
Ola Slettevoll Grøttvik

Design and Implementation of a
High-Speed Readout and Control
System for a Digital Tracking
Calorimeter for proton CT

2021

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway

at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d)

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Ola Slettevoll Grøttvik

Design and Implementation of a High-
Speed Readout and Control System for a
Digital Tracking Calorimeter for proton CT

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 18.02.2021

The material in this publication is covered by the provisions of the Copyright Act.

Print: Skipnes Kommunikasjon / University of Bergen

© Copyright Ola Slettevoll Grøttvik

Name: Ola Slettevoll Grøttvik

Title: Design and Implementation of a High-Speed Readout and Control System for a Digital
Tracking Calorimeter for proton CT

Year: 2021

iii

Acknowledgments

For the last four and a half years, I have been deeply involved with the Bergen
pCT project, of which the last three years have revolved around the work of this
dissertation. I will consider this as one of the most demanding but important
periods of my life. I am indebted to everyone I have had the chance to meet
and get to know these last couple of years.

Thank you, Dieter Röhrich and Kjetil Ullaland, for believing in me and giving
me the opportunity to work with the pCT project, and allowing me to take the
role I eventually took. Thank you for always sticking up for me when it was
needed and for the long and fruitful discussions.

A large thank you goes to Johan Alme for putting me on this path as early as
the autumn of 2014 when you indicated that I had what it took to proceed with
both an M.Sc. and a Ph.D. Thank you for supervising me on both my B.Eng.
and M.Sc. thesis. But mostly, thank you for being a genuinely great guy with
a terrific sense of humor that also shares my interests in beer and good music.

I would also like to thank many of the engineers at IFT. First of all, Shiming
Yang, thank you for enduring all my stupid questions and some of my most
gloomy days in the lab. Thank you also to Attiq Rehman and Bilal Hasan
Qureshi.

One of the most exciting but also intimidating aspects of the last couple of
years involved the collaboration with international partners. However, I can
not be more grateful for the patience and the guidance I’ve received. First of
all, thank you, Ton van den Brink and Rene Barthel, at Utrecht University in
the Netherlands. You are honestly both some of the most knowledgeable and
friendly people I have met to date. Thank you both for your hospitality when
Tea and I visited Utrecht. Thank you also, Marcel Rossewij, Naomi van der
Kolk, Jody Wisman, and Thomas Peitzmann. A huge thank you for the fruitful
and friendly collaboration, Ihor Tymchuk and Viatcheslav Borshchov, at LTU
Ltd in Kharkiv, Ukraine.

Several people involved with the pCT group deserve considerable recognition.
Thank you, Viljar Eikeland, for continually being available for working together

iv

on frustrating issues and socializing afterward. Thanks to Matthias Richter,
Helge Pettersen, Jarle Sølie, Ganesh Tambave, Shruti Mehendale, Håvard
Helstrup, Boris Wagner, and Pierluigi Piersimoni.

The last couple of years would have been quite dull without the company of
my colleagues at the institute. I’m grateful for all the fun we had together,
especially Magnus Ersdal, Simon Voigt Nesbø, Lucas Altenkämper, Shiming
Yuan, and Are Haslum.

I had the pleasure of co-supervising several M.Sc.-students. Thank you all for
your hard work — especially the star, Tea Bodova. Also, thanks to Karl Emil
Sandvik Bohne, Alf Herland, and Håkon Underdal.

This work would’ve never been completed without the support from my family
and all the friends I love. Thanks to my sisters, Ida and Kristin, you guys
give the best pep-talks and support. My parents have been helpful with both
proofreading and any other help when it was urgently needed. Thanks to Jenny
for the nights out, Eva for hygge, and a huge thanks to Signe for getting me to
the finish line. Finally, thank you, guys. You know who you are.

Ola,
Bergen, November 2020

v

Abstract

Particle therapy, a non-invasive technique for treating cancer using protons
and light ions, has become more and more common. For example, a particle
treatment facility is currently being built, in Bergen, Norway. Proton beams
deposit a large fraction of their energy at the end of their paths, i.e., the
delivered dose can be focused on the tumor, sparing nearby tissue with a low
entry and almost no exit dose. A novel imaging modality using protons promises
to overcome some limitations of particle therapy and allowing to fully exploit
its potential. Being able to position the so-called Bragg peak accurately inside
the tumor is a major advantage of charged particles, but incomplete knowledge
about a crucial tissue property, the stopping power, limits its precision. A
proton CT scanner provides direct information about the stopping power. It
has the potential to reduce range uncertainties significantly, but no proton
CT system has yet been shown to be suitable for clinical use. The aim of the
Bergen proton CT project is to design and build a proton CT scanner that
overcomes most of the critical limitations of the currently existing prototypes
and which can be operated in clinical settings.

A proton CT prototype, the Digital Tracking Calorimeter, is being developed
as a range telescope consisting of high-granularity pixel sensors. The prototype
is a combined position-sensitive detector and residual energy-range detector
which will allow a substantial rate of protons, speeding up the imaging process.
The detector is single-sided, meaning that it employs information from the
beam delivery system to omit tracker layers in front of the phantom. The
detector operates by tracking the charged particles traversing through the
detector material behind the phantom. The proton CT prototype will be used
to determine the feasibility of using proton CT to increase the dose planning
accuracy for particle treatment of cancer cells.

The detector is designed as a telescope of 43 layers of sensors, where the two
front layers act as the position-sensitive detector providing an accurate vector of
each incoming particle. The remaining layers are used to measure the residual
energy of each particle by observing in which layer they stop and by using the
cluster size in each layer.

vi

The Digital Tracking Calorimeter employs the ALPIDE sensor, a monolithic
active pixel sensor, each utilizing a 1.2 Gb/s data link. Each layer of 18 × 27 cm
consists of 108 ALPIDE sensors, roughly corresponding to the width and height
of the head of a grown person. The sensors are connected to intermediary
transition boards that route the data and control links to dedicated readout
electronics and supply the sensors with power. The readout unit is the main
component of both the data acquisition and the detector control system. The
power control unit controls the power supply and monitors the current usage of
the sensors. Both of these devices are mainly implemented in FPGAs.

The main purpose of this work has been to explore and implement possible
design solutions for the proton CT electronics, including the front-end, as well
as the readout electronics architecture. The resulting architecture is modular,
allowing the further scale-up of the system in the future. A major obstacle
to the design is the high amount of sensors and the corresponding high-speed
data links. Thus, a large emphasis has been on the signal integrity of the
front-end electronics and a dynamic phase alignment sampling method of the
readout electronics firmware. The readout FPGA employs regular I/O pins
for the high-speed data interface, instead of high-speed transceiver pins, which
significantly reduces the magnitude of the data acquisition system.

A consistent design approach with detailed and systematic verification of the
FPGA firmware modules, along with a continuous integration build system,
has resulted in a stable and highly adaptive system. Significant effort has been
put into the testing of the various system components. This also includes the
design and implementation of a set of production test tools for use during the
manufacturing of the detector front-end.

Contents

Acknowledgments iii

Abstract v

Contents vii

List of Abbreviations xiii

1 Introduction 1
1.1 Particle Therapy . 2
1.2 Proton CT . 4
1.3 Digital Tracking Calorimeter . 6

1.3.1 Single-sided proton CT 8
1.3.2 Particle Energy Calculations 9

1.4 Primary Objective and Main Contributions 9

2 System Design and Electronics Components 11
2.1 Detector Requirements and Considerations 12
2.2 Detector Overview . 14
2.3 Monolithic Active Pixel Sensor 16

2.3.1 The ALICE Pixel Detector 17
2.3.2 Data Interface . 19
2.3.3 Slow Control . 20
2.3.4 Other interfaces . 21
2.3.5 Power Supply . 21

2.4 Layer Design . 23
2.5 Front-end Electronics Bonding and Mounting 25

vii

viii Contents

2.5.1 Chip Cable and String Flex 26
2.6 Transition Card . 28
2.7 pCT Readout Unit . 29

2.7.1 Board Overview . 29
2.7.2 FPGA Firmware Overview 30

2.8 Power Supply and Control . 31
2.9 Other Prototypes . 32

3 String Design and Performance Evaluation 35
3.1 Introduction . 35

3.1.1 Transmission Line Model 36
3.1.2 Characteristic Impedance and Mismatch 36
3.1.3 Conductive and Dielectric Loss 37

3.2 Front-End Design . 38
3.2.1 Chip Cable . 39
3.2.2 String Flex . 42
3.2.3 Simulation . 48
3.2.4 Experimental Verification 49
3.2.5 Conclusion . 52

4 FPGA Design Considerations 53
4.1 Introduction . 53
4.2 High-Speed I/O . 54
4.3 Resource Planning . 56
4.4 Clocking Strategy . 57

4.4.1 Clock Domain Crossings 59
4.5 Resource Utilization . 61
4.6 Radiation Environment of the pCT 63

4.6.1 Radiation Mitigation Resources 66
4.6.2 Radiation and the Data Link 67

4.7 Conclusion . 67

5 Detector Data Readout 69
5.1 Data Sampling Methods . 69

Contents ix

5.1.1 Static Phase Alignment 70
5.1.2 Clock Data Recovery . 71
5.1.3 Asynchronous Data Recovery 71

5.2 Semi-Dynamic Phase Alignment 72
5.3 Dynamic Phase Alignment . 74

5.3.1 DPA Implementation . 75
5.3.2 High-Performance I/O 77
5.3.3 DPA Sequence . 80
5.3.4 Block Architecture . 82

5.4 DTC Data Rates . 84
5.5 ALPIDE Data Protocol . 86
5.6 Data Flow . 87

5.6.1 Word Alignment and Decoding 88
5.6.2 PRBS Checker . 89
5.6.3 Protocol and Error Checking 89
5.6.4 The pRU Data Format 91
5.6.5 Data Formatter . 96
5.6.6 Priority Offloader . 98

5.7 Data Offloading . 100
5.7.1 10 Gb/s UDP Stack . 101
5.7.2 pCT Data Transfer Protocol 103
5.7.3 Addressing . 106
5.7.4 pDTP Client Software 107
5.7.5 pDTP Server Emulator 108

5.8 Conclusion . 108

6 Detector Control and Monitoring System 109
6.1 DCS Architecture . 109

6.1.1 Microcontroller-based DCS 110
6.1.2 Pure FPGA-based DCS with IPBus 112

6.2 Bus Interface . 114
6.2.1 Clock Domain Crossings 115

6.3 Bus Tool . 116

x Contents

6.3.1 Register Types . 117
6.4 ALPIDE Control . 117

6.4.1 Half-Duplex MLVDS Bus Interface 118
6.4.2 Transactions . 119
6.4.3 Input Deserializer . 122

6.5 Trigger and Clock Synchronization 124
6.5.1 Synchronization Parameters 124
6.5.2 Frame ID and Absolute Time Issues 126
6.5.3 Synchronization Levels 128
6.5.4 Synchronization Architecture 130
6.5.5 Board-to-Board Interface 132
6.5.6 Trigger Manager . 135

6.6 DCS Time Budget . 136
6.6.1 ALPIDE Configuration 139

6.7 Conclusion . 140

7 Verification and Testing 141
7.1 Functional Verification . 141

7.1.1 Verification using Testbenches 142
7.1.2 Test-Driven Development 142
7.1.3 Bitvis Verification Library 143
7.1.4 Design Correctness . 143

7.2 pRU Firmware Module Verification 144
7.2.1 Bus Interface . 145
7.2.2 Data Flow . 145
7.2.3 Priority Offloader . 147
7.2.4 ALPIDE Control . 148
7.2.5 Power Control . 149
7.2.6 UDP Stack and Data Transfer Protocol 149

7.3 Integration Tests and Top-level Verification 151
7.4 Hardware Verification . 152

7.4.1 FireFly FMC . 152
7.4.2 High-Speed Links . 153

Contents xi

7.4.3 Slow Control . 156
7.4.4 GbE and IPBus . 156
7.4.5 10GbE and pDTP . 157

7.5 Production Testing . 158
7.5.1 Production Test Box . 158
7.5.2 Mini-TC . 160
7.5.3 ALPIDE Classification 160
7.5.4 Production Test Software 162

7.6 Version Control and Continuous Integration 163
7.7 Beam Tests . 164

8 Conclusion and Outlook 167
8.1 Conclusion . 167
8.2 Outlook . 169

A List of Publications 171
A.1 As Primary Author . 171
A.2 Publications Significantly Contributed To 171
A.3 Master’s Theses as Co-Supervisor 171
A.4 All Publications . 172

B pRU Data Format 173
B.1 The HEADER Word . 173
B.2 The TRAILER Word . 174
B.3 The EMPTY Word . 176
B.4 Example of a pRU frame . 178

C pCT Data Transfer Protocol 179
C.1 pDTP Client . 179
C.2 pDTP Server . 180

C.2.1 Server Status . 181

Bibliography 187

xii Contents

List of Abbreviations

µC Microcontroller
10GbE 10Gb Ethernet
ADC Analog-to-Digital Converter
ALICE A Large Ion Collider Experiment
ALPIDE ALICE Pixel Detector
ALWM ALPIDE Lightweight Model
API Application Programming Interface
ARP Address Resolution Protocol
ASIC Application-Specific Integrated Circuit
AXI Advanced eXtensible Interface
AXIS AXI Stream
BER Bit Error Rate
BFM Bus Functional Model
BTBI Board-to-Board Interface
BTMR Block triple modular redundancy (TMR)
CAD Computer-Aided Design
CDC Clock Domain Crossing
CERN The European Organization for Nuclear Research
CMOS Complementary Metal-Oxide-Semiconductor
CPU Central Processing Unit
CT Computed Tomography
DAQ Data Acquisition
DCS Detector Control System
DDR Double Data Rate

xiii

xiv List of Abbreviations

DMAPS Fully Depleted Monolithic Active Pixel Sensor
DPA Dynamic Phase Alignment
DTC Digital Tracking Calorimeter
DTMR Distributed TMR
ELT Enclosed Layout Transistor
FEC Focused Expression Coverage
FEE Front-End Electronics
FIFO First In First Out
FMC FPGA Mezzanine Card
FPC Flexible Printed Circuit
FPGA Field Programmable Gate Array
FSM Finite-State Machine
GbE Gigabit Ethernet
GBT GigaBit Transceiver
HAL Hardware Abstraction Layer
HDL Hardware Description Language
HEH High Energy Hadron
HEP High Energy Physics
IP Internet Protocol
IP Intellectual Property
ITS Inner Tracking System
LHC Large Hadron Collider
LSB Least Significant Bit
LTMR Local TMR
LUT Look-up Table
LVDS Low-Voltage Differential Signaling
MAC Media Access Control
MAPS Monolithic Active Pixel Sensor
MGT Multi-Gigabit Transceiver
MLVDS Multi-point LVDS
MMCM Mixed-Mode Clock Manager
PCB Printed Circuit Board
pCT Proton CT

List of Abbreviations xv

PCU Power Control Unit
pDTP pCT Data Transfer Protocol
PHY Physical Layer
PLL Phase-Locked Loop
PPM Parts Per Million
PRBS Pseudo-Random Binary Sequence
pRG Proton Radiography
pRU pCT Readout Unit
PSD Position-Sensitive Detector
PTB Production Test Box
QSFP Quad Small Form-factor Pluggable
RAM Random Access Memory
RERD Residual Energy-Range Detector
RIU Register Interface Unit
RMW Read-Modify-Write
RSP Relative Stopping Power
RTL Register Transfer Level
SBI Simple Bus Interface
SEL Single Event Latch-up
SerDes Serializer/Deserializer
SEU Single Event Upset
SEUPI Single Event Upset Probability Impact
SFP Small Form-factor Pluggable
SGMII Serial Gigabit Media Independent Interface
SMD Surface-Mount Device
SNR Signal-to-Noise Ratio
SOBP Spread-Out Bragg Peak
SoC System-On-Chip
SpTAB Single point Tape Automated Bonding
SRAM Static Random Access Memory
TC Transition Card
TCP Tape Carrier Package
TCP Transmission Control Protocol

xvi List of Abbreviations

TDD Test-Driven Development
TID Total Ionizing Dose
TMR Triple Modular Redundancy
UART Universal Asynchronous Receiver/Transmitter
UDP User Datagram Protocol
UI Unit Interval
ULTM Ultra-Light Test Modules
UUT Unit Under Test
UVVM Universal VHDL Verification Methodology
VHDL Very High Speed Integrated Circuit Hardware Description

Language
VVC VHDL Verification Component
XGMII 10 Gigabit Media-Independent Interface
ZIF Zero Insertion Force

CHAPTER 1

Introduction

This chapter begins with a brief introduction to particle therapy for cancer
treatment. Imaging for particle treatment dose planning is then concisely
discussed. Furthermore, proton CT is introduced as a concept. Subsequently,
the Bergen proton CT prototype, the Digital Tracking Calorimeter, is outlined.
Finally, the primary objective and the major contributions of this work are
concisely presented.

Cancer treatment research is an important and active field. Millions of people
worldwide get diagnosed with cancer every year, and the disease is the second
leading cause of death, trailing only cardiovascular diseases. Based on the
cancer type, the stage of the disease, and the risk for critical organs, various
types of therapy are offered to the patient: (1) chemotherapy, (2) surgery, and
(3) radiation treatment. The purpose of radiation treatment, also known as
radiotherapy, is to control or kill cancerous cells using ionizing radiation. It
is important, however, to also avoid damaging the healthy tissue surrounding
the cancer cells. The most common type of radiation treatment utilizes X-ray
photons, yet, in the last couple of decades, the use of charged particles for
radiation treatment has increased.

By the end of 2016, more than 170 000 patients had been treated with particle
therapy [1], most of whom with protons. Carbon ions are also used at some
facilities like the HIT facility in Heidelberg. In 2018, it was decided that Norway
should provide particle therapy as an option to cancer patients in the form of

2 1.1. Particle Therapy

proton therapy and that two treatment centers would be built, one in Oslo and
one in Bergen [2].

1.1 Particle Therapy

Particle therapy is distinguished from conventional X-ray therapy in that it
utilizes massive particles rather than massless photons [3]. Although both
neutral and charged particles can be employed, neutral particles are not often
used [1]. Particle therapy promises several advantages compared to X-ray
therapy. The advantages stem from the fact that a charged particle interacts
with matter in a fundamentally different way than photons. Contrary to
photons, protons and other charged particles stop. While traversing through
matter, a charged particle will interact with orbital electrons, and in each of
these collisions, it will lose a tiny amount of energy and slow down. Eventually,
close to the stopping point, the particle will release most of its energy. This is
called the Bragg peak.

The relative depth dose distributions of photons versus protons are given in
Figure 1.1. A photon beam, as shown by the red line, delivers a large dose to
the healthy tissue. A harmful dose bath is shown both in front of and behind
the tumor. A proton will deposit only about 30 percent of the Bragg peak
maximum dose to the area in front of the Bragg peak [3]. Beyond the Bragg
peak, the dose deposited falls to virtually zero. It is clear, however, that a
mono-energetic proton beam will deliver most of its dose to only a small portion
of the tumor. This is illustrated by the multiple blue lines, each representing
a beam with a certain energy. A therapeutic proton beam needs to cover the
entire tumor area illustrated by the grey box. Thus the beam distribution is
artificially expanded by using protons with varying energies. The dotted blue
line shows the expanded beam’s depth dose distribution. The combination
of protons with different characteristics produces a Spread-Out Bragg Peak
(SOBP); the area of the accumulated Bragg peaks of many protons. Bear in
mind that some broadening of the Bragg peak also occurs when combining
protons in a mono-energetic beam. This broadening is due to the statistical
nature of the energy loss process and is called range straggling [4].

Chapter 1. Introduction 3

Figure 1.1: Comparison of relative depth dose distributions of photons versus protons.
From Filipak [5]. Licensed under CC BY-SA 3.0.

Particle therapy treatment has several potential advantages compared to con-
ventional X-ray therapy:

(1) Less total dose to healthy tissue

A photon beam delivers a much larger dose to healthy tissue than a proton
beam. Any reduction of dose entails that secondary radiation effects may also
be reduced [6]. There is an increasing number of studies indicating that this
will translate into clinical advantages [7]. Because of this, particle radiotherapy
can be considered for the treatment of pediatric tumors in the hope of reducing
complications later in life for child patients.

(2) Finite range and sharp dose cut-off

Since charged particles stop and because healthy tissue behind a tumor will
receive next to no dose, it is appealing to consider particle treatment for
tumors next to critical structures. There is some clinical evidence that patients

4 1.2. Proton CT

with tumors close to critical structures are benefiting the most from proton
treatment [8].

(3) Increased tumor control

Because the dose delivered to healthy tissue is dramatically lower, it is possible
to increase the dose to the tumor. The sharp dose cut-off following the Bragg
peak also contributes. A higher dose to the tumor helps to control the tumor.

In Figure 1.2 we clearly see how some of these advantages are manifested in
the dose plans for treatment. The photon treatment has a sizeable low-dose
bath behind the tumor, shown in blue, while the proton treatment virtually
leaves no dose trailing the tumor.

Figure 1.2: A comparison between two dose plans for irradiation of a paravertebral
sarcoma in the lung, overlaid on CT images [4]. Left: (conventional) Intensity Modulated
Radiation Therapy with photons. Right: Intensity Modulated Proton Therapy.

1.2 Proton CT

A single proton’s range is uncertain because of the range straggling. Even in
simple water phantoms, predicting where a proton will stop is a statistical
process. Nevertheless, range straggling is an unavoidable uncertainty and is not
a significant problem for particle treatment. However, the tissue in front of the
tumor is a mixture of muscles, bones, and fat, and the incomplete knowledge of
the chemical composition and density of this and the tumor itself can become a
significant source of range uncertainty [7]. When creating dose plans for particle
treatment, sharp gradients of the dose distribution are generated around the

Chapter 1. Introduction 5

tumor. Even a small uncertainty about the range of the beam can cause drastic
changes to the dose deposited to healthy tissue [7]. This can be detrimental to
patients that have a tumor that lies close to critical structures, i.e., one of the
patient groups which can potentially benefit the most from particle radiotherapy.
Although it is impossible to remove the range uncertainty completely, one can
strive to diminish it compared to the values used in the clinic today.

Every type of radiation treatment is preceded by the calculation of a treatment
or dose plan that indicates the dosage delivered to various tissue of the treatment
volume. Today, one obtains information from conventional X-ray computed
tomography (CT) imaging to prepare dose plans for particle treatment. CT
imaging provides the so-called Hounsfield units, or the CT number, of the
volume in question. This number describes how the intensity of an X-ray beam
is attenuated by the volume. Particle treatment, however, uses the relative
stopping power (RSP) of the volume to calculate the beam’s range. It is possible
to convert Hounsfield units to RSP, but this conversion is not a one-to-one
mapping [9]. The conversion introduces range uncertainties of up to a total of
2 to 3 percent. Most of this uncertainty comes from the table lookup of the
ionization potential [4].

By directly measuring the proton RSP of the tissue, this uncertainty is minimized
to the uncertainty of the measurement. One way to do this measurement is by
using protons or other charged particles for imaging. This involves transmitting
high-energy protons through the volume and measure how the volume in
question affected the energy of the particles. Since the 1960s, several types of
proton radiography (pRG) and proton computed tomography (pCT) have been
proposed. Some of the systems are proton integrating systems that calibrate a
signal in a detector with the length traversed, averaging over multiple protons.
This approach has some significant negative implications in terms of image
quality [10]. Thus, the field of pCT research has mostly started to focus on
proton tracking devices.

The proton tracking method involves the measurement of individual protons
and the calculation of the residual energy of each particle. The residual energy
is the particle’s remaining energy after passing through the volume to be

6 1.3. Digital Tracking Calorimeter

measured. This way, one can reconstruct estimates of the particles’ trajectories
or tracks through the patient. The tracks are estimated based on advanced most-
likely path algorithms, that also minimizes the effect of the multiple Coulomb
scattering on the spatial resolution [11]. Based on these tracks the proton’s
average energy loss along the path is calculated. Finally, by transmitting a
large number of protons from different angles, the average RSP of each voxel of
the volume can be calculated [4]. Proton tracking pCT systems typically consist
of multiple position-sensitive detectors (PSD), two in front of the patient, and
two behind the patient [10]. These detectors obtain crucial information about
the particles’ position and direction at both entrance and exit of the measured
volume. In addition, a residual energy-range detector (RERD) is used to obtain
the particles’ residual energy. In Figure 1.3 we see how the different detectors
obtain the information about each particle.

Figure 1.3: A typical double-sided proton-tracking proton radiography/proton CT
system. Consists of four PSDs layers and a RERD. Figure from Poludniowski [10].
Licensed under CC BY 4.0.

1.3 Digital Tracking Calorimeter

Several of the suggested pCT prototypes make use of a crystal-based RERD.
For instance, a collaboration of Loma Linda University (LLU) and others have
presented a head-scanner prototype that employs CsI crystals for the RERD [12].
The use of a crystal-based calorimeter significantly reduces the proton rate
capabilities of the device, and for the LLU-prototype, this leads to a CT scan
time of several hours [10]. To use protons for clinical imaging the scan time

Chapter 1. Introduction 7

must be reduced. Not only because it is unreasonable to keep a patient still for
so long, but also because the anatomy of the patient is susceptible to change
over time. This change might potentially dramatically increase the proton range
uncertainty [13]. To increase the proton rate, and thus reduce the imaging time,
the use of a range telescope-system to construct a RERD has been proposed by
Esposito et al. (with silicon strip detectors) [14] and by Pettersen et al. (with
pixel detectors) [15]. Specifically, Pettersen et al. introduces the concept of a
Digital Tracking Calorimeter (DTC) that:

(1) is digital in that it only detects energy depositions over a certain threshold,
i.e. either a 0 (no hit) or a 1 (hit).
(2) tracks the path of individual particles through the detector medium.
(3) calculates the energy of each particle based on the particle range.

In the proposed DTC by Pettersen et al., the RERD is constructed by several
layers of high-granularity pixel detectors. In fact, it is constructed the same way
as the PSD in the same system. Therefore, the entire prototype is simply several
layers of pixel detectors. Between each layer of the RERD, metal sheets are
installed to gradually absorb energy, and eventually, stop the particles within the
detector. These sheets are also used to obtain structural stability for the sensor
chips. For the RERD, aluminum is the metal of choice based on the proton
stopping and scattering power, durability, secondary neutron production, and
more [16]. To minimize the uncertainty of the measurement, physics simulations
with different thicknesses of the energy-absorbing aluminum layers between
each sensor layers were done. The study concluded that an absorber thickness
of 3.5 mm both minimizes the uncertainty of the measurement and restricts the
total number of sensor layers required to provide sufficient tracking and range
resolution. A total of 41 sensor layers are needed for the RERD-part of the
DTC to make sure protons with an energy range of 35 MeV to 245 MeV will
stop in the detector, and thus, be appropriately measured.

The PSD layers must be very thin and should contain as little mass as possible
to reduce multiple Coulomb scattering while measuring the position and angle
of the incoming particle track. Thus, the absorber is replaced with a low-mass
stabilizer that the sensors are mounted on. A 0.2 mm thick carbon fiber sheet

8 1.3. Digital Tracking Calorimeter

is chosen based on its low mass and its structural properties.

1.3.1 Single-sided proton CT

Sølie and Voltz et al. investigated the feasibility of proton imaging without
front trackers and instead rely on the information given by the beam delivery
system [11]. Avoiding the use of front trackers has several benefits, especially
during the design and assembly stages. First, it significantly reduces the cost of
sensor layers, but one can also increase the particle rate as the pairing of hits
on the front and the rear trackers are avoided [17]. Furthermore, in a clinical
setting, one avoids the complexities involved in aligning the set of front and rear
trackers. Critically, one will not be required to move the front trackers away
before starting proton therapy operations, which allows the DTC to be used as
an online treatment dose deposition monitor via online in-vivo imaging. Single-
sided pCT simulations indicate a somewhat reduced spatial resolution, but
Sølie and Voltz suggest the development of dedicated reconstruction algorithms
for this type of detector setup [11]. See Figure 1.4 for an illustration of the
single-sided pCT prototype.

Figure 1.4: Artistic illustration of the Bergen proton CT prototype. A single-sided
scanner does not use tracking layers in front of the measured object.

Chapter 1. Introduction 9

1.3.2 Particle Energy Calculations

The residual energy of a particle can be calculated by observing in which layer of
the RERD the particle stops. This calculation is derived from the Bethe range-
energy relationship. Several analytical models are investigated by the Bergen
pCT group [18]. One can further improve the residual energy calculation by
employing more information from the pCT detector. Even though the DTC only
provides digital pixel hit data, each particle that moves through the detector
will deposit energy relative to its velocity/energy. Tambave et al. showed how
the mean cluster size changes relative to the energy loss of the particle using
the same sensor as the DTC, the ALPIDE, as seen in Figure 1.5 [19]. The
ALPIDE is further discussed in Section 2.3. Fitting a Bragg peak curve to the
combined information of cluster size and particle range will provide an accurate
measure of the residual energy [4, Figure 5.5].

Figure 1.5: The mean cluster size versus the energy loss of the 4He ions and protons
in the ALPIDE chip [19].

1.4 Primary Objective and Main Contributions

In this introductory chapter, we have introduced some of the motivation for
developing a proton CT detector. Note that the development of such a detector
is a big collaborative effort, of which this thesis is an integral part. The Bergen
pCT group started the initial work in 2012 and received funding for the design

10 1.4. Primary Objective and Main Contributions

and the construction of the DTC prototype in late 2016. The proof-of-principle
of using a digital tracking calorimeter for pCT was based on experiments with
an electromagnetic sampling calorimeter containing MIMOSA23 sensor chips
as sensitive layers [15].

The work to develop the pCT readout electronics, however, was built upon the
development of the readout electronics of the ALICE Inner Tracking System
(ITS). As is discussed later in this thesis, it became evident that the pCT
electronics had different requirements, and therefore, the development efforts
were separated. Nevertheless, several components from the ITS development
remain in the pCT system.

At the time of writing, the Bergen pCT prototype, although delayed by COVID-
19, is getting close to the start of production of the front-end electronics. I
have been involved with many parts of the detector development, including
design and testing of (1) system design (Chapter 2), (2) front-end electronics
(Chapter 3), (3) readout and control electronics and field programmable gate
array (FPGA) firmware (Chapter 4, 5, 6 and 7), and various other tasks. The
prime objective of this thesis is to present a near-complete technical electronics
solution to the Bergen pCT prototype. Although I have been involved with
many parts of the detector development, most of my focus has been on the data
acquisition and detector control electronics FPGA firmware, of which I have
been the sole developer. The thesis reflects this since most of Chapter 4, 5, 6
and 7 are concerned with the FPGA firmware development. Parts of this work
have been presented at an international conference and have been subject to
peer review for publication in journals (see Appendix A).

CHAPTER 2

System Design and Electronics Components

In this chapter, the requirements of the proton CT DTC system are discussed
in detail before an overview of the system electronics design is provided. The
individual parts of the system are then presented in more detail. As the work of
this thesis focuses on the electronics of the system, the chapter emphasizes the
various parts of the front-end electronics and the readout system. Finally, some
other prototypes related to the development of the project are mentioned.

Figure 2.1: 3D design of the pCT Digital Tracking Calorimeter. The figure is provided
by courtesy of Anthony van den Brink. The two tracking layers are shown in front, with
the calorimeter layers behind. The detector is shown without the cooling plate and fans.

12 2.1. Detector Requirements and Considerations

2.1 Detector Requirements and Considerations

The goal of the pCT prototype is to prove that a DTC can be used for CT
imaging with protons and overcome most of the critical limitations of the already
existing prototypes. This will improve the dose planning accuracy for particle
radiation therapy. Although both the conceptual and the technical requirements
have been subject to revision during the research project period, a few major
requirements are regarded as the most important. Note that the following
requirements are focused mainly on the most basic physics requirements for
particle tracking, and subsequently, the electronics requirements needed to fulfill
the former. The following list of requirements is in addition to the specifications
of the number of layers and absorber thickness already described in Section 1.3.

(1) pCT is most likely to be beneficial for tumors close to critical structures,
because particle treatment of such tumors requires high accuracy. Consequently,
the detector must be large enough to construct an image of a human head. The
width and height of the detector are presented in Section 2.4. To verify that
the DTC can be used to improve dose planning for radiation treatment, the
detector will be tested using so-called phantoms. Phantoms are representations
of an actual physical object and are often made to resemble a part of the
human body. Phantoms are used both in the testing of new types of detectors
and to calibrate existing detectors’ real-world data to the data from advanced
simulations.

(2) The DTC must be able to handle clinical beam settings so that it can
be tested and used in a clinical facility like HIT in Heidelberg, Germany.
This requirement entails that the DTC must withstand a particle flux within
the nominal values of clinical proton beams. Also, the pCT will operate
with a scanning pencil beam. The detector must be able to handle a rate
of 107 particles/s. This number is in the upper range of protons required to
construct a 2D-projection of a human head and is also in the lower range of the
typical flux of the clinical proton beam machines like the one at HIT. To opt
for a flux that is rarely used in these facilities might have consequences for the
information that is possible to acquire from the beam optics of the facilities.

As mentioned in the introductory chapter, most pCT implementations are using

Chapter 2. System Design and Electronics Components 13

a crystal-based RERD, limiting the rate of particles that can be concurrently
tracked. By replacing this approach with silicon-pixel detectors, one of the
main goals of the Bergen pCT prototype is to drastically increase the rate of
particles. The increased particle rate will speed up the imaging process to
the point where each 2D-projection is completed in a matter of seconds, and
a complete 3D-tomography is completed in a matter of minutes [17]. A full
3D-tomography is necessary to generate a full RSP voxel map of the measured
volume.

(3) The calculation of a particle’s residual energy is mainly based on its track
through the detector and where it stops. The track can be used together with
knowledge of the detector design to accurately estimate how much material
the particle has traversed. Monte Carlo simulations provide information about
how particles are expected to behave in a precise model of the detector, and
what the residual energy of particles should be if they stop in a particular layer.
However, it is complicated to construct a reasonable model and simulation of
the detector if the detector is built in an inhomogeneous way. This is the reason
why one must strive to build the detector as homogeneous as possible and avoid
intricate structures.

(4) A DTC needs to be able to track individual particles, but due to the high
rate, it can be challenging to differentiate between particles. For this reason,
the detector needs to have a high spatial resolution. This means that the size
of each sensor-pixel needs to be small. Furthermore, there should be hardly
any dead area between the pixels.

(5) It is an advantage for clinical use if the detector can be designed without
the use of gas or high voltage. The complete detector should also be compact
and have a simple air/water cooling system. Details about the mechanics and
cooling can be found in [17].

(6) To be able to construct the track of each particle through the detector, the
pixel address information from all the layers combined with the time of each
hit must be collected. It is crucial that all sensors in all layers adhere to the
same time-domain so that the particles hit in two different layers are marked
with the same timestamp and/or frame ID. Hits in two layers with different

14 2.2. Detector Overview

parameters will not be combined to form a track as this indicates that they do
not emanate from the same particle. To ensure that all sensors in all layers
adhere to the same time-domain, a deterministic and accurate synchronization
system is needed.

(7) The pCT detector must continuously sample data with minimal dead-time
or integration time. The detector data will be captured by a nominal trigger
rate of 10 µs, and a sampling window of 9.75 µs, meaning a sampling window
gap of 250 ns. However, these settings can be configured to optimize for certain
conditions, for instance, to reduce the number of double hits (see Section 2.3.1).
The detector electronics must handle the resulting data with minimal data loss.
The data rate calculations are done with the worst-case trigger rate of 5 µs (see
Section 5.4).

(8) In addition, the system should have a trigger-less readout architecture. This
means that the data acquisition should be made possible without any external
nor any high-level trigger system implemented. Note that this does not exclude
the use of sensors that require low-level trigger signals as these can originate
and be controlled from the data acquisition (DAQ) system itself. This simplifies
both the design and the operation of the detector system.

(9) Although the primary objective of the pCT scanner is to investigate imaging
with protons, the prototype can in principle be used to investigate CT with
any charged ions, e.g., carbon or helium.

2.2 Detector Overview

The DTC prototype consists of the parts listed below.

Front-end High-granularity pixel sensors with high-speed data
readout bonded to custom glue electronics providing
an interface to the external detector electronics.

Transition Card A simple printed circuit board (PCB) that supplies
power to the sensors, as well as providing the electrical
connections between the sensors and the DAQ system.

Chapter 2. System Design and Electronics Components 15

Figure 2.2: The Proton CT readout and control architecture. Notice the different
radiation zones of the different aspects of the system. The PCU is not depicted in the
figure, but is placed within the same radiation zone as the readout unit.

Readout Unit The pCT Readout Unit (pRU) is the interface to
the sensor chips and acts as the communication hub
between the sensors and the control room. The pRU
is the main component of both the DAQ and the
control system.

Power Control Unit The Power Control Unit (PCU) and the power net-
work provides power to the front-end electronics and
is also part of the control system.

Server Farm One or more computers are serving to handle the data
stream (DAQ) from the sensors, as well as controlling
the operation of the detector (DCS).

Network Infrastructure for connecting the readout units and
the power control units to the control server farm.

The pCT readout and control architecture is shown in Figure 2.2. The front-
end components are connected to the Transition Card (TC), which is further
connected to the pRU. Note how these parts are located in zones with different
radiation levels. In Section 4.6 the radiation environment of the pCT system is
discussed. The pRUs are connected to the system controller via two separate
Ethernet-based networks; one for run control and one for data readout.

The control server farm and the network components are not discussed further

16 2.3. Monolithic Active Pixel Sensor

in this thesis. The PCU is only briefly mentioned in Section 2.8. The other
parts of the system are discussed in detail below.

2.3 Monolithic Active Pixel Sensor

In general, monolithic active pixel sensors (MAPS) have a pixel matrix where
each pixel has a dedicated signal amplifier and an ADC or a simple threshold
discriminator. Often, the detector chip also incorporates a digital transmission
unit combined with the pixel matrix integrated on the same piece of silicon.
One can differentiate between high-voltage CMOS technology and MAPS [20].
MAPS generally have a very low power consumption and can be made radiation
tolerant [21]. Low power consumption and radiation tolerance are often two of
the most crucial requirements for sensors used in high energy physics (HEP)
experiments and are also required for the pCT detector.

Several MAPS have been developed specifically to be used in HEP and similar
applications. For instance, the Ultimate-2 sensor for the STAR experiment [22].
Generally, for MAPS, charge collection is dominated by diffusion, but by drift
near the electrode [23]. However, for high-voltage monolithic CMOS sensors
and fully depleted MAPS (DMAPS), for instance, the MuPix7 developed for
the Mu3e Experiment [24], drift is the driving force of the charge collection.
The drift component of the charge collection is an important variable of the
signal-to-noise ratio of the sensor [20]. A DMAPS is considered used in the
high-luminosity Large Hadron Collider (LHC) upgrade of the ATLAS detector
in 2025 [25, 26]. Most of the DMAPS alternatives that would be usable for the
pCT detector are still under prototyping or testing and were not available for
consideration during the early stages of pCT development.

The selection of a MAPS for the pCT detector was made based on three main
considerations: (1) data readout speed, (2) pixel size, and (3) availability. The
University of Bergen is involved with the ALICE experiment at the LHC at The
European Organization for Nuclear Research (CERN), and thus had experience
with the ALPIDE, which was developed for the ALICE ITS detector. The
ALPIDE was the first MAPS to implement a zero-suppression architecture to
increase readout speed and reduce readout power usage [25]. Below, we provide

Chapter 2. System Design and Electronics Components 17

the properties and characteristics that demonstrate that the ALPIDE is a valid
sensor choice for the pCT detector.

Figure 2.3: Equivalent circuit schematic, cross-section and footprint of the ALPIDE
pixel [27]. Notice how electron-hole pairs are produced in the epitaxial layer by the
ionizing particle.

2.3.1 The ALICE Pixel Detector

The ALPIDE consists of 512 × 1024 pixels, and the size of each pixel is only
29.24µm× 26.88µm [28]. The chip measures 15mm(H) × 30mm(W) of which
1.2 × 30 mm2 is a digital periphery region devoted to control and readout
functions. The pixel itself is constructed as a charge collection diode, indicated
as Cd in equivalent circuit schematic in Figure 2.3. A particle hitting the chip
will cause electron/hole-pairs as the particle ionizes the material along its path.
These electrons diffuse in the epitaxial layer and can be collected by the diode
when the force of the depletion region causes the electrons to drift towards the
n-well. When electrons are collected the sensing diode experiences a change of
potential of a few tens of mV relative to the number of electrons collected [29].
The electrons can also diffuse to nearby pixel diodes, causing several pixels to
fire, causing so-called clusters. The size of the depletion region of the diode
versus the drift volume can be controlled by supplying a negative bias voltage to

18 2.3. Monolithic Active Pixel Sensor

the chip. An increased depletion region increases the granularity of the sensor
by restricting the number of pixels affected by a particle but will also cause a
reduction of the cluster sizes, which in turn yields a lower energy resolution.
In any case, the ALPIDE is considered to be a high-granularity pixel sensor,
which was mentioned as a requirement in Section 2.1.

The ALPIDEs can be produced with different substrate thicknesses. Specifically
100 µm and 50 µm. Employing a thin chip will reduce the multiple Coulomb
scattering of the particles when they pass through the sensor material. Also,
less energy is lost in the sensor itself. A very thin chip can be more difficult to
handle during the bonding and mounting process, therefore the RERD layers,
also called the calorimeter layers, of the detector will employ the 100 µm version.
As discussed in Section 1.3, the position-sensitive detector (PSD) layers, also
called the tracking layers, need to be very thin, thus the 50 µm version will be
utilized in these layers.

MAPS can be constructed to be radiation tolerant. Previously, the ASICs used
in the LHC often employed enclosed layout transistors (ELT) and guard rings
to achieve the required radiation tolerance [30]. ELTs help keeping the leakage
current at a low level after irradiation [31]. On the other hand, ELTs introduce
several behavioral differences compared to standard linear MOS transistor
models. Most critically limiting the W/L ratio to large values, thus severely
constraining the designs [32]. With smaller CMOS technology nodes, one has
observed a reduced total ionizing dose (TID) sensitivity, in turn making the
ELT approach redundant and complicated [30]. The ALPIDE achieves sufficient
TID tolerance by using the TowerJazz 0.18 µm CMOS technology with a gate
oxide thickness of roughly 3 nm [33, 34]. To protect the sensitive digital control
circuits of the sensor from radiation-induced failures (see Section 4.6), mitigation
techniques like triple modular redundancy (TMR) are employed [29, 28, 35].
Also, a deep p-well, as seen in Figure 2.3, is shielding the digital logic and
preventing the n-well from collecting signal charge [20, 36].

The charge collection diode is connected to an analog amplifier circuit. The
amplifier uses a slow shaping time, between 1-2 µs, to save power [36]. In
Figure 2.4 the pixel timing diagram is shown. A global threshold level is used

Chapter 2. System Design and Electronics Components 19

to discriminate the signal, reducing the number of fake hits, i.e., signal changes
caused by noise. The discriminator outputs a digital signal indicating a hit.
Thus, the sensor only indicates whether there is a signal or not. The digital
nature of the pixel electronics means that no information regarding the strength
of the signal is stored, causing loss of information about the particle type and
energy. However, as indicated in Section 1.3.2, some information about the
deposited energy can be extracted from the cluster size. Also, because of the
digital nature of the pixel, meaning that a signal below the global threshold
level is ignored, we say that the data is naturally zero-suppressed.

Figure 2.4: ALPIDE Pixel Timing Diagram [37]. The latch signal is high when the
discriminator output and the global strobe signal is asserted at the same time.

Each pixel has a 3-bit memory called the multi-event buffer. For a hit to be
stored the discriminator output must coincide with the global strobe window
signal. The strobe signal usually originates from an external trigger signal, and
the strobe window length can be configured globally. The use of a global strobe
signal also implies that the ALPIDE has a global-shutter readout architecture.
This contrasts with the rolling-shutter architecture of the Ultimate-2 sensor [22].
The slow shaping time of the analog pixel circuit means that the signal might
be captured by several strobe windows if the gap between them is short.

2.3.2 Data Interface

The ALPIDE can be set in different modes depending on expected data rates
and operation. The mode names are based on where in the ALICE ITS detector

20 2.3. Monolithic Active Pixel Sensor

the specific mode is used. The inner barrel mode is used in the three innermost
layers of the ITS, where the expected data rates are the highest. Outer barrel
mode, however, is used in the middle and outer layers of the detector, where
the data is low enough to combine the data outputs of multiple chips without
buffer overflows and data loss. Because of the expected data rates of the pCT,
see Section 5.4, all ALPIDE chips of the DTC are configured in inner barrel
mode.

The use of the inner barrel mode entails that the chip utilizes a high-speed low-
voltage differential signaling (LVDS) link with a maximum speed of 1.2 Gb/s to
offload the pixel hit data. The data is 8B/10B-encoded by default to minimize
data errors. This encoding scheme is standard in high-speed electronics and
ensures link DC-balance, allows for checking for single-bit errors in an 8-bit word,
and provides special control words for word alignment [38]. Thus, the maximum
data throughput of the chip is 960 Mb/s. After configuration, the data link is
always on, transmitting comma words when there is no data. The ALPIDE
employs the K28.5 comma control word. As no clock is transmitted alongside
the data, the comma word is used by the FPGA firmware for clock/data recovery
and to align the first bit of the word.

Experience while handling the chip in different implementations has shown
that the ALPIDE data link is susceptible to jitter, and careful considerations
must be made at multiple levels of the electronics implementation. The on-chip
phase-locked loop (PLL) must be very stable to ensure the optimal data link
performance. This is further discussed in Section 2.3.5, 2.5, and 3.2.4.3.

2.3.3 Slow Control

A slow control link is used for non-data communication between the ALPIDE
and the readout electronics. A multi-point LVDS (MLVDS) interface is used
for this purpose so that multiple ALPIDEs may share the same slow control
link. This interface enables the external reading and writing of the internal
on-chip status and configuration registers. In addition, the interface acts as a
command distribution channel for transmitting triggers to initiate the global
strobe signal and synchronizing the clock counter, and more. The ALPIDE has

Chapter 2. System Design and Electronics Components 21

multiple registers that control the operation of the chip, as well as report the
current status. Communication via the slow control link is done with a set of
opcodes. As multiple chips share the same link, one can communicate with
multiple chips at the same time. By default, the output from the ALPIDE is
Manchester encoded to ensure DC-balance.

2.3.4 Other interfaces

To separate the ALPIDEs sharing the same slow control link, a 7-bit chip ID
field is used. Note that the ALPIDE has a bug that causes ID 7 to be interpreted
as a broadcast ID. Therefore, this ID is skipped in the DTC implementation.
Chips configured in inner barrel mode only uses CHIPID[3:0], allowing the
remaining pins to be connected to ground.

The ALPIDE is designed to use the LHC system master clock of roughly
40 MHz1. The clock input expects an MLVDS signal so that multiple chips can
share the same clock.

One of the chip interfaces are unused, the reset pin. The power-on-reset
functionality of the chip does not function properly. Whether to supply a
dedicated reset signal to the chip was discussed, but eventually dismissed. The
space needed for a separate trace on the front-end (see Section 2.5), as well
as the infrastructure required for the readout electronics, were ultimately the
reasons why the use of a reset connection was abandoned. A proper reset
procedure can instead be achieved by powering up the digital and analog power
supplies in a certain sequence, and then provide reset commands on the slow
control interface.

2.3.5 Power Supply

The ALPIDE power supply is separated into two domains: the digital and the
analog supply. The analog domain is connected to the pixel-matrix analog
front-end electronics, the analog biasing circuits, and the ADC block. The
digital domain is connected to the pixel-matrix readout circuits, configuration

1This frequency is associated with the bunch crossing rate of the LHC.

22 2.3. Monolithic Active Pixel Sensor

registers, the peripheral readout circuits, as well as the input and output buffers
and transceivers. In addition, a separate supply exists for the on-chip PLL for
the data transmission unit. As noted above, the PLL supply integrity is vital
to ensure the optimal performance of the high-speed data link. Furthermore,
one must also supply a bias voltage reference for the substrate and the p-type
wells of the pixel matrix region. These two nets are electrically connected via
the conductance of the die substrate [29].

The nominal voltage supply of both the analog and digital domain is 1.8 V.
However, by increasing this voltage slightly, one has observed better high-speed
link performance. Therefore, the DTC system aims to supply roughly 1.9 V to
all the sensors. The possible values for the p-well and substrate voltage are
ranging from 0V to -6V. A larger negative voltage increases the depletion region
of the pixel diode and effectively increases the drift component of the charge
collection.

Figure 2.5: Photograph of the manufactured string flex mounted on aluminum carrier
with ALPIDEs and SMD-components bonded. The ALPIDEs are on the upper part of
the image, while the chip cable and the string flex are visible in the bottom part of the
image. The chip cable dielectric is shown with a slightly yellow color.

Chapter 2. System Design and Electronics Components 23

2.4 Layer Design

The size of the layer area (width× height) is a major contributor to the cost
of the detector, both in terms of the cost of each sensor and the complexity
of the surrounding system. A size of 27 cm × 18 cm is chosen, as this size
roughly corresponds to the width and the height of a grown man’s head. A
layer consists of several submodules:

String A string is the collection of 9 ALPIDE sensor chips mounted next
to each other. The sensors are oriented with the short side facing
the other. As the width of an ALPIDE is 3 cm, the total width of
the string is 27 cm. On a string, all chips share the clock and slow
control signal, and have unique IDs to separate them. Figure 2.5
shows parts of the finished string with ALPIDEs mounted.

Slab A slab is three strings combined to build height. The height of an
ALPIDE is 1.5 cm, and the height of the flexible cable is slightly
less than that. The total height of a slab is slightly less than 9 cm.

Half-layer A half-layer consists of a top and a bottom slab.

As illustrated by Figure 2.6, the sensitive area of a half-layer only covers about
50 % of the total area. This is caused by the need for the power supply and
communication interface traces that must reach the sensors from the outside
of the detector, and also because the ALPIDE itself has a digital periphery.
However, it is crucial that all particles that penetrate the detector are registered
by all layers. To ensure that a layer is completely covered with sensitive material,
a type of double-module is constructed by flipping a slab to face another slab.
From Figure 2.7 one can see the cross-section of multiple layers, and that the
sensitive side of one slab covers the non-sensitive side of the other, and vice
versa. This type of construction causes an air-gap of about 1.6 mm inside a layer,
but also provides space for the required decoupling capacitors. Nevertheless, as
the gap is relatively thin compared to the absorber, it is considered to have a
minimal effect and constitutes a valid trade-off to ensure full layer coverage. A

24 2.4. Layer Design

total of 108 ALPIDE sensors are needed to construct a complete layer. Thus, a
layer consists of a total of ∼56 Mpx.

Figure 2.6: Half sensor layer and the related glossary [39].

Figure 2.7: Cross-section of two layers seen from the side of the DTC, rotated 90
degrees [39]. Note how the ALPIDEs of two corresponding half-layers are positioned at
different locations, and that the sensitive area (marked in green) is slightly overlapping.
The figure also illustrates how the 3.5 mm absorber layer is constructed of two 1 mm
carrier layers, and a 1.5 mm absorber layer placed in between.

Chapter 2. System Design and Electronics Components 25

2.5 Front-end Electronics Bonding and
Mounting

Several types of bonding techniques exist to connect an ASIC’s interfaces to
back-end electronics. The ALPIDE has two types of bonding pads with different
geometries. The type A pads are located on the south side of the chip, and
the type B pads are scattered on top of the chip, as shown in Figure 2.8. The
B-pads have rounded edges and are 290 µm wide. The A-pads are significantly
smaller in size, 88 µm2, and are electrically closer to the digital periphery of the
chip. The two pad types were added to provide support for different bonding
methods. The ALICE ITS adopted a traditional wire-bonding approach using
the B-pads and carefully adding small wire bonds to a thin flexible printed
circuit (FPC). This is a relatively simple method, but the wire bonds are
susceptible to breaking if exposed to the wrong temperature and humidity.
Quite extraordinary measures must be taken to make sure no damage is done
to the wire bonds that will impede the operation of the sensor.

For this reason, the pCT group decided to opt for a different type of bonding

Figure 2.8: The ALPIDE bonding pads [29]. Significantly smaller A-type bonds on
the south side of the chip.

26 2.5. Front-end Electronics Bonding and Mounting

technique. Single point tape automated bonding (SpTAB) is an alternative
technique with several advantages compared to both wire and laser bonding [40].
The technique uses ultrasonic point welding, which involves an ultrasonically
applied pressure and heat that connects a thin conductive material to the pad
of the device. This type of bond is shown in Figure 2.9 and is considered
to ensure a highly reliable and mechanically stable connection. Compared to
wire-bonding, SpTAB also requires fewer interconnects to ensure reliability.
Another reason for selecting SpTAB is to avoid the use of heavy metals since
aluminum can be used as the conductive material. It is beneficial for the
homogeneity of the detector that the metal used in the front-end is consistent
with the absorber layer material.

Figure 2.9: Laser microscope image of SpTAB bonds from a related project [41].

2.5.1 Chip Cable and String Flex

The chip cable and the string flex are both thin FPCs made of adhesive-less
aluminum and polyimide [40]. Polyimide is a polymer that acts as a dielectric
and a carrier for the conductive aluminum traces. The technology is specially
developed for detector modules in HEP experiments by LTU Ltd. in Kharkiv,
Ukraine. The manufacture process of the chip cable is based on precision

Chapter 2. System Design and Electronics Components 27

photolithography and chemical wet etching. This approach has been utilized
and tested and verified with the ALICE ITS silicon strip detectors [42]. The
pCT front-end components must, however, be designed for significantly faster
data readout and lower supply voltage compared to the ITS [41].

The chip cable serves as an interconnect between the ALPIDEs and the string
flex. See Figure 3.9 for the transverse cross-section of the interconnection
between the ALPIDE and the chip cable. A hole is etched in the polyimide
dielectric and ultrasonic welding pushes the aluminum trace of the chip cable
down onto the ALPIDE pad.

The string flex is an FPC based on the same principles as the chip cable.
However, contrary to the chip cable, the string flex consists of two conductive
layers. This is to deliver power to the sensors and to provide a proper ground
plane for the high-speed links. The traces of the flex run perpendicular to
the chip cable traces, and end a couple of centimeters outside of the detector
area. A stiffener is added to the end of the FPC enabling connection in a Zero
Insertion Force (ZIF)-connector. The height of the string flex is constrained.
The height of the six-string flex in a half-layer cannot exceed the height of the
detector. Several iterations of the chip cable and string flex FPCs have been
produced and tested (see Section 3.2).

One could question the reasoning behind having two distinct parts in the front-
end glue electronics: the chip cable and the string flex. It inevitably increases
the material budget and complexity of the front-end. However, the choice is
considered to improve the yield of the production as each production step can
be tested. E.g., the bonding of a chip is deemed to be a critical process where
many problems can occur. Thus, it is critical to test each chip after bonding.
The bonding to the chip cable makes it possible to test the bonding of each
chip before bonding to the string. If problems occur during the bonding to the
string, this can be fixed without interfering with the chip bonds. The chip cable
is designed to fit into a specific test-frame as discussed later in Section 3.2.1. A
special tool was developed for testing the chips and the bonding, the Production
Test Box (PTB) (see Section 7.5.1). This is also used to test the string as
each of the chips are bonded, simplifying the debug process during production

28 2.6. Transition Card

and again increasing the yield. The string flex, with the chip cables and the
ALPIDEs connected, are glued to the absorber metal sheet.

Figure 2.10: Simplified schematic diagram of the interconnections between the string
and the off-detector electronics [39]. The diagram also indicates that ID 7 is not used.

A simplified schematic diagram of the signal interconnections between the
string and the off-detector electronics is shown in Figure 2.10. All nine sensors
share the clock and control signals, while each sensor embodies an exclusive
high-speed data link. Note the 100 Ω resistors used for the clock and control
signals. These resistors are placed on the far-end of the string to terminate
the transmission lines. The termination of the high-speed links is done on the
readout electronics.

2.6 Transition Card

The TC is a critical part of the front-end. As the dielectric loss of an aluminum
FPC is considerable, one must strive to minimize the length of the traces on
the string flex. One possibility would be to have the readout electronics placed
directly on the outside of the detector, but unfortunately, the levels of radiation
in this area makes this complicated and would require special care designing
both the readout electronics and firmware. A transition card, however, solves
this problem by simply acting as an interconnect and transforming all signals
on to a different medium more suitable for transferring high-speed signals while
minimizing the dielectric loss and without introducing other signal integrity
issues. The string flex is thin and highly volatile and will only to a small degree

Chapter 2. System Design and Electronics Components 29

withstand mechanical handling. The TC acts as a stabilizer for the string flex
and it is carefully designed to not cause stress during connection. In addition,
the TC acts as a distributor of power to the sensor chips, ensuring stable voltage
supply and senses problems like single event latch-ups (SEL).

As seen in Figure 2.2 the TC is placed in close proximity to the front-end. Each
layer incorporates a single TC. 12 ZIF-connectors are used to interface the 12
strings of a full layer. The TC is designed to be placed in a radiation zone, and
each component is thoroughly tested to withstand the radiation levels of the
LHC, far beyond the radiation levels expected in the operation of the pCT. As
can be seen in Figure 2.1, every other layer is oriented differently, i.e. either
left or right. This is because of the limited space available for the TC [39].

2.7 pCT Readout Unit

The pRU is designed to control all the sensors of the detector, as well as handling
the data streams. As the ALPIDE data output is in a custom data format, only
a custom solution is possible to handle the data streams. Also, as noted above,
the ALPIDE slow control uses a custom protocol. These factors exclude the
possibility of using any commercial-off-the-shelf DAQ systems. In modern-day
physics experiments, like at the LHC, the use of FPGAs is commonplace. Not
only because of the reduced cost and increased speed of development but also
for the high performance that is now possible to achieve. Accordingly, the pRUs
are employing an FPGA to perform the custom behavior required.

2.7.1 Board Overview

The pRU board’s main component is an FPGA. The choice of FPGA is discussed
in Chapter 4. The connection to the TC is done via twelve Samtec FireFly
cables, one cable for each string. As shown previously in Figure 2.10, each
string has a total of eleven signals that must be connected to the readout
electronics. To obtain the best possible signal integrity for the clock signal, each
string is supplied with its own separate clock signal. The use of the Samtec

30 2.7. pCT Readout Unit

FireFly ensures compatibility between the ITS and the pCT string design and
the associated readout units.

Figure 2.11: Simplified block diagram of the pRU Board.

Figure 2.11 shows a simplified block diagram of the pRU board. The board
employs two different physical interfaces for control and data, QSFP+ for the
high-speed data offload, and regular RJ45 interconnection for the run control
link. In addition, the pRU also has a board-to-board communication interface.
This is used for synchronization of the system and is discussed in Chapter 6.

2.7.2 FPGA Firmware Overview

As the design and development of the DTC has been a gradual process, the
design of the pRU board was delayed until all design decisions had been made.
Therefore, for any hardware implementation and testing of the firmware during
the design process, a Xilinx VCU118 development kit has been employed. This
platform was also used for parts of the front-end electronics (FEE) testing. The
board has a Virtex UltraScale+ FPGA with similar architecture as the chosen
FPGA (see Chapter 4). In addition, parts of the firmware have also been in
use with the PTB as discussed in Section 7.5.1.

The FPGA firmware is designed to be modular and scalable. This is important

Chapter 2. System Design and Electronics Components 31

Figure 2.12: Simplified pRU firmware block diagram.

as the final design requirements have been fluctuating during the development
process. All modules are centered around a global bus interconnect allowing
full control and monitoring of the system from the control room, see Section 6.1.
As seen in Figure 2.12, the ALPIDE communication is made possible by two
separate blocks. The slow control communication is handled by the ALPIDE
Control and the Trigger Manager. These two modules are fully controlled
by the bus interconnect system and the pRU board-to-board interface. A
detailed discussion of these modules is found in Chapter 6. The high-speed data
processing, however, requires a complex block of various modules, as discussed
in Chapter 5.

2.8 Power Supply and Control

The FEE are powered by several PCUs. This device is also responsible for
monitoring the current and acts as a fail-safe in case of shorts, SELs, and
other harmful events. The PCU controls the voltage regulators of the TC and
monitors the temperature of the detector. An outline of the device and the
interface to the TC is shown in Figure 2.13. The PCU is not discussed in
detail in this thesis but is mentioned as part of the detector control system (see
Chapter 6). More details about the PCU can be found in [39].

32 2.9. Other Prototypes

Figure 2.13: Transition Card and Power Control Unit diagram. Figure provided by
courtesy of Tea Bodova [39].

2.9 Other Prototypes

The work reflected by this thesis has also involved efforts related to several
other prototypes that are associated with the pCT detector. A short description
is given here, but the prototypes are not described further in this thesis.

Figure 2.14: Picture of the FoCal mTower.

The FoCal mTower, as seen in Figure 2.14, is a prototype intended to be the
first design step of both the ALICE FoCal detector and the pCT DTC. Rather
than mounting 9 chips as a string, a two-chip FPC with the ALPIDE oriented

Chapter 2. System Design and Electronics Components 33

with the wide side facing the other is chosen. With these 2-chip modules, a
telescope of chips is constructed like a tower. A total of 24 modules, with a
3 mm tungsten absorber placed in between, are connected via two transition
PCBs to the readout electronics. With this design, one could perform multiple
tests such as qualification of the bonding method and the chip cable design.
Also, several preliminary tests could be performed with the tracking of particles
in the telescope.

Figure 2.15: Picture of the ULTM.

The Ultra-Ligth Test Modules (ULTM) was designed to provide an open-chip
solution for other physics experiments. The modules were the first chip cables
designed utilizing the type A-pads.

Two 15-chip strings were designed for the ALICE FoCal experiment. The strings
utilize both the inner and outer barrel mode of the ALPIDE, to multiplex the
data streams of the chips with lower occupancy. Furthermore, the string design
has also been proposed for the ALICE ITS3 upgrade, using bendable sensors.

34 2.9. Other Prototypes

CHAPTER 3

String Design and Performance Evaluation

In this chapter, the concept of signal integrity is introduced along with a general
theory of transmission lines, characteristic impedance, and various types of
signal loss. The front-end designs have been subject to several iterations. This
chapter shows the first and final iterations of the chip cable and the string flex,
and the changes are discussed in detail. Simulations that were done alongside
the design are presented. Finally, we show specific lab test results that assess
the quality of the front-end designs.

3.1 Introduction

Any custom high-speed electronics need to be designed with signal integrity in
mind. Signal integrity refers to all problems that can arise when the frequency
of a digital signal is increased, or when the rise time of a digital signal is
decreased. These two factors are usually correlated. Signal integrity problems
are generally related to noise and are commonly categorized by the following
four elements [43]:

• Signal quality issues of a net, including reflections and attenuation.
• Power distribution network issues.
• Cross-talk between interconnects.
• Electromagnetic interference.

As a general rule of thumb, a reduction of the signal rise time worsens all
types of signal integrity problems [43]. But if the rise time and the frequency

36 3.1. Introduction

of the signal are given, as with the ALPIDE high-speed link, one needs to
design the rest of the electronics with these problems in mind. Both simplified
equations and simulations can be helpful in that process. When designing
custom electronics, with fairly rigid constraints in the material budget and
space usage, near zero-loss traces are very difficult to attain. Transmission line
loss is closely related to the conductor and dielectric material, the width and
separation of the traces, as well as the dielectric thickness.

3.1.1 Transmission Line Model

Any conductive medium where the propagation time of the signal, i.e., the time
the signal takes to travel from the source to the receiver is comparable to the rise
time of the signal itself, benefits from transmission line analysis. A transmission
line can be modeled using the lumped-element model in Figure 3.1. The lumped-
element model represents an infinitely small part of the transmission line, and
each of the elements is notated per length, e.g. Ω/m. G and C are primarily
defined by the nature of the dielectric, R involves the effects of the conductor
metal, and as the metals used for transmission have a relative permeability of
roughly 1, L mainly implicates the geometry of the transmission line. L and C
tend to dominate the effects, but when designing custom electronics, care must
be taken regarding all factors.

Figure 3.1: Lumped-element model of an infinitely small part of a transmission line.

3.1.2 Characteristic Impedance and Mismatch

The characteristic impedance of a transmission line can be calculated from the
lumped-element model in Equation 3.1. Impedance mismatch is a prevalent

Chapter 3. String Design and Performance Evaluation 37

signal integrity problem. As a signal propagates down a net, changes in the
impedance will cause reflections of a signal back towards the transmitter. Thus,
a mismatch will cause so-called rejection loss. Usually, this is resolved by
carefully designing the electronics to adhere to the decided impedance, for
example 100 Ω. However, with custom flexible printed circuit (FPC) with
explicit constraints, this can be hard to achieve. For instance, the pCT detector
design strives to minimize the material budget, restricting the thickness of
dielectrics and conductive materials. Also, the width of traces might be limited
because of space issues, and the desire to restrict other signal integrity issues
like crosstalk. Thus, the optimal impedance might be unattainable. Note also
that a matched termination on the end of a transmission line is necessary to
avoid reflections and rejection loss.

Z0 =
√√√√R + jωL

G+ jωC
(3.1)

3.1.3 Conductive and Dielectric Loss

Although care must be taken regarding impedance matching, other mechanisms
are the principal contributors to signal attenuation for signals with clocks higher
than 1 GHz [43]. The propagation constant, γ in Equation 3.2, indicates how
a wave is affected by the medium it traverses. A lossless medium will only
have a complex part, jβ, that details the phase shift of the signal. However,
if the attenuation constant, α, is non-zero, the amplitude of the signal is also
affected. For low-loss lines, one can approximate the attenuation per length
unit to roughly equal Equation 3.3 [44, 43]. Conductive and dielectric loss
dominate the signal attenuation.

γ = α + jβ =
√

(R + jωL)(G+ jωC) (3.2)

α ≈ 1
2

(
R
Z0

+GZ0

)
(3.3)

Conductive loss, αc of Equation 3.4, can be simplified as the ratio of the
resistance of the conductor and the characteristic impedance [43, 45]. The

38 3.2. Front-End Design

resistance of the conductor is the RF sheet resistance, Equation 3.5, divided
by the width of the conductor [45]. The RF sheet resistance is a function of
frequency and characteristics of the medium, like permeability and conductivity.
Therefore, in a lossy transmission line, the resistance per length increases
with the square root of the frequency due to skin depth [43]. In microstrip
traces, one can often reduce the conductive loss by keeping the characteristic
impedance constant and increasing the dielectric thickness. This increase
must be compensated by an increased trace width to keep the characteristic
impedance constant [46].

αc = (RRF SH

W)
2Z0

(3.4)

RRF SH =
√
πfµ0µR

σ
(3.5)

The dielectric loss of a transmission line, Equation 3.6, is proportional to
frequency. Therefore, at a high frequency, dielectric loss will dominate over
conductive loss.

αd = tan(δ)πfZ0 (3.6)

Of adjustable variables, the dielectric loss is mainly dependent on the dissipation
factor of the dielectric, δ, and the characteristic impedance. Note that, for a
fixed characteristic impedance, the dielectric loss will stay fairly constant for a
change in dielectric thickness [46]. Thus, the dielectric loss is independent of
the trace geometry when the characteristic impedance is given [43]. Thus, an
increase in the dielectric thickness to reduce the conductive loss will not affect
the dielectric loss of the conductor to any great extent.

3.2 Front-End Design

As mentioned in Section 2.5.1, the front-end components have gone through
several iterations in the process of optimizing the signal and power integrity.

Chapter 3. String Design and Performance Evaluation 39

The designs were made by LTU Ltd. in Kharkiv, Ukraine, in collaboration
with members of the Bergen pCT team. Using a mechanical CAD-tool, the
different layers of the front-end components (the chip cable and the string flex)
are drawn. As the tool is only structural and no netlist is used, all schematics
must be checked manually. This unfortunately caused errors during the design
that were not detected before testing in the lab. Figure 3.2 shows how a bond
between two layers is made in the CAD-tool. The visual inspections of hundreds
of such bonds turned out to be time-consuming and prone to error.

Figure 3.2: Illustration of a bond between the chip cable and the string flex. The
vertical purple trace is on the chip cable flex, while the horizontal purple trace is on the
string flex. The grey square marks the etching hole of the polyimide dielectric. This
particular bond is for one of the differential traces of the slow control MLVDS-link. The
size of the etching hole is roughly 500 µm2. The double bond increases reliability.

3.2.1 Chip Cable

Figure 3.3 shows two different versions of the chip cable. The chip cables were
designed to fit into a tape carrier package (TCP) frame to enable testing before
further bonding steps1. Each trace is connected to a pad in the frame. This
connection causes extra stubs as seen in Figure 3.4. After bonding and testing,
the extra material of the chip cable is cut off and removed.

1The TCP frame is produced by Yamaichi.

40 3.2. Front-End Design

(a) First version. (b) Last version.

Figure 3.3: Chip cable designs with the outline of the TCP frame.
.

Figure 3.3a was the first version that was used in the production of a stave
for testing. Note that in this version, two identical chip cables fit into the
frame. Also, each trace is connected twice to the TCP frame. This was done to
enable testing of the chip cable design without bonding an ALPIDE chip first.
However, we found that the extra stubs hurt the signal integrity by introducing
significant reflection, especially for the high-speed links, and the stubs were
removed in later versions. However, one of the extra stubs needed to remain, to
allow connection to the TCP test contact. Simulation of the single remaining
stub per interconnection showed only a minimal effect on the signal integrity.

The major difference between the two versions is the type of bonding pads
employed. The first version of the chip cable applied the type B pads of
the ALPIDE. This is illustrated by the blue, red, yellow, and green power
planes placed on top of the chip, while the traces for the clock, chip ID, slow
control, and the high-speed data create gaps in these planes. The type B pads
are significantly larger than the type A-pads and were considered to be the
easiest solution. Also, since the B-pads are positioned on top of the chip, it is
substantially easier to execute the SpTAB bonding technique as the welding
motion is simply up-down relative to the surface of the chip cable and the
ALPIDE.

Chapter 3. String Design and Performance Evaluation 41

Figure 3.4: Chip cable double-stubs, zoomed in from Figure 3.3a. The orange circle
indicates the position of the bond to the ALPIDE pad. The red circle indicates the
position of the string flex bond. The extra stubs are the interconnections to the TCP
test pads.

However, there are two significant benefits of using the A-pads. Firstly, the
B-pads are spread out on the chip, and the power pads lie on the other side
of the chips, relative to the digital periphery. This means that the length of
the traces for DVDD and PVDD is increased by almost the height of the chip,
1.5 cm. Learning that the chip needs decoupling capacitors as close as possible
to the PVDD pads in order to reduce jitter on the high-speed links, diminished
the benefit of the B-pads.

Secondly, notice that the first version does not separate DVDD and PVDD. This
means that any voltage drop on the DVDD supply rail will also be observed
at the PVDD input. This is critical as the PVDD must be kept as stable
as possible to reduce jitter on the internal clock of the chip, and to avoid
deterioration of the high-speed link performance. It would be challenging to
split DVDD and PVDD supplies and continue to use B-pads as it would require
using the already minimal space on the edges of the chip cable, possibly causing
a significant voltage drop and counteracting the benefit of splitting DVDD and
PVDD.

Notice also, the tenuous connection of the blue ground plane to the TCP frame
pad. Although this was probably not a source of error when bonded to the

42 3.2. Front-End Design

string flex, it might have been one of the contributions to the difficulties that
emerged during the first lab tests.

In the last version, the power planes are entirely removed, and the bonds
are using the type A-pads. This allows us to add material in other places of
the front-end and keep the same material budget, for example, increasing the
thickness of the ground plane of the string flex.

Another significant difference between the versions is the length of the traces.
With the use of the A-pads and changes of the cross-section of the string flex
discussed later in Section 3.2.2, the chip cable is required to bend more, which
required a small increase in the trace length. This can be seen in the transverse
cross-section in Figure 3.9.

3.2.1.1 Cross-Section and Microstrip

The chip cable consists of a single layer of aluminum traces built on top of a
20 µm polyimide dielectric. The thickness of the aluminum was 30 µm in the
first version but was later reduced to only 14 µm without any performance loss.
This was done to reduce the stiffness of the material and allow the material to
bend. When the traces are interpreted as microstrips, conventional calculations
of characteristic impedance can be done. Although the traces from the pads
of the ALPIDE to the pads of the chip cable are relatively short (∼2.6 mm),
during testing, the traces are longer (∼11 mm) because of the connection to
the TCP test points. Therefore, care still needs to be taken when designing the
traces to ensure proper performance during testing.

3.2.2 String Flex

The string flex is a multilayer FPC with long traces, and with a much longer
signal propagation time than the signal rise time. Figure 3.5 shows the first
version of the string flex. In this version two layers of identical thickness
(30 µm/20 µm) are used facing each other, providing a total dielectric thickness
of roughly 45 µm, including the epoxy glue. It was later learned that this
dielectric thickness is not sufficient to provide a low enough resistive loss in the
transmission line.

Chapter 3. String Design and Performance Evaluation 43

Figure 3.5: String flex version 1 shown top down. The 13 cm cable extending the
detector area is shown on the right. The nine ALPIDEs and the chip cables are located
on the bottom of the figure.

The first version of the string flex also employed the first version of the chip
cable design. This entails that the bonds to the ALPIDE were done with a
top-down bond to the type B-pads. In Figure 3.6 one can see that the bonds
to the ALPIDE are to the left of the figure, and the bonds to the flex string
are to the right. The chip cable traces, however, are relatively short compared
to the string flex traces. In the longitudinal cross-section of Figure 3.7, we see
that the signals are carried on the double layer flex, and then outside of the
aluminum carrier for roughly 13 cm. The length of the trace on the double
layer flex varies depending on which chip the traces are connected to. The
high-speed signal traces for the near-end chip are rather short, only about 2 cm.
However, for the far-end chip, the traces are about 27 cm long.

The drawn width and the separation of the differential microstrip traces are

Figure 3.6: String flex version 1 transverse cross-section. The surface layers are to
scale, but the layer width and SMD component size are not to scale. Epoxy glue used
between the layers are illustrated by the hatched grey areas. The figure also illustrates
that a well must be created in the absorber metal to fit the SMD components.

44 3.2. Front-End Design

Figure 3.7: String flex version 1 longitudinal cross-section. Layer length not to scale.

110 µm and 95 µm, respectively. However, during the production process, the
traces shrink slightly, and we assume that the manufactured width and separa-
tion are both roughly 100 µm.

Figure 3.6 and 3.7 shows the transverse and longitudinal cross-sections of the
first version of the chip cable and string flex design. In this design, all the
conductive aluminum layers are 30 µm thick, and the polyimide dielectric layers
are 20 µm thick. The layout of this design makes it difficult to interpret the top
layer of the chip cable. In terms of characteristic impedance and conductive
loss of the high-speed traces, the effect is relatively large depending on whether
the chip cable layer is interpreted as a plane or a signal layer. As we can see
from Figure 3.3a, a large part of the layer consists of a ground plane, and this
can influence the characteristic impedance. With a plane interpretation, the
characteristic impedance is calculated to be 41.8 Ω, while a signal interpretation
gives 68.1 Ω. Note that neither of these values are close to the goal impedance
of 100 Ω. Figure 3.12a and 3.12b show the difference in terms of loss where the
plane interpretation predicts a higher resistive loss than the signal interpretation.

Figure 3.8: String flex version 2 shown top down. The ALPIDEs are no longer
covered by the chip cable plane.

The most obvious change of the flex string one can observe from Figure 3.8,
that shows the latest design, is the change of the chip cable type. The chip
cable power planes do no longer cover the ALPIDE sensor and the string flex.

Chapter 3. String Design and Performance Evaluation 45

Figure 3.9: String flex version 2 transverse cross-section. The layer width and SMD
component size are not to scale.

Because of this change, the interpretation of the chip cable layer is no longer
disputed, and in all calculations of the string flex characteristic impedance and
resistive loss, the layer is considered a signal layer. As we saw in the previous
string flex version, this will improve both the characteristic impedance and the
losses. Also, the split of the DVDD and PVDD power lines are continued on
the string flex, allowing for a more stable PLL output on the ALPIDEs.

Moreover, another major change of design which is shown in both the transverse
and longitudinal cross-sections in Figure 3.9 and Figure 3.10, is the addition of
a 75 µm dielectric spacer layer in between the signal and the ground layer. This
significantly improves the electrical characteristics for the high-speed traces,
but also substantially increases the thickness of the string flex, reducing the

46 3.2. Front-End Design

flexibility of the string.

The reduction of aluminum resulted from chip cable change is allowing for
an increase in the material use in the now thicker bottom ground layer. The
thickness of the top layer stays the same at 30 µm/20 µm, but the bottom
layer is increased substantially to 100 µm/20 µm. The bottom layer does not
only act as the ground layer for the high-speed traces, but also provides most
of the power to the chips. This change was done to reduce the voltage drop
in the longitudinal direction of string flex, improving the performance of the
ALPIDEs at the end of the string. As the DVDD and PVDD traces were split,
a considerably narrower trace is allowed for the DVDD supply. The increase in
the thickness of the bottom layer circumvents this change.

Figure 3.10: String flex version 2 longitudinal cross-section. Layer length not to scale.

To allow for the flexibility needed when connecting the string flex to the ZIF-
connector, the bottom layer is separated into two parts, as seen in Figure 3.10,
where a thinner layer is used where it extends from the absorber.

Because of the changes in the dielectric thickness, the width and the separation of
the high-speed traces are somewhat modified, to 120 µm and 80 µm, respectively.
With all these changes, the new characteristic impedance is calculated to be
86.3 Ω, much closer to the goal of 100 Ω. Also, the resistive loss is dramatically
reduced, as we expected for the increase in dielectric thickness and trace width.
This is observed in Figure 3.12c.

Lab experiments of the ALPIDE at CERN, showed that the decoupling ca-
pacitors need to be very close to the supply pads to ensure reliable behavior,

Chapter 3. String Design and Performance Evaluation 47

especially of the high-speed link. The decoupling capacitors are intended to keep
the power supply voltages stable. The locations of the decoupling capacitors
are marked in Figure 3.11. On the first version of the string flex and chip cable,
however, the distance from the capacitor to the power pads is almost 27 mm.
This is because the power supply traces are routed along the edges of the chip
cable. In addition, one also needs to consider the distance of the internal nets
of the ALPIDE from the pad to the digital periphery where the PLL is located.
With the latest version of the string flex, the distance from the decoupling
capacitors, especially for PVDD and DVDD, is minimized.

(a) First version. (b) Last version.

Figure 3.11: Placement of decoupling capacitors and termination resistors. The
termination resistors of the clock and control signal are marked with the green circle.
The analog and PWELL capacitors are marked with red and pink. The capacitors for
the digital supply and PLL supply are marked with a blue and an yellow circle. The
paths from digital supply capacitors to the pads are marked with blue arrows in the first
version. The path lengths in the last version are negligible in comparison.

The slow control and clock interface are employing the MLVDS signal standard,
which requires termination on both ends of the signal. In Figure 3.11, the
placement of these termination resistors is also marked.

The following list summarizes the major improvements of the chip cable and
string flex designs:

48 3.2. Front-End Design

• Change from using type B-pads to type A-pads, thus removing the power
planes on the chip cable.

• Remove double stubs from chip cable.
• Split the DVDD and PVDD power supplies for the whole front-end.
• Separate decoupling capacitors for DVDD and PVDD.
• Reduce the distance from the decoupling capacitor to power pads.
• Increase the dielectric thickness of the string flex.
• Modify the width and separation of the string flex traces to better char-

acteristic impedance and resistive loss.
• Decrease the length of the post-carrier stub.
• Separate the flex strings into two parts; a thin external part allows

for flexibility when connecting to ZIF-connector, while the thicker part
reduces the voltage drop of the power supply in the longitudinal direction
of the flex string.

• Move the termination resistor and decoupling capacitor SMDs to the top
of the chip cable.

3.2.3 Simulation

To support the design process of the front-end, i.e. the chip cable and the
string flex, a Mentor Hyperlynx simulation environment was used. Hyperlynx
employs a field solver to extract the behavior of electrical traces. Although it
is made for conventional PCB simulation, it allows for enough customization to
be applicable for custom-made FPCs as well. These types of simulations are
useful to quickly see what kind of effect changing any parameter will have on
major decision-points. The result, however, might differ significantly from the
real-world results based on the level of detail in the model. In these simulations,
we opted to find the characteristic impedance and the loss of particular traces
based on the cross-section of the structure. As shown in Figure 3.12, the newest
design has a significantly lower resistive loss, while the dielectric loss remained
nearly the same. Additionally, a full system simulation is run to compare
eye diagrams of various designs. With the eye diagram simulations shown in
Figure 3.13 one can see improvement in the newest design. These simulations

Chapter 3. String Design and Performance Evaluation 49

are done with the characteristics of the longest string trace, to the far-end
sensor.

(a) Flex v1. Chip cable in-
terpreted as a plane layer.

(b) Flex v1. Chip cable in-
terpreted as a signal layer.

(c) Flex v2.

Figure 3.12: String flex v1 and v2 trace dielectric and resistive loss. Red: resistive
loss. Green: dielectric loss. Blue: total loss. Generated by Mentor Hyperlynx using the
field solver.

.

(a) First version. (b) Last version.

Figure 3.13: Eye diagram simulations of the front-end components. The final version
results in a wider and higher eye opening.

.

3.2.4 Experimental Verification

Significant efforts are done to ensure proper operation of the pCT string design.
An excerpt of the tests performed is shown below. Overall, the tests give reasons
to have confidence in the latest string design and also in the sampling method
which is discussed in Chapter 5.

50 3.2. Front-End Design

3.2.4.1 Eye Diagram Measurements

Figure 3.14 shows the eye diagram of the high-speed signal of one of the
ALPIDEs on the pCT string during pseudo-random binary sequence (PRBS)
testing. We observe a proper open eye reaching the requirements of the LVDS-
requirements of the Xilinx I/O-pins.

Figure 3.14: Eye diagram of the pCT string during PRBS testing. Eye height is
measured to be 419 mV and eye width 533 ps. Tests were done with nominal driver link
settings and with a 2 m FireFly cable.

3.2.4.2 Setting Sweep Tests

The ALPIDE high-speed driver settings can be configured to circumvent the
detrimental effects of the electrical traces. Furthermore, we can also configure
the PLL of the ALPIDE can be configured to minimize the effect of supply
voltage drops. Figure 3.15 shows the decode error results from sweeping two
of these settings for all chips on the pCT string: the driver strength and the
pre-emphasis. Pre-emphasis is used to emphasize the signal strength of the first
bit in a sequence of equal bits, opting to counteract the effects of reflections on

Chapter 3. String Design and Performance Evaluation 51

the transmission line and thus improve the signal-to-noise ratio (SNR). Any
error indicates that the 8B/10B decoder warns of inconsistencies when decoding
a sequence of bits. The particular setting sweep shown in the figure shows that
nearly all settings yield a perfect performance for most sensors, except one:
chip ID 1. This indicates an issue with the bonding or the internal operation of
this particular sensor.

Figure 3.15: Results of an ALPIDE link settings sweep test. The plots show the
number of decode errors observed for each setting combination of the link driver current
and pre-emphasis current strength. No errors were observed for chips 2, 4, 9.

3.2.4.3 Voltage Drop

Figure 3.16 compares the voltage drop on the DVDD and PVDD power supplies
on the pCT string following a trigger command. We observe that both supplies
respond to the trigger, but the DVDD drop is significantly larger than PVDD.
The PVDD voltage also returns faster to the baseline. This result is reassuring
in that a trigger will not cause large disruptions to the PLL on the ALPIDE
and that the separation of DVDD and PVDD is important to improve the
signal integrity of the high-speed links.

52 3.2. Front-End Design

(a) DVDD. (b) PVDD.

Figure 3.16: Measurement of the voltage drop on DVDD and PVDD following a
trigger. The results show a significantly larger drop on DVDD than PVDD. Measured
using a differential probe over the decoupling capacitor.

.

3.2.5 Conclusion

The verification efforts show that the front-end design is acceptable. The
electrical behavior is well understood and is optimized for better performance.

CHAPTER 4

FPGA Design Considerations

The choice of an FPGA is an important part of the pRU board design. In this
chapter, we briefly discuss the FPGA selection considerations. The chapter is a
mix of both design descriptions and design choices. The chapter is introduced by a
brief discussion about FPGA vendors and the differences between the ALICE ITS
and the pCT DTC readout requirements. Furthermore, FPGA I/O technology
is discussed in reference to the pRU data sampling approach. The chapter also
discusses the clock network of the pRU and clock domain crossings. Also, the
FPGA resource utilization is presented. Finally, the radiation environment of
the pCT and consequences for the design are discussed.

4.1 Introduction

There are three major FPGA manufacturers whose products are used in HEP
experiments and similar applications. The two market-leading companies
are Intel (previously Altera) and Xilinx. The FPGA-devices of these two
manufacturers are mostly SRAM-based and have a large range of various
resources. Microchip (previously Microsemi) FPGAs are also used in some
instances but as the Microchip FPGA-devices are mainly flash-based or anti-fuse,
they are usually only used in experiments with very high radiation.

At the early stages of development the pCT detector was closely linked to the
upgrade of the ALICE ITS. The prototype of the ITS readout unit was based
on a Xilinx Kintex 7-Series FPGA. This FPGA was used for the initial pCT

54 4.2. High-Speed I/O

firmware experiments (see Section 5.2). However, the later units employ Xilinx
UltraScale Kintex FPGAs. Porting firmware between FPGAs, and especially
between different manufacturers, is a time-consuming process. This is in part
due to the use of technology-specific primitives and IPs, but also because of
the device-specific design of the I/O and FPGA time and physical constraints.
As a consequence of the close relationship with the ITS development, it was
decided to design for Xilinx FPGAs.

The ITS and the pCT readout electronics are quite similar. Both readout
devices are interfacing multiple instances of the ALPIDE sensor chips. However,
there are also major differences between the readout electronics. The main
contributors to the different design choices are the following:

• The ITS readout unit only interfaces a single high-speed sensor stave (9
sensors), while the pCT readout unit interfaces twelve (12 × 9 sensors) to
significantly reduce the magnitude of the data acquisition system.

• The ITS readout unit is placed in a high-radiation zone, requiring a high
emphasis on mitigation of single event upset (SEU) induced soft-errors.
Note that with a smaller number of sensors connected to the readout unit,
the ITS readout unit can (1) employ a relatively small FPGA and (2) use
more of the FPGA’s resources on radiation mitigation like TMR. The
pCT readout unit is intentionally placed in a radiation zone with minimal
risk of soft-errors (see Section 4.6). This is done to avoid using TMR and
other types of mitigation and thus saving FPGA size.

The choice of the pRU FPGA is based on three main considerations: (1)
legacy code, (2) resource utilization and (3) cost. The pRU will use the Xilinx
UltraScale KU085 FPGA. This FPGA is slightly larger than the FPGA chosen
for the ITS readout unit. See the remaining parts of this chapter for the
considerations that were taken for this selection.

4.2 High-Speed I/O

When the fractional phase detector was introduced, the technology for serial
interfaces was boosted to the multi-gigabit range [47]. However, for FPGAs,

Chapter 4. FPGA Design Considerations 55

the rise of bandwidth was mostly attributed to the multi-gigabit transceiver
(MGT) pins. Most modern FPGAs have I/O-pins that are specifically designed
to handle asynchronous high-speed data with electrical standards like LVDS.
A MGT I/O-pin has extended features specifically added to handle outgoing
and incoming high-speed data. However, FPGAs with many of these I/Os are
usually very expensive. Besides, with many MGTs, other features on the FPGA
might be reduced. This is for instance seen when comparing Xilinx UltraScale
and UltraScale+ devices, like the KU11P and KU060, where the KU11P have
more MGT I/O-pins, but less system logic cells than the KU060 [48, 49].

Historically, regular FPGA I/O-pins have been quite simple, with a certain set
of hard primitives that allowed for the support of multiple standards, optional
termination, and some input/output delay. For instance, the Xilinx Spartan 6
and Altera Cyclone V, released around 2010, supported LVDS signals up to a
maximum of 1 Gb/s and 840 Mb/s, respectively [50]. With the emergence of
faster memory devices like DDR4 and the need for more memory on FPGA
applications, among other things, it was clear that the FPGA vendors needed
to provide I/Os with improved performance.

The pCT detector readout electronics must be able to handle many high-speed
links, one for each sensor, 108 high-speed links in total per layer. With 2
tracking layers and 41 calorimeter layers, the total amount of high-speed links is
4644. The cost of an FPGA with up to 108 MGTs would be roughly five times
the acceptable cost of the pRU. Fortunately, with new and modern FPGAs,
the regular I/O-pins have become more powerful, with more features, and most
importantly for the pCT-application, an increase in the maximum bandwidth.

From Xilinx 7-series and later, the maximum LVDS bandwidth of the non-
MGT I/O-pins is 1.25 Gb/s1, thus the ALPIDE data rate of 1.2 Gb/s can be
handled by regular I/O-pins. However, using regular I/Os for high-speed data
sampling requires logic to deal with phase and word alignment, which are
usually performed by the MGT primitives. Also, we cannot expect the same
performance as the MGT in terms of bit error rate (BER). This is because
MGTs include several utilities that can enhance the quality of the incoming

1With some variations depending on speed-grade and voltage supply.

56 4.3. Resource Planning

signal, which regular I/Os are lacking. In Chapter 5 we discuss in detail how it
is possible to reliably sample high-speed data using regular I/O-pins.

The chosen Kintex FPGA has a total of 264 high-performance differential
I/O-pairs [49]. Thus, less than 50 % of the available pins of the device are
used for the FEE data interconnections. The remaining I/O-pins are therefore
free to be used for a variety of different purposes. Also, by not employing the
MGT-pins for FEE interconnection, all 56 MGTs are available for run control
and data offload.

4.3 Resource Planning

As the pRU is a fully custom PCB it is possible to add more than one FPGA
to the board. By employing more than one FPGA we can opt for the use of a
smaller and cheaper device. Furthermore, more than one FPGA would allow
the use of MGT for high-speed data sampling. However, the use of more than
one FPGA also complicates the design.

(1) Run control communication is required between the FPGAs and the control
room. By using more than one FPGA device, it becomes necessary to either add
a separate communication link for each FPGA or to develop a communication
interface between the FPGAs. Either way, this complicates the design.

(2) The data offload of the FPGAs involves the same aspect, each FPGA must
have at least one communication link with the control room. Using QSFP as
the physical layer of this connection, however, makes it possible to have at least
one independent 10Gb Ethernet (10GbE) link for each FPGA. The data rate
simulations shown in Section 5.4 indicate that more than one 10GbE interface
might be exaggerating the offloading requirements.

(3) The readout electronics must be fully synchronous. Adding more devices
adds additional uncertainty and complexity to the synchronization process.

Because of the successful use of regular I/Os for data sampling (see Section 5.3),
in addition to the above-mentioned points, it was decided to opt for the use of
a single FPGA for the pRU.

Chapter 4. FPGA Design Considerations 57

4.4 Clocking Strategy

The pRUs are designed to function as either semi-autonomous with free-running
clocks or as fully synchronous components. In the semi-autonomous mode, the
pRUs only uses dedicated clock oscillators placed on the board to generate all
clock frequencies and allow the clocks to drift between the components. In the
fully synchronous mode, a clock is shared from either a master pRU to all other
slave pRUs or from a dedicated clock distribution card. This concept is further
discussed in Section 6.5.

Figure 4.1: Overview of the pRU FPGA clock network.

To aid these two modes, the clock network shown in Figure 4.1 is used. All pRUs
have an oscillator supplying a 250 MHz clock. This clock is used to generate
the clocks used by the various blocks of the firmware. In addition to the
250 MHz clock, the pRUs must have two MGT reference clocks to support the
Gigabit Ethernet (GbE) and 10GbE functionality of 625 MHz and 156.25 MHz,
respectively. Listed below are the oscillator frequencies that supply the pRU
FPGA.

250 MHz The main clock that is used as the source for most of the
firmware modules.

58 4.4. Clocking Strategy

625 MHz Provided by an external PHY used by the IPBus stack. Is
connected to the MAC layer and is used as the SGMII commu-
nication clock (see Section 5.7.1).

156.25 MHz Reference clock for the MGT of the 10GbE link. Is also used
by the UDP stack and the data transfer protocol block.

Regardless of whether the pRU is configured to use the local or external clock,
the primary mixed-mode clock manager (MMCM) will generate a minimal set
of clock frequencies that are needed for remote access to the pRU. This includes
the clock used to access the global registers of the pRU, allowing to configure at
all times which input clock to use. It is also possible to view the status of the
external clock’s MMCM, indicating whether the distributed clock can be used.
Note that it is impossible to select the external clock as a source if the MMCM
is unlocked. The second MMCM acts as a jitter cleaner of the external clock
and ensures that the clock is phase-locked to the input clock. The MMCM
instance requires that the input clock has a maximum input period jitter of
20 % or 1 ns [51].

Note that the use of the distributed clock signal is optional. By default, the
pRU will employ the locally generated clock. This ensures that the pRU will
be fully operational at startup and that all registers are accessible. The use of
the BUFGMUX primitive ensures a glitch-free switch between the clocks. The
40 MHz clock, either the locally generated or the distributed, is used to generate
the 120 MHz clock utilized for data processing, and the 240 MHz clock used
for oversampling the ALPIDE slow control signal. The MMCM that generates
these clocks is configured to keep these clocks phase-aligned.

The 125 MHz clock is used for MDIO auto-negotiation with the GbE PHY and
is also used to generate the master bus interface clock of 31.25 MHz. Notice
that the 600 MHz clock, which is used for the high-speed data sampling, is
generated via the 300 MHz clock made by the primary MMCM. This is done
for several reasons. First, the primary MMCM cannot create a 600 MHz
directly in the combination of the other clocks. Also, as stated in [52], PLLs
are the recommended clock source for the I/O-bank native primitives (see
Section 5.3.2.1). Furthermore, it is important to minimize the sampling clock

Chapter 4. FPGA Design Considerations 59

jitter. It is therefore imperative that it is generated from the local oscillator,
and not the distributed clock, as the distributed clock might introduce more
jitter, and thus degrading the data sampling. For each I/O-bank another PLL
is used to generate the primary sampling clocks. This is done to minimize the
fanout and further optimize the sampling clock quality.

4.4.1 Clock Domain Crossings

A clock domain crossing (CDC) is the transfer of data from a flop driven by
one clock to a flop driven by another clock. This transfer might result in a
metastable state, a signal that do not assume a stable value of 0 or 1 [53].
Digital designers are often advised to avoid or minimize the number of CDCs
in a design. However, specific techniques can be used to minimize the risks of
detrimental consequences of CDCs.

Figure 4.2: The IPBus CDC synchronizer operation.

The modules of the firmware operate in different clock domains. E.g., the
modules responsible for the slow control communication with the ALPIDEs
operate at 40 MHz. The data processing module, however, operates at 120 MHz.
All modules are connected to the common bus interface master, which is in
the clock domain 31.25 MHz. One way to solve this could be to have CDCs
inside each module, i.e., for each register to synchronize between the domains
with free-standing CDC synchronizers. However, since some modules have
many registers, and because the ALPIDE Data module (see Section 5.6) is
duplicated many times, it means that a large amount of logic would be needed

60 4.4. Clocking Strategy

to implement all the safe crossings. As even a simple two-stage synchronizer
will double the number of registers used, it is important to reduce the number
of CDCs to save resources. The method chosen to solve the problem is to
implement CDC synchronizers within the bus datapath, as described below.

Figure 4.3: IPBus synchronizer waveform of CDC between 31.25 MHz and 120 MHz.
The red circles are indicating the synchronization flag from the slave to the master
side, and the blue circles vice versa. A total of nine clock cycles are required for each
operation.

As data is transferred both to and from the slave, the synchronizer has both a
master and a slave block. Figure 4.2 shows the synchronizer operation. Two
finite-state machines (FSM) interact via two state-flags that are transferred via
the two clock domains with a conventional two-stage multi-flop synchronizer.
This method is called a handshake synchronization or a multi-cycle path
formulation with feedback and solves the potential problem of data incoherence
since the multi-bit data is guaranteed to be stable at the time of transfer [53, 54].
Figure 4.3 presents the synchronizer waveform. Each operation requires a total
of nine clock cycles of the slowest clock.

Along the main data path of the firmware, there are several CDCs. Using a
handshake synchronizer on the datapath would be inefficient and would cause
data loss as the process requires several clock cycles to complete the transfer
of one word. For this reason, asynchronous FIFO synchronization is used
instead. This is a common method to transfer continuously changing data from

Chapter 4. FPGA Design Considerations 61

one clock domain to another clock domain without causing any metastability
problems [55]. This technique is usually safe by design if the write rate is lower
than the read rate, guaranteeing no buffer overflows [53].

4.5 Resource Utilization

Obviously, the size of the FPGA, i.e., the amount of resources available on the
device, is crucial for any firmware design. This includes the number of flip-flops,
LUTs, memory blocks, MGTs and clock resources like MMCMs and PLLs.

Table 4.1: Resource utilization overview of the pRU firmware on the Xilinx Kintex
KU085. The bottom line shows the available resources on the FPGA.

Slice LUTs Slice Registers Block RAM
Block: Data Sampling 243 0.05 % 204 0.1 % 0
Accumulated - 108 Ch. 26446 5.3 % 22666 2.3 % 0
Block: Data processing 1401 0.3 % 1096 0.1 % 5 0.3 %
Accumulated - 108 Ch. 149591 30 % 118368 11.9 % 540 33 %
Priority Offloader 7299 1.5 % 3223 0.3 % 59 0.3 %
pDTP & 10GbE 5774 1.2 % 5492 0.6 % 11.5 0.7 %
ALPIDE Control 2687 0.5 % 2922 0.3 % 0
Trigger manager 764 1.5 % 657 0.1 % 0
Global registers 68 0.1 % 115 0.1 % 0
IPbus infrastructure 5489 1.1 % 5548 0.6 % 16.5 1 %
Top-level 198221 40 % 159272 16 % 627 38.7 %
KU085 497520 995040 1620

The modular design of the pRU firmware aided the determination of the resource
quantity needed for the complete design. By investigating each block of the
design, we can establish an estimate of the resources needed when up-scaling the
design by simply multiplying the resource in question. As most of the resources
are used by the data sampling and processing blocks of the firmware, these were
the most important blocks to investigate. In Table 4.1 the accumulated resource
utilization is shown, as well as the contribution of the various blocks. Notice that
the data processing block is by far the most resource-demanding block of the
firmware. This is because each channel, i.e., each ALPIDE, requires independent
data processing and that the resource usage scales with the number of channels.
Furthermore, increasing the number of data channels also complicates the

62 4.5. Resource Utilization

Figure 4.4: FPGA resource utilization. The data processing blocks occupy most of the
resources. The input stage, with dynamic phase alignment, is found in the bottom part
of the FPGA, near the input pins, shown in maroon color. The data blocks for each
data channel are shown in alternating colors at the top of the FPGA.

Chapter 4. FPGA Design Considerations 63

multiplexing and priority offloader architecture. The full implementation of
the current state of the pRU FPGA firmware is shown in Figure 4.4. Note
also, however, that there is still a significant amount of free resources available,
allowing further upgrades of the firmware.

A major weakness in the resource estimation is the uncertainty concerning the
buffer sizes needed for the data path of the design (see Section 5.6.5). However,
with the current block RAM utilization of 38.7 %, there is an option to increase
the buffer sizes further if required. Furthermore, another option is to utilize
unused LUTs as distributed RAM.

4.6 Radiation Environment of the pCT

One of the most challenging aspects of designing electronics for particle physics
experiments is ionizing radiation. The radiation is obviously a necessary part of
the system since it is what the detector is supposed to measure. Nevertheless,
this radiation is also potentially harmful to the electronics of the system.

There are two specific kinds of radiation effects that one must be aware of while
designing the electronics of such a system, (1) single-event effects caused by a
single particle, and (2) TID, the cumulative effects over the lifetime of the system.
Several types of single-event effects exist, one of the most damaging is the single
event latch-up (SEL), which can cause physical damage to the transistors of
the device. However, often, SEUs are the major problem for the electronics of
particle physics experiments. An SEU is caused by a charged particle losing
energy in the material of the microelectronic circuit, and sometimes flipping
a bit of a memory cell. This bit flip can cause either corrupted data or, in
the case of FPGAs, cause the device to change behavior. Such bit flips are
usually considered soft errors because the error can be removed by rewriting
the memory location that was affected by the particle. There are multiple
techniques to mitigate the effects of SEUs. However, by avoiding the use of
these techniques, we can reduce the utilization of costly resources on the FPGAs
of the system or the cost of extra components for mitigation.

With the help of simulations of the radiation environment, several observations

64 4.6. Radiation Environment of the pCT

and decisions can be made. Figure 4.5 shows a simulation of the radiation of
the area of the detector during a pCT projection and illustrates the high energy
hadron (HEH) fluence top-down. The plot is normalized, and the hadron fluence
must therefore be multiplied by the number of protons used in a projection.

Figure 4.5: Simulation of the HEH fluence during proton imaging. The black lines at
the bottom of the plot illustrate the detector layers. The simulation was provided by
courtesy of Jarle Sølie.

The SEU rate on an FPGA can be calculated based on the HEH fluence together
with the information of the FPGA device itself. The cross-section of an SEU,
i.e., the probability that a HEH will cause an SEU, is 1.89 × 10−15 cm2/bit on
the chosen pRU FPGA [56]. Equation 4.1 is used to approximate the rate of
SEUs, where σSEU the SEU cross-section of the FPGA, ΦHEH the fluence of
>20MeV hadrons, and Nbit is the amount of configuration memory bits [57].

NSEU = σSEU × ΦHEH ×Nbit (4.1)

The expected SEU rates for both pCT and proton therapy are presented in
Table 4.2. The calculations are considering continuous projections with a flux
of 107 particles/s. The HEH rate was simulated at several points outside of the
DTC2, to find the sufficient distance where one could safely place the readout
electronics rack. With these calculations, it is evident that a distance of 2 meters

2The distance is relative to the edge of the transition card.

Chapter 4. FPGA Design Considerations 65

is a safe distance, causing a single SEU roughly only every 45 min. Generally,
the average number of SEUs needed to cause a functional failure, the single
event upset probability impact (SEUPI), is dependent on the configuration
memory usage. However, it is generally assumed that a SEUPI value of 10 is
a conservative number [57, 58]. This means that only every tenth SEU will
cause a functional error. Therefore, it was concluded that advanced mitigation
techniques like TMR would exceed the reliability requirement and be too costly
for the pCT readout electronics. However, to avoid the accumulation of errors in
the configuration memory of the FPGA over time, some form of scrubbing must
be implemented. The use of the built-in Xilinx SEM IP would be preferable
to the use of the custom scrubbing methods. Custom scrubbing requires the
utilization of separate electronics components, exemplified by the ITS readout
electronics [59].

Table 4.2: Expected FPGA SEU rate and life-time based on HEH rate. A safety
factor of 10 is included and all 43 FPGAs are considered in the FPGA SEU rate. A
conservative TID limit of 1000 Gy for the FPGA is used. The table is provided by
courtesy of Jarle Sølie and previously published in [17].

Proton CT Proton therapy
Distance from DTC [cm] Time [s] Time [s]

1 SEU

10 20.4 8.0
50 197.2 66.2
100 689.7 224.7
200 2932.6 1022.5
300 6410.3 2415.5
400 11286.7 4329.0

Distance from DTC [cm] Life-time [s] Life-time [s]

TID

10 1.40·1010 1.30·1010

50 1.23·1011 7.66·1010

100 6.02·1011 2.89·1011

200 4.12·1012 1.14·1012

300 6.45·1012 2.35·1012

400 1.43·1013 3.91·1012

66 4.6. Radiation Environment of the pCT

4.6.1 Radiation Mitigation Resources

Although SRAM-based FPGAs are susceptible to ionizing radiation, we saw in
Section 4.6 that by placing the pRU at a certain distance from the beam-center,
we can expect a relatively low rate of SEUs. Thus, the current firmware design
does not employ any type of radiation mitigation. By avoiding the use of
mitigation techniques like TMR, a lot of resources are free to be used elsewhere.
It is, however, possible to implement different levels of TMR as long as there
are available resources. TMR is, in principle, just a technique to improve our
confidence in a certain logic state by having multiple copies of critical nodes [60].

There are multiple types of TMR schemes and topologies [61]. Local TMR
(LTMR) is the simplest form, and entails a triplication of all registers. Each
register triplication is followed by a voter deciding the correct value based
on a simple majority. Block TMR (BTMR) is when an advanced function is
triplicated in its entirety, with voters operating on the output of the function,
which may be a multibit array. Distributed TMR (DTMR), however, entails the
triplication of an entire design, excluding global routes like clocks. According
to Berg [61], LTMR should not be employed for SRAM FPGAs, as the results
are similar or even worse than non-mitigated systems. BTMR can be used for
blocks that are often flushed/reset, as errors might accumulate over time. This
makes this type of mitigation applicable for parts of the detector control system
(DCS) block, where the block can be reset for each transaction. DTMR is
naturally very resource-demanding but is usually the most effective mitigation
technique. Berg is critical of TMR that is not implemented with care, as it
may actually worsen the system reliability [61].

Not only the type of TMR must be evaluated, but we must also assess which
parts of the logic that are critical for the reliability of the system. For instance,
it is not possible to triplicate the data path registers and buffers of each data
channel of the system. This is evident by referring to Table 4.1 and observing
the resources required of each data channel. However, it is more feasible to
triplicate the FSM logic controlling the protocol checker (Section 5.6.3) or the
data formatter (Section 5.6.5). Note, that since LTMR is unwanted, this type
of replication must also include the combinational logic. In any case, we do

Chapter 4. FPGA Design Considerations 67

not consider the actual detector data critical to ensure system reliability and
therefore accept the risk of some data corruption. Rather the DCS system is.
Naturally, it would make more sense to triplicate the blocks that control sensor
communication and synchronization; the ALPIDE Control and the Trigger
Manager. As these blocks combined take up a mere 2 % of the LUTs and 0.4 %
of the registers, triplicating these blocks seems reasonable.

It is important to note that the pRU firmware is not managing anything that
can cause damage to the sensor devices as the power control and the main
temperature monitoring of the detector is performed by a separate unit. To
conclude, provided that the pCT is not employed in a clinical setting, we can
disregard the need for TMR completely.

4.6.2 Radiation and the Data Link

With low radiation, we also can avoid the use of radiation hard offload-links,
e.g., the GigaBit Transceiver (GBT) architecture and transmission protocol
employed by the ITS readout unit [62]. Note, however, that the GBT can
handle single event transients in the photo-diodes of an optical system [63]. As
the distance between the pRU and the control room is in the order of meters,
optical communication is not required and a copper solution can be employed.
Thus, the GBT can be replaced with an interface with higher throughput, which
reduces the need for buffering resources on the pRU FPGA.

4.7 Conclusion

Avoiding the use of a large scale TMR implementation and increasing the
throughput of the offload data link, leads to a significant resource reduction
per channel for the pRU firmware. These are the two main reasons why it is
possible to use an FPGA that is only slightly larger than the ITS FPGA and
still interface more than ten times as many ALPIDEs.

68 4.7. Conclusion

CHAPTER 5

Detector Data Readout

The pCT detector compromises many high-speed data links and will produce a
large amount of data during operation. This chapter describes the challenges that
arise from these two facts. The chapter is introduced by discussing methods to
reliably sample high-speed data with FPGAs. Specifically, two different methods
are discussed, a semi-dynamic and a dynamic phase alignment approach. Both
methods are implemented and tested. Furthermore, the detector data rate during
pCT operation is discussed. Next, the full data flow of the readout firmware is
discussed in detail. This entails a discussion on how the data of each channel
is handled and how the data from all channels are combined. Finally, the pRU
data offloading method is outlined.

5.1 Data Sampling Methods

As serial data is propagating in a non-perfect medium, several effects cause
the signal shape to deteriorate (see Chapter 3). The sampling window is the
period where we consider the signal to be stable and adhering to a value within
an I/O-standard. For instance, for Xilinx I/Os, an LVDS signal is logical 1 if
the differential value is above 100 mV, and logical 0 if below −100 mV. A value
between these two definitions will produce an unpredictable logical value if
sampled. Figure 5.1 shows an example of how the sampling window size can be
reduced by various factors. This is especially critical for static phase alignment
(see Section 5.1.1). Recall from Section 2.3.2 how the ALPIDEs on-chip PLL

70 5.1. Data Sampling Methods

jitter was a source for the reduced sampling window of the ALPIDE high-speed
data. Naturally, the receiver’s task is to reliably sample data inside the sampling
window by aligning to the correct phase and thus distinguishing one bit from
another.

Figure 5.1: Illustration of an example eye diagram, sampling window and the timing
budget of a 1.2 Gb/s system. Several components are included as potential sources of
noise and reduction of the sampling window as discussed by [64].

5.1.1 Static Phase Alignment

In low-speed applications, phase alignment can be solved statically. Static
phase alignment methods might include calculation of the signal propagation
delay and matching the sampling clock to this calculation. Not only is this
work labor-intensive in terms of the number of data traces used, but it is also
highly unpredictable if one does not perform proper analog simulations of the
board. Furthermore, any changes to the board layout, cables, connectors, etc.,
require reiteration of the delays involved.

Chapter 5. Detector Data Readout 71

5.1.2 Clock Data Recovery

A common method to ensure the correct frequency of the signal is to transmit
a clock along-side the signal, especially if there are multiple data links from
the same source. The receiver thus gets the correct frequency of the signal, but
still needs to lock on to the correct phase to find the middle of the sampling
window. In some cases, the phases of the clock and data signal are assumed to
be equal, source-synchronous, and thus one simply needs to adjust the clock
signal by 90 degrees to place the sampling edges within the sampling window.
This adjustment is easily achieved using PLLs which are abundantly available
on modern FPGAs. At higher frequencies, it becomes more difficult to obtain
a source-synchronous relationship between the transmitter and the receiver,
and one starts to consider the system as either mesochronous or asynchronous.
This means that it is necessary to adjust the phase of the sampling clock based
on the incoming data, or vice versa. Phase detectors like Hogge and Alexander
bang-bang, for instance, can be used to deal with random data streams [65,
Chapter 12]. These detectors detect the timing difference between the clock
and the data, and the output can be used to adjust the phase of the sampling
relative to the sampling window. See Section 5.2 and 5.3 for more details about
phase alignment.

5.1.3 Asynchronous Data Recovery

Asynchronous data recovery is becoming the norm in high-speed applications
as it gets harder to keep two devices synchronized at the clock rate that they
operate. Also, as phase adjustment of the incoming data becomes crucial, the
benefit of transmitting a clock alongside the signal is becoming less significant.
In asynchronous systems, both the transmitter and the receiver agree on a
certain transmission frequency, and two clocks of nearly the same frequency
operate in separate domains. If done correctly, the variation of frequency
between these two clocks is countered by a phase adjustment of the sampling
clock to the phase of the incoming data.

72 5.2. Semi-Dynamic Phase Alignment

5.2 Semi-Dynamic Phase Alignment

An early prototype of the pRU, employing a Xilinx 7-series FPGA, was intended
to test the approach of using regular I/Os for data recovery [66]. In this approach
we opted to test the potential of using the input delay primitives of the regular
I/Os and use an initial stage to search for the 8B/10B comma-words to obtain
a phase lock. Thus, this approach is semi-dynamic, because a re-lock can be
done at given intervals. The approach uses a clock of 600 MHz and double
data rate (DDR) sampling. Figure 5.2 illustrates the concept of input delay
taps, and how by adjusting the delay tap, one can move the data to align the
middle of the sampling window to the sampling clock edges. Small increments
and decrements of the delay tap can be performed without glitches in the data
stream [67, p. 123].

Figure 5.2: Illustration of the concept of data delay chain [66]. The data in delay
tap_2 will be sampled more reliably than the data in the other taps, as the clock edges
are placed in the middle of the sampling window.

Figure 5.3 shows the block diagram of the approach. The input stage, i.e.,
IDELAYE2, ISERDESE2 and IDELAYCTRL, are primitives provided by the
Xilinx FPGA architecture. All other building blocks are developed by the
author, except the 8B/10B decoder1. When the ALPIDEs high-speed link is
enabled, it continuously outputs 8B/10B comma-words. IDELAYE2 provides
a 32-tap programmable input delay with calibrated resolution. The Phase
Aligner block checks if a comma is observed (without errors) for each delay tap
setting for a given number of samples. The result of this brute force method is
a 32-bit word, where each bit indicates if the setting resulted in a successfully
sampled comma word. As the settings which provide the correct result would

1The 8B/10B decoder utilized is a combinational design by Chuck Benz [68].

Chapter 5. Detector Data Readout 73

normally be next to each other, the delay tap chosen is the middle of the longest
consecutive row of valid taps. When the Phase Aligner finishes the initial search
phase, it indicates that the 8b10b Decoder can start the decoding of each 10-bit
word. The Phase Aligner, 8b10b Decoder and the Bitslip block will co-operate
to align the comma-word. This method proved to be quite promising when
testing with the ALPIDE’s PRBS testing pattern [66].

Figure 5.3: Block diagram of the semi-dynamic phase and word alignment method [66].

Unfortunately, although the approach was successful in sampling PRBS-data,
severe issues with the method was discovered during actual data-taking, i.e.,
sampling data following triggering of the ALPIDE with a radiation source. As
discussed in Section 3.2.4.3, triggering of the ALPIDE causes voltage fluctuations
of the digital supply, and in turn, jitter on the high-speed link. Also, another
contributing factor to the poor results is that the 7-series FPGA only provides
32 delay taps, giving a coarse resolution of roughly 26 ps delay per tap [66].
This is more than double the worst-case and twelve times more than the best-
case input delay tap coarseness of the Ultrascale devices (see Section 5.3.2.1).
Despite further efforts trying to re-lock during data-taking, the jitter was too
severe to be handled by the phase lock approach.

Although the method ultimately proved unsuccessful, the results were promising
regarding the use of regular I/Os for the data capture. Therefore, upgrading
to a Xilinx Ultrascale device to increase the granularity of the input delay
(increase to 512 taps), was the logical next step. Also, because of the change
of the internal primitives of the I/O-blocks from the 7-series to Ultrascale,

74 5.3. Dynamic Phase Alignment

the semi-dynamic phase alignment method was abandoned for dynamic phase
alignment (see Section 5.3).

5.3 Dynamic Phase Alignment

Dynamic phase alignment (DPA) is a technique that was developed to address
inadequacies of static phase alignment methods, see for example [64]. The
technique involves continuously updating the phase of the sampling clock
relative to the phase of the incoming signal, solving the problem of drift and,
if fast enough, corrects for jitter. One important advantage of DPA, aside
from solving the problem of asynchronous data recovery, is that each channel
is independent of each other, and thus makes the problem of trace length
mismatches between channels obsolete. Instead of using a clock recovery circuit,
with DPA one assumes that the frequency of the on-chip clock closely resembles
that of the data frequency. As the difference between these two frequencies can
be interpreted as drift, the DPA-process will correct for it.

Because DPA is a form of asynchronous data recovery, i.e. the incoming signal
is independent of any clock signal, it requires that the data transition density2

is sufficient to reliably detect the phase difference between the signal and the
sampling clock. Therefore, the DPA-method needs coded data. Since the
ALPIDE employs 8B/10B encoding, this is not an issue in the pCT application.
Note that 8B/10B has a transition density that varies between 0.3 and 1.0,
while the K28.5 comma-word, which is used in the initial critical stage of the
alignment, has a transition density of 0.5. Also, a PRBS sequence can be used
with DPA if sequence entails frequent transitions. The ALPIDE employs a
PRBS-7 test pattern with a transition density comparable to that of 8B/10B
encoded data.

2The ratio of transitions/edges to the number of unit intervals in a serial data stream.

Chapter 5. Detector Data Readout 75

5.3.1 DPA Implementation

The following section describes the implementation of a DPA approach for data
recovery of the ALPIDE high-speed links using a Xilinx Ultrascale(+) FPGA3.
To detect the difference between the phase of the signal and the sampling
clock, the approach is exploiting the possibility to delay the p- and n-side of
the differential signal differently and by comparing the sampled values. By
delaying them by a half unit interval (UI)4 relative to the each other, we gain
the following two effects:
(1) a DDR oversampling without using a faster clock, meaning two samples per
unit interval.
(2) by comparing the values of the two signals, an indication of whether the
primary signal is sampled in the middle of the sampling window. One can use
this information to purposely move the sampling point of the active signal to
the middle of the sampling window by incrementing or decrementing the delay
of both channels equally. This is the same operation as to move the sample
clock edges relative to the incoming signal.

Notice that the signal comparison is only valuable if the consecutive bits of the
transmission differs, so that it is possible to determine whether the two samples
are done within the same sampling window. This is aided by 8B/10B-encoding
the signal. Furthermore, the implementation is performing the comparison of
the signal after a SerDes. Because the SerDes outputs 4-bits at the time, the
comparison process can be performed on the 4 middle bits of a series of 8 bits.
That means that for each bit pair that is compared, one also has access to the
next bit in the transmission. If there is no change between two consecutive bits,
the delay remains unchanged. However, by basing a decision on 4 bits at the
time, chances are that at least one of the bit pairs involve a transition.

To illustrate this, two signal samples in a sequence are compared. The active is
the signal used as data, while monitor is the extra signal used to determine
the sample quality. Both p and n can be used as the active signal. Imagine
that active[n] and monitor[n] are equal, and active[n+1] also matches these

3The principle and method is derived from [52].
4In this case, the unit interval coincides with the bit period of the data stream.

76 5.3. Dynamic Phase Alignment

values. In this case, no change of the delay will be done as we cannot determine
whether the monitor[n] was sampled at the sampling window of either active[n]
or active[n+1]. In the case where active[n+1] does not match, however, the
delay for both channels will be decreased. This can be observed in the upper
case of Figure 5.4, where the sampling edges a and b occur within the sampling
window of the same bit. Decreasing the delay will move the signal to the left
relative to the clock phase, moving the sampling edge a closer to the middle
of the data eye, thus improving the sample of the active signal for the next
sample.

Figure 5.4: Wave diagram illustrating how the DPA application is using input delay
and comparing the two samples of a differential signal to move the sample point. For
illustration purposes the two signals are sampled at different clock transitions; the
active signal is sampled at the rising edge and the monitor signal is sampled at the
falling transition. When the active signal matches the monitor signal, the input delay
is decreased. When the active signal does not match the monitor signal, the input delay
is increased. This continuous update of the input delay keeps the sampling edge in the
middle of the window.

In the case where active[n] and monitor[n] do not match, however, and also,
active[n] and active[n+1] do not match, one will increase the delay of both the
signals. This will move the signal to the left. As seen in the middle of Figure 5.4,

Chapter 5. Detector Data Readout 77

this will move the sampling edge c closer to the middle of the sampling window.
At the bottom of the figure, the optimal situation where the sampling edge e
is exactly in the middle of the window is illustrated. The case is not stable
because of jitter, noise and that the value of the monitor signal is unknown,
making the active signal sample point fluctuate around the middle of the eye.
See Table 5.1 for an overview of all delay actions based on the signal values.

Table 5.1: An overview of the executed delay action based on the values of the active
and monitor signals. Notice that the values of two consecutive active bits must differ to
provoke a delay change.

Active[n] Monitor[n] Active[n+1] Delay

0 0 0 No change
0 0 1 Decrease
0 1 0 No change
0 1 1 Increase
1 0 0 Increase
1 0 1 No change
1 1 0 Decrease
1 1 1 No change

5.3.2 High-Performance I/O

The comparison of two values of a single differential signal at two different
sampling times are made possible with the newest I/O-features of the Xilinx
Ultrascale FPGA. According to [69] the Xilinx Ultrascale I/O-banks are differ-
entiated in three groups; (1) high-performance (HP), (2) high-range (HR) and
(3) high-density (HD) where the HP-banks are designed to meet performance
requirements of several high-speed interfaces. Thus, in the following discussion,
we are referring to HP-bank I/O-pins, and the built-in features the I/O-bank
architecture. Each bank consists of 52 I/O-pins, whereas 48 can be used as
a differential pair with another, i.e. 24 differential pairs in a bank. The I/Os
are further divided into 4 subgroups called bytes, and further divided into an
upper and a bottom nibble. See the layout of a byte in Figure 5.5. Each bank

78 5.3. Dynamic Phase Alignment

has an MMCM and two PLLs at disposal to create clocks that are used for
sampling of data and other household tasks of the input stage.

Figure 5.5: Layout of a byte in an I/O-bank [52]. Each bank contains four byte blocks.
Each byte contains two nibbles, where each nibble comprises BITSLICE primitives to
handle up to three differential I/Os.

Like with most FPGA I/Os, the HP I/Os can be used with a range for I/O-
standards, most importantly LVDS, with or without internal 100 Ω termination.
Furthermore, LVDS can be used with DC- or AC-coupling. DC-coupling
requires that the driver keeps the common-mode voltage stable within in the
LVDS-standard. AC-coupling allows for changing the common-mode voltage at
the input stage, either via an external biasing circuit or internally on the FPGA.
According to [70] AC-coupling is recommended only if the signal is DC-balanced
as AC-coupling elicits baseline-wandering in non-balanced signals in high-speed
applications. Equally, DC-coupling is only recommended if the signal is non-
balanced or if a wide bandwidth is required [71]. As the ALPIDE transmits an
8B/10B-encoded signal, we will employ AC-coupling for the pRU application.
Also, AC-coupling is required to employ the equalization features of the I/O-pin
to counteract the attenuation of the transmission line [72]. Equalization can
be set to five different values based on the strength required to rebuild the
signal. Unfortunately, only limited information about how the equalization is

Chapter 5. Detector Data Readout 79

implemented is provided by Xilinx [69], and therefore the level of equalization
must be selected based on performance tests.

5.3.2.1 I/O Primitives

For the Ultrascale FPGA family, the I/O-primitives are divided into component
and native mode primitives. Component mode resembles the I/O-primitives of
the older 7-series FPGA family, while native mode is new for the UltraScale
architecture. The component mode primitives are built from the native mode
components, and thus, have less functionality. Furthermore, these primitives
also lack some of the features that exist in the 7-series FPGAs. The native
mode primitives, however, are more complex to use and require that the design
abides by a comprehensive set of rules.

As seen in [72, Table 23,24], native mode exceeds component mode when it comes
to maximum bandwidth, whereas native mode can achieve a bandwidth up to
1600 Mb/s for synchronous data capture, and up to 1300 Mb/s for asynchronous
data capture. The native mode primitives are employed by the DPA reference
project, as the primitives provide features required for this purpose [52].

Each I/O incorporates various native mode primitives. The RX_BITSLICE is
a special primitive that handles receiving data. This primitive is used together
with BITSLICE_CONTROL. Both primitives’ functionalities are managed
via attributes during instantiation. A RX_BITSLICE primitive contains four
blocks, as seen in the diagram in Figure 5.6. The first block controls how much
the signal is delayed before sampling. The signal can be sampled and registered
at any of the 512 delay taps, controlled by the BITSLICE_CONTROL. The
time resolution of each delay tap varies with temperature, voltage, and process
variation, but is between 2.1 ps and 12 ps [72, Table 35]. This is significantly
less coarse than the 7-series delay resolution. Note that the receiver/sampling
clocks are also distributed from BITSLICE_CONTROL. Further, a SerDes
block deserializes the incoming data. A shallow FIFO is also included. All these
features are included in the hard fabric of the I/O, meaning that a negligible
amount of soft fabric resources are needed to implement these primitives. In the
Ultrascale devices the output of both RX_BITSLICE-primitives of a differential

80 5.3. Dynamic Phase Alignment

pair can be accessed. Consequently, the same signal can be sampled at two
different times by delaying the primitives differently.

Figure 5.6: Block diagram of the RX_BITSLICE based on Figure 2-31 in [69].

5.3.3 DPA Sequence

The DPA sequence implemented in the pRU firmware is based on reference
project in [52] and is divided into the following steps:

• The transmitter starts transmitting 8B/10B-encoded data. At this stage,
this must only be comma words and not actual data.

• The master and slave channels (p and n) of the data are captured by
separate RX_BITSLICEs via an IBUFDS_DIFF_OUT-primitive, seen
in Figure 5.7.

• The PLL-generated 600 MHz clock supplied to the BITSLICE_CONTROL
which is used to sample the data has an unknown phase relationship with
the incoming data.

• The finite-state machine (FSM) shown in Figure 5.7 starts a calibra-
tion sequence of the I/O-primitives. During this process, the BIT-
SLICE_CONTROL registers are accessed via an RIU-interface to obtain
the number of delay taps that constitute a delay equivalent to the UI
of the data transmission rate. E.g., the UI of the 1.2 Gb/s data link is
833 ps. Thus, the calibration sequence determines how many delay taps
this is equivalent to.

• Based on the master channel it is determined whether there is data activity
and if the following sequence can be initiated.

• When data activity is detected, both the master and slave data are delayed
incrementally while the captured data are compared. If the data remain
equal while gradually incrementing the delay a .5 UI, the p-side is selected
as the active signal and is considered in front of the n-side. However, if

Chapter 5. Detector Data Readout 81

the data is unequal during the incrementing, we expect that the sample
point has been moved through a transition. In this case, the n-side is
selected as the active signal and the p-side is behind the n-side.

• The delay is modified so that the active signal is sampled a half UI before
the monitoring signal.

• From this point onward, the FSM continuously compares the active and
the monitor signal and keeps the relative input delay between them
constant. Any changes to the delay are based on the values of Table 5.1.

Figure 5.7: Block diagram of the alignment and tracking circuit.

The DPA logic is built with four components, (1) data capture, (2) the compara-
tor, (3) the phase detector and (4) the FSM. The data capture block registers
the 4-bit words from both RX_BITSLICEs into either the active or the monitor
8-bit registers. The block also determines whether there is a loss of data. The
values of these registers are used by the comparator block, which is strictly
combinational and produces a result according to Table 5.1. Note that the block
compares 4 bits each clock cycle and considers how many of the bit-comparisons
that are pointing in the same direction. E.g., if two of the bit comparisons point
to increase the delay, and the other two point to decrease it, the next stage, the
phase detector, will ignore the result, and no delay change will be performed.
Note that the bit-comparison only measures the polarity, and not the size, of the
phase error, so the type of phase-detection resembles an Alexander bang-bang
implementation. However, as the comparator measures multiple bits at the
same time, the size of the timing error can be extrapolated by the number of
bits pointing in the same direction.

82 5.3. Dynamic Phase Alignment

Consequently, the phase detector’s task is to make sure that a given number of
bits point in the same direction, and prevent any oscillation of the sampling
point if the phase error is minimal. Although this is a pseudo-linear phase
detector because we can determine whether the phase error is large by observing
how many of the bits within the same 4-bit sequence points in the same direction,
any movement of the delay is done with a fixed interval. The reason for this is
simply that a shift of 8 delay taps is the maximum that can be done without
risking a glitch in the sampled data [69, Chapter 2]. Because the average
delay is in the order of ps/tap, eight taps constitute a very small portion of
the 1.2 Gb/s UI. Any smaller steps are not needed. However, this maximum
step-size every clock cycle of the 300 MHz DPA clock, might limit the response
to sizable jitter.

The FSM of Figure 5.7 controls the whole operation from the initial sequence
searching for any transition, to keeping the sampling point stable in the middle
of the window. Also, the FSM needs to be aware of if the clock drift, the
small frequency differences between the transmitter and the receiver, makes
it necessary to wrap around the 512 available delay taps. This will cause a
glitch-less swap between the active and the monitor signal. See Section 7.4.2
for the results of the DPA implementation.

5.3.4 Block Architecture

Several boards have been used during the design process of the pRU and for
production testing (see Section 7.5). To streamline the firmware design process
for the various FPGAs, an attribute-driven architecture for the input stage was
designed, shown in Figure 5.8. As the usage of the native-mode components of
the I/O-bank increased the threshold of knowledge about the placement rules
and the required instantiations5, the code block was required to abstract away
the complexity of these rules.

The architecture is based upon the layout of an I/O-bank, so the designer is
still required to know the location of each of the I/O-pins used. The top-level

5For instance, the usage of a nibble without employing the lowest I/O-pair still requires
the instantiation of the RX_BITSLICE, or the place and route process will fail.

Chapter 5. Detector Data Readout 83

Figure 5.8: Simplified block diagram of the input stage architecture.

of the architecture may use several I/O banks, and all the required routing
to and from the next level of the data flow is done here. Figure 5.8, however,
shows the instantiation of an I/O-bank. In the code instantiation of the bank,
we can indicate which channels to be used, and this enables the generic code to
adhere to the placement rules.

Each bank requires the supply of two different clocks, the system 120 MHz
clock6, which is used for the bank-FSM and for clock domain crossing (CDC),
and the DDR sampling clock of 600 MHz. However, the rules of the na-
tive primitives prohibit the sharing of the sampling clock between I/O-banks.
Therefore, each bank instantiates a PLL that distributes the clock to each
BITSLICE_CONTROL primitive in all nibbles used. Furthermore, a 300 MHz
clock is created by the same PLL. This is the clock the DPA block operates at,
as the SerDes outputs 4 bits every clock cycle. The PLL is locked to a certain
physical position in the bank. This is done in the placement constraint file

6Based on the ALPIDE data transmission rate.

84 5.4. DTC Data Rates

of the design. Note also that the entire bank must be associated with a fixed
physical block, pblock, to adhere to the Xilinx rules.

The bank block includes a FSM that resets and calibrates the I/O-primitives.
Each I/O-channel is associated with a bit value, i.e. the number of delay
taps required to delay the signal with a full UI based on the sampling clock.
The value might be different depending on temperature, voltage, and process
variations. The FSM extracts this value from the BITSLICE_CONTROL via
the RIU interface during the calibration stage and conveys the information to
the DPA block of the corresponding channel. The value is important for the
DPA to determine how to delay the two samples of the differential signal a half
UI relative to each other and to know whether one of the signal delays has
wrapped around a full UI.

An unused byte or nibble will not be instantiated, but an unused bitslice might
be forced to be instantiated depending on whether any other bitslice is used in
the same nibble. For byte blocks with both nibbles instantiated, a RIU_OR
primitive is instantiated. This is a native-specific primitive that demultiplexes
a common RIU-signal to two BITSLICE_CONTROL primitives.

For every used channel an IBUFDS_DIFF_OUT-primitive is instantiated along
with a BITSLICE_RX-pair, a DPA-block, the gearbox7 and a FIFO. The data
from the DPA and gearbox are stored in a FIFO. This FIFO is always read out
if data exist, and its only purpose is to perform CDC from the 300 MHz to the
120 MHz domain that is used later in the data flow. Note that the data stored
in the FIFO is neither comma-aligned nor 8B/10B decoded.

5.4 DTC Data Rates

Although a beam with a flux of 107 particles/s is considered a low-intensity
beam, this rate of particles will produce a large amount of data in each layer of
the DTC. Figure 5.9 shows a Monte Carlo simulation of a fast scanning proton
beam using a System C-model to anticipate how much data is generated and

7The gearbox transforms the 4-bit word output of the DPA into a 10-bit word.

Chapter 5. Detector Data Readout 85

(a) Data rate for the first layer with a trig-
ger rate of 5 µs with data rates of a few
selected data links.

(b) Total data rate per layer. The strobe
length is the data taking window. A min-
imal gap of 25 ns is used between each
strobe.

Figure 5.9: Monte Carlo simulation of data rates of a 230 MeV proton scanning beam
with an intensity of 107 s−1. The beam scans over the detector plane in 65 ms. The
simulation result and figures are provided by courtesy of Simon Voigt Nesbø and were
first published in [73].

.

offloaded of the sensors. With a trigger rate of 5 µs, considered to be the highest
rate to be used with the detector, each sensor will produce an actual data rate
of up to 900 Mb/s for a brief period [73]. In Figure 5.9b, the accumulated data
rate of each layer is given. Notice that the data rate varies with the strobe
window length and that the average data rate will peak at roughly 1.4 Gb/s.
Furthermore, the aggregated data for each layer is relatively stable. At the
same time, the individual sensors will see a data burst as the beam is gradually
scanning over the detector area. This fact can be exploited in the design of the
back-end electronics, as discussed in Section 5.6.

The data rate and the distribution of that data rate of each sensor, and in turn,
each layer, is dependent on many variables. First, the rate varies significantly
with the intensity of the beam used, i.e., the number of particles per second.
The beam particle also affects the data rate as different types of particles affect
the degree of secondaries and the mean cluster size. Furthermore, background
radiation and noise are probably contributing somewhat to the data rate.
Moreover, to accurately predict the data rates, one must also consider the
analog characteristics of the sensor pixels, the threshold of the digital front-end,

86 5.5. ALPIDE Data Protocol

and the bias voltage. It is difficult to find an exact value of the data rate before
the complete detector is built and characterized using different settings. For
this reason, and because the simulations inevitably have shortcomings8, the
electronics must be designed to handle a more substantial data rate than shown
by the Monte Carlo-simulation.

5.5 ALPIDE Data Protocol

The data transferred from the ALPIDE are generated based on each strobe
window. All pixel hits that occur during a window are combined in a data
frame, of which the address of each pixel hit is the data. See Figure 5.10 for an
example data frame. The frame itself is encapsulated by a chip header and a
trailer, which contains the chip ID, time information, and various flags. Pixels
hit that belong to the same chip region are grouped together with a region
header preceding them. A single-pixel hit is represented by a 16-bit data word,
data short, consisting of the two-dimensional address of the pixel within the
region. A special case is reserved for pixel hits that are geometrically close
to each other. In this case, the address of the pixel with the lowest address
is combined with a 7-bit hit-map field that indicates a cluster shape relative
to the aforementioned pixel. This case is indicated with the data long word.
This clustering feature can be turned off, but it is generally a good idea to
leave it enabled to compress the data payload. This is especially true when
the substrate bias is set to 0 V, minimizing the depletion region of the sensing
diode, which in turn will increase the mean cluster size.

Figure 5.10: Wavediagram of an example ALPIDE data frame. In this particular
frame only pixels within one region has been hit.

8For instance, not including noisy pixels and background radiation.

Chapter 5. Detector Data Readout 87

5.6 Data Flow

The front-end architecture of the pRU firmware only takes care of the data
sampling. Figure 5.11 illustrates the next steps of the data flow chain. First,
the data must be comma-aligned, meaning that the first bit of the word must
be determined. Furthermore, to make sense of the content of the data, it must
be decoded. These two steps are outlined in Section 5.6.1. The reason why
the data must be decoded on the FPGA before transmitting it to the server
farm is that the data must be processed further in order to (1) reduce the
payload by removing redundant data words, (2) filter out data, e.g., empty
frames, (3) detect errors, and (4) efficiently pack data to reduce the throughput
requirements of the network.

Figure 5.11: Block diagram of the data flow of the pRU firmware.

The ALPIDE, as explained in Section 5.5, transmits data in a specific format
with a given protocol. The first step after the decoding is, therefore, to check
whether the data adhere to this protocol and to check for other types of errors,
as seen in Section 5.6.3. A special data format is constructed to ensure that all
required information is relayed to the data server. The format itself, and the
packing mechanism, are explained in Section 5.6.4.

All the previously mentioned blocks are part of the ALPIDE Data firmware
module. This is, in addition to the bank blocks of the front-end architecture,
the only major FPGA block that is duplicated. Each I/O-channel is associated
with a separate ALPIDE Data module that is connected to the DPA logic and

88 5.6. Data Flow

the CDC FIFO.

As seen in Figure 5.11, however, the data flow does not end with the buffering.
The data must also be offloaded from the FPGA. The next step is therefore a
priority offloader for multiplexing the data from each channel, see Section 5.6.6.
When the data are combined, they can be transmitted to the data farm, see
Section 5.7

5.6.1 Word Alignment and Decoding

The data-taking process on the FPGA is initiated by the ALPIDE Data module.
By enabling the module via the bus interface, the front-end channel reset is
de-asserted and the DPA process is initiated. The front-end is indicating that
data are sampled successfully by deasserting the loss of signal and FIFO empty
flags, signifying that data words are available to the rest of the chain.

Word alignment of 8B/10B-encoded data is in principle a trivial task. However,
adding custom untested code to any project might introduce errors. Therefore,
the pRU employs a block of System Verilog code originating from the ALICE
ITS firmware for this task. A 20-bit shift register shifts the 10-bit word from
the front-end FIFO every clock cycle. A combinational block searches over the
10 possible positions for either the positive or negative polarity of the K28.5
comma-word. If found, the position of the comma is stored. A clocked process
checks if the position of the comma remains stable, and a counter keeps track
of this. After 255 clock cycles of a stable position of the comma, the block
raises a flag that indicates that word alignment has succeeded, and continuously
outputs 10 bits from the shift register starting from the comma position.

Immediately after completion of the word alignment, the next block, the 8B/10B
decoder, is enabled. The decoding block adopted is an IP core developed by
Chuck Benz [68], only slightly modified to support enable/disable. The operation
of this block is purely combinational. Based on the 10-bit input word and
the current running disparity9, the block outputs the 8-bit decoded word, the
resulting disparity, as well as an indication of code error or disparity error.

9The running disparity is the difference between the number of 0s and 1s transmitted. As
an 8B/10B code is DC-balanced, the running disparity must be 0 for 20 consecutive bits.

Chapter 5. Detector Data Readout 89

Additionally, the block indicates whether the symbol decoded was a control
character or not. For example, the K28.5 comma-word is decoded as 0xBC.
Without the indication that this is a control character, this word could be
interpreted as an ALPIDE chip trailer word with two of the error flags set. To
avoid this confusion, the control character indication flag is forwarded to the
protocol checker along with the 8-bit decoded data and the error flag signals.

5.6.2 PRBS Checker

One block of ALPIDE Data is using data that is neither word-aligned nor
decoded; the PRBS check block. This block is essentially a Xilinx developed
block, PRBS_ANY, which can be instantiated with a specific polynomial
length and tap. Note that using the PRBS checker disables and resets the word
alignment and decoder blocks. The output of PRBS checker block is monitored,
and the errors are counted in a readable register.

This functionality is critical for testing (1) the quality of the high-speed link
electronics, (2) whether the ALPIDE is bonded correctly and is alive. It is
used both in the testing of the front-end electronics and the testing of the
DPA-functionality of the FPGA.

5.6.3 Protocol and Error Checking

Although the 8B/10B decoder reliably detects 1-bit errors, there are no guaran-
tees that multi-bit errors can’t occur in the ALPIDE data stream. However,
with the ALPIDE adhering to a strict data format protocol, it is possible to
detect some of these errors by checking for protocol violations. The data are
routed directly from the 8B/10B decoder to the protocol checker block. A
principle sketch of the FSM for the checking sequence is given in Figure 5.12. A
valid ALPIDE data frame will always require a chip header word, but there are
a couple of exceptions. E.g., an empty frame, i.e. a frame where no pixels are
fired during the strobe window, causes the transmission of a chip empty frame
data word. Also, either busy on or off are allowed outside of a frame. However,
all other data words are strictly forbidden. The protocol checker does not only

90 5.6. Data Flow

check for and count errors and violations of the ALPIDE data format, it also
indicates to the data-formatter block how to pack its event (see Section 5.6.5).

Figure 5.12: Simplified state machine diagram of the protocol checker.

The validity of a chip header depends on several configurable parameters. Most
important is that the 8B10B decoder does not report any error from decoding
the first byte of the word. However, the protocol checker can be configured
to also confirm that the chip ID number is correct. This check can prevent
so-called fake frames to be processed. These are frames that occur because
a word with multi-bit flips erroneously resembles a chip header word. See
Section 7.4.2 for an example of a fake frame captured on the FPGA. Note from
Figure 5.12 that when the protocol checker detects a valid chip header the state
machine will not return to the idle state until it determines that the frame
is completely processed. However, to ensure that the FSM won’t be locked
in a frame either by a fake chip header or by failing to detect a chip trailer,
several error checks can be configured. E.g., the protocol checker can check
for a maximum number of idle bytes between each data word or a maximum
number of bytes within a frame. Also, words that cannot be interpreted by the
protocol checker can cause the FSM to abort the frame processing. Making
these parameters configurable makes the firmware flexible and ensures that it

Chapter 5. Detector Data Readout 91

can handle various situations.

Keep in mind that, if there are multi-bit errors coincidentally located within
the pixel address bits of a data word, they can be impossible to detect10. The
result will be corrupt data that will be a source of noise in the data analysis.
Therefore, it is imperative to reduce the errors already at the electrical level of
the interaction, as discussed in detail in Chapter 3.

5.6.4 The pRU Data Format

The primary task of the DAQ system is to provide sufficient information from
the detector so that track reconstruction can be performed on the data server.
However, to minimize the throughput requirements, one will also strive to send
the minimum amount of data necessary. For track reconstruction, one needs a
series of 4-dimensional data points, i.e. the pixel hits of a single particle as it
traverses through the detector; x, y, z, and T11. As discussed previously, a single
particle hit can cause several pixels to fire on the ALPIDE, and it is necessary
to transmit this complete information further in order to analyze the cluster
size for higher energy resolution, i.e. all pixel hits must be redirected further
off the pRU. Each pixel hit that occurs during the same strobe window, are
combined in a data frame. This frame is tagged with timing information from
the ALPIDE, the bunch counter, as well as an ID that indicates which chip on
the string is transmitting the data. Note that it is possible for a single particle
to cause pixel hits within multiple strobe windows. This is due to the intrinsic
separation of the analog front-end domain of the pixel and the digital domain,
and the relatively long shaping time of the analog amplifier. Also, a short gap
between each strobe window will contribute to the number of double hits, but
a longer gap may cause loss of hit information. However, these double pixel
hits will occur in consecutive strobe windows and are usually easily identified
by a simple software algorithm. They are therefore not a problem as long as
the FPGA buffers and the network data throughput are not saturated.

10Depending on whether the word passes the 8B10B checker.
11T represents the time of the pixel hit.

92 5.6. Data Flow

Evidently, the ALPIDE data format is missing information needed for a suc-
cessful track reconstruction in the pCT detector. First, the format is lacking
information about which string the ALPIDE in question is located. Thus, where
on the detector layer the pixel is located, is a vital part of the full 2D position
of the pixel in question. Furthermore, it is also missing which layer the chip
is located on, providing the full 3D position of the pixel. That is why it is
necessary to define a data format for transmitting data from the pRU.

At the firmware level, it is often complicated and resource-costly to extract
information from several sources at the same time. Especially, if there is no
guarantee that the data arrive at the same time since this makes it necessary
to temporarily store the data. The nature of the ALPIDE on-chip data packing
causes this exact behavior. Usually, the number of pixels hit on the various
ALPIDEs during the same strobe window will differ, causing varying processing
and transmission times of the data packets. Also, the actual arrival time of the
start of the data packet will often differ slightly from channel to channel, as
the ALPIDE data packing process might vary based on the number of pixels
and amount of clustering, and because the previous data packet might not have
been completely offloaded when a trigger occurs on the chip. To avoid having
the different channels wait for each other and in turn cause buffer overflow as
new data is arriving, it is easier to encapsulate data rather than to unpack and
combine the data of multiple channels.

The pRU data format is constructed by using certain pre-defined words, each
word consisting of 128 bits. 5 types of words are defined: (1) HEADER,
(2) DATA, (3) TRAILER, (4) EMPTY and (5) DELIMITER. All words, except
the DELIMITER word, have a 16-bit preamble that contains the following
information: (1) the word type, (2) the pRU ID, (3) the string ID, and (4) the
chip ID. This will naturally cause an overhead in the packaging which increases
the throughput requirements but improves efficiency in the latter parts of the
data flow where the data channels are multiplexed (see Section 5.6.6 for a
detailed discussion). However, this means that each word has a 112-bit content
field, in which the word-specific information is contained. The general format
of these words is illustrated in Table 5.2. The DELIMITER word is defined
solely to be used during the development of the pRU and will be removed in

Chapter 5. Detector Data Readout 93

the final firmware, and will thus not be discussed further.

Table 5.2: The general pRU data format.

Name WORD TYPE RU ID STAVE ID CHIP ID CONTENT
Length 2 6 4 4 112
Bits 127:126 125:120 119:116 115:112 111:0

WORD TYPE Determines the type of the pRU word.
0x0 DATA

0x1 HEADER

0x2 TRAILER

0x3 EMPTY or DELIMITER
RU ID Identification of which specific readout unit the data origi-

nated from.
STAVE ID Identification of which specific stave the data originated

from.
CHIP ID Identification of which specific ALPIDE chip the data orig-

inated from.
CONTENT Either collection of ALPIDE data or pRU tag data.

5.6.4.1 pRU Packet/Frame

Each ALPIDE frame that contains pixel hit information will produce a pRU
data packet, also called a pRU frame. The packet contains all the pixel hit
data from a single ALPIDE produced by a single trigger. The pRU packet is
strictly defined as follows:

• A single HEADER word.
• One or more DATA words. The number of data words allowed in a packet

can be limited by a configurable amount. The reason for limiting the
number of data words is to avoid forwarding data from a chip that only
transmits noise. Data that exceed the limit are discarded.

• A single TRAILER word.

Note also, that a single pixel hit on an ALPIDE will cause a minimum trans-
mission of 3 × 128 bits, 8 times the minimal number of bits transferred from

94 5.6. Data Flow

the ALPIDE; 8 × 6 bits. However, we assume that this is rarely the case since
particle hits will normally trigger multiple pixels and, therefore, this will not
cause a significant increase in the actual data throughput rates. Furthermore,
the word size of 128 bits was chosen to reduce the number of times the 16-bit
preamble needs to be transmitted.

5.6.4.2 The HEADER Word

The 14-byte content field of the HEADER word contains information that is
available to the formatter immediately after receiving the 2-byte chip header
word, thus it can be created while processing the remaining part of the ALPIDE
data frame. The structure of the HEADER is shown in Table 5.3. The specific
fields of the HEADER are listed in Appendix B.

5.6.4.3 The DATA Word

The DATA word contains the ALPIDE data words in the order that they arrive,
i.e., the most significant byte first. All words of an ALPIDE frame are included
except the comma and idle words that might appear during frame processing.
Based on register settings of the pRU, the user can specify other words that
should be filtered out as well. This might be useful during development. Note
that words that appear outside of an ALPIDE frame, for instance, chip empty
frame and possibly, busy on and off, will never appear in a pRU packet, and
thus never in a DATA word. If the ALPIDE frame does not completely fill up
the last DATA word in the packet, the remaining bytes are padded with 0xFF ,
which is identical to the idle word, and thus cannot be mistaken for real data.

Note, however, that because of the irregular sizes of the ALPIDE data words,
some words might be split between two pRU DATA words. The parsing software
must take care of these cases. Note also that the DATA interpretation order
is critical to avoid data corruption. Therefore, the remaining data chain must
take proper care not to scramble the words originating from a channel, meaning
that the order of the words must not change.

Chapter 5. Detector Data Readout 95

T
ab

le
5.
3:

pR
U
H
E
A
D
E
R
W
or
d.

N
am

e
W

O
R
D
_
T
Y
PE

RU
ST

AV
E

C
H
IP

ID
D
AT

A
_
FO

R
M
AT

U
N
U
SE

D
BU

SY
_
O
N

BU
SY

_
O
FF

SP
IL
L_

ID
T
R
IG

_
SO

U
RC

E
M
O
D
E

FR
A
M
E_

ID
A
BS

_
T
IM

E
L
en

gt
h

2
6

4
4

8
19

1
1

16
2

1
32

32
B
it
s

12
7:
12

6
12

5:
12

0
11

9:
11

6
11

5:
11

2
11

1:
10

4
10

3:
85

84
83

82
:6
7

66
:6
5

64
63

:3
2

31
:0

V
al
ue

0x
1

0x
1

0x
0

12
0
M
H
z
C
lo
ck

T
ab

le
5.
4:

pR
U
D
A
T
A
W
or
d.

N
am

e
W

O
R
D
_
T
Y
PE

RU
ST

AV
E

C
H
IP

ID
D
AT

A
L
en

gt
h

2
6

4
4

11
2

B
it
s

12
7:
12

6
12

5:
12

0
11

9:
11

6
11

5:
11

2
11

1:
0

V
al
ue

0x
0

T
ab

le
5.
5:

pR
U
T
R
A
I
L
E
R
W
or
d.

N
am

e
W

O
R
D
_
T
Y
PE

RU
ST

AV
E

C
H
IP

ID
U
N
U
SE

D
ER

RO
R
_
FL

A
G
S

FR
A
M
E_

ID
FR

A
M
E_

SI
ZE

L
en

gt
h

2
6

4
4

40
8

32
32

B
it
s

12
7:
12

6
12

5:
12

0
11

9:
11

6
11

5:
11

2
11

1:
72

71
:6
4

63
:3
2

31
:0

V
al
ue

0x
2

0x
0

T
ab

le
5.
6:

pR
U
E
M
P
T
Y
W
or
d.

N
am

e
W

O
R
D
_
T
Y
PE

RU
ST

AV
E

C
H
IP

ID
R
ES

ER
V
ED

U
N
U
SE

D
N
U
M
_
EM

PT
Y

BU
N
C
H
_
C
N
T

SP
IL
L_

ID
T
R
IG

_
SO

U
RC

E
M
O
D
E

FR
A
M
E_

ID
A
BS

_
T
IM

E
L
en

gt
h

2
6

4
4

1
4

16
8

16
2

1
32

32
B
it
s

12
7:
12
6

12
5:
12
0

11
9:
11
6

11
5:
11
2

11
1

11
0:
10
7

10
6:
91

90
:8
3

82
:6
7

66
:6
5

64
63
:3
2

31
:0

V
al
ue

0x
3

0x
0

0x
0

12
0
M
H
z
Cl

oc
k

96 5.6. Data Flow

5.6.4.4 The TRAILER Word

The TRAILER word marks the end of the frame and guarantees that no more
pixel data from the current channel and the current strobe window exist. The
word contains several fields that are meant to ensure that the preceding data
are not corrupted. See Appendix B for the data fields.

5.6.4.5 The EMPTY Word

Intuitively, the EMPTY word indicates that an ALPIDE has no pixel hits in a
strobe window. The word will always appear outside of a pRU frame sequence.
However, the ALPIDE chip empty frame word indicates only two things: (1)
that a TRIGGER and a subsequent strobe window have been invoked on the
chip in question, and (2) at what time the trigger occurred in terms of the
bunch counter. This information might be useful to verify that all chips are
in sync and that the triggering scheme works as expected. Thus, one might
want to transmit all this data from the pRU during an initialization phase or
during test runs. However, during data taking, there is no need to transmit
the empty data frames from the pRU for further analysis. Therefore, there is
an option to compress this data and reduce the total throughput requirements,
either by completely filtering out all chip empty frame words or requiring a
configurable amount of empty frames to arrive on a channel before transmitting
the EMPTY word. These settings are set via the pRU registers.

5.6.5 Data Formatter

The data formatter design is sensitive to the trade-off between a high throughput
and the success rate of the FPGA place and route process. The design of the
data formatter is deeply connected to the design of the priority offloader and
multiplexer of the next stage of the data flow. At a given clock frequency,
higher throughput requires more parallel data lines. When we scaled up the
system, from 9 to 108 data links, it became evident that some efficiency had to
be sacrificed to reduce the design size.

The primary task of the block is to continuously encapsulate the ALPIDE data
within the pRU data format and to temporarily store the data in a buffer. The

Chapter 5. Detector Data Readout 97

first version of the data formatter pre-formatted all pRU words and stored the
data in a 128-bit wide FIFO. This scheme results in the most efficient data flow
design, as the throughput could be as high as 15 Gb/s when using the system
clock to offload the FIFOs, but became problematic when aiming to scale-up
the design to the required number of data channels. The number of routes
required to support this scheme caused congestion during place and route, and
the process eventually failed to meet the timing requirements.

To reduce the number of routes needed, to avoid congestion, one can reduce the
width of the data FIFO. However, a reduction of the FIFO width has two major
consequences: (1) the reduction of throughput as less data is transmitted each
clock cycle, (2) multiple clock cycles are required to write the words. Using
multiple clock cycles to store the HEADER and TRAILER words requires that
the block temporarily store the incoming ALPIDE data while the FIFO input
is busy. This will increase the resources needed and is inefficient. Fortunately,
we can opt for a FIFO with different read and write widths, meaning that we
can write the full pRU words in one clock cycle. However, the reduction in
throughput cannot be redeemed and must be compensated for in other blocks
(see Section 5.6.6).

The data formatter FSM is controlled solely by the flag outputs from the
protocol checker. When an ALPIDE header is observed, the process is started
to generate a packet. The pRU HEADER is written immediately to the buffer,
while the raw ALPIDE data is shifted into a 14-byte wide registers. The value
of the register is stored in the buffer if (1) the register is full or (2) an ALPIDE
trailer is observed. When the trailer occurs, the pRU TRAILER is stored
in the following clock cycle. This is safe only because it is guaranteed that
back-to-back data frames, meaning the transmission of an ALPIDE header
directly following a trailer, does not occur [74]. A minimum of two idle words
are always observed after a trailed word. This fact makes it possible to use an
extra clock cycle to store both the DATA and the TRAILER word. In fact,
if this was not guaranteed, it might have been necessary to use two separate
buffers, one for HEADER and TRAILER words and one for DATA words.

The data buffer is located in separate instance blocks simplifying any change

98 5.6. Data Flow

to buffer size and type. This instance also has the option to connect a different
clock to the read-side of the FIFOs potentially increasing the throughput. This
option is one of the ways one can compensate for the reduced output width.

The data buffer is instantiated as an asynchronous AXI Stream (AXIS) FIFO.
The main reason for this is the additional feature of the TLAST signal. This
signal can be used to indicate to the subsequent data flow sections that an end
of a frame has been reached. Thus, there is no need for the following logic to
interpret the data that are transmitted. Also, this buffer type supports the
programmable empty and full flags to determine the buffer usage in addition
to the traditional empty and full flags. Note that the almost full flag is used
instead of the full flag in order to provide one extra clock cycle for the priority
offloader to react.

5.6.6 Priority Offloader

As the data from all the channels are temporarily stored in relatively small
buffers, an efficient mechanism to combine the data for further transmission
must be adopted. A priority offloader block is used for this purpose. It has
access to the read-side of all the channel buffers in the firmware and uses the
flags of these buffers to determine which ones need to be offloaded first to avoid
buffer overflows. Here, the purpose of the 16-bit preamble of the pRU DATA
words becomes apparent.

Because the actual data throughput of an ALPIDE is lower than 960 Mb/s12,
the priority offloader can transfer data from a buffer faster than it is filled.
This makes it possible, and efficient, to read data from multiple sources in a
frame-agnostic way. The priority offloader will switch between the buffers at
will, regardless of the pRU frame. Therefore, a scrambling of the data between
the different channels will occur. As every word is tagged with its origin in the
16-bit preamble, it is a trivial software task to sort the data for each channel
when it arrives on the data server. Note that this scrambling will not change

12An ALPIDE frame will contain several idle words in between the actual data words.
These redundant words are filtered out of the data stream by the pRU firmware, reducing the
actual throughput.

Chapter 5. Detector Data Readout 99

Figure 5.13: The data pipeline branch flow.

the order of the words within the pRU frame, and thus will not corrupt the
data as warned in Section 5.6.4.3. If desired, this scrambling can be avoided
with the sacrifice of efficiency, forcing the priority offloader to read entire frames
before switching channel buffers. This is configured via the module registers.

The main method to compensate for the FIFO output width reduction discussed
in Section 5.6.5 is to branch out the reading of the buffers in question. This
means that we parallelize the extraction of the data into pipeline branches, and
for each branch multiplying the throughput capabilities. Figure 5.13 illustrates
the concept. Each readout branch is responsible for a fixed set of data channels
to read out and to further transmit to a global buffer. Whether there will be
only one or several global buffers is still to be determined. As the throughput
of a single FIFO matches the theoretical data throughput of a single channel
(960 Mb/s), the question remains how many branches that are necessary to
avoid buffer overflow. We saw earlier, by the Monte Carlo simulations of the
data rates in Section 5.4, that the accumulated data rates of an entire layer are
well below 2 Gb/s. Thus, the lower limit required is roughly four branches. Nine
branches, operating twelve channels each, provide a maximum throughput of
8.64 Gb/s. The transmission from the branches to the global buffer is completely

100 5.7. Data Offloading

agnostic to any data format and is completely based on the buffer status in
the branches. Furthermore, the transmission from the branches to the global
buffers is done with 128-bit words per clock cycle, 15.3 Gb/s.

The branching method can also exploit the fact that data are produced in a
known scanning motion. Sensors that lie next to each other can be connected
to separate offloading branches, maximizing the throughput to the theoretical
limit of the widths and clock rates.

The data buffers of several channels are connected to the pipeline branch logic
and then stored in AXIS FIFOs. This simplifies the transmission from the
branch buffers to the common global buffer used to combine the data from all
channels before offloading the data. Note how the interfaces operate at various
clock rates. The interfaces between the channels, branches, and global buffer
can be further manipulated to increase the throughput rate by using a higher
clock rate.

5.7 Data Offloading

With the number of independent channels, and with the possibility of a random
data burst, it is evident that a very fast data offloading scheme is needed to
avoid buffer overflow and data loss. With fast offloading, the on-chip buffers
for each channel can be reduced to a bare minimum. It is also important that
the data offload link is completely separated from the control link to avoid
disruptions to the data flow.

With the use of an Ethernet stack, commercial-off-the-shelf components could
build up the back-end system of the detector, both simplifying development
and reducing costs. 10GbE has become common and many low-cost solutions
now exist in terms of network switches and network cards. Furthermore, several
10GbE links can be combined into a 40GbE link if an even higher throughput is
required. Thus, several independent 10GbE interfaces can be instantiated, each
responsible for offloading its own buffer. UDP was chosen as the transport layer
of choice for three main reasons. First, the UDP packet contains a checksum-
field, so it is possible to determine if any bits were flipped in the process. This

Chapter 5. Detector Data Readout 101

comes in addition to the Ethernet frame check sequence code, so a higher level
of reliability is achieved. Second, for software development it is easier to use
UDP than raw Ethernet packets, as many software libraries are developed for
UDP. Lastly, although UDP is considered unsafe, the use of TCP is ruled out
because of the increased complexity needed on the pRU.

5.7.1 10 Gb/s UDP Stack

Although the UDP, IP and the Ethernet protocols are considered simple in terms
of software, a somewhat complicated block of logic on the FPGA is required
for proper operation. Fortunately, several IP cores exist free of use. An IP core
developed by Alex Forenchic was chosen for its simplicity and the provided
testbenches that assured correct operation [75]. This core contains a full-
stack UDP/IP/Ethernet with example implementations for several development
boards, e.g. the VCU118 board used for the development of the pRU. The
core also includes full ARP support, allowing the pRU to be agnostic to the
addresses of the extended network. The core is complete with blocks adhering
to the protocols, as well as implementations of several types of MACs and
PHYs, i.e., the link and physical layers of the network interface controller. In
the case of 10GbE13 a PHY can be connected directly to the Xilinx MGT block,
and the interface between the PHY and the MAC is XGMII. All other blocks
are connected with a 64-bit wide AXIS interface operating on a 156.25 MHz
clock, giving a throughput of 10 Gb/s. Furthermore, the in and out interfaces
of the block use the AXIS protocol.

Figure 5.14 shows the block diagram of the 10GbE scheme. The complete
protocol stack is located within the UDP Complete block. This is connected
to the MAC via two helper blocks (RX and TX). These blocks separate the
Ethernet payload from the Ethernet header fields. The payload is transmitted as
an AXIS, marking the end of the payload with the TLAST indicator. This is also
the method employed when transmitting data to and from the UDP Complete
block. However, for this block, the UDP header fields are separated from the

13The core also included both a 1GbE and a 25GbE implementation.

102 5.7. Data Offloading

Figure 5.14: Block Diagram of the 10GbE Scheme.

UDP payload. The only UDP header field not required when transmitting data
is the checksum field, because the block calculates the checksum automatically.

The checksum calculation requires that the block holds the entire payload in
a buffer, increasing the resource usage of the block. A large packet increases
the efficiency of transmission, thus there is a trade-off between resource usage
and efficiency. An Ethernet jumbo frame is defined as a packet with a payload
larger than 1500 bytes and usually no larger than 9000 bytes. Because of the
diminishing returns of larger packets, the greater risks of data loss with them,
and lastly the increased FPGA resource usage associated with them, it was
decided that the maximum packet size of the block would be (28 − 1) pRU
words, which amounts to 4080 bytes. Given the UDP, IP, and Ethernet header
fields, this yields a maximum link efficiency of 98 %. Table 5.7 shows the FPGA
resource usage of both the full UDP stack and the custom protocol discussed
below. Note that the resource utilization is low, leaving the possibility open to
increase the number of links per pRU. Such a decision will only require the use
of several global data buffers to interface the parallelized pDTP blocks.

Table 5.7: pDTP and UDP Stack Resource Utilization on Xilinx Kintex KU085.

Slice LUTs Slice Registers Block RAM Tiles
pDTP Core 989 (0.2 %) 570 (0.06 %) 3.5 (0.06 %)
UDP Stack 4924 (1 %) 4914 (0.5 %) 11 (0.5 %)

Chapter 5. Detector Data Readout 103

5.7.2 pCT Data Transfer Protocol

UDP packets can be lost without the receiving end being aware of that a
packet was transmitted. Also, the transmitter gets no acknowledgment from the
receiver that the packet was received correctly. To increase the reliability of UDP
one can add a protocol layer on top of it, with features like acknowledgments
and resend options. This is the purpose of the pCT Data Transfer Protocol
(pDTP). Note that the pDTP does not strive to be a perfectly safe protocol,
only to somewhat increase reliability. Therefore, the user has the option of
using three modes with different levels of safety. In a lossy network, meaning
a network where packets are lost regularly, the safest mode can be utilized
with the cost of reducing the throughput. However, if the network is proven
to be reliable, higher throughput is achieved with the other modes. The mode
selection is done at will, and the various modes can thus be used interchangeably
with varying needs.

In the pDTP architecture, the pRU is considered the server. A client sends
requests and the pRU responds, as illustrated in Figure 5.15. Two header
formats are defined, one for the client and one for the server. The detailed
header formats, the opcodes, and fields are shown in Appendix C. The server
will mainly transmit data, but can also transmit its status, for instance, the
buffer usage, firmware build details, and the current system clock time.

pDTP Client pDTP Server
pDTP Client Request

pDTP Server Data

Figure 5.15: The pDTP architecture.

Figure 5.16 shows the pDTP block diagram. Data from the UDP stack is fed to
the port decision logic. UDP packets with a specific destination port number
(1234) will be fed to a buffer and automatically looped back to its origin. The
loopback feature was added for the user to ensure that the system is alive and
for testing performance. Packets with the pDTP destination port will be routed
to the pDTP RX block. This block will interpret the client request and forward
a client record to the pDTP TX block. The client record contains the opcode

104 5.7. Data Offloading

and the other fields of the request. Note that the pDTP TX block has access
to the pRU data via the AXIS interface of the global buffer.

Figure 5.16: Block Diagram of the pDTP Core.

The pDTP TX block is a quite complex block controlled by a comprehensive
FSM. A simplified FSM diagram is shown in Figure 5.17. Three main branches
are shown in the diagram: (1) the RQR branch, (2) the RQS/RQFS branch,
and (3) the STATUS branch. These branches represent the modes of pDTP
along with the status request.

RQR: Request Read A request for a single packet. This request will provoke
the server to transmit a single packet of data of the specified size. The client
can also determine whether the server only transmits data if the buffer contains
the specified amount of data and whether the server should maximize the
packet size if data is available. These features allow a certain kind of flexibility
in the transmission, allowing the client to ensure an efficient scheme. With
this mode, the client has the opportunity to validate the transmitted data by
the optional use of an acknowledgment packet. However, this will naturally
reduce throughput. The client can also initiate the resending of the last packet.
Therefore, during transmission of a packet in RQR mode, a copy of the data will
be stored in a temporary buffer. However, this buffer is always overwritten when
a new request is transmitted to the client, so a resend can only be performed
directly after a RQR.
RQS: Request Stream A request for a stream of packets. This request will
cause the server to transmit a certain number of packets. The client can specify
whether the server should wait for new data to arrive in the buffer, or end

Chapter 5. Detector Data Readout 105

Figure 5.17: Simplified FSM diagram for the pDTP TX block.

106 5.7. Data Offloading

transmission as the buffer is emptied. The completion of the request will be
marked with a specific end-of-stream packet notifying the client that the server
has completed the request. In this mode, the client has no option to resend
packets as new packets are transmitted back-to-back, and there is no possibility
of temporarily storing the packet in a separate buffer.
RQFS: Request Full Stream A request for a continuous stream of packets.
By using this request, the client is asking the server to always transmit packets
as data become available. The client can, as with the other request, determine
whether the server should maximize the packet size and require a minimum
payload size. With this mode, the client ensures the highest throughput possible.
However, one loses the possibility to control the stream in case the client is busy,
resulting in a significant loss of reliability. Like RQS, there is no possibility of
recovery in case of packet failures.

It is the client’s task to optimize the use of modes as they have specific strengths
and weaknesses in different situations. In the case of a very stable network
where no packets are dropped, the client should always be using RQFS, as this
will provide the highest throughput. However, to ensure correct operation the
client can choose a more varied use of the modes based on the network’s packet
loss rate and the amount of data currently in the buffer. As packet loss can
occur because of packets being transmitted without a sufficient gap between
them, the client can specify whether the server should throttle the streams with
a configurable spacing between packets.

5.7.3 Addressing

To ensure that no conflict exists between the pRUs and the network, a specific
IP and MAC addressing scheme is employed. The addresses are based on the
pRU ID and the link number. Each pRU will contain all its links within its
unique gateway address. This scheme was adopted to allow for multiple links
per pRU, and for the possibility that the number of pRUs could increase in the
future.

Chapter 5. Detector Data Readout 107

5.7.4 pDTP Client Software

The pDTP protocol has been fully implemented and tested, and significant
efforts have been made to develop the client software. The DAQ software is
designed to be highly efficient and to avoid bottlenecks when processing data.
For this reason, the software is split into three separate parts: the pDTP client,
the parser, and the output. These parts operate as a pipeline, as shown in
Figure 5.18. The pDTP client is the input module and is responsible for the
communication with the pRU server-side. The client will optimize the requests
depending on the pDTP server buffer usage and the network performance. The
data is transmitted to the next step of the pipeline via a thread-safe queue.

Figure 5.18: Block diagram of the data readout software.

The parser must sort data and combine pRU words that belong together.
Furthermore, the parser extracts 4D data points and builds the full detector
events. This means that all pixel hits of the entire detector that are within
the same time period are combined. These full events can be used by the
most-likely path algorithms to establish the particle tracks. Importantly, the
parser does full sanity and coherence testing of the data. Corrupted data are
stored by itself. This allows an attempt to manually recover the data later.

The final stage of the pipeline is responsible for transmitting the data to other
parts of the software. For instance, during the configuration of the detector,
test-data is needed to determine the addresses of the noisy pixel. In general,
data can be stored to file to be analyzed later.

108 5.8. Conclusion

5.7.5 pDTP Server Emulator

A pDTP server emulator has been made to aid the development and verification
of the pDTP client software. The software is organized in a similar fashion as
the actual firmware and two state machines run as threads and control the RX
and TX parts of the server. The RX state machine communicates with the TX
state machine via a queue. Another thread is used to generate random data
or load data from file. The emulator can, thus, be used to test the complete
data acquisition software chain by pre-generating actual known data and load
it to the emulator. Also, as the pDTP Server is agnostic to the data format,
the data can be intentionally filled with errors to test the parsing capabilities
of the software.

5.8 Conclusion

The design of the data flow is fully functional. The major blocks have been
extensively tested with both simulation and in hardware (see Section 7.2.2
and 7.4). Verification of the firmware design in the lab and during beam tests
have not shown significant weaknesses of the current design. The design can
simply be modified to further increase the data throughput of the priority
offloader by either changing the number of pipeline branches or by increasing
the readout frequency of the channels. Furthermore, if desired in the future,
the offload scheme can be upgraded to use more than one 10GbE link.

CHAPTER 6

Detector Control and Monitoring System

In addition to retrieving data, the pCT system electronics must also ensure
proper operation of the sensors and the DAQ system itself. Thus, a detector
control and monitoring system must be included in the design. The combined
detector control and monitoring system, henceforth just called the Detector
Control System (DCS), should be understood as the collection of software and
hardware components that are used for controlling and monitoring the pCT
detector. This chapter is mostly concerned with the hardware components of the
DCS, specifically the FPGA firmware. The chapter is introduced by a discussion
about the DCS architecture design choices. After that, several parts of the DCS
layer are given special attention. An essential part of the DCS is the trigger
and clock synchronization between all the sensors and the readout electronics.
This is given particular emphasis. The chapter is concluded with a discussion
about the DCS time budget.

6.1 DCS Architecture

The two main components of the DCS are the pRU and the PCU, introduced
in Chapter 2. The PCU supplies and monitors the ALPIDE power usage. This
is used to detect shorts, SELs, and other problems. The PCU will shut off the
power to prevent any damage to the detector in case of critical failure. The
pRU, however, controls the operation of the ALPIDEs. Naturally, we must
establish communication links between the system control room and both the

110 6.1. DCS Architecture

PCU and the pRU. Figure 6.1 outlines the general components of the DCS and
their interconnections. Note that there is no direct communication between the
pRU and the PCU.

Figure 6.1: General overview of the DCS components.

There are multiple ways to establish communication between the control room
and the DCS hardware components. As was concluded in the discussion about
the radiation environment in Chapter 4, we know that radiation will not be a
particular problem if the pRU is placed at a sufficient distance from the beam
center. Therefore, one can opt for a commercial-off-the-shelf Ethernet solution
and use a standard communication protocol like TCP or UDP.

6.1.1 Microcontroller-based DCS

We know from Chapter 5 that the data link of the pRU must be separated
from all other communication links to avoid disruption of the data throughput.
Therefore, the control link must be implemented with a separate physical
interface. This separation opens the possibility of using a microcontroller (µC)
to simplify the use of Ethernet and higher-level protocols on the pRU. The µC
can either be implemented on the pRU as a separate chip, or on the FPGA
itself as a soft-CPU system. The use of a µC-based system would allow running
embedded software directly on the pRU for control and monitoring purposes.
However, it would also require the development of that software, noting that
embedded software is often more complicated, and performs less efficiently,
than high-level software running on a server system.

During the development of the pRU firmware, a µC-based system has been
implemented and tested [76]. Using the VCU118-development kit, this was

Chapter 6. Detector Control and Monitoring System 111

Figure 6.2: Block diagram of the embedded software stack [76].

implemented with a Microblaze soft-CPU and Xilinx MAC and PHY IP cores.
The PTB, which is described later in Section 7.5.1, also uses the µC-based
system but employs a hard-CPU that includes MAC and PHY blocks.

A custom protocol to be used with TCP communication has been developed.
This protocol is based on the specific tasks of the software. This includes
tasks like reading and writing registers of the ALPIDEs and the modules of
the FPGA firmware, and the transmission of commands to the ALPIDEs for
synchronization and triggering. Using the Xilinx software library for handling
the TCP protocol, the embedded software is instructed to decode the protocol
and perform the tasks one by one. Almost all tasks involve reading and writing
registers via the FPGA bus interface (see Section 6.2). The software was
designed to run on the FreeRTOS platform and included the possibility of
sending and receiving packets with UART instead of TCP. Figure 6.2 shows a
simplified block diagram of the software stack. Note also that the software has
support for offloading the sensor data since no other data offload scheme was
done at the time of development.

The pRU would require the use of a soft-CPU or an external µC because

112 6.1. DCS Architecture

of the pure FPGA chosen. However, the soft-CPU was determined to be a
severe bottleneck in the system. Many of the performance limitations could be
addressed to the selection of FreeRTOS. However, the work needed to port the
software to another OS was considered excessive. For this reason, one opted to
research the possibility of developing a pure FPGA-based DCS.

6.1.2 Pure FPGA-based DCS with IPBus

Pure FPGA-based DCS components will face some of the same challenges as the
data offload link of the pRU (see Section 5.7). Specifically, the implementation
of TCP on an FPGA is ruled out because of the complexity. Similarly to how
pDTP was developed for data offload, it would be possible to develop a custom
protocol on top of a GbE UDP implementation. Fortunately, however, the use
of Ethernet has already become semi-standard for detector control within the
HEP community, driving further the development of protocols and standards.
This is the result of standards like VME becoming antiquated and experiments
like CMS upgrading to xTCA standards [77].

IPBus is an Ethernet-based protocol standard developed for particle and HEP
experiments using FPGA-based hardware devices [78]. Recent developments
are explicitly done to be used in the CMS upgrade for the LHC 2015 run. Both
FPGA firmware and an integrated software suite are developed to simplify
instantiating a reliable communication channel using UDP with GbE.

Figure 6.3: Simplified block diagram of the pCT DCS as implemented with IPBus
during testing.

Figure 6.3 shows a simplified block diagram of how the pCT DCS is implemented
with IPBus during testing. IPBus provides a hardware abstraction layer (HAL)

Chapter 6. Detector Control and Monitoring System 113

API for both C++ and Python, called µHAL. This API provides functions for
register read, write, and read-modify-write (RMW) operations for accessing the
bus devices. Additionally, the IPBus suite contains the Control Hub software,
creating a single point of access for multiple devices when scaling up to multiple
DCS components.

Figure 6.4: Sketch of the different layers and devices of the DCS.

Using IPBus, the development of an interface between the DCS components
and the control room becomes significantly simpler than when using any custom
protocol. Figure 6.4 shows the sketch of all the layers of the system. On the
left side, the pRU is connected to all the ALPIDEs, whereas on the right, the
PCU FPGA is connected to the power monitoring sensors via I2C.

114 6.2. Bus Interface

6.2 Bus Interface

The pRU bus interface provides read and write access to the on-chip reg-
isters and, indirectly, the ALPIDE registers via the ALPIDE Control mod-
ule (see Section 6.4). Several bus protocol standards are extensively used in
FPGA applications, e.g., AXI-lite, Wishbone, Avalon, and Simple Bus Interface
(SBI) [79, 80, 81, 82]. AXI-lite was the preferred bus choice in the early stages
of the pRU development, as this is the built-in protocol of the Xilinx CPU
memory-mapped interface. However, as the µC-based system was discarded
and IPBus was selected for external communication, the on-chip bus protocol
choice became rather self-evident. With the use of bust (see Section 6.3), the
bus interface change is fast, safe, and straightforward.

The IPBus on-chip bus protocol is unsophisticated and is based upon the
Wishbone standard1. The bus protocol uses only seven signals. A write and
a read transaction are shown in Figure 6.5. The master requires the slave to
acknowledge the transaction. IPBus has an intrinsic timeout after 256 clock
cycles of the master IPBus clock2,3. Note that by waiting to transmit the
acknowledgment signal, a slave can hold the bus (see Section 6.3.1).

Figure 6.5: Waveform showing both a write and read transaction on the IPBus protocol.
The protocol does only require three control signals in addition to the three 32-bit data
and address signals.

1The protocol does also resemble the SBI used extensively by Bitvis [82].
2As seen in Figure 6.6, the master IPBus clock is 31.25 MHz.
3Note that, contrary to IPBus, AXI-lite has no intrinsic time-out, risking a locked situation

by requesting a read or write from a non-existent address.

Chapter 6. Detector Control and Monitoring System 115

The IPBus bus topology is point-to-point. This means that address decoders
are used to separate the slave interface signals and multiplex the returning data.
Figure 6.6 shows the pRU firmware bus tree in which the path from the IPBus
master to the various modules are outlined. Notice how simple register transfer
level (RTL) interconnect modules are instantiated between the master and the
slaves and used to decode the addresses based on given base addresses. These
blocks are purely combinational and do not add latency.

Figure 6.6: The pRU firmware bus interface tree.

6.2.1 Clock Domain Crossings

Recall from Section 4.4.1 that CDC synchronization modules are placed into the
bus interface datapath. These modules are shown as gray boxes in Figure 6.6.
There are two CDC synchronizers on the bus path: between 31.25 MHz and
120 MHz, and between 31.25 MHz and 40 MHz. This means that an operation
targeting the 120 MHz and 40 MHz domain modules will be delayed by nine
clock cycles of 31.25 MHz. Thus, there is a total transaction time of just below
0.3 µs.

116 6.3. Bus Tool

6.3 Bus Tool

A common, and often neglected, source of error in FPGA designs is the bus
interface and discrepancies between the actual and the documented register
map. During the design process, the register map is frequently updated,
especially if the specifications are changing. Because of this, the implementation,
documentation, and more crucially, verification, might be mismatched. To
counteract this, designers can use tools that automatically generate hardware
description language (HDL), documentation, and testbenches. Several open-
source tools exist for this purpose, but what they have in common is that
they usually only support a single bus protocol. This is true for both the
Bitvis Register Wizard (SBI), AirHDL (AXI-light), and several Wishbone-tools.
As discussed in Section 6.2, both AXI-lite and IPBus have been employed
by the pRU firmware during development. Therefore, a custom bus software
tool (bust)4, was developed to provide HDL, header-files, documentation, and
testbenches from a JSON-file containing the specification of a module and its
registers. Figure 6.7 outlines the bust concept.

Figure 6.7: The general concept of bust.

A bust-generated module adheres to typical encapsulation principles often used
to prevent implementation errors. This means that the bus interface mechanics
are hidden from the general user logic. This is seen in Figure 6.8. The user logic

4bust is a freely available open-source project found at https://github.com/
olagrottvik/bust

Chapter 6. Detector Control and Monitoring System 117

accesses the registers via the VHDL record construct. All register addresses,
sizes, pulse lengths, and more, are hidden within the module peripheral interface
VHDL package.

Figure 6.8: The resulting firmware module generated by bust.

6.3.1 Register Types

In addition to regular read/write and read-only register types, the pRU firmware
employs a special type of register; the pulse register. Writing to this kind of
register will set the register value for a certain amount of clock cycles before
self-resetting back to its original value. This kind of register is useful for the
initiation of procedures and more.

Furthermore, some registers can also stall the bus for a certain amount of
clock cycles. Holding the bus avoids cases where the user tries to initiate
commands before other procedures are completed. This minimizes the risk of
user error. The stall feature is for instance used when the pRU communicates
with the ALPIDEs (see Section 6.4). Both register mechanics are automatically
generated by the bust software.

6.4 ALPIDE Control

The ALPIDE Control module is a firmware module of the pRU firmware
designed for the communication with the sensors utilizing the slow control

118 6.4. ALPIDE Control

interface of the ALPIDE5. The block contains a separate control instance for
each sensor string connected to the pRU, and it is possible to communicate
with individual sensors, a full string, or even a complete layer at the same
time. A simplified schematic drawing is shown in Figure 6.9. Notice that a
common finite-state machine (FSM) is used to control all links. Thus, the
block is designed so that no link can operate independently from the others. A
significant limitation is that read operations must target only a single ALPIDE.
This is due to the nature of the shared slow control interface.

Figure 6.9: Simplified schematic drawing of the ALPIDE Control block in charge of
the slow control interface.

6.4.1 Half-Duplex MLVDS Bus Interface

The ALPIDE slow control link uses a bi-directional MLVDS signal. The current
direction of the control link is managed by a simple signal for each link. The
pRU and its predecessors employ a half-duplex MLVDS-driver chip6 between
the FPGA and the ALPIDEs. This way, the data signal for each direction is
separated on the FPGA-side, as seen in Figure 6.9. The chip also allows for

5The module is based on an early version from the ITS RU firmware but has been
considerably changed to be agnostic to cable lengths and to be integrated with the Trigger
Manager module.

6Texas Instruments SN65MLVD080 [83].

Chapter 6. Detector Control and Monitoring System 119

listen-while-talking, meaning that we can observe the actual MLVDS signal
state at any time by measuring the return signal, regardless of the current link
direction.

6.4.2 Transactions

The ALPIDE Control module can perform three types of transactions with the
sensors of the layer. These types are based on the number of ALPIDEs that are
affected by the transaction. See Figure 6.10 for the format of valid ALPIDE
transactions.

Figure 6.10: The format of valid ALPIDE slow control transactions [29]. Note that
the read transaction requires a bus turnaround period.

Unicast A unicast transaction is either a register write
or a register read operation for a single ALPIDE
chip.

Multicast/multistavecast Multicasting refers to the write operation of a
register on several ALPIDEs at the same time.
Note that the register read transaction cannot
be performed for multiple chips at the same
time. The ALPIDE slow control format allows
the writing of all sensors sharing the same in-
terface. However, the ALPIDE Control module
also enables writing to a specific chip ID on all

120 6.4. ALPIDE Control

connected strings (multistavecast) or even to all
ALPIDEs connected to the pRU.

Broadcast A broadcast is a command transaction to every
single sensor of either a specific string or the
complete layer. Note that command transac-
tions also can be performed by writing to the
command register on the ALPIDE, and thus
can also be carried out by unicast and multicast
transactions. The trigger and various resets are
examples of ALPIDE commands that are usually
transmitted as broadcasts.

All the types of transactions can be started via the IPBus interface. Additionally,
a subset of the broadcast commands is available to another block of the firmware
design; the Trigger Manager (see Section 6.5.6). The type of transaction to be
executed is selected by setting specific registers. A write or a read operation
is initiated by writing to certain pulse/stall registers. By writing to these
registers, the bus interface is stalled until the operation is completed. Each link
is controlled by its own FSM, which communicates with the main FSM.

A simplified flowchart showing the combined main and link FSMs is given in
Figure 6.11. Depending on which command is requested, three main paths are
followed. The main FSM is giving instructions to the link while waiting for
either a fixed amount of clock cycles or for the link to notify about completion.
As no acknowledgment is given from the ALPIDE to confirm that a broadcast
or a write transaction has been completed, the main FSM is simply waiting a
fixed amount of clock cycles. The only way to confirm that a write operation
has been completed successfully is to read back the register to verify the written
value7. This can be done by the DCS software. During read transactions,
however, one can confirm that the returned transmission from the ALPIDE
is within the valid format and thus can confirm success or not. Note how the
read transactions require an additional block, the input deserializer, which is
outlined below in Section 6.4.3.

7Note, that some ALPIDE registers are write-only and cannot be read.

Chapter 6. Detector Control and Monitoring System 121

Figure 6.11: Simplified combined flowchart of the main and link state machines.

122 6.4. ALPIDE Control

6.4.3 Input Deserializer

The input deserializer is initiated by the link FSM. The deserializer is oversam-
pling the input signal and will, based on a given set of parameters, automatically
determine which sample is the most reliable. The sample selection is performed
for every 8-bit word transmitted from the ALPIDE, which adds significant
reliability compared to a fixed-phase approach. Furthermore, the block also
extracts the start-bit of the transmission and can extrapolate which word is
currently sampled. For each word, the block checks that the end-bit is correct.

The block is designed to work with different oversampling rates. However,
based on the results from early lab testing, it was decided that the incoming
data will be sampled at six times the transmission rate, 240 MHz, to ensure a
near-zero risk of errors. The block continuously shifts the sampled data into a
vector whose size reflects the oversampling rate. The deserializing sequence for
a single read operation is laid out below and in Figure 6.12:

• Idle until the link FSM notifies
• Wait for a configurable number of clock cycles. This can be used to tune

to various cable lengths. A fixed number of clock cycles is found that
supports cable lengths from 0.3 m to 5 m, as well as the zero meter setup
for the PTB (see Section 7.5.1).

• Wait for a stable input signal. This step makes sure that the ALPIDE has
started driving the link and that the MLVDS-driver chip has completed
the turnaround of the bus. Note that the default setting of the ALPIDE
is to use Manchester encoding, but this can be turned off in special
circumstances. Thus, the block must be able to detect a stable signal
for both cases, which is accomplished by observing that a configurable
number of samples are identical. This check works for Manchester encoded
data only because the protocol uses a start-bit to mark the beginning of
a data word. A configurable timeout of this check causes an error flag to
be raised, and that 0xDEAD is reported as the data received from chip
ID 0xFF (which does not exist).

• Wait for the start bit. Based on the position of the discovered start bit in
the sequence of samples, the sample point is selected for the following word.

Chapter 6. Detector Control and Monitoring System 123

Figure 6.12: The state machine diagram of the input deserializer block of the ALPIDE
Control module.

The middle sample of a sequence of identical sample values is selected as
the sample point, lowering the probability of noise when sampling the bits
of the word. If the start-bit fails to occur before a configurable timeout
condition, the process is aborted, and the link FSM is notified.

• Sample the data word by shifting the selected sample position data bit
into an 8-bit vector.

• Check that the stop bit occurs at the expected position. If no stop-bit is
observed, the process is aborted, and the link FSM is notified.

• The last three steps are repeated for both the chip ID, data-low, and
data-high words, as seen in Figure 6.10. When finished and all checks
are met, the block notifies the link FSM that the process has completed
successfully and that the resulting data and status can be latched to bus
interface registers.

124 6.5. Trigger and Clock Synchronization

6.5 Trigger and Clock Synchronization

As discussed in Section 5.6, each detector frame needs to be associated with
a certain trigger. This is because the frame must be combined with all other
frames originating from the same trigger to generate a 3D snapshot of the
detector that can be used for particle tracking. The trigger signals must be
transmitted to all sensors of the system at the same time. The pRUs use a
board-to-board interface (BTBI) to achieve this and other synchronization
tasks. The BTBI is controlled by a single master pRU and is discussed in detail
in Section 6.5.5.

6.5.1 Synchronization Parameters

To combine the data frames from different sensors and layers, the DAQ software
relies on four separate parameters of the pRU data format. The values of
all these parameters can be altered with the IPBus communication channel.
However, as Ethernet is non-deterministic, reliable synchronization can only be
achieved by using the BTBI. The origins of the synchronization parameters are
shown in Figure 6.13.

Figure 6.13: The pRU synchronization architecture. The arrows show the origin of
the various synchronization parameters. The board-to-board interface (BTBI) is shown
connected in a multi-drop scheme with a single master pRU.

Chapter 6. Detector Control and Monitoring System 125

6.5.1.1 Spill ID

The spill ID is intended to separate frames from different 2D projections. The
value is stored by the Trigger Manager module of each pRU; therefore, so the
value can be out-of-sync between each layer.

6.5.1.2 Frame ID

The frame ID is intended to separate frames originating from different triggers.
The frame ID counter is incremented each time the ALPIDE Control module
transmits a trigger command8. Similarly to the spill ID, the frame ID can be
out-of-sync between two layers. However, in some rare cases, the frame ID can
also be out-of-sync between channels in a layer. This situation is discussed in
Section 6.5.2.

6.5.1.3 ALPIDE Bunch Counter

Each ALPIDE is supplied with a 40 MHz clock distributed by the pRU, and
this is also the update rate of the ALPIDE bunch counter, a 16-bit internal
counter. The counter value from the time the ALPIDE is triggered is used
to tag an outgoing data frame. Note, however, that the three LSBs are not
included in the data and that the resulting resolution, therefore, is 200 ns. As
each ALPIDE incorporates a separate counter, the values might differ between
them depending. The counters can be synchronized by transmitting a specific
reset command to the ALPIDE.

6.5.1.4 pRU Absolute Time

Naturally, the 16-bit bunch counter of the ALPIDE overflows after only 1.6 ms.
As each pCT projection is in the order of seconds, we must also tag the data
with the pRU absolute time to ensure that we can separate all frames within a
projection. The 32-bit pRU absolute time counter ticks at the 120 MHz system
clock and thus, the time resolution is higher than with the ALPIDE bunch

8The trigger command can be sent to one or more ALPIDEs depending on the mode.
However, the frame ID is incremented for ALL ALPIDEs regardless of how many ALPIDEs
that are triggered.

126 6.5. Trigger and Clock Synchronization

counter. The counters can be out-of-sync between different layers. Note that
the absolute time can be used to track the potential drift between the layers.
This is valuable depending on the clock configuration which is discussed in
Section 6.5.4.

6.5.2 Frame ID and Absolute Time Issues

The frame ID and the absolute time are both updated and latched to registers
when the ALPIDE Control transmits a trigger command. The values are then
fixed until another trigger command is transmitted. The registers are connected
to the ALPIDE Data modules which use the current values of the registers to
tag the incoming data frames. As illustrated in Figure 6.14, a channel handling
a very large data frame might become out of sync when the data processing
time exceeds two trigger periods. The second frame arriving on that specific
channel, marked in red, is tagged with the incorrect frame ID and absolute
time. Furthermore, the third frame, if arriving within the same window as the
second, can be tagged with the same frame ID and absolute time counter as
the second frame. Note, however, that these packets will still obtain the correct
bunch counter values. Therefore, the DAQ software should be able to detect
and correct for such situations.

Figure 6.14: Waveform illustrating the Frame ID and Absolute Time sync issue. The
incorrectly tagged frame is marked in red.

Because the nominal trigger rate of the pCT is 10 µs, such situations will occur
only if a frame is large enough to exceed 20 µs9. Based on the throughput of
960 Mb/s, the frame must be over 2.4 kB for this to happen. If no clustering is
enabled, or the data is solely single-pixel hits, this can occurs if an ALPIDE
has over 800 single-pixel hits. However, if we conservatively assume that a

9Or if two frames combined are large enough to exceed 30 µs.

Chapter 6. Detector Control and Monitoring System 127

particle on average produces four data long words10, 200 particles are required
to generate such a frame. Based on the requirement of 107 particles/s scanning
beam and a frame rate of 10 µs, giving an average rate of 100 particles per
frame, this situation will rarely occur. However, this phenomenon must be
taken into account before the detector is used with a faster trigger rate11.

6.5.2.1 Alternative Approach

The above timing ambiguity situation is both rare and recoverable. However,
an alternative approach for managing the frame ID and the absolute time
counter has been explored. The above issue can be solved by having separated
registers for the frame ID and the absolute time counter values within each
ALPIDE Data module. For instance, the frame ID counter is incremented
whenever a frame is observed by the protocol checker. Moreover, for each
trigger transmitted by the ALPIDE Control, the ALPIDE Data module stores
the absolute time counter value within a FIFO, ready to be extracted when a
frame arrives.

However, this approach is perilous for other reasons. With an increasing number
of instances of both the frame ID and the absolute time counter, we intensify
the risk of asynchrony. Also, by using the incoming data from the ALPIDEs
to increment the parameters, we expose the system synchronization to be
vulnerable to data link noise. Specifically, a potential error can arise when the
ALPIDE Data module interprets noise and jitter as actual data. The result of
this event will be (1) an erroneous frame containing only garbage data that is
tagged with the frame ID and the absolute time from the triggering, and (2) a
proper frame tagged with an erroneous frame ID and absolute time information.

Consequently, the second frame’s pRU time will not match the other sensors’
frames initiated by the same trigger. Although it might be possible for the
DAQ software to correctly identify the situation based on the bunch counter

10This entails a pixel cluster of up to 32 pixels firing. As shown earlier in Figure 1.5, this
is rather unlikely.

11Note that if the detector was utilized with a scatter beam, rather than a scanning beam,
the rate of particles per frame would significantly drop because the particles would be spread
to all sensors of the layer.

128 6.5. Trigger and Clock Synchronization

value, the frame ID value will never recover from this situation without a
reset. Furthermore, if more erroneous frames are observed, the frame ID error
will accumulate, making the task of correctly identifying proper frames even
more difficult for the DAQ software. Based on this observation, the alternate
approach is rejected.

6.5.3 Synchronization Levels

By using these four parameters together, the DAQ software can validate and
combine the data frames. But, in certain situations, like the ones described
above, some of these parameters might not match. However, as we shall see,
this does not mean that data frames cannot be appropriately combined.

Figure 6.15 shows four different levels of synchronization between the sensors
and layers. Four sensors, two from different layers, are used to illustrate the
state of synchrony based on their parameter values. In the top left corner, all
ALPIDEs and pRUs are fully synchronized, i.e., all four parameters match each
other. This is the optimal situation where we are confident that all frames
originate from the same trigger signal.

In the top right corner, however, the frame ID and absolute time counter of one
sensor do not match the values of the other sensors. Nevertheless, based on
the bunch counter and the spill ID, the frame can easily be combined with the
frames of the other chips. The DAQ software can search for this situation by
combining all frames from within a layer with a matching bunch counter. Any
frame where the frame ID and the absolute time counter are slightly off will
be a candidate for this temporary out-of-sync situation. Further examination
might reveal that the next frame for this channel has the same frame ID and
bunch counter value as the previous.

In the bottom left corner of Figure 6.15, a drifting clock situation has arisen.
This has caused all the bunch counter and the absolute time counter values of
a layer to be different from those of another layer. However, in this situation,
the values will still match within a layer. Therefore, the DAQ software can first
combine all frames within a layer, and then next combine these frames with
the other layers based on the frame ID and spill ID values.

Chapter 6. Detector Control and Monitoring System 129

Figure 6.15: Illustrations of the various levels of data frame synchronization. Param-
eters that are crossed over, illustrate values that do not match the others.

In the bottom right corner, a situation has occurred where neither the frame
ID, the bunch counter value, nor the absolute time counter value of one sensor’s
data frame match any other sensors’ data. There is no way to combine this
frame with the others. If the frame bunch counter value does not match the
bunch counter value of any of the other sensors, this sensor is most likely
out-of-sync, or the data is corrupted.

What the different levels of synchrony illustrate is that the bunch counter value
is the most critical synchronization parameter and that consistency between
sensors is imperative. Furthermore, the frame ID and, ideally, the absolute
time counter must be synchronized between the layers. Within a layer, the spill
ID and the bunch counter value are the two most reliable parameters. This is
because these values cannot become out-of-sync based on activity on the data
links. However, between two layers, the bunch counter is susceptible to clock

130 6.5. Trigger and Clock Synchronization

drift depending on the clock mode (see Section 6.5.4). Note that the frame ID
must never be used without the bunch counter to combine data frames within
a layer. But rather, the value can be used to combine all frames from a layer
with all the frames of another layer.

In a sense, the absolute time counter is redundant as the spill ID can be
incremented when the bunch counter overflows. Also, in principle, the frame ID
and the absolute time parameters have the same purpose and behave similarly.
Nonetheless, the absolute time counter can also be used to keep track of clock
drift between the layers and is thus a valuable extra parameter improving
reliability.

6.5.4 Synchronization Architecture

All clock oscillators are associated with some uncertainty. The accuracy of a
clock is usually specified in parts-per-million (PPM). The oscillators supplying
the pRU FPGA firmware will naturally differ and drift apart. Based on the clock
accuracy, we can calculate the worst-case difference between two ALPIDEs on
two separate pRUs. If we assume that the 40 MHz clocks on two different pRUs
supplying the ALPIDEs have an accuracy of 20 PPM, the actual frequencies
supplying the ALPIDE can differ with up to 1600 Hz. That means that the
bunch counter of one of the ALPIDEs might have ticked up to 1600 times more
than the other ALPIDE after just a single second. The same observation can
be made regarding the pRU system clock. In the worst case, if two pRUs are
configured to autonomously generate a sequence of triggers with a 100 kHz
trigger rate, one of the pRUs will have finished transmitting all triggers 40 µs
faster than the other. The resulting data would be completely useless.

Note that, since the pRU distributes the same 40 MHz clock to all sensors over
a physical interface with only slightly different trace lengths12, we expect that
all the ALPIDE bunch counters of a layer will be synchronized after a simple
bunch counter reset of the ALPIDEs. Thus, for the remaining discussion, we

12By assuming a propagation time of roughly 0.6c, the 27 cm difference between the far-end
and the close-end ALPIDE on a string entails that a clock edge will occur at the close-end
ALPIDE roughly 1.5 ns earlier.

Chapter 6. Detector Control and Monitoring System 131

assume that synchronization is required only between the various pRUs of the
system.

The pRU synchronization architecture is designed to alleviate the clock un-
certainty and provide sufficient synchronization by supporting the two clock
modes discussed below. Both modes ensure that all triggers in the system are
executed within a very short time window and that it is possible to extract
an accurate time from the pixel hit data. For both modes, there is a single
master pRU that controls the execution of triggers and other synchronization
commands via the BTBI discussed in Section 6.5.5.

6.5.4.1 Fully Synchronous

A dedicated board distributes a common 40 MHz clock via coax cables of
identical lengths. Also, a single master pRU can be used to distribute the clock
over a multi-drop interface13. The pRUs use this clock to generate the ALPIDE
and the system clocks (see Section 4.4). Assuming that the clock signal integrity
is sufficient to generate low-jitter clocks, this scheme is the simplest way to
ensure full synchronization between the pRUs and the sensors. However, the
hardware implementation of the clock distribution can affect the clock integrity.
Thus, we must ensure that the system can function without clock distribution
before we can confirm and test the scheme with actual hardware. This scheme
is also more costly than the alternative, which is free-running clocks.

6.5.4.2 Semi-Autonomous

All pRUs operate on the local oscillator clock, and the clocks of different pRUs
are guaranteed to drift apart within milliseconds. This means that neither the
pRU absolute time counter nor the ALPIDE bunch counter of a layer will match
the counters of another layer. This situation can be acceptable if, and only if,
we can guarantee that the triggers of all layers occur at the same time (see
Section 6.5.5). Also, the frame and spill counters must be consistent between
layers, meaning that all frames originating from the same trigger will have the

13Note that this might be reduce the synchronization accuracy because of different clock
skew.

132 6.5. Trigger and Clock Synchronization

same frame and spill ID. The frame and spill counters can be used to combine
the frames from different layers without the aid of time counters. For further
examination of the data and to check for data corruption, the DAQ software
can be used to control for consistency between the differences between the clock
counters of two layers. One can expect that the absolute time counter of the
pRU and the ALPIDE bunch counters will drift with the same factor since the
system and the ALPIDE clocks are related.

6.5.5 Board-to-Board Interface

To synchronize the parameters of the system, but also to initiate trigger com-
mands and more, we need a form of communication between the components.
It would be natural to assume that one could use the Ethernet-based IPBus
interface to issue these commands. However, one must consider that Ethernet,
when controlled by software and routed through several switches, will not be
deterministic in terms of packet arrival time. Thus, to synchronize the sensors
and the pRUs, a separate deterministic system is needed.

A command distribution architecture is presented in Figure 6.13. In this scheme,
a single pRU acts as the master, and the remaining pRUs are connected in a
multi-drop scheme. The required signals are the following:

TX/ARM The serial command interface signal. Used by the master to
arm the slaves before issuing the command pulse.

ACK The acknowledgment signal is connected in an open-drain
scheme with a weak pull-up resistor. Thus, the slaves will
pull the signal low until they all have acknowledged the arm
code. Releasing the pull allows the signal to be asserted on
the master-end. When returning to the unarmed state, the
slaves re-pulls the signal. As seen in Figure 6.18, the master
will time-out after a configurable number of clock cycles if
one or more of the slaves continue to pull the signal low. This
indicates a critical communication failure.

TRIG/SYNC When all the slaves are armed, the master can initiate the
command by transmitting the TRIG/SYNC pulse. The slaves

Chapter 6. Detector Control and Monitoring System 133

react on the rising edge of the pulse. If the specific command is
part of a sequence, as specified in Table 6.1, the slaves remain
armed until the master transmits the unarm command.

With the presented clocking architecture and synchronization interface, we
can assure that commands are initiated within the same time window on all
pRUs, regardless of the clocking mode. However, the time window is slightly
larger when using the free-running clocks, based on the phase uncertainty.
Equation 6.1 combines the three contributing factors of the maximum trigger
time divergence. The first factor is the propagation time from the master to a
slave pRU. We assume that the electrical distance is between 0 and 2 m and a
signal propagation velocity of about 0.6c. The second factor is the maximum
clock skew between the master and the slave. The skew cannot be more than
the actual clock period. Note that the fully synchronous clocking mode will
have a negligible clock skew. Thus, this is the factor that separates the two
modes. For the final factor, we include the propagation time difference between
the far-end and close-end ALPIDE.

TMaxDivergenceF ree = TpRUP rop + TMaxSkew + TALP P rop

= 11.1 ns + 25 ns + 1.5 ns

= 37.6 ns

TMaxDivergenceSync = TpRUP rop + TALP P rop

= 11.1 ns + 1.5 ns

= 12.6 ns

(6.1)

Note that all commands that affect the ALPIDEs are affected by the same
divergence. This means that the bunch counter value across the layers will have
an uncertainty of either 37.6 ns or 12.6 ns depending on the clock mode. Within
a layer, the uncertainty of these values is only 1.5 ns. The pRU absolute time
counter has an uncertainty of 36.1 ns or 11.1 ns based on the clocking mode.

The proposed command distribution architecture is only deterministic component-
to-component. Transmitting the first command via the IPBus interface removes
the accurate knowledge of when the command will be initiated. Its time will
vary based on the IPBus packet size and the general network activity. In the

134 6.5. Trigger and Clock Synchronization

case where we require the system to be fully deterministic, meaning that also
the initiating first command must be executed at a known time, one cannot
use the IPBus interface to start the procedure. For instance, one could imagine
that a trigger sequence must be initiated at an exact time relative to the beam
spill. Therefore, the pRU can also be controlled via external ports. This allows
for the control and synchronization of the DCS by external parts of the detector
system, e.g., the beam machinery.

Figure 6.16 shows the waveform of the dead-simple BTBI protocol using start
and stop bits. Each transmission consists of an 8-bit data word, where the four
preceding bits determine the arm command. This leaves the option of 16 unique
commands, with optional information about the commands. The master can,
e.g., transmit an arm code and also notify the slave if it should expect a sequence
or not. The various arm codes are presented in Table 6.1. Transmitting the
8-bit command, including start and stop-bits, to the pRU slaves takes roughly
250 ns using the 40 MHz clock, assuming a negligible propagation time.

Figure 6.16: Wavediagram of the simple board-to-board interface protocol.

Table 6.1: The arming codes of the board-to-board interface protocol. Note the special
Sync All command which arms the pRUs for the reset of all the four synchronization
parameters.

Command Sequence Arm Code Lock ALPIDE Control
Trigger True 0x0 Yes
Pulse True 0x1 Yes
Pulse/Trigger True 0x2 Yes
Sync All True 0x3 Yes
Unarm False 0x4 Unlock
Absolute Time Reset False 0x5 No
Spill ID Increment False 0x6 No
Spill ID Reset False 0x7 No
Frame ID Reset False 0x8 No
ALPIDE Bunch Counter Reset False 0x9 Yes
ALPIDE Global Reset False 0xA Yes
ALPIDE Pixel Reset False 0xB Yes
ALPIDE Debug False 0xC Yes
ALPIDE Readout Reset False 0xD Yes

Chapter 6. Detector Control and Monitoring System 135

6.5.6 Trigger Manager

The Trigger Manager is the firmware module in charge of the DCS synchro-
nization procedures presented in Table 6.1. The Trigger Manager, based on
configuration, operate as either the BTBI master or the slave. The block can
initiate various commands via the ALPIDE Control module.

Figure 6.17: Simplified block diagram of the Trigger Manager module.

Figure 6.17 shows a simplified schematic of the Trigger Manager module. An
FSM controls the command execution and has access to both the absolute time
counter and the spill ID value. The Trigger Manager also has direct control
of the ALPIDE Control module. However, to ensure that no conflicts arise
by accessing the ALPIDE Control module, e.g., that the ALPIDE Control
is already in use by the IPBus interface, the Trigger Manager monitors the
ALPIDE Control status. Because the Trigger Manager tasks are more critical,
i.e., synchronization and triggering are always more important than monitoring,
it can lock the ALPIDE Control module by asserting the lock signal. When
this signal is asserted, the ALPIDE Control will not initiate any requests from
the IPBus interface. The user of the IPBus interface must be aware of this to
ensure no critical configuration of the ALPIDE is being done at the same time
as the Trigger Manager holds a lock. This feature is also important for certain
sequences, e.g., when transmitting a trigger train, keeping all the ALPIDE

136 6.6. DCS Time Budget

Control modules of all pRUs locked to the Trigger Manager interface.

Figure 6.17 also illustrates that the Trigger Manager incorporates the BTBI
block. The multi-drop architecture requires that the pRUs are configured at
boot-up to act as either master or slave. This is important so that the slaves
do not drive the output of the TX/ARM but do drive the ACK signal. The
pRUs will use the pRU ID number, set by a physical property on the board, to
determine the master/slave status.

Figure 6.18 shows the combined flowchart for the master and the slave pRU.
Note how both the master and the slave must consider the state of the ALPIDE
Control before initiating commands. To prevent locking the ALPIDE Control
unnecessary and to reduce the wait time, not all commands will require this
lock.

6.6 DCS Time Budget

Each transaction of the DCS, either a register read/write or a synchronization
command, is time-consuming. It is important to have a certain degree of control
of how much time is spent by certain tasks, especially the initial configuration
of the system, to ensure that the DCS is fast enough to be useful during the
operation of the detector. During the configuration of the detector, the vast
majority of the transactions will be targeting the ALPIDEs.

Each transaction via the ALPIDE slow control interface requires a fixed amount
of clock cycles. However, for each transaction initiated via the memory-mapped
interface, we must also consider the latency of the FPGA bus. As noted in
Section 6.2.1, several clock cycles of delay is required for any write and read
transaction of the ALPIDE control module because of the CDC modules.

Listed below are the exact times needed to perform the various ALPIDE
transactions. An ALPIDE broadcast, as seen in Equation 6.2, only needs
two register write operations, including the required 70 clock cycle bus stall.
This transaction is completed within 2.3 µs. Register write and read, seen in
Equation 6.3 and 6.4 respectively, requires more bus transactions. A register
write requires that the user specifies both the register address and the data to

Chapter 6. Detector Control and Monitoring System 137

Figure 6.18: A flowchart of board-to-board interface master and slave. The master-side
is to the left, and the slave-side to the right.

138 6.6. DCS Time Budget

be written. A register read transaction also includes the transfer of the data
read from the ALPIDE, as well as the read status flags, via the bus interface
to the end-user. This is in addition to the extra clock cycles used for the bus
turnaround process and recovering the data. The required time for register
write and read, are 2.9 µs and 4.3 µs, respectively.

1 × RegWrite

+ 1 × (RegWrite+ 70 cycle stall)
= 18@31.25 MHz + 70@40 MHz
= 2.3 µs

(6.2)

3 × RegWrite

+ 1 × (RegWrite+ 70 cycle stall)
= 36@31.25 MHz + 70@40 MHz
= 2.9 µs

(6.3)

2 × RegWrite

1 × (RegWrite+ 116 cycle stall)
+ 2 × RegRead

= 45@31.25 MHz + 116@40 MHz
= 4.3 µs

(6.4)

Note that the time to transfer the IPBus read and write requests via Ethernet is
not included in these calculations. According to [78], the single-word read/write
latency of the IPBus is approximately 250 µs. This latency dwarfs what was out-
lined above. However, the IPBus µHAL can concatenate multiple transactions
into a single packet transmitted to the device where each transaction is executed
in order. This combining of up to an order of hundreds of transactions per
IPBus Ethernet packet considerably compensates for the single-word latency.

As shown in Figure 6.19, when increasing the number of requests in an IPBus
control packet, the time used per DCS transaction is considerably reduced.
However, what is also clear, is that the latency introduced by the bus CDC
modules are minimal compared to the IPBus and ALPIDE slow control overhead.
The best-case time of an ALPIDE register write and read are measured to be
roughly 15 µs and 21 µs, respectively.

Chapter 6. Detector Control and Monitoring System 139

Figure 6.19: Lab measurement of the time per DCS transaction based on the number of
requests in the IPBus control packet. Note the stark diminishing returns when combining
more than roughly 50 transactions within a packet. This yields the DCS software some
slack when combining transactions in fixed packets.

6.6.1 ALPIDE Configuration

Configuration Select

Row Select

Column Select

+ Clear P ixel Select

= 60 µs
× 5000 pixels
= 300 ms
× 108 sensors
= 32.4 s

(6.5)

The most time-consuming task of the DCS is the configuration of the ALPIDEs,
particularly the masking of noisy pixels. As the number, and the addresses, of
noisy pixels will be unique for each ALPIDE, the masking procedure must be
done one sensor at a time. Each pixel masking requires four ALPIDE register
write operations. The worst-case scenario is if all ALPIDEs has up to 5000

140 6.7. Conclusion

noisy pixels14. Exploiting the IPBus concatenation procedure, one can calculate
the time required to mask all the pixels of a (very noisy) layer to be 32.4 s,
as seen calculated in Equation 6.5. The masking of pixels can be parallelized
between each layer. The result is within what we consider to be a reasonable
configuration period.

6.7 Conclusion

The DCS firmware is using register-based communication with both the IPBus
Ethernet protocol and the IPBus bus protocol. This has simplified both firmware
and software development of the DCS. Using the bust software for keeping
documentation and verification up-to-date, facilitated a constructive basis for
development and usage of the firmware. The DCS components of the pRU
firmware are completed and tested extensively in simulation. Furthermore,
the ALPIDE slow control communication module is both tested with multiple
front-end designs and has been in widespread use during experiments. However,
the trigger and clock synchronization components must be tested in a physical
hardware setup to ensure correct behavior. Furthermore, the PCU and its
firmware are still under development.

14A sensor with between 2100 and 5243 noisy pixels is considered to be of low quality or
BRONZE (see Section 7.5.3).

CHAPTER 7

Verification and Testing

The firmware of the DAQ and DCS system has been extensively tested. This
chapter describes a subset of these tests. First, we introduce verification as
a concept, with techniques and methodology for digital design verification in
general and specifically for FPGA design verification. The chapter continues
to describe the verification and test setups for the various firmware modules.
Furthermore, the integration tests are explained in detail. The chapter then
changes focus to the hardware verification procedures and the use of the design.

7.1 Functional Verification

Functional verification ensures that the design operates as intended. This is
one of the most important stages of the development cycle and is usually one
of the most time-consuming phases.

Verification during ASIC development is often considered to be more critical
than during FPGA firmware development. This is because of the considerable
costs involved in the turnaround and production of ASIC devices. Most FPGAs
are reconfigurable, and thus the firmware can be changed within the field if
errors are found. However, FPGA firmware verification remains vital because
of the complexity and effort involved with hardware testing. Once an FPGA is
configured, it is difficult to observe what is going on inside it. Some tools exist
for this purpose, like the Xilinx integrated logic analyzer. However, these do not
allow for full control and observation of all the internal signals. They are often

142 7.1. Functional Verification

slow to operate and awkward to set up. They usually also require a significant
amount of FPGA resources. These tools might, therefore, be impossible to
use when the actual design occupies most of the FPGA resources. These are
some of the reasons why FPGA firmware developers extensively use software
simulation and other types of software-based verification before testing the
resulting hardware.

7.1.1 Verification using Testbenches

Simulations of digital designs are generally done within a testbench architecture.
A testbench contains, at minimum, a test sequencer and one or more instances
of the unit under test (UUT). The test sequencer is a piece of code that provides
stimuli to the UUT and checks and validates the UUT outputs following the
stimuli.

The test sequencer can benefit from extracting the UUT interfaces to separate
instances. This will significantly simplify the test sequencer code and allows
the possibility of reusing the interface code in other testbenches. An extracted
interface is called a Bus Functional Model (BFM). A BFM contains functions
and procedures for interacting with a specific interface of the UUT. The test
sequencer, thus, calls on these to interact with the UUT.

7.1.2 Test-Driven Development

Test-driven development (TDD) is a design paradigm used in software develop-
ment. The paradigm states that one should design and write the tests before
each feature is developed. This procedure can encourage simple design and in-
creases confidence with the design. The development lead time is often reduced
with the use of TDD [84]. Although TDD is usually associated with software
development, the paradigm is now also used by some digital designers [85].
Specifically, for HDL developers, TDD discourages the use of the waveform to
do manual verification.

During the development and verification of the pRU firmware, we have strived
to follow the principles of TDD. This has resulted in multiple module-based
verification testbenches, which have significantly contributed to relatively swift

Chapter 7. Verification and Testing 143

development and verification, in addition to high confidence in the resulting
design. In some cases, however, TDD was rejected because of the indefinite
module requirements during development. Specifically, this involved the de-
velopment of the high-speed data input stage since this was designed during
a research stage of the development (see Section 7.4.2). Also, for some of the
data flow modules, because of changing requirements, the verification code was
added after the design stage.

7.1.3 Bitvis Verification Library

The verification testbenches of the pRU firmware extensively use the Bitvis
verification library Universal VHDL Verification Methodology (UVVM) [86].
The UVVM library provides a vast range of useful features for software simula-
tion of digital design. For instance, UVVM includes a range of BFMs ready
to be used with any custom test sequence. The library also provides features
for logging, error checking, and randomization. The randomization functions
are used to implement constrained random checking of some of the complex
interfaces (see Section 7.2.6).

UVVM includes a particularly critical feature allowing concurrent control of
multiple interfaces: the VHDL Verification Component (VVC). A VVC is, in
principle, a BFM. However, the VVC includes a queue, making it possible to
send a list of operations to the VVC, and while the VVC performs these tasks,
the test sequencer can execute other transactions. This is particularly useful for
testing how a module reacts when two of its interfaces are active simultaneously.

7.1.4 Design Correctness

It is not trivial to assert whether a design is correct. Naturally, the correctness
definition is related to the module specifications. However, sometimes the
specifications may be incomplete. This is especially true regarding multi-
interface modules. Multiple interfaces add another layer of complexity to the
module, and it might not always be clear how the module should tolerate
situations where both interfaces are active simultaneously. Furthermore, in

144 7.2. pRU Firmware Module Verification

practice, it might be challenging to translate the simulation result metrics to
match the linguistically expressed specification document objectives.

Therefore, the code coverage metric is often used to aid in the determination of
correctness during digital design verification. Code coverage is a quantitative
measure of the design and test code provided by the simulation software. High
code coverage tells the verification engineer that the tests have activated a large
part of the actual design code. Code coverage differentiates between several
criteria. In particular, code coverage offers metrics for statements, branches,
and FSM states and transitions. It is also possible to obtain a percentage
of possible input combinations that have been activated for expressions and
conditions. This metric is called Focused Expression Coverage (FEC). However,
it can be difficult to obtain a high FEC score without sacrificing the verbosity
and readability of the code. Thus, the pRU firmware verification focuses on
the three former criteria. However, code coverage is an incomplete measure of
correctness as it does not consider unimplemented features and does not ensure
that the output of a given stimulus is verified.

Therefore, it is vital to write specification as a set of testable statements, and
the pRU firmware is designed with this in mind. The pRU firmware verification
is done with both code coverage and an emphasis on TDD to ensure correctness.

The pRU firmware testbenches use a combination of direct and random testing.
Direct testing involves a set of pre-defined test cases and test data. Random
testing is included in case we are incapable of predicting how the design might
fail. The cases might include random data sets, but also random timing of
events.

7.2 pRU Firmware Module Verification

As required by TDD, each main module of the pRU firmware is tested in
isolation. A consequence of having a single person both designing and testing
the firmware modules is the loss of the black box perspective. This might have
caused hidden problems within the firmware modules, as the designer might
have an obstructed view of the design. Evidently, two sets of eyes are beneficial

Chapter 7. Verification and Testing 145

to the verification process.

7.2.1 Bus Interface

Most of the pRU firmware modules incorporate an IPBus interface. As discussed
in Section 6.3, the testbench creation for the bus interface is automated. These
testbenches provide a code coverage of 100 %.

7.2.2 Data Flow

To verify the firmware data flow modules, significant efforts were made to
develop a set of Python-scripts to generate a complete and realistic data set.
These scripts are used to generate stimuli to both the data flow chain and the
expected output data. The scripts are organized as follows:

(1) An ALPIDE pixel-data generator. This software block can generate both
randomized and pre-defined data.

(2) An ALPIDE frame generator. The frame generator is simply generating
an ALPIDE data frame based on pixel input data provided by the pixel-data
generator. A large subset of inputs can be provided to ensure that the output
data covers all possible situations. For instance, it is possible to choose whether
the ALPIDE has the clustering feature enabled. The software then generates
the data in the ALPIDE data format.

(3) An 8B/10B encoder. This is simply a block that encodes the generated
ALPIDE data format to 8B10B encoding. This is required to test the input
stage of the firmware data flow.

(4) A pRU data frame generator. This block packs ALPIDE data into the
pRU data format. This data is needed to validate the output of the data flow
firmware. The block can modify the data based on a substantial set of inputs.
For instance, it is possible to set various error flags and manipulate the time
tagging.

A sketch of the data flow test setup is shown in Figure 7.1. The test sequencer
reads the pre-produced ALPIDE data set from a file and transmits it to the
UUT via a data injector module. The test sequencer uses the bus interface via

146 7.2. pRU Firmware Module Verification

Figure 7.1: The ALPIDE Data testbench setup.

the IPBus VVC1. This allows the test sequencer to enable the various features
of the module.

For each test case transmitted to the UTT, the test sequencer will check that
the pRU formatted output matches the data pre-produced by the Python
scripts. Naturally, some data content will differ from the pre-generated data,
e.g., time-tagging. The data checking, therefore, ignores these fields. All fields
where the value can be predicted by the Python software ahead of time are
tested, including all error flags.

However, the test strategy does not only rely on checking the output data. The
ALPIDE Data module and its submodules incorporate a significant number of
various counters, and these can be used to verify that the module interpreted
the input data correctly. For instance, the module will count the number of
bytes in each ALPIDE frame. Furthermore, the different error conditions of
a frame are associated with separate counters. For each test case, the test
sequencer checks whether the counters have the correct values.

A quite extensive set of test data is generated by the Python software to ensure
that the design is correct. The code coverage of the data flow simulation is
close to 100 % for all criteria. The remaining untested code has been manually
verified to be redundant statements that are required by either the VHDL
language or by the Xilinx synthesis tool.

1The IPBus VVC was developed based on the community-provided Wishbone VVC.

Chapter 7. Verification and Testing 147

7.2.3 Priority Offloader

Figure 7.2 shows a sketch of the priority offloader test setup. In addition to
the module itself, the test uses several instances of the data formatter buffer
entity. These instances are used to ensure that the priority offloader can handle
multiple data sources concurrently, one of the module’s main requirements.

Figure 7.2: The Priority Offloader testbench setup.

With the Bitvis Scoreboard, one can test the data coherency based on the
expected output. Since the priority offloader will scramble data words from
different channels, one cannot expect that the output is precisely in the order
as initially input to the scoreboard. However, the scoreboard can be configured
to allow out-of-order words and, thus, only test whether all words have been
recovered from the priority offloader.

The priority offloader test uses only random data, as the data content itself is
irrelevant to the UUT. However, significant efforts have been made to provoke
errors by manipulation of the buffers. The use of the out-of-order feature
depends on the test case. E.g., to test that all the words of a pRU frame remain
unscrambled, we require that the entered data order is fixed. By filling several
modules with a known amount of data, we can predict which buffers will be
offloaded first and transfer this data into the scoreboard first. When this test
repeatedly succeeds, done with differing initial variables, we are comfortable
that frame content will not be scrambled. Furthermore, the tests achieve an

148 7.2. pRU Firmware Module Verification

acceptable code coverage score (above 95 %) for all the components of the
priority offloader block.

7.2.4 ALPIDE Control

The ALPIDE Control module is responsible for the ALPIDE slow control
communication and is critical to ensure proper control of the detector. The
testing of the module must be extensive to rule out potential errors. It is
imperative to ensure that all possible errors are recoverable, meaning that it
is impossible to lose control of the detector. It is also essential to check the
performance of the phase alignment circuitry. However, we cannot expect the
module to fix problems that arise with malfunctioning ALPIDEs, and it is
sufficient that the module reports that the sensor is dead when it receives no
reply.

Figure 7.3: The ALPIDE Control testbench setup.

The ALPIDE Lightweight Model (ALWM) is a minimal SystemVerilog imple-
mentation of the ALPIDE digital circuitry and was provided by the developers
of the ALPIDE. The model is particularly useful for testing the slow control
interface as it incorporates all registers of the ALPIDEs digital periphery. The
block is found within the test setup sketch, shown in Figure 7.3. The model
also includes a data generator block, replacing the pixel matrix logic. However,
the data generator is entirely random and does not produce errors in the data
stream, and thus, it could not be used to ensure full coverage of the ALPIDE
Data module.

Chapter 7. Verification and Testing 149

Another characteristic of the ALPIDE Control test setup is the use of the error
injector provided by the UVVM library. The module allows the test sequencer
to inject various errors into the path between the ALPIDE Control and the
ALWM. In the case of the ALPIDE Control verification, it is especially useful
because it enables the test sequencer to add jitter and latency to the link,
testing the phase alignment capabilities of the ALPIDE Control module.

A full BFM is developed for the communication with the ALPIDE via IPBus and
the ALPIDE Control module. This module includes all the valid transactions
that the ALPIDE Control can perform.

Several ALWMs and error injectors are instantiated in the test setup. This is
to test the multi- and broadcasting features of the ALPIDE Control module.
This is also used to check that ALPIDE Control will handle multiple links with
different amounts of jitter and delay.

The implemented tests achieve a code coverage close to 100 %.

7.2.5 Power Control

The Power Control module is a block implemented in the PTB (see Section 7.5),
but will also be used in the PCU. As the module controls power monitoring
sensors via I2C, the test setup includes the instantiation of several I2C VVCs.

7.2.6 UDP Stack and Data Transfer Protocol

The test setup for UDP and pDTP is the most comprehensive of all the
modules. This is because of the complexity involved with Ethernet protocols.
The test setup, seen in Figure 7.4, seems relatively simple with only a few
instantiated blocks. However, a complete VVC is developed to support XGMII
communication with the 10GbE MAC. Also, significant efforts were made to
develop support packages for the different protocol levels (see Section 7.2.6.1).

The MAC is connected to the pDTP block, which includes the full UDP stack.
The pDTP block receives data from an AXIS buffer. The buffer is filled with
random data, which is also entered into the scoreboard. This way, we can use

150 7.2. pRU Firmware Module Verification

the pDTP protocol to read data from the block and control the content using
the scoreboard.

The tests emphasize verifying the behavior of the pDTP blocks and not the
UDP stack. This is because the UDP is provided as an IP, and the designer of
the IP supplies tests for these blocks. However, for completeness, a coverage-
driven constrained random data set is used to verify the UDP stack behavior.
The pDTP block tests, however, are focused on direct testing, as the block is
agnostic to the data content. Similar to the other modules, these tests achieve
a high code coverage score.

Figure 7.4: The 10GbE and pDTP testbench setup.

7.2.6.1 Ethernet Protocol Packages

The Ethernet protocol packages (Ethernet, ARP, IPv4, UDP, and pDTP) have
several parallels. Most of the functions are for generating or parsing packets or
parts of packets. Furthermore, the packages depend on each other. For instance,
to generate a UDP packet of a data array, the UDP package will call on the
IPv4 package to add proper encapsulation. Likewise, the IPv4 package function
will call on the Ethernet package. The Ethernet package can then encapsulate
the packet in the correct format, calculate the frame check sequence code, and
more. At all stages, sanity checks are performed. The development of these
packages was demanding and time-consuming. However, we expect that the
lead time of the pDTP block in total was lower by using these for verification.

Chapter 7. Verification and Testing 151

7.3 Integration Tests and Top-level
Verification

For FPGA firmware, top-level verification is usually the most difficult to do
correctly. As the complexity of the design grows, the simulation time increases.
In some cases, the design might be so large that several days are needed to test
even simple features. Also, with top-level simulation, we lose the possibility of
adding stimulus to many parts of the system. Top-level simulation is, in any
case, important as it can uncover errors within the inter-module interfaces that
cannot be observed with simple module testing. Naturally, full code coverage
might be difficult to attain with top-level simulation and is therefore not a
specified objective.

The pRU firmware top-level test setup is sketched in Figure 7.5. The test
sequencer re-uses BFMs and VCCs used in the tests discussed above to interface
the top-level. The test sequencer is interfacing the MAC of the 10GbE interface
and not the MGT or the PHY instance. This is done because it was considered
too complex and time-consuming to develop a VVC with a continuously changing
output, which is a requirement for the 10GBASE-R protocol. This approach
was thought to be sufficient as long as the design simply worked in hardware.
This is because the PHY, MAC, and the example MGT instance are provided
as parts of the UDP IP, of which each part had been tested previously by the
developer. The interactions between them should, therefore, be consistent.

Figure 7.5: The top-level testbench setup.

152 7.4. Hardware Verification

The top-level test cases do not aim to fully test all features of the hardware.
The tests verify that:

(1) The full data flow works, meaning that no data is lost or corrupted when
transmitted through the full data chain, including the input and output stage.

(2) The ALPIDE Control and ALPIDE Data time tagging feature work as
expected.

(3) The ALPIDE Control and Trigger Manager interface can be used to trigger
and synchronize the ALPIDEs.

(4) The full bus interface works, meaning that no issues arise with the address-
decoding or the CDC block.

(5) No unexpected errors occur with the module interaction.

7.4 Hardware Verification

The pRU firmware has, as explained in Section 2.7.2, been tested using the
VCU118 evaluation kit. Although the FPGAs of the VCU118 and the pRU
differ somewhat, we are confident that no severe issues will arise during the
port, as the FPGAs have the same architecture. We are furthermore assured
by the use of most of the firmware by the PTB (see Section 7.5).

7.4.1 FireFly FMC

An FPGA mezzanine card (FMC) was developed to allow the connection of
FireFly cables to the VCU118 evaluation kit for testing. The FMC is shown in
Figure 7.6. The card uses the Samtec VITA 57.4 FMC+ standard to connect
to the VCU118 board. With the FMC, one could test different coupling and
biasing circuits to optimize the high-speed link performance. Furthermore, two
FireFly connections were added; one interfacing MGT-pins and one for regular
I/O-pins. The FMC card also includes several other types of cable connectors.
These were intended to be used to test an eventual direct connection of the
string FPC to the readout unit.

Chapter 7. Verification and Testing 153

Figure 7.6: The FPGA Mezzanine Card allowing connecting FireFly cables to the
VCU118 board. The figure shows the FMC connected to the VCU118 board with a
FireFly connected to the I/O-port.

7.4.2 High-Speed Links

Because of the complexity involved, it was considered too time-consuming and
unrealistic to test the DPA logic properly using software simulation. Thus, most
of the verification and testing were done in hardware with the aid of integrated
logic analyzers and oscilloscopes. The DPA feature was first tested using signal
loopback. By using a known PRBS pattern, one could verify that the DPA
logic was sampling the data correctly. With a data rate of 1.25 Gb/s, these
tests were promising. During a 24-hours test, no errors were observed, yielding
a BER of < 9.64 × 10−15.

However, as noted several times in this thesis, the ALPIDE high-speed data link
suffers from potential jitter. It was, therefore, imperative to test the DPA using
the real device. Furthermore, as triggers and occupancy affect the ALPIDE
performance, as well as a broad range of other variables2, significant efforts
were made to cover the full test space.

The DPA testing occurred simultaneously with testing of new front-end designs.
This complicated the testing of both the DPA and front-end as it was difficult to

2The high-speed driver strength, pre-emphasis strength, clock gating and the PLL band-
width are some of the parameters that have been observed to have an effect on the high-speed
link performance in the lab.

154 7.4. Hardware Verification

Figure 7.7: The lab test setup. Figure provided by courtesy of Tea Bodova [39].

interpret errors and determine which part of the design was the culprit. However,
as new front-end designs were completed, the DPA testing results improved,
which raised confidence that the cause of the errors had been found. Also,
because many variables and parameters affect the high-speed link performance,
our goal was to find settings that would validate the DPA performance, not to
ensure that DPA worked at all times.

Figure 7.7 shows the lab test setup. It shows the VCU118 evaluation kit, with
the FMC card (see Section 7.4.1), connected to a 9-chip string via a FireFly
cable and an early version of the Transition Card. The FireFly cable length
was shown by testing to be one of the most significant contributors to the signal
deterioration. Early tests indicated an eye diagram opening height reduction of
up to 50 % per cable meter. To ensure that the system would operate with the
3 m cable, tests were run with 5 m long cables.

Figure 7.8 shows the results of one of the many tests performed. In this test, all
nine ALPIDEs on a string were simultaneously triggered with an artificial 1 %
occupancy. Each step of the test was done with changing ALPIDE high-speed

Chapter 7. Verification and Testing 155

Figure 7.8: Test results showing decode errors when testing the high-speed data
sampling with 5m FireFly cable and varying the link driver settings of the ALPIDE.
Setting combinations with no errors observed are shown in white. The bottom area
indicates error-free settings, but on the contrary, with these settings, the signal is too
weak or noisy for the DPA logic to lock to or detect data. The test results show that
many driver settings produce zero sampling errors.

driver and pre-emphasis strength. For each setting, 85 million triggers are
transmitted to the ALPIDEs with 10 µs intervals3. The plot shows the number
of errors observed for a single chip. The results show a typical case, where
there is a band of settings that provoke errors. However, there is also a band
of settings that results in zero sampling errors. Each setting without errors
constitutes a BER of < 9.8 × 10−13. The same test was performed with fixed
settings over a 66 hour period, i.e.,with 2 × 1010 triggers, yielding a BER of
< 3.5 × 10−15.

The results of the range of tests performed confirm that:

(1) The DPA technique is sufficient for our purpose.

(2) The front-end design is acceptable.

(3) The combined activity of the chips on a string does not cause a detrimental
voltage drop.

(4) Cross-talk between the high-speed links does not constitute a problem.

385 million triggers are roughly 20 % of the total triggers to all sensors of the DTC
required for a 2D projection.

156 7.4. Hardware Verification

With the help of the internal logic analyzers of the FPGA, it was possible to
observe the effect of the DPA logic failing to adjust to jitter. For instance,
in Figure 7.9 we see a so-called fake frame. In this case, we know that the
ALPIDE is only transmitting comma-words. However, what we observe is that
the incoming data is interpreted as an ALPIDE frame. In addition, we observed
that this error occurred directly following a trigger. Therefore, the error can
be attributed to a voltage drop on the ALIPDE, and the resulting clock jitter
(recall Section 3.2.4.3).

Figure 7.9: Example of a situation where a fake frame is produced caused by jitter
on the ALPIDE high-speed data link. Noise is causing the data sampled to resemble
the beginning of an ALPIDE Data frame. However, the correct data should just be
comma words. When the data words following the fake header does not comply with the
protocol, the frame is aborted and tagged with an error. The event is captured using the
Xilinx integrated logic analyzer.

7.4.3 Slow Control

The ALPIDE slow control interface is tested with the same setup as the high-
speed data link. The firmware is stress-tested by transmitting write commands
to random registers and then reading the value back. Writing and then reading
a register was done 200 million times without any errors observed. Adding the
bits transmitted in both directions, this constitutes a BER of < 5 × 10−11. The
read-direction-only BER is < 2 × 10−10. Furthermore, the ALPIDE Control
module has been extensively provoked to fail, for instance, by disconnecting
the FireFly cable during transactions. These efforts have confirmed that the
module operates as desired.

7.4.4 GbE and IPBus

The testing of the IPBus interface was done by utilizing the SGMII PHY chip
of the VCU118 kit. A desktop computer was connected directly to the board

Chapter 7. Verification and Testing 157

via a standard network interface controller. No optimization was done on the
computer-side of the system. Actual test results have been shown earlier in
Section 6.6.

Investigation of both GbE and 10GbE protocols was needed to analyze errors
that were not detected during the simulations. Most of these errors, however,
involved the configuration of the physical interfaces and the MGTs. Aiding this
analysis was the use of tools like Wireshark, allowing the observation of packet
content.

7.4.5 10GbE and pDTP

Figure 7.10 shows the test results of the data transfer between the pDTP server
and the pDTP client. The tests were performed in a simple environment with
a typical desktop computer running CentOS with a standard Intel 10GbE
X710-DA2 network interface controller. Copper SFP+ cables were used to
connect to the VCU118 evaluation kit configured with the pRU firmware. Tests
were run with the pDTP server buffer artificially filled with testing data. The
tests show that we achieve a throughput near the theoretical maximum. The
tests also show the importance of optimal memory management by the pDTP
client software.

(a) Packet rate. (b) Receive rate.

Figure 7.10: The measured pDTP packet and receive rate based on requested packet
size.

158 7.5. Production Testing

7.5 Production Testing

One of the most challenging stages of the pCT development is the production
of the front-end electronics, i.e., the bonding of the ALPIDEs, chip cables, and
strings. For each step of the production, one must verify all connections and
that nothing is damaged in the process. The following section is dedicated to
the efforts done to streamline the testing process.

7.5.1 Production Test Box

The PTB is a device developed to aid with the different stages of testing.
The PCB is a custom device utilizing a Trenz FPGA module, a separate
PCB that includes an FPGA and all necessary voltage regulators and clock
generators required to operate the FPGA. This module is connected to the
PTB board via high-density Samtec connectors. The PTB employs a Xilinx
Zynq UltraScale System-On-Chip (SoC) FPGA. This FPGA module was chosen
because of the low cost of the module and because the I/O-bank architecture is
identical to the other pCT hardware boards. The latter allows the use of the
same FPGA firmware for sampling and data processing. The PTB board uses
Ethernet for both control and data offload. Both of these tasks are done by
the hard processing system of the SoC and uses the architecture as outlined in
Section 6.1.1.

One important feature of the PTB is the ability to test the integrity of the
chip cable bonds to the ALPIDE before mounting to the 9-chip string FPC.
This is done by attaching the chip cables to TCP frames and inserting them
into the connector of the PTB. The interface allows electrical connection to all
the ALPIDE bonds used, e.g., power, slow control, clock, and high-speed data.
Figure 7.11 shows how a chip cable is inserted into the TCP frame and socket.

The PTB supplies power and monitors the bus voltage and the current usage of
the ALPIDEs connected to the chip cable. The complete process is controlled
by the FPGA. The power monitoring is done by INA226 chips managed via
I2C by the FPGA. Schematics of the power supply and monitoring scheme is
shown in Figure 7.12.

Chapter 7. Verification and Testing 159

Figure 7.11: The Production Test Box is used to test chip cables and strings. The
Figure shows the Yamaichi TCP socket with the lid open with a chip cable with two
bonded ALPIDEs inserted.

Figure 7.12: Schematics of the PTB power supply and monitoring.

The remaining ALPIDE pins are connected to the FPGA with the same
procedure as the pRU design. The FPGA, thus, has full control of the sensor
capabilities. Using this, the PTB can not only test that the bonding has
succeeded but also the state of the ALPIDE chip itself (see Section 7.5.3).

The next iteration of the PTB also incorporates a FireFly connector. This
allows the testing of the bonding of the chip cables to the string via a TC.

160 7.5. Production Testing

7.5.2 Mini-TC

The Mini Transition Card (Mini-TC) is developed to be used for testing of strings
and slabs. Because the TC ZIF-connectors support relatively few insertions4,
these connectors will be damaged after testing just a few strings. We can also
imagine that a single string needs to be tested several times because of errors
during mounting. The Mini-TC is designed to be used solely during testing and
only connects the three strings of a slab. The simplicity of the board makes it
possible to produce and test many units so that it can be replaced after the
ZIF-connectors are damaged. In Figure 7.13, we see a 3-string slab that is
connected to the Mini-TC to be tested. The power consumption of the slab is
monitored externally during testing by interfacing a typical lab power supply
via USB [39].

Figure 7.13: 3D model of the Mini-TC used to test a slab. Figure is provided by
courtesy of Tea Bodova.

7.5.3 ALPIDE Classification

The ALPIDEs are classified according to their performance and graded by
several criteria. The criterion with the worst score sets the overall chip score.
On delivery to the production stage, the ALPIDEs are already tested and
classified by the scale of GOLD, SILVER, BRONZE, or NOK/NOTOK. In
addition, the pCT group adds another grade called WOOD, between BRONZE
and NOK, allowing the use of some sensors previously classified as NOK. The
WOOD grade allows sensors with more noisy pixels and these sensors can be

4The PTB employs a Molex ZIF-connector that can withstand roughly 20 mating cy-
cles [39].

Chapter 7. Verification and Testing 161

used in the outer areas of the detector. The classification is used to determine
where in the detector the sensors are used. For instance, the front-trackers of
the detector will only employ GOLD standard sensors.

(a) Analog scan. (b) Threshold scan. The B-pads of the
ALPIDE affect the sensitivity of the pixels
in the surrounding area and can thus be
observed in the lower middle of the chip in
this scan.

Figure 7.14: Test results of two test scans. The results are from two separate ALPIDE
sensors. Both sensors have dead areas. In these two cases these areas are manifested
as dead rows and columns.

7.5.3.1 Test Sequences

To test the various criteria of the ALPIDEs, several given sequences are defined.
For instance, it is possible to test the quality of the analog front-end of the
sensor pixel matrix. Figure 7.14 shows the qualitative results of two of these
sequences as a plot. The analog scan tests, shown in Figure 7.14a, checks that
each pixel’s analog circuitry is functioning properly. The test is done by using
the ALPIDEs internal pulsing logic5, and directly after transfer a trigger to
generate a strobe window. Pixels that do not report a pixel hit are perceived
as malfunctioning. The threshold test in Figure 7.14b determines how sensitive
the pixels are. The pixel discriminator threshold is set globally. However,
because of process variations and voltage and temperature fluctuations, each
pixel’s threshold will vary somewhat. By pulsing the analog circuitry of the
pixels with varying strength, we can detect the differences from pixel to pixel

5With the internal pulsing logic one can artificially create a pulse within both the analog
and the digital part of the pixel.

162 7.5. Production Testing

by counting the number of hits. Pixels with the highest number of hits are the
most sensitive.

Another important test is the noisy pixel test. This test is performed by
triggering the ALPIDE a given number of times without performing any pulsing
or masking. Single-pixel hits of the same pixel in these tests indicate that the
pixel is noisy. The number of noisy pixels is one of the biggest contributors to
a reduced classification grade. A noisy pixel can be masked to reduce the noise
in the actual data, but many masked pixels might cause the loss of wanted
data. The resulting data from the scans are analyzed using the CERN ROOT
data analysis framework [87].

Figure 7.15: GUI view of the selection of the various test sequences of the ALPIDEs.
Figure provided by courtesy of Viljar Eikeland.

7.5.4 Production Test Software

The production test environment software is developed to be used during the
testing of chip cables, strings, and slabs. The environment is intentionally

Chapter 7. Verification and Testing 163

designed to be user-friendly for non-technical users. Figures 7.15 and 7.16 show
screenshots from the software. The software can run a large range of different
tests, change parameters of the testing hardware, and more. In addition to
the communication with the PTB and the VCU118 hardware, the program is
also able to control and monitor external power supplies used in the testing of
strings and slabs.

(a) Test selection. (b) Test results.

Figure 7.16: Screenshot of the pCT production test environment software suite.

The production test environment is also connected to a MongoDB database.
MongoDB differs from SQL-type databases in that it stores unstructured data,
which makes it highly adaptable [88]. As the testing will be performed at
several locations in different countries, it is important that the metrics from the
testing is stored and shared. Each test result is time-stamped and tagged with
the tester’s name. The results from any location can also be viewed within the
software.

7.6 Version Control and Continuous
Integration

An integral part of the pRU firmware development has been the use of the version
control tool git. Each production version of the firmware is tagged by both
a version number and with the top-level name, e.g., VCU118-v2.0-beta2.

164 7.7. Beam Tests

This has been imperative to keep track of changes and also made it manageable
to develop firmware for multiple boards within one project without too many
difficulties.

Furthermore, git is used in conjunction with GitLab, a web-based developer tool.
GitLab incorporates a continuous integration tool, allowing standardization of
the simulation and build process. By constructing a GitLab build server with
all the required FPGA toolchains installed, the pRU firmware is automatically
verified and built for each new version pushed to the repository main fork. The
user of the firmware can download the built FPGA image directly from the
pipeline webpage or via a scripting environment.

0 200 400 600 800 1000
Column

0

100

200

300

400

500

R
o

w

Entries 17448

Hitmap

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entries 17448

Hitmap

Figure 7.17: Example hit map data captured at the Heidelberg HIT Facility. Data
shows carbon ion-particles traversing in the sensor’s sensitive layer coming in from the
right. The figure was first published in [73].

7.7 Beam Tests

The pRU firmware has been in use for experiments since the beginning of its
development. This way, the firmware users have been involved in discovering
errors and non-optimal solutions. One particular experiment was performed at
the Heidelberg HIT facility during the summer of 2019, employing the pRU
firmware with the VCU118 hardware. Figure 7.17 shows example data taken

Chapter 7. Verification and Testing 165

from this experiment. The experiment was set up to use a carbon beam entering
the side of the ALPIDE. The aim was to deposit a large dose within the chip
and to test the performance of the readout electronics and software. The results
showed nice long tracks caused by the ionizing carbon ions and that the readout
system was functioning. This experiment was done prior to the optimization
of the front-end design, resulting in some corrupted data [73]. This did not,
however, constitute a substantial percentage of the data frames and did not
affect the results of the experiment.

166 7.7. Beam Tests

CHAPTER 8

Conclusion and Outlook

8.1 Conclusion

When finished, the pCT detector will demonstrate whether it is feasible to
employ pCT imaging clinically and if it will improve the accuracy of particle
treatment dose-planning in the clinic. The presented work has largely focused
on the study of how to achieve a reliable and efficient DAQ and DCS for a
general particle detector. The results of the efforts have significantly contributed
to the data acquisition and control scheme of the pCT.

The most significant achievements of this work, in no particular order, are:

• The conceptual design of the readout and control system.

The conceptual DAQ and control system presented in the thesis
has been adopted and will be applied in the completed pCT
DTC prototype. The concept has impacted all significant parts
of the detector, except the mechanical, and must be considered
as a crucial element. As a result of this work, the design and
development of the DAQ and DCS software and the FPGA
firmware could be initiated.

• The design and testing of the detector front-end.

In participation with the Kharkiv-team and their state-of-the-
art technology, this work has provided valuable insight regarding

168 8.1. Conclusion

the front-end design. With every iteration, systematic measure-
ments and simulations were performed to detect weaknesses
and potential improvements in the design. As it stands, the
resulting front-end design adheres to both (1) the physical re-
quirements of the detector in terms of homogeneity, material
budget, and both convective and conductive heat transfer, and
(2) the electronic characteristics requirements.

• Implementation and verification of the DAQ and DCS FPGA firmware.

While DAQ systems and data flow FPGA designs are rarely
scientifically novel, this thesis demonstrates some of the chal-
lenges that arise with custom electronics. Full implementation
of the data chain has been completed, including sampling with
DPA, simple compression, error checking, and packing. For
the transmission of data from the readout electronics to the
data server, a new data format has been developed, together
with a completely new data transfer protocol to ensure reliable
UDP communication. With a reasonable degree of code-reuse,
the control architecture is implemented as a fully low-level sys-
tem with no utilization of a soft-processing system. The latter
design decision transferred the responsibility of the ALPIDE
control and monitoring to the high-level software development
but increased both the flexibility and the speed of the system.
Considerable effort has been made in designing the DAQ and
the DCS firmware to be adaptable to various scenarios and
configurable from the control room.

• The design of test equipment and procedures for the manufacturing
process of the front-end.

The ALPIDE sensors and the front-end components are sen-
sitive. This work also included considerable efforts with the
design and development of comprehensive test equipment and
procedures to ensure a sensible yield during the manufacturing
process.

Chapter 8. Conclusion and Outlook 169

Due to the nature of a research project, in general, it is often hard, sometimes
impossible, to provide precise requirements for the parts that are developed at
the start of the project. During development, therefore, we have made both
good and not so good, educated guesses about the requirements needed to
push the development further while the accurate answers remained unclear.
Naturally, some of the development choices can be criticized.

The responsibilities of the complete electronics system have been left to a rela-
tively small group of people, some of whom also worked on other time-consuming
projects. Therefore, parts of the development process were significantly slowed
down; this included the work with the pRU. Furthermore, other non-design
related efforts have been required, like the development and maintenance of
the PTB, the PTB firmware, and the test software suite.

Because of the high ambition to interface a large number of sensors with a
single FPGA, regular I/O-pins are used to sample the ALPIDE data. With
this design decision, significant time and effort were needed to design and test
the approach. Although successful, with a BER as low as < 3.5 × 10−15, one
can assume that the development time was considerably increased compared to
an MGT approach design.

8.2 Outlook

As the FPGA firmware is not yet tested with the final pRU, significant time
has been invested in the system documentation. The firmware is also built
with modularity in mind, making it adaptable to any potential changes to the
system requirements. This should make it possible to finalize the pRU firmware
without too much effort.

The Power Control Unit design is nearing completion. However, its firmware
must be developed. This firmware is trivial in comparison to the pRU firmware
and will primarily be based on the power control module used with the PTB.

A few open questions regarding the pRU firmware remain unanswered. First,
the size of the data buffers and the distribution of buffer size between the
channels and the pipeline branches can be further optimized. The optimization

170 8.2. Outlook

might use the buffer usage statistics from a scanning mode beam test of a full
DTC layer. Second, is the decision of using local clocks or a master clock for
synchronization between the pRUs. This decision can be made after experiments
testing the performance of the pRU and by measuring the data processing
power required to synchronize data frames occurring in semi-autonomous mode.
No major changes to the pRU firmware are foreseen.

The preparation for the mass-production of the pCT front-end components is
now in progress. The produced chip cables, strings, and slabs will be tested
with the PTB and the mini transition card, as described in Section 7.5. The
complete layers will be tested when the pRU development is finalized. The
schematic and layout design of the pRU is now in progress, and the board is
expected to be tested and in use in 2021. This leaves at least a full year for
testing and integration of hardware, firmware, and software. Within the end of
2022, it is projected that the detector is operational.

APPENDIX A

List of Publications

A.1 As Primary Author

O. S. Groettvik et al., “Development of Readout Electronics for a Digital
Tracking Calorimeter,” in Proceedings of Topical Workshop on Electronics for
Particle Physics — PoS(TWEPP2019), 2020, vol. 370, p. 090.
DOI: 10.22323/1.370.0090

A.2 Publications Significantly Contributed To

J. Alme et al., “A High-Granularity Digital Tracking Calorimeter Optimized
for Proton CT,” in Frontiers of Physics, 2020.
DOI: 10.3389/fphy.2020.568243

A.3 Master’s Theses as Co-Supervisor

K. E. S. Bohne, “Ethernet-Based Control System and Data Readout for a
Proton Computed Tomography Prototype,” Master’s thesis, The University of
Bergen, jun 2018. [Online]. Available: http://hdl.handle.net/1956/18466

H. A. Underdal, “Data Acquisition and Testing Software for a Proton Com-
puted Tomography System,” Master’s thesis, jun 2019. [Online]. Available:
http://hdl.handle.net/1956/20846

Ø. Jelmert, “Scalable Readout for Proton CT,” Master’s thesis, jul 2020.

172 A.4. All Publications

T. Bodova, “High-Speed Signal and Power Distribution of a Digital Tracking
Calorimeter for Proton Computed Tomography,” Master’s thesis, University of
Bergen, aug 2020. [Online]. Available: http://hdl.handle.net/1956/23535

A. Herland, “Development and Implementation of Data Acquisition Software
for proton Computed Tomography,” Master’s thesis, 2021.

A.4 All Publications

G. Tambave, et al., “Characterization of monolithic CMOS pixel sensor chip
with ion beams for application in particle computed tomography,”Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, p.162626, aug 2019. DOI: 10.1016/j.nima.2019.162626

J. Rambo Sølie, L. Voltz, et al., “Image quality of list-mode proton imaging
without front trackers,” Phys. Med. Biol., vol. 65, no. 13, p. 135012, jul 2020.
DOI: 10.1088/1361-6560/ab8ddb

H. E. S. Pettersen, et al., “Design optimization of a pixel-based range telescope
for proton computed tomography,” Physica Medica, vol. 63, pp.87–97, jul 2019.
DOI: 10.1016/j.ejmp.2019.05.026

H. Pettersen, et al., “Helium Radiography with a Digital Tracking Calorime-
ter—a Monte Carlo Study for Secondary Track Rejection,” in review.

APPENDIX B

pRU Data Format

This chapter lists and explains the data fields of the pRU data format. To
illustrate how the words are combined a short example frame sequence is shown.

B.1 The HEADER Word

ABS_TIME The counter of the 120 MHz system clock sampled at
the moment the pRU transmits a trigger command to
the ALPIDEs.

FRAME_ID An unique ID of the current frame. The number is as-
sociated with a specific trigger command transmitted
from the ALPIDE Control module. Any other frame
with matching ID and matching time information from
another channel belongs to the same strobe window.

MODE The readout mode the ALPIDEs are configured in. This
information is not required for the data reconstruction
but might be useful to determine the nature behind
any busy-conditions of the ALPIDE. Note that this in-
formation is not obtained automatically by the data
formatter, but must be manually set in the pRU settings
register ahead of starting the data taking sequence. If

174 B.2. The TRAILER Word

the bit is low it indicates that the ALPIDEs are set in
TRIGGERED mode, while if it is high they are set in
CONTINUOUS mode.

TRIG_SOURCE The source of the ALPIDE trigger signal. This is also a
nonessential data field, but is useful for debugging any
synchronization procedure of the sensors.

0x0 ALPIDE Internal Strobe Sequencer
0x1 External pRU Hardware Signal
0x2 DCS Trigger

BUSY_OFF Indicates that an ALPIDE busy off word was received
in the time between the previous and the current frame.

BUSY_ON Indicates that an ALPIDE busy on word was received
in the time between the previous and the current frame.

SPILL_ID The current value of the SPILL_ID register. The SPILL_ID
is an arbitrary number for the DAQ system, but it is
intended to be used to separate frames from different
2D projections.

DATA_FORMAT The data format version. Any changes to the data format
specification will cause this number to be incremented.
Any software written to interpret pRU data can use this
field to determine which fields are available.

B.2 The TRAILER Word

FRAME_SIZE A critical metric to check that no errors have occurred
during the processing and transmission of the data is the
amount of ALPIDE data bytes transmitted in the pre-

Appendix B. pRU Data Format 175

ceding pRU data words. If this field matches the above
ALPIDE data bytes and no protocol irregularities were
found, one can be confident of the data coherency.

FRAME_ID An unique ID of the current frame. The number is as-
sociated with a specific trigger command transmitted
from the ALPIDE Control module. Any other frame
with matching ID and matching time information from
another channel belongs to the same strobe window.

ERROR_FLAGS This field contains certain flags that indicate whether any
errors have occurred during transmission of the frame on
the pRU. The following list describes each bit within the
field starting from the LSB:

0 Decode/Protocol Error This flag is asserted when-
ever the 8B/10B decoder has been unable to decode a
byte during the processing of the frame. However, the
processing of the frame does continue and the remaining
bytes of the frame will still be included. The flag is also
asserted whenever other protocol errors are observed. Any
frame with this flag set might be salvageable by identify-
ing which byte, and thus which pixels, are corrupted. By
removing these, the remaining pixel data can still be used
for track reconstruction. This check, however, requires
significant efforts by the DAQ software and whether this is
applicable depends on the rate of frames with these errors.

1 Frame Error Asserted whenever a fatal error occurred
during the processing of the frame. This error causes the
frame processing to be aborted and instantly produces
the trailer.

176 B.3. The EMPTY Word

2 Empty Region Error Asserted when a REGION iden-
tifier is detected but no short or long words come directly
after.

3 Double Busy On Error Asserted when two BUSY
ON is detected, without a BUSY OFF in between.

4 Double Busy Off Error Asserted when two BUSY
OFF is detected, without a BUSY ON in between.

5 Buffer Overflow Error Asserted whenever a pRU
buffer overflow has occurred.

6 Max Size Error Asserted whenever the size of the
frame is over the pre-defined maximum bytes. This type
of error is usually caused by an error in detecting the
ALPIDE trailer. The error will cause a cancellation of
the frame processing and forces a pRU trailer word. The
maximum number of bytes is configured in the pRU set-
tings registers.

7 Max Wait Time Error Asserted whenever the data
tagger has been waiting for more than pre-defined clock
cycles (120 MHz) for valid data content during the frame,
meaning other words than comma and idle. This error
will cause a cancellation of the frame processing and forces
a trailer word. The maximum number of clock cycles to
wait is configured in the pRU settings registers.

B.3 The EMPTY Word

NUM_EMPTY The number of consecutive empty frames that have ar-
rived at the pRU. The field must be added as the data

Appendix B. pRU Data Format 177

parsing software might not have information about the
compression settings on the pRU during readout.

FRAME_ID The frame ID associated with the trigger command for
the first empty frame in the sequence.

BUNCH_CNT The bunch counter value of the ALPIDE in the first
empty frame in the sequence.

RESERVED Must be zero to separate from potential conflict with a
DELIMITER word only used in the PTB.

178 B.4. Example of a pRU frame

B
.4

E
xa

m
pl
e
of

a
pR

U
fr
am

e

Th
e
fo
llo

wi
ng

is
an

ex
am

pl
e
of

a
fra

m
e
wh

er
e
pR
U
I
D

=
2,
S
ta
v
eI
D

=
10

,C
h
ip
I
D

=
3,
S
pi
ll
I
D

=
30

0,
T
ri
g
g
er
S
ou
rc
e

=
S
of
tw
a
re
,M

od
e

=
T
R
I
G
G
E
R
E
D
,F

ra
m
eI
D

=
25

00
0,
A
B
S
_
T
I
M
E

=
50

0.
00

0.
00

0:

N
am

e
W

O
R

D
_

T
Y

P
E

R
U

ST
AV

E
C

H
IP

ID
U

N
U

SE
D

SP
IL

L_
ID

T
R

IG
_

SO
U

R
C

E
M

O
D

E
FR

A
M

E
_

ID
A

B
S_

T
IM

E
V

al
ue

0x
1

0x
2

0x
A

0x
3

0x
0

0x
12

C
0x

2
0x

0
0x

61
A

8
0x

1D
C

D
_

65
00

N
am

e
W

O
R

D
_

T
Y

P
E

R
U

ST
AV

E
C

H
IP

ID
D

0
D

1
D

2
D

3
D

4
D

5
D

6
D

7
D

8
D

9
D

10
D

11
D

12
D

13
V

al
ue

0x
0

0x
2

0x
A

0x
3

H
D

R
H

D
R

R
G

N
D

S
D

S
D

L
D

L
D

L
R

G
N

D
L

D
L

D
L

R
G

N
D

S

N
am

e
W

O
R

D
_

T
Y

P
E

R
U

ST
AV

E
C

H
IP

ID
D

0
D

1
D

2
D

3
D

4
D

5
D

6
D

7
D

8
D

9
D

10
D

11
D

12
D

13
V

al
ue

0x
0

0x
2

0x
A

0x
3

D
S

R
G

N
D

S
D

S
R

G
N

D
S

D
S

R
G

N
D

L
D

L
D

L
T

R
LR

0x
FF

0x
FF

N
am

e
W

O
R

D
_

T
Y

P
E

R
U

ST
AV

E
C

H
IP

ID
U

N
U

SE
D

E
R

R
O

R
_

FL
A

G
S

FR
A

M
E

_
SI

ZE
V

al
ue

0x
2

0x
2

0x
A

0x
3

0x
0

0x
0

0x
1A

Tw
o
of

th
e
da

ta
fie

ld
s
ar
e
pa

dd
ed

in
th
e
se
co
nd

D
AT

A
_
W

O
R
D
,a

nd
th
is

is
re
fle

ct
ed

in
th
e
FR

A
M
E_

SI
ZE

fie
ld

in
th
e

tr
ai
le
r.
H
D
R

=
H
ea
d
er
,R

G
N

=
R
eg
io
n
H
ea
d
er
,D

S
=
D
a
ta
S
h
or
t,
D
L

=
D
a
ta
L
on
g
,T

R
L
R

=
T
ra
il
er
.

APPENDIX C

pCT Data Transfer Protocol

This chapter details the specific requests and responses defined by the pDTP. In
addition, the flowcharts of the specific blocks of the pDTP are given.

C.1 pDTP Client

Table C.1: pDTP Client Header.
Offsets Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 IPv4 (20 Octets)
20 160 UDP (8 Octets)
28 224 DTP Client Opcode Flags DTP Special Commands Requested DTP Packet Size - in pRU words

Table C.2: pDTP Client Opcodes.
Opcode Name Opcode Description
CLIENT_RQR 0x0 Client request the server to transmit a packet of a certain amount of pRU words
CLIENT_RQT 0x1 Client request the server to transmit a test packet of a certain amount of pRU words
CLIENT_RQS 0x2 Client request the server to transmit a certain number of packets of a certain amount of pRU words
CLIENT_RQFS 0x3 Client requests the server to continuously transmit packets as data gets available
CLIENT_ERROR 0x4 Timeout while waiting for packet, or some other error
CLIENT_ACK 0x5 Acknowledge to the server that the last packet were obtained
CLIENT_ABRT 0x6 Instructs the server to abort the current operation, e.g. CLIENT_RQFS
CLIENT_GS 0x7 Ask the server to transmits its buffer status, firmware information, and absolute clock

CLIENT_THROTTLE 0x8 Ask the server to throttle the output stream, by waiting for a certain number of clk cycles between each stream packet

Table C.3: pDTP Client Special Commands.
Opcode / Bit 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
CLIENT_RQR NO_ACK MIN_RQ MAXIMIZE RQ_PACKET_SIZE
CLIENT_RQT NO_ACK RQ_PACKET_SIZE
CLIENT_RQS MIN_RQ MAXIMIZE NO_WAIT RQ_STREAM_SIZE RQ_PACKET_SIZE

CLIENT_RQSFS MIN_RQ MAXIMIZE NO_WAIT RQ_PACKET_SIZE
CLIENT_ERROR UNINTERPRETABLE TIMEOUT RESEND_PACKET
CLIENT_ACK
CLIENT_ABRT
CLIENT_GS

CIENT_THROTTLE WAIT_CYCLES

NO_ACK Server will not wait for an acknowledge from the client

180 C.2. pDTP Server

RQ_PACKET_SIZE The number of pRU words requested in each packet -
max 255 pRU words, i.e. 4 kB.
RQ_STREAM_SIZE Number of packets to transmit without listening for
acknowledge - max 216 − 1 = 65.535 packets.
MIN_RQ Will not send a packet if the buffer has less than RQ_PACKET_SIZE.
Pull: Server will send an ERROR. Semi push: Server will transmit an EOS.
Full push: Server will wait until buffer is filled with required amount.
MAXIMIZE Maximize the number of pRU words transmitted, based on the
data available. Can be used together with MIN_RQ.
NO_WAIT Server will not wait for the buffer to be filled with data if the
buffer is empty or is filled with less than MIN_RQ. Result is EOS in both RQS
and RQFS.
UNINTERPRETABLE The received packet was not possible to understand
TIMEOUT The client timed out while waiting for something
RESEND_PACKET Ask the server to resend the last packet - only available
after CLIENT_RQR
WAIT_CYCLES The number of clock cycles between each stream packet
transmitted from the server.

C.2 pDTP Server

Table C.4: pDTP Server Header.
Offsets Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 IPv4 (20 Octets?)
20 160 UDP (8 Octets)
28 224 DTP Server Opcode FLAGS DTP Packet ID / Buffer Fill Count Actual DTP Packet Size / Version Number
32 256 ABS_TIME (System Clock Cycles)
36 288 Payload (0 - 255 pRU words)

Table C.5: pDTP Server Opcodes.
Opcode Name Opcode Short Description Long Description

SERVER_WRITE 0x0 Server Write Packet Server sends a packet
SERVER_STREAM 0x1 Server Stream Packet A part of a stream of packets
SERVER_ERROR 0x2 Server Error Timeout while waiting for ack, uninterpretable received packet or no data available
SERVER_EOS 0x3 Server End-Of-Stream Server is finished transmitting all possible packets

SERVER_STATUS 0x4 Server Status Server Status

Appendix C. pCT Data Transfer Protocol 181

Table C.6: pDTP Server Special Commands.
Opcode / Bit 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SERVER_WRITE FULL ALMOST_FULL PACKET_ID AC_PACKET_SIZE
SERVER_STREAM FULL ALMOST_FULL PACKET_ID AC_PACKET_SIZE
SERVER_ERROR INVALID_RQ MIN_RQ EMPTY TIMEOUT BUFFER_FILL_COUNT
SERVER_EOS MIN_RQ BUFFER_FILL_COUNT

SERVER_STATUS FULL ALMOST_FULL EMPTY BUFFER_FILL_COUNT VERSION_NUMBER

PACKET_ID Incremented counter of all transmitted packets
FULL The offload data buffer is full
ALMOST_FULL The offload data buffer has less than 20% space left
EMPTY The offload data buffer is empty
TIMEOUT Timeout while waiting for something or uninterpretable
NO_DATA No data was available on the server when receiving the request
BUFFER_FILL_COUNT Amount of pRU words stored in offload buffer
INVALID_RQ Client asked about something unknown to the server
VERSION_NUMBER Current version of pDTP protocol

C.2.1 Server Status

Table C.7: pDTP Server Status Packet.
Offsets Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 IPv4 (20 Octets)
20 160 UDP (8 Octets)
28 224 SERVER_STATUS FULL ALMOST_FULL EMPTY BUFFER_FILL_COUNT VERSION_NUMBER
32 256 ABS_TIME (System Clock Cycles)
36 288 BUILD_DATE (YYMMDDHH)
40 320 GIT_HASH

182 C.2. pDTP Server

Figure C.1: Flowchart of the IDLE state.

Appendix C. pCT Data Transfer Protocol 183

Figure C.2: Flowchart of the PRE_WR state.

184 C.2. pDTP Server

Figure C.3: Flowchart of the TRA_WR_HEADER state.

Appendix C. pCT Data Transfer Protocol 185

Figure C.4: Flowchart of the TRA_WR_PKT state.

186 C.2. pDTP Server

Figure C.5: Flowchart of the STREAM_CONTROL state.

Bibliography

[1] M. Jermann, “Particle Therapy Patient Statistics (per end of 2016),”
PTCOG, Tech. Rep., 2017. [Online]. Available: https://bit.ly/3iNQmx5

[2] E. Dale and E. Waldeland, “Protonterapi – en realitet i Norge fra
2023,” Tidsskrift for Den norske legeforening, vol. 138, no. 13, sep 2018.
DOI: 10.4045/tidsskr.18.0250

[3] T. Mitin and A. L. Zietman, “Promise and Pitfalls of Heavy-Particle
Therapy,” Journal of Clinical Oncology, vol. 32, no. 26, pp. 2855–2863,
sep 2014. DOI: 10.1200/JCO.2014.55.1945

[4] H. E. S. Pettersen, “A Digital Tracking Calorimeter for Proton Computed
Tomography,” Ph.D. dissertation, University of Bergen, 2018. [Online].
Available: http://hdl.handle.net/1956/17757

[5] M. Filipak, “Comparison of dose profiles for proton v. x-ray radiotherapy,”
2012. [Online]. Available: https://bit.ly/33vGUsf

[6] H. Lynnebakken, “Jubler for partikkelterapi,” 2012. [Online]. Available:
https://bit.ly/3iNIDz5

[7] A. J. Lomax, “Myths and realities of range uncertainty,” The British
Journal of Radiology, vol. 93, no. 1107, p. 20190582, mar 2020.
DOI: 10.1259/bjr.20190582

[8] M. Brada, M. Pijls-Johannesma, and D. De Ruysscher, “Proton
Therapy in Clinical Practice: Current Clinical Evidence,” Journal

187

188 Bibliography

of Clinical Oncology, vol. 25, no. 8, pp. 965–970, mar 2007.
DOI: 10.1200/JCO.2006.10.0131

[9] B. Schaffner and E. Pedroni, “The precision of proton range calculations
in proton radiotherapy treatment planning: experimental verification
of the relation between CT-HU and proton stopping power,” Physics
in Medicine and Biology, vol. 43, no. 6, pp. 1579–1592, jun 1998.
DOI: 10.1088/0031-9155/43/6/016

[10] G. Poludniowski, N. M. Allinson, and P. M. Evans, “Proton radiography
and tomography with application to proton therapy,” The British
Journal of Radiology, vol. 88, no. 1053, p. 20150134, sep 2015.
DOI: 10.1259/bjr.20150134

[11] J. Rambo Sølie et al., “Image quality of list-mode proton imaging without
front trackers,” Physics in Medicine & Biology, vol. 65, no. 13, p. 135012,
jul 2020. DOI: 10.1088/1361-6560/ab8ddb

[12] H. F. Sadrozinski et al., “Development of a head scanner for proton
CT,” in Nuclear Instruments and Methods in Physics Research, Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.
699, jan 2013, pp. 205–210. DOI: 10.1016/j.nima.2012.04.029

[13] T. Lomax, “Towards daily adapted proton therapy,” Physica Medica,
vol. 30, p. e3, jan 2014. DOI: 10.1016/J.EJMP.2014.07.017

[14] M. Esposito et al., “PRaVDA: The first solid-state system for proton
computed tomography,” Physica Medica, vol. 55, pp. 149–154, nov 2018.
DOI: 10.1016/j.ejmp.2018.10.020

[15] H. Pettersen et al., “Proton tracking in a high-granularity Digital
Tracking Calorimeter for proton CT purposes,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 860, pp. 51–61, jul 2017.
DOI: 10.1016/j.nima.2017.02.007

Bibliography 189

[16] H. E. S. Pettersen et al., “Design optimization of a pixel-based range
telescope for proton computed tomography,” Physica Medica, vol. 63, pp.
87–97, jul 2019. DOI: 10.1016/j.ejmp.2019.05.026

[17] J. Alme et al., “A High-Granularity Digital Tracking Calorimeter Optimized
for Proton CT,” Frontiers in Physics. DOI: 10.3389/fphy.2020.568243

[18] H. Pettersen et al., “Accuracy of parameterized proton range models; A
comparison,” Radiation Physics and Chemistry, vol. 144, pp. 295–297,
mar 2018. DOI: 10.1016/j.radphyschem.2017.08.028

[19] G. Tambave et al., “Characterization of monolithic CMOS pixel sensor
chip with ion beams for application in particle computed tomography,”
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, p.
162626, aug 2019. DOI: 10.1016/j.nima.2019.162626

[20] W. Snoeys, “CMOS monolithic active pixel sensors for high energy
physics,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 765, pp. 167–171, nov 2014. DOI: 10.1016/J.NIMA.2014.07.017

[21] R. Turchetta et al., “CMOS Monolithic Active Pixel Sensors
(MAPS): New ‘eyes’ for science,” Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, vol. 560, no. 1, pp. 139–142, may 2006.
DOI: 10.1016/J.NIMA.2005.11.241

[22] G. Contin et al., “The STAR MAPS-based PiXeL detector,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 907, pp. 60–80,
nov 2018. DOI: 10.1016/j.nima.2018.03.003

[23] C. Sauer, “Monolithic Active Pixel Sensors Particle tracking and
identification at high rates,” Tech. Rep., 2017. [Online]. Available:
https://bit.ly/2Y1Sutg

190 Bibliography

[24] H. Augustin et al., “MuPix7—A fast monolithic HV-CMOS pixel chip for
Mu3e,” Journal of Instrumentation, vol. 11, no. 11, pp. C11 029–C11 029,
nov 2016. DOI: 10.1088/1748-0221/11/11/C11029

[25] T. Kugathasan, “Review on depleted CMOS,” in Proceedings of Science,
vol. 348. Sissa Medialab Srl, sep 2018, p. 042. DOI: 10.22323/1.348.0042

[26] B. Ristic, “CMOS Pixel Development for the ATLAS Experiment
at HL-LHC,” Springer Proc. Phys., vol. 213, pp. 426–430, 2018.
DOI: 10.1007/978-981-13-1316-5_80

[27] J. W. van Hoorne, “Study and Development of a novel Silicon Pixel
Detector for the Upgrade of the ALICE Inner Tracking System,” Ph.D.
dissertation, Technische Universität Wien, 2015. [Online]. Available:
https://cds.cern.ch/record/2119197

[28] G. Aglieri Rinella, “The ALPIDE pixel sensor chip for the upgrade
of the ALICE Inner Tracking System,” Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 845, pp. 583–587, feb 2017.
DOI: 10.1016/j.nima.2016.05.016

[29] The ALICE Collaboration, “ALPIDE Operations Manual,” Tech. Rep.,
2016.

[30] The ALICE Collaboration, “Conceptual Design Report for the
Upgrade of the ALICE ITS,” Tech. Rep., 2012. [Online]. Available:
https://cds.cern.ch/record/1431539/files/LHCC-G-159.pdf

[31] V. Bezhenova and A. Michalowska-Forsyth, “Aspect ratio of radiation-
hardened MOS transistors,” e & i Elektrotechnik und Informationstechnik,
vol. 135, no. 1, pp. 61–68, feb 2018. DOI: 10.1007/s00502-017-0575-2

[32] W. Snoeys, T. Gutierrez, and G. Anelli, “A new NMOS layout structure
for radiation tolerance,” IEEE Transactions on Nuclear Science, vol. 49,
no. 4, pp. 1829–1833, aug 2002. DOI: 10.1109/TNS.2002.801534

Bibliography 191

[33] B. Abelev et al, “Technical Design Report for the Upgrade of the
ALICE Inner Tracking System,” Journal of Physics G: Nuclear and
Particle Physics, vol. 41, no. 8, p. 087002, aug 2014. DOI: 10.1088/0954-
3899/41/8/087002

[34] F. Reidt, “Studies for the ALICE Inner Tracking System Upgrade,” 2016.

[35] G. A. Rinella, “The ALPIDE Pixel Sensor Chip for the Upgrade of the
ALICE Inner Tracking System,” ALICE Collaboration, Tech. Rep., feb
2016. [Online]. Available: https://bit.ly/3dDTzOK

[36] G. Aglieri et al., “Monolithic active pixel sensor development for the
upgrade of the ALICE inner tracking system,” Journal of Instrumentation,
vol. 8, no. 12, pp. C12 041–C12 041, 2013. DOI: 10.1088/1748-
0221/8/12/C12041

[37] The ALICE Collaboration, “Alice ITS Upgrade: Readout Electronic -
WP10,” CERN, Tech. Rep., 2016.

[38] P. A. Franaszek and A. X. Widmer, “Byte oriented DC balanced (0,4)
8B/10B partitioned block transmission code,” 1984. [Online]. Available:
https://bit.ly/3218Nbc

[39] T. Bodova, “High-Speed Signal and Power Distribution of a
Digital Tracking Calorimeter for Proton Computed Tomography,”
Master’s thesis, University of Bergen, aug 2020. [Online]. Available:
http://hdl.handle.net/1956/23535

[40] V. Borshchov et al., “Innovative microelectronic technologies for
high-energy physics experiments,” Functional Materials, vol. 24, no. 1, pp.
143–153, 2017. DOI: 10.15407/fm24.01.143

[41] V. Borshchov et al., “Aluminium Microcable Technology for the Alice
Silicon Strip Detector: A Status Report,” in 8th Workshop on Electronics
for LHC Experiments, 2002, pp. 144—-149. DOI: 10.5170/CERN-2002-
003.144

192 Bibliography

[42] M. Oinonen et al., “Alice Silicon Strip Detector Module Assembly
with Single-Point TAB Interconnections,” 2005. [Online]. Available:
http://cdsweb.cern.ch/record/920152

[43] E. Bogatin, Signal and Power Integrity - Simplified, 2nd ed. Prentice
Hall, 2009.

[44] Microwaves101, “Transmission Line Model.” [Online]. Available: https:
//bit.ly/3fXDxPe

[45] Microwaves101, “Transmission Line Loss.” [Online]. Available: https:
//bit.ly/2DYhNWh

[46] Microwaves101, “Microstrip Loss Calculations.” [Online]. Available:
https://bit.ly/3g6Ozlm

[47] A. Athavale and C. Christensen, High-Speed Serial I/0 Made Simple,
1st ed., 2005. [Online]. Available: https://bit.ly/2E9h2K0

[48] Xilinx Inc., “UltraScale+ FPGA Product Tables and Product Selection
Guide,” 2017. [Online]. Available: https://bit.ly/33XVFGi

[49] Xilinx Inc., “UltraScale FPGA Product Tables and Product Selection
Guide,” 2016. [Online]. Available: https://bit.ly/2Y4hIr2

[50] M. Smerdon and Xilinx Inc., “Spartan-6 FPGAs: Performance, Power,
and I/O Optimized for Cost-Sensitive Applications (WP396),” dec 2017.
[Online]. Available: https://bit.ly/3hc2sQc

[51] Xilinx Inc., “Kintex UltraScale FPGAs Data Sheet: DC and AC
Switching Characteristics,” Tech. Rep., 2013. [Online]. Available:
https://bit.ly/3c05TaZ

[52] Xilinx Inc., “Native High-Speed I/O Interfaces Application Note
(XAPP1274),” Tech. Rep., 2017. [Online]. Available: https://bit.ly/
3fXEIOE

[53] C. E. Cummings, “Clock Domain Crossing (CDC) Design & Verification
Techniques Using SystemVerilog,” in SNUG Boston, 2008.

Bibliography 193

[54] M. Litterick, “Pragmatic Simulation-Based Verification of Clock Domain
Crossing Signals and Jitter using SystemVerilog Assertions,” in DVCon,
2006.

[55] T. Chelcea and S. M. Nowick, “Robust interfaces for mixed-timing systems,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 12, no. 8, pp. 857–873, aug 2004. DOI: 10.1109/TVLSI.2004.831476

[56] D. M. Hiemstra, V. Kirischian, and J. Brelski, “Single event upset character-
ization of the Kintex UltraScale field programmable gate array using proton
irradiation,” in IEEE Radiation Effects Data Workshop, vol. 0. Institute
of Electrical and Electronics Engineers Inc., jul 2016. DOI: 10.1109/N-
SREC.2016.7891743

[57] K. Røed, “Single Event Upsets in SRAM FPGA based readout electronics
for the Time Projection Chamber in the ALICE experiment,” Ph.D.
dissertation, The University of Bergen, dec 2009. [Online]. Available:
http://hdl.handle.net/1956/3793

[58] K. Røed et al., “Fault injection as a test method for an FPGA in
charge of data readout for a large tracking detector,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 629, no. 1, pp. 260–268, feb
2011. DOI: 10.1016/j.nima.2010.12.033

[59] M. R. Ersdal, “External scrubber implementation for the ALICE ITS
Readout Unit,” in Proceedings of Topical Workshop on Electronics for
Particle Physics — PoS(TWEPP2019). Trieste, Italy: Sissa Medialab,
mar 2020, p. 136. DOI: 10.22323/1.370.0136

[60] C. Ramamurthy, S. Chellappa, and L. T. Clark, “Physical Design
Methodologies for Soft Error Mitigation Using Redundancy,” in
2015 15th European Conference on Radiation and Its Effects
on Components and Systems (RADECS). IEEE, 2015, pp. 1–5.
DOI: 10.1109/RADECS.2015.7365647

194 Bibliography

[61] M. Berg, “FPGA Mitigation Strategies for Critical Applications,” NASA,
Tech. Rep., nov 2018. [Online]. Available: https://go.nasa.gov/30ZmwQv

[62] A. Velure, “Integration, Commissioning and First Experience of ALICE
ITS Control and Readout Electronics,” in Proceedings of Topical
Workshop on Electronics for Particle Physics — PoS(TWEPP2019).
Trieste, Italy: Sissa Medialab, mar 2020, p. 113. DOI: 10.22323/1.370.0113

[63] P. Moreira et al., “The GBT Project,” Topical Workshop on Electronics
for Particle Physics, 2009. DOI: 10.5170/CERN-2009-006.342

[64] Altera, “The Need for Dynamic Phase Alignment in High-Speed
FPGAs,” San Jose, CA, Tech. Rep., feb 2004. [Online]. Available:
https://intel.ly/3104Ggg

[65] N. H. E. Weste and D. M. Harris, Integrated circuit design. Pearson,
2011.

[66] O. S. Grøttvik, “Design of High-Speed Digital Readout System for Use
in Proton Computed Tomography,” Master’s thesis, The University of
Bergen, jun 2017. [Online]. Available: http://hdl.handle.net/1956/16041

[67] Xilinx Inc., “7 Series FPGAs SelectIO Resources User Guide (UG471),”
2016. [Online]. Available: https://bit.ly/30Z6pCp

[68] Chuck Benz, “Chuck Benz’s ASIC/FPGA pages,” 2010. [Online]. Available:
http://asics.chuckbenz.com/

[69] Xilinx Inc., “UltraScale Architecture SelectIO Resources User Guide
(UG571 v1.12),” 2019. [Online]. Available: https://bit.ly/2PUwQml

[70] K. Mustafa and C. Sterzik, “AC-Coupling Between Differential LVPECL,
LVDS, HSTL, and CML,” Texas Instruments, Tech. Rep., 2007. [Online].
Available: https://bit.ly/3g0F0US

[71] K. Mustafa and C. Sterzik, “DC-Coupling Between Differential LVPECL,
LVDS, HSTL, and CM,” Texas Instruments, Tech. Rep., 2003. [Online].
Available: https://bit.ly/3iISciR

Bibliography 195

[72] Xilinx Inc., “Kintex UltraScale+ FPGAs Data Sheet: DC and AC
Switching Characteristics (DS922 v1.15),” 2019. [Online]. Available:
https://bit.ly/3h18Dqu

[73] O. S. Groettvik et al., “Development of Readout Electronics for a
Digital Tracking Calorimeter,” in Proceedings of Topical Workshop on
Electronics for Particle Physics — PoS(TWEPP2019), vol. 370, mar 2020,
p. 090. DOI: 10.22323/1.370.0090

[74] G. A. Rinella, “Private Correspondance,” 2020.

[75] A. Forencich, “Verilog Ethernet components for FPGA implementation.”
[Online]. Available: https://github.com/alexforencich/verilog-ethernet

[76] K. E. S. Bohne, “Ethernet-Based Control System and Data Readout for a
Proton Computed Tomography Prototype,” Master’s thesis, The University
of Bergen, jun 2018. [Online]. Available: http://hdl.handle.net/1956/18466

[77] R. Frazier et al., “Software and firmware for controlling CMS trigger and
readout hardware via gigabit Ethernet,” Physics Procedia, vol. 37, pp.
1892–1899, 2012. DOI: 10.1016/j.phpro.2012.02.516

[78] C. G. Larrea et al., “IPbus: a flexible Ethernet-based control system
for xTCA hardware,” Journal of Instrumentation, vol. 10, no. 02, pp.
C02 019–C02 019, feb 2015. DOI: 10.1088/1748-0221/10/02/C02019

[79] ARM, “AMBA AXI and ACE Protocol Specification,” Tech. Rep., 2011.
[Online]. Available: https://bit.ly/35f3oyC

[80] OpenCores, “Wishbone B4,” Tech. Rep., 2010. [Online]. Available:
https://bit.ly/2T9L7NM

[81] Intel, “Avalon Interface Specification,” Tech. Rep., 2020. [Online].
Available: https://intel.ly/3og9UOu

[82] Bitvis AS, “SBI.” [Online]. Available: https://bitvis.no/portfolio/sbi/

196 Bibliography

[83] Texas Instruments, “SN65MLVD080 SN65MLVD082 Datasheet,” Tech.
Rep., 2005. [Online]. Available: https://www.ti.com/lit/ds/symlink/
sn65mlvd080.pdf

[84] L. O. Damm, L. Lundberg, and D. Olsson, “Introducing test automation
and test-driven development: An experience report,” in Electronic Notes
in Theoretical Computer Science, vol. 116, no. SPEC.ISS., jan 2005, pp.
3–15. DOI: 10.1016/j.entcs.2004.02.090

[85] N. Johnson, “TDD And A New Paradigm For Hardware Verification,”
XtremeEDA, Tech. Rep., 2011. [Online]. Available: https://bit.ly/32IE9TZ

[86] E. Tallaksen, “What is UVVM?” aug 2015. [Online]. Available:
https://www.linkedin.com/pulse/what-uvvm-espen-tallaksen/

[87] R. Brun and F. Rademakers, “ROOT - An object oriented data analy-
sis framework,” Nuclear Instruments and Methods in Physics Research,
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 389, no. 1-2, pp. 81–86, apr 1997. DOI: 10.1016/S0168-
9002(97)00048-X

[88] MongoDB Inc., “The MongoDB 4.4 Manual,” 2020. [Online]. Available:
https://docs.mongodb.com/manual/

Graphic design: Com
m

unication Division, UiB / Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230851814 (print)
9788230849491 (PDF)

	157103 Ola Slettevoll Grøttvik_Elektronisk
	157103 Ola Slettevoll Grøttvik_innmat
	157103 Ola Slettevoll GrøttvikElektronsk_bakside

