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Abstract A model combining the first-order and the second-order variational
regularizations for the purpose of 3D surface reconstruction based on 2D sparse
data is proposed. The model includes a hybrid fidelity constraint which allows
the initial conditions to be switched flexibly between vectors and elevations. A
numerical algorithm based on the augmented Lagrangian method is also proposed.
The numerical experiments are presented, showing its excellent performance both
in designing cartoon characters, as well as in recovering oriented three dimensional
maps from contours or points with elevation information.

1 Introduction

Image processing has a strong influence and impact on our world, finding applica-
tions in almost all areas from nanophysics to astrophysics, from biology to social
sciences, from robotics to smart phone applications, etc. 3D surface reconstruction
from sparse data is both a challenging and an interesting image processing task.

One area of application of the surface reconstruction has been the sketch based
3D design, which has attracted much attention, cf. [1–5], because it is intuitive and
effective, particularly in applications like cartoon and game design. To a sketch
based method, the only known informations are information given on sparse lines,
for instance in the form of contours [2], without specifying the heights, or in
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the form of complex sketches with elevation [3], or structured annotations [6].
However, the methods proposed in those papers are limited in their capabilities
in reconstructing structures with crease. The crease can be added artificially [7].
However, a simple and automatic method is still necessay when the task becomes
large, complex and computationally intensive. Recently, to this end, there is a
method been proposed [8,9] which interpolates the normal vectors under curl-free
constraint and then reconstructs the 3D surface based on the obtained vector
field. The method [8,9] is based on the previous work on surface reconstruction
from surface gradients [10–17] and inspired by TV-Stokes method [18–22] where
actually the curl-free constraint comes from. The main difference of this method [8,
9] compared to the other two-step methods [15,23] is that, instead of the Laplace
operator, an TV regularizer is employed which is better in edge preserving. In
addition, a more physical constraint, the curl-free constraint is introduced by the
method. The numerical results show an excellent performance in preserving edges
and crease structures.

Another area of application has been the 3D surface reconstruction based only
on height values (contours) or both height values and vectors. The height values
are needed because the reconstructed surfaces for such applications are expected
to be as precise as possible to the ground truth, e.g. the digital elevation maps and
data compression. One way is to use explicit parameterization of given contours
with subsequent pointwise matching and interpolation [24–26]. For such models,
the parametrization may be difficult and expensive to compute, and the loss of
continuity of slope across contours is a challenge. Another way is to treat the ex-
pected surface as a function over the considered domain. A renowned model is the
absolutely minimizing Lipschitz extension (AMLE) interpolation model, see [27,
28], based on the PDE theory. The AMLE has a drawback in interpolating slopes.
To overcome, one can rely on high-order differential operators or regularizations
[29–33]. The method addressed in [33] introduces a third order anisotropic regu-
larization together with a way to find an auxiliary vector field. The method results
in clear surfaces with anisotropic features.

It is however desirable to recover the 3D surface with enough precision at
the same time to be able to adjust the shape of the reconstructed surface by
tuning vectors. For instance in case of data compression, it may be helpful to
store vectors (relative positions) along with sparse elevations instead of single the
sparse elevations for correct representations. The aim of this paper is to propose
a versatile model incorporating both height and vector information in one place.
We thus propose a one-step model with a combination of first-order and second-
order variational regularizations under a hybrid fidelity constraint consisting of
both elevation and normal vectors. The main contributions of our research can be
summarized as follows:

• The model allows for adjusting normal vectors intuitively and a more precise
representation of the elevations. It preserves both structures and details.
• A fast and efficient numerical algorithm based on the augmented Lagrangian

method [34–36] is proposed which can be used for 3D surface reconstruction
of cartoon and digital map based on very sparse 2D input data.

The paper is organized as follows. In section 2, we propose our model with a
first-order and a second-order regularizations and a hybrid constraint. In section 3,
we present numerical method based on augmented Lagrangian. Numerical experi-



Sparse-data Based 3D Surface Reconstruction for Cartoon and Map 3

ments on cartoon design and three dimensional map reconstructions are presented
in section 4. Finally, in section 5, we give our conclusion.

2 Proposed Model

We first explain the model presented in [8,9] before we propose ours. We define the
surface as the graph of I given by the points (x, y, I(x, y)) ⊂ R3 in the space, where
I is a function of the coordinates x and y over a two dimensional domain Ω ⊂ R2.
The normal vector to the surface or the graph is then given by (−∂xI,−∂yI, 1).
Projecting it to the xy−plane, we get the 2D normal vectors as (−∂xI,−∂yI). Be-
cause I is a scalar-valued function, the curl of the gradient of I must be zero. Based
on this, a curl-free model has been proposed in [8,9]. They first interpolated the
normal vector n := (∂xI, ∂yI) by solving the following constrained minimization
problem

min
n

{∫
Ω

(1− g)|∇n|F + g|∇n|2F + η

∫
Γ

|n− n∗|
}
, (1)

subject to the curl free condition

∇× n = 0,

where n∗ is the known normal vector along some given sparse lines or strokes Γ ,
g is the parameter for a convex combination of the TV and the H1 norm, and η is
the parameter to balance between the regularization terms and the fidelity term.
We note that | · |F is used to denote the standard Frobenius norm [38]. The height
map I is then reconstructed by solving the following minimization problem

min
I

{∫
Ω

(1− h)|∇I − n|+ h|∇I − n|2 + ξ

∫
Σ

|I − I0|
}
, (2)

where n is the normal vector field obtained from the first minimization step, I0 is
the known elevation along some given sparse lines or strokes Σ, h is the parameter
for a convex combination of TV and H1 norms, ξ is the parameter to balance
between the regularization terms and the fidelity term.

It is obvious that reconstructing a 3D surface would require both constraints,
the one on the normal vector n and the one on the height I, corresponding to the
fidelity terms of (1) and (2). However, since the model above is not coupled, it is
hard to satisfy both constraints simultaneously, and therefore the resulting surface
may deviate from the surface actually being sought.

We therefore propose the following one-step model including both the height
and the normal vector constraint, that is the hybrid constraint.

min
I

{∫
Ω

g|∇(∇I)|F + h|∇I|+
∫
Γ

η|∇I − n0|+
∫
Σ

θ|I − I0|
}
, (3)

where h and g are parameters for the first and the second variational regulariza-
tions, respectively. We note here that because our model is of second order, it
naturally satisfies the curl free condition.
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3 Augmented Lagrangian Method

For the numerical solution of the problem (4), we derive an augmented Lagrangian
method, cf. [34]. Augmented Lagrangian method is preferred because it is in gen-
eral fast and efficient; for its use in image processing, we refer to e.g. [35,36].

In order to be able to define our entire minimization problem over the whole
domain, we replace the two fidelity parameters η and θ with the following param-
eters,

η̂ =

{
η, on Γ

0, in Ω\Γ,
and θ̂ =

{
θ, on Σ

0, in Ω\Σ.

We get our model (3) reformulated as follows,

min
I

{∫
Ω

g|∇(∇I)|F + h|∇I|+ η̂|∇I − n0|+ θ̂|I − I0|
}
. (4)

We shall introduce some auxiliary variables and turn the above minimization
problem into an equivalent constrained minimization problem. For the four L1-
norm terms in the above functional, introducing one new variable to each, we get
four new variables Q := ∇E, P := ∇I, C := P, and S := I, corresponding to
|∇(∇I)|F , |∇I|, |∇I − n0|, and |I − I0|, respectively. In addition, for the term
|∇(∇I)|F , we introduce another variable E := P in order to avoid dealing with
high order terms. The unconstrained minimization problem (4) is then converted
to an equivalent constrained optimization problem as:

min
Q,P,C,S

{∫
Ω

g|Q|F + h|P|+ η̂|C− n0|+ θ̂|S − I0|
}

such that

P−∇I = 0; E−P = 0; Q−∇E = 0; S − I = 0; and C−P = 0,

where C,E,P ∈ R2 are 2-dimensional vectors, and Q ∈ R2×2 is a 2-by-2 matrix.
Using Lagrange multipliers and adding penalty terms for each condition, we get
the following augmented Lagrangian functional

L
(

Q,P,C,S,I,E;
ΛQ,ΛP ,ΛC ,λS,ΛE

)
=

∫
Ω

g|Q|F + h|P|+ η̂|C− n0|+ θ̂|S − I0|

+ΛQ · (Q−∇E) +
cQ
2
|Q−∇E|2F

+ΛP · (P−∇I) +
cP
2
|P−∇I|2

+ΛC · (C−P) +
cC
2
|C−P|2

+λS · (S − I) +
cS
2
|S − I|2

+ΛE · (E−P) +
cE
2
|E−P|2,

where ΛQ, ΛP , ΛC , λS and ΛE are Lagrange multipliers, cQ, cP , cC , cS and cE
are positive penalty parameters. That is, the augmented Lagrangian method is to
seek a saddle point of the following problem:

min
Q,P,C,S,I,E

max
ΛQ,ΛP ,ΛC ,λS,ΛE

L
(

Q,P,C,S,I,E;
ΛQ,ΛP ,ΛC ,λS,ΛE

)
. (5)
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For the solution we solve its associated system of optimality conditions with an
iterative procedure, see Algorithm 1 and Algorithm 2. For the sake of convenience,
we use Λ := (λS , ΛP , ΛC , ΛQ, ΛE) to denote the Lagrange multipliers.

Algorithm 1: The augmented Lagrangian for (5)

Set k = 0 ;

Initialize Q0, P0, C0, S0, I0, E0 and Λ0 ;

while not converged do

Set k = k + 1 ;

Given Λk−1, solve the minimization problem:

(Qk,Pk,Ck, Sk, Ik,Ek) = arg min
Q,P,C,S,I,E

L(Q,P,C, S, I,E;Λk−1); (6)

Update the Lagrange multipliers:

λkS = λk−1
S + cS(Sk − Ik); ΛkP = Λk−1

P + cP (Pk −∇Ik);

ΛkC = Λk−1
C + cC(Ck −Pk); ΛkQ = Λk−1

Q + cQ(Qk −∇(Ek));

ΛkE = Λk−1
E + cE(Ek −Pk);

end

Algorithm 2: Alternating minimization for (6)

Set l = 0 ;

Initialize
Qk,0 = Qk−1; Pk,0 = Pk−1; Ck,0 = Ck−1;

Sk,0 = Sk−1; Ik,0 = Ik−1; Ek,0 = Ek−1;

while not converged and l < L do

Solve the sub-minimization problems:

Qk,l+1 = arg min
Q
L(Q,Pk,l,Ck,l, Sk,l, Ik,l,Ek,l;Λk−1);

Pk,l+1 = arg min
P
L(Qk,l+1,P,Ck,l, Sk,l, Ik,l,Ek,l;Λk−1);

Ck,l+1 = arg min
C
L(Qk,l+1,Pk,l+1,C, Sk,l, Ik,l,Ek,l;Λk−1);

Sk,l+1 = arg min
S
L(Qk,l+1,Pk,l+1,Ck,l+1, S, Ik,l,Ek,l;Λk−1);

Ik,l+1 = arg min
I
L(Qk,l+1,Pk,l+1,Ck,l+1, Sk,l+1, I,Ek,l;Λk−1);

Ek,l+1 = arg min
E
L(Qk,l+1,Pk,l+1,Ck,l+1, Sk,l+1, Ik,l+1,E;Λk−1);

Set l = l + 1 ;

end

Set (Qk,Pk,Ck, Sk, Ik,Ek) = (Qk,L,Pk,L,Ck,L, Sk,L, Ik,L,Ek,L).

Because the variables Q, P, C, S, I and E in L(Q,P,C, S, I,E;Λk−1) are coupled
together in the minimization problem (6), it is difficult to solve them simultane-
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ously. We split the minimization problem into six sub minimization problems, and
solve them alternatively to convergence, see Algorithm 2.
The six sub-minimization problems can be formulated in a more specific and clearly
way as in the following:

• The Q-subproblem needs to solve:

Q? = arg min
Q

∫
Ω

g|Q|F + ΛQ ·Q +
cQ
2
|Q−∇E|2F . (7)

• With Λ̃ := ΛP − ΛE − ΛC , the P-subproblem needs to solve:

P? = arg min
P

∫
Ω

h|P|+ Λ̃ ·P +
cP
2
|P−∇I|2

+
cE
2
|E−P|2 +

cC
2
|C−P|2. (8)

• The C-subproblem needs to solve:

C? = arg min
C

∫
Ω

ΛC ·C +
cC
2
|C−P|2 + η̂|C− n0|. (9)

• The S-subproblem needs to solve:

S? = arg min
S

∫
Ω

λS · S +
cS
2
|S − I|2 + θ̂|S − I0|. (10)

• The I-subproblem needs to solve:

I? = arg min
I

∫
Ω

−ΛP · ∇I +
cP
2
|P−∇I|2 − λS · I +

cS
2
|S − I|2. (11)

• The E-subproblem needs to solve:

E? = arg min
E

∫
Ω

ΛE ·E +
cE
2
|E−P|2 − Λq · ∇E +

cQ
2
|Q−∇E|2F . (12)

For the first four sub-minimization problems, we can find closed form solutions.
Each problem has one L1-norm term, and either one or more than one quadratic
terms in its objective functional. Such problems can be solved using either a sub-
gradient method, cf. [37], or a geometric method, cf. [36]. However, we will use
a different approach to get the close form solutions in this work. We propose a
simpler approach which is based on the optimality condition of the minimization
functionals, i.e. the Euler-Lagrange equations. More details on this will be given
below, see also Definition 3.1. For the last two sub-minimization problems, we
solve them by the discrete cosine transform, see Remark 3.1.

Definition 3.1 If A and B are two matrices such that A = λB for some non-
negative real number λ, then we say that A is compatible with B. It is easy to see
that A/|A|F = B/|B|F .

In the following, we elaborate more on the details in getting close form solutions
or design fast solvers for the subproblems.
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3.1 Solving the Q-subproblem (7):

The optimality condition, that is the Euler-Lagrange equation, for the Q-
subproblem (7) is as follows

g

cQ

Q?

|Q?|F
+ Q? = ∇E− ΛQ

cQ
.

Since g and cQ are both positive numbers, the matrices Q? and (∇E − ΛQ
cQ

) are

both compatible in the sense of Definition 3.1, according to which, we can replace
Q?/|Q?|F with (∇E− ΛQ

cQ
)/|∇E− ΛQ

cQ
|F . Now moving it to the right hand side,

we get

Q? =

(
1− g

cQ|∇E− ΛQ
cQ
|F

)(
∇E− ΛQ

cQ

)
.

Again since Q? and ∇E − ΛQ
cQ

are compatible, the coefficient on the right hand

side, that is

(
1− g

cQ|∇E−
ΛQ
cQ
|F

)
, must be non-negative, and hence

Q? = max

{
0, 1− g

cQ|∇E− ΛQ
cQ
|F

}(
∇E− ΛQ

cQ

)
.

With the derivation given above, we have shown an easy way to get a close form
solution for the subproblem. We shall use similar techniques to get close form
solutions for some of the other subproblems.

3.2 Solving the P-subproblem (8):

The corresponding Euler-Lagrange equation for the P-subproblem (8) is the fol-
lowing,

h

cP + cE + cC

P?

|P?| + P? =
cP∇I + cEE + cCC

cP + cE + cC
− Λ̃

cP + cE + cC
.

Use X to denote cP∇I+cEE+cCC
cP+cE+cC

− Λ̃
cP+cE+cC

. In the same way as before, since h,
cP , cE and cC are positive numbers, both vectors P? and X are compatible (cf.
Definition 3.1). Accordingly, we replace P?/|P?| with X/|X|, and move it to the
right hand side, to get

P? =

(
1− h

(cP + cE + cC)|X|

)
X.

Again since P? and X are compatible, the coefficient

(
1− h

(cP+cE+cC)|X|

)
must

be non-negative. Hence

P? = max

{
0, 1− h

(cP + cE + cC)|X|

}
X.
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3.3 Solving the C-subproblem (9):

The corresponding Euler-Lagrange equation is the following,

C? − n0 +
η̂

cC

C? − n0

|C? − n0| = P− n0 − ΛC
cC

.

Since η̂ and cC are both positive numbers, it follows that both vectors C? − n0

and P − n0 − ΛC
cC

are compatible (cf. Definition 3.1). Accordingly, we replace

(C? − n0)/|C? − n0| with (P− n0 − ΛC
cC

)/|P− n0 − ΛC
cC
|, and move it to the right

hand side, to obtain

C? − n0 =

(
1− η̂

cC |P− n0 − ΛC
cC
|

)
(P− n0 − ΛC

cC
).

Again since C? − n0 and P− n0 − ΛC
cC

are compatible, the coefficient(
1− η̂

cC |P−n0−ΛC
cC
|

)
must be non-negative. Hence

C? = n0 + max

{
0, 1− η̂

cC |P− n0 − ΛC
cC
|

}(
P− n0 − ΛC

cC

)
.

3.4 Solving the S-subproblem (10):

The Euler-Lagrange equation is the following,

S? − I0 +
θ̂

cS

S? − I0

|S? − I0| = I − I0 − λS
cS
.

Again using the fact that θ̂ and cS are both positive numbers, it follows that
S? − I0 and I − I0 − λS

cS
have the same sign. Replacing (S? − I0)/|S? − I0| with

(I − I0 − λS
cS

)/|I − I0 − λS
cS
|, and moving it to the right hand side, we obtain

S? − I0 =

(
1− θ̂

cS |I − I0 − λS
cS
|

)(
I − I0 − λS

cS

)
.

Because S? − I0 and I − I0 − λS
cS

have the same sign, the coefficient(
1− θ̂

cS|I−I0−
λS
cS
|

)
must be non-negative. Therefore

S? = I0 + max

{
0, 1− θ̂

cS |I − I0 − λS
cS
|

}(
I − I0 − λS

cS

)
.
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3.5 Solving the I-subproblem (11):

The Euler-Lagrange equation is the following inhomogeneous modified Helmholtz
equation,

∇ · ∇I? − cS
cP
I? = ∇ ·P +

1

cP
∇ · ΛP −

cS
cP
S − 1

cP
λS ,

with the Neumann boundary condition,

∇I? · ν = (P +
1

cP
ΛP ) · ν,

where the ν denotes the outward unit normal vector on the boundary of the
domain. The Euler-Lagrange equation, with the boundary condition, is solved by
the discrete cosine transform. Details are given in Remark 3.1.

3.6 Solving the E-subproblem (12):

The corresponding Euler-Lagrange equation is the following,

∇ · ∇E? − cE
cQ

E? =
1

cQ
ΛE −

cE
cQ

P +
1

cQ
∇ · ΛQ +∇ ·Q,

which is a set of two inhomogeneous modified Helmholtz equations, one equa-
tion for each component of E = (E1, E2), and corresponding Neumann boundary
conditions,

∇E1 · ν = (Q1 +
1

cQ
ΛQ1) · ν,

∇E2 · ν = (Q2 +
1

cQ
ΛQ2) · ν,

where Q1 and Q2 are the row vectors of the matrix Q, and ΛQ1 and ΛQ2 are
corresponding Lagrange multipliers, respectively. ν is the outward unit normal on
the boundary of the domain. Each equation is solved in the same way as in the
I-subproblem, cf. Remark 3.1.

Remark 3.1 The last two sub-minimization problems, each reduces to solve a par-
tial differential equation of the form

4u(x, y)− λu(x, y) = F (x, y),

with a Neumann boundary condition and λ a non-negative number, also known as
the inhomogeneous modified Helmholtz equation. A fast solver based on discrete
cosine transform similar for the Poisson equation, cf. [39,40], is developed as the
following treatment.

Using the singular value decomposition, the discrete Laplace operator
−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1





10 Bin Wu et al.

takes the form of [40],

−C>
[

0
Σ2

]
C,

where C is theN×N discrete cosine transform matrix andΣ = diag(σ1, · · · , σN−1)
is the diagonal matrix with its diagonal entries representing the singular values

σk = 2 sin
πk

2N
for k = 1, 2, · · · , N − 1. Now using this the discrete (matrix) formu-

lation of the inhomogeneous modified Helmholtz equation then reads

−uC>
[

0
Σ2
x

]
C − C>

[
0
Σ2
y

]
Cu− λu = F.

A further transformation using ũ = CuC> and F̃ = CFC>, results in

−ũ
[

0
Σ2
x

]
−
[

0
Σ2
y

]
ũ− λũ = F̃ .

The solution of the above equation can be obtained by a direct entrywise division
due to the linearity of the equation as well as the non-singularity of the coefficient
matrix, and is formulated as

ũ = F̃ ./M,

where ./ denotes the entrywise division and M is the N × N coefficient matrix
defined as

M = −


0 σ2

1,x · · · σ2
N−2,x σ2

N−1,x

σ2
1,y σ2

1,x + σ2
1,y · · · σ2

N−2,x + σ2
1,y σ2

N−1,x + σ2
1,y

...
...

. . .
...

...
σ2
N−2,y σ

2
1,x + σ2

N−2,y · · · σ2
N−2,x + σ2

N−2,y σ
2
N−1,x + σ2

N−2,y

σ2
N−1,y σ

2
1,x + σ2

N−1,y · · · σ2
N−2,x + σ2

N−1,y σ
2
N−1,x + σ2

N−1,y

− λ,

u is defined on a squared N×N domain. The solution of the initial inhomogeneous
modified Helmholtz equation is thus calculated as

u = C>((CFC>)./M)C

using discrete cosine transform.

4 Numerical Results

For the numerical results, we consider the two different cases of surface recon-
struction, namely, the 3D cartoon generation and the three dimensional map re-
construction, where in the first case we are given normal vectors along strokes
while in the second case we are given both normal vectors and elevation data
along contours and isolated points. The numerical tests are done using the aug-
mented Lagrangian algorithm, Algorithm 1-2. Algorithm 1 is stopped when the
total energy stabilized. For Algorithm 2, it was enough to use only one iteration.

In the cartoon case, we start with normal vectors along the strokes, which are
given by artists. The results are shown in Fig. 1. Since we do not have the elevation
data I0, we set θ = 0. In these experiments, we do not have flat surfaces, and hence
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Illustrating the cartoon case, where the input data are vectors along strokes (the
top row) drawn by artists. The vectors are not shown here. The corresponding 3D cartoons
generated by our algorithm, are shown in the bottom row. The parameters are g = 0.5, h = 0,
θ = 0, and η = 5.0.

we set h = 0. For flat surfaces h needs to be nonzero. We have used g = 0.5 and
η = 5.0. As we can see from the Fig. 1, the algorithm is effective in preserving
both structures and details.

In our next experiment with cartoon, we investigate the effect of the second
order regularization by varying the g. The results are shown in Fig. 2, where the
strokes and the normal vectors along the strokes are kept the same. θ is set equal
to 0 in the experiment since the initial elevation is not known. h is set equal to 0
as we do not expect flat structures. The parameter g varies from 0.01 to 2.0 and
the parameter η stays fixed at 5.0. As we can see in Fig. 2, the edges get sharper
as g grows.

In our next experiment, we consider the 3D surface reconstruction of maps.
The input data includes contours with height values, and isolated points with
normal vectors. Fig. 3 presents the results with two different sparsities of input
data, respectively 5.18% and 2.38%. The given normal vectors are kept the same
for both cases, and are represented by the blue points, as shown in Fig. 3 (c) −
Fig. 3 (d). The case in Fig. 3 (d) has much less information on elevation than the
case in Fig. 3 (c), represented by the red points. The parameters for both cases
are g = 0.1, h = 0, θ = 105 and η = 106. The results show that, if we have
adequate vector information, even with less height data, our model preserves the
main feature of the 3D maps perfectly.
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(a) g = 0.01 (b) g = 0.1 (c) g = 0.5

(d) g = 1 (e) g = 1.5 (f) g = 2

Fig. 2 Illustrating the effect of the second order regularization by varying the parameter g.
In these tests, h = 0, θ = 0, and η = 5.0.

In Fig. 4, we compare the effect of using vector constraint. Fig. 4 (a) shows the
result of using the hybrid constraint while Fig.4 (b) shows the result using only the
elevation data constraint. As we can see that without the vector constraint, in this
test case, there is some loss of structure in the valley. The test cases in Fig. 4 (a) and
Fig. 4 (b) have the same input points. The test case in Fig. 4 (b) has only elevation
data as input, while in the test case in Fig. 4 (a) the elevation data is replaced
with normal vectors for some points. Fig. 4 (d) the same reconstruction is made
using the method [33] which is based on 3rd order anisotropic regularization. As
we can see that our method manages to preserve the small structure comparatively
better even with sparser data, because we have the flexibility to input additional
information to our model like the normal vectors.

In the final experiment, cf. Fig. 5, the effect of the first order regularization
is studied. As seen in the figure, the groundtruth contains a flat valley, cf. Fig.
5 (a) and Fig. 5 (d). The parameters g, η and θ are kept the same in the whole
experiment, whose values are g = 0.1, η = 0 and θ = 106. In Fig. 5 (b) and Fig. 5
(e), h = 100 while in Fig. 5 (c) and Fig. 5 (f) h = 0. As seen from the figure that
∇I term is needed to preserve the flat valley structure.
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(a) Reconstructed surface corresponding
to sparsity of Figure (c)

(b) Reconstructed surface corresponding
to sparsity of Figure (d)

(c) Input data sparsity: 5.18% (d) Input data sparsity: 2.38%

Fig. 3 3D surface reconstructions with two different sparsities of input data. Height values
are given at red points, and normal vectors are given at blue points.

5 Conclusion

We have proposed a model for 3D surface reconstruction based on 2D sparse
hybrid data, that is involving both height values and normal vectors in the same
model, allowing for flexible control of their fidelity. An effective algorithm based on
the augmented Lagrangian has been developed, where we split the minimization
problem into six sub minimization problems, each with either a closed form solution
or a fast solver. The proposed model is well suited for both 3D cartoon design and
digital 3D elevation maps. Because it allows for flexible use of both the height data
and the vector information, which can be on sparse curves or points, it has the
potential to be used in areas where precise reconstruction of surfaces, represented
by rather sparse data, are needed, and rather quick, for instance in real time
applications like the web-based 3D visualization of maps, 3D GPS navigation, and
3D online gaming.

Acknowledgements XC Tai acknowledges the support from Norwegian Research Council
through ISP-Matematikk (Project no. 239033/F20). The authors also thank Dr. Jie Qiu for
providing us example strokes.
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(a) Algorithm 1 and 2; hybrid constraint;
input sparsity 5.24%

(b) Algorithm 1 and 2; elevation constraint;
input sparsity 5.24%

(c) The groundtruth (d) Algorithm of [33]; elevation constraint on
contours; input sparsity 7.42%

Fig. 4 Figures showing 3D reconstructions of map using different fidelity constraints, both
elevation and vector constraint (hybrid) in Figure (a), only elevation constraint in Figure (b),
using our algorithm, and elevation constraint on contours using the algorithm of [33] in Figure
(d).
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