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Chapter 1

Introduction

Numerical analysis and computations have been an integral part of science from the
development of calculus in the 17th century. It was discovered early on that the dif-
ferential equations of classical mechanics in many cases were too complicated to be
solved analytically; even for the three-body problem of celestial mechanics (the sun-
earth-moon orbit), analytical solutions can not be found, and approximations must be
used.

In 1768, Leonhard Euler published a canonical scheme for solving differential
equations, based on the Taylor expansion, which has later become known as “Euler’s
Method”. This method allowed the motion of complicated planetary systems to be
studied as initial value problems.

With the convergence proof of the backward Euler method by Augustin Louis
Cauchy in 1824, development of more accurate integration methods started, leading
to the discovery of multi-step methods and Runge-Kutta methods during the 19th and
20th centuries. Although these methods could be constructed such as to be very accu-
rate every timestep, it was observed that for simulations of extended duration, such as
predicting the trajectories of the celestial objects for centuries, the calculated solution
could slowly drift away from the exact solution. On the other hand, lower order integra-
tion schemes like the Störmer-Verlet1 method did not experience this energy drift even
if their accuracy was seemingly lower than that of higher order methods. The under-
standing that properties other than order of accuracy and stability are of importance was
gradually realized in different fields during the 20th century. In the 1990s, this direction
of research developed into a separate field, geometric numerical integration[28].

Along with the development of computational methods emerged the profession of
computers. These early computers were not electronic devices like today, but rather
humans performing numerical calculations by hand. The limited speed of performing
calculations with pen-and-paper restricted the use, and therefore development, of ad-
vanced numerical schemes until the development of first mechanical computers, and
later electronic computers. These computational devices opened up new possibilities
in numerical research, making increasingly more sofisticated methods feasable.

Today, a plethora of schemes for solving differential equations are available, and
there is a challenge in finding the scheme most suitable for the problem at hand. Physi-
cists and engineers rely on numerical techniques for everyday problem solving, but

1Although originally devised by Newton in Principia, this method has been reinvented many times and is
often attributed to Carl Störmer in astronomy and Loup Verlet in molecular dynamics.
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do not have the time or resources to investigate the multitude of methods thoroughly.
Mathematicians and numerical analysts, on the other hand, have plenty of resources to
study the numerical methods, but often lack interesting problems to test the methods
on. This leads to a less than optimal amount of technological transfer from numeri-
cal analysis to applications in physics and engineering. One possible remedy for this
problem is to create software frameworks catering both to developers and users of nu-
merical schemes. ProtoMol[44] is such a framework for molecular dynamics. It serves
numerical analysts as a framework for simplifying development and testing of numer-
ical schemes, while at the same time being efficient and scalable enough to support
physically interesting problems.

By solving the equations of classical mechanics, scientists had huge success in pre-
dicting planetary trajectories, the motion of rigid bodies, etc. Despite this success, it
became inceasingly clear towards the end of the 19th century that classical mechanics
was not sufficient to describe motion on the atomic level. It was discovered[62] that
instead of assigning position and momentum to each particle, one should rather con-
sider all possible values of position and momentum simultaneously. This consideration
turns the equations of motion from a set of coupled ordinary differential equations into
a partial differential equation (PDE) called the time dependent Schrödinger equation
(eqn 1.4). In the Schrödinger equation, the number of particles correspond to degrees
of freedom in the PDE, leading to exponential increase with the number of particles.
While classical calculations can consider millions of particles simultaneously, the “ex-
ponential wall” of quantum mechanics[37] effectively limits the number of particles
that can be considered in quantum mechanical calculations to a handful. It is only in
the last 10-15 years that advances in computational power have made full two-electron
studies of helium, molecular hydrogen and other two electron systems possible. Sys-
tems with more than two or three particles are still out of reach on modern computers
and approximations such as density functional theory[38] or Hartree-Fock[11, p. 382]
must be used.

In understanding the fundamental processes of atomic systems, numerical simula-
tions are invaluable. As physical experiments grow increasingly more complex, it is
important to complement the experiments with numerical experiements in order to bet-
ter understand underlying physics. Numerical and physical experiments are usually not
hard in the same manner. Physical experiments are limited in what kind of information
can be extracted from a system, as well as the amount of control one have over the ex-
perimental parameters. In numerical experiments, on the other hand, the wavefunction
is available, and can any kind of observable can in principle be calculated. The diffi-
culty here is to create physically realistic scenarios and extracting physically relevant
information, as these often require long simulation times on a large domains, leading
to high requirements of memory and computational time.

Simulating large quantum mechanical systems require good methods and efficient
implementation. The fantastic development in computers has allowed increasingly
larger systems to be considered numerically. The current trend is no longer towards
faster processing units, but rather towards more processing units. Numerical meth-
ods working well on these parallel machines are therefore required if simulations are
to be performed on systems of ever larger size. Such numerical methods can become
quite complex, and the physicists interested in numerical simulations are not necessar-
ily interested in the details of the numerical methods. It is therefore important to have
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software which simplifies the application of numerical methods to interesting physical
problems.

Scripting languages, and in particular Python, have become popular for writing sci-
entic software in recent years. An increasing number of scientific codes are written in
Python or have wrappers which allow them to be called from Python[32, 48]. There is
even an annual conference on scientific programming in Python[63]. Furthermore, an
entire issue of the prestigous IEEE Computing in Science and Engineering (May/June
2007) was recently dedicated to the use of Python in scientific and engineering soft-
ware. Much of this increased popularity is undoubtedly due to the simplicity of making
Python extension modules, and the availability of high quality extension modules such
as NumPy, SciPy[53] and Matplotlib[34], providing visualizations, numerical arrays,
linear algebra and more.

The main part of this thesis is dedicated to explaining some of the ideas behind the
software package PyProp. As will be discussed in in the following chapters, PyProp
is a software package designed to aid researchers in physics in solving the time de-
pendent Schrödinger equation. It is distributed under the GNU General Public License
(GPL)[22], and is publicly available[8].



4 Introduction

1.1 Fundamentals of Quantum Mechanics

A textbook[30] on quantum mechancis should be consulted for a proper introduction to
quantum mechanics. Nevertheless, we here give a short overview of some of the prin-
ciples of quantum mechanics which will be useful for the reminder of this dissertation.

In quantum mechanics, the state of a system is described by a complex-valued wave-
function. For n particles the wavefunction can be written

ψ(x1,x2, · · · ,xN, t). (1.1)

The square of the wavefunction is related to probability density, and the probability for
finding particle 1 at position x1, particle 2 at position x2, etc. is |ψ(x1,x2, · · · ,xn, t)|2.

For a full description of a system a Hamiltonian is required in addition to the wave-
function. The Hamiltonian describes the energies of the system, and is related to the
classical Hamiltonian by rewriting the canonical position an momentum to the corre-
sponding quantum mechanical operators2.

p(t) → p =−i∇
q(t) → q = x. (1.2)

The Hamiltonian is in general a Hermitian linear differential operator, and can usually
be written in terms of the kinetic energy T = −∇2/2m, and potential energy, V =
V (x, t), operators.

H = T+V (1.3)

The time dependent Schrödinger equation (TDSE) describes the time evolution of
the wavefunction under a given Hamiltonian,

i
∂
∂ t

ψ(x, t) = Hψ(x, t). (1.4)

Developing methods and software for solving this equation is the main topic of this
dissertation.

An important postulate in quantum mechanics is that the only possible observable
values corresponding to an operator O, are the eigenvalues of that operator. As the
Hamiltonian is the operator corresponding to energy in the system, the eigenvalues and
eigenstates (eigenpairs) of the Hamiltonian have special importance. The eigenvalue
equation for the Hamiltonian is often called the time independent Schrödinger equation
(TISE)

Hψn(x) = Enψn(x) (1.5)

Eigenstates represent the stationary states of the system, such that if the wavefunction is
purely in an eigenstate, it will remain so during time evolution, with the phase rotating
according to the energy of the state,

ψn(x, t) = ψn(x,0)e−iEnt . (1.6)

Another important quantity is the the expectation value of an operator,

〈O(t)〉=
∫

Ω
ψ∗(x, t)O(t)ψ(x, t)dx. (1.7)

2Here, as everywhere else in this dissertation, atomic units[65] are used.
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The expectation value represents the average value of an observable if large number
of identical experiments are performed. As quantum mechanical systems approach the
limit where a classical description is applicable, the the expectation value of position
and momentum should approach their classical counterparts.
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Chapter 2

Building a General TDSE Solver

There are numerous packages available for computations in atomic physics. These
packages are ranging from large frameworks based on a variety of methods like Density
Functional Theory or Hartee-Fock to calculate structures for very general systems, to
small programs performing a limited set of calculations on specific systems.

From a physicist’s point of view, the specialized programs can be very useful. If
their scope fit the research at hand, a small program is easily understood, and can per-
haps be tweaked to give the desired result. From a software standpoint, however, spe-
cialized programs are often made with only a specific result in mind, and are therefore
often not easily extensible to other problems. Furthermore, as more features are added
without an overall design goal, the programs can become overly complex and difficult
to use.

The larger atomic physics software packages, such as Gaussian, Dalton, etc.[26]
have a more thorough design philosophy, allowing broader development without intro-
ducing unnecessary complexity. However, these packages are mostly geared towards
the time independent case, that is, calculating some or all eigenstates of a system.

In creating a general solver for time dependent problems, PyProp could focus exclu-
sively on being a black box delivering wavefunctions after propagating a given initial
state through a time dependent problem. We realize, however, that producing a final
wavefunction is often only a small part of the problem. In many cases the amount of
effort to properly analyze the result can be quite comparable to the actual propagation.
Furthermore, the analysis needed in time dependent problems varies greatly between
projects. PyProp is therefore designed to simplify the analysis process in addition to
delivering robust propagators for a wide variety of systems. This is achieved by expos-
ing most of the functionality through a Python interface, with which the user can create
a specialized program for both propagation and analysis.

2.1 Fundamental concepts in PyProp

The main idea behind our software package PyProp has been to develop a research tool
for time dependent atomic physics. The software should allow researchers to quickly
start calculations on a new system with a minimal amount of work. As the desired quan-
tities from time dependent calculations varies considerably from project to project, it is
not a goal for PyProp to be a plug-and-play system, able to automatically calculate all
kinds of quantities without any kind of programming from the user. Rather, the goal is
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Figure 2.1: High level overview of PyProp. A core library (blue) is the basis on which a num-
ber of independent discretization and propagation schemes (red) are built. The user supplies
the problem specific code (green) which may be dependent on the chosen schemes as well as
the core library.

to provide tools for making it possible for researchers to implement the desired analysis
without having detailed knowledge of all the numerical aspects of the propagation.

Problems in atomic physics can easily become very large. It is therefore paramount
that the most efficient methods are used. In our case, “method” involves choice of
coordinate system, type of discretization as well as propagation algorithm. PyProp
must therefore support a number of methods in order to cater to a variety of problems.
It is very hard to determine which method will be most suited for a particular problem in
advance. PyProp should therefore make it reasonably simple to test different methods
before settling on one, instead of relying on a priori knowledge about the system.

In figure 2.1, the high level design of PyProp is shown. A set of core routines
contains the basic building blocks: The Wavefunction class contains the discretized
wavefunction data, while the Representation class is a common interface to all types of
discretizations. The actual implementation of the different discretization and propaga-
tion schemes are independent of each other, and depend only on the core routines. On
top of these two layers, the user can add the problem dependent routines, deciding the
actual flow of the program and performing analysis.

2.1.1 Method of Lines

An important aspect of creating a flexible time dependent PDE solver is realizing the
difference between the spatial and the temporal dimensions. While there can be many
spatial dimensions to a problem, there is always one temporal dimension. Furthermore,
in the temporal dimension, the wavefunction is known initially at a time t0, and the
purpose of the propagation is to determine the wavefunction at a later time t1 > t0. The
spatial dimensions, on the other hand, are surrounded by boundary conditions at both
lower and upper boundary. It is therefore natural to use the method of lines [29], and
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first discretize the spatial dimensions, reducing the PDE to a large set of coupled ODEs,
and then discretize the temporal dimension.

2.1.2 Wavefunction

In PyProp, the wavefunction object plays a central role. It represents a self-contained
snapshot of the discretized wavefunction at a point in time. It contains information
about what kind of representation and discretization the numerical values represent,
as well as how these values are distributed across processors. This makes it possible
to write quite general routines for calculating various quantities, as the wavefunction
contains the necessary information (grid points, integration weights and distribution
information) through the representation and distributed model objects.

The wavefunction is said to have a certain rank, which indicates the number of
independent discretizations that are combined in the current system. For example, a
Cartesian coordinate system will typically have the same rank as the number of de-
grees of freedom, while a spherical coordinate system will typically have rank = 2; one
rank for the radial dimension, and another for the two angular dimensions. The two
angular dimensions (θ , φ ) will typically not be split into different ranks, because in
the spherical harmonic representation (discussed in section 4.2.3), the l and m quantum
numbers do not form a tensor product, and as the wavefunction can not change rank
during propagation, it is best to keep θ and φ compressed into one rank.

2.1.3 Representation

Every wavefunction object is associated with a representation object, representing the
discretization details of the wavefunction. The representation has methods for extract-
ing the grid points (for grid based discretizations), integration weights, as well as meth-
ods for calculating the inner product of two wavefunctions.

Most commonly, the CombinedRepresentation (a specialization of the Represen-
tation class) is used as the representation of the wavefunction. The CombinedRepre-
sentation allows every rank to have independent sub-representations, enabling users to
pick suitable discretizations for each rank. This flexibility allows PyProp to support a
number of different systems, ranging from simple reduced dimensionality models, to
full six degrees of freedom treatment of helium, as described in Paper VII.

During the course of propagation, the wavefunction can be transformed between
representations. This includes transformations between a Fourier-space and a grid-
space representation, between a spherical harmonic and spherical grid representation,
or between any other representations for which a transformation has been defined. Un-
der such operations, the actual representation objects attached to a wavefunction will
be replaced, and the representation objects can therefore not be considered immutable.

2.1.4 Distributed Model

An important aspect in designing PyProp was to make parallelization work as auto-
matically and transparently as possible. A project using only standard functionality
in PyProp, should to a large extent not notice whether it is run in parallel or not.
Furthermore, the high performance computer systems currently available are almost
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exclusively distributed memory machines. On these machines, the Message Passing
Interface (MPI) is by far the most popular parallelization interface available, and the
parallelization schemes in PyProp are therefore based on MPI.

In order to facilitate a mostly transparent MPI parallelization, every representation is
given a DistributedModel, which describes how the wavefunction is distributed among
the processors. The parallelization scheme used is to distribute d < Rank ranks of
the wavefunction as evenly as possible on a d-dimensional grid of processors. The
shape of the processor grid is chosen by the MPI implementation, and could possibly
exploit structure in the underlying network hardware. By leaving one of the ranks local,
operations requiring access to all elements along a rank can be performed on the local
rank, and by applying the redistribution scheme described in Paper I.

2.2 Implementation

As the goal for PyProp is to be a flexible and yet highly performing TDSE solver,
certain care has to be taken when choosing programming languages and libraries. The
Fortran languages, for example, have a proven history of very high performance; the
language is reasonably simple, it is geared towards efficient loops and array operations,
and highly optimizing compilers are available. Fortran is, on the other hand, quite
limited in abstraction possibilities, and anything other than array operations are quite
cumbersome. It is therefore unsuited as a main language for a larger framework such
as PyProp.

At the other end of the scale, dynamic object oriented languages such as Python are
very flexible. Object oriented techniques have previously been argued as a very good
method for reuse of code[13, 46]. The dynamic nature of Python, and the way it is
possible to integrate code from other languages, makes Python an excellent language
for writing high level scientific codes[41].

The main argument against Python in scientific computing is performance. De-
pending on the type of application, computationally intensive programs written in
Python are typically 10 to 300 times slower than equivalent programs written in C++
or Fortran[71]. However, for larger programs, the performance is usually confined to
a small number of performance sensitive routines. Python makes it easy to integrate
other languages, and specifically C/C++[1] or Fortran (using f2py). The performance
sensitive routines can then be rewritten in a compiled language to yield the desired per-
formance, while the main body of performance insensitive code is written in a highly
expressive language such as Python.

In PyProp, Python is used extensively to deal with configuration files and high level
steering tasks, while the numerical calculations are performed mostly in C++, with
the exception of a few kernels written in Fortran. Using the interactive Python shell
IPython[36], the user gets access to a command completion, command history and an
interactive debugger, etc. Combined with the plotting library matplotlib[34], the user
can use PyProp to rapidly explore the results from quantum mechanical calculations to
look for interesting results.
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2.2.1 C++ Classes

Implementing the concepts introduced in section 2.1 has been done by implement-
ing the Wavefunction, Representation, and DistributedModel as C++ classes
templated on the rank of the problem. Knowing the rank at compile-time allows the
compiler to perform a number of optimizations, reducing the overhead of writing rank
independent algorithms. Furthermore, templating on rank allows PyProp to use the ex-
cellent Blitz++ library[73], which further simplifies the formulation of efficient rank
independent algorithms.

2.2.2 Python Interface

All PyProp C++ classes are exposed to Python with the help of the boost::python[1]
library. Using pyste to generate the boost::python wrapper, each class is exposed
to Python using only a few lines of code. An issue here, is that as C++ templates
are compile time structures, it is not possible to expose a templated class directly to
Python. Rather, only a specific instance of the templated class may be exposed to
Python. Ideally, a scheme where Python instantiates the compiler and compiles the
required template instance when needed could be devised. This is similar to the ap-
proach the weave project[75] uses to speed up computational kernels. However, as
discussed in section 2.2.3, one of the major platforms for which PyProp is available,
does not support dynamic libraries. All compiled code must therefore be available be-
fore the program starts, which is incompatible with the scheme above. A simpler but
more limiting scheme is therefore used, where the rank-templated classes are instati-
ated for ranks 1 through 4, and compiled into Python extension modules. Most of the
C++ classes have Python-native wrappers supplying high level functionality in order to
simplify access to the computational routines.

When using PyProp, the user creates an extension module containing the custom po-
tentials and other compiled code necessary for the analysis. The user extension module
links to the PyProp modules in order to get access to the required core routines. Most of
the user code will usually be in the form of Python code gluing together the necessary
routines from the PyProp module.

2.2.3 Dynamic Libraries

In addition to running on “normal” platforms such as GNU/Linux workstations, PyProp
must be portable to the high performance computing (HPC) platforms available. In our
case, the interesting HPC-platforms are mostly GNU/Linux clusters, with one notable
exception: the Cray XT-4 computer at the University of Bergen, known as Hexagon.

The Cray XT-4 platform is built on a custom Linux kernel, optimized for HPC
needs. Among the features stripped from the stock Linux kernel is support for dynamic
loading of libraries at runtime. This has interesting implications for using Python exten-
sion modules, as these are most commonly loaded dynamically at runtime. As PyProp
depends on 3rd party extension modules like NumPy, matplotlib and pypar, these mod-
ules must also be compiled into one big executable along with the core Python library
and the problem specific code.
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2.3 Operators

The Hamiltonian in the TDSE can always be partitioned into sum of operators, repre-
senting different parts of the system,

H = ∑
i

Hi. (2.1)

As all physically significant quantum mechanical operators are Hermitian (although
their discretized representation may not necessarily be), it can safely be assumed that all
reasonable operators will have a diagonal representation, i.e. the matrix representation
of the operators are far from defect. Specifically, most operators are linear operators of
the spatial position x, or the momentum p =−ih̄∇.

A general discretized linear operator, O, can be multiplied to a discretized wave-
function by

ψ ′i = ∑
i′0

∑
i′1

· · ·∑
i′N

Oi,i′ψi′. (2.2)

Here, i and i′ are vector indices representing an index in an N-dimensional array. If
Oi,i′ = 0 for i �= i′, i.e. it does not mix elements in the wavefunction, the operator is said
to be a diagonal operator, or a potential.

Depending on the kind of propagation scheme, different representations of the oper-
ators will be required. For split-step based propagators (discussed in section 3.2), each
operator is propagated separately. Most often this is easily performed by having the op-
erator in diagonal form, where the operator exponential can be easily calculated. For
the remaining propagators described in chapter 3, only the action of the operator on a
wavefunction is required, leaving a greater freedom of choice in the representation of
the operators.

2.3.1 Potential evaluation

The goal is to enable users to express operators in an intuitive fashion. Most user
supplied operators are potentials. PyProp therefore has a special framework for set-
ting up and evaluating potentials. On the high level, any class implementing a simple
Potential-interface supporting can be used as an operator.

For diagonal operators, the user need only create a class implementing a
GetPotentialValue(...) method mapping a grid coordinate to a potential value.
The PotentialEvaluator class has a PotentialClass template parameter, and uses
this to evaluate the potential at the grid points given by the representation, as shown in
Listing 2.1. As a result of the template metaprogramming trick of making the potential
available to the PotentialEvaluator at compile time, the compiler is able to optimize
the call to GetPotentialValue inside the loop. The alternative would be to pass the
potential as an overloaded function, but then each call to GetPotentialValue would
have to be looked up at run time, making optimizations impossible.

2.3.2 Tensor Potentials

Some propagation schemes do not require the application of the exponential of an op-
erator, and only the application of the operator on the wavefunction is required. For
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Listing 2.1: Excerpt of the PotentialEvaluator class
template<int Rank, class PotentialClass>
class PotentialEvaluator
{
public:
void Apply(typename Wavefunction<Rank>::Ptr psi)
{
for (/* iterate over all grid points */)
{
Vector pos = getPos(psi->GetRepresentation(), idx);
cplx V = Pot.GetPotentialValue(pos);
psi->GetData()(idx) *= exp(- i*dt*V);

}
}

private:
PotentialClass Pot;

};

such cases, it might not always be optimal to represent the operators in diagonal form,
but rather find an “intermediate” representation, where all operators have more or less
the same sparsity structure. In the B-spline representation (see section 4.2.4), for ex-
ample, both x̂ and p̂ operators are banded, making it natural to represent both kinetic
and potential energy in the B-spline basis. In order to create a framework for expand-
ing operators in a product of bases, we will assume that the operators are a combination
of grid functions and derivatives, and can be written on the form

Hi = g(t) f (0)(x0,x1, · · · ,xN)
∂ p1

∂x1 p1

∂ p0

∂x0 p0
· · · ∂ pN

∂xN pN
. (2.3)

Here, the potential values in the initial potential f (0) can be evaluated using the method
described in the previous section. The time dependence is quite limited in this form of
operators, but well suited for interactions between atomic systems and laser light.

This operator is to be represented in a Kronecker product of one-dimensional bases,

B(x0,x1, · · · ,xN) = B0(x0)⊗B1(x1)⊗·· ·⊗BN(xN). (2.4)

Here, Br(x) are the basis functions {Br
j(x)} defining the desired basis for the rth rank.

Finding the matrix elements of Hi in the basis B, can be achieved by expanding f

in the basis functions of each rank, r, given the differentiated basis functions {∂ pr Br
j(x)

∂xpr }
are known,

f (1)
j′, j(x0, · · · ,xr−1,xr+1, · · ·xN) =

∫
B j′(xr) f (0)(x)

∂ pB j(xr)
∂xr p dxr. (2.5)

By successively performing the expansion in each rank, the operator will be represented
completely in B, known in PyProp as a Tensor Potential,

Ĥi = { f (N)
i,i′ }. (2.6)
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Listing 2.2: Example of tensor potential application for a rank 3 problem, op is the tensor
potential data represented in a rank 3 array. indexPairs is a list of index pairs for each rank.
src and dst are the source and destination wavefunction arrays respectively.
def TensorPotentialMultiply(op, indexPairs, src, dst):
for i0, (r0,c0) in enumerate(indexPairs[0]):
for i1, (r1,c1) in enumerate(indexPairs[1]):
for i2, (r2,c2) in enumerate(indexPairs[2):
dst[r0,r1,r2] += op[i0,i1,i2] * src[c0,c1,c2]

Here, i = (i0, i1, · · · , iN) and i′ are vector indices into the N-dimensional wavefunction
array.

This formalism can easily be adapted to exploit the sparsity structures in each rank.
In the B-spline basis, for example, operators always form a 2k−1 banded matrix, and
the dipole laser field, f = r cosθ , forms a bi-diagonal matrix in the spherical harmonic
representation. Exploiting sparsity is essential in order to have a well performing code,
as the difference in size between the full and the sparse matrix can easily become very
large (e.g. a factor 500 for a reasonable rank 2 B-spline problem). Here, we will assume
that the sparsity structures are known in advance, and that the sparsity structures are
independent in each rank.

The integrator for each rank is supplied with the index pairs {ir, i′r} that give non-
zero matrix elements, and calculates the matrix elements for those indices. Application
of the tensor potential can be done in N nested loops iterating over the index pairs for
each rank, as shown in Listing 2.2. For performance reasons, it is desirable to optimize
each of the loops according to the sparsity structure. E.g., if the innermost rank (rank
2 in the above example) is banded, it would be desirable to replace the innermost loop
with a call to the BLAS function zgbmv.

In order to support a wide variety of sparsity structures without sacrificing perfor-
mance, a tensor potential multiplication generator is included in PyProp. The generator
is given a list of sparsity structures (dense, banded, Hermitian, etc.), and generates a
Fortran function capable of performing a tensor potential multiplication with a wave-
function, as described in Listing 2.2. The generator is written in Python, and consists of
a recursively chained list of code generators for each rank. Each code generator decides
on the best way to iterate over the index pairs according to whether it is the innermost
rank, etc.



Chapter 3

Propagation Schemes

Assuming for a moment that the TDSE can be successful discretized (Which we will
return to in chapter 4), the TDSE can be written in matrix form,

− iSċ(t) = H(t)c(t), (3.1)

where c is the discretized wavefunction, H(t) is the Hamiltonian represented in the
corresponding basis, and S is the overlap matrix originating from non-orthogonal basis
functions such as B-splines (section 4.2.4). For orthogonal bases, the overlap matrix is
the identity matrix, S = I, simplifying the system considerably.

Solving equation 3.1 exactly is only possible for special cases of H(t). In general,
numerical approximation schemes must be used. A vast literature is dedicated to this
canonical problem, see for example Iserles and Nørsett[35], Zanna[76] and others[28,
p.122]. Here, we will only consider schemes assuming the time step h is short enough
for the Hamiltonian to be considered time independent on [t, t + h]. This corresponds
to ignoring the error term in the following expression,

c(t +h) = exp
[−iS−1H(t)h

]
c(t)+O(h2). (3.2)

Propagating the TDSE is then reduced to repeatedly applying the matrix exponential of
the Hamiltonian to the wavefunction. Moler and van Loan[47] have written a review
of methods for calculating the matrix exponential. Some of these methods will be
described here, tailored to solving the TDSE. For a more mathematical analysis of
most of the methods described here, see [42]

For simplified notation, let φ(h) = exp
[−iS−1H(t)h

]
be the propagation matrix,

advancing the wavefunction a timestep h.

3.1 Preserving Structure

In the following, we will assume that the Hamiltonian is Hermitian, H = H∗, and the
overlap matrix is Hermitian and positive definite. This is not a severe restriction, as the
observable physical quantities are assumed to correspond to Hermitian operators. In
this case, by using the adjoint of the propagation matrix, φ ∗(h) = exp

[
iH(t)S−1h

]
, it

can be shown that the propagation operator φ(h) is S-unitary,

φ ∗(h)Sφ(h) = S. (3.3)
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The unitarity of the propagation operator leads to a conservation of probability,

P(t +h) = c∗(t +h)Sc(t +h) = c∗(t)φ ∗(h)Sφ(h)c(t) = c∗(t)Sc(t) = P(t) (3.4)

Another important physical property is the expectation value of energy,

〈E(t)〉= c∗(t)H(t)c(t). (3.5)

If H is not explicitly time dependent, 〈E(t)〉 = 〈E〉 will be constant throughout the
propagation. This can readily be seen from expanding c(t) in the eigenstates of H.

Having numerical propagation schemes with these properties built in can have
tremendous benefits on the efficiency of the schemes. The total probability of the
system is a physically relevant quantity, and it does not make sense to have a total
probability different from 1. Preserving probability in the calculations can therefore
help get more qualitatively correct results. E.g. if the goal is to calculate the probabil-
ity of ionization from a system, the ionization can be calculated from the probability
of remaining in a bound state, PI = 1−Pb. The propagation scheme need not give ac-
curate results for the population or phase on individual states, but can still give a good
estimate for the total population in the bound states. Using a probability conserving
method, we will automatically get a good estimate for the ionization probability from
the bound probability.

Preserving the intrinsic physical properties of the PDE is closely related to the field
of Geometric Numerical Integration, reviewed in detail in [28].

3.2 Split Step

Assume the Hamiltonian can be split into a sum of p sub-hamiltonians Hi (equation
2.1), where the exponential of the sub-hamiltonians, exp[−iS−1Hi(t)h], be can eas-
ily calculated. The idea of the split step propagator is to approximate the full opera-
tor exponential for the Hamiltonian by a series of operator exponentials for the sub-
hamiltonians,

c(t +h) = φ(h)c(t) = φ0(h) · · ·φp(h)c(t)+O(h2). (3.6)

Here, φi(h) is the propagator for the ith sub-hamiltonian. The error in the expression
above is due to the non-commutivity between the different sub-hamiltonians (if the sub-
hamiltonians commute, the error vanishes), and can be reduced by a more complicated
composition of the sub-hamiltonians. It has been shown that compositions yielding
accuracy of any even order k can be obtained, see [45] and references therein.

Despite the work on high order splitting schemes, the most common split step propa-
gator is using the third-order Strang composition scheme[70], where a symmetric prod-
uct of the terms in equation 3.6 is formed,

φ(h) = φ0(h/2) · · ·φp−1(h/2)φp(h)φp−1(h/2) · · ·φ0(h/2)+O(h3). (3.7)

Combined with spherical harmonics (section 4.2.3), and the fast Fourier trans-
form, this method was made popular for the TDSE by Feit, Hermann and Fleck in
the 1980s[20, 31].



3.2 Split Step 17

3.2.1 Sub-Propagators

In PyProp, the built in split step propagator, CombinedPropagator, is based on a
specific partitioning of the Hamiltonian in order to simplify user interaction. Every
rank of the wavefunction is assigned a sub-propagator, responsible for propagating that
rank one time step. The sub-propagators usually propagate the kinetic energy operator
for that rank, but are in general free to solve any propagator as long as they implement
the sub-propagator interface. The B-spline sub-propagator, for example, can include a
one-dimensional time independent potential in its propagator.

The most prominent part of the sub-propagator interface is the AdvanceStep
method which, in addition to applying the kinetic energy operator, is responsible for
leaving the wavefunction in a representation where the potentials can be propagated,
i.e. a grid representation. As an example, the spherical harmonic sub-propagator prop-
agates the angular kinetic energy term (which is diagonal in the spherical harmonic
representation), and transforms the given rank to the angular grid representation. Simi-
larly, the B-spline representation transforms the wavefunction to the B-spline grid rep-
resentation after propagating the kinetic energy term. The sub-propagator interface also
supplies an AdvanceStepConjugate method, transforming the given rank back from
the grid representation, and then propagates the kinetic energy operator.

3.2.2 Potentials

In addition to the sub-propagators, the user can specify a number of additional po-
tentials which will be exponentiated and propagated. Again, these potentials do not
necessarily have to be potentials in the sense defined in section 2.3. Any object imple-
menting the potential interface described in Listing 3.1 can be used as a potential. The
potential interface allows propagation, i.e. applying the exponential of the operator, as
well as multiplying the wavefunction by the operator.

Listing 3.1: Excerpt of the PotentialEvaluator interface
class Potential:
def AdvanceStep(psi, t, dt):
# Apply exp(- i dt op) to psi, where op is
# the operator modelled by this potential,
# t is the current time and dt is the time step
...

def MultiplyPotential(srcPsi, dstPsi, t, dt):
# Right multiply srcPsi with the operator,
# and put the result in dstPsi
...

3.2.3 CombinedPropagator

CombinedPropagator uses the symmetric splitting scheme (equation 3.7). This
makes it easy to support transforming sub-propagators, as well as automatic paralleliza-
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tion. Propagating one time step is achieved by first propagating a half time step with
the sub-propagators, then propagating a full time step with the user supplied potentials
before finally propagating a half timestep with the conjugate sub-propagators.

To support parallelization, each sub-propagator can signal whether it can be ap-
plied while the given rank is distributed. If it can not be propagated in parallel, the
CombinedPropagator redistributes the wavefunction as described in Paper I before
propagating the sub-propagator.

Split step propagation was initially the only propagation method available in
PyProp, and the simulations performed in Papers II, III, IV, V and VIII were all per-
formed with a version of the split step propagator.

3.2.4 Numerical Issues

Despite the O(h3) local error predicted for this method, the exact form of the error
is dependent on the commutator between the split operators. In particular, splitting
differential operators from potentials with singularities, e.g. the Coulomb potential,
can lead to errors that are difficult to overcome. This problem is discussed in more
detail in Paper IV, and is also noted in [42].

3.3 Krylov Subspace Exponentiation

An alternative to splitting the full propagation operator is to project the wavefunction
into a smaller basis, perform the matrix exponential there, and then transform back.
The matrix exponential can be formally defined from the Taylor series,

exp
[−iS−1Hh

]
c = ∑

k

(−ih)k

k!
(S−1H)kc. (3.8)

One possible propagation scheme is to truncate the series and apply it directly. This
method is known in the literature as a Taylor propagator[18], but has the undesirable
property of not being explicitly unitary. For this reason, we will not consider the Taylor
propagator further here.

The idea in the Krylov subspace exponentiation is to truncate the Taylor se-
ries and solve the matrix exponential in a subspace of the full solution spanned
by the m first terms. This corresponds to the Krylov space of order m, Km =
span[c,S−1Hc, · · · ,(S−1H)m−1c]. An S-orthogonal basis Qm spanning Km can be found
using the Arnoldi method[4] or, if H is Hermitian, Lanczos iterations[40]. The matrix
exponential can then be performed in the Qm basis,

exp
[−iS−1Hh

]
c≈Qm exp [−ihQ∗mHQm]Q∗mSc = Qm exp [−iHmh]em. (3.9)

Here, em = (1,0,0, · · ·) is the unit vector of length m. The matrix exponential of the
projected Hamiltonian Hm, can be calculated using one of the methods described in
[47]. The choice of method is not important, as the propagator usually spends much
more time performing the Arnoldi or Lanczos iterations compared to exponentiation
Hm.
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This method was used in quantum simulations by Nauts and Wyatt[49], and later
extended for non-orthogonal bases by Park and Light[54]. Hochbruck[33] analyzed
the convergence of the method, showing that approximating the exponential directly
by Krylov subspace exponentiation converges faster than solving the corresponding
(unpreconditioned) linear system of equations. A freely available software package,
Expokit[66], enables the user to calculate matrix exponential using the method de-
scribed above.

Although the Krylov propagator is not unitary, it is explicitly probability conserving.
As H is Hermitian, Hm will also be Hermitian, and it follows that the exact exponen-
tiation of Hm is unitary, conserving probability in the Krylov basis. The Arnoldi basis
is orthonormal and the initial condition is fully represented in that basis. Correspond-
ingly, the final wavefunction will also be fully represented in the Arnoldi basis, having
the same norm as the initial wavefunction. This feature makes the Krylov propagator
stand out among the explicit propagators.

3.3.1 Implementation in PyProp

Implementing the Arnoldi or Lanczos iterations can be performed in matrix free mode,
i.e. the iterator does not need to know the Hamiltonian matrix directly. The only
requirement is to be able to perform the matrix vector product c̃←Hc, i.e. left multiply
the wavefunction by the Hamiltonian.

Using this matrix free design, the Krylov propagator (known in PyProp as the par-
allel Arnoldi method propagator, pAMP) can be implemented on top of another propa-
gator, as long as the base propagator implements a MultiplyHamiltonian method,
performing the matrix vector product.

The CombinedPropagator from section 3.2.3 can be modified to support ma-
trix vector multiplication by adding a MultiplyHamiltonian method to the sub-
propagators. MultiplyHamiltonian is similar to AdvanceStep, transforming the
wavefunction to a suitable representation. Instead of multiplying the exponentiated sub-
hamiltonians, MultiplyHamiltonian performs matrix vector products between the
sub-hamiltonians and the wavefunction, adding the results to an output-wavefunction.

Although the CombinedPropagator can be used to perform matrix vector multi-
plications, and it is very easy to switch between the split step and Krylov propaga-
tors, some overhead is induced by transforming the wavefunction to the desired repre-
sentations instead of representing all operators in one basis. The TensorPotential
discussed in section 2.3.2 is intended to resolve this issue by being able to expand
operators in a basis at the start of the propagation and performing matrix vector multi-
plications without transformations.

3.3.2 Parallelization

We use the standard way of parallelizing Krylov subspace methods, assuming a par-
allel matrix vector multiplication. Calculation and exponentiation of Hm is performed
locally on every processor, and the only parallel consideration the Arnold or Lanczos
iterations must do, is to perform a global sum across processors when orthogonalizing
Qm. This is not performed in expokit, and is the main reason why a custom Krylov
propagator has been implemented in PyProp.
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3.4 Cayley Form Propagator

The Cayley form propagator is perhaps the most well-known propagator for the
TDSE and is known in quantum mechanics under many names, e.g. Cayley form
propagator[74], or Crank-Nicholson propagator[14]. In the numerical ODEs literature,
it is usually called implicit midpoint rule[42]. The method can be derived by forming
the average of the backward and forward Euler propagators, and can also be seen as a
p = q = 1 Padé approximation to equation 3.2 [25].

c(t +h) =
(

S+
ih
2

H
)−1 (

S− ih
2

H
)

c(t)+O(h3). (3.10)

Higher order versions of this propagator have been known for a long time[15], but
the Cayley form propagator has remained popular due to its simplicity and numerical
features such as unitarity and time reversibility.

Applying the Cayley form is performed in two steps. First, apply the rightmost
term of equation 3.10. This is simply a matrix vector multiplication similar to the ones
performed in the previous section. The second part of the Cayley form, on the other
hand, involves solving a linear system of equations involving the full Hamiltonian. This
is the main computational difficulty in using the Cayley form, as the system can easily
become very large.

For small problems, Cayley propagator equation can be solved by direct methods,
as provided by LAPACK[3], SuperLU[17] and others. This works well for rank 1
problems, as some one-dimensional discretizations (B-splines and finite differences)
yield banded matrices with bands close to the main diagonal. These systems can be
efficiently solved by direct methods, exploiting the bandedness in the matrices. For
systems of rank > 1, the bands of the discretizations are no longer close to the diago-
nal, and substantial fill-in would occur. As the computational work of solving a linear
system scales cubically with the number of unknowns, the interesting systems quickly
become too large for direct methods, and iterative methods must be used instead. Fur-
thermore, the direct methods require direct access to the Hamiltonian matrix, which
does not correspond well with the black box design of propagators and potentials in
PyProp.

In PyProp, the Cayley form propagator is used in two different ways, as a partial
propagator in the CombinedPropagator, or as a complete propagator for the entire
system using iterative methods to solve the linear system of equations. The Cayley
propagator is used in the partial propagator for B-splines and finite differences, as the
bandedness of the corresponding matrices makes solving the linear system much faster
than than calculating the full matrix exponential.

3.4.1 Solving the Linear Equations using GMRES

Writing A = S− ih
2 H and b = (S− ih

2 H)c(t), the implicit part of the Cayley form of the
propagator can be cast in a more common linear algebra notation,

Ax = b. (3.11)

Here, x = c(t +h) is the desired wavefunction.
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When the Cayley propagator is used as a partial propagator the matrix dimension of
the above equation is usually reasonably small, and the equation can therefore be solved
using direct solvers. On the other hand, when used as a complete propagator, we can
not expect direct methods to be efficient. Furthermore, A is not Hermitian, limiting the
iterative solver alternatives. PyProp has an implementation of the Generalized Minimal
Residual (GMRES) method[59] built in. The GMRES method is similar to the Krylov
exponentiation described in section 3.3 as it projects the system into a Krylov subspace,
leading to a lower dimensional problem. In the case of GMRES, the solution is chosen
such as to create the minimal error (residual) of any possible solution in the space
spanned by the Krylov basis.

When discretizing the Hamiltonian, the range of eigenvalues of the resulting ma-
trices is dependent on the discretization parameters. For many of the problems we are
interested in here, the lowest eigenvalue (in absolute value) decreases as the size of
the grid on which the TDSE is solved increases. Furthermore, the largest eigenvalues
increases with increasing grid resolution. This is examplified by considering the Hamil-
tonian of a free particle, i.e. a Hamiltonian with only the Laplacian. When discretizing
with a Fourier basis as described in section 4.2.1, the eigenvalues are quadratically
spaced between E0 = 0 and EN = 2(πN/L)2. Although the Hamiltonians considered
here have a more complicated structure, many of the systems arising in atomic physics
have a continuum component where the Laplacian dominates. Iterative methods, such
as GMRES, are known to converge slowly for systems with these properties, and gen-
erally work best for systems with clustered eigenvalues. However, the situation can
be improved through preconditioning. Choosing a preconditioning matrix M, equation
3.11 can be transformed,

M−1Ax = M−1b = b̃. (3.12)

M should be chosen such as to make M−1A close to the identity matrix while at the
same time ensuring that solving M−1b is easily performed. Preconditioning can then
substantially decrease the time spent solving the linear system. It is quite non-trivial to
find an optimal preconditioner, and there are no reasons to believe a single precondi-
tioner will be optimal for most cases. In PyProp, the user is therefore expected to sup-
ply a suitable preconditioner to the GMRES solver, implementing a Preconditioner
interface.

An approach similar to this was used in [27], where the Cayley propagator was used
in conjunction with iterative solvers to propagate the Gross-Pitaevskii equations.

3.5 Finding Eigenstates

In quantum mechanics, the eigenvalues of the Hamiltonian have a special meaning. The
eigenstates are the stationary states of the system, and the corresponding eigenvalues
are the possible energies the system can have.

EnSvn = Hvn (3.13)

For time dependent Hamiltonians, eigenstates does not make sense in an ordinary
manner[64]. It is rather the eigenstates of the time independent Hamiltonian, i.e. the
system after or before the interaction has taken place, that is of special interest.
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Eigenstates and values are often used for analysis, as energy is often a measurable
and interesting quantity in physical experiments. In Paper V, for example, the analysis
involves projecting the wavefunction on the vibrational eigenstates of the system. In
Paper VII, the energy distribution of the ionized electrons are found by a projection is
on the ionizing eigenstates of a simpler system.

Eigenstates can also be used for propagation, as they diagonalize the Hamiltonian,
and makes propagating with equation 3.2 trivial. Some of the sub-propagators dis-
cussed in section 3.2.1 uses this fact to propagate one sub-hamiltonians.

In this section we will focus on some methods for calculating eigenstates and eigen-
values used in PyProp. For the same reasons as discussed for direct solution of linear
systems in the previous section, direct diagonalization will not be considered here.

3.5.1 Imaginary Time Propagation

One way of obtaining the lowest energy state is imaginary time propagation [58]. Con-
sider the wavefunction expanded in eigenstates, c(t) = ∑i ai(t)vi. The solution of the
TDSE for a time independent Hamiltonian is in this case

ai(t) = ai(0)e−iEit (3.14)

The idea of imaginary time propagation, is to transform t,

t→−iτ. (3.15)

This is equivalent of turning the Schrödinger equation into the heat equation where the
time evolution of each eigenstate amplitudes turn into

ai(τ) = ai(0)e−Eiτ . (3.16)

As all the eigenvalues of the Hamiltonian are real, the corresponding amplitudes will be
damped exponentially with exponential factors corresponding to the eigenvalues. I.e.
the highest eigenvalues will be damped the most. By propagating τ , and keeping the
wavefunction normalized to unity, all components of the wavefunction with eigenvalues
larger than the ground state, will be quenched.

The groundstate can be found by starting in a random state, and propagate until
some convergence criterion (typically change in expectation value of energy) is met.
Excited states can also be found using this technique by restarting the propagation and
making sure the new state is orthogonal to the already converged states at all times.
Because spurious populations on the already converged states may be introduced by
the propagator, it becomes increasingly hard to find higher excited states. Only a few
of the lowest excited states can therefore be found with this method.

3.5.2 Implicitly Restarted Arnoldi Method

If only a few eigenpairs are desired, it is possible to use the Krylov subspace methods
to approximate the eigenvalues and eigenvectors of the system. This was the initial
application of the Lanczos and Arnoldi iterations[4, 40]. The idea is similar to the
Krylov subspace exponentiation in that the Hamiltonian is projected in an S-orthogonal



3.5 Finding Eigenstates 23

basis Qm, and the Ritz-values, i.e. the eigenvalues of the projected Hamiltonian is used
as estimates for some of the eigenvalues of the full Hamiltonian,

H = VEV−1 ≈QmVmEmV−1
m Q∗m. (3.17)

Vm is the eigenbasis of the projected Hamiltonian. Unlike the Krylov subspace expo-
nentiation, the start vector for the Krylov space is now arbitrary, and is usually chosen
randomly.

The eigenvalues corresponding to the most bound states, i.e. the eigenvalues in
the lower end of the spectrum, are usually of interest. Arnoldi and Lanczos iterations,
however, are best at locating the eigenvalues of largest magnitude. One way of directing
the iterations to the desired part of the spectrum is to make sure the start vector is
orthogonal to the eigenvectors in the undesired part of the spectrum. The eigenvectors
are not known at the start of the iterations, but by stopping the iterations after the Krylov
space reaches a given size, we can use the least desired Ritz values to improve the start
vector and restart the iterations. The most widely applied restarting technique today is
the implicitly restarted Arnoldi method used in ARPACK[69].

3.5.3 Inverse Iterations

Noticing that the methods in the section above works best for the largest eigenvales, a
natural alternative to using the Krylov space of H is to use the reciprocal of the shifted
Hamiltonian B = (H−σS)−1. In this case, the largest eigenvalues of B, will correspond
to the eigenvalues of H closest to σ ,

λn =
1

En−σ
. (3.18)

The eigenvectors, on the other hand, will remain the same for H and B.
In forming the Krylov subspace, matrix vector multiplication with B must be per-

formed repeatedly, i.e. we must solve a linear system for each step in the Arnoldi or
Lanczos iterations,

(H−σS)x = Sb. (3.19)

As argued in section 3.4, this linear system is in general too large to be solved di-
rectly, which leads us to using another iterative method for solving the linear system.
In PyProp, this problem is currently solved using the same solver as for the Cayley
propagator. Both systems of equations can be cast into the form

(σHH−σSS)x = Sb, (3.20)

and be solved with a preconditioned GMRES solver. It should be noted that equation
3.19 is Hermitian, and could be solved with a Hermitian solver like conjugate gradi-
ent or similar. However, for the current projects, much more time is spent propagating
compared to finding eigenpairs, and the speed and memory requirements of the eigen-
solver have not been an issue for the systems where inverse iterations have been used.
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Chapter 4

Spatial Discretization

Computers can only perform a finite number of operations per second. The only vi-
able option for solving the TDSE using computers is therefore to reduce the infinite-
dimensional Hilbert space containing the wavefunction to one of finite, albeit very
large, dimension. I.e. we must discretize the system. Using a good discretization,
the solution of the original, continuous system can be well described from the solution
of the discretized system. There is little reason to believe that there is one kind of dis-
cretization that will be superior for all systems. A solver aiming for a wide range of
systems must therefore support a number of different discretization schemes. In this
chapter, we will consider the discretization schemes that are available in PyProp, and
discuss some of their strengths and weaknesses.

Discretization is in PyProp controlled by the Representation class discussed in
section 2.1.3. In almost all cases, the CombinedRepresentation is used to combine
different degrees of freedom into one representation. The goal of the discretization
is being able to represent all important aspects of the wavefunction with as few data
points as possible. With this in mind, it is also of great importance to choose the “right”
coordinate system before discretizing, as the wavefunction may have some structure in
certain coordinate systems, and can thus be represented by fewer data points.

4.1 Coordinate Systems

Choosing a coordinate system is the first step in any discretization scheme, and choos-
ing the optimal coordinate system is not necessarily easy. Some common systems, like
atoms, have exact or near spherical symmetry which makes spherical coordinates the
obvious choice, as the solution can be expected to be slowly varying in the angular
directions. The computational effort can therefore be concentrated on the radial direc-
tion. The Hamiltonian of diatomic molecules with one active electron can be exactly
separated in the prolate spheroidal coordinates[6], making that the obvious coordinate
system. Other systems may similarly be more or less separable in one coordinate sys-
tem, but it is not only the symmetries of the unperturbed system that dictates coordinate
system: the interaction part of the Hamiltonian must also be considered. An example
is the interaction between charged particles and linearly polarized laser radiation in the
dipole approximation, where a rotational symmetry around the polarization axis of the
laser is observed. Choosing a coordinate system which is able to exploit this symmetry,
such as spherical or cylindrical coordinates, can reduce the complexity of the problem
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by one degree of freedom. For semi-classical collision problems, however, there is no
azimuthal symmetry, and the analysis might be sufficiently complicated by a spherical
cordinate system to make Cartesian coordinates optimal.

The desired observable quantities must also be taken into consideration when choos-
ing a coordinate system. The analysis can be severely complicated by having the wave-
function represented in the “wrong” coordinate system, especially if differential or inte-
grated quantities in a different coordinate system are desired. For instance, constructing
the angular differential ionization probabilities from a large Cartesian coordinate sys-
tem can be involved enough to warrant propagation in spherical coordinates even if
the system otherwise favors a Cartesian coordinate system. Cartesian and spherical
coordinate systems are currently in use in PyProp, and an implementation of prolate
spheroidal coordinates is under development.

A coordinate system gives a number of independent dimensions and a Jacobian as
well as a representation of the Laplacian. In PyProp, the dimensions are described by
one-dimensional representations and combined through the CombinedRepresentation.
The representations know the grid in each dimension, as well as the integration weights
necessary to implement inner products between two wavefunctions in the same repre-
sentation.

4.1.1 Cartesian Coordinates

Cartesian coordinate systems have the simplest possible kind of coordinates. The di-
mensions are completely independent, the Jacobian is unity and the Laplacian is ex-
pandable into equivalent parts for each dimension,

∇2 = ∑
i

∂ 2

∂xi2
. (4.1)

As each dimension is completely independent, it is natural to assign one rank to each
physical dimension.

4.1.2 Spherical Coordinates

Consider a spherical coordinate system. Although the ideas presented here are readily
extensible to an arbitrary number of dimensions[61], the focus here will be on the
common three-dimensional version,

x = r sinθ cosφ
y = r sinθ sinφ
z = r cos . (4.2)

The Jacobian for this coordinate transform is

|J|= r2 sinθ . (4.3)

It is often preferable to use a trick called reduced wavefunction, where the wavefunction
is scaled with a radial function before discretizing. The most common scaling function
is f (r) = r, leading to a new wavefunction,

Ψ(r, t) = rψ(r, t), (4.4)
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with which the calculations take place. Reducing the wavefunction has several advan-
tages. First, it simplifies the left boundary conditions to Ψ(r = 0) = 0. Second, it
removes the r2 term from the Jacobian. Furthermore, the Laplacian is considerably
simplified, removing the first order radial derivative term, turning the spherical Lapla-
cian into

∇2 =
∂ 2

∂ r2 +
1
r2

(
∂ 2

∂θ 2 + cotθ
∂

∂θ
+

1
sin2 θ

∂ 2

∂φ 2

)
=

∂ 2

∂ r2 −
L2

r2 . (4.5)

Here, L2 is the angular momentum operator. Having the Laplacian on this form, any
discretization used for a Cartesian rank can be used as a radial discretization. The
discretization of the angular part is discussed further in section 4.2.3.

It is possible to use different scaling functions[39, 43] for the reduced wavefunc-
tion. This corresponds to tuning the Laplacian such as to make a certain set of states
eigenstates to the radial part of the Laplacian.

4.2 Discretization Schemes

In order to create a flexible discretization system, each rank will be discretized sepa-
rately. Let Mi be a map discretizing rank i in the wavefunction. The full discretization
is then a tensor product of rank one discretizations,

c = M0⊗M1⊗·· ·⊗MNψ(x). (4.6)

This means that different discretizations can be chosen independently for each rank. In
PyProp this is represented by the CombinedPropagator’s ability to combine different
rank 1 representations. It is therefore sufficient to study the rank 1 representations
separately. Most of these representations will be suitable in a Cartesian coordinate
system, or as the radial part in a spherical coordinate system.

A general scheme for discretization is to expand the wavefunction in a finite set of
basis functions,

ψ(x)≈
n−1

∑
i=0

ciBi(x). (4.7)

The basis functions Bi(x) should satisfy appropriate boundary conditions and be at least
twice differentiable. Let the overlap matrix S be defined from the integral between two
basis functions,

Si′,i =
∫

B∗i′(x)Bi(x)dx. (4.8)

The expansion coefficients can be found by solving for the overlap matrix,

c = S−1
∫

B∗(x)ψ(x)dx = S−1

⎛⎜⎜⎝
∫

B∗0(x)ψ(x)dx∫
B∗1(x)ψ(x)dx
· · ·∫

B∗n−1(x)ψ(x)dx

⎞⎟⎟⎠ . (4.9)

Here, B(x) = (B0(x),B1(x), · · · ,Bn−1(x)) is the set of basis functions. In the simplifying
case where S is the identity matrix, the basis is said to be orthogonal.
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In this chapter we will consider mostly the collocation method where the approx-
imation in equation 4.7 is forced to be exact on a set of collocation points {xi}. This
leads to two natural representations of the wavefunction, one grid representation and
one basis representation. In the grid representation the wavefunction is sampled at the
collocation points, while in the basis representation the wavefunction is represented in
terms of expansion coefficients for the corresponding basis.

In order to turn this scheme into a linear algebra formulation, B(x) can be sampled
in the collocation points and turned into the basis matrix B,

Bi, j = B j(xi). (4.10)

Given a basis, the integrals needed are mostly on the form 4.8. A quadrature being able
to accurately evaluate such integrals should therefore be chosen. The quadrature can
be written as a diagonal weight matrix W such that∫

f (x)dx≈∑
i

Wi,i f (xi) (4.11)

approximates an integral on the appropriate domain. Using the weight and the overlap
matrices, the sampled wavefunction can be transformed into the basis representation,

c = S−1B∗Wψ, (4.12)
ψ = Bc. (4.13)

Inner products between two wavefunctions ψ and ψ ′, can then be calculated in the grid-
or basis-representation 〈

ψ(x)|ψ ′(x)〉≈ ψ∗Wψ ′ = c∗Sc′. (4.14)

In the basis representation, the differential operators can be approximated by differ-
entiating the basis functions,

∂ k

∂xk ψ(x)≈
n−1

∑
i=0

ci
∂ kBi(x)

∂xk =
n−1

∑
i=0

ciB
(k)
i (x). (4.15)

By using the quadrature to project the differentiated basis functions on the basis func-
tions, a differentiation matrix can be formed,

Dk = B∗WB(k), (4.16)

The different discretization schemes can then be seen as a choice of basis functions
and corresponding quadrature.

4.2.1 Fourier Representation

For periodic boundary conditions, a natural choice of basis functions are the Fourier
functions for a box of size L,

B j = ei2π jx/L, j = (−n/2, · · · ,0, · · ·n/2−1). (4.17)
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For Fourier basis functions, the collocation points are equispaced, Δx = L/n, and the
natural quadrature is trapezoidal integration with constant weights, wi = Δx.

The Fourier functions have the desirable property of being eigenstates to the differ-
entiation operators which physically can be associated with a well defined momentum,
k,

∂B j(x)
∂x

= i2π j/LB j(x) = ikB j(x). (4.18)

This makes the Fourier basis a good candidate for the split step propagation schemes
described in section 3.2[20]. Furthermore, the transformation to and from the Fourier
basis can be carried out with the fast Fourier transform (FFT), making it the fastest of
the global basis transforms.

The effectiveness of using a Fourier basis is generally determined by the smooth-
ness of the periodic extension of the wavefunction. This can be separated into two
conditions: that the wavefunction is smooth in the interior of the interval (xmin,xmax),
and that the periodic extension of the wavefunction does not remove smoothness.

The first condition is dependent on the Hamiltonian, e.g. for a harmonic oscillator in
Cartesian coordinates, the exact solutions are Hermite functions. Hermite functions are
analytic on the entire real domain and thus smooth. For the Coulomb problem, however,
it is well known that in Cartesian coordinates, the ground state wavefunction has a cusp
in the origin, limiting the smoothness to C0. This makes the Fourier basis in Cartesian
coordinates unsuitable for calculations requiring high accuracy of the Coulomb ground
state.

The second condition can in Cartesian coordinates usually be resolved by increasing
the box size. However, when used in a radial coordinate, the wavefunction can not
be expected to approach zero smoothly near the left boundary (x = 0). The standard
trick here[31] is to anti-symmetrically extend the wavefunction to −xmax, such that
ψ(−x) =−ψ(x). As discussed in Paper IV, this does not remove all smoothness related
problems for the Coulomb potential, as the ground state wavefunction is only C1 in the
origin. Nevertheless, it is a vast improvement over using a periodic grid on x∈ [0,xmax).

4.2.2 Orthogonal Polynomials

Another, although related, option is to use interpolating polynomials as basis functions.
We define orthogonal polynomials by choosing a domain on the real axis Ω = [x0,x1],
which can be infinite or semi-infinite, as well as a strictly positive weight function w(x).
The unique set of normalized orthogonal polynomials of Ω and w(x) are then defined
as the set of functions {p j(x)} such that, p j(x) is a polynomial of degree j and∫

Ω
w(x)pi(x)p j(x)dx = δi, j. (4.19)

The orthogonal polynomials have many fascinating properties[2, chap. 22], and in par-
ticular, it can be shown that the optimal collocation points for an orthogonal polynomial
of maximum order n−1 are the roots of the orthogonal polynomial of order n.

If orthogonal polynomials are desired on a given interval, it is possible to construct
them from the expression above. However, it can often be fruitful to use an already
defined set of orthogonal polynomials and perform a change of variables, x = f (y).
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This was done in Paper IV, where Chebyshev polynomials were transformed with a
change of variables from Ωx = [−1,1] to Ωy = [0,∞) in order to be suited to a radial
discretization. A similar approach was performed in [10] for Ωy = (−∞,∞). By using a
radial coordinate transform like this, it is possible to position the grid points where they
are most needed. For spherical problems, this is usually near the origin. In Paper IV
we showed how this can be used to get excellent convergence properties for hydrogenic
systems.

As is the case with all methods, using orthogonal polynomials are not expected to
be the universally best discretization schemes. Except for very special polynomials, the
transformation between a grid representation in the collocation points and a orthogo-
nal polynomial representation is very computationally expensive. For a general global
orthogonal basis, the transformation between basis and grid representation (equation
4.12) will scale as O(n2) operations for a one-dimensional wavefunction. In contrast,
using a Fourier or Chebyshev basis, this computational cost can be reduced to O(n logn)
operations.

There is also a drawback of including x→ ∞ in the computational domain. The
drawback here lies in that the continuum states of atomic and molecular systems, i.e.
the states corresponding to one of the particles becoming dissociated with the system
corresponds to states that do not decay exponentially as x→ ∞. Such states are not L2
integrable, and can not be properly represented by discretized functions on that domain.
Methods like R-matrix theory [12] deal with this problem in an elegant way, but the
most straight-forward solution is to terminate the grid at some xmax such that ψ(x >
xmax) ≈ 0 for the entire propagation. Setting the boundary condition ψ(xmax) = 0 can
be seen as a way of discretizing the continuum by only accepting continuum functions
that have a node in x = xmax. As the wavefunctions are nonzero only for x < xmax, the
continuum functions are only needed inside that region.

Fourier basis functions can also be seen in light of orthogonal polynomials. Al-
though not regular polynomials, Fourier functions are trigonometric polynomials,
exp(ikx) = expk(ix), which are orthogonal on x∈ [0,2π] with weight function w(x) = 1
and equidistant collocation points.

4.2.3 Spherical Harmonics

The angular part of spherical coordinates requires some special attention. The reason
for choosing spherical coordinates is usually that the problems are nearly spherically
symmetric. In practice this means that there is little motion in the angular coordinates,
which should be exploited. Generally, when a the state of a system is spanned by a
small number of states, it can be preferable to use an eigenstate basis. The eigenstates
for the angular momentum operator in eqn 4.5 are the spherical harmonics,

Y m
l (θ ,φ) = δm

√
2l +1

2π
(l−m)!
(l +m)!

P|m|l (θ)eimφ . (4.20)

Here P|m|l (θ) are the associated Legendre polynomials, and δm is the Condon Shortley
phase. These eigenstates are currently used as basis functions for all calculations in
PyProp where spherical coordinates are used.
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From the definition of the spherical harmonics it would be natural to write the angu-
lar part of the wavefunction as two ranks; a tensor product between θ and φ . However,
it is not possible to write the wavefunction as a tensor product of l and m, as the associ-
ated Legendre polynomials are zero for |m|> l. For this reason, PyProp deals with the
angular part as a single rank, discretizing the solid angle Ω = (θ ,φ) instead of the two
angles separately.

It has been known since antiquity that it is not possible to create a perfect distribu-
tion of points on a sphere unless the number of points match the vertices on one of the
Platonic solid. Even if an optimal set of points can not be found, it is still possible to
create near-optimal distributions on the sphere[68]. This scheme has been employed
in earlier work[7], but is not currently implemented in PyProp due to speed issues. By
using n points to discretize the sphere, the cubatures of Sloan and Womersley require
O(n2) operations to transfer between the grid representation and the basis representa-
tion.

If a tensor product of collocation points in θ and φ are used instead, it is possible to
make the transformation considerably faster. Note that due to the choice of coordinates,
the system is 2π periodic in φ . Using an equidistant grid in φ , the integral in φ ,

ψm(θ) = P|m|l (θ)
∫ 4π

0
eimφ ψ(θ ,φ), (4.21)

is recognized as the Fourier transform of θ , and thus the FFT can be used to perform
the transform in O(nφ lognφ ) operations. Although there exist fast transforms for the
associated Legendre polynomials[57, 72], these methods are only faster for very large
basis sets (nφ > 512). The integral in θ is therefore discretized straight forwardly using
a Gauss-Legendre quadrature. Normally we use an equal number of points in θ and φ ,
nθ = φ =

√
n, such that the total number of operations to transform between a grid and

basis representation are O(n3/2log
√

n).
The Hamiltonian can in many situations be written in a form such that it is invariant

in φ . In such cases, there will be no coupling between different ms in the calculations.
The system can then be simplified by removing the m and φ dependence from the basis
functions altogether.

4.2.4 B-Splines

A common limitation in the global methods described above is that their efficiency
being limited by the smoothness of the wavefunction. Additionally, it seems that the
global basis functions are either very good for representing continuum states or for
representing bound states, but not both at the same time. By using a local method, i.e.
a method that only requires access to a small set of grid points (or basis functions) to
evaluate operators, we hope to strike a balance between accuracy and computational
cost.

B-splines are piecewise polynomials and are thoroughly described in the book by
de Boor[16]. In the paper by Bachau et al.[5], a review of B-splines in atomic an
molecular physics was given. Each polynomial is non-zero only in a small region, and
can be seen as a compact polynomial approximation to a Gaussian function[9]. As the
non-zero regions of the basis functons overlap, the overlap matrix S will be non-trivial.
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The regions are formed such that every basis function overlaps with 2k−1 other basis
functions, where k is the polynomial order of the B-splines. This leads to a banded
overlap matrix with 2k−1 bands.

As the basis functions are polynomials, they are easily differentiable, with the dif-
ferentiated basis functions non-zero only in the same region as the original functions.
This results in differentiation matrices D having the same banded structure as the over-
lap matrix, and hints that the B-spline basis is a compromise between a space-grid and
a momentum-grid.

One of the advantages of the B-spline basis, is the freedom in placement of the
basis functions. If highly oscillatory behaviour is expected in a region, such as near
the nucleus in an atom, a large number of basis functions can be placed there without
complicating the discretization scheme.

The main disadvantage of B-splines is the non-orthogonality of the basis. The over-
lap matrix must always be carefully considered in order to arrive at correct propagation
schemes. Furthermore, as discussed in chapter 3, the overlap matrix must be solved for
at a number of occations. This makes parallelization much harder for B-spline based
ranks. Currently, the parallelization of B-splines in PyProp is similar to parallelization
of global basis functions in that the rank must be local in order to solve for the over-
lap matrix and perform transforms. This is in contrast to finite differences, which more
easily can directly support parallelization.

4.2.5 Finite Difference

Finite differences can be related to interpolating polynomials. We start by defining a
set of polynomial basis functions of order k,

p j(x) =
ωk(x)

ω ′k(x j)(x− x j)
, (4.22)

with

ωk(x) =
k

∏
j
(x− x j). (4.23)

By letting {x j} coincide with a subset of the the collocation points, the basis functions
are seen to be cardinal basis functions, i.e. vanishing in all collocation points but one.
The Lagrange interpolating polynomial is then

P(x) = ∑
j

p j(x)ψ(x j). (4.24)

This can in term be used to approximate the mth derivative of the wavefunction in one
of the collocation points,

∂ mψ(x)
∂xm

∣∣∣∣
x=xi

≈∑
j

∂ m p j(x)
∂xm

∣∣∣∣
x=xi

ψ(x j) = ∑
j

δ m
k, jψ(x j). (4.25)

A stable method for generating the finite difference coefficients δ m
k, j was given by

Fornberg[21]. Usually, the k collocation points in the region around xi are used to
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approximate the differentiation operator, leading to a banded differentiation matrix Dm

with k bands. Combined with the fact that cardinal basis functions make the basis
orthogonal in the grid representation, the bandedness makes application of finite dif-
ferences very fast. Furthermore, the orthogonality and bandedness make it possible
to perform highly efficient parallel matrix-vector multiplications with finite difference
matrices. For this reason, some of the largest calculations that have been performed on
atomic systems have used finite differences [55].

It can be shown[23, 24] that in the limit of k→ n, i.e. a finite difference stencil
using all grid points, the resulting method is equivalent to the corresponding global
basis method. For equidistant collocation points and periodic boundary conditions we
get the Fourier method, while other collocation points give different global bases. Thus,
finite difference methods can be seen as truncated global basis methods and can be very
efficient if the wavefunction is not smooth enough to warrant a global method.
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Chapter 5

Applications of PyProp

We will now consider two scientifically relevant but quite different physical examples,
and examine how PyProp has been used to simplify the research. The scientific results
from these cases are discussed in detail in the corresponding papers, and will not be
discussed here. The focus here will instead be on how PyProp is used to perform the
calculations in these projects. In addition to the examples listed here, PyProp was used
in all the scientific papers included in this dissertation as well as in [52].

5.1 Ion-Molecule Collision

b

x

y

z

Figure 5.1: Expermiental setup of an ion molecule collision. The ions (described classically)
approach the molecular target with a velocity vz.

Here we will consider the collision of a highly charged ion (Kr34+) with a small
diatomic molecular target (H2). The scientific results from this work is available in Pa-
per VIII. The ion is accelerated to a kinetic energy of ≈ 63MeV. This corresponds to
a velocity of v ≈ 50a.u., and is sufficient to consider the motion of the ion classically
while considering the molecule quantum mechanically. Due to the high velocity of the
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ion, the reaction time is very small compared to the vibrational motion of the molecule.
The two nuclei in the molecule can be therefore be considered stationary for the dura-
tion of the collision. Finally, earlier work on lower dimensional models[67] indicated
that a single active electron (SAE) model should be sufficient for this problem. We will
therefore only consider one electron in a static molecule, giving rise to the following
Hamiltonian,

He = −∇2

2
− Zp√

|R(t)− r|2 +β 2

− ZH√
|Ra− r|2 +α2

− ZH√
|Rb− r|2 +α2

. (5.1)

This system is visualized in figure 5.1, with R(t) being the time-dependent position of
the projectile. Zp and ZH are the electric charges of the projectile and the target nuclei
respectively. α and β are softing parameters to avoid infinite potentials on the grid, and
finally r is the only quantum-mechanical degree of freedom in the system; the electron
position. In order to compare results with experiments, we must consider the possible
orientations (θ ,φ) of the molecule, as well as the possible impact parameters (b,φb) of
the ion.

Under these parameters there are no apparent symmetries in the system. We there-
fore choose the simplest possible coordinate system, i.e. Cartesian coordinates. Fur-
thermore, a Fourier-split step method with a time step h = 0.006 is used to propagate
the system. Through extensive testing in lower dimensions, it has been found that a
grid defined on x ∈ [−75,75]a.u., distributed over N = 1024 grid points in each rank is
sufficient for a rank 3 problem. This leads to a wavefunction consuming 16GB mem-
ory.

A part of the analysis in this project was to remove the bound eigenstates states
of the system from the final wavefunction in order to analyze the ionized part of the
wavefunction separately. Using the PyProp implementation of the implicitly restarted
Arnoldi method discussed in section 3.5.2, the lowest bound states of the system could
be found with minimal work. However, due to the size of the problem, the bound state
eigenproblem had to be performed on a smaller grid with x ∈ [−37.5,37.5] and the
same grid spacing as the full problem.

It is clear that this problem must be heavily parallelized in order for the calcula-
tions to be completed within reasonable time (hours). Using the parallelization scheme
described in section 3.2.3, it has been found that using a rank 2 processor grid, the
propagation can be scaled past 1024 processing units on the Cray XT4 system we have
available. However, it is optimal to use Np = 512 processors for the main propagation
as a compromise between fast propagation, and long waiting time in the job queue.

The main reason for using PyProp for this project was initially the availability of a
parallelized high performance propagator. The only specialization of PyProp required
for propagation and finding eigenstates in this project, was to write the the time depen-
dent and time independent potentials as separate PotentialClasses (as discussed in
section 2.3.2), and setting up a configuration file. With these two classes, PyProp is
able to set up an IRAM solver for finding eigenvalues, as well as a split step propagator
for propagating the TDSE.

During the course of the project, we have discovered the advantages of having all
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the propagation routines available as a Python library, as it significantly helps making
the analysis tools. Due to memory and time constraints, it is currently not possible to
work with a 16GB wavefunction on a single workstation and consequently almost all of
the analysis must be performed in parallel. Using the PyProp library, we can parallelize
the analysis by using the already parallelized wavefunction loader, Fourier transform,
etc. Furthermore, the analysis involves a lot of book-keeping in integrating over im-
pact parameters and averaging over molecular orientations. The expressiveness of the
Python language simplifies this book-keeping, allowing us to focus on discovering the
physical insights.

5.2 Laser Ionization of Helium

Figure 5.2: Schematic setup for laser ionization of helium. Two electrons (blue) are initially
attached to a nucleus (red) of approximately inifite mass. Laser radiation interacts with the
two electrons allowing for the possibility of one or two electrons leaving the nucleus. The
two electrons each set up a three-dimensional system connected through the electron-electron
interaction 1

|r1−r2| , making the system six-dimensional.

A very different problem is that of laser ionization of Helium. As sketched in figure
5.2, the Helium atom has two electrons bound to a single nucleus of charge Z = 2. The
nucleus can here safely be assumed to have infinite mass compared to the electrons.
For the time independent problem, i.e. the helium atom without laser interaction, the
total Hamiltonian, is a sum of two independent particle Hamiltonians Hi

0 in addition to
the electron interaction term, i.e. the Coulombic repulsion between two electrons,

Hi
0 = −∇2

ri

2
− Z

ri
(5.2)

H0 = H1
0 +H2

0 +
1

|r1− r2| (5.3)

Here, ri is the position of electron i with ri the radial part. Z = 2 is the helium charge
and ∇ri is the Laplacian corresponding to the ith coordinate. The interaction between
the electrons and the electromagnetic field can be described in the velocity gauge. The
radiation in the dipole approximation and linearly polarized along the z axis, can be
written in terms of the electromagnetic vector field A(t),

Hf (t) = ∑
i={1,2}

Az(t)
(

∂
∂ zi
− cosθi

ri

)
. (5.4)
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5.2.1 Discretization

Disregarding the electron interaction term, the system is two three-dimensional prob-
lems with perfect spherical symmetry. It is therefore seems like a good idea to choose
spherical coordinates for both electrons. Including the electron interaction term, the
spherical symmetry is broken, but by mixing two spherical harmonics bases into a cou-
pled spherical harmonic basis,

Y
L,M
l1,l2

(Ω1,Ω2) = ∑
m
〈l1 l2 m M−m|L M〉Y m

l1 (Ω1)Y M−m
l2

(Ω2) (5.5)

the computation can be simplified. Here, 〈l1 l2 m1 m2|L M〉 are the Clebsch-Gordan
coefficients[11, p. 1004]. By using the coupled spherical harmonic basis, it can be
shown that both L and M will be a conserved quantities even when the electron interac-
tion term is considered. For the laser interaction, L will no longer be conserved, but M
will still be conserved, reducing the total degrees of freedom in the system from 6 to 5.

Representing the Hamiltonian on spherical collocation points and calculating matrix
elements numerically, as described in section 4.2 is not efficient in this case, as the
number of spherical grid points required to successfully calculate the matrix elements
of the electron interaction term would lead to an enormous wavefunction. Luckily,
it is possible to analytically calculate all the angular integrals for the required matrix
elements. The electron interaction term can be evaluated by it in a multipole expansion,

1
|r1− r2| = ∑

l,m

√
4π

2l +1
rl
<

rl+1
>

Y ∗l,m(Ω1)Yl,m(Ω2), (5.6)

where r< and r> are respectively the smallest and largest of r1 and r2. In this form, the
angular integrals can be performed analytically.

Similar to the {l,m}-indices for spherical harmonics, the {l1, l2,L,M} indices
for coupled spherical harmonics does not form a tensor product. All these in-
dices are therefore compressed into one rank in PyProp, represented by a single
CoupledSphericalHarmonicRepresentation mapping between the unique index
k and the coupled indices {l1, l2,L,M}.

Having expanded the wavefunction in coupled spherical harmonics, discretizing the
two radial dimensions remains. We have chosen to use the B-Spline basis described
in section 4.2.4. Fourier basis functions were discarded due to their weak convergence
for radial problems, orthogonal polynomials were discarded as they do not represent
the continuum well enough, and high order finite differences require certain tricks[56]
with the boundary conditions to work well.

Combining all of the above, we get a rank 3 discretized wavefunction,

ψ(r1,r2, t) = ∑
i, j,k

ci, j,k(t) Bi(r1) B j(r2) Y
L,M
l1,l2

(Ω1,Ω2). (5.7)

This wavefunction must be parallelized in order to achieve reasonable performance.
We have chosen a parallelization scheme where the k-rank is distributed and the two
other ranks are processor-local. This is because the non-orthogonality of the B-Spline
basis complicates parallelization in those ranks. Because of the choice of propagator,
the matrix-vector product must be parallelized. As the Hamiltonian is very sparse in the
k-rank, this leads to an efficient parallelization, but it limits the number of processors
to the size of the coupled spherical harmonic basis.
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5.2.2 Propagation

The system described above is propagated using the Cayley form propagator described
in section 3.4, using GMRES to solve the linear system of equations. As noted in
section 3.4.1, a preconditioner is required for GMRES to converge within a reasonable
number of steps. A block-preconditioner M has been chosen, with the full r1 and r2
matrices in each block, but only the diagonal coupled spherical harmonic elements,

M(i, j,k),(i′, j′,k′) = H(i, j,k),(i′, j′,k′)δk,k′. (5.8)

With the chosen parallelization scheme, this means that the preconditioner is a
processor-local sparse matrix. Two solvers have been tested to invert this matrix. First,
the SuperLU[17] package was tested, as it can solve the factorize M = LU exactly
while preserving some of the sparsity structures. However, as the number of B-Spline
coefficients increases, the memory requirements and level of fill-in make exact factor-
ization impractical. Thus, the IFPACK preconditioner found in Trilinos[32] has been
used instead, providing an incomplete LU factorization (ILU) of M. This was found to
be superior in both memory and performance for sufficiently large systems.

As with the project discussed in section 5.1, the main requirement for propagat-
ing and finding eigenpairs, was to set up the potential matrices. This was done with
the TensorPotential framework discussed in section 2.3.2. The angular integrals
involved in setting up the matrix elements was all performed analytically, while the
automatic basis expansion routines were used to expand the potential in the B-spline
bases. The preconditioners used here require direct access to the matrices involved,
and not only the matrix vector multiplications. PyProp therefore has routines to con-
vert TensorPotentials to Epetra (the matrix and vector module in Trilinos) matrices
and the wavefunctions to Epetra vectors.

5.2.3 Analysis

Among the interesting quantities in this project are energy distributions, ∂ 2P/∂E1∂E2,
and angular distributions, ∂ 4P/∂E1∂E2∂Ω1∂Ω2, as well as the single and double ion-
ization probabilities of the system. In calculating these quantities, the eigenstates of the
system is required. The bound states of H0 can be found by the inverse iteration IRAM
scheme described in section 3.5.3. As the time independent problem conserves L, a set
of bound states can be found for each L independently.

For the ionizing states of the system, the vast size of the system makes it impractical
to find the exact states. Instead, a single electron model is used, where a symmetrized
tensor product of two ionizing single electron wavefunctions is used to approximate a
double ionization state,

ψ±ion(r1,r2) = ψa(r1)ψb(r2)±ψb(r1)ψa(r2) (5.9)

Single electron states are found using the same radial discretization scheme as the full
two electron problem, but a regular spherical harmonic angular discretization. These
systems have perfect spherical symmetry, and can thus be separated in a radial and
angular part. The radial parts are small enough to be diagonalized directly, and we get
a set of radial eigenstates Rn,l(r) for each value of the angular momentum quantum
number l. Performing the analysis is then mainly a matter of organizing pairs radial
eigenstates and projecting the two electron wavefunction on those pairs.
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5.2.4 Conclusion

All the book-keeping code of analyzing the wavefunction is written in Python, with the
exception of a few integration routines that are written in C++ for efficiency reasons. In
this project, the wavefunction is of the order 100MB, and can be handled directly on a
single processor machine. Under such conditions, the convenience of using Python to
perform the analysis is even more significant than in the previously described project.
PyProp was significantly helping by giving the analysis tools access to the same dis-
cretization and integration routines used in the propagation and eigenvalue solving.
Furthermore, the facilities to recreate a wavefunction from a serialized file helped keep-
ing track of the various parameters used in the propagation, such as field strength, time
step, grid resolution, etc. Using the IPython interactive interpreter, it possible to ex-
plore the available data on a completely different level than what is possible in a more
traditional edit-compile-run development cycle. The ∂ 4P/∂E1∂E2∂Ω1∂Ω2 data are
represented in a four-dimensional array, and it can be difficult to get an overview of
what kind of features are present in the data, but by having both data and plotting rou-
tines available in an interactive environment it is easy to explore the data to get an
overview.



Chapter 6

Conclusions and Outlook

The recurring topic of this thesis has been the development and application of the
PyProp framework for solving the time dependent Schrdinger equation. The theoretical
background and implementation of PyProp has been discussed in chapters 2-4, while
the last chapter demonstrated how PyProp can be used to solve two quite different com-
putationally intensive problems arising in atomic physics.

PyProp currently contains implementations of several methods for both discretiza-
tion and propagation, but is notably lacking documentation. Some documentation and
several examples are availble and distributed with the PyProp source code, but most of
this is rather old and not representing the current state of PyProp. Furthermore, it is
currently not trivial to compile PyProp on a new platform. There are many dependen-
cies, and some effort is required in order to get a working copy of PyProp on a new
computer. This is hindering adoption, and simplifying the installation procedure and
updating the documentation are currently the main tasks in maintaining PyProp.

As a way of quickly performing a few initial test calculations on a physical system,
PyProp has been very useful. The first parallelized calculations on two-electron helium
were performed just few weeks after the project was started. The extensibility has
also been successful, as seen by the diversity in the systems that have already been
implemented. However, for an ongoing software project as this, it is inevitable that
some of the requirements change, making some design decisions unfortunate.

The framework started out as a C++ library with optional Python bindings.
Throughout the development, however, the virtues of using Python for scientific soft-
ware have become apparent. Research is inheritly experimental, and having an interac-
tive environment for plotting and calculations has been proven to be invaluable. Corre-
spondingly, during the development PyProp have become more dependent on Python to
the point where it is now a Python extension library written partially in C++. If Python
had been tightly integrated from the start, less code would have been written in C++,
leading to a more compact code base.

As work was starting on PyProp, propagation schemes based on the split step prop-
agator were the only methods considered in our group. PyProp therefore started out as
a framework for selectively combining different one-dimensional transforms. A main
requirement for the underlying array library was therefore efficient and simple support
for multi-dimensional complex valued arrays. This lead to the conclusion of using the
blitz++ array library. While blitz is a very good array implementation in C++, it is pos-
sibly too low-level for the current needs of PyProp. Had we started developing PyProp
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from scratch now, we would probably have choosen a more high level library for ar-
rays like Trilinos or PETc in order to get more functionality “for free”. On the other
hand, we have recently implemented some preliminary Trilinos bindings without much
trouble, enabling the use of preconditioners like IFPACK, and eigenvalue solvers like
Anasazi.

From a physics side, there are now many interesting problems that can be studied
with the available tools. The work on double ionization of helium is well under way,
and there are many unresolved questions to study, such as the topic of two photon
double ionization (TPDI) process[19]. Work is also currently under way to implement a
prolate spheroidal coordinate system, which would allow us to further study ionization
of diatomic molecules. In this context it would be interesting to follow up Paper V with
calculations of how good the Franck-Condon approximation really is in this particular
case.

We now have a variety of discretization and propagation schemes in a framework
which readily supports testing and experimentation. It should therefore be quite pos-
sible, and very interesting, to see a comparison of the different methods. Often, such
comparisons are limited to model problems, but with the PyProp framework it would
be possible to compare the methods on real-world problems.



Chapter 7

Introduction to the papers

Generally, my work has been largely involved in developing PyProp. Particularly, in
Papers II and III, my contribution was mainly that of developing and adapting PyProp.
However, during the course of this work, I have become more involved in the physi-
cal aspects as well. Having some involvment in the physical aspects have been very
helpful for me to understand the importance of PyProp not only propagating the wave-
function, but also simplifying analysis.

Paper I: Parallel Redistribution of Multidimensional Data

In this paper, we studied redistribution algorithms for multidimensional data. It was
found that for data sets of more than two dimensions, it is possible to scale to a very
large number of processors by distributing more than one dimension of the data set at
the same time. Even if the total amount of data needed to be transferred for a complete
redistribution increases with the number of distributed dimensions, the total time spent
redistributing was found to be decreased due to the decrease in the total number of data
transfer operations. These redistribution schemes are the basis for parallelization in
PyProp.

My main contribution to this paper was the implementation and testing of the prop-
agation schemes, an even share of the writing. I also presented this work on the
Parco2007 conference.

Paper II: Structure of lateral two-electron quantum dot molecules in electromagnetic
fields

In this paper, we calculated the eigenstates of a two electron quantum dot, and studied
how they change as function of inter-dot distance. This lay the groundwork for further
studies of two electron quantum dots[50, 51, 60], in which I did not participate.

My main contribution to this paper was the application of PyProp to calculate the
few lowest eigenstates by imaginary time propagation in addition to discussions of the
numerical aspects of the calculations.

Paper III: Classical and quantum-mechanical investigation of the role of nondipole
effects on the binding of a stripped HD2+ molecule
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In this paper, we considered the possibility of binding two particles of the same charge
by introducing extremely intense laser light. In particular, the role of non-dipole terms
in the Hamiltonian was studied and found to not have a significant effect on the binding
effects from the laser.

In this paper, my main contribution was the discussion of numerical methods and
results, as well as the application of PyProp to perform the quantum mechanical calcu-
lations.

Paper IV: Numerical solution of the 3D time dependent Schrödinger equation in spher-
ical coordinates: Spectral basis and effects of split-operator technique

The topic of this paper is twofold, first it deals with the global discretization schemes for
the radial part of the Hamiltonian. Specifically, a transformed Chebyshev collocation
method was compared to the Fourier collocation method. Second, the paper discusses
the problems of using the split step propagation method when a singular potential, such
as the Coulomb potential, is present. We found that splitting singular potentials from
the Laplacian in many cases should be and can be avoided at the cost of loosing fast
transforms.

My contributions here was to implement the transformed Chebyshev method in
PyProp, and performing the numerical experiments on H+

2 . I was also partaking in
the general discussions, and in particular the discussion of the splitting error for singu-
lar potentials.

Paper V: Quantum chessboards in the deuterium molecular ion

In this paper we studied the effect of time delayed laser pulses on the one electron
deuterium molecule D+

2 . By first ionizing a D2 molecule with a femtosecond laser
pulse and then carefully delaying a second pulse, it was found possible to selectively
populate only a few vibrational states. We demonstrated a scheme in which every
second vibrational state was populated and created a very simple model to explain the
effect.

I was involved in most of the development and writing process of this paper, using
PyProp to perform the numerical calculations, discussing the physical properties, and
the development of the simplified model describing the chessboard pattern.

Paper VI: Parallel Pseudo-spectral Methods for the Time Dependent Schrödinger
Equation

This book chapter gives an overview of some methods for solving the TDSE as well as
describing some aspects of the design of PyProp. Similarly to this dissertation, it gives
an overview of different propagation and discretization schemes, but of a more limited
scope. It was in many ways an early summary of my work.

Paper VII: Multiphoton Double Ionization in Helium Driven by Intense XUV Attosec-
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ond Pulses

Multiphoton processes have been studied extensively for single electron atoms the last
decades. With the increase in computational power, studies of multi-photon processes
in two electron systems are now possible as well. In this paper we studied the multi-
photon ionization processes in helium, induced by extremely intense XUV laser pulses.
In particular, we studied the role of the electron-electron interaction under these condi-
tions. It was found that a very simple one electron model can be sufficient for describing
some of the high intensity effects, such as atomic stabilization.

This project is the first of several planned helium studies including two photon dou-
ble ionization and numerical pump-probe experiments.

In this project I was involved in the physical aspects of the problem the start. I also
implemented most of the software required for simulation, analysis and plotting.

Paper VIII: Non perturbative treatment of single ionization of H2 by fast, highly
charged ion impact

Here we studied a diatomic molecule ionized by a fast, heavy and strongly charged ion
projectile. The ionized electrons can be seen as a superposition of two waves originat-
ing from the two nuclei. There are both theoretical and experimental evidence for an
interference pattern similar to that of a Young-type experiment. Furthermore, there are
experimental evidence for a second order interference pattern, but this has never been
successfully modeled by theory. In this paper we tried to find the second order inter-
ference patterns by considering a full three dimensional model. We found no second
order interference, but found instead a different kind of interference pattern originating
from two-center scattering from the target and the projectile.

My contribution was initially to develop the numerical method and some of the tools
required for analyzing the wavefunction. Later, I have also contributed to the discussion
of the physics.
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