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Summary  

 

Introduction Cardiovascular diseases are the leading cause of death worldwide. It can be 

defined as a group of interrelated diseases of the heart and blood vessels, including 

atherosclerotic cardiovascular diseases. Acute myocardial infarction (AMI) may be the first 

manifestation of coronary heart disease (CHD) or it may develop during more chronic stages 

of CHD. The major risk factors for CHD are tobacco use, unhealthy diet, obesity, physical 

inactivity, hypertension, diabetes, and hyperlipidemia. Thus, life style changes affecting these 

risk factors are important in primary and secondary prevention of CHD.  

A high CHD risk diet comprises high intakes of fat, refined sugar, meat and low intake of 

fruits and vegetables. The essential nutrient choline, which is the focus of the current study, is 

found in virtually all foods, but meat and other animal products are the main sources of 

dietary choline among omnivorous populations. These are food items that, in accordance with 

current dietary guidelines, should be limited in our diet. Intak of choline has been linked to 

increased AMI risk. However, few studies have investigated the association between choline 

intake and risk of AMI in patients with established CHD.  

 

Objective To analyse a possible association between choline intake and risk of AMI in 

patients with suspected stable angina pectoris. 

 

Methods We used data from 2019 patients from the Western Norway B-Vitamin Intervention 

Trial who underwent coronary angiography at baseline. Average food consumption for the 

previous year was collected via a 169-item food frequency questionnaire at baseline. Total 

intakes of choline and choline species were adjusted by total energy intake by using the 

residual method. For continuous variables, we used Students T-test to analyze differences 

between patients who developed AMI and those who did not, and linear regression to explore 

trends across quartiles of total choline intake. For dichotomous and categorical variables 

logistic regression and Fisher’s exact test were used, respectvely. 

For estimating the risk of AMI, Cox proportional hazards regression models were used. 

Hazard ratios and confidence intervals are presented per 100 mg increase in total choline 

intake and for each 10 mg increase in free choline, phosphatidylcholine, phosphocholine, 

sphingomyelin and glycerophosphocholine. Three models were tested to control for 

confounders on the effect of dietary choline on risk of AMI. Finally, potential non-linear 
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associations between choline intake and risk of AMI were explored using general additive 

models.  

 

Results Mean (SD) daily total choline intake among the 2019 participants was 294 (65.1) mg 

(79.7% were men, mean age was 61.8 (9.7) years). No significant association between 

choline intake and sex, age, prior CVD or extent of coronary artery disease (CAD) at 

baseline. Higher choline intake was however positively associated with several established 

CVD risk factors including smoking (p <0.001), BMI (p <0.001), hypertension (p <0.005), 

diabetes (p < 0.001), serum glucose (p <0.001), but inversely associated with plasma total 

homocysteine (Hcy) (p <0.001). No association was observed with lipid related parameters. 

During a median follow up of 7.2 (2.4) years, 297 patients experienced an AMI. In the crude 

model, adjusted for total energy intake, the risk of AMI increased with 28% (CI 1.09-1.49) 

for each 100 mg increase in choline intake. Model 2 was also adjusted for sex, age, smoking, 

previous AMI, previous coronary artery bypass grafting (CABG) and extension of CAD at 

baseline. Model 3 was further adjusted for BMI and diabetes. In the multivariate models the 

risk was slightly attenuated. Intake of phosphatidylcholine and sphingomyelin was positively 

associated with risk of AMI, whereas intake of free choline, phosphocholine and 

glycerophosphocholine showed no association with AMI risk.  

 

Conclusion In patients with SAP, a higher intake of choline is associated with a number of 

established risk factors for CVD but with independent excess risk of AMI. 
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1. Introduction 

1.1 Cardiovascular Disease 

1.1.1 Background 

 

Cardiovascular disease (CVD) is a group of diseases of the heart and blood vessels that are 

interrelated. Within this group, we find atherosclerotic CVDs that include coronary heart 

disease (CHD), diseases of the aorta, cerebrovascular disease and diseases of the peripheral 

arteries.  

CVD is a noncommunicable disease responsible for over 4 million deaths each year 

among Europeans, an estimated 45% of all deaths. Seventy percent of those CVD deaths are 

due to CHD (1.8 million) and cerebrovascular disease (1.0 million). In addition, more women 

than men die of CVD, 2.2 million (49% of all deaths) against 1.8 million (40% of all deaths), 

respectively (Townsend et al, 2016). CVD is still the number one death cause in Europe 

(Townsend et al., 2016), and worldwide (Rajaie and Esmaillzadeh, 2011), having caused 17.3 

million deaths or 31.5% of all deaths globally in 2013 (Townsend et al., 2016). Despite 

constant and significant efforts to combat disease, CVD grows in importance globally, 

especially in low- and middle-income countries (Mendis et al., 2011).  

1.1.2 Acute Myocardial Infarction  

 

CHD may manifest as stable angina pectoris (SAP), unstable angina pectoris, acute 

myocardial infarction (AMI), heart failure and sudden death (Hinchliffe and Green, 2014; 

Mendis et al., 2011). AMI may be the first manifestation of CHD or it may develop in 

patients already treated for established CHD (Thygesen et al., 2012). An incident AMI is 

usually defined as the first AMI in a subject, but in this study it will be defined as the first 

AMI developed during follow-up of the patients. 

An AMI usually develops secondary to progression atherosclerosis (Mendis et al., 

2011; Fox et al., 2006) and after an individual experiences the first AMI event, there is a 

higher risk to experience AMI in the future (Mendis et al., 2011; Thygesen et al., 2012). 
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1.1.3 Stable Angina Pectoris 

 

According to the European Society of Cardiology guidelines (Fox et al., 2006), SAP affects 

around 0.1 – 1% of women between 45 and 54 years old, and 10 – 15% of women between 

65 and 74 years old. Among 45 to 54-year-old men, the prevalence is around 2 – 5%, and in 

men aged 65 to 74 years old, prevalence is 10 – 20%. 

SAP is a clinical syndrome characterized by chest pain or shortness of breath (Fox et 

al., 2006). When these symptoms are caused by myocardial ischemia is usually due to 

underlying obstructive atherosclerotic disease in the coronary arteries. The diagnosis is 

usually referred to as suspected SAP if the status of the coronary arteries is unknown.  

1.1.4 Established Risk Factors 

 

The established risk factors for CHDs inlcude tobacco use, unhealthy diet, physical inactivity, 

obesity, hypertension, diabetes and hyperlipidaemia (Liu et al., 2000; Mendis et. al., 2011; 

Hames, 2014), and excessive use of alcohol (Raymond and Couch, 2012). Although most 

studies use total cholesterol, low density lipoprotein cholesterol (LDL-C) and high-density 

lipoprotein cholesterol (HDL-C) together with triglycerides (TG) as parameters of lipid 

status, measuring the concentrations of the main apolipoproteins of the LDL-C particle 

(apoliprotein B – ApoB) and HDL-C particle (Apolipoprotein A1 – ApA1) is used in many 

studies in order to get an estimate of pro-atherosclerotic LDL-C particles and 

antiatherosclerotic HDL-C particles. Notably, the ApoB/ApA1 ratio has been shown to be a 

particular strong predictor of CHD for different age groups, both sexes and also for ethnic 

groups (Yusuf et al., 2004). 

To prevent CVDs, the current available guidelines have prioritized some lifestyle 

aspects to change these established risk factors: cessation of tobacco use, reduction of salt in 

the diet and control of blood pressure, consuming fruits and vegetables or healthy food 

choices, regular physical activity, management of blood lipids and diabetes, weight control 

and restricting central obesity, and avoiding harmful use of alcohol (Hames, 2014).  

1.1.5 Diet and Cardiovascular Disease 

 

For many years now, it has been well known that an unhealthy diet is an important risk factor 

for CVD. In fact, poor diet together with smoking and poor or no physical activity form the 



12 
 

base for the development of CVDs, as well as the pillar or target for prevention and treatment 

(Mozaffarian, 2012; Yusuf et al., 2004; Hu and Willett, 2002).  

The nutrient that historically has caused most concern with regard to CVD is dietary 

fat, the culprit in the classic diet-heart hypothesis (Weinberg, 2004). The essence of this 

hypothesis is that amount of fat in the diet has a negative impact on blood lipids, increasing 

the level of serum cholesterol, which leads to the development of atheromatous plaques, and 

then obstructive CHD, ischemia and AMI (Willett and Stampfer, 2013). As a consequence of 

this campaign, guidelines recommending low fat diets were launched, subsequently 

increasing the total intake of carbohydrates in populations (Willett and Stampfer, 2013; 

Weinberg, 2004). Nonetheless, substitution of fat with carbohydrate, especially refined or 

with high glycemic load, may have contributed to weight gain and obesity, dyslipidemia, 

diabetes and metabolic syndrome that prevail today (Weinberg, 2004). Based on results from 

more recent studies, it has been concluded that the types of fat are more imperative for CVD 

than its amount (Lockheart et al., 2007; Hu et al., 2001). Increasing intake of polyunsaturated 

fatty acids (PUFA) (Jakobsen et al., 2009), monounsaturated fatty acids (MUFA), fiber, and 

complex carbohydrates are associated with a healthy cardiovascular status, while refined 

carbohydrate (Hu et al., 2001; Liu et al., 2000), trans fatty acids (TFA), some types of 

saturated fatty acids (SFA) (longer-chain saturated FA, i.e., 12:0 – 18:0) and cholesterol have 

been positively associated with CVD (Hu et al., 2001). 

In addition to nutrients, certain food groups have also been recommended for 

prevention of CVD or to counteract its progression. The food groups that have shown to have 

a preventive effect on CVD development are: fruit and vegetables, nonhydrogenated plant 

oils, nuts, whole grains and fish (Lockheart et al., 2007; Hu and Willett, 2002), and also 

protein from plants compared to animal proteins (Chalvon-Demersay et al., 2016). 

Many dietary guidelines have made their recommendations to combat CVDs based on 

the Mediterranean diet (Hames, 2014). Those recommendations comprehend reducing SFA 

intake, TFA and cholesterol, to include omega-3 fatty acids (eicosapentaenoic acid and 

docosahexaenoic acid) in the diet, limiting salt intake, eating plant sources of stanols and 

sterols to reduce cholesterol, to consume fruits and vegetables daily, include nuts in the diet 

and fiber, substitute some animal protein by soya protein, refined carbohydrates are to be 

avoided,  folic acid should exceed 400µg/day, and foods rich in vitamins B12, B6 and 

riboflavin should be encouraged too (Hames, 2014). A modest amount of alcohol would have 

some protective effects on CVDs for those at increased risk (Hames, 2014). Available 

evidence suggest that the Mediterranean diet can be an effective tool to prevent CVD 
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(Martinez-Gonzalez and Bes-Rastrollo, 2014), it has been inversely associated with 

inflammation (Chrysohoou et al., 2004) and with reduced risk of CVD (Martinez-Gonzalez 

and Bes-Rastrollo, 2014). 

Finally, in addition to nutrients and food groups, authors have identified overall 

dietary patterns to be linked with CVD risk. A so-called prudent diet has been linked with a 

preventive effect and is characterized by a high intake of vegetables, fruit, legumes, whole 

grains, fish and poultry. In contrast, a Western pattern is associated with an increased CVD 

risk, and is characterized by a high intake of processed meat, red meat, butter, high-fat dairy 

products, eggs, and refined grains (Lopez-Garcia et al., 2004; Fung et al., 2001). A prudent 

pattern has also been associated with reduced plasma levels of inflammation markers and 

with less endothelial dysfunction (Basu et al., 2006; Lopez-Garcia et al., 2004). This may be 

so because it is usually accompanied by health promoting behaviors, as taking supplements 

(Hu et al., 2000), exercising and not smoking, which is in opposition to the Western pattern 

(Lockheart et al., 2007; Hu et al., 2000). Some of the positive effects on disease may be a 

consequence of the healthy behaviors connected to fruit and vegetable ingestion or even to 

the reduced intake of deleterious foods (Ness and Powles, 1997).  

1.2 Choline 

1.2.1 Diet 

 

Choline is a quaternary amine (2-hydroxyethyl-N,N,N-trimethylammonium) (EFSA, 2016), 

and choline is an essential nutrient for humans (Zeisel and Corbin, 2012; Buchman et al., 

2001; Blusztajn, 1998), although choline can be synthesized by the human body (McDowell, 

2008). Choline is, via its metabolite betaine, a source of dietary methyl-groups.  

 

                         Figure 1. Choline chemical structure. Reprinted with permission of the author Ueland, 2011 

 

Choline in the diet can be found as free choline (Figure 1) and it comes from the most 

common choline-containing compounds in the diet that are phosphatidylcholine, 

glycerophosphocholine, phosphocholine, and sphingomyelin (Zeisel and Corbin, 2012). In 

smaller concentrations, choline can also be found in cytidine-5-diphosphate-choline and 

acetylcholine (EFSA, 2016). Although many foods contribute to total choline intake (Table 
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1), eggs, liver, peanuts and a variety of meats are especially rich in this nutrient (Blusztajn, 

1998). In Europe, the main sources of choline are meat and meat products, milk and dairy, 

grain and its products, egg and egg products, composite dishes and fish and seafood for all 

age groups (Vennemann et al., 2015).  

 

Table 1. Total choline and choline species content in different foods (mg/ 100 g)  

                                   Food item TC FC GPC Pcho Ptdcho SM 

Beef liver, cooked, pan fried 420 57 78 12 250 24 
Egg, whole, cooked, hard boiled 230 0.7 0.5 0.5 210 14 
Soybean, mature seeds, raw 120 47 2.9 1.1 65 0 
Pistachio nuts, dry roasted, with salt added 71 11 1.7 8.5 51 0 
Fish, salmon, sockeye, cooked, dry heat 66 8.6 5.9 1,1 48 1.8 
Peanuts, all types, raw 53 18 1.3 1.8 32 0 
Cereals ready-to-eat, Kellogg’s ALL-BRAN Original 49 26 4.3 1.7 18 0 
Bread, whole-wheat, commercially prepared 27 18 4.9 0.3 3.3 0 
Potato, white, flesh and skin, baked 14 6.8 2.7 0.9 4.1 0 
Milk, 1% milkfat, with added vitamin A 18 4 9.8 1.9 1.2 0.7 
Banana, raw 9.8 3.2 5.6 0.5 0.4 0 
Spinach, frozen, chopped, cooked, boiled, drained, 
without salt 

9.4 0.5 0.7 2.4 5.7 0 

Rice, brown, long-grain. Cooked 9.2 4.7 1.2 0 3.4 0 
Orange, raw, navel 8.4 4.7 1.1 0.5 2.1 0 
Spaghetti, cooked, enriched, without added salt 6.4 3.5 0.8 0 2.2 0 

FC: Free choline; GP: Glicerophosphocholine; PC: Phosphoshcoline; Ptdcho: Phosphatidylcholine; SM: Sphingomyelin; TC: 
Total choline 
Source: USDA Database, 2008, Release Two. 

In 1998, the Food and Nutrition Board of the Institute of Medicine (IOM) published 

recommendations for adequate intakes (AI) for choline. At that time, there was not enough 

data to establish the Estimated Adequate Requirement (IOM, 1998). The recommendations 

were based on reported association between low dietary choline intake and liver damage 

(IOM, 1998). For other age groups than adults, the AI values were extrapolated from the AIs 

for adults. The IOM has also given tolerable upper intake levels (UL). The UL is 3.5g/ d of 

choline after observation of hypotension at an ingestion of 7.5g/ d. A very high intake of 

choline can cause hypotension, sweating, diarrhea, fishy body odor (IOM, 1998; Li and 

Vance, 2008), and vomiting (Li and Vance, 2008).  

In 2016, the European Food Safety Authority (EFSA) established AIs based on 

average intake of choline by healthy adults in nine countries in the EU in an assessment done 

by Vennemann and colleagues, 2015 (EFSA, 2016). In addition to the average choline intake 

in nine EU countries, EFSA also considered some studies that showed that depleted 

individuals who presented organ dysfunction, in general, needed an intake of around 400 mg 

of choline/ 70 kg of body weight per day to become replete (da Costa et al., 2014; da Costa et 

al., 2011; Spencer et al., 2011; Fischer et al., 2010; Sha et al., 2010; Fischer et al., 2007; 
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Niculescu et al., 2007; da Costa et al., 2006; da Costa et al., 2005; Kohlmeier et al., 2005; 

Zeisel et al., 1991). Alike IOM, in the lack of proper data from younger groups, the EFSA 

stablished AI for some age groups through extrapolation from adult’s needs. To estimate the 

AI for children, body weight and growth factors were accounted for. These estimated values 

are somewhat lower than the AIs given by IOM (Table 2). 

 

         Tabel 2. Choline intake recommendations by IOM, 1998 and EFSA, 2016 

                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Adequate intake; UL: Upper level of intake 

 

Like most other nutrients, choline requirement seems to be influenced by gestation, 

lactation (as breastmilk is a source of choline for the infant), stage of development, and sex 

(EFSA, 2006; IOM, 1998). Requirements for choline in men, premenopausal and 

postmenopausal women have been evaluated and the choline requirements varied greatly 

between individuals (Fischer et al., 2007; Kohlmeier et al., 2005). Subjects showed 

deficiency at different levels of choline supply, and required different amounts of it to replete. 

Furthermore, it took less or more time for the different individuals to become choline 

depleted. Both studies reported also that premenopausal women were more resistant to 

choline deficiency than men and postmenopausal women (Fischer et al., 2007; Kohlmeier et 

al., 2005). Estrogen seems to promote the activity of one of the enzymes involved in the 

endogenous synthesis of choline (Zeisel and Corbin, 2012). So, endogenous production of 

choline alone does not cover the biological needs for choline of human beings (Rajaie and 

Esmaillzadeh, 2011; Cho et al., 2006), but estrogen may decrease the dietary requirements of 

choline in women (Zeisel and Corbin, 2012).   

IOM AI  
(mg/d) 

UL EFSA AI 
(mg/d) 

 Male Female    

≥ 19 y 550 425 3.5 All adults 400 

14 – 18y 500 400 3.0 15 – 17y 400 

9 – 13y 375 375 2.0   

4 – 8y 250 250 1.0   

1 – 3y 200 200 1.0 1 – 3y 140 

6 – 12 m 150 150 - 7 – 11 m 160 

0 – 6 m 125 125 -   

Pregnant - 450 - Pregnant 480 

Lactating - 550 - Lactating 520 
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Additionally, an unknown number of individuals present one or more single 

nucleotide polymorphisms (SNP), a mutation in one or more genes involved in choline and 

folate metabolism that alter dietary choline requirements in men and women (Zeisel and 

Corbin, 2012; Zeisel, 2011; Kohlmeier et al., 2005). Current recommendation of choline 

intake may change when knowledge of genetic variations is better understood (Zeisel, 2012; 

Zeisel and da Costa, 2009).  

In almost all men and postmenopausal women (Zeisel, 2013), a very low intake of 

choline (< 50 mg/d) is associated with muscle damage and fatty liver, and further liver 

damage (Zeisel et al., 1991; Zeisel and Corbin, 2012) with release of liver enzymes into the 

blood (Fischer et al, 2007). Deficiency of choline cause hepatic steatosis in individuals 

receiving total parenteral nutrition (Buchman et al., 2001). However, choline deficiency due 

to very low intake is rare in healthy populations (Cho et al, 2006; Fischer et al., 2005; 

Buchman et al., 2001).  

1.2.2 Digestion, Absorption and Transport of Choline  

 

Choline is rapidly absorbed in the intestines via transporters or carriers depending on choline 

concentration gradient and on the electrical potential of the membrane of enterocytes, and on 

the capacity of the transporters (EFSA, 2016). Hydrosoluble choline forms – free choline, 

phosphocholine and glycerophosphocholine – enter the portal circulation of the liver after 

digestion by pancreatic and mucosal enzymes (Zeisel and Corbin, 2012), while liposoluble 

forms – phosphatidylcholine and sphingomyelin – will be hydrolyzed by phospholipases or 

incorporated by chylomicrons and enter the lymph and distributed to liver and other organs 

(Zeisel and Corbin, 2012; McDowell, 2008). Free choline is transported in the aqueous phase 

of plasma, while phosphatidylcholine, phosphocholine, glycerophosphocholine and 

sphingomyelin are bound to lipoproteins. Dietary phosphatidylcholine and 

glycerophosphocholine appear in plasma mainly as free choline (EFSA, 2016).   

Choline is mainly depleted via oxidation or excretion of phosphatidylcholine in bile 

(Li and Vance, 2008). 
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 1.2.3 Metabolism  

1.2.3.1 Choline Metabolism  

 
Choline is supplied via the diet and is also endogenously produced from 

phosphatidylethanolamine via phosphatidylethanolamine-N-transferase (PEMT) (Li and 

Vance, 2008) primary in the liver (Zeisel and Corbin, 2012). The phosphatidylcholine 

resulting from the de novo pathway can, then, generate choline by action of phospholipases 

(Li and Vance, 2008).  

 
Figure 2: Choline Metabolism and synthesis of phosphatidylcholine via the CDP-choline pathway and 
PEMT. Left shows the endogenous synthesis of Phosphatidylcholine (PC) (PEMT pathway); right the synthesis of PC from 

(dietary) choline (CDP pathway). BADH: betaine aldehyde dehydrogenase; BHMT: betaine homocysteine 

methyltransferase; CCT: phosphocholine cytidyltransferase; CDP-choline, cytidine diphosphocholine; CHK: choline kinase; 

CHDH: choline oxidase (or dehydrogenase); CPT: CDP-choline diacylglycerol choline phosphotransferase; DMG: 

dimethylglycine; Hcy: homocysteine; methyl-THF: methyltetrahydrofolate; MS: methionine synthase; PChol: 

phosphocholine; PE: phosphatidylethanolamine; PEMT: phosphatidylethanolamine N-methyltransferase; PC: 

phosphatidylcholine; SAH: S-adenosylhomocysteine; SAH-H: S-adenosylhomocysteine hydrolase; SAM: S-

adenosylmethionine; THF: tetrahydrofolate. Source: EFSA, 2016. 

 

Synthesis of phosphatidylcholine occurs via cytidine diphosphocholine pathway 

(CDP-choline) (Obeid, 2013; DeLong et al., 1999), which is one of the two branches of the 

Kennedy Pathway. This pathway is ubiquitous and present in all body cells (Zeisel and 

Corbin, 2012). But, in hepatic cells, CDP-choline is responsible for 70% of 

phosphatidylcholine synthesis, while the other 30% result from the PEMT pathway (Obeid, 

2013; Zeisel and da Costa, 2009). (Figure 2). 

1.2.3.2 Choline Oxidation 

 

Choline has a major role in the methionine (MET) cycle, which is crucial for normal growth 

and development (Hollenbeck, 2010). In this process, MET, an essential amino acid 

(Brustolin et al. 2010), is recycled in the cell when homocysteine (Hcy) receives a methyl-
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group from choline (via betaine) or from 5-methyltetraenehydrofolate (5-MTHF) (Obeid, 

2013; Blom and Smulders, 2011; Brustolin et al., 2010). At this point, i.e. where Hcy is 

converted to MET, the metabolisms of choline (betaine), folate and MET are interconnected 

(Niculescu and Zeisel, 2002; Zeisel and Blusztajn, 1994). Abnormalities in this cycle have 

been associated with CVD (Ueland et al., 2000) among, other diseases (Hollenbeck, 2010) as, 

for example, hepatosteatosis (Mato et al., 2008).  

                                       

       

                      MET 

                                         

                                               

                       Hcy 

 

                   Choline 

Figure 3. Choline Oxidation Pathway. BHMT: Betaine homocysteine 

methyltransferase; DMG: Dimethylglycine; DMGDH: Dimethylglycine dehydrogenase; Hcy: 

Homocysteine; MET: Methionine; SARDH: Sarcosine dehydrogenase 

 

Before choline can remethylate Hcy, it needs to be metabolized to betaine (also 

known as trimethylglycine), via action of the enzyme betaine-aldehyde. Betaine, from diet or 

from choline, donates a methyl group to Hcy, via betaine homocysteine methyltransferase 

(BHMT), turning it into MET.  In this process, dimethylglycine (DMG) is produced (Obeid, 

2013). DMG can be eliminated in the urine in small quantities, and most of it will be 

dehydrogenated producing sarcosine (Obeid, 2013). When sarcosine is produced, a methyl-

group is donated to tetrahydrofolate, regenerating 5-MTHF. Sarcosine will make glycine by 

action of sarcosine dehydrogenase.   

Choline is also important in the production of S-adenosylmethionine (SAM) (Figure 

2). As a universal methyl donor, SAM is of major importance for numerous reactions, 

including genetic and epigenetic regulation through methylation (Obeid, 2013). SAM results 

of the transfer of an adenosyl molecule to MET by a tissue specific methionine 

adenosyltransferase (Obeid, 2013; Blom and Smulders, 2011; Halsted et al., 2002).  

Accumulation of SAM decreases the use of betaine and of 5-MTHF (Obeid, 2013; 

Halsted et al., 2002), as sources of methyl-group (Obeid, 2013). In addition, high 

concentration of SAM activates the initial enzyme of the transsulphuration pathway, 
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cystathionine β-synthase, which requires vitamin B6 as cofactor (Blom and Smulders, 2011). 

This pathway irreversibly removes Hcy from the cell (Obeid, 2013) and produces cysteine, 

which will be used in other reactions. 

When SAM donates a methyl-group by action of a methyltransferase (Blom and 

Smulders, 2011), S-adenosylhomocysteine (SAH), a potent methylation inhibitor (Dong et 

al., 2002), is formed (Obeid, 2013). SAH is sequentially fragmented into Hcy. In the 

sequence, low concentrations of SAM allow remethylation of Hcy to happen again (Blom and 

Smulders, 2011).  

Increased levels of SAM trigger the transsulfuration pathway, whereas under low 

levels of SAM, as in fasting conditions, the remethylation of Hcy is active (Obeid, 2013). 

1.2.3.3 Trimethylamine N-Oxide 

 

Choline not absorbed by the enterocytes will be used by the intestinal microbiota (McDowell, 

2008). Dietary free choline, betaine (although ~100 times less efficiently than choline) (Wang 

et al., 2014; Wang et al., 2011), carnitine (Koeth et al., 2013), and phosphatidylcholine (Tang 

et al., 2013) are metabolized in the gut to trimethylamine (TMA). The production of TMA is 

dependent on interindividual variations of gut microflora composition (Tang and Hazen, 

2014; Wang et al., 2014; Koeth et al., 2013; Wang et al., 2011). TMA is, then, converted into 

trimethylamine N-oxide (TMAO) in the liver by a family of flavin monooxygenase enzymes 

called FMO, of which flavin monooxygenase 3 (FMO3) seems to be the most relevant for 

TMAO synthesis. The hepatic FMO3 genotype of an individual is another determinant factor 

for TMAO production (Cho et al., 2016). Individuals presenting a defect on FMO3 present 

trimethylaminuria (fish malodor syndrome), which is the accumulation of the gas TMA that 

smells like rotting fish (Wang et al., 2011). 

TMAO functions in human beings remain uncertain so far (Wang et al., 2011). 

Nonetheless, high plasma levels of TMAO have been associated with AMI (Wang et al., 

2011) and with cardiometabolic disorders (Tang and Hazen, 2014; Koeth et al., 2013) that 

need to be explored further. 

1.2.4 Biological Functions of Choline  

   

The major fates of choline are to donate methyl groups via betaine (Corbin and Zeisel, 2012) 

and to produce phosphatidylcholine (Corbin and Zeisel, 2012; Zeisel and Corbin, 2012; 

Gibellini and Smith, 2010; Li and Vance, 2008). Phosphatidylcholine is the most abundant 
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(95%) choline-containing molecule in mammalian tissues (Ueland, 2011). Choline 

phospholipids contribute to structural integrity (Zeisel et al., 1991) and signaling functions of 

cell membranes (Zeisel and Canty, 1993; Zeisel and Corbin, 2012), as 1,2-sn-diacylglycerol, 

sphingosine, and ceramide, which are three important intracellular messengers (Zeisel and 

Canty, 1993).  

Choline is essential for hepatic lipid homeostasis (Zeisel and Corbin, 2012; Vance et 

al., 2007). Packaging and transportation of TG in the liver are dependent on the supply of 

phosphatidylcholine (Yao and Vance, 1988), via hepatic PEMT, for the formation of VLDL-

C (Yao and Vance, 1988; Zeisel et al., 1991), in a way that other phospholipids cannot 

substitute (Yao and Vance, 1988; Zeisel et al., 1991). Choline phospholipids are also 

constituents of bile (Tang and Hazen, 2014). 

Choline affect the concentration of SAM through its capacity of donating methyl-

groups via its metabolite betaine (EFSA, 2016). SAM in altered concentrations may modify 

DNA methylation, and then influence gene transcription, genomic imprinting, and genomic 

stability (Ueland, 2011). Choline is also a nutrient of evidenced importance for the formation 

of the human brain (Zeisel and Corbin, 2012).  

Betaine serves as an osmolyte (Obeid, 2013; Craig, 2004) in the kidney to support 

water reabsorption (Zeisel and Corbin, 2012). In addition, betaine works also stabilizing the 

structure of proteins in denaturing conditions and cell volume (Obeid, 2013). Betaine has an 

important methionine-sparing effect, making MET more available for protein synthesis, and 

it spares choline as well, which can be used for lipid metabolism (Obeid, 2013). 

1.2.5 Choline Intake and Acute Myocardial Infarction 

 
Considering the importance of choline, dietary intake of choline (and betaine) has been 

assessed in some epidemiological studies together with important CVD risk factors. Choline 

intake has predicted plasma total homocysteine (tHcy) concentrations (Cho et al., 2006). And 

through a number of different mechanisms choline has been positively linked with increased 

risk of CVD mortality (Zheng et al., 2016), negatively linked (Millard et al., 2016), and not 

linked with CVD risk (Nagata et al., 2015; Dalmeijer et al., 2008; Bidulescu et al., 2007). 

There is, therefore, contradictory evidence around choline effects on cardiovascular health, 

and more studies are necessary to elucidate this topic.  
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2. Aim of the Study  
 

The aim of this project is to investigate the association between dietary choline intake and 

risk of AMI in patients with established SAP. 

The null-hypothesis is that choline intake is not associated with the subsequent risk of AMI in 

these patients. 
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3. Methods  

3.1 Study Population and Design 

 

The current study population is a subpopulation from the prospective, randomized, double-

blind controlled trial The Western Norway B Vitamin Intervention Trial (WENBIT), with a 

total of 3090 participants, conducted in two university hospitals in Bergen and Stavanger 

between 1999 and 2005 (main recruitment period between 2000 and 2004) (Ebbing et al., 

2008). The WENBIT trial was terminated in 2005 and the mean follow-up of intervention 

was four years. For the original WENBIT population the exclusion criteria were 

unavailability for follow-up, participation in other trials, known alcohol abuse, serious mental 

illness, or cancer. Dietary data were collected at baseline by using a food frequency 

questionnaire (FFQ). For the current study exclusion criteria were not answered FFQ (n = 

606) or FFQ with more than 1 blank page (n = 96), reported energy intake under 3000 kJ or 

3300 kJ for women and men, respectively, or above 15000 kJ or 17500 for women and men, 

respectively (n = 37), and a diagnose of acute coronary syndrome (ACS) at baseline (n = 

332), which left 2019 individuals for the current study (Figure 3). Mean follow-up time for 

this study was 7.2 (2.4) years.  

 

 
                                                    Figure 4. Flowchart over study population 

  

WENBIT 
n = 3090 

Patients with missing FFQ,  
n = 606 

n = 2484 

n = 2388 

Patients with very low or 
very high total energy intake, 
n = 37 

Eligible patients for final analyses, n = 2019 

Patients with ACS, n = 332 

n = 2351 

Patients with incomplete 
FFQ, n = 96 
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3.2 Ethical Statement 

 

Written informed consent was obtained from the subjects on the day of randomization. The 

study protocol was in accordance with the principles of the Declaration of Helsinki and the 

trial was approved by the Regional Committee for Medical and Health Research Ethics, the 

Norwegian Medicines Agency, and the Data Inspectorate (Ebbing et al., 2008). 

3.3 Baseline Characteristics   

 

Demographic and clinical data were obtained at baseline. Anthropometrical measurement 

such as weight and height were obtained, and BMI was calculated by weight in kilograms 

divided by the square of the height in meter. Participants were defined as current smokers 

based on self-reported smoking habits or on serum cotinine (predominant metabolite of 

nicotine). Individuals with serum cotinine ≥85 nmol/L were included in the definition of 

current smokers regardless of their self-report on smoking. Diabetes mellitus, including both 

types 1 and 2, was defined by preexisting diagnosis, and hypertension was defined according 

to current use of antihypertensive medications. Left ventricular ejection fraction (LVEF) was 

obtained either by ecocardiography or by ventriculography performed during cardiac 

catheterization. The extent of coronary artery disease (CAD) was scored by aggregating the 

number of significantly stenotic arteries (significant stenosis was defined by luminal 

narrowing ≥ 50% of any epicardial coronary artery) to a maximum of three.  

 3.4 Laboratory Analyses  

 

Blood samples were collected at baseline. Some patients fasted before the blood samples 

were collected, and some others did not. Plasma choline, betaine, tHcy, TMAO, DMG, and 

serum cotinine, blood lipids, glucose and C-reactive protein (CRP) were analyzed. Serum 

lipids and glucose were measured using fresh samples at the hospital laboratories at 

Stavanger University Hospital, Stavanger, or Haukeland University Hospital, Bergen, 

Norway. Cotinine, choline, TMAO, betaine and DMG were measured using gas 

chromatography coupled to tandem mass spectrometry, while tHcy was measured using 

matrix assisted laser desorption ionization-time of flight mass spectrometry. Cotinine was 

measured using liquid chromatography combined with mass spectrometry. The measurements 

were performed at Bevital AS, Bergen, Norway. Estimated glomerular filtration rates (eGFR) 
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were obtained using the Chronic Kidney Disease Epidemiology Collaboration equation 

(Levey et al., 2009). 

3.5 Dietary Assessment   

 

At baseline, the study participants were asked to fill out a FFQ (Appendix) developed at the 

Department of Nutrition, Institute of Basic Medical Sciences of the University of Oslo in the 

Norwegian language. The FFQ was self-administered and it was returned by mail or at the 

one-month follow-up appointment. On the first page a short instruction on how to answer the 

FFQ was presented. The answers were read through optical mark reading (Nes et al., 1992).  

The applied FFQ was an adaptation from a 180-item FFQ, designed in 1992, which 

targeted to assess the habitual food intake of Norwegian adults and intended for use in 

epidemiological studies of diet and health. The adaptation resulted in a 169-item FFQ with 

the purpose to measure the average diet over the past year. It contained daily meals and their 

frequency of intake. The dietary pattern was according to the Norwegian dietetic habits where 

bread-based meals are important. Questions on the use of vitamin and mineral supplements 

were included. There were no questions on choline supplement. The portion sizes were 

assessed using household measures (such as slices, glasses, cups, pieces, spoons), units (dl, 

hg or g) for each food. Frequency of ingestion was possible for the period of a day, week, or a 

month depending on the food item or never consumed (Nes et al, 1992).  

For estimation of nutrient and food intake, a software system developed at the 

Department of Nutrition, University of Oslo (Kostberegningssystem, version 3.2) was used. 

The food database is mainly based on the official Norwegian food composition table 

(National Nutrition Council, 1995), with some additional foods.  

Intake of choline and the individual choline species and betaine was quantified using 

the U.S. Department of Agriculture (USDA) Database for the Choline Content of Common 

Foods, release 2 (Patterson et al., 2008). The total dietary intake of choline was estimated as 

the sum of free choline, phosphatidylcholine, phosphocholine, glycerophosphocholine and 

sphingomyelin. For food items that occurred in both the current FFQ and in the USDA 

database, the available contents of choline and betaine were used. For food items in the 

current FFQ not corresponding to the ones found in the USDA database, choline and betaine 

contents were estimated using nutritionally equivalent foods. For dishes or items which 

differentiated from the ones in the USDA database, contents of choline and betaine were 

calculated for each ingredient in the FFQ recipe.  
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Alcohol intake was also used in our analysis. According to the Nordic Nutrition 

Recommendations (NNR, 2012), the consumption of alcohol should not exceed 10 g per day 

for women and no more than 20 g per day for men. Partly based on this, alcohol consumption 

was divided into four categories: no intake (0 g of alcohol); low-moderate (under 10 g of 

alcohol per day for women and 20 g per day for men); moderate (between 10 and 20 g of 

alcohol per day for women and between 20 and 30 g of alcohol per day for men); and high-

moderate (above 20 g of alcohol per day for women and 30 g of alcohol per day for men).  

3.6 Clinical End Points 

 

The primary end point of the current study was incident AMI, included fatal and nonfatal 

events and were defined according to the International Classification on Diseases (ICD) 10th 

edition, I21-22. Information on endpoints was obtained from the Cardiovascular Disease in 

Norway project (CVDNOR, http://cvdnor.b.uib.no/), which provided information on 

discharge diagnoses from most Norwegian public hospitals and from the Cause of Death 

during 1994 – 2009, and linked to each patient’s unique 11-digit personal number.  

3.7 Statistical Analyses     

 

Because the effect of nutrients may be confounded by total energy intake, total intake of 

choline  and choline species was adjusted for total energy intake by using the residual method 

(Willett et al., 1997). Energy-giving components and foods were adjusted using the nutrient 

density method and presented as percent of total energy intake (carbohydrate, protein, fat, and 

alcohol) or as g per 1000 kcal (fiber, vegetables, fruits and berries). 

Baseline characteristics by quartiles of total choline intake and by incident AMI are 

presented. Continuous variables are presented as means (SD) and categorical variables as 

counts (%). Linear trend (p for trend) was estimated using linear regression for continuous 

variables and logistic regression for categorical variables. Fisher’s exact test for 

multicategorical variables (for alcohol specifically Pearson´s chi-square test was used). The 

calculated p values are 2-sided and considered statistical significant if less than 0.05. 

For estimating the hazard risk of experiencing an AMI during the study period, Cox 

proportional hazards regression model was used. Hazard ratios were calculated for each 100 

mg raise of total choline intake and, in sequence, for each 10 mg raise of free choline, 

phosphatidylcholine, glycerophosphocholine, phosphocholine and sphingomyelin intake. 
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Model 1 was adjusted for total caloric intake. Model 2 was also adjusted for sex, age, 

smoking, previous AMI, previous coronary artery bypass grafting (CABG) and extension of 

CAD at baseline. Intervention allocation group was added to model 2, but it did not 

materially alter the results so it was not included in the model. Moreover, adjustment for 

intake of SFA, carbohydrate, fiber, protein, alcohol consumption, intake of vegetables, fruits 

and berries, plasma TMAO, use of aspirin and serum lipids did not affect the model 

materially and was not included in the final model. Model 3 was similar to model 2 plus 

adjustment for BMI and diabetes.  

To explore potential non-linear relationships between choline intake and incidence of 

AMI a general additive model (GAM) was plotted.  

For statistical analyses, IBM SPSS Statistics versions 23 and 24 for Windows were 

used. For GAM, R version 3.3.1 (The R Foundation for Statistical Computing, Vienna, 

Austria) was used. The calculated p-values are 2-sided and considered statistical if less than 

0.05.    
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4. Results  

4.1 Baseline characteristics  

 

The mean follow-up time was 7.2 (2.4) years. Baseline characteristics of the study population 

across quartiles of total choline intake are presented in table 3.  

 
Table 3. Baseline characteristics in 2019 patients with stable angina pectoris by quartiles of total 
choline intake 

 
Total 

Q1 
n = 504 

Q2 
n = 505 

   Q3 
   n = 505 

         Q4 
        n = 505 

Ptrend 

Total choline intake, mg/d 294 (65.1) 223 (27.7) 272 (9.58) 306 (10.8) 377 (58.4)  
Men, n (%) 1610 (79.7) 432 (85.7) 381 (75.4) 388 (76.8) 409 (81.0) 0.11 
Age, y 61.8 (9.72) 61.4 (10.3) 62.6 (9.29) 62.2 (9.99) 61.0 (9.24) 0.41 
BMI, kg/m2 26.3 (3.73) 25.8 (3.71) 26.2 (3.76) 26.3 (3.64) 27.0 (3.75) < 0.001 
Current smokers, n (%) 593 (29.4) 132 (26.2) 136 (26.9) 143 (28.3) 182 (36.0) 0.001 
Hypertension, n (%) 958 (47.4) 220 (43.7) 240 (47.5) 240 (47.5) 258 (51.1) 0.025 
Diabetes mellitus, n (%) 226 (11.2) 38 (7.5) 48 (9.5) 55 (10.9) 85 (16.8) < 0.001 
LVEF, % 63.9 (11.1) 64.4 (10.5) 64.1 (11.7) 63.8 (10.9) 63.3 (11.5) 0.09 
Previous MI n (%) 867 (42.9) 209 (41.5) 216 (42.8) 207 (41.0) 235 (46.5) 0.17 
Previous CABG n (%) 290 (14.4) 74 (14.7) 71 (14.1) 67 (13.3) 78 (15.4) 0.83 
Previous PCI n (%) 452 (22.4) 129 (25.6) 94 (18.6) 112 (22.2) 117 (23.2) 0.66 
Extent of CAD n (%)  < 0.001 

No stenotic vesselsc 248 (12.3) 70 (13.9) 50 (9.9) 66 (13.1) 62 (12.3)  
1-vessel diseasec 568 (28.2) 130 (25.8) 163 (32.3) 129 (25.5) 146 (28.9)  
2-vessel diseasec 549 (27.2) 141 (28.0) 127 (25.1) 143 (28.3) 138 (27.3)  
3-vessel diseasec 653 (32.4) 162 (32.2) 165 (32.7) 167 (33.1) 159 (31.5)  

Serum glucose, mmol/L 6.28 (2.14) 6.14 (2.03) 6.09 (1.89) 6.25 (2.04) 6.64 (2.52) < 0.001 
S-CRP, mg/L 3.26 (6.26) 3.18 (4.99) 3.38 (8.04) 3.21 (5.95) 3.26 (5.67) 0.96 
eGFR, mL/min/1,73m2 a 89.7 (15.4) 90.6 (14.9) 88.4 (14.9) 89.1 (16.2) 90.8 (15.4) 0.70 
Plasma levels of 1-carbon metabolites 

Choline, μmol/La 9.84 (2.53) 9.88 (2.39) 9.76 (2.40) 9.86 (2.62) 9.88 (2.69) 0.83 
TMAO, μmol/Ld 8.70 (9.94) 7.87 (8.44) 7.79 (8.40) 9.22 (10.9) 9.92 (11.5) < 0.001 
Betaine, μmol/La 41.0 (13.0) 42.1 (13.6) 39.9 (12.3) 41.5 (12.9) 40.4 (13.1) 0.17 
DMG, μmol/La 4.26 (1.64) 4.36 (1.68) 4.15 (1.49) 4.43 (1.99) 4.10 (1.31) 0.13 
tHcy, μmol/La 10.9 (3.83) 11.3 (3.80) 11.0 (4.20) 10.9 (3.98) 10.4 (3.25) < 0.001 

Serum Lipids and Apolipoproteins 
TC, mmol/Lc 5.05 (1.19) 5.01 (1.13) 5.05 (1.09) 5.07 (1.44) 5.09 (1.10) 0.27 
LDL-C, mmol/Lb 3.06 (1.02) 3.06 (1.01) 3.05 (0.97) 3.06 (1.08) 3.09 (1.02) 0.62 
HDL-C, mmol/Lc 1.27 (0.35) 1.25 (0.34) 1.29 (0.36) 1.28 (0.35) 1.26 (0.34) 0.60 
TG, mmol/Lc 1.79 (1.15) 1.77 (0.92) 1.76 (0.94) 1.77 (1.53) 1.85 (1.09) 0.30 
ApoB-100, g/L 0.88 (0.23) 0.88 (0.23) 0.88 (0.23) 0.88 (0.27) 0.89 (0.23) 0.29 
ApA1, g/L 1.28 (0.25) 1.28 (0.25) 1.28 (0.25) 1.28 (0.26) 1.28 (0.24) 0.95 
ApoB-100/ApA1 0.71 (0.23) 0.71 (0.24) 0.71 (0.23) 0.71 (0.25) 0.72 (0.23) 0.48 
LDL-C/ApoBb 3.47 (0.65) 3.49 (0.72) 3.47 (0.59) 3.48 (0.60) 3.45 (0.67) 0.4 
HDL-C/ApA1c 0.99 (0.19) 0.97 (0.17) 1.00 (0.20) 1.00 (0.21) 0.99 (0.18) 0.26 

Medications, n (%)       
β-Blocker 1547 (76.6) 393 (78.0) 381 (75.4) 390 (77.2) 383 (75.8) 0.58 
ACEI and/or ARBc 630 (31.2) 130 (25.8) 157 (31.1) 166 (32.9) 177 (35.0) 0.001 
Statinc 1781(88.3) 437 (86.9) 440 (87.1) 452 (89.5) 452 (89.5) 0.11 
Aspirin 1801 (89.2) 464 (92.1) 451 (89.3) 439 (86.9) 447 (88.5) 0.036 

a n = 2016;  
b n = 2017; 
c n = 2018; 
d n = 2006. All other variables have a n = 2019 
Variables are reported as mean (SD) unless otherwise noted. Diabetes mellitus include both type 1 and type 2. ACEI, angiotensin-converting enzyme inhibitor and ARB, 
angiotensin receptor blocker; ApoB-100/ApA1, ApoB-100/ApA1 ratio; CABG, coronary artery bypass grafting; CAD, coronary artery disease; CRP, C-reactive protein; DMG, 
dimethylglycine; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; HDL-C/ApA1, HDL-C/ApA1 ratio; LDL-C, low-density lipoprotein 
cholesterol; LDL-C/ApoB, LDL-C/ApoB ratio; LVEF, left ventricular ejection fraction; AMI, acute myocardial infarction; PCI, percutaneous coronary intervention; TC, total 
cholesterol; TG, triglycerides; tHcy, total homocysteine; TMAO, trimethylamine N-oxide. P for trend was estimated using linear regression analysis for continuous variables, logistic 
regression for dichotomous variables and p value was estimated using Fisher’s exact test, for multicategorical variables. 
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There was a statistically significant positive association between increasing choline intake 

and BMI (p <0.001), hypertension (p = 0.025), diabetes (p <0.001), smoking (p = 0.001), 

serum glucose (p <0.001), use of ACEI/ARB (angiotensin-converting enzyme inhibitor and 

angiotensin receptor blocker) (p = 0.001) and aspirin medications (p = 0.036). Higher intake 

of total energy-adjusted choline was inversely associated with plasma tHcy (p <0.001), and 

positively associated with plasma TMAO (p < 0.001). It was not observed any association 

between total choline intake and age, gender, extent of CAD, LVEF, previous AMI, previous 

coronary intervention, CRP, eGFR, serum lipids and apolipoproteins, plasma choline, plasma 

betaine, plasma DMG or use of β-blocker and statin (Table 3). 

4.2 Dietary Intake 

 

Dietary intake by quartiles of total choline intake is shown in table 4. The mean total energy 

intake (SD) was 2095 (633) kcal/d, the mean total energy-adjusted choline intake was 294 

(65.1) mg/d. Forty-three percent of the total choline came from phosphatidylcholine, 127 

(36.9) mg/d, followed by free choline, 75.6 (17.3) mg/d. Mean energy-adjusted choline intake 

for quartiles 1, 2, 3 and 4 was 223 (27.7) mg/d, 272 (9.58) mg/d, 306 (10.8) mg/d, 377 (58.4) 

mg/d.  

Table 4. Daily dietary intake by quartiles of total choline intake 

 Total 
n = 2019 

Q1 
n = 504 

Q2 
n = 505 

Q3 
n = 505 

Q4 
n = 505 

Ptrend 

Total choline, mg 294 (65.1) 223 (27.7) 272 (9.57) 305 (10.8) 377 (58.3)  
Energy, kcal 2095 (633) 2236 (637) 1962 (607) 2020 (614) 2163 (638) 0.21 
Carbohydrate, E% 49.7 (6.38) 51.2 (6.42) 50.7 (5.53) 49.5 (6.29) 47.4 (6.56) <0.001 
Fiber, g/1000 kcal 12.2 (3.21) 11.5 (2.74) 12.3 (2.78) 12.3 (3.08) 12.6 (3.99) <0.001 
Protein, E% 16.9 (2.56) 15.3 (2.18) 16.6 (2.12) 17.2 (2.14) 18.6 (2.60) <0.001 
Fat, E% 31.3 (5.41) 31.8 (5.47) 30.9 (5.06) 31.3 (5.57) 31.2 (5.49) 0.20 
SFA, E% 11.7 (2.61) 12.2 (2.72) 11.7 (2.58) 11.6 (2.64) 11.4 (2.45) <0.001 
MUFA, E% 10.3 (1.96) 10.3 (1.99) 10.1 (1.86) 10.3 (1.99) 10.3 (2.00) 0.43 
PUFA, E% 7.19 (1.96) 7.33 (2.05) 6.96 (1.84) 7.22 (1.94) 7.27 (1.98) 0.79 
Alcohol, E% 2.00 (3.08) 1.62 (2.72) 1.76 (3.16) 1.93 (2.39) 2.70 (3.76) <0.001 
Alcohol intake, n (%)1 < 0.001 

No intake 508 (25.2) 164 (32.5) 146 (28.9) 112 (22.2) 86 (17.0)  
Low-moderate  1352 (67.0) 307 (60.9) 333 (65.9) 362 (71.7) 350 (69.3)  
Moderate  93 (4.6) 19 (3.8) 16 (3.2) 19 (3.8) 39 (7.7)  
High  66 (3.3) 14 (2.8) 10 (2.0) 12 (2.4) 30 (5.9)  

Betaine, mg  139 (38.0) 141 (39.5) 137 (32.5) 140 (39.1) 136 (40.3) 0.16 
Free choline, mg 75.6 (17.3) 62.3 (11.1) 71.5 (10.3) 76.9 (11.8) 91.6 (19.3) <0.001 
Phosphatidylcholine, mg 127 (36.9) 96.4 (21.2) 117 (20.3) 133 (25.5) 162 (40.6) <0.001 
Sphingomyelin, mg 9.49 (4.04) 6.27 (2.38) 8.50 (2.01) 10.1 (2.59) 13.0 (4.96) <0.001 
Phosphocholine, mg 11.5 (5.34) 7.65 (3.18) 10.2 (3.06) 12.2 (3.87) 16.1 (6.43) <0.001 
Glycerophosphocholine, mg 62.5 (26.7) 42.3 (15.4) 56.9 (14.8) 65.6 (18.2) 85.9 (32.8) <0.001 
Fruit and berries, g/ 1000 kcal*  125 (85.3) 113 (85.1) 128 (80.8) 130 (86.9) 128 (87.3) 0.004 
Vegetables, g/ 1000 kcal  105 (74.1) 75.2 (43.3) 95.6 (52.5) 111 (66.6) 140 (103) <0.001 

Variables are reported as mean (SD) unless otherwise noted. 
MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid.  
1No intake: 0 g/day; Low-moderate: women 0.1-10 g/day, men 0.1-20 g/day; Moderate: women 10-20 g/d, men 20-30 g/d; High: women >20 g/day, men >30 g/day.  
Choline and betaine intake was adjusted for total energy intake using the residual method. Intake of macronutrients and foods were adjusted for total energy intake using the 
nutrient density method presented as either E% or g/1000 kcal.  
*Fruit includes canned and fresh fruits as well as juice.  
P for trend was estimated using linear regression analysis for continuous variables and Fisher’s exact test for categorical variables. 
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Higher intake of energy-adjusted choline was inversely associated with intake of 

carbohydrates (p <0.001), SFA (p <0.001), and positively correlated with intake of fiber (p 

<0.001), protein (p <0.001), alcohol (p <0.001), fruits and berries (p < 0.05) and vegetables 

(p <0.001) (Table 4). There was no association between intake of betaine and choline. 

4.3 Baseline Characteristics by Incidence of Acute Myocardial Infarction 

 

A total of 297 (14.7%) participants experienced an AMI episode. In table 5, baseline 

characteristics of patients who did or did not experience AMI during the study period are 

presented. Overall, patients who experienced AMI were older (p = 0.006), and a larger 

proportion of them had already had an AMI episode earlier (p < 0.001). They also tended to 

be sicker compared to the group who did not experience AMI. Risk factors like previous 

surgeries (CABG, p < 0.001, and percutaneous coronary intervention – PCI, p < 0.05), 

extensive CAD (3-vessel CAD, p = 0.004), elevated serum glucose (p = 0.024), hypertension 

(p = 0.024), diabetes (p < 0.001), higher tHcy (p = 0.036), higher LDL-C (p = 0.04), lower 

HDL-C (p = 0.003), higher ApoB100 (p = 0.003), lower ApA1 (p = 0.039) and use of 

ACEI/ARB medication (p = 0.03) were more spread among those who had AMI. A higher 

percentage of people who developed AMI were current smokers (p = 0.007). 

 
          Table 5. Baseline characteristics by incidence of acute myocardial infarction 

 Acute myocardial infarction during 
follow-up 

 

 Yes 
n = 297 

No 
n = 1722 

P 

Men, n (%) 236 (79.5) 1374 (79.8) 0.88 
Age, y 63.4 (10.6) 61.5 (9.54) 0.006 
BMI, kg/m2 26.6 (4.54) 26.3 (3.58) 0.26 

Current smokers, n (%) 107 (36.0) 486 (28.2) 0.007 

Hypertension, n (%) 159 (53.5) 799 (46.4) 0.02 

Diabetes mellitus, n (%) 53 (17.8) 173 (10.0) <0.001 

LVEF, n 60.6 (13.0) 64.4 (10.7) <0.001 
Previous MI, n (%) 180 (60.6) 687 (39.9) <0.001 

Previous CABG, n (%) 69 (23.2) 221 (12.8) <0.001 

Previous PCI, n (%) 84 (28.3) 368 (21.4) 0.01 
Extent of CAD, n (%) 0.002 

No stenotic vesselsc 21 (7.1) 227 (13.2)  
1-vessel diseasec 78 (26.3) 490 (28.5)  
2-vessel diseasc 80 (26.9) 469 (27.3)  
3-vessel diseasec 118 (39.7) 535 (31.1)  

Serum glucose mmol/L 6.57 (2.42) 6.23 (2.09) 0.024 

S-CRP, (mg/L) 3.55 (4.81) 3.21 (6.48) 0.39 

eGFR, mL/min/1,73m2 a 87.4 (18.5) 90.1 (14.7) 0.02 

Plasma levels of 1-carbon metabolites 
Choline, μmol/La 10.1 (2.70) 9.80 (2.49) 0.057 
Betaine, μmol/La 40.4 (11.8) 41.0 (13.2) 0.46 
tHcy, μmol/La 11.4 (4.54) 10.8 (3.69) 0.036 
TMAO, μmol/Le 9.53 (11.4) 8.56 (9.66) 0.17 
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DMG, μmol/La 4.42 (1.66) 4.24 (1.64) 0.08 
Serum lipids and apolipoproteins 

TC, mmol/Lc 5.13 (1.24) 5.04 (1.19) 0.21 
LDL-C, mmol/Lb 3.18 (1.11) 3.05 (1.00) 0.04 
HDL-C, mmol/Lc 1.21 (0.32) 1.28 (0.36) 0.003 
TG, mmol/Lc 1.83 (0.93) 1.78 (1.18) 0.47 
ApoB-100, g/L 0.92 (0.27) 0.87 (0.23) 0.003 
ApA1, g/L 1.25 (0.25) 1.29 (0.25) 0.039 
ApoB-100/ApA1 0.76 (0.25) 0.70 (0.23) <0.001 
LDL-C/ApoBb 3.44 (0.58) 3.48 (0.66) 0.33 
HDL-C/ApA1c 0.97 (0.18) 1.00 (0.20) 0.037 

Medications n (%) 
β-blockers 225 (75.8) 1322 (76.8) 0.71 
ACEI and/or ARBc 109 (36.7) 521 (30.3) 0.03 
Statinc 254 (85.5) 1527 (88.7) 0.12 
Aspirin 255 (85.9) 1546 (89.8) 0.05 

a n = 2016;  
b n = 2017; 
c n = 2018; 
d n = 2006. All other variables have a n = 2019 
Variables are reported as mean (standard deviation) unless otherwise noted. Diabetes mellitus include both type 1 
and type 2.  
ACEI, agiotensin-converting enzyme inhibitor and ARB, angiotensin receptor blocker; ApoB-100/ApA1, ApoB-
100/ApA1 ratio; CABG, coronary artery bypass grafting; CAD, coronary artery disease; CRP, C-reactive protein; 
DMG, dimethylglycine; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; HDL-
C/ApA1, HDL-C/ApA1 ratio; LDL-C, low-density lipoprotein cholesterol; LDL-C/ApoB, LDL-C/ApoB ratio; LVEF, left 
ventricular ejection fraction; MI, myocardial infarction; PCI, percutaneous coronary  
intervention; TC, total cholesterol; TG, triglycerides; tHcy, total homocysteine; TMAO, trimethylamine N-oxide. 
P value was calculated using independent samples t-test for continuous variables, and Fisher’s Exact test for 
categorical variables. 

 

4.4 Dietary Intake and Acute Myocardial Infarction Events 

 
With regard to their habitual diet and AMI incidence (Table 6), analyses show that the group 

of patients who experienced AMI reported a higher intake of total choline 304 (62.8) mg/d vs. 

293 (65.4) mg/d (p = 0.005). Almost 50% of total choline came from phosphatidylcholine 

133 (37.9) mg/d, and phosphatidylcholine intake was higher in the AMI group as well (p = 

0.003). The AMI patients reported lower total energy intake 2010 (645) kcal/d vs. 2110 (630) 

kcal/d (p = 0.012). More people in the group who experienced an AMI stated no intake of 

alcohol (31% vs. 24%, p = 0.014).  

 
             Table 6. Daily dietary intake in groups with or without acute myocardial infarction 

 Acute myocardial infarction during follow-up  

 Yes 
(n = 297) 

No 
(n = 1722) 

P 

Total choline, mg 304 (62.8) 293 (65.4) 0.005 

Energy, kcal 2010 (645) 2110 (630) 0.012 

Carbohydrate, E% 49.7 (6.68) 49.7 (6.33) 0.87 

Fiber, g/1000 kcal 12.5 (3.42) 12.2 (3.17) 0.16 

Protein, E% 17.2 (2.51) 16.9 (2.57) 0.07 

Fat, E% 31.2 (5.64) 31.3 (5.37) 0.78 

SFA, E% 11.7 (2.77) 11.7 (2.59) 0.85 

MUFA, E% 10.3 (2.05) 10.3 (1.95) 0.81 

PUFA, E% 7.13 (1.96) 7.21 (1.96) 0.51 

Alcohol, E% 1.89 (3.00) 2.02 (3.09) 0.51 

Alcohol intake, n (%)1   0.09 

   No intake 92 (31.0) 416 (24.2)  
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   Low-moderate 183 (61.6) 1169 (67.9)  

   Moderate 12 (4.0) 81 (4.7)  

   High 10 (3.4) 56 (3.3)  

Betaine, mg 141 (39.1) 138 (37.9) 0.19 

Free choline, mg 76.5 (17.6) 75.4 (17.2) 0.32 

Phosphatidylcholine, mg 133 (37.9) 126 (36.7) 0.003 

Sphingomyelin, mg 10.0 (3.97) 9.39 (4.05) 0.01 

Phosphocholine, mg 11.8 (5.31) 11.5 (5.35) 0.31 

Glycerophosphocholine, mg 64.7 (26.6) 62.1 (26.8) 0.12 

Fruit, g/ 1000 kcal2 124 (90.2) 125 (84.5) 0.87 

Vegetables, g/ 1000 kcal 110 (86.2) 105 (71.8) 0.30 
Variables are reported as mean (SD) unless otherwise noted. 
GCP, glycerophosphocholine; MUFA, monounsaturated fatty acid; PC, phosphatidylcholine; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid. 
1 No intake: 0 g/day; Low-moderate: women 0.1-10 g/day, men 0.1-20 g/day; Moderate: women 10-20 g/d, men 20-30 g/d; High: women >20 g/day, men >30 
g/day.  
Choline and betaine intake was adjusted for total energy intake using the residual method. Intake of macronutrients and foods were adjusted for total energy 
intake using the nutrient density method presented as either E% or g/1000 kcal. 
2Fruit includes canned and fresh fruits as well as juice and berries.  
P value was estimated using independent samples t-test for continuous variables, and Fisher’s exact test, for categorical variables.  

4.5 Dietary Choline Intake and Risk of Acute Myocardial Infarction 

 
Three Cox proportional hazards regression models, were created to control for confounding 

factors on the effect of dietary choline on risk of AMI. In the crude model, adjusting only for 

energy intake, the risk of AMI increased with 28% (CI 9 - 49) for each 100 mg increase in 

total choline intake. Adjusting for sex, age, smoking, extent of CAD at baseline, previous 

AMI and previous CABG slightly attenuated the risk estimate to 22% (CI 4 - 42). Adding 

BMI and diabetes mellitus to the model further attenuated the excess AMI risk to 17% (CI -1 

- 38) (Table 7). 

To test the independent effect of the various choline species, each choline specie was 

individually added to model 2. Compared to model 2 without the choline species, 

phosphocholine did not materially change the risk estimate. Free choline and 

glycerophosphocholine tended to increase it, whereas it was attenuated after adding 

phosphatidylcholine and sphingomyelin (data not shown).  

The same models were thereafter constructed when analyzing the effect of 10 mg 

increase in each choline specie intake on incidence of AMI, now excluding total choline from 

the models. Free choline, phosphocholine and glycerophosphocholine had no statistically 

significant effect on incidence of AMI in any of the models. Intake of phosphatidylcholine 

and sphingomyelin was positively associated with risk of AMI, although it was attenuated in 

the multivariate models. 

In figure 4 the linearity between total choline intake and AMI was analyzed after 

adjustment as for model 3. Increasing intake of total choline up to 300 mg/d seemed to be 

associated with a higher risk of AMI with no excess risk at higher levels of choline intake. 

However, a clearer linear relationship was observed primarily for phosphatidylcholine and, to 
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a lesser degree, for sphingomyelin. Intakes of free choline, glycerophosphocholine and 

phosphocholine do not seem to be associated with risk of AMI.  

 

Table 7. Hazard ratios for incident acute myocardial infarction according to total choline and 
choline species intake 

HR, hazard ratio; CI, confidence interval.  
a Adjusted for energy intake. 
b Adjusted for model 1 plus age, sex, previous AMI, previous CABG, smoking and extent of CAD at baseline. 
c Adjusted for model 2 plus body mass index and diabetes.  
d per 100 mg/day increase 
e per 10 mg/day increase 
 

 
 Figure 4. Association between intake of choline and acute myocardial infarction 

  

  
The model GAM was adjusted for energy intake, age, sex, previous AMI, previous CABG, smoking and extent of CAD at baseline, BMI 
and diabetes. The x axis represents choline intake in a population of 2019 patients with SAP. 

 

 

 Hazard ratio (95% cofidence interval) 

 Model 1a P Model 2b P Model 3c P 

Total choline intaked 
1.28 (1.09-1.49) 0.002 1.22 (1.04-1.42) 0.013 1.17 (0.99-1.38) 0.051 

Free cholinee 
1.04 (0.97-1.11) 0.22 1.03 (0.96-1.10) 0.39 1.02 (0.95-1.09) 0.57 

Phosphatidylcholinee 
1.05 (1.02-1.08) 0.001 1.05 (1.02-1.08) 0.001 1.04 (1.01-1.07) 0.005 

Phosphocholinee 
1.15 (0.93-1.42) 0.19 1.11 (0.89-1.39) 0.33 1.09 (0.88-1.35) 0.44 

Sphingomyeline 
1.41 (1.11-1.80) 0.004 1.33 (1.05-1.68) 0.02 1.27 (0.99-1.62) 0.053 

Glycerophosphocholinee 
1.03 (0.99-1.07) 0.15 1.01 (0.97-1.05) 0.64 1.01 (0.96-1.05) 0.74 
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5. Discussion  
 

In this large cohort of patients with SAP, having a higher choline intake was associated with 

increased risk of AMI. The intake of different choline-containing species had varying effects 

on AMI risk. Free choline, phosphocholine and glycerophosphocholine intake was not 

associated with AMI. But intake of phosphatidylcholine and sphingomyelin was positively 

associated with risk of AMI.  

Total intake of choline was independent of age, gender, prior AMI, coronary 

vascularization or extent of CAD at baseline. A high intake was however with several 

established CVD risk factors including, hypertension and diabetes, whereas no association 

was observed with lipid levels or plasma choline. A high intake was associated with lower 

tHcy and higher TMAO concentrations. Higher intake of choline was positively associated 

with intake of fiber, protein, vegetables, fruits and berries, and alcohol, and negatively 

associated with carbohydrate and SFA.  

5.1 Methodological Discussion 

5.1.1 Dietary Assessment 

 
In this study, the aim was to measure dietary choline in patients with SAP. For that purpose, 

it was applied an FFQ created for epidemiological studies of diet and health, whose goal was 

to measure average food intake of individual Norwegian adults (Nes et al., 1992). Indeed, the 

purpose of FFQs is generally to estimate intake of food over longer periods (Willett, 2013). 

In case of diseases that require a significant amount of time to progress, measuring habitual 

intake of food is more relevant than food intake for one or few days. Besides that, it can be 

very useful when measuring population-wise dietetic ingestion for using as a basis for 

nutritional policy (Andersen et al., 1999). It is also possible to reduce costs when they are 

self-administered (Willett, 2013).  

Another important goal with an FFQ is to rank subjects in their absolute intake.  Food 

items must be chosen firstly, based on their consumption by a considerable number of 

individuals, secondly, they must have a significant amount of the nutrient of interest, and 

thirdly, its consumption must vary from person to person to allow ranking among the study 

participants. A sum of the three aspects named above will contribute for the variance between 

persons in the nutrient intake (Willett. 2013). Importantly, the present FFQ contains the foods 

that usually have been reported to be the main sources of choline in the diet as bread, meat, 
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fish, egg, milk and dairy. Still, changes in this FFQ, as including other choline-rich food 

items (as cottage cheese, cream cheese, pork products and soya beans), having exclusive 

questions for food items as spinach and shrimp, locating peanuts in another food group than 

“dessert, cakes and candies” are examples of alterations that could have yielded other results 

regarding total choline intake in this population. Nevertheless, the estimates of daily intakes 

among our patients are aligned with the estimates obtained in other studies in western 

population.  

Another important aspect of a FFQ is that the chosen food items it contains must 

match the cultural background of the population of study (Willett, 2013), which was the case 

of the applied FFQ. Also, when assessing nutrient intake, it is decisive to consider 

characteristics of the food such as physical state (powder, purée, liquid for instance), 

preparation method (baking, frying, boiling) or vitamin fortification since these aspects are 

important determinants of nutrient content in the investigated food items, and not considering 

them is unfit for the purpose of nutrient intake assessment (Vennemann et al., 2015). 

Regarding choline content in food items some points must be considered. Firstly, total 

choline content may remain the same when comparing raw or treated food, but the choline 

species may change. Free choline or phosphatidylcholine content may increase, for instance, 

while others decrease in proportion, depending on the preparation method (Zeisel et al., 

2003). Secondly, choline may have different bioavailability from foods (Emmert and Baker, 

1997). Thirdly, hydrosoluble and liposoluble choline species have different absorption 

mechanisms and metabolism (Zeisel et al., 2003). These aspects may be important for the 

final effect choline intake has on health as the different choline species are differently 

associated with AMI as showed in the present study.  

Moreover, the fact that our subjects were patients with a clinical diagnose, and 

occasionally knew the severity of their respective diseases, may have influenced their eating 

habits prior to the study. Overestimation or underestimation of nutrient intake may be a 

source of bias in FFQs, and it affects nutrient intake estimation (Mirmiran et al., 2006). 

Underreporting of choline intake at the individual level may have impaired the risk estimates 

of choline-disease relation, and adding the fact that the FFQ was not built for measuring 

choline, may have given attenuated results. To help controlling for these factors in the group 

as a whole, nutrient intake was adjusted for energy intake. Adjusting nutrient intake for 

energy is important when energy intake and disease are associated as they are in the case of 

CVDs (Mirmiran et al. 2006). This adjustment of nutrient intake allows for control of the 

confounding effect total energy intake may have on disease risk, and it also controls for 
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extraneous variations in nutrient intake due to very high and/or very low energy intake 

(Willett et al, 1997) 

To estimate choline in food items, it was primarily used the American food database 

issued by USDA. It cannot be dismissed that this may have accounted for some estimate 

differences, and that it may have represented a source of estimation error. This source of error 

can affect the estimated mean intake of the dietary variable at the individual and population 

level (Slimani et al., 2007). This would, however, have a bigger impact on absolute intake 

rather than on the ranking of individuals from low to high intake which is more important for 

the current study. Choline supplements were not included in the FFQ. There was little 

knowledge about choline in supplements consumed by the population then.  

In other words, the role that dietary choline may play in AMI risk depends on the 

capability of the study to account for all probable confounding by associated dietetic and non-

dietetic risk factors (Kritchevisky and Kritchevisky, 2000). 

5.1.2 Study Population and Design 

 

Participants of the present study comprehend a homogeneous cohort of patients with 

angiographically established CAD originally taken from a larger population recruited for the 

WENBIT study. The current study uses dietary information collected prior to any possible 

AMI event, and participants are followed-up for the end-points, so this is a prospective 

cohort. Although prospective cohort studies may be more expensive than other designs and 

also be time-consuming, this design is considered an efficient tool to study the relation 

between exposure (dietary choline) and outcome (AMI) (Setia, 2016). In a prospective cohort 

study it is possible to study a potential causative relation between exposure variable and 

outcome as their chronologic order is known and the study population is free of the outcome 

at baseline (Mann, 2003). For the present study, there were collected an extensive amount of 

variables, which allows for control of many confounding variables. 

After the exclusion criteria (extreme caloric intake, and ACS), the study population 

was composed by a homogeneous group of individuals with diagnose of CVD. For this 

reason, our results limit to this type of group and cannot be generalized to the rest of the 

population. 
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5.1.3 Epidemiological Statistics  

 

Total caloric intake has been inversely associated with CVD (Willett et al., 1997). In this 

case, nearly all nutrients will be associated with disease risk in the same manner (Willett et 

al., 1997). This is because lower energy intake is associated with lower food intake, which, 

by its turn, leads to lower nutrient intake. Overreporting food intake and factors that influence 

energy intake, and consequently nutrient intake, as physical activity for instance (Willett et 

al., 1997) may work as a confounder (Rhee et al., 2014). For control of the confounding 

effect of energy intake, nutrient residual model was applied before all statistical analyses took 

place. Regression analyses generated residuals of nutrient intake, which were used to estimate 

intake of dietary choline independent of energy intake. This fact may be due to chance, but 

dietary patterns and demographic variation in a population may also generate different 

degrees of correlation between nutrient intake and energy intake (Rhee et al., 2014), which 

reinforces the importance of adjusting for total energy intake.  

Total energy-adjusted choline intake was categorized in quartiles. This allowed 

estimation of association between baseline categories for different exposure categories, which 

is positive when, in a real situation, higher or lower intakes affect health negatively (Willett 

et al., 1997).  

Some variables present missing values. There were though a low number of missing 

values, and they are not likely to have substantially influenced results.  

5.2 Discussion of Results 

5.2.1 Choline Intake and Baseline Dietary Intake 

 

The presented FFQ issued choline intake estimates similar to what other studies have 

observed (Detopoulou et al., 2008; Dalmejer et al., 2008; Bidulescu et al., 2007; Cho et al., 

2006). While some other studies have estimated higher total choline intake for men (Millard 

et al., 2016) or for both sexes (Nagata et al., 2015; Fischer et al., 2007; Fischer et al., 2005). 

These found differences can in part be explained by high consumption of seafood in one 

study (Nagata et al., 2015), and of eggs among African-Americans men (Millard et al., 2016), 

which could probably be explained by another eating pattern in their North-American cohort. 

And in the other two studies (Fischer et al. 2007 and Fischer et al., 2005), the difference 

could be explained by the fact that subjects were housed at the local University Clinical 

Research Center and their food intake was observed during the study period. This may have 
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influenced their ad libitum food intake (Robinson et al, 2015). Improved measurement tools 

and techniques may have been applied in their estimation of choline intake. In addition, 

choline intake may vary according to other determinants such as ethnicity and country 

(Slimani et al., 2002). 

In the current study population, mean energy-adjusted total choline intake was within 

what the EFSA estimated to be the average intake of choline (269 to 468 mg/day) among 

adults after analyses of 12 surveys in 9 countries of the European Union (EFSA, 2016). 

However, the mean energy-adjusted choline intake in the highest quartile in the present study 

was below the estimated AI recommended by the EFSA (440 mg/d for adults). Choline intake 

was neither associated with age or gender in the present study, as observed in another 

population (Millard et al., 2016). 

So far, overall dietary intake of choline in most studied populations has been lower 

than current established AIs, with some exceptions (Nagata et al, 2015; Fischer et al., 2007; 

Fischer et al., 2005). Still, the estimated “low” average intake among free-living individuals 

seems to satisfy the human body’s daily requirements for choline (Cho et al, 2006), in spite of 

conceivable presence of SNPs that might alter (increase or decrease) choline requirements.  

Further, among energy-giving nutrients, higher intake of choline was negatively 

associated with intake of SFA and total carbohydrates, and positively associated with higher 

intake of total fiber, protein, vegetables, fruits and berries, and alcohol. This could suggest 

that choline intake in this population was associated with a healthier eating pattern, and food 

choices are of substantial importance for the quantity of choline one eats. However, 

adjustment for dietary intake did not materially affect the results.  

5.2.2 Choline Intake and Acute Myocardial Infarction 

 

A higher intake of energy-adjusted total choline was associated with higher risk of AMI in 

patients with SAP. Increased intake of energy-adjusted phosphatidylcholine was associated 

with risk of AMI, and increased intake of energy-adjusted sphingomyelin was associated with 

increased risk of AMI in the crude model, and was borderline statistically significant in the 

fully adjusted. Energy-adjusted free choline, phosphocholine and glycerophosphocholine had 

no statistically significant effect on risk of AMI in any of the models. Similarly, Zheng and 

colleagues also found a higher intake of phosphatidylcholine intake to be associated with 

increased risk of all-cause mortality, especially CVD-specific mortality in healthy individuals 

(Zheng et al., 2016). Those associations were stronger in diabetic patients (Zheng et al, 
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2016). Their study had a large study population, and a long follow-up with biennially dietary 

assessment. Remarkably, the richest sources of both phosphatidylcholine and sphingomyelin 

are animal products, according to the table content issued by USDA (Patterson et al., 2008). 

Perhaps intakes of both choline species are correlated via dietary sources, and this could 

explain the association between sphingomyelin and AMI found in the present study.  

Millard and colleagues, (2016) analyzed association between dietary choline and 

betaine using a FFQ, and incident CHD, ischemic stroke and CVD in African-Americans. 

They found a decreased risk of incident ischemic stroke with higher choline intake (Millard et 

al., 2016).  

Other studies did not find the same association (Nagata et al., 2015; Dalmejer et al., 

2008; Bidulescu et al., 2007). In a healthy Japanese population, higher intakes of choline and 

betaine were not associated with cardiovascular mortality risk (Nagata et al., 2015). Seafood 

was a good source of choline and betaine, among PUFAs and other nutrients that may exert 

protective effect in the cardiovascular health. Although the authors adjusted their analyses for 

seafoods, they remarked that they could not disregard the protective effect of PUFA or other 

nutrients in seafoods on CVD mortality risk. In addition, they found that higher 

sphingomyelin intake increased the risk of mortality from CHD in men, and an inversed 

association between phosphocholine intake and risk of mortality from hemorrhagic stroke in 

women (Nagata et al., 2015). 

Dalmejer et al., 2008, found no association between regular intake of choline among 

Dutch postmenopausal women and CVD risks after adjusting for confounders. The authors 

suggest that the narrow intervals of choline intake used could explain their results (Dalmeijer 

et al, 2008), but they are not considerably different from the intervals of choline intake used 

in the present study. 

Bidulescu et al. assessed intakes of choline or betaine at baseline with a 66-item FFQ 

in a large biracial cohort of men and women with no previous CHD. After controlling for 

multiple risk factors, individuals at highest intake levels had 22% higher risk of experiencing 

CHD, and 14% higher risk considering the highest choline and betaine intakes together but 

those estimates were not statistically significant.  

Rajaie and Esmaillzadeh, 2011, conclude in their review of 7 cross-sectional and 

prospective studies on choline and betaine and CVD risk on healthy subjects, that the intake 

of these nutrients is not associated with CVD incidence, but the long-term consumption has 

been shown to prevent CVD mortality by decreasing inflammation and other risk factors.      
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Lastly, total energy-adjusted choline intake was not related to baseline plasma lipid 

profile, as observed in another study (Dalmeijer et al., 2008). But any possible association 

between total choline and blood lipids could have been masked by the broad use of statins 

among our subjects (88.3%). Nevertheless, LDL-C and ApoB-100/ApA1 were significantly 

higher and HDL-C significantly lower in individuals with AMI compared to those without 

AMI. There were no differences in TC and in TG. The ApoB/ApA1 ratio is a strong predictor 

of fatal AMI irrespective of TC and TG as ApoB is present in all atherogenic lipid particles 

(McQueen et al., 2008; Walldius et al., 2001). But adding blood lipids to our regression 

model 2 did not materially affect the association between choline intake and the risk of AMI.  

Some studies used in this discussion included only subjects with established CVD 

whereas others included only those who, at baseline, did not have CVD. Participants in the 

current study had comorbidities that were important risk factors, but our analyses were 

adjusted for them.  

5.2.3 Plasma levels of Metabolites and AMI  

 
The mean plasma of choline measured in the present study is in harmony with the estimates 

given by IOM, 1998, that is, 7 to 20 µmol/L in adults, most having a concentration of 10 

µmol/L. It was not observed any association between choline intake and concentration of 

choline, betaine, or DMG in the plasma. Lack of association might be explained by the rapid 

absorption of choline and its distribution to the different body tissues, as well as interactions 

with other dietary nutrients, intestinal conditions, and health and physiologic status, like 

pregnancy and lactation (Cho et al., 2016).  

Plasma choline was higher in patients who had an AMI episode but, the difference 

was only borderline statistically significant. In another study, plasma choline level, which 

was similar to the average plasma choline in the present study, was associated with an 

unfavorable CVD risk profile and plasma betaine was associated with a favorable CVD risk 

profile (Konstantinova et al., 2008). Choline and betaine plasma could be a reflection of last 

dietary intake, and changes in diet at a later point of time may attenuate associations between 

plasma choline and AMI risk. 

In this study, mean tHcy was within the normal range of tHcy in the blood (5 - 

15µmol/L) (Robinson, 2000). Higher intake of choline was associated with lower tHcy, as 

observed in other studies (Dalmeijer et al., 2008; Cho et al., 2006). Patients who developed 

AMI under the study period had significantly higher tHcy than those who did not. But, 
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adding intervention allocation to model 2 in the analyses risk, did not change risk of AMI. 

Elevations in tHcy seem to be related to only 10% of CAD risk in the population (Weiss et 

al., 2002). Moreover, a meta-analysis showed no effect on risk of AMI among individuals 

with established CVD or renal disease who took B-vitamins and had their Hcy levels lowered 

(Clarke et al., 2010). 

5.2.4 Possible Mechanisms 

 

Choline has been related to cardiovascular (Tang et al, 2013; Wang et al., 2011) and more 

specifically, atherosclerotic diseases (Wang et al., 2011; Muller et al., 2010) through several 

mechanisms.  

Hcy serves solely as an intermediate in the metabolism of MET, and it must be 

remethylated (remethylation pathway) or it must be catabolized (transsulphuration pathway) 

(Blom and Smulders, 2011). Choline deficiency, through scarce betaine, could lead to 

accumulation of Hcy (Dalmeijer et al., 2008; Bidulescu et al., 2007). While supplementation 

with choline and betaine (Lee at al., 2010) or phosphatidylcholine (Olthof et al., 2005a) is 

capable of lowering Hcy concentrations. It is well established that B vitamins have the 

capacity to reduce levels of Hcy (Weiss et al., 2002) by promoting remethylation or cleavage 

of Hcy (Bertoia et al., 2015). Increased plasma Hcy would disturb the vascular endothelium, 

elevating atherogenesis (Weiss et al., 2002). Elevated levels of Hcy in the plasma are 

associated with higher risks of developing vascular disease (Robinson, 2000) independent of 

other risk factors (Clarke et al., 1991).  

Higher intake of choline has been associated with decreased circulating levels of 

inflammatory markers, such as CRP, interleukin-6 (Il-6), and tumor necrosis factor alpha 

(TNF-α) (Detopoulou et al., 2008). Rajaie and Esmaillzadeh, 2011, conclude in their review 

of 7 cross-sectional and prospective studies on choline and betaine and CVD risk on healthy 

subjects, that the intake of these nutrients is not associated with CVD incidence, but the long-

term consumption has been shown to prevent CVD mortality by decreasing inflammation and 

other risk factors. However, it was not found association between total energy-adjusted 

choline intake and CRP, and adding CRP to hazard risk analyses did not affect the effect of 

choline intake on risk of AMI.  

Choline is also hypothesized to affect CVD via the action of TMAO. TMAO 

augments macrophage cholesterol content and foam cell formation in mouse models (Wang 

et al., 2011). Foam cells play a major role in the progress of atherosclerosis (Valledor et al., 
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2015). TMAO also diminishes reverse cholesterol transportation (Koeth et al., 2013), and 

alters the metabolism of bile acid and sterol transporters in the liver and intestine (Velasquez 

et al., 2016). Wang and colleagues observed a dose-response relationship between TMAO 

and angiographic measures of atherosclerotic plaque in humans (Wang et al., 2011). High 

plasma choline (Wang et al., 2014; Koeth et al., 2013; Wang et al., 2011), high plasma 

betaine (Wang et al., 2014; Wang et al., 2011), high plasma carnitine (Koeth et al., 2013) 

have been found to be associated with higher CVD risk only when TMAO concentration was 

high. In the present population, plasma concentration of TMAO was higher across quartiles 

of choline intake, but there was no significant difference in TMAO serum levels between 

patients with AMI and patients who did not have AMI. Importantly, TMAO is excreted via 

urine effectively (Tang et al., 2013; Wang et al., 2011). In such way, TMAO clearance may 

protect against CVD (Tang et al., 2013). Velasquez and colleagues in their review article 

suggest that TMAO could instead be a marker of stress rather than a mediator of disease 

though (Velasquez et al., 2016). The literature about TMAO and CVDs remains controversial 

still (Velasquez et al., 2016). 

Elevated intakes of choline and betaine have also been associated with altered blood 

lipids (Olthof et al., 2005b), what may elevate risk of CVD. Olthof and colleagues 

administered choline and betaine to healthy subjects, and showed that choline 

supplementation may increase TG, and that betaine may increase LDL-C and, consequently, 

TC (Olthof et al., 2005b). The participants received though 6g of betaine and 2.6 g of choline 

per day, that is far above the estimated average choline intake in epidemiological studies so 

far. They propose that the export of lipids from the liver via VLDL-C increase, as its 

precursors (choline and betaine) are found abundant intracellularly due to elevated intake 

(Olthof et al., 2005b). Although there were observed some differences in blood lipids 

between those who had AMI and those who did not, especially Apob/Apa1 ratio, blood lipids 

did not modify the estimated risk association between dietary choline and AMI when added 

to model 2. 
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6. Conclusion 
 

In our study, we found that there was an increased risk of experiencing AMI for each 100 mg 

increase in choline intake among Norwegian patients with SAP. 

The exact mechanism through which higher choline intake is associated with AMI 

events in the present population is uncertain, and it may be multifaceted due to the ubiquitous 

use of choline in the human body. Nevertheless, due to the prospective nature of the present 

study, we could observe a potential causal effect between high choline intake and incidence 

of AMI. Although no conclusion can be made, the present results add valuable knowledge to 

future research. 
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7. Future Perspectives  
 

Creating a Norwegian and a European database for choline content in foods is necessary for 

more accurate assessment of choline content in foods purchased and consumed in Europe. In 

addition, divergencies in choline requirement may obscure any possible consistency among 

studies, and it must be considered in the future. A broader knowledge about how estrogen 

(and possibly hormonal replacement therapy) and SNPs affect choline necessities will add 

precious understanding to the varied impact this nutrient have on health.  

Additionally, choline metabolism is interrelated with other important pathways that play an 

important positive or negative role on the development of CVD. In this way, controlling for 

those variables are of great importance when exploring the effect of choline intake in 

different populations.  

Controlled trials are warranted in order to better comprehend the effects of choline intake in 

the development of CVDs. Control and intervention groups with choline intakes within or 

above the current AIs will cooperate defining what higher intakes are in different groups. 

Moreover, exploring the different effects of free choline and choline species on health and 

disease is valuable, especially because most of animal foods rich in this nutrient are 

recommended to be consumed in modest amounts.  
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