits, and so on. Using this, we
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construct the following set of equations

c0 · 1 + c1 · 0 + c2 · 0 = 1

c0 · 0 + c1 · 0 + c2 · 1 = 1

c0 · 0 + c1 · 1 + c2 · 1 = 1

(4.4)

The matrix system corresponding to the equations from (4.4) is

[
1 1 1

]T
= A ·

[
c0 c1 c2

]T
(4.5)

or 
1
1
1

 =


1 0 0
0 0 1
0 1 1

 ·

c0

c1

c2

 (4.6)

Now, this set of equations have a unique solution if and only if the matrix A from (4.6)
has an inverse. The determinant of A, det(A) = 1, so A has an inverse.


1 0 0
0 0 1
0 1 1


−1

=


1 0 0
0 1 1
0 1 0



Multiplying this inverse with the vector
[
1 1 1

]T
, we get the new vector

[
1 0 1

]
,

corresponding to the recurrence relation

st+3 = 1 · st+2 + 0 · st+1 + 1 · st,

or just
st+3 = st+2 + st.

4.5 Non-Linear Feedback Shift Registers

Non-linear feedback shift registers (NFSRs) operate in the exact same way as the LFSRs
defined in section 4.2, except that the update function is non-linear (the degree of the
update-function is greater, or equal to, 2).
NFSRs have some advantages, but also some disadvantages.
The main advantage is that non-linearity increases the linear complexity.
However, it is difficult to predict the period, and no general theory exists. There are 22n

Boolean functions in n variables, where only 2n of these are linear.
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Figure 4.5: A non-linear feedback shift register

Example 4.5.1. Given the recurrence relation

st+3 = 1 + st + st+1st+2 (4.7)

and the initial value (s0, s1, s2) = (0, 0, 0), we get the following sequence

. . . , 0, 0, 1, 1, 0, . . . (4.8)

with period 5 and linear complexity 4. If the initial value is set too (1, 0, 1), the sequence
now becomes

. . . , 1, 0, 1, 0, . . . (4.9)

with period 4 and linear complexity 2.

From these two small examples, it is clear that things can change fast with NFSRs.
Not all NFSRs are as unpredictable. A class of these will be described in the next
section.

4.5.1 de Bruijn Sequences

de Bruijn sequences are a class of non-linear sequences, but their theory are better un-
derstood.
They take their name from Nicolaas G. de Bruijn, who rediscovered them in 1946 [2],
half a decade after they were proven to exist by C. Flye-Sainte Marie [22].
In his paper, de Bruijn proved that the number of such functions is equal too 22n−1−n,
which is significantly higher than the number of m-sequences, for a given n.
One of the advantages of de Bruijn sequences, is that they are balanced, the number
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of ones is equal to the number of zeroes.
Another advantage is that the linear complexity is significantly higher.

In their paper, Chan, Games and Key [9] prove that the linear complexity is lower
bounded by 2n − 1 and upper bounded by 2n−1 + n.
Compared with LFSRs, where the linear complexity is upper bounded by n, it is clear

that de Bruijn sequences offer some advantages.

Definition 7. A (binary) de Bruijn sequence is a sequence of period 2n, in which each
n-bit pattern occurs exactly once in one period of the sequence.
This is referred to as the span n property.

Example 4.5.2. A de Bruijn sequence of length is . . . ,1,0,1,0,0,0,1,1,. . . . Reading off
the subsequences of length 3, we get, in order, 101, 010, 100, 000, 001, 011, 111 and 110.

There exists a wide variety of methods to construct de Bruijn sequences. Fredricksen
explains most of them in is survey [12].

Perhaps the easiest way, is to add an extra zero to the longest run of an m-sequence.
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Example 4.5.3. If your m-sequence is generated by the recurrence relation

st+4 = st+1 + st, (4.10)

a de Bruijn sequence can be generated by the recurrence relation

st+4 = st+1 + st + (st+1 + 1)(st+2 + 1)(st+3 + 1)(st+3 + 1) (4.11)

Given the recurrence relation (4.10), and initial loading (s0, s1, s2, s3) = (1, 1, 0, 0), the
corresponding m-sequence is

. . . , 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, . . .

Now, with the same initial loading, but recurrence relation (4.11), the sequence is

. . . , 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, . . .

The linear complexity of the m-sequence is 4, whereas the linear complexity of the de
Bruijn sequence is 15, the upper bound for 4-stage NFSRs.

4.6 Filter Generators

A filter generator is a way of generating long sequences using a n-stage LFSR and a
Boolean “filtering function”.
The inputs to the Boolean function are taken from the different stages of the LFSR.

Example 4.6.1. The sequence generated by update function si+5 = si+3 + si generates
a sequence with maximal period of 31.
The linear complexity is 5, because the corresponding feedback polynomial, x5 +x3 + 1,
is primitive.

In his paper [18], Edwin L. Key proved that the new linear complexity is now upper
bounded by

rNm =
m∑
i=1

(
r

i

)
, (4.12)

where r is the number of stages in the LFSR, and m is the degree of the Boolean function.
In our example, where the degree of the feedback polynomial is 3, and the degree of the
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Figure 4.6: A filter generator

Boolean function is 2, we get (
5
1

)
+
(

5
2

)
= 5 + 10 = 15 (4.13)

Filter generators are an easy way to increase linear complexity, but due to correlation
attacks [29], nonlinear filtering is not enough to have a secure system.

4.7 Irregular Clocking

So far, both the LFSRs and NFSRs have been regularly clocked, one bit of keystream
have been produced every time the shift register were updated.
With irregularly clocked LFSRs, output is not necessarily generated every time the
register is clocked.

Example 4.7.1. The easiest example of an irregularly clocked sequence generator, is
seen in figure 4.7.
Here we have two LFSR, LFSR1 is run as normal, and its output is a(t), but LFSR2 is
clocked once if a(t) = 0 and twice if a(t) = 1.

This is the step-1/step-2 generator of Gollman and Chambers [14].
If both LFSRs have n stages, it can be shown that the period of z(t) is (2n − 1)2 and
the linear complexity is n(2n − 1).

Another kind of irregularly clocked stream cipher is the alternating step generator, in-
troduced by Günther [16]. This cipher consists of three LFSRs, LFSR1, LFSR2 and
LFSR3 (in Günthers paper he used de Bruijn sequences, but it is now common to use
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Figure 4.7: Irregularly clocked sequence generator

LFSRs instead).
At time t LFSR1 is clocked. If its output a(t) = 1 LFSR2 is clocked, if a(t) = 0, LFSR3
is clocked. Output is then taken as z(t) = b(µ(t))⊕ c(t− µ(t)− 1).

Figure 4.8: The alternating step generator

4.8 S-Boxes

A substitution box (S-box), or vectorial Boolean function, is a Boolean function

f(x0, . . . , xn−1) : Fn2 → Fm2 . (4.14)

If m = 1, these are the same Boolean functions introduced in section 4.1.

S-boxes can be divided into three categories:

• n > m

• n < m

• n = m

When f is an S-box with Fm2 as its image, it can be visualised as a vector with m

coordinates, where each coordinate is a Boolean function. (Sometimes S-boxes are called
vectorial Boolean functions in the literature, such as in Carlets book [8]).
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x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5
S1(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1
S2(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0
S3(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1
S4(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0

Table 4.3: S-box in four variables

In table 4.3, we have an S-box f : F4
2 → F4

2. It consists of the four Boolean functions
seen in (4.15).

S1 = 1 + x1 + x3 + x2x3 + x4 + x2x4 + x3x4 + x1x3x4 + x2x3x4

S2 = 1 + x1x2 + x1x3 + x1x2x3 + x4 + x1x4 + x1x2x4 + x1x3x4

S3 = 1 + x2 + x1x2 + x2x3 + x4 + x2x4 + x1x2x4 + x3x4 + x1x3x4

S4 = 1 + x3 + x1x3 + x4 + x2x4 + x3x4 + x1x3x4 + x2x3x4

(4.15)
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The Grain Cryptosystem

5.1 The eSTREAM Project

The eSTREAM project was a project to ”identify new stream ciphers suitable for
widespread adoption”. It started with a call for papers, where everyone could sub-
mit their own stream cipher proposal, in November 2004, and ended in April 2008.
Submissions were divided into two categories, or profiles,

1. Profile 1: “Stream ciphers for software applications with high throughput require-
ments”

2. Profile 2: “Stream ciphers for hardware applications with restricted resources such
as limited storage, gate count, or power consumption.”

The ciphers in profile 1 are HC-128, Rabbit, Salsa20/12 and SOSEMANUK and the
ciphers in profile 2 are Trivium, MICKEY and Grain.
In this chapter, we will give a description of the cipher Grain, a stream cipher designed
with implementation in hardware in mind.

5.2 Description

Grain is designed primarily for restricted hardware environments, such as RFID tags
and other environments where hardware is a limiting factor.
The internal state of Grain is 160 bits, where 80 of these bits are the key, and the re-
maining 80 bits are the initial value (IV). However, only 64 bits of the IV can be set by
the user, the 16 rightmost bits are set to 1 to avoid the all-zero LFSR.

24
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In its normal mode, both the LFSR and NFSR are clocked once for each bit of output
that is generated. However, one of the key features of Grain is that the number of
output-bits generated can be increased, at a higher cost of implementation in hardware.

5.3 Technical Details

As already mentioned, Grain consists of one 80-bit LFSR, and one 80-bit NFSR.
The LFSR st is updated with the recurrence relation

si+80 = si+62 + si+51 + si+38 + si+23 + si+13 + si (5.1)

Its corresponding feedback polynomial is

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80, (5.2)

The NFSR is updated with the sum of a non-linear Boolean function, and one bit from
the LFSR.

bi+80 =si + bi+62 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 + bi+21+

bi+14 + bi+9 + bi + bi+63bi+60 + bi+37bi+33 + bi+15bi+9+

bi+60bi+52bi+45 + bi+33bi+28bi+21 + bi+63bi+45bi+28bi+9+

bi+60bi+52bi+37bi+33 + bi+63bi+60bi+21bi+15+

bi+63bi+60bi+52bi+45bi+37 + bi+33bi+28bi+21 + bi+15bi+9+

bi+52bi+45bi+37bi+33bi+28bi+21.

(5.3)

Here, si is the left-most stage of the LFSR.
The feedback polynomial, g(x), is defined as

g(x) = 1 + x18 + x20 + x28 + x28 + x35 + x43 + x47 + x52 + x59 + x66 + x71 + x80+

x17x20 + x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71+

x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71+

x28x35x43x47x52x59.

(5.4)

Four bits from the LFSR and one bit from the NFSR are taken as input to a Boolean
function h(x), that is balanced, correlation immune of the first order and with algebraic
degree 3. The nonlinearity of h(x) is the highest possible for a function of degree 3, 12.
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h(x) = x1 +x4 +x0x3 +x2x3 +x3x4 +x0x1x2 +x0x2x3 +x0x2x4 +x1x2x4 +x2x3x4 (5.5)

where the variables x0, x1, x2, x3 and x4 correspond to the tap positions si+3, si+25, si+46, si+64

and bi+63 respectively.

The output of Grain is then defined as

zi =
∑
k∈A

bi+k + h(si+3, si+25, si+46, si+64, bi+63) (5.6)

where A = {1, 2, 4, 10, 31, 43, 56}.

Figure 5.1: The Grain Stream Cipher

5.4 Key Initialization

Before any keystream is generated, the key k is loaded into the NFSR,

bi = ki, 0 ≤ i ≤ 79 (5.7)

and the IV is loaded into the 64 leftmost registers of the LFSR

si = IVi, 0 ≤ i ≤ 63, (5.8)
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while the remaining 16 bits of the LFSR are set to 1,

si = 1, 64 ≤ i ≤ 79.

This is done to make sure that the LFSR is not loaded with an all-zero key, which would
generate the all-zero sequence.
The cipher is then clocked 160 times, with no output being generated, instead it is fed
back into both the LFSR and NFSR.

Figure 5.2: Key initialization of Grain

5.5 Throughput Rate

As mentioned earlier in this chapter, Grain produces 1 bit of output every time the two
registers are clocked.
This can, however, be increased by implementing the functions f(x), g(x) and h(x)
several times, at a cost of more hardware.
To make this implementation easier, the last 15 bits of both shift registers, si, 65 ≤ i ≤ 79
and bi, 65 ≤ i ≤ 79 are not used in either the update functions or output function.
In figure 5.3 we show how the throughput can be doubled by implementing the update
and output functions twice.
Of course, if Grain is implemented to output more than one bit per clock, it is important
to implement the shift registers to shift the corresponding number of bits at each clock.
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Figure 5.3: Grain producing two bits of output per clock

5.6 Cryptanalysis

At the time of writing, there are no known weaknesses in Grein, that are able to find
the key in less time than a brute force attack.
In the first version of Grain there were some potential weaknesses, but they were adressed
in the second, and final version of the cipher.
For more on cryptanalysis of Grain, see [6] or [19].
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The Grein Cryptosystem

Grein is a stream cipher developed by the Norwegian National Security Authority.

It takes its design from the Grain cryptosystem explained in the previous chapter, but
some alterations have been made.
Most significantly, the NFSR from Grain is replaced by a new binary tree. Some changes
to the output function have been made as well.

The specifications can be found in [26].
Grein is norwegian for branch, as in tree branch.

6.1 Description

The components of Grein are one 80-bit LFSR, update with the same update function
as in Grain (see (5.1)).
Instead of the 80-bit NFSR, we have ten 8-bit LFSRs arranged as a binary tree (see
figure 6.1).
Each of these LFSRs are updated with their own update function, all corresponding to
primitive polynomials of degree 8, to ensure maximal period.

6.2 Paths Through a Tree

Since this is a binary tree, the probability that one goes left should be the same as that
one goes right. You can imagine one of those old games, where you insert a coin, and it

29
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will “trickle down” the levels, following one of many paths on its way.
If the tree is balanced, all paths should be equally likely.
Assume a balanced tree, and let l(i) denote the number of nodes at level i. For a node u
in the tree, we use the notation in(u) and out(u) to the denote the number of incoming
and outgoing edges of u, respectively. Further, denote by

t(u) =
∑

v∈in(u)

1
2 t(v)

=1
2

∑
v∈in(u)

t(v)
(6.1)

the probability that a path hits node u, computed recursively. The tree is balanced if
t(u) = 1

l(i) for all nodes at level i.
To simulate random paths through the tree, it is natural to implement the binary deci-
sions at the nodes with pseudorandom binary sequence generators.
In Grein, this is done with small, irregularly clocked filter generators at the nodes.

Figure 6.1: The Grein tree structure

6.3 The Tree

Since the 80-bit NFSR of Grain is replaced, the total state-size of the equivalent tree must
also be 80. The tree that was chosen has structure (t(1), t(2), t(3), t(4)) = (2, 2, 2, 4),
so the nodes are implemented with 8-bit registers, to get total state-size of 80 bit.
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The tree chosen can be seen in figure 6.1 where the nodes Rij implement 8-bit filter
generators with states Snij with primitive feedback polynomials gij filtered through 5-
variable Boolean functions fij .

6.4 The Filter Generators

To simulate random decisions at the nodes, Grein uses small, nonlinearly, filtered LFSRs
that are clocked irregularly. Thus, when a path arrives at a node, the next binary path
value is given by the output from the filter generator at that particular node. To arrive
at 80-bit total state size, the 10 LFSRs all have length 8. The 10 LFSRs in the tree are
defined by primitive polynomials of degree 8 over F2. The minimal polynomials of these
LFSRs are all primitive

g11 = x8 + x4 + x3 + x2 + 1

g12 = x8 + x5 + x3 + x+ 1

g21 = x8 + x5 + x3 + x2 + 1

g22 = x8 + x6 + x3 + x2 + 1

g31 = x8 + x6 + x5 + x+ 1

g32 = x8 + x6 + x5 + x2 + 1

g41 = x8 + x6 + x5 + x3 + 1

g42 = x8 + x6 + x5 + x4 + 1

g43 = x8 + x7 + x2 + x+ 1

g44 = x8 + x7 + x3 + x2 + 1

(6.2)

If Tij denotes the characteristic matrix of gij(x), then the states Sij satisfy

Stij = Sij · T t, t = 0, 1, 2, . . . (6.3)

where multiplying the initial state of Sij with powers of T corresponds to shifting the
LFSR t times.
For simplicity the same filter function for each of the LFSRs (all fijs) are identical,

f(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 + x5 + x2x3 + x1x5 (6.4)

This function has optimal nonlinearity for a five variable function, which is 12.
Let Mij be a nonsingular 8 × 5 binary matrix. Then for each time t the output value
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atij of the generator Rij is computed by

atij = f((Sij · Tijt) ·Mij), t = 0, 1, 2, . . . (6.5)

Figure 6.2: The filter function used in Grein

6.5 Computing the Path

There are 25 = 32 equally possible paths through the tree, uniquely identified by the
binary values Xt

1, X
t
2, X

t
3, X

t
4 and Xt

5. The first value Xt
1 decides whether to go to R11

(if Xt
1 = 1) or R12 (if Xt

1 = 0). Assume that Xt
1 = 1 and that the path arrives at the

node R11. The next path value Xt
2 is then equal to the output value

at11 = f(St11 ·M11) (6.6)

of the sequence generator at R11. Or in general

Xt
2 = Xt

1a
t
11 + (Xt

1 + 1)at12 (6.7)
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Thus, if Xt
1 = 1 and Xt

2 = 0, it means that the path goes from node R11 to R22.
Similarly to (6.7), the general path values satisfy

Xt
3 =(Xt

1X
t
2 + (Xt

1 + 1)(Xt
2 + 1)at21 + (Xt

1(Xt
2 + 1) + (Xt

1 + 1)Xt
2)at22

=(Xt
1 +Xt

2 + 1)at21 + (Xt
1 +Xt

2)at22

Xt
4 =(Xt

1 +Xt
2 +Xt

3)at31 + (Xt
1 +Xt

2 +Xt
3 + 1)at32

(6.8)

while the last path variable Xt
5 satisfy

Xt
5 =(Xt

1 +Xt
2 +Xt

3)((Xt
4 + 1)at41 +Xt

4(at42 + 1)+

(Xt
1 +Xt

2 +Xt
3 + 1)(Xt

4(at43 + 1) + (Xt
4 + 1)at44)

(6.9)

where
atij = fij(Stij ·Mij). (6.10)

So, if for instance (Xt
1, X

t
2, X

t
3, X

t
4, X

t
5) = (1, 0, 0, 1, 0), the path is

1→ R11
0→ R22

0→ R31
1→ R41

0→ . (6.11)

If we know the path-values, then from the equations (6.7),(6.8),(6.9) we also know the
output-bits atij from the four sequence generators in the path.

The whole path is computed sequentially and has complexity roughly equal to
that of evaluating the Boolean function in (6.4) four times. The five path values will
then be used for the remaining operations:

• Irregular clocking (Section 6.6)

• Feedback (Section 6.7)

• Contribute to keystream (Section 6.8)

6.6 Irregular Clocking

Sequences generated by LFSRs are extremely structured and so it makes sense to add
conditional clocking to the LFSRs. Depending on the path through the tree, the LFSRs
at node Rij are clocked once or twice depending on the value of their associated Boolean
clock-functions hij . These functions take as input the path-variables Xt

2, X
t
3, X

t
4 and

Xt
5. We argue the following requirements for the functions hij . Any LFSR is either

clocked once or twice with probability 1
2 . The clock-functions should make sure that

the path-variables affect the clocking of all LFSRs in the tree, to maximize dependency
between the nodes. In particular, it should not be possible to predict the clocking of
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one LFSR by guessing only a subset of the four involved path values.

Let

g1(Xt
2, X

t
3, X

t
4, X

t
5) = Xt

3 +Xt
4 +Xt

5

g2(Xt
2, X

t
3, X

t
4, X

t
5) = Xt

2 +Xt
4 +Xt

5

g3(Xt
2, X

t
3, X

t
4, X

t
5) = Xt

2 +Xt
3 +Xt

5

g4(Xt
2, X

t
3, X

t
4, X

t
5) = Xt

2 +Xt
3 +Xt

4

(6.12)

Then the clock-functions are

hi,j(Xt
2, X

t
3, X

t
4, X

t
5) = gi(Xt

2, X
t
3, X

t
4, X

t
5) + (j mod 2) (6.13)

where h4,1 = h4,3 and h4,2 = h4,4. Thus there is a symmetry in the way the LFSRs are
clocked, in that we only need to guess four values in order to predict all the 10 registers.

6.7 Feedback

There is a feedback in the tree computed as a four-valued Boolean function in the vari-
ables Xt

2, X
t
3, X

t
4, X

t
5. The motivation of a feedback is to break up the many symmetries

and nice structures introduced by the tree structure; path variables are computations
from the past and will have complex effect on computations in the future. For
feedback, we use the function

f2(x1, x2, x3, x4) = x1 + x2 + x3 + x4 + x2x4 (6.14)

such that the feedback value becomes

wt = f2(Xt
2, X

t
3, X

t
4, X

t
5) (6.15)

for t = 0, 1, 2, . . . . The value wt is then XORed with the value starting at the top of the
tree, forming the next path value

Xt+1
1 = wt + st (6.16)

for t = 0, 1, 2, . . . where st is the value passed from the 80-bit LFSR.
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Figure 6.3: The feedback to the tree

6.8 Plugging the Tree into Grein

To benefit from analysis already published on Grain[6] [19], the designers of Grein aimed
to minimize the distance between Grein and Grain as much as possible.

Let S2 be a 4-bit S-box and

(Y t
1 , Y

t
2 , Y

t
3 , Y

t
4 ) = S2(Xt

2, X
t
3, X

t
4, X

t
5). (6.17)

In Grain, one bit bt1 is fed from the NFSR and in to the 5-bit Boolean filter function h,
together with four bits from the LFSR. Then a sum of bits bt2 from the NFSR is XORed
to the output of h again. In Grein, we have

bt1 = Y t
1 + Y t

3 (6.18)

form the input to the Grain filter-function h and

bt2 = Y t
2 + Y t

4 (6.19)

the value XORed with the output of h.

The function S2(x) chosen for Grein is the PRINCE [5] S-box.



Chapter 6. The Grein Cryptosystem 36

Figure 6.4: The Grein Stream Cipher

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S2(x) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

Table 6.1: S2: The PRINCE S-box

6.9 An Example

In this section, we will give a full walkthrough of one iteration of Grein.
All eleven registers have been loaded with all ones to simplify the calculations done.

The first thing that needs to be done, is to choose a value for X0
1 . Without loss

of generality, we set this to 1.
Next, we calculate the value of X0

2 . Because all the registers are loaded with all ones,
the output of the filters will also be 1. Thus we get

X0
2 = X0

1a
0
11 + (X0

1 + 1)a0
21 = 1 · 1 + 0 · 1 = 1.

With both X0
1 and X0

2 , we can find X0
3 in a similar fashion as we found X0

2 .

X0
3 = (X0

1 +X0
2 + 1)a0

21 +X0
1 +X0

2a
0
22 = (1 + 1 + 1) · 1 + (1 + 1) · 1 = 1
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Next, we calculate X0
4 ,

X0
4 = (X0

1 +X0
2 +X0

3 )a0
31 +(X0

1 +X0
2 +X0

3 +1)a0
32 = (1+1+1) ·1+(1+1+1+1) ·1 = 1.

Finally, we can calucalte X0
5 ,

X0
5 =(X0

1 +X0
2 +X0

3 )((X0
4 + 1)a0

41 +Xt
4(a0

42 + 1))+

(X0
1 +X0

2 +X0
3 + 1)(X0

4 (a0
43 + 1) + (X0

4 + 1)a0
44)

=(1 + 1 + 1) · ((1 + 1) · 1 + 1 · (1 + 1)) + (1 + 1 + 1 + 1) · (1 · (1 + 1) + (1 + 1) · 1)

=0 + 0 + 0 + 0 = 0

We now have (X0
1 , X

0
2 , X

0
3 , X

0
4 , X

0
5 ) = (1, 1, 1, 1, 0). With the five path variables, we can

clock the registers of the tree.
To do this, we first need the output of g1, g2, g3 and g4. Here, we omit the parameters
of the functions, as these are all the same.
We get

g1 = X0
3 +X0

4 +X0
5 = 1 + 1 + 0 = 0,

g2 = X0
2 +X0

4 +X0
5 = 1 + 1 + 0 = 0,

g3 = X0
2 +X0

3 +X0
5 = 1 + 1 + 0 = 0

and
g4 = X0

2 +X0
3 +X0

4 = 1 + 1 + 1 = 1.

We can now find the output of the clock-functions hi,j = gi + (j mod 2)
,

h1,1 = g1 + 1 = 0 + 1 = 1,

h1,2 = g1 + 0 = 0 + 0 = 0,

h2,1 = g2 + 1 = 0 + 1 = 1,

h2,2 = g2 + 0 = 0 + 0 = 0,

h3,1 = g3 + 1 = 1 + 0 = 1,

h3,2 = g3 + 0 = 0 + 0 = 0,

h4,1 = g4 + 1 = 1 + 1 = 0,

h4,2 = g4 + 0 = 1 + 0 = 1,

h4,3 = g4 + 1 = 1 + 1 = 0
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and
h4,4 = g4 + 0 = 1 + 0 = 1.

With this information, we now clock registers R11, R21, R31, R42 and R44 twice, and the
remaining registers are clocked once. The 80-bit LFSR also gets updated according to
its update function.

The next step now, is the S-box S2 from (6.1),

S2(X0
2 , X

0
3 , X

0
4 , X

0
5 ) = S2(E) = D = (1, 1, 0, 1).

We now get
b0

1 = 1 + 0 = 1

and
b0

2 = 1 + 1 = 0.

We can now find the bit for the keystream,

z0 = h(s3, s25, s46, s64, b
0
1) + b0

2 = 0 + 0 = 0.

Finally, we find
w0 = f2(X0

2 , X
0
3 , X

0
4 , X

0
5 ) = 1,

which is added to the first bit s0 of the 80-bit LFSR to generate X1
1 ,

X1
1 = w0 + s0 = 1 + 1 = 0.

Continuing this way, we find that the first 10 bits of the keystream are

0, 0, 1, 0, 0, 0, 1, 1, 1, 1, . . . .



7

A Modified Version of the Grein
Cryptosystem

The Grein cipher, explained in the previous chapter, is updated with a new family of
sequences. Hopefully this will be beneficial from a cryptographic perspective.

7.1 de Bruijn Sequences Revisited

As explained in section 4.5.1, de Bruijn sequences are sequences generated by a nonlinear
recurrence relation.
In their paper, Mykkeltveit, Siu and Tong [24, Thm 4.1], introduce a new method of
constructing de Bruijn sequences with period 2n+1 from sequences of period 2n.

In this section, we will use a sligthly different notation, for example, the nonlinear
recurrence relation

st+3 = 1 + st + st+1 + st+1st+2,

or
1 + st + st+1 + st+1st+2 + st+3 = 0

is now denoted as a function

g(x0, x1, x2, x3) = 1 + x0 + x1 + x1x2 + x3 = 0

Definition 8. Composite Recurrence Relations
Let

g(x0, x1, . . . , xn) = x0 +G(x1, . . . , xn−1) + xn = 0

39
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and
f(x0, x1, . . . , xm) = x0 + F (x1, . . . , xm−1) + xm = 0

be two recurrence relations of n and m stages respectively that generate periodic se-
quences, where G and F are Boolean functions in n−1 and m−1 variables, respectively.
Then, a composite recurrence relation, denoted as g ◦ f , is defined by [24]

g ◦ f = g(f(x0, . . . , xm), f(x1, . . . , xm+1), . . . , f(xn, . . . , xm+n−1)) = 0

which is a recurrence relation of (n+m) stages.

Example 7.1.1. Given the recurrence relation

g(x0, x1, x2, x3) = 1 + x0 + x1 + x1x2 + x3 = 0,

a recurrence relation in 3 variables, and

f(x0, x1) = x0 + x1,

we get
g ◦ f = g(f(x0, x1), f(x1, x2), f(x2, x3), f(x3, x4),

which, once calculated, we get

g ◦ f = 1 + x0 + x1x2 + x1x3 + x2x3 + x4 = 0,

which is a recurrence relation in 4 variables.

The following definiton, showing how composite recurrence relations are used to
construct new de Bruijn sequences, is also from [24]. However, the notation used here
is borrowed from [21].

Definition 9. Let g = x0 +G(x1, . . . , xn−1) +xn, which generates a de Bruijn sequence
with period 2n and let ψ(x0, x1) = x0 + x1.
Then both

h1 = g ◦ ψ +
∏
i∈Zn

o

xi
∏
i∈Zn

e

(xi + 1)

and
h2 = g ◦ ψ +

∏
i∈Zn

o

(xi + 1)
∏
i∈Zn

e

xi

will generate a de Bruijn sequence of period 2n+1. Here, Zno and Zne is the odd and even
numbers between 1 and n, respectively.
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Example 7.1.2. Let g(x0, x1, x2) = 1 + x0 + x2 + x1x2, be a Boolean function that
generates a de Bruijn sequence of period 8.
We then have

h1 = 1 + x0 + x1 + x1x2 + x2x3 + x1x2x3

and
h2 = 1 + x0 + x1 + x2 + x1x3 + x1x2x3,

which both generate de Bruijn sequences of period 16.

Sequences generated by this method will have high linear complexity, even if the
longest gap is reduced by one.

Example 7.1.3. The function h1 from the previous example generates the sequence

. . . , 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, . . .

with linear complexity 15, which is the highest for a recurrence relation in 4 variables
(See [9] for proof on this). Removing the first 0 reduces linear complexity to 12.

7.2 Advantages of de Bruijn Sequences

The motivation for substituting linear m-sequences with nonlinear de Bruijn sequences,
is the fact that they are balanced.
Hopefully, this will make the distribution of the path variables more uniform, i.e., all
paths are equally probable.
If the path variables are more uniformly distributed, this could also affect the output of
the S-box, making this more uniform as well.
As an added bonus, de Bruijn sequences have much higher linear complexity, which
should make cryptanalysis harder.

7.3 Implementation

To easier differentiate the two versions of Grein, the original, with LFSR-sequences, and
the new version, with de Bruijn sequences, we will call the original version Grein-L and
the new version Grein-d.

Implementing Grein-d was done exactly the same as when implementing Grein-L,
the only difference being the functions used to generate the de Bruijn sequences.
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To find 10 different de Bruijn sequences of length 256, we used five different m-
sequences, and applied the method explained in Section 7.1. The different functions
used can be found in (7.1). The function G(s) is the Boolean function defined Section 7.1.

g11 = s0 + s1 + s2 +G(s) + s1s3s5s7(s2 + 1)(s4 + 1)(s6 + 1)

g12 = s0 + s1 + s2 +G(s) + s2s4s6(s1 + 1)(s3 + 1)(s5 + 1)(s7 + 1)

g21 = s0 + s3 + s4 +G(s) + s1s3s5s7(s2 + 1)(s4 + 1)(s6 + 1)

g22 = s0 + s3 + s4 +G(s) + s2s4s6(s1 + 1)(s3 + 1)(s5 + 1)(s7 + 1)

g31 = s0 + s1 + s4 +G(s) + s1s3s5s7(s2 + 1)(s4 + 1)(s6 + 1)

g32 = s0 + s1 + s4 +G(s) + s2s4s6(s1 + 1)(s3 + 1)(s5 + 1)(s7 + 1)

g41 = s0 + s4 + s5 +G(s) + s1s3s5s7(s2 + 1)(s4 + 1)(s6 + 1)

g42 = s0 + s4 + s5 +G(s) + s2s4s6(s1 + 1)(s3 + 1)(s5 + 1)(s7 + 1)

g43 = s0 + s1 + s2 + s5 +G(s) + s1s3s5s7(s2 + 1)(s4 + 1)(s6 + 1)

g44 = s0 + s1 + s2 + s5 +G(s) + s1s3s5s7(s2 + 1)(s4 + 1)(s6 + 1)

(7.1)

Besides these different functions, no other changes were made.

7.4 Statistical Tests

The National Institute of Standards and Technology have made a suite of statistical
tests [1] to test random and pseudorandom number generators. These tests are well
suited to test if a stream cipher is also statistically secure.

The test suite is comprised of fifteen tests that should all be passed, for a PRNG
to be considered secure.

A list of the test that are done can be found in [1, Chap. 2].
Among the tests are the Frequency Test, where the number of ones and zeroes is counted,
and both these numbers should be close to N

2 .
Other tests are the Runs Test, Frequency within a Block, Fast Fourier Transform and
the Linear Complexity Test.

The tests are run several times, and a P-value is computed. This value is used
as a measure for wether the sequence is random or not. If the P-value is below our
significance level α = 0.01, the sequence is considered non-random. Otherwise, the
sequence is considered random.
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In our experiments, two sequences of length 1, 000, 000, 000 were generated, one
sequence generated using Grein-L and the other sequence using Grein-d.
All registers were loaded with the all-one state. The test suite from NIST was then run
with parameter 1,000,000, and 1,000 bitstreams were generated. In Appendix B, the
results for both Grein-L and Grein-d can be found.

For analyising the test results, NIST gives recommendations on how to interpret
the results.

First of all, the proportion of sequences passing the tests is found. This is done
by computing a confidence interval, defined as

p̂± 3

√
p̂(1− p̂)

m
,

where p̂ = 1− α and m is the sample size, 1,000.
In our case, the confidence interval is 0.99±0.00943928. Looking at the P-value plots in
figures 7.1 and 7.2, we find that both Grein-L and Grein-d pass all the statistical tests
within the confidence interval.

The distribution of P-values should also be uniform. To check for this, the P-values
are divided into 10 intervals between 0 and 1, and the P-values that occur within each
interval is counted and displayed in a histogram. In figures 7.3 and 7.4 the histograms
for Grein-L and Grein-d, it can be seen that both Grein-L and Grein-d have a uniform
distribution of the P-values. It could, however, be argued that Grein-L has a more
uniform distribution.

Looking at the tables in Appendix C, we find that both Grein-L and Grein-d pass
all of the statistical tests.

7.5 Path Distributions

In order to test our theories, a new implementation of Grein is necessary.
The only change, being that the nodes now contain non-linear feedback shift registers
producing de Bruijn sequences, instead of linear feedback shift registers.
For the rest of this thesis, we will denote the original version of Grein by Grein-L and
the new version by Grein-d, to emphasize that the only difference is the LFSRs used in
Grein-L and de Bruijn sequences used in Grein-d.

In order to test the distribution of the path variables, both the original and mod-
ified version of Grein was clocked 100000 times.
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Figure 7.1: P-values of Grein-L
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Figure 7.2: P-values of Grein-d
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The path variables x1, x2, x3, x4 and x5 were then represented as a 5-bit number,

nx =
4∑
i=0

xi24−i,

0 ≤ nx ≤ 31.
We then count the number of occurences for each number nx and divide this by 100000.
Ideally, this number should be as close as possible to 1

32 , or 0.03125.

Because of the fact that an m-sequence contains 2n−1 ones and 2n−1 − 1 zeroes,
we expect that paths with higher Hamming weigth occur more often than paths with
low Hamming weight. If this is true, it might be exploited by a cryptanalysist.
The modified version of Grein however, should not have this uneven distribution.
The results are listed in full in table B.1 on page 53.
As can be seen in figure 7.5, the path probabilities of Grein-d are centered around
0.03125, while the path probabilities of Grein-L are much more scattered.

Another measure that can give us some insight, is the standard deviation, σ. This
shows us how much variation from the sample average there is. Clearly, it should be as
close to 0 as possible. In Grein-L, this value is 0.000257 and in Grein-d it is 0.000057.
Clearly, both versions have very low standard deviation.

We also compute the correlation between probability of paths taken and the Ham-
ming weight of the path, and find that for Grein-L it is 0.7287, where it is 0.1252 for
Grein-d. This is also supported by the plots in figure 7.5.

That some paths are more likely to be chosen in Grein-L is something that can be
used by a cryptanalysist, so it seems clear that Grein-d has an advantage in this regard.

7.6 S-box Distributions

As with the paths through the tree, we want the output of the S-box S2 to be as uniform
as possible. This means that it should output the 16 different output values an even
number of times, or 1

16 = 0.0625.

By looking at the plots in figure 7.6, we can see that both versions of Grein are
centered around 1

16 , but Grein-d has a smaller difference.

Computing the standard deviation, we find that for Grein-L it is 0.00049, and for
Grein-d it is 0.000082. Again, both these values are quite close to 0, as we wanted. We
can also compute the correlation coefficient of the S-box distributions. Here we find that
correlation in Grein-L is -0.2878 and the correlation in Grein-d is -0.0554.
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Figure 7.5: Plot of path distributions. Grein-L on top, Grein-d on the bottom.
Probabilites along the x-axis, Hamming-weight along the y-axis.
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Figure 7.6: S-box plots. Grein-L on the left, Grein-d on the right

Looking at the plots in figure 7.6 and these statistical results, it seems that the
S-box chosen

7.7 Feedback

The feedback function f2, as seen in figure 7.7, whose output is combined with the output
of the 80-bit LFSR to get the value Xt+1

1 is one other part of the cipher that could also
be exploited by a cryptanalysist. As the image of f2 is F2, the function should output
1 as often as it outputs 0. By again running the cipher 10000000 times and counting
the occurences of zeroes and ones, this should give a fair measure of how balanced the
output is.

First, we check Grein-L, and find that f2 outputs 0 0.4998166 percent of the time.
We then do the same with Grein-d, where we find that it outputs 0 0.4999068 percent
of the time.



Chapter 7. A Modified Version of Grein 49

Figure 7.7: How the feedback function f2 is integrated



8

Conclusions

By interpreting the results from the previous chapter, it seems clear that both Grein-L
and Grein-d are suitable as stream ciphers, with Grein-d having some slight advantages,
due to the more uniform distribution of the paths through the tree.

These advantages seem to be mitigated by the S-box, however, the use of de Bruijn
sequences will also have the benefit of increasing the linear complexity.

8.1 Further Work

Some research should be done to test if other configurations of the tree offer more or
less security. Shift registers of length 4, 5, 10 and 16 could be used to get a keyspace of
length 80.
Alternatively, shift registers of differing lengths can be used, as long as they add up to
a keyspace of length 80.
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Appendix A

Tapping Matrices

M11 =



1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1



M12 =



0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



M21 =



1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



M22 =



0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1



M31 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



M32 =



1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0


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M41 =



0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



M42 =



1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1



M43 =



0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1



M44 =



0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1





Appendix B

Path Distributions

In this appendix, the path distributions from the tree in section 6.3.

nx pl(nx) pd(nx) nx pl(nx) pd(nx)
0 0.0307346 0.0312174 16 0.0309148 0.0312376
1 0.0309829 0.0312268 17 0.0308432 0.0312359
2 0.0310657 0.0312097 18 0.0312283 0.0312306
3 0.0311299 0.0312139 19 0.0310167 0.0312817
4 0.0311225 0.0312157 20 0.0309946 0.0312419
5 0.0310453 0.0312125 21 0.0312419 0.0312498
6 0.0315369 0.0312556 22 0.0313602 0.0312689
7 0.0313628 0.0313893 23 0.0314163 0.0312586
8 0.0312049 0.0312717 24 0.0310208 0.031258
9 0.0311095 0.0312768 25 0.0312376 0.0312358
10 0.0314744 0.0312182 26 0.0313357 0.0312535
11 0.0312032 0.0312223 27 0.0313944 0.0312515
12 0.0312619 0.0312562 28 0.0313915 0.0312414
13 0.0314775 0.0312343 29 0.0313004 0.0312246
14 0.031616 0.0312916 30 0.0317637 0.0312401
15 0.0316659 0.0312729 31 0.0315459 0.0313038

Table B.1: Probabilities of path distributions. pl is the original, LFSR-based Grein,
while pd is the new, de Bruijn-based Grein
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id lfsrprob dbprob
0 0.0627148 0.062501
1 0.0627172 0.0623398
2 0.063233 0.0624949
3 0.0621932 0.0625351
4 0.0620605 0.0625562
5 0.0621027 0.0624861
6 0.0621622 0.0624461
7 0.0625427 0.062525
8 0.062661 0.0626138
9 0.0629577 0.0625469
10 0.0630175 0.0625906
11 0.063409 0.0625467
12 0.0623157 0.0625184
13 0.0616196 0.0623979
14 0.0622404 0.0623366
15 0.0620529 0.062565



Appendix C

Statistical Test Results

In this appendix, the results of the tests introduced in section 7.4 are listed.

The input to the tests were 100,000,000 bits generated by Grein-L and Grein-d,
respectively.

These bits were divided into 100 distinct keystreams. The reason for the large
number of bits is because some of the tests require a minimum of 1,000,000 bits as
input, and these were divided into 100 bitstreams of length 1,000,000.

The same battery of tests were also run on the keystream produced by an LFSR
of length 30, with a period of 230 − 1.

In Table C.1 the results for Grein-L can be seen. The results for Grein-d are found
in table C.2. For comparison, the results for the LFSR of length 30 are in table C.3.
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P-VALUE PROPORTION STATISTICAL TEST
0.911413 10/10 Frequency
0.739918 10/10 BlockFrequency
0.739918 10/10 CumulativeSums
0.739918 10/10 CumulativeSums
0.213309 10/10 Runs
0.017912 10/10 LongestRun
0.213309 10/10 Rank
0.534146 10/10 FFT
0.534146 10/10 NonOverlappingTemplate
0.534146 10/10 OverlappingTemplate
0.739918 10/10 Universal
0.350485 10/10 ApproximateEntropy
0.452799 60/61 RandomExcursions
0.452799 61/61 RandomExcursionsVariant
0.739918 10/10 Serial
0.213309 9/10 Serial
0.350485 10/10 LinearComplexity

Table C.1: Statistical tests on Grein-L
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P-VALUE PROPORTION STATISTICAL TEST
0.213309 10/10 Frequency
0.350485 10/10 BlockFrequency
0.739918 10/10 CumulativeSums
0.534146 10/10 CumulativeSums
0.035174 10/10 Runs
0.534146 10/10 LongestRun
0.739918 10/10 Rank
0.739918 10/10 FFT
0.122325 10/10 NonOverlappingTemplate
0.911413 10/10 OverlappingTemplate
0.911413 10/10 Universal
0.350485 10/10 ApproximateEntropy
0.494392 58/58 RandomExcursions
0.289667 57/58 RandomExcursionsVariant
0.122325 10/10 Serial
0.350485 10/10 Serial
0.350485 10/10 LinearComplexity

Table C.2: Statistical tests on Grein-d
P-VALUE PROPORTION STATISTICAL TEST
0.637119 96/100 Frequency
0.534146 100/100 BlockFrequency
0.964295 96/100 CumulativeSums
0.191687 97/100 CumulativeSums
0.779188 99/100 Runs
0.971699 100/100 LongestRun
0.000000 0/100 Rank
0.224821 100/100 FFT
0.554420 97/100 NonOverlappingTemplate
0.017912 99/100 OverlappingTemplate
0.574903 99/100 Universal
0.366918 94/100 ApproximateEntropy
0.289667 56/56 RandomExcursions
0.419021 56/56 RandomExcursionsVariant
0.005358 97/100 Serial
0.162606 99/100 Serial
0.000000 0/100 LinearComplexity

Table C.3: Statistical tests on LFSR of length 30
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