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Abstract

The topological theory for semi-complete digraphs, pioneered by Chudnovsky, Fradkin,
Kim, Scott, and Seymour [11, 12, 13, 30, 31, 42], concentrates on the interplay between
the most important width measures — cutwidth and pathwidth — and containment rela-
tions like topological/minor containment or immersion. We propose a new approach to this
theory that is based on outdegree orderings and new families of obstacles for cutwidth and
pathwidth. Using the new approach we are able to reprove the most important known re-
sults in a unified and simplified manner, as well as provide multiple improvements. Notably,
we obtain a number of efficient approximation and fixed-parameter tractable algorithms
for computing width measures of semi-complete digraphs, as well as fast fixed-parameter
tractable algorithms for testing containment relations in the semi-complete setting. As a
direct corollary of our work, we also derive explicit and essentially tight bounds on duality
relations between width parameters and containment orderings in semi-complete digraphs.
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1 Introduction

1.1 The theory of graph minors for digraphs

The Graph Minors series of Robertson and Seymour not only resolved the Wagner’s Conjec-
ture [48], but also provided a number of algorithmic tools for investigating topological structure
of graphs. It is a very natural and important question, whether techniques and results of Graph
Minors can be applied in the world of directed graphs or digraphs. In spite of many attempts,
we are still very far from the right answer. Even to capture a good analogue for treewidth in
digraphs is a non-trivial task and several notions like directed treewidth [38], DAG-width [7]
or Kelly-width [37] can be found in the literature. However, none of them shares all the “nice”
properties of undirected treewidth. In fact this claim can be formalized and proved; Ganian et
al. [33] argued that “any reasonable algorithmically useful and structurally nice digraph measure
cannot be substantially different from the treewidth of the underlying undirected graph”.

The notion of a graph minor is crucial in defining obstructions to small treewidth in an
undirected graph. There are several ways to generalize this definition to digraphs and, as in
case of treewidth, it is unclear which of them is the most natural. One approach is to consider
topological embeddings or immersions. An undirected graph H is a topological subgraph (or
topological minor) of an undirected graph G if a subdivision of H is a subgraph of G. In other
words, graph H can be embedded into graph G in such a way that vertices of H are mapped
to pairwise different vertices of G, and edges of H are mapped to vertex-disjoint paths in G.
An immersion of a graph H into a graph G is defined like a topological embedding, except
that edges of H correspond to edge-disjoint paths in G. Both these notions can be naturally
translated to directed graphs by replacing paths with directed paths.

It were long-standing open questions whether deciding if an undirected graph H can be topo-
logically embedded (immersed) into G is fixed-parameter tractable1 when parameterized by the
size of H. Both questions were answered positively only very recently by Grohe, Kawarabayashi,
Marx, and Wollan [35]. Unfortunately, the work of Grohe et al. cannot be extended to directed
graphs. By the classical result of Fortune, Hopcroft, and Wyllie [29] the problem of testing
whether a given digraph G contains H as a (directed) topological subgraph is NP-complete
even for very simple digraphs H of constant size. Similar results can be easily obtained for
immersions. In fact, what Fortune et al. [29] showed is that the Vertex (Edge) Disjoint
Paths problems are NP-complete on general digraphs even for k = 2, and the hardness of
topological containment and immersion testing are simple corollaries of this fact.

Therefore, Vertex (Edge) Disjoint Paths were studied intensively on different classes of
directed graphs. For example, if we constrain the input digraphs to be acyclic, then both variants
still remain NP-complete when k is part of the input [22], but are polynomial-time solvable for
every constant number of terminal pairs k [29], which was not the case in the general setting [29].
Slivkins [49] has shown that both problems are in fact W [1]-hard when parameterized by k and
hence probably not FPT, which completes the picture of their parameterized complexity in this
restricted case.

1Recall that a parameterized computational problem is called fixed-parameter tractable (FPT) if it can be
solved in time f(k) · nc, where k is the parameter, n is the total input size, f(·) is some computable function
and c is a constant independent of the parameter. Similarly, a problem is in XP if it admits an algorithm with
running time O(nf(k)) for some computable function f(·). For more information on parameterized complexity
we refer to the books of Downey and Fellows [19] and of Flum and Grohe [25].
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1.2 The containment theory for tournaments

Tournaments form an interesting and mathematically rich subclass of digraphs. Formally, a
simple digraph T is a tournament if for every pair of vertices v, w, exactly one of arcs (v, w)
or (w, v) is present in T . We also consider a superclass of tournaments, called semi-complete
digraphs, where we require at least one of arcs (v, w) or (w, v) to be present in T , thus allowing
both of them to be present at the same time. Many algorithmic problems were studied on
tournaments, with notable examples of problems strongly related to this work: Vertex (Edge)
Disjoint Paths and Feedback Arc (Vertex) Set problems. We refer to the book of
Bang-Jensen and Gutin [5] for a more thorough introduction to algorithms for digraphs, and in
particular for tournaments.

The work on topological problems in semi-complete digraphs began perhaps with the work
of Bang-Jensen and Thomassen [4, 6], who showed that in spite of the fact that the Vertex
(Edge) Disjoint Paths problems remain NP-complete on tournaments when k is a part of
the input, they are solvable in polynomial time for the case k = 2 even on semi-complete
digraphs. This line of research was recently continued by Chudnovsky, Fradkin, Kim, Scott,
and Seymour [11, 12, 13, 30, 31, 42] (CFKSS, for short), who drastically advanced the study of
minor-related problems in semi-complete digraphs by building an elegant containment theory
for this class. The central notions of the theory are two width measures of digraphs: cutwidth
and pathwidth. The first one is based on vertex orderings and resembles classical cutwidth in
the undirected setting [50], with the exception that only arcs directed forward in the ordering
contribute to the cut function. The second one is a similar generalization of the undirected
pathwidth.

Chudnovsky, Fradkin, and Seymour [11] proved a structural theorem that provides a set of
obstacles for admitting an ordering of small (cut)width; a similar theorem for pathwidth was
proven by Fradkin and Seymour [31]. A large enough obstacle for cutwidth admits every fixed-
size digraph as an immersion, and the corresponding is true also for pathwidth and topological
containment. Thus, these results can be reinterpreted as weak duality of the width measures and
the containment relations in semi-complete digraphs. Basing on the first result, Chudnovsky
and Seymour [13] were able to show that immersion is a well-quasi-ordering on the class of semi-
complete digraphs. Indeed, following the same line of reasoning as in the Graph Minors project,
it is sufficient to prove the claim for the class of semi-complete digraphs that exclude some fixed
semi-complete digraph H0 as an immersion. Using the structural theorem we infer that such
digraphs have cutwidth bounded by a constant. For graphs of constant cutwidth, however, the
well-quasi-ordering claim can be proven using a more direct approach via Higman’s lemma.

Unfortunately, the same reasoning breaks for topological containment, since it is already not
true that topological containment is a well-quasi-ordering of semi-complete digraphs of constant
pathwidth. However, Kim and Seymour [42] have recently introduced a slightly different notion
of a minor order, which indeed is a well-quasi-ordering of semi-complete digraphs.

As far as the algorithmic aspects of the work of CFKSS are concerned, the original proofs
of the structural theorems can be turned into approximation algorithms, which given a semi-
complete digraph T and an integer k find a decomposition of T of width O(k2), or provide an
obstacle for admitting a decomposition of width at most k. For cutwidth the running time on
an n-vertex semi-complete digraph is O(n3), but for pathwidth it is O(nf(k)) for some function
f ; this excludes usage of this approximation as a subroutine in any FPT algorithm, e.g. for
topological containment testing.

As Chudnovsky, Fradkin, and Seymour [11] observed, the existence of an FPT approxima-
tion algorithm for cutwidth allows us to design FPT algorithms for deciding whether a given
digraph H can be immersed into a semi-complete digraph T . Consider the following WIN/WIN
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approach. We run the approximation algorithm for cutwidth for some parameter that is a (large)
function of |H|. In case an ordering of width bounded by a function of |H| is returned, we can
employ a dynamic programming routine on this decomposition that solves the problem in FPT
time. Otherwise, the approximation algorithm provided us with a large combinatorial obstacle
into which every digraph of size at most |H| can be embedded. Therefore, we can safely provide
a positive answer. Fradkin and Seymour [31] observe that the same approach can be applied to
topological subgraph testing using their approximation algorithm for pathwidth instead. How-
ever, this approximation algorithm does not work in FPT time, so the obtained topological
containment test is also not fixed-parameter tractable. Let us remark that the original dynamic
programming routine for topological containment working on a path decomposition, presented
by Fradkin and Seymour [31], was also not fixed-parameter tractable.

The approximation algorithms for cutwidth and for pathwidth either provide an obstacle
into which every digraph of size at most ` can be embedded, or construct a decomposition of
width f(`) for some multiple-exponential function f (yet elementary). Therefore, the obtained
algorithm for immersion testing also inherits this multiple-exponential dependence on the size of
the digraph to be embedded, i.e., it works in time f(|H|)·n3 for some function f that is multiple-
exponential, yet elementary. For topological containment this problem is even more serious,
since we obtain multiple-exponential dependence on |H| in the exponent of the polynomial
factor, and not just in the multiplicative constant standing in front of it.

One of the motivations of the work of CFKSS was extending the work of Bang-Jensen and
Thomassen on the Vertex (Edge) Disjoint Paths problems [6]. The new containment
theory turned out to be capable of answering many questions, yet not all of them. Using the
approximation algorithm for cutwidth, Fradkin and Seymour [30] designed an FPT algorithm for
Edge Disjoint Paths working in time f(k)·n5 for some function f that is multiple-exponential,
yet elementary. The algorithm uses again the WIN/WIN approach: having approximated
cutwidth, we can either find an ordering of small width on which a dynamic program can be
employed, or we find a large combinatorial obstacle. In the latter case, Chudnovsky, Fradkin,
and Seymour are able to identify an irrelevant vertex in the obstacle, which can be safely
removed without changing the existence of a solution. That is, they design an irrelevant vertex
rule. For the Vertex Disjoint Paths problem, Chudnovsky, Scott, and Seymour [12] give
an XP, i.e. of running time O(nf(k)), algorithm using a different approach. To the best of
our knowledge, the question whether the Vertex Disjoint Paths problem admits an FPT
algorithm on semi-complete digraphs is still open.

The Edge Disjoint Paths problem is a special case of the Rooted Immersion problem
defined as follows: given a digraph H with prescribed pairwise different vertices u1, u2, . . . , uh,
called roots, and a semi-complete digraph T also with pairwise different roots v1, v2, . . . , vh, we
ask whether there exists an immersion of H in T that preserves roots, that is, maps each ui to
corresponding vi. The Edge Disjoint Paths problem can be hence modeled as follows: we
take H to be a digraph consisting of k independent arcs, and all the vertices of H are roots
required to be mapped to respective endpoints of the paths that we seek for. In the same
manner we may define Rooted Topological Containment problem that generalizes the
Vertex Disjoint Paths problem. It appears that the FPT algorithm for Edge Disjoint
Paths of Fradkin and Seymour [30] can be generalized to solve also the Rooted Infusion
problem, which is a relaxation of Rooted Immersion where we do not require the images of
vertices of H to be distinct. Note that Rooted Infusion also generalizes Edge Disjoint
Paths in the same manner as Rooted Immersion does. As Fradkin and Seymour admit, they
were not able to solve the Rooted Immersion problem in FPT time using their approach.

As far as computation of cutwidth and pathwidth exactly is concerned, by the well-quasi-
ordering result of Chudnovsky and Seymour [13] we have that the class of semi-complete di-
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graphs of cutwidth bounded by a constant is characterized by a finite set of forbidden immer-
sions; the result of Kim and Seymour [42] proves that we can infer the same conclusion about
pathwidth and minors. Having approximated the corresponding parameter in FPT or XP time,
we can check if any of these forbidden structures is contained in a given semi-complete digraph
using dynamic programming. This gives FPT and XP exact algorithms for computing cutwidth
and pathwidth, respectively; however, they are both non-uniform — the algorithms depend on
the set of forbidden structures which is unknown — and non-constructive — they provide just
the value of the width measure, and not the optimal decomposition. Also, we have virtually no
control over the dependence of the running time on the target width value.

1.3 Our results and techniques

In this paper, we address a number of open questions about the fixed-parameter tractability
of topological problems in semi-complete digraphs that arose from the containment theory of
CFKSS. Efficient computation of the two width measures of semi-complete digraphs are crucial
for our algorithms for containment problems. Figure 1 contains a summary of our results.

Problem Previous results This work

Cutwidth approximation O(n3) time, width O(k2) [11] O(n2) time, width O(k2) (Thm 5.2)

Cutwidth exact f(k) · n3 time, non-uniform, 2O(
√
k log k) · n2 time (Thm 5.22)

non-constructive [11, 13]

Pathwidth approximation O(nO(k)) time, O(kn2) time,
width O(k2) [31] width 6k (Thm 4.12)

Pathwidth exact nm(k) time, non-uniform, 2O(k log k) · n2 time (Thm 4.13)
non-constructive [42]

Topological containment O(nm(|H|)) time [31] 2O(|H| log |H|) · n2 time (Thm 6.5)

Immersion f(|H|) · n3 time [11] 2O(|H|2 log |H|) · n2 time (Thm 6.6)

Minor O(nm(|H|)) time 2O(|H| log |H|) · n2 time (Thm 6.7)

Rooted Immersion - f(|H|) · n3 time (Thm 9.9)

Edge Disjoint Paths f(k) · n5 time [30] f(k) · n3 time (Thm 9.9)

Figure 1: Comparison of previously known algorithms and the results of this paper. The
algorithms for cutwidth and pathwidth take as input a semi-complete digraph on n vertices
and an integer k. The approximation algorithms can output a decomposition of larger width
(guarantees are in the corresponding cells) or conclude that a decomposition of width at most
k does not exist. The exact algorithms either construct a decomposition of width at most k
or conclude that this is impossible. We remark that the XP algorithm for testing the minor
relation has not been stated explicitly in any of the previous works, but it follows from them
easily.

Width measures. We give several efficient algorithms for computing the cutwidth and the
pathwidth of a semi-complete digraph. Our approach to compute these parameters is quite
different from the approach used in [11, 13, 31]. The crucial observation of our approach can
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be intuitively formulated as follows: every ordering of vertices with respect to non-decreasing
outdegrees is a good approximation of the order in which the vertices appear in some path
decomposition close to optimal. In fact, for cutwidth this is true even in the formal sense.
We prove that any outdegree ordering of vertices of a semi-complete digraph T has width at
most O(ctw(T )2), hence we have a trivial approximation algorithm that sorts the vertices with
respect to their outdegrees. The approach based on degree orderings brings us not only to
better algorithms, it allows to reprove the structural theorems for both parameters in a unified
and simplified way.

In the case of pathwidth, which is of our main interest, the intuitive outdegree ordering
argument can be formalized as follows: If a semi-complete digraph T contains 4k + 2 vertices
whose outdegrees pairwise differ by at most k, then the pathwidth of T is more than k. We call
this obstacle a degree tangle. Hence, any outdegree ordering of vertices of a given semi-complete
digraph T of small pathwidth must be already quite spread: it does not contain larger clusters
of vertices with similar outdegrees. This spread argument is crucial in all our reasonings.

Both the approximation and the exact algorithm for pathwidth use the concept of scanning
through the outdegree ordering with a window — an interval in the ordering containing 4k
vertices. By the outdegree spread argument, at each point we know that the vertices on the
left side of the window have outdegrees smaller by more than k than the ones on the right
side; otherwise we would have a too large degree tangle. For approximation, we construct
the consecutive bags by greedily taking the window and augmenting this choice with a small
coverage of arcs jumping over it. The big gap between outdegrees on the left and on the right
side of the window ensures that the nonexistence of a small coverage is also an evidence for not
admitting a path decomposition of small width. The obtained approximation ratio is 6. For the
exact algorithm, we identify a set of O(k2) vertices around the window, about which we can
safely assume that the bag is contained in it. This provides us 2O(k log k) candidates for each
bag of the optimal path decomposition. Using the candidates, the optimal path decomposition
can be then assembled using dynamic programming in FPT time.

The most technical part in the approximation and exact algorithms for pathwidth is the
choice of vertices outside the window to cover the arcs jumping over it. It turns out that this
problem can be expressed as trying to find a small vertex cover in an auxiliary bipartite graph.
However, in order to obtain a feasible path decomposition we cannot choose the vertex cover
arbitrarily — it must behave consistently as the window slides through the ordering. To this
end, in the approximation algorithm we use a 2-approximation of the vertex cover based on the
theory of matchings in bipartite graphs. In the exact algorithm we need more restrictions, as
we seek a subset that contains every sensible choice of the bag. Therefore, we use an O(OPT )-
approximation of vertex cover based on the classical kernelization routine for the problem of
Buss [8], which enables us to use stronger arguments to reason which vertices can be excluded
from consideration.

We believe that the new obstacles for pathwidth are more useful from the algorithmic per-
spective than the ones introduced by Fradkin and Seymour [31]. In particular, we show that the
ratio between the sizes of obstacles found by the algorithm and the minimum size of a digraph
that cannot be embedded into them does not exceed some constant. In other words, we prove
that there exists a linear relation between the pathwidth and the size of the smallest H that is
not topologically contained in a semi-complete digraph. Hence, in all the containment tests we
just need to run the pathwidth approximation with parameter O(|H|), and in the case of finding
an obstacle we can provide a positive answer. This reduces the dependence of the running time
of all the containment tests to single exponential in terms of the size of the tested subgraph,
compared to multiple-exponential following from the previous work.
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We also show that the cutwidth of a semi-complete digraph can be computed in subexpo-
nential parameterized time, more precisely in time 2O(

√
k log k) ·n2. To achieve this running time,

we have adopted the technique of k-cuts, developed earlier in [26] in the context of clustering
problems. The main idea is to relate potentially useful states of the dynamic program (i.e.,
the aforementioned k-cuts) to partition numbers: the partition number p(k) is the number of
different multisets of positive integers summing up to k. The subexponential asymptotics of
partition numbers have been very well understood from the point of view of enumerative com-
binatorics [20, 36], and we can use the results obtained there directly in our setting in order to
bound the number of states of the dynamic program. This brings us to an algorithm deciding
if the cutwidth of a semi-complete graph is at most k in time 2O(

√
k log k) · n2 time.

As a byproduct of the approach taken, we also obtain a new algorithm for Feedback Arc

Set in semi-complete digraphs with running time O(2c
√
k · kO(1) · n2) for c = 2π√

3·ln 2
≤ 5.24.

Feedback Arc Set in Tournaments (FAST, for short) was perhaps the first natural pa-
rameterized problem outside the framework of bidimensionality [16] shown to admit a subexpo-

nential parameterized algorithm. The first such algorithm, with running time 2O(
√
k log k)nO(1),

is due to Alon, Lokshtanov, and Saurabh [3]. This has been further improved by Feige [23] and
by Karpinski and Schudy [40], who have independently shown two different algorithms with

running time 2O(
√
k)nO(1). Our new algorithm is simpler than the aforementioned algorithms

of Feige [23] and of Karpinski and Schudy [40]. While the asymptotic running time is similar,
the explicit constant in the exponent obtained using our approach is much smaller than the
constants in the algorithms of Feige and of Karpinski and Schudy; however, optimizing these
constants was not the purpose of these works.

It appears that our approach can be also applied to other layout problems in semi-complete
digraphs. For example, we consider a natural adaptation of the Optimal Linear Arrange-
ment problem [10, 17] to the semi-complete setting, and we can decide in time 2O(k1/3·√log k) ·n2

whether a semi-complete digraph admits an ordering of cost at most k.

Topological problems. Using a polynomial-time approximation algorithm for pathwidth,
we are able to design an FPT algorithm for testing topological containment using the same
general WIN/WIN approach. Note here that to obtain this result one needs to implement
the dynamic programming routine working on a path decomposition in FPT time, while the
original routine of Fradkin and Seymour [31] was not fixed-parameter tractable. This, however,
turns out to be less challenging, and it also follows from known tools on model checking MSO1

on digraphs of bounded cliquewidth. We give an introduction to tools borrowed from logic in
Section 2.4, and design an explicit dynamic programming routine in Section 10 in order to give
precise guarantees on the time complexity of the topological containment test. Algorithms for
immersion and minor testing can be designed in a similar manner.

As explained earlier, the algorithms for testing containment relations are based on the classic
WIN/WIN approach, and hence one can in fact prove that excluding some fixed digraph as a
topological subgraph/minor/immersion implies an upper bound on pathwidth/cutwidth of a
semi-complete digraph. These properties were already discovered by Fradkin and Seymour [31]
and by Chudnovsky, Fradkin, and Seymour [11], but the obtained upper bounds were multiple
exponential in terms of the size of the excluded digraph, and not provided explicitly. Using our
results we can provide explicit and very low upper bounds: linear for pathwidth and quadratic
for cutwidth. It is easy to show that these upper bounds are asymptotically tight: the relation
must be at least linear for pathwidth and at least quadratic for cutwidth.

Fixed-parameter tractability of immersion and minor testing opens possibilities for proving
meta-theorems of a more general nature via the well-quasi-ordering results of Chudnovsky and
Seymour [13], and of Kim and Seymour [42]. We give an example of such a meta-theorem in
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Section 8.
Another problem that we were able to address using the approximation algorithm for path-

width, was the Rooted Immersion problem, whose parameterized complexity was left open
by Fradkin and Seymour [30]. Unlike Fradkin and Seymour, we have approached the problem
via pathwidth instead of cutwidth, having observed beforehand that a dynamic programming
routine testing immersion on a path decomposition of small width can be designed similarly
to topological containment. Hence, after running the approximation algorithm for pathwidth,
either we can apply the dynamic programming on the obtained decomposition, or we are left
with an obstacle for pathwidth, called a triple, which is more powerful than the obstacles for
cutwidth used by Fradkin and Seymour. Similarly to Fradkin and Seymour, we design an ir-
relevant vertex rule on a triple, that is, in polynomial time we identify a vertex that can be
safely removed from the triple without changing answer to the problem. Then we restart the
algorithm. Observe that the algorithm can make at most n iterations before solving the problem
by applying dynamic programming, since there are only n vertices in the digraph. All in all,
this gives an algorithm for Rooted Immersion working in f(|H|) ·n3 time for some elementary
function f . Note that this in particular reduces the polynomial factor of the running time of
the algorithm for Edge Disjoint Paths from n5 to n3.

Outline. This paper is organized as follows. Section 2 is devoted to preliminaries. After
explaining notation and basic facts about semi-complete digraphs, we give formal definitions
of containment notions, of width measures, and prove a number of results relating them. In
particular, we show how the width measures relate to each other, and which width measures
are closed under which containment relations. Apart from cutwidth and pathwidth that are of
main interest in this work, we introduce also cliquewidth. The reason is that relations between
cutwidth, pathwidth and cliquewidth in semi-complete digraphs are crucial for Section 2.4,
where we gather the tools borrowed from logic that will be used later on. In Section 3, we define
several sets of obstacles for width measures in semi-complete graphs. These combinatorial tools
are used in Section 4, where we present the approximation and exact algorithms for pathwidth.
Section 5 is devoted to cutwidth. We first give a simple approximation algorithm for this width
measure, which follows directly from the results of Section 3. Then we give an subexponential
parameterized algorithm for computing cutwidth exactly, and we utilize the same ideas to
design similar algorithms for Feedback Arc Set and Optimal Linear Arrangement in
semi-complete digraphs.

We give algorithms for testing containment relations in Section 6. Section 7 is devoted
to the results on duality of width measures and containment relations, which are derived by
slightly adjusting our algorithmic results. Then, in Section 8 we give an example of a meta-
theorem that can be proven using a combination of our algorithms and the well-quasi-ordering
results of Chudnovsky and Seymour [13], and of Kim and Seymour [42]. In Section 9, we
give an algorithm for the Rooted Immersion problem. Section 10 contains descriptions of
explicit dynamic programming routines for topological containment and immersion working on
a path decomposition, which are used in Sections 6 and 9. Even though general construction
of such routines follows directly from the tools borrowed from logic, we need to construct them
explicitely in order to give precise upper bounds on the running times of the obtained algorithms.
Finally, in Section 11 we conclude with open problems.
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2 Preliminaries

2.1 Folklore and simple facts

In this section we provide some simple facts about semi-complete digraphs and tournaments
that will be used in this paper. We begin with some observations on the out- and indegrees in
semi-complete digraphs. Let T be a semi-complete digraph. Note that for every v ∈ V (T ) we
have that d+(v) + d−(v) ≥ |V (T )| − 1, and that the equality holds for all v ∈ V (T ) if and only
if T is a tournament.

Lemma 2.1. Let T be a semi-complete digraph. Then the number of vertices of T with outde-
grees at most d is at most 2d+ 1.

Proof. Let A be the set of vertices of T with outdegrees at most d, and for the sake of con-
tradiction assume that |A| > 2d + 1. Consider semi-complete digraph T [A]. By a simple
degree-counting argument, in every semi-complete digraph S there is a vertex of outdegree at
least |V (S)|−1

2 . Hence, T [A] contains a vertex with outdegree larger than d. As outdegrees in
T [A] are not smaller than in T , this is a contradiction with the definition of A.

Lemma 2.2. Let T be a semi-complete digraph and let x, y be vertices of T such that d+(x) >
d+(y) + `. Then there exist at least ` vertices that are both outneighbors of x and inneighbors
of y and, consequently, ` vertex-disjoint paths of length 2 from x to y.

Proof. Let α = d+(y). We have that d−(y) + d+(x) ≥ |V (T )| − 1− α+ α+ `+ 1 = |V (T )|+ `.
Hence, by the pigeonhole principle there exist at least ` vertices of T that are both outneighbors
of x and inneighbors of y.

We now proceed to a slight generalization of a folklore fact that every strongly connected
tournament has a Hamiltonian cycle. In fact, this observation holds also in the semi-complete
setting, and we include its proof for the sake of completeness.

Lemma 2.3. A semi-complete digraph T has a Hamiltonian cycle if and only if it is strongly
connected.

Proof. Necessary condition being trivial, we proceed to the proof that every strongly connected
semi-complete digraph T has a Hamiltonian cycle. We proceed by induction on |V (T )|. The
base cases when T has one or two vertices are trivial, so we proceed with the assumption that
|V (T )| > 2.

Let v be any vertex of T and let T ′ = T \ v. Let T1, T2, . . . , Tp be the strongly connected
components of T ′. Note that since T ′ is semi-complete, the directed acyclic graph of its strongly
connected components must be also semi-complete, hence it must be a transitive tournament.
Without loss of generality let T1, T2, . . . , Tp be ordered as in the unique topological ordering of
this transitive tournament, i.e., for every v1 ∈ V (Ti) and v2 ∈ V (Tj), where i 6= j, we have that
(v1, v2) ∈ E(T ′) if and only if i < j. Since T1, T2, . . . , Tp are strongly connected, by inductive
hypothesis let C1, C2, . . . , Cp be Hamiltonian cycles in T1, T2, . . . , Tp, respectively.

Observe that there must be some vertex v′ ∈ V (T1) such that (v, v′) ∈ E(T ), as otherwise
(V (T1), {v} ∪⋃p

i=2 V (Ti)) would be a partition of V (T ) such that all the arcs between the left
side and the right side of the partition are directed from the left to the right; this would be a
contradiction with T being strongly connected. A symmetric reasoning shows that there exists
some vertex v′′ ∈ V (Tp) such that (v′′, v) ∈ E(T ).

We now distinguish two cases. In the first case we assume that p = 1. Let v1, v2, . . . , vn−1

be the vertices of V (T ′) = V (T1) ordered as on cycle C1, i.e., (vi, vi+1) ∈ E(T ′) where index i
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behaves cyclically. Without loss of generality assume that v1 = v′′. We claim that there are two
vertices vi, vi+1 (where again i behaves cyclically) such that (v, vi+1) ∈ E(T ) and (vi, v) ∈ E(T ).
If every vertex vi is a tail of an arc directed towards v, then this claim is trivial: we just take
index i such that vi+1 = v′. Otherwise there are some vertices that are not tails of arcs directed
towards v, and let i + 1 be the smallest index of such a vertex. Note that by the assumption
that v1 = v′′ we have that i+ 1 > 1. Since T is semi-complete, it follows that (v, vi+1) ∈ E(T ).
By the minimality of i + 1 and the fact that i + 1 > 1, it follows that (vi, v) ∈ E(T ), which
proves that vertices vi, vi+1 have the claimed property. We now can construct a Hamiltonian
cycle C for the whole digraph T by inserting v between vi and vi+1 in C1; note that here we
use the fact that |V (T )| > 2 so that vi and vi+1 are actually two different vertices.

Now assume that p > 1. We construct a Hamiltonian cycle C for the whole T by concatenat-
ing cycles C1, C2, . . . , Cp. To construct C, take first v and then place v′ followed by the whole
cycle C1 traversed from v′ to the predecessor of v′. Then proceed to an arbitrarily chosen vertex
of C2 and traverse the whole cycle C2 from this vertex up to its predecessor. Continue in this
manner through the consecutive components, but when considering Cp, instead of choosing an
arbitrary vertex to begin with, choose the successor of v′′ on Cp so that after traversing Cp we
arrive at v′′ that is a tail of an arc directed to v. It is easy to observe that C constructed in this
manner is indeed a Hamiltonian cycle: it follows from the fact that (v, v′), (v′′, v) ∈ E(T ), and
for every two consecutive strongly connected components Ti, Ti+1, there is an arc from every
vertex of the first component to every vertex of the second component.

2.2 Definitions of containment relations

In this section we introduce formally the containment notions that will be of our interest. We
start with the immersion and topological containment relations, which are direct analogues of
the classical undirected versions. Then we proceed to the notion of minor, for which one needs
to carefully describe how the undirected notion is translated to the directed setting.

Let H,G be digraphs. We say that mapping η is a model of H in G, if the following conditions
are satisfied:

• for every vertex v ∈ V (H), η(v) is a subset of V (G);

• for every arc (u, v) ∈ E(H), η((u, v)) is a directed path leading from some vertex of η(u)
to some vertex of η(v).

By imposing further conditions on the model we obtain various containment notions for di-
graphs. If we require that η:

• maps vertices of H to pairwise different singletons of vertices of G,

• and the paths in η(E(H)) are internally vertex-disjoint,

then we obtain the notion of topological containment. In this case we say that η is an expansion
of H in G, and we say that H is a topological subgraph of G. As the images of vertices are
singleton sets, we may think that η simply maps vertices of H to vertices of G. If we relax the
condition on paths in η(E(H)) from being internally vertex-disjoint to being arc-disjoint, we
arrive at the notion of immersion; then η is an immersion of H into G. Clearly, every expansion
is also an immersion, so if G topologically contains H, then it contains H as an immersion as
well.

Sometimes in the literature this notion is called weak immersion to distinguish it from strong
immersion, where each image of an arc is additionally required not to pass through images of
vertices not being the endpoints of this arc. In this work we are interested only in (weak)
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Figure 5.2: Expansion, immersion, and a minor model of the same 4-vertex digraph H in a larger digraph G.

The introduced minor order is not directly stronger or weaker than the immersion or topolog-
ical containment orders. In particular, contrary to the undirected setting, it is not true that if G
contains H as a topological subgraph, then it contains H as a minor; as a counterexample take G
being a triangle (a tournament being a directed cycle of length 3) and H being a complete digraph
on 2 vertices (two vertices plus two arcs in both directions).

However, in the semi-complete setting the minor containment testing may be conveniently
Turing-reduced to topological containment testing using the following lemma. In the following, we
use the notion of constrained topological containment . We say that a digraph H is topologically
contained in G with constraints F ✓E(H), if all the images of arcs of F are of length 1, i.e., they
are just single arcs in G.

Lemma 22. There is an algorithm that, given a digraph H, in 2O(|H|log|H|) time computes a family
FH of pairs (D,F ) where D is a digraph and F ✓E(D), with the following properties:

(i) |FH |2O(|H|log|H|);

(ii) |D|5|H| for each (D,F )2FH ;

(iii) for any semi-complete digraph T , H is a minor of T if and only if there is at least one pair
(D,F )2FH such that D is topologically contained in T with constraints F .

Proof. We present first how the family FH is constructed. For every vertex u 2 V (H), choose a
number p(u) between 1 and d(u). Construct a directed cycle Cu of length p(u) (in case p(u) = 1
take a single vertex without a loop), and let u1,u2,...,up(u) be vertices of Cu in this order. For every
arc (u,v)2E(H), choose two integers i,j = i((u,v)),j((u,v)) such that 1 ip(u) and 1 jp(v),
and add an arc (ui,vj). Family FH consists of all the digraphs constructed in this manner, together
with the sets of all the arcs not contained in cycles C(u) as constraints.

Property (ii) follows directly from the construction, so let us argue that property (i) is sat-
isfied. For every vertex u we have at most d(u) choices of p(u) and at most d(u)d(u) choices
for integers i((u, v)) and j((w, u)) for (u, v), (w, u) 2 E(H). Hence, in total we have at mostQ

u2V (H) d(u)d(u)+1 =
Q

u2V (H) 2O(d(u)logd(u)) choices. Since function t ! t log t is convex andP
u2V (H) d(u) = O(|E(H)|), in total we will construct at most 2O(|H|log|H|) digraphs. As each

digraph from H is constructed in polynomial time, the running time of the algorithm also follows.

We are left with proving that property (iii) is satisfied as well. Assume first that we are given
a semi-complete digraph T , and there is a pair (D,F )2FH such that T contains expansion ⌘ of
some D, where the arcs of F are mapped to single arcs in T . Since cycles C(u) in D are strongly
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Figure 2: Expansion, immersion, and a minor model of the same 4-vertex digraph H in a larger
digraph G.

immersions, as we find the notion of strong immersion not well-motivated enough to investigate
all the technical details that arise when considering both definitions at the same time and
discussing slight differences between them.

Finally, we proceed to the notion of a minor . For this, we require that η

• maps vertices of H to pairwise disjoint sets of vertices of G that moreover induce strongly
connected subdigraphs,

• and maps arcs from E(H) to arcs of E(G) in such a manner that η((u, v)) is an arc from
a vertex of η(u) to a vertex of η(v), for every (u, v) ∈ E(H).

We then say that η is a minor model of H in G. In other words, we naturally translate the
classical notion from the undirected graphs to the directed graphs by replacing the connectivity
requirement with strong connectivity.

The notion of a minor of digraphs was introduced by Kim and Seymour [42], and we would
like to remark that the original definition is more general as it handles also the case of digraphs
with multiple arcs and loops. As in this work we are interested in simple digraphs only, we
will work with this simplified definition, and we refer a curious reader to the work of Kim and
Seymour [42] for more details on the general setting.

The introduced minor order is not directly stronger or weaker than the immersion or topo-
logical containment orders. In particular, contrary to the undirected setting, it is not true that
if G contains H as a topological subgraph, then it contains H as a minor; as a counterexam-
ple take G being a triangle (a tournament being a directed cycle of length 3) and H being a
complete digraph on 2 vertices (two vertices plus two arcs in both directions).

However, in the semi-complete setting the minor containment testing may be conveniently
Turing-reduced to topological containment testing using the following lemma. In the following,
we use the notion of constrained topological containment . We say that a digraph H is topolog-
ically contained in G with constraints F ⊆ E(H), if all the images of arcs of F are of length 1,
i.e., they are just single arcs in G.

Lemma 2.4. There is an algorithm that, given a digraph H, in 2O(|H| log |H|) time computes a
family FH of pairs (D,F ) where D is a digraph and F ⊆ E(D), with the following properties:

(i) |FH | ≤ 2O(|H| log |H|);

(ii) |D| ≤ 5|H| for each (D,F ) ∈ FH ;

(iii) for any semi-complete digraph T , H is a minor of T if and only if there is at least one
pair (D,F ) ∈ FH such that D is topologically contained in T with constraints F .
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Proof. We present first how the family FH is constructed. For every vertex u ∈ V (H), choose a
number p(u) between 1 and d(u). Construct a directed cycle Cu of length p(u) (in case p(u) = 1
take a single vertex without a loop), and let u1, u2, . . . , up(u) be vertices of Cu in this order. For
every arc (u, v) ∈ E(H), choose two integers i, j = i((u, v)), j((u, v)) such that 1 ≤ i ≤ p(u) and
1 ≤ j ≤ p(v), and add an arc (ui, vj). Family FH consists of all the digraphs constructed in
this manner, together with the sets of all the arcs not contained in cycles C(u) as constraints.

Property (ii) follows directly from the construction, so let us argue that property (i) is
satisfied. For every vertex u we have at most d(u) choices of p(u) and at most d(u)d(u) choices
for integers i((u, v)) and j((w, u)) for (u, v), (w, u) ∈ E(H). Hence, in total we have at most∏
u∈V (H) d(u)d(u)+1 =

∏
u∈V (H) 2O(d(u) log d(u)) choices. Since function t → t log t is convex and∑

u∈V (H) d(u) = O(|E(H)|), in total we will construct at most 2O(|H| log |H|) digraphs. As each
digraph from H is constructed in polynomial time, the running time of the algorithm also
follows.

We are left with proving that property (iii) is satisfied as well. Assume first that we are given
a semi-complete digraph T , and there is a pair (D,F ) ∈ FH such that T contains expansion
η of some D, where the arcs of F are mapped to single arcs in T . Since cycles C(u) in D are
strongly connected, so do their images in η. Hence, to construct a minor model of H in G,
we can simply map every vertex of u ∈ V (H) to V (η(C(u))). Existence of appropriate arcs
modeling arcs of E(H) follows from the fact that arcs of F are mapped to single arcs in T in η.

Assume now that G admits a minor model η of H. For every set η(u) for u ∈ V (H),
construct a Hamiltonian cycle C0(u) in T [η(u)] using Lemma 2.3. Then define a digraph D by
taking T , and

• removing all the vertices not participating in any cycle C0(u),

• removing all the arcs not participating in any cycle C0(u) and not being images of arcs of
H in η,

• and contracting all the paths of vertices with degrees 2 on cycles C0(u) to single arcs.

Observe that since at most d(u) vertices of C0(u) are incident to images of arcs of H incident
to u, then cycle C0(u) after contractions have length at most d(u). Therefore, it can be easily
seen that the obtained digraph D is enumerated when constructing family FH , and moreover
it is enumerated together with the set of images of arcs of H in η as constraints. Construction
of D ensures that D is topologically contained in G with exactly these constraints.

One of the motivations of work of Chudnovsky, Fradkin, Kim, Scott,and Seymour, was
finding containment notions that are well-quasi orders on the class of semi-complete digraphs.
It appears that both immersion and minor orders have this property. As far as topological
containment is concerned, Kim and Seymour [42] observe that it does not form a well-quasi-
ordering.

Theorem 2.5 ([13]). The immersion ordering is a well-quasi-ordering of the class of semi-
complete digraphs.2

Theorem 2.6 ([42]). The minor ordering is a well-quasi-ordering of the class of semi-complete
digraphs.

Finally, we say that G = (G; v1, . . . , vh) is a rooted digraph if G is digraph and v1, . . . , vh
are pairwise different vertices of V (G). The notions of immersion and topological containment

2Chudnovsky and Seymour state the result for tournaments only, but the proof works actually also in the
semi-complete setting; cf. [42].
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can be naturally generalized to rooted digraphs. Immersion η is an immersion from a rooted
digraph H = (H;u1, . . . , uh) to a rooted digraph G = (G; v1, . . . , vh) if additionally η(ui) = vi
for i ∈ {1, . . . , h}, that is, the immersion preserves the roots. Such an immersion is called an
H-immersion or a rooted immersion. In the same manner we may define H-expansions or rooted
expansions.

2.3 Width parameters

In this section we introduce formally the width notions of digraphs that will be used in this
paper: cutwidth, pathwidth, and cliquewidth. As far as cutwidth and pathwidth are of our
prime interest, we introduce cliquewidth for the sake of introducing meta-tools concerning model
checking Monadic Second-Order logic that will make some of our later arguments cleaner and
more concise. We first explain each of the parameters separately, and then proceed to proving
inequalities between them.

2.3.1 Cutwidth

The notion of cutwidth of digraphs resembles the classical definition in the undirected setting,
with an exception that only arcs directed forwards in the ordering contribute to the cut function.

Definition 2.7. Given a digraph G = (V,E) and an ordering π of V , let π[α] be the first
α vertices in the ordering π. The width of π is equal to max0≤α≤|V | |E(π[α], V \ π[α])|; the
cutwidth of G, denoted ctw(G), is the minimum width among all orderings of V .

Note that any transitive tournament T has cutwidth 0: we simply take the reversed topo-
logical ordering of T . It appears that cutwidth is closed under taking immersions, i.e., if H is
an immersion of G then ctw(H) ≤ ctw(G).

Lemma 2.8. Let H,G be digraphs and assume that H can be immersed into G. Then ctw(H) ≤
ctw(G).

Proof. Let σ be an ordering of V (G) of width ctw(G) and let η be immersion of H into G.
Define ordering σ′ of V (H) by setting u <σ′ v if and only if η(u) <σ η(v). We claim that σ′

has width at most ctw(G). Indeed, take any prefix σ′[t′] for 0 ≤ t′ ≤ |V (H)| and corresponding
suffix V (H) \ σ′[t′]. By the definition of σ′ we can chose a number t, 0 ≤ t ≤ |V (G)| such that
η(σ′[t′]) ⊆ σ[t] and η(V (H) \ σ′[t′]) ⊆ V (G) \ σ[t]. Now consider any arc (u, v) ∈ E(H) such
that u ∈ σ′[t′] and v ∈ V (H) \ σ′[t′]; we would like to prove that the number of such arcs is at
most ctw(G). However, η((u, v)) is a directed path from η(u) ∈ σ[t] to η(v) ∈ V (G) \ σ[t]. All
these paths are edge-disjoint and contain at least one arc in E(σ[t], V (G)\σ[t]). As the number
of such arcs is at most ctw(G), the lemma follows.

2.3.2 Pathwidth

Similarly to cutwidth, also the notion of pathwidth is a direct translation of the definition in
the undirected setting, again bearing in mind the intuition that only arcs directed forwards in
the decomposition are contributing to the width.

Definition 2.9. Given a digraph G = (V,E), a sequence W = (W1, . . . ,Wr) of subsets of V is
a path decomposition of G if the following conditions are satisfied:

(i)
⋃

1≤i≤rWi = V ;

(ii) Wi ∩Wk ⊆Wj for 1 ≤ i < j < k ≤ r;
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(iii) ∀ (u, v) ∈ E, either u, v ∈Wi for some i or u ∈Wi, v ∈Wj for some i > j.

We call W1, . . . ,Wr the bags of the path decomposition. The width of a path decomposition is
equal to max1≤i≤r(|Wi|−1); the pathwidth of G, denoted pw(G), is the minimum width among
all path decompositions of G.

We would like to remark that conditions (i) and (ii) are equivalent to saying that for every
vertex v, the set of bags containing v form a nonempty interval in the path decomposition. By
IWv we denote this interval in W , treated as an interval of indices; in the notation we drop the
decomposition W whenever it is clear from the context. Then condition (iii) is equivalent to
saying that if (u, v) is an arc, then it cannot occur that Iu ends in the decomposition W before
Iv starts. We use this equivalent definition interchangeably with the original one.

Note that Definition 2.9 formally allows having duplicate bags in the decomposition, thus
making it possible for a path decomposition to have unbounded length. However, of course we
may remove any number of consecutive duplicate bags while constructing the decomposition.
Hence, we will implicitly assume that in all the path decompositions any two consecutive bags
are different. Then, for any two consecutive bags Wi,Wi+1 there exists a vertex v ∈ V (T ) such
that interval Iv either ends in i or begins in i+ 1. Since there are 2|V (T )| beginnings and ends
of intervals Iv for v ∈ V (T ) in total, we infer that any path decomposition W of T which does
not contain any two consecutive equal bags has length at most 2|V (T )|+ 1.

Let us note that any transitive tournament T has pathwidth 0: we can construct a decom-
position W of width 0 by taking singletons of all the vertices and ordering them according to
the reversed topological ordering of T . Again, it appears that pathwidth is closed both under
taking minors and topological subgraphs, i.e., if H is a topological subgraph or a minor of G
then pw(H) ≤ pw(G). The proof of the first observation can be found in [44] and the second
observation is due to Kim and Seymour [42].

For the sake of constructing dynamic programming routines it is convenient to work with
nice path decompositions. We say that a path decomposition W = (W1, . . . ,Wr) is nice if it
has following two additional properties:

• W1 = Wr = ∅;

• for every i = 1, 2, . . . , r − 1 we have that Wi+1 = Wi ∪ {v} for some vertex v /∈ Wi, or
Wi+1 = Wi \ {w} for some vertex w ∈Wi.

If Wi+1 = Wi∪{v} then we say that in bag Wi+1 we introduce vertex v, while if Wi+1 = Wi\{w}
then we say that in bag Wi+1 we forget vertex w. Given any path decomposition W of width
p, in O(p|V (T )|) time we can construct a nice path decomposition W ′ of the same width in
a standard manner: we first introduce empty bags at the beginning and at the end, and then
between any two consecutive bags Wi,Wi+1 we insert a sequence of new bags by first forgetting
the vertices of Wi \Wi+1, and then introducing the vertices of Wi+1 \Wi.

The following lemma uses the concept of a nice path decomposition to prove existence of
vertices of small out- and indegrees.

Lemma 2.10. Let T be a semi-complete digraph of pathwidth at most k. Then T contains a
vertex of outdegree at most k, and a vertex of indegree at most k.

Proof. Let W = (W1, . . . ,Wr) be a nice path decomposition of T of width at most k, and let
v0 be the vertex that is forgotten first in this path decomposition, i.e., the index i of the bag
where it is forgotten is minimum. By minimality of i and the definition of path decomposition,
every vertex that is an outneighbor of v0 needs to be contained in Wi. Since there is at most
k vertices other than v0 in Wi, it follows that the outdegree of v0 is at most k. The proof for
indegree is symmetric — we take v0 to be the vertex that is introduced last.
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Path decompositions can be viewed also from a different perspective: a path decomposition
naturally corresponds to a monotonic sequence of separations. This viewpoint will be very
useful when designing exact and approximation algorithms for pathwidth.

Definition 2.11. A sequence of separations ((A0, B0), . . . , (Ar, Br)) is called a separation chain
if (A0, B0) = (∅, V (T )), (Ar, Br) = (V (T ), ∅) and Ai ⊆ Aj , Bi ⊇ Bj for all i ≤ j. The width of
the separation chain is equal to max1≤i≤r |Ai ∩Bi−1| − 1.

Lemma 2.12. The following holds.

• Let W = (W1, . . . ,Wr) be a path decomposition of a digraph T of width at most p. Then
sequence ((A0, B0), . . . , (Ar, Br)) defined as (Ai, Bi) = (

⋃i
j=1Wj ,

⋃r
j=i+1Wj) is a separa-

tion chain in T of width at most p.

• Let ((A0, B0), . . . , (Ar, Br)) be a separation chain in a digraph T of width at most p. Then
W = (W1, . . . ,Wr) defined by Wi = Ai ∩ Bi−1 is a path decomposition of T of width at
most p.

Proof. For the first claim, it suffices to observe that (Ai, Bi) are indeed separations, as otherwise
there would be an edge (v, w) ∈ E(T ) such that v can belong only to bags with indices at most
i and w can belong only to bags with indices larger than i; this is a contradiction with property
(iii) of path decomposition. The bound on width follows from the fact that Ai ∩Bi−1 = Wi by
property (ii) of path decomposition.

For the second claim, observe that the bound on width follows from the definition of a
separation chain. It remains to carefully check all the properties of a path decomposition.
Property (i) follows from the fact that A0 = ∅, Ar = V (T ) and Wi ⊇ Ai \Ai−1 for all 1 ≤ i ≤ r.
Property (ii) follows from the fact that Ai ⊆ Aj , Bi ⊇ Bj for all i ≤ j: the interval in the
decomposition containing any vertex v corresponds to the intersection of the prefix of the chain
where v belongs to sets Ai, and the suffix where v belongs to sets Bi.

For property (iii), take any (v, w) ∈ E(T ). Let α be the largest index such that v ∈ Wα

and β be the smallest index such that w ∈ Wβ. It suffices to prove that α ≥ β. For the sake
of contradiction assume that α < β and consider separation (Aα, Bα). By maximality of α it
follows that v /∈ Bα; as β > α and β is minimal, we have also that w /∈ Aα. Then v ∈ Aα \Bα
and w ∈ Bα \Aα, which contradicts the fact that (Aα, Bα) is a separation.

Note that the transformations in the first and in the second claim of Lemma 2.12 are inverse
to each other and can be carried out in O(p|V (T )|) assuming that we store separations along
with separators. Hence, instead of looking for a path decomposition of width p one may look
for a separation chain of width at most p. Note also that if decomposition W does not contain
a pair of consecutive equal bags, then the corresponding separation chain has only separations
of order at most p.

Assume that ((A0, B0), . . . , (Ar, Br)) is a separation chain corresponding to a nice path
decomposition W in the sense of Lemma 2.12. Since A0 = ∅, Ar = V (G), and |Ai| can change
by at most 1 between two consecutive separations, for every `, 0 ≤ ` ≤ |V (G)|, there is some
separation (Ai, Bi) for which |Ai| = ` holds. Let W [`] denote any such separation; note that
the order of W [`] is at most the width of W .

Before we proceed, let us state one simple, but very important fact about separations in semi-
complete digraphs. Assume that T is a semi-complete digraph and let (A,B) be a separation
of T . We know that E(A \ B,B \ A) = ∅, so E(B \ A,A \ B) = (B \ A) × (A \ B) because T
is semi-complete. A simple application of this observation is the following. If W is a nice path
decomposition of T , then by Lemma 2.12 every bag Wi is a separator separating the vertices
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that are not yet introduced from the vertices that are already forgotten. Therefore, there is no
arc from a vertex that is forgotten to a vertex that is not yet introduced, but from every vertex
not yet introduced there is an arc to every vertex that is already forgotten.

2.3.3 Cliquewidth

A labeled digraph is a pair (D,α), where D is a digraph and α : V (D) → {1, 2, . . . , k} is a
labeling function that associates with each vertex of D one of k different labels. We define three
operations on labeled digraphs:

• Disjoint union ⊕ is defined as

(D1, α1)⊕ (D2, α2) = (D1 ∪D2, α1 ∪ α2).

In other words, we take the disjoint union of digraphs D1 and D2, and define the labeling
as the union of original labelings.

• Join ηi,j(·) for i, j ∈ {1, 2, . . . , k}, i 6= j, is defined as

ηi,j((D,α)) = (D′, α),

where D′ is D after introducing all possible arcs with tail labeled with i and head labeled
with j.

• Relabel ρi→j(·) for i, j ∈ {1, 2, . . . , k}, i 6= j, is defined as

ρi→j((D,α)) = (D,α′),

where α′ is α with all the values i substituted with j.

A clique expression is a term that uses operators ⊕, ηi,j(·), ρi→j(·), and constants ι1, ι2, . . . , ιk
that represent one-vertex graphs with the only vertex labeled with 1, 2, . . . , k, respectively. In
this manner a clique expression constructs some labeled digraph (D,α). The cliquewidth of a
digraph D (denoted cw(D)) is the minimum number of labels needed in a clique expression
that constructs D (with any labeling).

2.3.4 Comparison of the parameters

Lemma 2.13. For every digraph D, it holds that pw(D) ≤ 2 · ctw(D). Moreover, given an
ordering of V (D) of cutwidth c, one can in O(|V (D)|2) time compute a path decomposition of
width at most 2c.

Proof. We provide a method of construction of a path decomposition of width at most 2c from
an ordering of V (D) of cutwidth c.

Let (v1, v2, . . . , vn) be the ordering of V (D) of cutwidth c. Let F ⊆ E(D) be the set of
edges (vj , vi) such that j > i; edges from F will be called back edges. We now construct a path
decomposition W = (W1,W2, . . . ,Wn) of D by setting

W` = {v`} ∪
⋃
{{vi, vj} | i ≤ ` < j ∧ (vj , vi) ∈ E(D)}.

In other words, for each cut between two consecutive vertices in the order (plus one extra at
the end of the ordering) we construct a bag that contains (i) endpoints of all the back edges
that are cut by this cut, and (ii) the last vertex before the cut. Observe that |W`| ≤ 2c + 1
for every 1 ≤ ` ≤ n. It is easy to construct W in O(|V (D)|2) time using one scan through
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the ordering (v1, v2, . . . , vn). We are left with arguing that W is a path decomposition. Clearly⋃n
i=1Wi = V (D), so property (i) holds

Consider any vertex v` and an index j 6= `, such that v` ∈Wj . Assume first that j < `. By
the definition of W , there exists an index i ≤ j such that (v`, vi) ∈ E(D). Existence of this arc
implies that v` has to be contained in every bag between Wj and W`, by the definition of W .
A symmetrical reasoning works also for j ≥ `. We infer that for every vertex v` the set of bags
it is contained in form an interval in the path decomposition. This proves property (ii).

To finish the proof, consider any edge (vi, vj) ∈ E(G). If i > j then {vi, vj} ⊆ Wj , whereas
if i < j then vi ∈Wi and vj ∈Wj . Thus, property (iii) holds as well.

Lemma 2.14. For every semi-complete digraph T , it holds that cw(T ) ≤ pw(T )+2. Moreover,
given a path decomposition of width p, one can in O(|V (T )|2) time compute a clique expression
constructing T using p+ 2 labels.

Proof. We provide a method of construction of a clique expression using p + 2 labels from a
path decomposition of width p. Let (W1,W2, . . . ,Wr) be a path decomposition of T of width
p. Without loss of generality we can assume that the given path decomposition is nice. As in
a nice path decomposition every vertex is introduced and forgotten exactly once, we have that
r = 2|V (T )|+ 1.

We now build a clique expression using p+2 labels that constructs the semi-complete digraph
T along the path decomposition. Intuitively, at each step of the construction, every vertex of
the bag Wi is assigned a different label between 1 and p + 1, while all forgotten vertices are
assigned label p + 2. If we proceed in this manner, we will end up with the whole digraph T
labeled with p+2, constructed for the last bag. As we begin with an empty graph, we just need
to show what to do in the introduce and forget vertex steps.

Introduce vertex step.
Assume that Wi = Wi−1 ∪ {v}, i.e., bag Wi introduces vertex v. Note that this means that

|Wi−1| ≤ p. As labels from 1 up to p + 1 are assigned to vertices of Wi−1 and there are at
most p of them, let q be a label that is not assigned. We perform following operations; their
correctness is straightforward.

• perform ⊕ιq: we introduce the new vertex with label q;

• for each w ∈ Wi−1 with label q′, perform join ηq,q′ if (v, w) ∈ E(D) and join ηq′,q if
(w, v) ∈ E(D);

• perform join ηq,p+2 since the new vertex has an outgoing arc to every forgotten vertex.

Forget vertex step.
Assume that Wi = Wi−1 \{w}, i.e., bag Wi forgets vertex w. Let q ∈ {1, 2, . . . , p+ 1} be the

label of w. We just perform relabel operation ρq→p+2, thus moving w to forgotten vertices.

2.4 MSO and semi-complete digraphs

In this work we use known results on model checking Monadic Second-Order Logic on (di)graphs
of small cliquewidth. In the sequel, MSO1 is Monadic Second-Order Logic with quantification
over subsets of vertices but not of arcs, whereas in MSO2 we allow also quantification over arc
subsets. We will be mostly interested in the tractability of model checking MSO1 on digraphs
of bounded cliquewidth. For completeness, we now briefly recall the definitions of MSO1 and
MSO2 on digraphs. For more information on the links between these models of logic and
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fixed-parameter tractability, we refer to the monograph of Courcelle and Engelfriet [14], or to
a shorter introduction in the book of Flum and Grohe [25].

The syntax of MSO1 on digraphs consists of:

• Logical connectives ∨, ∧, ¬, ⇔, ⇒, with standard semantics.

• Variables for vertices and for subsets of vertices.

• Quantifiers ∀, ∃ that can be applied to these variables. The semantics is that ∀x∈V ψ is
true if and only if ψ is true for every evaluation of x to a vertex of the digraph, whereas
∃x∈V ψ is true if and only if ψ is true for some evaluation of x to a vertex of the digraph.
The semantics of ∀X⊆V and ∃X⊆V is defined analogically.

• The following binary relations:

– A(u, v), where u, v are vertex variables, and the semantics is that A(u, v) is true if
and only if the arc (u, v) is present in the digraph;

– x ∈ X, where x is a vertex variable and X is a vertex set variable, with standard
semantics;

– equality of variables.

MSO2 extends MSO1 by introducing also variables for arcs and subsets of arcs, and allowing
quantification over these variables as well. There is also one additional binary relation inc(v, e)
that checks whether an edge e is incident to a vertex v.

In the undirected setting, it is widely known that model checking MSO2 is fixed-parameter
tractable, when the parameters are the length of the formula and the treewidth of the graph;
see e.g. [14, 19, 25]. As far as MSO1 is concerned, model checking MSO1 is fixed-parameter
tractable, when the parameters are the length of the formula and the cliquewidth of the graph.
These results in fact hold not only for undirected graphs, but for structures with binary relations
in general (where we consider the Gaifman graph of the structure), so in particular for digraphs.
The following result follows from the work of Courcelle, Makowsky and Rotics [15]; we remark
that the original paper treats of undirected graphs, but in fact the results hold also in the
directed setting (cf. [32, 34, 39]).

Theorem 2.15 ([15]). There exists an algorithm with running time f(||ϕ||, k) · n2 that given
an MSO1 formula ϕ checks whether ϕ is satisfied in a digraph G on n vertices, given together
with a clique expression using at most k labels constructing it.

Lemma 2.14 asserts that the cliquewidth of a semi-complete digraph is bounded by its path-
width plus 2. Moreover, the proof gives explicit construction of the corresponding expression.
Hence, the following meta-theorem follows as an immediate corollary.

Theorem 2.16. There exists an algorithm with running time f(||ϕ||, p) · n2 that given an
MSO1 formula ϕ checks whether ϕ is satisfied in a semi-complete digraph T on n vertices,
given together with a path decomposition of width p.

We note that by pipelining Lemmas 2.13 and 2.14 one can show that an analogous result
holds also for cutwidth.

It is tempting to conjecture that the tractability result for MSO1 and pathwidth or cutwidth
could be extended also to MSO2, as the decompositions resemble path decompositions in the
undirected setting. However, this is unfortunately not true. In particular, as it was shown
in [44], there exists a constant-size MSO2 formula ψ, such that checking whether ψ is true in
a semi-complete digraph of constant cutwidth and pathwidth is NP-hard.
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3 The obstacle zoo

In this section we describe the set of obstacles used by the algorithms. We begin with jungles,
the original obstacle introduced by Fradkin and Seymour [31], and their enhanced versions that
will be used extensively in this paper, namely short jungles. It appears that the enhancement
enables us to construct large topological subgraph, minor or immersion models in short jungles in
a greedy manner, and this observation is the key to trimming the running times for containment
tests. We then recall the notion of a triple that is an important concept introduced by Fradkin
and Seymour [31], and which we will also use for irrelevant vertex rules. Finally, we continue
with further obstacles that will be used in the algorithms: degree and matching tangles for
pathwidth, and backward tangles for cutwidth. Each time we describe one of these obstacles,
we prove two lemmas. The first asserts that existence of the structure is indeed an obstacle
for having small width, while the second shows that one can constructively find an appropriate
short jungle in a sufficiently large obstacle.

3.1 Jungles and short jungles

Definition 3.1. Let T be a semi-complete digraph and k be an integer. A k-jungle is a set
X ⊆ V (T ) such that (i) |X| = k; (ii) for every v, w ∈ X, v 6= w, either (v, w) ∈ E(T ) or there
are k internally vertex-disjoint paths from v to w.

It is easy to observe that existence of a (k + 1)-jungle is an obstacle for admitting a path
decomposition of width smaller than k, as in such a decomposition there would necessarily be a
bag containing all the vertices of the jungle. The work of Fradkin and Seymour [31] essentially
says that containing a large jungle is the only reason for not admitting a decomposition of
small width: if pw(T ) ≥ f(k) for some function f (that is actually quadratic), then T must
necessarily contain a k-jungle. In this paper we strenghten this result by providing linear bounds
on function f , and moreover showing that in the obtained jungle the paths between vertices
may be assumed to be short, as in the definition below.

Definition 3.2. Let T be a semi-complete digraph and k, d be integers. A (k, d)-short (immer-
sion) jungle is a set X ⊆ V (T ) such that (i) |X| ≥ k; (ii) for every v, w ∈ X, v 6= w, there are
k internally vertex-disjoint (edge-disjoint) paths from v to w of length at most d.

We remark that in this definition we treat a path as a subdigraph. Thus, among the k
vertex-disjoint paths from v to w only at most one can be of length 1. We remark also that
in all our algorithms, every short jungle is constructed and stored together with corresponding
families of k paths for each pair of vertices.

The restriction on the length of the paths enables us to construct topological subgraph
and immersion models in short jungles greedily. This is the most useful advantage of short
jungles over jungles, as it enables us to reduce the time complexity of containment tests to
single-exponential.

Lemma 3.3. If a digraph T contains a (dk, d)-short (immersion) jungle for some d > 1, then
it admits every digraph S with |S| ≤ k as a topological subgraph (as an immersion).

Proof. Firstly, we prove the lemma for short jungles and topological subgraphs. Let X be the
short jungle whose existence is assumed. We construct the expansion greedily. As images of
vertices of S we put arbitrary |V (S)| vertices of X. Then we construct paths being images
of arcs in S; during each construction we use at most d − 1 new vertices of the digraph for
the image. While constructing the i-th path, which has to lead from v to w, we consider dk
vertex-disjoint paths of length d from v to w. So far we used at most k + (i − 1)(d − 1) < dk
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vertices for images, so at least one of these paths does not traverse any used vertex. Hence, we
can safely use this path as the image and proceed; note that thus we use at most d − 1 new
vertices.

Secondly, we prove the lemma for short immersion jungles and immersions. Let X be the
short immersion jungle whose existence is assumed. We construct the immersion greedily. As
images of vertices of S we put arbitrary |V (S)| vertices of X. Then we construct paths being
images of arcs in S; during each construction we use at most d new arcs of the digraph for
the image. While constructing the i-th path, which has to lead from v to w, we consider dk
edge-disjoint paths of length d from v to w. So far we used at most (i − 1)d < dk arcs, so at
least one of these paths does not contain any used arc. Hence, we can safely use this path as
the image and proceed; note that thus we use at most d new arcs.

We now prove the analogue of Lemma 3.3 for minors. We remark that unlike Lemma 3.3,
the proof of the following lemma is nontrivial.

Lemma 3.4. If a digraph T contains a (2dk+ 1, d)-short jungle for some d > 1, then it admits
every digraph S with |S| ≤ k as a minor.

Proof. Let S′ be a digraph constructed as follows: we take S and whenever for some vertices v, w
arc (v, w) exists but (w, v) does not, we add also the arc (w, v). We have that |S′| ≤ 2|S| ≤ 2k, so
since T contains a (2dk+1, d)-jungle, by Lemma 3.3 we infer that T contains S′ as a topological
subgraph. Moreover, since for every two vertices of this jungle there is at most one path of
length 1 between them, in the construction of Lemma 3.3 we may assume that we always use
one of the paths of length longer than 1. Hence, we can assume that all the paths in the
constructed expansion of S′ in T are of length longer than 1.

Let η′ be the constructed expansion of S′ in T . Basing on η′, we build a minor model η of
S′ in T ; since S is a subdigraph of S′, the lemma will follow. We start with η(v) = {η′(v)} for
every v ∈ V (S′) and gradually add vertices to each η(v).

Consider two vertices v, w ∈ V (S′) such that (v, w), (w, v) ∈ E(S′). We have then two
vertex disjoint paths P = η′((v, w)) and Q = η′((w, v)) that lead from η′(v) to η′(w) and vice
versa. We know that P and Q are of length at least 2. Moreover, without loss of generality we
may assume that for any pair of vertices (x, y) on P that are (i) not consecutive, (ii) y appears
on P1 after x, and (iii) (x, y) 6= (η′(v), η′(w)), we have that (y, x) ∈ E(T ). Indeed, otherwise
we would have that (x, y) ∈ E(T ) and path P could be shortcutted using arc (x, y) without
spoiling the property that it is longer than one. We can assume the same for the path Q.

Assume first that one of the paths P,Q is in fact of length greater than 2. Assume without
loss of generality that it is P , the construction for Q is symmetric. Let p1 and p2 be the first and
the last internal vertex of P , respectively. By our assumptions about nonexistence of shortcuts
on P and about |P | > 2, we know that p1 6= p2, (p2, η

′(v)) ∈ E(T ) and (η′(w), p1) ∈ E(T ).
Observe that the subpath of P from η′(v) to p2, closed by the arc (p2, η

′(v)) forms a directed
cycle. Include the vertex set of this cycle into η(v). Observe that thus we obtain an arc
(p2, η

′(w)) from η(v) to η(w), and an arc (η′(w), p1) from η(w) to η(v).
Now assume that both of the paths P,Q are of length exactly 2, that is, P = η′(v) →

p → η′(w) for some vertex p, and Q = η′(w) → q → η′(v) for some vertex q 6= p. Since T is
semi-complete, at least one of arcs (p, q), (q, p) exists. Assume without loss of generality that
(p, q) ∈ E(T ); the construction in the second case is symmetric. Note that η′(v) → p → q →
η′(v) is a directed cycle; include the vertex set of this cycle into η(v). Observe that thus we
obtain an arc (p, η′(w)) from η(v) to η(w), and an arc (η′(w), q) from η(w) to η(v).

Concluding, for every v ∈ V (T ) the final η(v) consists of η′(v) plus vertex sets of directed
cycles that pairwise meet only in η′(v). Thus, T [η(v)] is strongly connected for each v ∈ V (T ).
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Moreover, for every pair of vertices v, w ∈ V (S′) such that (v, w), (w, v) ∈ E(S′), we have
pointed out an arc from η(v) to η(w) and from η(w) to η(v). Hence, η is a minor model of
S′.

3.2 Triples

We now recall the notion of a triple, an obstacle extensively used in the approach of Fradkin
and Seymour [31].

Definition 3.5. Let T be a semi-complete digraph. A triple of pairwise disjoint subsets (A,B,C)
is called a k-triple if |A| = |B| = |C| = k and there exist orderings (a1, . . . , ak), (b1, . . . , bk),
(c1, . . . , ck) of A,B,C, respectively, such that for all indices 1 ≤ i, j ≤ k we have (ai, bj), (bi, cj) ∈
E(T ) and for each index 1 ≤ i ≤ k we have (ci, ai) ∈ E(T ).

B

A C

Figure 3: A 4-triple.

The main observation of [31] is that for some function f , if a semi-complete digraph contains
an f(k)-jungle, then it contains also a k-triple [31, (2.6)]. Moreover, if it contains a k-triple,
then every digraph of size at most k is topologically contained in this triple [31, (1) in the
proof of (1.1)]. We remark that Fradkin and Seymour actually attribute this observation to
Chudnovsky, Scott, and Seymour. The following lemma is an algorithmic version of the afore-
mentioned observation and will be needed in our algorithms. The proof closely follows the lines
of argumentation contained in [31]; we include it for the sake of completeness.

Lemma 3.6. There exists an elementary function f , such that for every k ≥ 1 and every semi-
complete graph T on n vertices, given together with a f(k)-jungle in it, it is possible to construct
a k-triple in T in time O(n3 log n).

Proof. For an integer k, let R(k, k) denote the Ramsey number, that is the smallest integer such
that every red-blue coloring of the edges of the complete graph on R(k, k) vertices contains
a monochromatic clique of size k. By the theorem of Erdős and Szekeres [21], R(k, k) ≤
(1 + o(1))4k−1√

πk
. For k ≥ 1, we define function the function f as

f(k) = 212·2R(2k,2k)
.
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Moreover, let r = R(2k, 2k), s = 2r, and m = 212s = f(k).
We say that a semi-complete digraph is transitive if it contains a transitive tournament

as a subdigraph. Every tournament on m vertices contains a transitive tournament on log2m
vertices as a subdigraph. Also an induced acyclic subdigraph of an oriented (where there is
at most one directed arc between a pair of vertices) m-vertex digraph with log2m vertices can
be found in time O(m2 logm) [46]. This algorithm can be modified into an algorithm finding
a transitive semi-complete digraph in semi-complete digraphs by removing first all pairs of
oppositely directed arcs, running the algorithm for oriented graphs, and then adding some of
the deleted arcs to turn the acyclic digraph into a transitive semi-complete digraph. Thus, if
X0 is an m-jungle in T , then X0 contains a subset X that is a 12s-jungle in T and that induces
a transitive semi-complete digraph. Moreover, such a set X can be found in time O(n2 log n).

The next step in the proof of Fradkin and Seymour is to partition the set X into parts X1

and X2 of size 6s each such that X1 is complete to X2, i.e., for each x1 ∈ X1 and x2 ∈ X2

we have (x1, x2) ∈ E(T ). Such a partition of the vertex set of the transitive semi-complete
digraph can be easily found in time O(|X|2). Because X is a 12s-jungle in T , there are at least
6s vertex-disjoint paths from X2 to X1 in T . Indeed, otherwise by Menger’s theorem there
would be a separation (A,B) of order less than 6s such that X2 ⊆ A and X1 ⊆ B, and such a
separation would separate some vertex from X1 from some vertex of X2, contradicting existence
of 6s internally vertex-disjoint paths between these two vertices. Let R be a minimal induced
subdigraph of T such that X ⊆ V (R) and there are 6s vertex-disjoint paths from X2 to X1

in R. Such a minimal subgraph R can be found in time O(n3 log n) by repeatedly removing
vertices v ∈ V (T ) \ X if there are 6s vertex-disjoint paths from X2 to X1 in V (T ) \ {v}. As
the subroutine for finding the paths we use the classical Ford-Fulkerson algorithm, where we
finish the computation after finding 6s paths. Hence, the running time one application of this
algorithm is O(sn2). As we make at most n tests and s = O(log n), the claimed bound on the
runtime follows.

Let P1, P2, . . . , P6s be vertex-disjoint paths from X2 to X1 in R. The arguments given by
Fradkin and Seymour prove that the set of vertices Q formed by the first two and the last two
vertices of these 6s paths contains a k-triple. Thus, by checking every triple of subsets ofQ of size

k in time polynomial in k, we can find a k-triple. This step takes time O
((

24s
k

)3
kO(1)

)
= no(1),

as s = O(log n) and k = O(log log n).

3.3 Degree tangles

The degree tangle is intuitively a concentration of vertices with very similar outdegrees. Sur-
prisingly, a large degree tangle forms already an obstacle for admitting a path decomposition
of small width. This observation is the main idea behind the degree ordering approach that we
use in this paper.

Definition 3.7. Let T be a semi-complete digraph and k, ` be integers. A (k, `)-degree tangle
is a set X ⊆ V (T ) such that (i) |X| ≥ k; (ii) for every v, w ∈ X we have |d+(v)− d+(w)| ≤ `.

Lemma 3.8. Let T be a semi-complete digraph. If T contains a (4k + 2, k)-degree tangle X,
then pw(T ) > k.

Proof. For the sake of contradiction, assume that T admits a (nice) path decomposition W of
width at most k. Let α = minv∈X d+(v) and β = maxv∈X d+(v); we know that β − α ≤ k.
Let (A,B) = W [α]. Recall that (A,B) = W [α] is any separation in the separation chain
corresponding to W in the sense of Lemma 2.12 such that |A| = α. We know that |A ∩B| ≤ k
and |A| = α.
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Firstly, observe that X ∩ (A \B) = ∅. This follows from the fact that vertices in A \B can
have outneighbors only in A, so their outdegrees are upper bounded by |A| − 1 = α− 1.

Secondly, |X ∩ (A ∩B)| ≤ k since |A ∩B| ≤ k.
Thirdly, we claim that |X ∩ (B \ A)| ≤ 3k + 1. Assume otherwise. Consider subdigraph

T [X∩ (B \A)]. Since this is a subdigraph of a semi-complete digraph of pathwidth at most k, it
has also pathwidth at most k. By Lemma 2.10 we infer that there exists a vertex v ∈ X∩(B\A)
whose indegree in T [X ∩ (B \ A)] is at most k. Since T [X ∩ (B \ A)] is semi-complete and
|X∩(B\A)| ≥ 3k+2, we infer that the outdegree of v in T [X∩(B\A)] is at least 2k+1. As (A,B)
is a separation and T is semi-complete, all the vertices of A \B are also outneighbors of v in T .
Note that |A\B| = |A|−|A∩B| ≥ α−k. We infer that v has at least α−k+2k+1 = α+k+1 > β
outneighbors in T , which is a contradiction with v ∈ X.

Summing up the bounds we get 4k + 2 ≤ |X| ≤ k + 3k + 1 = 4k + 1, a contradiction.

Lemma 3.9. Let T be a semi-complete digraph and let X be a (26k, k)-degree tangle in T .
Then X contains a (k, 3)-short jungle which can be found in O(k3n2) time, where n = |V (T )|.

Proof. We present a proof of the existential statement. The proof can be easily turned into
an algorithm finding the jungle; during the description we make remarks at the places where
it may be non-trivial to observe how the algorithm should perform to achieve the promised
running-time guarantee.

By possibly trimming X, assume without loss of generality that |X| = 26k. Take any
v, w ∈ X. We either find a (k, 3)-short jungle in X explicitly, or find k vertex-disjoint paths
from v to w of length at most 3. If for no pair v, w an explicit short jungle is found, we conclude
that X is a (k, 3)-short jungle itself.

Let us consider four subsets of V (T ) \ {v, w}:

• V ++ = (N+(v) ∩N+(w)) \ {v, w},

• V +− = (N+(v) ∩N−(w)) \ {v, w},

• V −+ = (N−(v) ∩N+(w)) \ {v, w},

• V −− = (N−(v) ∩N−(w)) \ {v, w}.

Clearly, |V ++|+ |V −+|+ |V +−|+ |V −−| ≥ n− 2. Note that equality holds for the tournament
case — in this situation these four subsets form a partition of V (T ) \ {v, w}.

If |V +−| ≥ k, then we already have k vertex-disjoint paths of length 2 from v to w. Assume
then that |V +−| < k.

Observe that d+(v) ≤ |V ++|+ |V +−|+1 and d+(w) ≥ |V ++|+ |V −+\V ++|. Since v, w ∈ X,
we have that d+(w)− d+(v) ≤ k, so

|V −+ \ V ++| ≤ d+(w)− |V ++| ≤ k + d+(v)− |V ++| ≤ k + 1 + |V +−| ≤ 2k.

Let A = V ++ \V +− and B = V −− \V +−. Note that A and B are disjoint, since V ++ ∩V −− ⊆
V +−. Let H be a bipartite graph with bipartition (A,B), such that for a ∈ A and b ∈ B
we have ab ∈ E(H) if and only if (a, b) ∈ E(T ). Every edge ab of H gives raise to a path
v → a → b → w of length 3 from v to w. Hence, if we could find a matching of size k in H,
then this matching would form a family of k vertex disjoint paths of length at most 3 from v to
w. Note that testing existence of such a matching can be done in O(kn2) time, as we can run
the algorithm finding an augmenting path at most k times.

Assume then that such a matching does not exist. By Kőnig’s theorem we can find a vertex
cover C of H of cardinality smaller than k; again, this can be found in O(kn2) time. As
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A∪B ∪ (V −+ \ V ++)∪ V +− = V (T ) \ {v, w} while (V −+ \ V ++)∪ V +− contains at most than
3k− 1 vertices in total, A∪B must contain at least (26k− 2)− (3k− 1) = 23k− 1 vertices from
X. We consider two cases: either |A ∩X| ≥ 16k, or |B ∩X| ≥ 7k.

Case 1. In the first case, consider set Y0 = X ∩ (A \C). Since |A∩X| ≥ 16k and |A∩C| < k,
we have that |Y0| > 15k. Let Y be any subset of Y0 of size 15k. Take any vertex y ∈ Y and
consider, where its outneighbors can lie. These outneighbors can be either in {v} (at most 1 of
them), in (V −+ \ V ++) ∪ V +− (less than 3k of them), in B ∩ C (at most k of them), or in A.
As d+(v) ≥ |A| and v, y ∈ X, we have that d+(y) ≥ |A| − k. We infer that y must have at least
|A| − 5k outneighbors in A. As |Y | = 15k, we have that y has at least 10k outneighbors in Y .

Note that in the tournament case we would be already finished, as this lower bound on
the outdegree would imply also an upper bound on indegree, which would contradict the fact
that T [Y ] contains a vertex of indegree at least |Y |−1

2 . This also shows that in the tournament
setting a stronger claim holds that in fact X is a (k, 3)-jungle itself. In the semi-complete
setting, however, we do not have any contradiction yet. In fact no contradiction is possible
as the stronger claim is no longer true. To circumvent this problem, we show how to find an
explicit (k, 3)-short jungle within Y .

Observe that the sum of outdegrees in T [Y ] is at least 10k · 15k = 150k2. We claim that
the number of vertices in Y that have indegrees at least 6k is at least k. Otherwise, the sum of
indegrees would be bounded by 15k · k+ 6k · 14k = 99k2 < 150k2 and the sums of the indegrees
and of the outdegrees would not be equal. Let Z be any set of k vertices in Y that have indegrees
at least 6k in T [Y ]. Take any z1, z2 ∈ Z and observe that in T [Y ] the set of outneighbors of
z1 and the set of inneighbors of z2 must have intersection of size at least k, as d+

T [Y ](z1) ≥ 10k,

d−T [Y ](z2) ≥ 6k and |Y | = 15k. Through these k vertices one can rout k vertex-disjoint paths

from z1 to z2, each of length 2. Hence, Z is the desired (k, 3)-short jungle.

Case 2. This case will be similar to the previous one, with the exception that we only get a
contradiction: there is no subcase with finding an explicit smaller jungle. Consider set Y0 =
X ∩ (B \ C). Since |B ∩ X| ≥ 7k and |B ∩ C| < k, we have that |Y0| > 6k. Let Y be any
subset of Y0 of size 6k+ 1. Take any vertex y ∈ Y that has outdegree at least 3k in T [Y ] (since
|Y | = 6k + 1, such a vertex exists), and consider its outneighbors. As y /∈ C we have that all
the vertices of A \ C are the outneighbors of y (more than |A| − k of them), and there are at
least 3k outneighbors within B. Hence d+(y) > |A|+ 2k. On the other hand, the outneighbors
of v have to lie inside A ∪ V +− ∪ {w}, so d+(v) ≤ |A ∪ V +− ∪ {w}| ≤ |A| + k. We infer that
d+(y)− d+(v) > k, which is a contradiction with v, y ∈ X.

3.4 Matching tangles

Definition 3.10. Let T be a semi-complete digraph and k, ` be integers. A (k, `)-matching
tangle is a pair of disjoint subsets X,Y ⊆ V (T ) such that (i) |X| = |Y | = k; (ii) there exists a
matching from X to Y , i.e., there is a bijection f : X → Y such that (v, f(v)) ∈ E(T ) for all
v ∈ X; (iii) for every v ∈ X and w ∈ Y we have that d+(w) > d+(v) + `.

Lemma 3.11. Let T be a semi-complete digraph. If T contains a (k + 1, k)-matching tangle
(X,Y ), then pw(T ) > k.

Proof. For the sake of contradiction assume that T has a (nice) path decomposition W of width
at most k. Let α = minw∈Y d+(w) and let (A,B) = W [α]. Recall that |A| = α and |A∩B| ≤ k.

Firstly, we claim that X ⊆ A. Assume otherwise that there exists some v ∈ (B \ A) ∩X.
Note that all the vertices of A \ B are outneighbors of v, so d+(v) ≥ |A| − k = α − k. Hence
d+(v) ≥ d+(w)− k for some w ∈ Y , which is a contradiction.
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Secondly, we claim that Y ⊆ B. Assume otherwise that there exists some w ∈ (A \B) ∩ Y .
Then all the outneighbors of w are in A, so there is less than α of them. This is a contradiction
with the definition of α.

As |A ∩ B| ≤ k and there are k + 1 disjoint pairs of form (v, f(v)) ∈ E(T ) for v ∈ X, we
conclude that there must be some v ∈ X such that v ∈ A\B and f(v) ∈ B \A. This contradicts
the fact that (A,B) is a separation.

Lemma 3.12. Let T be a semi-complete digraph and let (X,Y ) be a (5k, 3k)-matching tangle in
T . Then Y contains a (k, 4)-short jungle which can be found in O(k3n) time, where n = |V (T )|.

Proof. We present the proof of the existential statement; all the steps of the proof are easily
constructive and can be performed within the claimed complexity bound.

Let Z be the set of vertices of Y that have indegrees at least k + 1 in T [Y ]. We claim that
|Z| ≥ k. Otherwise, the sum of indegrees in T [Y ] would be at most k · 5k+ 4k · k = 9k2 <

(
5k
2

)
,

so the total sum of indegrees would be strictly smaller than the number of arcs in the digraph.
It remains to prove that Z is a (k, 4)-short jungle.

Take any v, w ∈ Z; we are to construct k vertex-disjoint paths from v to w, each of length
at most 4. Let R0 = N−T [Y ](w) \ {v}. Note that |R0| ≥ k, hence let R be any subset of R0

of cardinality k and let P = f−1(R). We are to construct k vertex-disjoint paths of length 2
connecting v with every vertex of P and not passing through P ∪ R ∪ {w}. By concatenating
these paths with arcs of the matching f between P and R and arcs leading from R to w, we
obtain the family of paths we look for.

The paths from v to P are constructed in a greedy manner, one by one. Each path con-
struction uses exactly one vertex outside P ∪ R. Let us take the next, i-th vertex p ∈ P . As
d+(v) > d+(p) + 3k, by Lemma 2.2 there exist at least 3k vertices in T that are both outneigh-
bors of v and inneighbors of p. At most 2k of them can be inside P ∪R, at most i− 1 ≤ k − 1
of them were used for previous paths, so there is at least one that is still unused; let us denote
it by q. If in fact q = w, we build a path of length 1 directly from v to w thus ignoring vertex
p; otherwise we can build the path of length 2 from v to p via q and proceed to the next vertex
of P .

3.5 Backward tangles

Definition 3.13. Let T be a semi-complete digraph and k be an integer. A k-backward tangle
is a partition (X,Y ) of V (T ) such that (i) there exist at least k arcs directed from X to Y ; (ii)
for every v ∈ X and w ∈ Y we have that d+(w) ≥ d+(v).

Lemma 3.14. Let T be a semi-complete digraph. If T contains an (m + 1)-backward tangle
(X,Y ) for m = 64k2 + 18k + 1, then ctw(T ) > k.

Proof. For the sake of contradiction, assume that V (T ) admits an ordering π of width at most k.
Let α be the largest index such that (Xα, Yα) = (π[α], V (T ) \ π[α]) satisfies Y ⊆ Yα. Similarly,
let β be the smallest index such that (Xβ, Yβ) = (π[β], V (T )\π[β]) satisfies X ⊆ Xβ. Note that
|E(Xα, Yα)|, |E(Xβ, Yβ)| ≤ k. Observe also that α ≤ β; moreover, α < |V (T )| and β > 0, since
X,Y are non-empty.

Let (Xα+1, Yα+1) = (π[α + 1], V (T ) \ π[α + 1]). By the definition of α there is a unique
vertex w ∈ Xα+1∩Y . Take any vertex v ∈ V (T ) and suppose that d+(w) > d+(v)+(k+1). By
Lemma 2.2, there exist k+1 vertex-disjoint paths of length 2 from w to v. If v was in Yα+1, then
each of these paths would contribute at least one arc to the set E(Xα+1, Yα+1), contradicting
the fact that |E(Xα+1, Yα+1)| ≤ k. Hence, every such v belongs to Xα+1 as well. By Lemma 3.8
we have that the number of vertices with outdegrees in the interval [d+(w)− (k + 1), d+(w)] is
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bounded by 8k + 1, as otherwise they would create a (8k + 2, 2k)-degree tangle, implying by
Lemma 3.8 that pw(T ) > 2k and, consequently by Lemma 2.13, that ctw(T ) > k (here note
that for k = 0 the lemma is trivial). As Xα = Xα+1 \ {w} is disjoint with Y and all the vertices
of X have degrees at most d+(w), we infer that |X \Xα| ≤ 8k + 1.

A symmetrical reasoning shows that |Y \ Yβ| ≤ 8k + 1. Now observe that

|E(X,Y )| ≤ |E(Xα, Y )|+ |E(X,Yβ)|+ |E(X \Xα, Y \ Yβ)|
≤ |E(Xα, Yα)|+ |E(Xβ, Yβ)|+ |E(X \Xα, Y \ Yβ)|
≤ k + k + (8k + 1)2 = 64k2 + 18k + 1.

This is a contradiction with (X,Y ) being an (m+ 1)-backward tangle.

Lemma 3.15. Let T be a semi-complete digraph and let (X,Y ) be an m-backward tangle in T
for m = 1092k2. Then X or Y contains a (k, 4)-short immersion jungle which can be found in
O(k3n2) time, where n = |V (T )|.

Proof. We present the proof of the existential statement; all the steps of the proof are easily
constructive and can be performed within the claimed complexity bound.

Let P0 ⊆ X and Q0 ⊆ Y be the sets of heads and of tails of arcs from E(X,Y ), respectively.
As |E(X,Y )| ≤ |P0| · |Q0|, we infer that |P0| ≥ 109k or |Q0| ≥ 109k. Here we consider the first
case; the reasoning in the second one is symmetrical.

Let P1 be the set of vertices in P0 that have outdegree at least α − 4k, where α =
minw∈Y d+(w); note that α ≥ maxv∈X d+(v) by the definition of a backward tangle. If there
were more than 104k of them, they would create a (104k, 4k)-degree tangle, which due to
Lemma 3.9 contains a (4k, 3)-short jungle, which is also a (k, 4)-short immersion jungle. Hence,
we can assume that |P1| < 104k. Let P be any subset of P0 \ P1 of size 5k. We know that for
any v ∈ P and w ∈ Y we have that d+(w) > d+(v) + 4k.

Consider semi-complete digraph T [P ]. We have that the number of vertices with outdegrees
at least k in T [P ] is at least k, as otherwise the sum of outdegrees in T [P ] would be at most
k · 5k+ 4k · k = 9k2 <

(
5k
2

)
, so the sum of outdegrees would be strictly smaller than the number

of arcs in the digraph. Let Z be an arbitrary set of k vertices with outdegrees at least k in
T [P ]. We prove that Z is a (k, 4)-short immersion jungle.

Let us take any v, w ∈ Z; we are to construct k edge-disjoint paths from v to w of length 4.
Since the outdegree of v in T [P ] is at least k, as the first vertices on the paths we can take any
k outneighbors of v in P ; denote them v1

1, v
1
2, . . . , v

1
k. By the definition of P0, each v1

i is incident
to some arc from E(X,Y ). As the second vertices on the paths we choose the heads of these
arcs, denote them by v2

i , thus constructing paths v → v1
i → v2

i of length 2 for i = 1, 2, . . . , k.
Note that all the arcs used for constructions so far are pairwise different.

We now consecutively finish paths v → v1
i → v2

i using two more arcs in a greedy manner.
Consider path v → v1

i → v2
i . As v2

i ∈ Y and w ∈ P , we have that d+(v2
i ) > d+(w) + 4k. Hence,

by Lemma 2.2 we can identify 4k paths of length 2 leading from v2
i to w. At most 2k of them

contain an arc that was used in the first phase of the construction (two first arcs of the paths),
and at most 2(i− 1) ≤ 2k − 2 of them can contain an arc used when finishing previous paths.
This leaves us at least one path of length 2 from v2

i to w with no arc used so far, which we can
use to finish the path v → v1

i → v2
i .

4 Algorithms for computing pathwidth

In this section we present approximation and exact algorithms for pathwidth and approximation
algorithm for cutwidth. Both of the algorithms employ the technique of sliding through the
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outdegree ordering of the vertices using a window of small width, and maintaining some coverage
of arcs that jump over the window. This coverage can be expressed as a vertex cover of an
auxiliary bipartite graph. Therefore, we start our considerations by presenting two ways of
selecting a vertex cover in a bipartite graph, called subset selectors. The first subset selector,
based on the matching theory, will be used in the approximation algorithm, while the second,
based on the classical kernel for the Vertex Cover problem of Buss [8], will be used in the
exact algorithm. Armed with our understanding of the introduced subset selectors, we then
proceed to the description of the algorithms.

4.1 Subset selectors for bipartite graphs

In this subsection we propose a formalism for expressing selection of a subset of vertices of
a bipartite graph. Let B be the class of undirected bipartite graphs with fixed bipartition,
expressed as triples: left side, right side, the edge set. Let µ(G) be the size of a maximum
matching in G.

Definition 4.1. A function f defined on B is called a subset selector if f(G) ⊆ V (G) for every
G ∈ B. A reversed subset selector f rev is defined as f rev((X,Y,E)) = f((Y,X,E)). We say
that subset selector f is

• a vertex cover selector if f(G) is a vertex cover of G for every G ∈ B, i.e., every edge of
G has at least one endpoint in f(G);

• symmetric if f = f rev;

• monotonic if for every graph G = (X,Y,E) and its subgraph G′ = G \w where w ∈ Y , we
have that f(G) ∩X ⊇ f(G′) ∩X and f(G) ∩ (Y \ {w}) ⊆ f(G′) ∩ Y .

For our purposes, the goal is to find a vertex cover selector that is at the same time reasonably
small in terms of µ(G), but also monotonic. As will become clear in Section 4.2, only monotonic
vertex cover selectors will be useful for us, because monotonicity is essential for obtaining
a correct path decomposition where for every vertex the set of bags containing it forms an
interval. The following observation expresses, how monotonic subset selectors behave with
respect to modifications of the graph; a reader well-familiar with constructing various graph
decompositions will probably already see from its statement why monotonicity is so important
for us. By addition of a vertex we mean adding a new vertex to the vertex set, together with
an arbitrary set of edges connecting it to the old ones.

Lemma 4.2. Assume that f and f rev are monotonic subset selector and let G = (X,Y,E) be
a bipartite graph.

• If v ∈ f(G)∩Y then v stays chosen by f after any sequence of additions of vertices to the
left side and deletions of vertices (different from v) from the right side.

• If v ∈ X \ f(G) then v stays not chosen by f after any sequence of additions of vertices
to the left side and deletions of vertices from the right side.

Proof. For both claims, staying (not) chosen after a deletion on the right side follows directly
from the definition of monotonicity of f . Staying (not) chosen after an addition on the left side
follows from considering deletion of the newly introduced vertex and monotonicity of f rev.
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4.1.1 The matching selector

In this section we define the subset selector that will be used for the approximation algorithm
for pathwidth. Throughout this section we assume reader’s knowledge of basic concepts and
definitions from the classical matching theory (see [18] or [45] for reference). However, we
remind the most important facts in the beginning in order to establish notation.

For a bipartite graph G = (X,Y,E) with a matching M , we say that a walk W is an
alternating walk for M , if

• W starts in a vertex that is unmatched in M ;

• edges from M and outside M appear on W alternately, beginning with an edge outside
M .

Whenever M is clear from the context, we omit it. If W is in fact a simple path, we say that
W is an alternating path. A simple shortcutting arguments show that every alternating walk
from v to w has an alternating path from v to w as a subsequence. Thus for every vertex
v /∈ V (M), the set of vertices reachable by alternating walks from v is the same as the set of
vertices reachable by alternating paths from v.

Assume we are given a matching M and an alternating path W with respect to M , such
that either W is of even length, or the last vertex of W is unmatched in M . Then we may
construct a matching M ′ by removing from M all the edges belonging to E(W )∩M , and adding
all the remaining edges of W . This operation will be called switching along path W . Note that
if W is of even length, then |M ′| = |M |, while if W is of odd length and the last vertex of
W is unmatched, then |M ′| = |M | + 1. In the latter case we say that W is an augmenting
path for M , since switching along W increases the size of the matching. The core observation
of the classical algorithm for maximum matching in bipartite graphs is that a matching is not
maximum if and only if there is an augmenting path for it.

A vertex cover of a graph is a set of vertices X such that every edge of the graph is incident
to at least one vertex of X. Clearly, the size of a maximum matching is a lower bound for the
size of a minimum vertex cover, as each vertex from the vertex cover can cover at most one edge
of the matching. The classical Kőnig’s theorem [41] states that for bipartite graphs equality
holds: there exists a vertex cover of size µ(G), which is the minimum possible size. The set of
arguments contained in this section in fact prove Kőnig’s theorem.

The subset selector that will be used for the approximation of pathwidth is the following:

Definition 4.3. By matching selector M we denote a subset selector that assigns to every
bipartite graph G the set of all the vertices of G that are matched in every maximum matching
in G.

Clearly, for any bipartite graph G = (X,Y,E) we have that |M(G)∩X|, |M(G)∩Y | ≤ µ(G),
as any maximum matching of G is of size µ(G). It appears that M is a symmetric and monotonic
vertex cover selector. The symmetry is obvious. The crucial property of M is monotonicity: its
proof requires technical and careful analysis of alternating and augmenting paths in bipartite
graphs. M admits also an alternative characterization, expressed in Lemma 4.6, point (ii):
it can be computed directly from any maximum matching by considering alternating paths
originating in unmatched vertices. This observation can be utilized to construct an algorithm
that maintains M(G) efficiently during graph modifications. Moreover, from this alternative
characterization it is clear that M is a vertex cover selector. The following lemma expresses all
the vital properties of M that will be used in the approximation algorithm for pathwidth.
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Lemma 4.4. M is a symmetric, monotonic vertex cover selector, which can be maintained
together with a maximum matching of G with updates times O((µ(G) + 1) · n) during vertex
additions and deletions, where n = |V (G)|. Moreover, |M(G) ∩ X|, |M(G) ∩ Y | ≤ µ(G) for
every bipartite graph G = (X,Y,E).

We now proceed to the proof of Lemma 4.4. We split the proof into several lemmas. First,
we show that M is indeed monotonic.

Lemma 4.5. M is monotonic.

Proof. Let G′ = G \ w, where G = (X,Y,E) is a bipartite graph and w ∈ Y .
Firstly, we prove that M(G)∩(Y \{w}) ⊆M(G′)∩Y . For the sake of contradiction, assume

that there is some v ∈M(G) ∩ Y, v 6= w, such that v /∈M(G′) ∩ Y . So there exists a maximum
matching N of G′ in which v is unmatched; we will also consider N as a (possibly not maximum)
matching in G. Let M be any maximum matching in G. Since v ∈ M(G), we have that v is
matched in M . Construct a maximum path P in G that begins in v and alternates between
matchings M and N (i.e., edges of P belong alternately to M and to N), starting with M .
Note that every vertex of P that belongs to X is entered via an edge from M , and every vertex
of P that belongs to Y is entered via an edge from N . As both w and v belong to Y and are
not matched in N , this path does not enter w or v, hence it ends in some other vertex. Note
also that P has length at least one as v is matched in M . Let x /∈ {v, w} be the last vertex of
P . We consider two cases.

Assume first that x ∈ X, i.e., x is a vertex of the left side that is not matched in N . Then
P is an augmenting path for N fully contained in G′. This contradicts the maximality of N .

Assume now that x ∈ Y , i.e., x is a vertex of the right side that is not matched in M .
Then P is an alternating path for M in G and switching along P leaves v unmatched. This
contradicts the fact that v ∈M(G).

Now we prove that M(G) ∩X ⊇M(G′) ∩X. We consider two cases.
Assume first that w ∈ M(G). As w is matched in every maximum matching of G, after

deleting w the size of the maximum matching drops by one: if there was a matching of the
same size in G′, it would constitute also a maximum matching in G that does not match w.
Hence, if we take any maximum matching M of G and delete the edge incident to w, we obtain
a maximum matching of G′. We infer that M(G) ∩ X ⊇ M(G′) ∩ X, as every vertex of X
that is unmatched in some maximum matching M in G, is also unmatched in some maximum
matching G′, namely in M with the edge incident to w removed.

Assume now that w /∈ M(G). Let M be any maximum matching of G in which w is
unmatched. As M is also a matching in G′, we infer that M is also a maximum matching in
G′ and the sizes of maximum matchings in G and G′ are equal. Take any v ∈M(G′) ∩X and
for the sake of contradiction assume that v /∈ M(G). Let N be any maximum matching in G
in which v is unmatched. Note that since v ∈ M(G′) ∩ X and M is a maximum matching in
G′, then v is matched in M . Similarly as before, let us now construct a maximum path P in
G that begins in v and alternates between matchings M and N , starting with M . Note that
every vertex of P that belongs to X is entered via an edge from N , and every vertex of P that
belongs to Y is entered via an edge from M . As v ∈ X, w ∈ Y , v is unmatched in N and w
is unmatched in M , this path does not enter w or v, hence it ends in some other vertex. Note
also that P has length at least one as v is matched in M . Let x /∈ {v, w} be the last vertex of
P . Again, we consider two subcases.

In the first subcase we have x ∈ X, i.e., x is a vertex of the left side that is not matched
in M . Then P is an alternating path for M in G′ and switching along P leaves v unmatched.
This contradicts the fact that v ∈M(G′).
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In the second subcase we have x ∈ Y , i.e., x is a vertex of the right side that is not matched
in N . Then P is an augmenting path for N in G, which contradicts the maximality of N .

In order to prove that M is a vertex cover selector and can be computed efficiently, we prove
the following alternative characterization. The following lemma might be considered a folklore
corollary of the classical matching theory, but for the sake of completeness we include its proof.

Lemma 4.6. Let G = (X,Y,E) be a bipartite graph and let M be a maximum matching in G.
Let A0 = X \ V (M) be the set of unmatched vertices on the left side, and B0 = Y \ V (M) be
the set of unmatched vertices on the right side. Moreover, let A be the set of vertices of X that
can be reached via an alternating path from A0, and symmetrically let B be the set of vertices
of Y reachable by an alternating path from B0. Then

(i) there is no edge between A and B, and

(ii) M(G) = V (G) \ (A ∪B).

Proof. We first prove point (i). For the sake of contradiction, assume that there is an edge
between A and B, i.e., there is a vertex w in the set N(A) ∩ B. Let v be a neighbor of w in
A. We claim that w is reachable from A0 via an alternating path. Assume otherwise, and take
an alternating path P from A0 reaching v. Observe that this path does not traverse w because
then w would be reachable from A0 via an alternating path. Moreover, vw /∈ M , since if this
was the case then vw would be used in P to access v. Hence, we can prolong P by the edge
vw, thus reaching w by an alternation path from A0, a contradiction. By the definition of B,
w is also reachable from B0 via an alternating path. The concatenation of these two paths is
an alternating walk from A0 to B0, which contains an alternating simple subpath from A0 to
B0. This subpath is an augmenting path for M , which contradicts maximality of M . Thus we
infer that there is no edge between A and B, and point (i) is proven.

We now proceed to the proof that M(G) = V (G) \ (A ∪ B). On one hand, every vertex
v belonging to A or B is not matched in some maximum matching: we just modify M by
switching along the alternating path connecting a vertex unmatched in M with v, obtaining
another maximum matching in which v is unmatched. Hence, M(G) ⊆ V (G) \ (A∪B). We are
left with proving that M(G) ⊇ V (G) \ (A ∪B).

Consider the set A and the set N(A). We already know that N(A) is disjoint with B, so
also from B0. Hence, every vertex of N(A) must be matched in M . Moreover, we have that
every vertex of N(A) must be in fact matched to a vertex of A, as the vertices matched to N(A)
are also reachable via alternating walks from A0. Similarly, every vertex of N(B) is matched
to a vertex of B.

We now claim that |X \ A| + |N(A)| = |M |. As A0 ⊆ A, every vertex of X \ A as well as
every vertex of N(A) is matched in M . Moreover, as there is no edge between A and Y \N(A),
every edge of M has an endpoint either in X \A or in N(A). It remains to show that no edge
of M can have one endpoint in X \ A and second in N(A); this, however follows from the fact
that vertices of N(A) are matched to vertices of A, proved in the previous paragraph. Similarly
we have that |Y \B|+ |N(B)| = |M |.

It follows that sets (X \A) ∪N(A) and N(B) ∪ (X \B) are vertex covers of G of size |M |.
Note that every vertex cover C of G of size |M | must be fully matched by any matching N of
size |M |, as every edge of N is incident to at least one vertex from C. Hence, every vertex of
both (X \A)∪N(A) and of N(B)∪(X \B) is matched in every maximum matching of G. Since
N(A) ⊆ Y \B and N(B) ⊆ X\A, we have that (X\A)∪N(A)∪N(B)∪(Y \B) = V (G)\(A∪B).
Thus M(G) ⊇ V (G) \ (A ∪B).
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From now on we use the terminology introduced in Lemma 4.6. Note that Lemma 4.6
implies that sets A,B do not depend on the choice of matching M , but only on graph G.
Also, point (i) of Lemma 4.6 shows that M is a vertex cover selector. We now present an
incremental algorithm that maintains M(G) together with a maximum matching of G during
vertex additions and deletions.

Lemma 4.7. There exists an algorithm that maintains a maximum matching M and M(G)
for a bipartite graph G = (X,Y,E) during vertex addition and deletion operations. The update
time is O((µ(G) + 1) · n), where n = |V (G)|.

Proof. Observe that, by Lemma 4.6, M(G) can be computed from M in O(|G|) time: we simply
compute sets A0, B0 and apply breadth-first search from the whole A0 to compute A, and
breadth-first search from the whole B0 to compute B. Both of these searches take O(|G|) time;
note that by Kőnig’s theorem a bipartite graph G on n vertices can have at most O(µ(G) · n)
edges, so |G| = O((µ(G) + 1) · n). Hence, we just need to maintain a maximum matching.

During vertex addition, the size of the maximum matching can increase by at most 1, so
we may simply add the new vertex and run one iteration of the standard breadth-first search
procedure checking, whether there is an augmenting path in the new graph; this takes O(|G|)
time. If this is the case, we modify the matching along this path and we know that we obtained
a maximum matching in the new graph. Otherwise, the size of the maximum matching does
not increase, so we do not need to modify the current one. Similarly, during vertex deletion
we simply delete the vertex together with possibly at most one edge of the matching incident
to it. The size of the stored matching might have decreased by 1; in this case again we run
one iteration of checking whether there is an augmenting path, again in O(|G|) time. If this is
the case, we augment the matching using this path, obtaining a new matching about which we
know that it is maximum. Otherwise, we know that the current matching is maximum, so we
do not need to modify it.

Lemmas 4.5, 4.6 and 4.7 together with previous observations prove Lemma 4.4.
Let us conclude with the following remark. Instead of selector M one could introduce a

selector M′ defined as follows in terms of Lemma 4.6: M′((X,Y,E)) = (X \ A) ∪ N(A). The
proof of Lemma 4.6 shows that this definition does not depend on the choice of maximum
matching M , and moreover that selector M′ is in fact a vertex cover selector of size exactly
µ(G). Obviously, M′ can be maintained in the same manner as M during vertex additions and
deletions, so the only missing piece is showing that both M′ and M′rev are monotonic; note here
that since M is symmetric, when working with M we needed to perform just one such check.
This claim appears to be true; however, the proof is significantly longer and more technical
than the proof of Lemma 4.5. In addition, even though selector M′ has better guarantees on
the size than M, unfortunately this gain appears to be not useful at the point when we apply
M in the approximation algorithm for pathwidth. In other words, replacing M with M′ does
not result in better approximation ratio, even though it may be shown that when M′ is applied
instead of M, we have a better guarantee of 5k instead of 6k on the sizes of intersections of each
two consecutive bags (so-called adhesions). Therefore, for the sake of simpler and more concise
arguments we have chosen to include analysis using selector M instead of M′.

4.1.2 The Buss selector

In this subsection we introduce the subset selector that will be used in the exact algorithm for
pathwidth. This selector is inspired by the classical kernelization algorithm for the Vertex
Cover problem of Buss [8].
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Definition 4.8. Let G = (X,Y,E) be a bipartite graph and ` be a nonnegative integer. A
vertex v is called `-important if d(v) > `, and `-unimportant otherwise. A Buss selector is a
subset selector B` that returns all vertices of X that are either `-important, or have at least one
`-unimportant neighbor.

Note that Buss selector is highly non-symmetric, as it chooses vertices only from the left
side. Moreover, it is not necessarily a vertex cover selector. However, both B` and Brev

` behave
in a nice manner.

Lemma 4.9. Both B` and Brev
` are monotonic.

Proof. Monotonicity of B` is equivalent to the observation that if v ∈ X is `-unimportant and
has only `-important neighbors, then deletion of any vertex of Y cannot make v `-important or
create `-unimportant neighbors of v. This holds because the degrees of surviving neighbors of
v do not change.

Monotonicity of Brev
` is equivalent to the observation that if w ∈ Y is chosen by Brev

` because
it is `-important, then after deletion of any other w′ ∈ Y its degree does not change so it stays
`-important, and if it had an `-unimportant neighbor, then after deletion of any other w′ ∈ Y
this neighbor will still be `-unimportant.

We now prove that B` does not choose too many vertices unless the bipartite graph G
contains a large matching.

Lemma 4.10. If |B`(G)| > `2 + `, then G contains a matching of size `+ 1.

Proof. As |B`(G)| > `2+`, in B`(G) there are at least `+1 `-important vertices, or at least `2+1
vertices with an `-unimportant neighbor. In both cases we construct the matching greedily.

In the first case we iteratively take an `-important vertex of B`(G) and match it with any
its neighbor that is not matched so far. As there is at least `+ 1 of these neighbors and at most
` were used so far, we can always find one not matched so far.

In the second case we take an arbitrary vertex v1 of B`(G) that has an `-unimportant
neighbor, and find any its `-unimportant neighbor w1. We add v1w1 to the constructed matching
and mark all the at most ` neighbors of w1 as used. Then we take an arbitrary unused vertex
v2 of B`(G) that has an `-unimportant neighbor, find any its `-unimportant neighbor w2 (note
that w2 6= w1 since v2 was not marked), add v2w2 to the constructed matching and mark all
the at most ` neighbors of w2 as used. We continue in this manner up to the point when a
matching of size ` + 1 is constructed. Note that there will always be an unmarked vertex of
B`(G) with an `-unimportant neighbor, as at the beginning there are at least `2 + 1 of them
and after i iterations at most i · ` are marked as used.

We prove that B` can be also evaluated efficiently.

Lemma 4.11. There exists an algorithm which maintains B`(G) for a bipartite graph G =
(X,Y,E) during operations of vertex addition and vertex deletion with update times O(`n),
where n = |V (G)|.

Proof. With every vertex of X we maintain its degree and a counter of `-unimportant neighbors.
We also maintain degrees of vertices of Y . The degree gives us information whether the vertex
is `-important.

Let us first examine adding vertex v to the left side. We need to increase the degrees of
neighbors of v, so some of them may become `-important. For every such vertex that became `-
important — note that its degree is exactly `+1 — we examine its `+1 neighbors and decrement
their `-unimportant neighbors’ counters. If it drops to zero, we delete this vertex from B`(G)
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unless it’s `-important. Finally, we count how many neighbors of v are `-unimportant, set the
counter appropriately and add v to B`(G) if necessary.

Let us now examine adding vertex w to the right side. We need to increase the degrees of
neighbors of w, so some of them may become `-important and thus chosen by B`(G). Moreover,
if w is `-unimportant, then we increment the `-unimportant neighbors’ counters of neighbors of
w; if it is incremented from 0 to 1, then the vertex becomes chosen by B`(G), assuming that it
was not already `-important.

Now we examine deleting vertex v from the left side. We iterate through the neighbors of
v and decrement their degrees. If any of them ceases to be `-important, we iterate through
all its ` neighbors and increment the counters of `-unimportant neighbors. If for some of these
neighbors the counter was incremented from 0 to 1, the neighbor becomes chosen by B`(G),
assuming that it was not already `-important.

Finally, we examine deleting vertex w from the right side. Firstly, we check if w was `-
important. Then we iterate through neighbors of w decreasing the degree and `-unimportant
neighbors’ counters, if necessary. If any of the neighbors ceases to be `-important or have an
`-unimportant neighbor, it becomes not chosen to B`(G).

4.2 The algorithms

In this subsection we present the algorithms for computing pathwidth. We begin with the
approximation algorithm and then proceed to the exact algorithm. We introduce the ap-
proximation algorithm with an additional parameter `; taking ` = 4k gives the promised 6-
approximation, but as we will seelater, modifying ` may be useful to improve the quality of
obtained degree tangle.

Theorem 4.12. There exists an algorithm that given a semi-complete digraph T on n vertices
and integers k and ` ≥ 4k, in time O(kn2) outputs one of the following:

• an (`+ 2, k)-degree tangle in T ;

• a (k + 1, k)-matching tangle in T ;

• a path decomposition of T of width at most `+ 2k.

In the first two cases the algorithm can correctly conclude that pw(T ) > k.

Proof. The last sentence follows from Lemmas 3.8 and 3.11. We proceed to the algorithm.
The algorithm first computes any outdegree ordering σ = (v1, v2, . . . , vn) of V (T ) in O(n2)

time. Then in O(n) time we check if there is an index i such that d+(vi+`+1) ≤ d+(vi) + k.
If this is true, then {vi, vi+1, . . . , vi+`+1} is an (` + 2, k)-degree tangle which can be safely
output by the algorithm. From now on we assume that such a situation does not occur, i.e,
d+(vi+`+1) > d+(vi) + k for every index i.

Let separation sequence R0 = ((A0, B0), (A1, B1), . . . , (An−`, Bn−`)) be defined as follows.
Let us define S0

i = {vi+1, vi+2, . . . , vi+`} and let Hi = (Xi, Yi, Ei) be a bipartite graph, where
Xi = {v1, . . . , vi}, Yi = {vi+`+1, vi+`+2, . . . , vn} and xy ∈ Ei if and only if (x, y) ∈ E(T ). If
µ(Hi) > k, then vertices matched in a maximum matching ofHi form a (k+1, k)-matching tangle
in T , which can be safely output by the algorithm. Otherwise, let Si = S0

i ∪M(Hi) and we set
Ai = Xi∪Si and Bi = Yi∪Si; the fact that (Ai, Bi) is a separation follows from the fact that M
is a vertex cover selector. Finally, we add separations (∅, V (T )) and (V (T ), ∅) at the ends of the
sequence, thus obtaining separation sequence R. We claim that R is a separation chain. Note
that if we prove it, by Lemma 2.12 the width of the corresponding path decomposition is upper

35



bounded by max0≤i≤n−`−1 |{vi+1, vi+2, . . . , vi+`+1} ∪ (M(Hi) ∩Xi) ∪ (M(Hi+1) ∩ Yi+1)| − 1 ≤
`+ 1 + 2k − 1 = `+ 2k, by monotonicity of M (Lemma 4.5).

It suffices to show that for every i we have that Ai ⊆ Ai+1 and Bi ⊇ Bi+1. This, however,
follows from Lemma 4.2 and the fact that M is symmetric and monotonic. Hi+1 differs from
Hi by deletion of one vertex on the right side and addition of one vertex on the left side, so we
have that Ai+1 differs from Ai only by possibly incorporating vertex vi+`+1 and some vertices
from Yi+1 that became chosen by M, and Bi+1 differs from Bi only by possibly losing vertex
vi+1 and some vertices from Xi that ceased to be chosen by M.

Separation chain R can be computed in O(kn2) time: we consider consecutive sets S0
i and

maintain the graph Hi together with a maximum matching in it and M(Hi). As going to the
next set S0

i can be modeled by one vertex deletion and one vertex additions in graph Hi, by
Lemma 4.4 we have that the time needed for an update is O(kn); note that whenever the size
of the maximum matching exceeds k, we terminate the algorithm by outputting the obtained
matching tangle. As we make O(n) updates, the time bound follows. Translating a separation
chain into a path decomposition can be done in O(`n) time, since we can store the separators
along with the separations when constructing them.

We now present the exact algorithm for pathwidth.

Theorem 4.13. There exists an algorithm that, given a semi-complete digraph T on n vertices
and an integer k, in 2O(k log k) ·n2 time computes a path decomposition of T of width at most k,
or correctly concludes that no such exists.

Proof. We say that a separation chain R in T is feasible if it has width at most k. By the remarks
after Lemma 2.12, instead of looking for a path decomposition of width k we may look for a
feasible separation chain. Transformation of this separation chain into a path decomposition can
be carried out in O(kn) time, assuming that we store the separators along with the separations.

The opening step of the algorithm is fixing some outdegree ordering σ = (v1, v2, . . . , vn)
of V (T ). For i = 0, 1, . . . , n, let Hi be a bipartite graph with left side Xi = {v1, v2, . . . , vi}
and right Yi = {vi+1, vi+2, . . . , vn}, where xy ∈ E(Hi) if (x, y) ∈ E(T ). As in the proof of
Theorem 4.12, in O(n) time we check if there is an index i such that d+(vi+4k+1) ≤ d+(vi) + k.
If this is true, then {vi, vi+1, . . . , vi+4k+1} is a (4k + 2, k)-degree tangle and the algorithm may
safely provide a negative answer by Lemma 3.8. From now on we assume that such a situation
does not occur.

We define a subclass of trimmed separation chains. Every feasible separation chain can be
adjusted to a trimmed separation chain by deleting some vertices from sets Ai, Bi; note that the
new separation chain created in such a manner will also be feasible, as bags of the corresponding
path decomposition can only get smaller. Hence, we may safely look for a separation chain that
is trimmed.

Before proceeding with formal arguments, let us explain some intuition behind trimmed
separation chains. A priori, a bag of a path decomposition of T of width at most k can contain
some redundant vertices that do not really contribute to the separation property (Property (iii)
of Definition 2.9). For instance, if T admits a decomposition of width k/2, then one could pick
an arbitrary set of k/2 vertices of T and incorporate them in every bag; this gives us roughly
nk/2 possible decompositions, which is too large a number for an FPT algorithm. Hence, we
need to restrict our attention to path decompositions that are cleaned from redundant parts
of bags; these decompositions are precisely the ones that correspond to trimmed separation
chains. The Buss selector B` will be the tool responsible for identifying which part of the bags
are redundant and can be removed.

We proceed to the definition of a trimmed separation chain. We fix m = 5k+ 1. Let (A,B)
be any separation in T , and let α, β be any indices between 0 and n such that α = max(0, β −
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(4k + 1)). We say that (A,B) is trimmed with respect to (α, β) if (i) Yβ ⊆ B ⊆ Yα ∪Bm(Hα)
and (ii) Xα ⊆ A ⊆ Xβ ∪Brev

m (Hβ). (A,B) is trimmed if it is trimmed with respect to any such
pair (α, β). A separation chain is trimmed if every its separation is trimmed.

For a separation (A,B) let us define the canonical index β = β((A,B)) as the only integer
between 0 and n such that d+(vj) < |A| for j ≤ β and d+(vj) ≥ |A| for j > β. Similarly, the
canonical index α = α((A,B)) is defined as α((A,B)) = max(0, β((A,B))− (4k+ 1)). Observe
that by the assumed properties of ordering σ we have that vertices in Xα have outdegrees
smaller than |A| − k.

Firstly, we observe that if (A,B) is a separation and α, β are its canonical indices, then
Xα ⊆ A and Yβ ⊆ B. This follows from the fact that vertices in A \B have outdegrees smaller
than |A|, hence they cannot be contained in Yβ, while vertices in B \A have outdegrees at least
|A\B| ≥ |A|−k, hence they cannot be contained in Xα. Concluding, vertices of Xα may belong
only to A \B or A ∩B (left side or the separator), vertices of Yβ may belong only to B \A or
A ∩B (right side or the separator), while for vertices of the remaining part Yα ∩Xβ neither of
the three possibilities is excluded.

We now show how to transform any separation chain into a trimmed one. Take any sep-
aration chain R that contains only separations of order at most k, and obtain a sequence of
separations R′ as follows. We take every separation (A,B) from R; let α, β be its canonical
indices. We delete Xα \Bm(Hα) from B and Yβ \Brev

m (Hβ) from A, thus obtaining a new pair
(A′, B′) that is inserted into R′ in place of (A,B).

Claim 1. R′ is a trimmed separation chain.

Proof. We need to prove that every such pair (A′, B′) is a separation, and that all these separa-
tions form a separation chain. The fact that such a separation chain is trimmed follows directly
from the definition of the performed operation and the observations on canonical indices.

First, we check that A′ ∪ B′ = V (T ). This follows from the fact from A we remove only
vertices of Yβ while from B we remove only vertices from Xα, but after the removal Xα is still
covered by A′ and Yβ by B′.

Now we check that E(A′ \B′, B′ \ A′) = ∅. Assume otherwise, that there is a pair (v, w) ∈
E(T ) such that v ∈ A′ \ B′ and w ∈ B′ \ A′. By the construction of (A′, B′) and the fact that
(A,B) was a separation we infer that either v ∈ Xα \ Bm(Hα) or w ∈ Yβ \ Brev

m (Hβ). We
consider the first case, as the second is symmetrical.

Since w /∈ A′ and Xα ⊆ A′, we have that w ∈ Yα, so vw is an edge in Hα. As v /∈ Bm(Hα),
we have that in Hα vertex v is m-unimportant and has only m-important neighbors. Hence
w is m-important in Hα. Observe now that w cannot be contained in B \ A, as there is more
than m > k vertices in Xα being tails of arcs directed toward w, and only k of them can be in
separator A ∩ B leaving at least one belonging to A \ B (recall that vertices from Xα cannot
belong to B \A). Hence w ∈ A. As w /∈ A′, we have that w ∈ Yβ \Brev

m (Hβ). However, w was
an m-important vertex on the right side of Hα, so as it is also on the right side of Hβ, it is also
m-important in Hβ. This is a contradiction with w /∈ Brev

m (Hβ).
We conclude that (A′, B′) is indeed a separation.
Finally, we check that R′ is a separation chain. Consider two separations (A1, B1), (A2, B2)

in R, such that A1 ⊆ A2 and B1 ⊇ B2. Let α1, β1, α2, β2 be canonical indices of (A1, B1) and
(A2, B2), respectively. It follows that α1 ≤ α2 and β1 ≤ β2. Hence, graph Hα2 can be obtained
from Hα1 via a sequence of vertex deletions on the right side and vertex additions on the left
side. As Bm and Brev

m are monotonic (Lemma 4.9), by Lemma 4.2 we have that every vertex
deleted from B1 while constructing B′1 is also deleted from B2 while constructing B′2 (assuming
it belongs to B2). Hence, B′2 ⊆ B′1. A symmetric argument shows that A′2 ⊇ A′1. y
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We proceed to the algorithm itself. As we have argued, we may look for a trimmed fea-
sible separation chain. Indeed if T admits a path decomposition of width at most k, then
by Lemma 2.12 it admits a feasible separation chain, which by Claim 1 can be turned into a
trimmed feasible separation chain. On the other hand, if T admits a trimmed feasible separa-
tion chain, then this separation chain can be turned into a path decomposition of T of width
at most k using Lemma 2.12.

Let N be the family of trimmed separations of T of order at most k. We construct an
auxiliary digraph D with vertex set N by putting an arc ((A,B), (A′, B′)) ∈ E(D) if and only if
A ⊆ A′, B ⊇ B′ and |A′ ∩B| ≤ k+ 1. Then paths in D from (∅, V (T )) to (V (T ), ∅) correspond
to feasible trimmed separation chains.

We prove that either the algorithm can find an obstacle for admitting path decomposition of
width at most k, or D has size at most 2O(k log k) ·n and can be constructed in time 2O(k log k) ·n2.
Hence, any linear-time reachability algorithm in D runs within claimed time complexity bound.

Consider any indices α, β such that α = max(0, β − (4k + 1)). Observe that if |Bm(Hα)| >
m2+m, by Lemma 4.10 we can find a matching of size m+1 in Hα. At most 4k+1 = m−k edges
of this matching have the right endpoint in Yα∩Xβ, which leaves us at least k+1 edges between
Xα and Yβ. Such a structure is a (k+1, k)-matching tangle in T , so by Lemma 3.11 the algorithm
may provide a negative answer. A symmetrical reasoning shows that if |Brev

m (Hβ)| > m2 + m,
then the algorithm can also provide a negative answer.

If we assume that these situations do not occur, we can characterize every trimmed separa-
tion (A,B) of order at most k by:

• a number β, where 0 ≤ β ≤ n;

• a mask on the vertices from Yα ∩ Xβ, denoting for each of them whether it belongs to
A \B, A ∩B or to B \A (at most 34k+1 options);

• subsets of size at most k of Xα ∩Bm(Hα) and Yβ ∩Brev
m (Hβ), denoting which vertices

belong to A ∩B (at most
(
k
(O(k2)

k

))2
= 2O(k log k) options).

Moreover, if (A′, B′) is an outneighbor of (A,B) in D, then it must have parameter β′ not larger
than β + (5k + 2), as otherwise we have a guarantee that |A′ ∩ B| ≥ |Xα′ ∩ Yβ| ≥ k + 2, and
also not smaller than β − (5k + 2), as otherwise we have a guarantee that |A| ≥ |Xα| > |A′|.
Hence, the outdegrees in D are bounded by 2O(k log k).

This gives raise to the following algorithm constructing D in time 2O(k log k) · n2.

• First, we enumerate N . We scan through the order σ with an index β maintaining graphs
Hα, Hβ for α = max(0, β − (4k + 1)), along with Bm(Hα) and Brev

m (Hβ). Whenever
cardinality of any of these sets exceeds m2 + m, we terminate the algorithm providing a
negative answer. By Lemma 4.11 we can bound the update time by O(kn). For given
index β, we list all 2O(k log k) pairs (A,B) having this particular β in characterization from
the previous paragraph. For every such pair, in O(kn) we check whether it induces a
separation of order k, by testing emptiness of set E(A \ B,B \ A) using at most O(k)
operations of vertex deletion/addition on the graph Hα. We discard all the pairs that
do not form such a separation; all the remaining ones are exactly separations that are
trimmed with respect to (α, β).

• For every separation (A,B) characterized by parameter β, we check for all the 2O(k log k)

separations (A′, B′) with parameter β′ between β− (5k+ 2) and β+ (5k+ 2), whether we
should put an arc from (A,B) to (A′, B′). Each such a check can be performed in O(k)
time, assuming that we store the separator along with the separation.
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Having constructed D, we run a linear-time reachability algorithm to check whether (V (T ), ∅)
can be reached from (∅, V (T )). If not, we provide a negative answer; otherwise, the path
corresponds to a feasible separation chain which can be transformed into a path decomposition
in O(kn) time.

5 Algorithms for computing cutwidth and for other ordering
problems

In this section we present the algorithms for computing cutwidth and related problems. We start
with the approximation algorithm for cutwidth, which follows immediately from the results of
Section 3. Then we proceed to the description of the exact algorithm for cutwidth that runs in
time 2O(

√
k log k) · n2. It appears that using our approach it is possible to give a subexponential

parameterized algorithm not only for cutwidth, but also for two related problems, namely
Feedback Arc Set and Optimal Linear Arrangement.

5.1 Approximation of cutwidth

The results of Section 3 immediately yield the following theorem.

Theorem 5.1. Let T be a semi-complete digraph and let m(t) = 64t2 + 18t + 1. Then any
outdegree ordering of V (T ) has width at most m(ctw(T )).

Proof. Let σ be any outdegree ordering of V (T ). If σ had width more than m(ctw(T )), then
one of the partitions (σ[α], V (T )\σ[α]) would be a (m(ctw(T ))+1)-backward tangle. Existence
of such a structure is a contradiction with Lemma 3.14.

This gives raise to a straightforward approximation algorithm for cutwidth of a semi-
complete digraph that simply sorts the vertices with respect to outdegrees, and then scans
through the ordering checking whether it has small width. Note that this scan may be per-
formed in O(|V (T )|2) time, as we maintain the cutset between the prefix and the suffix of the
ordering by iteratively moving one vertex from the suffix to the prefix.

Theorem 5.2. There exists an algorithm which, given a semi-complete digraph T on n vertices
and an integer k, in time O(n2) outputs an ordering of V (T ) of width at most m(k) or a
(m(k) + 1)-backward tangle in T , where m(t) = 64t2 + 18t+ 1. In the second case the algorithm
concludes that ctw(T ) > k.

5.2 Additional problem definitions

We now introduce the formal definitions of problems Feedback Arc Set and Optimal Lin-
ear Arrangement, and prove their basic properties that will be useful in the algorithms.

Feedback Arc Set

Definition 5.3. Let T be a digraph. A subset F ⊆ E(T ) is called a feedback arc set if T \ F
is acyclic.

The Feedback Arc Set problem in semi-complete digraphs is then defined as follows.
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Feedback Arc Set (FAS) in semi-complete digraphs

Input: A semi-complete digraph T and a nonnegative integer k.

Parameter: k

Question: Is there a feedback arc set of T of size at most k?

We have the following easy observation that enables us to view FAS as a graph layout
problem.

Lemma 5.4. Let T be a digraph. Then T admits a feedback arc set of size at most k if and
only if there exists an ordering (v1, v2, . . . , vn) of V (T ) such that at most k arcs of E(T ) are
directed forward in this ordering, i.e., are of form (vi, vj) for i < j.

Proof. If F is a feedback arc set in T then the ordering can be obtained by taking any reverse
topological ordering of T \ F . On the other hand, given the ordering we may simply define F
to be the set of forward edges.

Optimal Linear Arrangement

Definition 5.5. Let T be a digraph and (v1, v2, . . . , vn) be an ordering of its vertices. Then the
cost of this ordering is defined as

∑

(vi,vj)∈E(T )

(j − i) · [j > i],

that is, every arc directed forwards in the ordering contributes to the cost with the distance
between the endpoints in the ordering.

Whenever the ordering is clear from the context, we also refer to the contribution of a given
arc to its cost as to the length of this arc. By a simple reordering of the computation we obtain
the following:

Lemma 5.6. For a digraph T and ordering (v1, v2, . . . , vn) of V (T ), the cost of this ordering is
equal to:

n−1∑

t=1

|E({v1, v2, . . . , vt}, {vt+1, vt+2, . . . , vn})|.

Proof. Observe that

∑

(vi,vj)∈E(T )

(i− j) · [i > j] =
∑

(vi,vj)∈E(T )

n−1∑

t=1

[i ≤ t < j]

=
n−1∑

t=1

∑

(vi,vj)∈E(T )

[i ≤ t < j]

=

n−1∑

t=1

|E({v1, . . . , vt}, {vt+1, . . . , vn})|.
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The problem Optimal Linear Arrangement in semi-complete digraphs is then defined
as follows.

Optimal Linear Arrangement (OLA) in semi-complete digraphs

Input: A semi-complete digraph T and a nonnegative integer k.

Parameter: k

Question: Is there an ordering of V (T ) of cost at most k?

5.3 k-cuts of semi-complete digraphs

In this section we introduce the main technical ingredient of our algorithms, namely the concept
of a k-cut.

Definition 5.7. A k-cut of a multidigraph T is a partition (X,Y ) of V (T ) with the following
property: there are at most k arcs (u, v) ∈ E(T ) such that u ∈ X and v ∈ Y . For a multidigraph
T , by N (T, k) we denote the family of all the k-cuts of T .

Intuitively, the k-cuts will form the state space of our dynamic programs, so it is essential
to prove that their number is small when the given semi-complete digraph has small cutwidth
or feedback vertex set number. We first provide some results on efficient enumeration of k-cuts,
and then prove that when cutwidth or feedback vertex set number is at most k, then the number
of k-cuts is bounded subexponentially in k.

5.3.1 Enumerating k-cuts

The following lemma shows that k-cuts can be enumerated efficiently.

Lemma 5.8. Let D be a multidigraph and let X0, Y0 be disjoint sets of vertices of D. Then
the family of all the k-cuts (X,Y ) such that X0 ⊆ X and Y0 ⊆ Y can be enumerated with
polynomial-time delay, where each k-cut is enumerated together with number |E(X,Y )|.

Proof. Let σ = (v1, v2, . . . , vp) be an arbitrary ordering of vertices of V (D) \ (X0 ∪ Y0). We
perform a classical branching strategy. We start with X = X0 and Y = Y0, and consider the
vertices in order σ, at each step branching into one of the two possibilities: vertex vi is to be
incorporated into X or into Y . However, after assigning each consecutive vertex we run a max-
flow algorithm from X to Y to find the size of a minimum edge cut between X and Y . If this
size is more than k, we terminate the branch as we know that it cannot result in any solutions
found. Otherwise we proceed. We output a partition after the last vertex, vn, is assigned a
side; note that the last max-flow check ensures that the output partition is actually a k-cut,
and finds the output size of the cut as well. Moreover, as during the algorithm we consider only
branches that can produce at least one k-cut, the next partition will be always found within
polynomial waiting time, proportional to the depth of the branching tree times the time needed
for computations at each node of the branching tree.

Setting X0 = Y0 = ∅ gives an algorithm enumerating k-cuts of D with polynomial-time
delay. The running time of Lemma 5.8 is unfortunately not satisfactory if one would like to
design a linear-time algorithm. Therefore, we prove that k-cuts of a semi-complete digraph of
small cutwidth can be enumerated more efficiently.

Lemma 5.9. There exists an algorithm that, given a semi-complete digraph T on n vertices
together with nonnegative integers k and B, works in O(n2 +B · kO(1) · n), and either:
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• correctly concludes that ctw(T ) > k;

• correctly concludes that the number of k-cuts of T is more than B;

• or outputs the whole family N (T, k) of k-cuts of T with a guarantee that |N (T, k)| ≤ B,
where each k-cut (X,Y ) is output together with |E(X,Y )|.

Proof. If n ≤ 8k + 1, we run the enumeration algorithm of Lemma 5.8 and terminate it if the
number of enumerated k-cuts exceeds B. Since k-cuts are enumerated with polynomial delay
and n = O(k), the algorithm works in O(B · kO(1)) time.

Assume then that n > 8k + 1. First, the algorithm computes in O(n2) time any outdegree
ordering σ = (v1, v2, . . . , vn) of T and all the outdegrees in T . We check in O(n) time, whether
there exists an index i, 1 ≤ i ≤ n − 8k − 1, such that d+(vi+8k+1) ≤ d+(vi) + 2k. If such an
index i is found, we infer that {vi, vi+1, . . . , vi+8k+1} a (8k+ 2, 2k)-degree tangle, implying that
pw(T ) > 2k by Lemma 3.8 and, consequently, that ctw(T ) > k by Lemma 2.13. Hence, in this
case the algorithm can conclude that ctw(T ) > k. We proceed with the assumption that this
did not take place, i.e., d+(vi+8k+1) > d+(vi) + 2k for all 1 ≤ i ≤ n− 8k − 1.

For an index i, 1 ≤ i ≤ n − 8k, let us define a multidigraph Hi as follows. Start with
T [{vi, vi+1, . . . , vi+8k}] and add two vertices: vprefix and vsuffix that correspond to the prefix
σ[i− 1] and suffix V (T ) \ σ[i+ 8k]. For every j ∈ {i, i+ 1, . . . , i+ 8k}, add min(k+ 1, |E(σ[i−
1], {vj})|) arcs from vprefix to vj , and min(k+1, |E({vj}, V (T )\σ[i+8k])|) arcs from vj to vsuffix.
Finally, add min(k + 1, |E(σ[i− 1], V (T ) \ σ[i + 8k])|) arcs from vprefix to vsuffix. Note that Hi

defined in this manner has size polynomial in k.
The algorithm proceeds as follows. We iterate through consecutive indices i, maintaining

the graph Hi. Observe that Hi can be maintained with O(n) update times, since each update
requires inspection of incidence relation between vi and the whole V (T ), and between vi+8k+1

and the whole V (T ). Thus, the total time spent on maintaining Hi isO(n2). For each index i, we
enumerate all the k-cuts (X ′, Y ′) of Hi such that vprefix ∈ X ′ and vsuffix ∈ Y ′ using Lemma 5.8.
This enumeration takes time proportional to their number times a polynomial of the size of
Hi, that is, times a polynomial of k. For each enumerated k-cut (X ′, Y ′) we construct in O(n)
time one k-cut (X,Y ) of T equal to (σ[i − 1] ∪ (X ′ \ vprefix), (Y ′ \ vsuffix) ∪ (V (T ) \ σ[i + 8k]).
By the definition of Hi we infer that (X,Y ) is indeed a k-cut of T , and moreover |E(X,Y )| =
|E(X ′, Y ′)|, so the size of the cut output by the algorithm of Lemma 5.8 can be stored as
|E(X,Y )|. We store all the k-cuts constructed so far as binary vectors of length n in a prefix
tree (trie). Thus in O(n) time we can check whether (X,Y ) has not been already found, in
which case it should be ignored, and otherwise we add it to the prefix tree in O(n) time. If the
total number of constructed k-cuts exceed B at any point of the construction, we terminate the
algorithm and provide the answer that |N (T, k)| > B. Otherwise, we output all the constructed
k-cuts. Since maintenance of graph Hi take O(n2) time in total, and each next k-cut is identified
and constructed within time O(kO(1) +n), for the claimed running time it suffices to show that
each k-cut of T is found in this procedure at most O(k) times.

It remains to argue that (i) in case when the algorithm is providing the family of k-cuts,
in fact every k-cut of T is contained in this family, (ii) each k-cut of T is constructed at most
O(k) times. We prove both of the claims at the same time. Let then (X,Y ) be a k-cut of T
and without loss of generality assume that X and Y are nonempty, since k-cuts (∅, V (T )) and
(V (T ), ∅) are enumerated exactly once, for i = 1 and i = n − 8k respectively. Let α be the
maximum index of a vertex of X in σ, and β be the minimum index of a vertex of Y in σ. We
claim that β − 1 ≤ α ≤ β + 8k. Observe that if this claim is proven, then both conditions (i)
and (ii) follow: cut (X,Y ) is constructed exactly when considering indices i such that i ≤ β
and i + 8k ≥ α, and the claimed inequalities show that the number of such indices is between
1 and 8k + 2.
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We first show that β − 1 ≤ α. Consider two cases. If β = 1, then in fact all the elements of
X have indices larger than β, so in particular α > β. Otherwise β > 1, and by the minimality
of β we have that xβ−1 ∈ X. Consequently, α ≥ β − 1.

We are left with proving that α ≤ β + 8k. For the sake of contradiction assume that
α > β+8k, so in particular 1 ≤ β ≤ n−8k−1. By the assumption that d+(vi+8k+1) > d+(vi)+2k
for all 1 ≤ i ≤ n− 8k − 1, we have that d+(vα) ≥ d+(vβ+8k+1) > d+(vβ) + 2k. By Lemma 2.2
we infer that there exist 2k vertex-disjoint paths of length 2 from vα to vβ. Since vα ∈ X and
vβ ∈ Y , each of these paths must contain an arc from E(X,Y ). This is a contradiction with
the assumption that (X,Y ) is a k-cut.

In our dynamic programming algorithms we need to define what does it mean that one k-cut
is a possible successor of another k-cut. This is encapsulated in the following definition.

Definition 5.10. Let T be a digraph and (X1, Y1) and (X2, Y2) be two partitions of V (G). We
say that cut (X2, Y2) extends cut (X1, Y1) using vertex v if there is one vertex v ∈ Y1 such that
X2 = X1 ∪ {v} and, equivalently, Y2 = Y1 \ {v}.

The following lemma shows that the relation of extension can be computed efficiently within
the enumeration algorithm of Lemma 5.9.

Lemma 5.11. If the algorithm of Lemma 5.9, run on a semi-complete digraph T for parameters
k,B, provides the family N (T, k), then for each k-cut of T there are at most 8k + 1 k-cuts of
T that extend it. Moreover, the algorithm of Lemma 5.9 can within the same running time in
addition construct for each k-cut of T a list of pointers to all the k-cuts that extend it, together
with vertices used in these extensions.

Proof. We only add one additional subroutine to the algorithm of Lemma 5.9 which computes
the lists after the enumeration has been concluded. Assume that during enumeration we have
constructed a k-cut (X,Y ). Let α be the maximum index of a vertex of X in σ, and let β be
the minimum index of a vertex of Y in σ (we take α = 0 if X = ∅ and β = n+ 1 if Y = ∅). In
the proof of Lemma 5.9 we have proven that β− 1 ≤ α ≤ β+ 8k (this claim is trivial for X = ∅
or Y = ∅), unless the algorithm already provided a negative answer. Let (X ′, Y ′) be a k-cut
that extends (X,Y ), and let vγ be the vertex used in this extension; thus {vγ} = X ′∩Y . Define
indices α′, β′ in the same manner for (X ′, Y ′). Note that they satisfy the same inequality, i.e.
β′ − 1 ≤ α′ ≤ β′ + 8k, and moreover α ≤ α′ and β ≤ β′.

We now claim that β ≤ γ ≤ β + 8k. The first inequality follows from the fact that vγ ∈ Y .
For the second inequality, assume for the sake of contradiction that γ > β + 8k. Then β 6= γ,
and since vγ is the only vertex that belongs to Y but not to Y ′, we have that vβ ∈ Y ′. We infer
that β′ = β. On the other hand, vγ ∈ X ′ implies that α′ ≥ γ. Therefore

β′ = β < γ − 8k ≤ α′ − 8k,

which is a contradiction with the fact that α′ ≤ β′ + 8k.
Hence, there are only 8k + 1 possible candidates for k-cuts that extend (X,Y ), that is

(X ∪ {vγ}, Y \ {vγ}) for β ≤ γ ≤ β + 8k and vγ ∈ Y . For each of these candidates we may
test in O(n) time whether it belongs to enumerated family N (T, k), since N (T, k) is stored in a
prefix tree; note that computing index β also takes O(n) time. Hence, construction of the lists
takes additional O(B · k · n) time.
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5.3.2 k-cuts of a transitive tournament and partition numbers

For a nonnegative integer n, a partition of n is a multiset of positive integers whose sum is equal
to n. The partition number p(n) is equal to the number of different partitions of n. Partition
numbers were studied extensively in analytic combinatorics, and there are sharp estimates on
their values. In particular, we will use the following:

Lemma 5.12 ([20, 36]). There exists a constant A such that for every nonnegative k it holds

that p(k) ≤ A
k+1 · exp(C

√
k), where C = π

√
2
3 .

We remark that the original proof of Hardy and Ramanujan [36] shows moreover that the

optimal constant A tends to 1
4
√

3
as k goes to infinity, i.e., limk→+∞

p(k)·(k+1)

exp(C
√
k)

= 1
4
√

3
. From

now on, we adopt constants A,C given by Lemma 5.12 in the notation. We use Lemma 5.12 to
obtain the following result, which is the core observation of this section.

Lemma 5.13. Let T be a transitive tournament on n vertices and k be a nonnegative integer.
Then T has at most A · exp(C

√
k) · (n+ 1) k-cuts, where A,C are defined as in Lemma 5.12.

Proof. We prove that for any number a, 0 ≤ a ≤ n, the number of k-cuts (X,Y ) such that
|X| = a and |Y | = n− a, is bounded by A · exp(C

√
k); summing through all the possible values

of a proves the claim.
We naturally identify the vertices of T with numbers 1, 2, . . . , n, such that arcs of T are

directed from larger numbers to smaller, i.e., we order the vertices as in the reversed topological
ordering of T . Let us fix some k-cut (X,Y ) such that |X| = a and |Y | = n− a. Let x1 < x2 <
. . . < xa be the vertices of X.

Let mi = xi+1 − xi − 1 for i = 0, 1, . . . , a; we use convention that x0 = 0 and xa+1 = n+ 1.
In other words, mi is the number of elements of Y that are between two consecutive elements
of X. Observe that every element of Y between xi and xi+1 is the head of exactly a − i arcs
directed from X to Y : the tails are xi+1, xi+2, . . . , xa. Hence, the total number of arcs directed
from X to Y is equal to k′ =

∑a
i=0mi · (a− i) =

∑a
i=0ma−i · i ≤ k.

We define a partition of k′ as follows: we take ma−1 times number 1, ma−2 times number
2, and so on, up to m0 times number a. Clearly, a k-cut of T defines a partition of k′ in this
manner. We now claim that knowing a and the partition of k′, we can uniquely reconstruct
the k-cut (X,Y ) of T , or conclude that this is impossible. Indeed, from the partition we
obtain all the numbers m0,m1, . . . ,ma−1, while ma can be computed as (n − a) −∑a−1

i=0 mi.
Hence, we know exactly how large must be the intervals between consecutive elements of X,
and how far is the first and the last element of X from the respective end of the ordering,
which uniquely defines sets X and Y . The only possibilities of failure during reconstruction are
that (i) the numbers in the partition are larger than a, or (ii) computed ma turns out to be
negative; in these cases, the partition does not correspond to any k-cut. Hence, we infer that
the number of k-cuts of T having |X| = a and |Y | = n− a is bounded by the sum of partition
numbers of nonnegative integers smaller or equal to k, which by Lemma 5.12 is bounded by
(k + 1) · A

k+1 · exp(C
√
k) = A · exp(C

√
k).

5.3.3 k-cuts of semi-complete digraphs with a small FAS

We have the following simple fact.

Lemma 5.14. Assume that T is a semi-complete digraph with a feedback arc set F of size at
most k. Let T ′ be a transitive tournament on the same set of vertices, with vertices ordered as
in any topological ordering of T \ F . Then every k-cut of T is also a 2k-cut of T ′.

44



Proof. The claim follows directly from the observation that if (X,Y ) is a k-cut in T , then at
most k additional arcs directed from X to Y can appear after introducing arcs in T ′ in place of
deleted arcs from F .

From Lemmata 5.13 and 5.14 we obtain the following corollary.

Corollary 5.15. If T is a semi-complete digraph with n vertices that has a feedback arc set of
size at most k, then the number of k-cuts of T is bounded by A · exp(C

√
2k) · (n+ 1).

5.3.4 k-cuts of semi-complete digraphs of small cutwidth

To bound the number of k-cuts of semi-complete digraphs of small cutwidth, we need the
following auxiliary combinatorial result.

Lemma 5.16. Let (X,Y ) be a partition of {1, 2, . . . , n} into two sets. We say that a pair (a, b)
is bad if a < b, a ∈ Y and b ∈ X. Assume that for every integer t there are at most k bad pairs
(a, b) such that a ≤ t < b. Then the total number of bad pairs is at most k(1 + ln k).

Proof. Let y1 < y2 < . . . < yp be the elements of Y . Let mi be equal to the total number of
elements of X that are greater than yi. Note that mi is exactly equal to the number of bad
pairs whose first element is equal to yi, hence the total number of bad pairs is equal to

∑p
i=1mi.

Clearly, sequence (mi) is non-increasing, so let p′ be the last index for which mp′ > 0. We then

have that the total number of bad pairs is equal to
∑p′

i=1mi. Moreover, observe that p′ ≤ k, as
otherwise there would be more than k bad pairs (a, b) for which a ≤ yp′ < b: for a we can take
any yi for i ≤ p′ and for b we can take any element of X larger than yp′ .

We claim that mi ≤ k/i for every 1 ≤ i ≤ p′. Indeed, observe that there are exactly i ·mi

bad pairs (a, b) for a ≤ yi and b > yi: a can be chosen among i distinct integers y1, y2, . . . , yi,
while b can be chosen among mi elements of X larger than yi. By the assumption we infer that
i ·mi ≤ k, so mi ≤ k/i. Concluding, we have that the total number of bad pairs is bounded

by
∑p′

i=1mi ≤
∑p′

i=1 k/i = k · H(p′) ≤ k · H(k) ≤ k(1 + ln k), where H(k) =
∑k

i=1 1/i is the
harmonic function.

The following claim applies Lemma 5.16 to the setting of semi-complete digraphs.

Lemma 5.17. Assume that T is a semi-complete digraph on n vertices that admits an ordering
of vertices (v1, v2, . . . , vn) of width at most k. Let T ′ be a transitive tournament on the same set
of vertices, where (vi, vj) ∈ E(T ′) if and only if i > j. Then every k-cut of T is a 2k(1 + ln 2k)-
cut of T ′.

Proof. Without loss of generality we assume that T is in fact a tournament, as deleting any of
two opposite arcs connecting two vertices can only make the set of k-cuts of T larger, and does
not increase the width of the ordering.

Identify vertices v1, v2, . . . , vn with numbers 1, 2, . . . , n. Let (X,Y ) be a k-cut of T . Note
that arcs of T ′ directed from X to Y correspond to bad pairs in the sense of Lemma 5.16: every
arc (b, a) ∈ E(T ′) such that a < b, a ∈ Y , and b ∈ X, corresponds to a bad pair (a, b), and
vice versa. Therefore, by Lemma 5.16 it suffices to prove that for every integer t, the number
of arcs (b, a) ∈ E(T ′) such that a ≤ t < b, a ∈ Y , and b ∈ X, is bounded by 2k. We know that
the number of such arcs in T is at most k, as there are at most k arcs directed from X to Y in
T in total. Moreover, as the considered ordering of T has cutwidth at most k, at most k arcs
between vertices from {1, 2, . . . , t} and {t + 1, . . . , n} can be directed in different directions in
T and in T ′. We infer that the number of arcs (b, a) ∈ E(T ′) such that a ≤ t < b, a ∈ Y , and
b ∈ X, is bounded by 2k, and so the lemma follows.

45



From Lemmata 5.13 and 5.17 we obtain the following corollary.

Corollary 5.18. Every semi-complete digraph on n vertices and of cutwidth at most k, has at
most A · exp(2C

√
k(1 + ln 2k)) · (n+ 1) k-cuts.

5.3.5 k-cuts of semi-complete digraphs with an ordering of small cost

We firstly show the following lemma that proves that semi-complete digraphs with an ordering
of small cost have even smaller cutwidth.

Lemma 5.19. Let T be a semi-complete digraph on n vertices that admits an ordering (v1, v2, . . . , vn)
of cost at most k. Then the width of this ordering is at most (4k)2/3.

Proof. We claim that for every integer t ≥ 0, the number of arcs in T directed from the set
{v1, . . . , vt} to {vt+1, . . . , vn} is at most (4k)2/3. Let ` be the number of such arcs; without loss
of generality assume that ` > 0. Observe that at most one of these arcs may have length 1, at
most 2 may have length 2, etc., up to at most b

√
`c − 1 may have length b

√
`c − 1. It follows

that at most
∑b√`c−1

i=1 i ≤ `/2 of these arcs may have length smaller than b
√
`c. Hence, at least

`/2 of the considered arcs have length at least b
√
`c, so the total sum of lengths of arcs is at

least `·b
√
`c

2 ≥ `3/2

4 . We infer that k ≥ `3/2

4 , which means that ` ≤ (4k)2/3.

Lemma 5.19 ensures that only (4k)2/3-cuts are interesting from the point of view of dynamic
programming. Moreover, from Lemma 5.19 and Corollary 5.18 we can derive the following
statement that bounds the number of states of the dynamic program.

Corollary 5.20. If T is a semi-complete digraph with n vertices that admits an ordering
of cost at most k, then the number of (4k)2/3-cuts of T is bounded by A · exp(2C · (4k)1/3 ·√

1 + ln(2 · (4k)2/3)) · (n+ 1).

5.4 The algorithms

We firstly show how using the approach one can find a simple algorithm for Feedback Arc
Set.

Theorem 5.21. There exists an algorithm that, given a semi-complete digraph T on n vertices
and an integer k, in time O(exp(C

√
2k) · kO(1) · n2) either finds a feedback arc set of T of size

at most k or correctly concludes that this is impossible, where C = π
√

2
3 .

Proof. We apply the algorithm of Lemma 5.9 in T for parameter k and the bound A·exp(C
√

2k)·
(n + 1) given by Corollary 5.15. If the algorithm concluded that ctw(T ) > k, then also the
minimum feedback arc set must be of size more than k, and we may provide a negative answer.
Similarly, if the algorithm concluded that |N (T, k)| > A · exp(C

√
2k) · (n+1), by Corollary 5.15

we may also provide a negative answer. Hence, from now on we assume that we have the set
N := N (T, k) and we know that |N | ≤ A · exp(C

√
2k) · (n + 1). Note that application of

Lemma 5.9 takes O(exp(C
√

2k) · kO(1) · n2) time.
We now describe a dynamic programming procedure that computes the size of optimal

feedback arc set basing on the set of k-cuts N . We define an auxiliary weighted digraph D with
vertex set N . Intuitively, a vertex from N corresponds to a partition into prefix and suffix of
the ordering.

We define arcs of D as follows. For every pair of k-cuts (X1, Y1), (X2, Y2) such that (X2, Y2)
extends (X1, Y1) using vertex v, we put an arc from cut (X1, Y1) to cut (X2, Y2), where the
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weight of this arc is equal to |E(X1, {v})|, that is, the number of arcs that cease to be be
directed from the left side to the right side of the partition when moving v between these
parts. Construction of arcs D may be performed in O(|N | · kO(1) · n) time, assuming that the
enumeration of Lemma 5.9 constructed also extension lists using Lemma 5.11. Moreover, the
weight of each arc can be computed in O(n) time by examining outneighbors of v, hence the
total time spent on computing weights of arcs is O(|N | ·k ·n). Summarizing, the whole digraph
D may be constructed in O(|N |·kO(1) ·n) = O(exp(C

√
2k) ·kO(1) ·n2) time, and has |N | vertices

and O(|N | · k) arcs.
Observe that a path from vertex (∅, V (T )) to a vertex (V (T ), ∅) of total weight ` defines an

ordering of vertices of T that has exactly ` forward arcs — each of these arcs was taken into
account while moving its head from the right side of the partition to the left side. On the other
hand, every ordering of vertices of T that has exactly ` ≤ k forward arcs defines a path from
(∅, V (T )) to (V (T ), ∅) in D of total weight `; note that all partitions into prefix and suffix in
this ordering are k-cuts, so they constitute legal vertices in D. Hence, we need to check whether
vertex (V (T ), ∅) can be reached from (∅, V (T )) by a path of total weight at most k. This,
however, can be done in time O((|V (D)|+ |E(D)|) log |V (D)|) = O(exp(C

√
2k) · kO(1) ·n log n)

using Dijkstra’s algorithm. The feedback arc set of size at most k can be easily retrieved from
the constructed path in O(n2) time.

We remark that it is straightforward to adapt the algorithm of Theorem 5.21 to the weighted
case, where all the arcs are assigned a real weight larger or equal to 1 and we parametrize by
the target total weight of the solution. As the minimum weight is at least 1, we may still
consider only k-cuts of the digraph where the weights are forgotten. On this set we employ a
modified dynamic programming routine, where the weights of arcs in digraph D are not simply
the number of arcs in E({v}, X1), but their total weight.

We now proceed to the main result of this section, i.e., the subexponential algorithm for
cutwidth of a semi-complete digraph.

Theorem 5.22. There exists an algorithm that, given a semi-complete digraph T on n vertices
and an integer k, in time 2O(

√
k log k) · n2 either computes a vertex ordering of width at most k

or correctly concludes that this is impossible.

Proof. We apply the algorithm of Lemma 5.9 in T for parameter k and the bound

A · exp(2C
√
k(1 + ln 2k)) · (n+ 1) = 2O(

√
k log k) · n

given by Corollary 5.18. If the algorithm concluded that ctw(T ) > k, then we may provide a
negative answer. Similarly, if the algorithm concluded that

|N (T, k)| > A · exp(2C
√
k(1 + ln 2k)) · (n+ 1),

by Corollary 5.18 we may also providing a negative answer. Hence, from now on we assume that
we have the set N := N (T, k) and we know that |N | ≤ 2O(

√
k log k) · n. Note that application of

Lemma 5.9 takes O(2O(
√
k log k) · n2) time.

We now describe a dynamic programming routine that basing on the set N computes an
ordering of width at most k, or correctly concludes that it is impossible. The routine is very
similar to that of Theorem 5.21, so we describe only the necessary modifications.

We define an auxiliary digraph D on the vertex set N exactly in the same manner as in
the proof of Theorem 5.21, but this time D is unweighted. Similarly as before, D may be
constructed in time O(|N | ·kO(1) ·n) = 2O(

√
k log k) ·n2, and has |N | vertices and O(|N | ·k) arcs.

Clearly, paths in D from (∅, V (T )) to (V (T ), ∅) correspond to orderings of V (T ) of cutwidth at
most k. Therefore, it suffices check whether in D there exists a path from (∅, V (T )) to (V (T ), ∅)
using depth-first search, which takes O(|V (D)|+ |E(D)|) = 2O(

√
k log k)n time.
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Finally, we present how the framework can be applied to the OLA problem.

Theorem 5.23. There exists an algorithm that, given a semi-complete digraph T on n vertices
and an integer k, in time 2O(k1/3

√
log k) · n2 either computes a vertex ordering of cost at most k,

or correctly concludes that it is not possible.

Proof. We apply the algorithm of Lemma 5.9 in T for parameter (4k)2/3 and the bound

A · exp(2C · (4k)1/3 ·
√

1 + ln(2 · (4k)2/3)) · (n+ 1) = 2O(k1/3
√

log k) · n

given by Corollary 5.20. If the algorithm concluded that ctw(T ) > (4k)2/3, then by Lemma 5.19
we may provide a negative answer. Similarly, if the algorithm concluded that

|N (T, (4k)2/3)| > A · exp(2C · (4k)1/3 ·
√

1 + ln(2 · (4k)2/3)) · (n+ 1),

by Corollary 5.20 we may also provide a negative answer. Hence, from now on we assume
that we have the set N := N (T, (4k)2/3) and we know that |N | ≤ 2O(k1/3

√
log k) · n. Note that

application of Lemma 5.9 takes 2O(k1/3
√

log k) · n2 time.
In order to construct the dynamic programming routine, we proceed very similarly to the

proof of Theorem 5.21. Define the same auxiliary digraph D on the vertex set N , where we put
an arc from (X1, Y1) to (X2, Y2) if and only if (X2, Y2) extends (X1, Y1); this time, the weight
of this arc is equal to |E(X1, Y1)|. As in the proof of Theorem 5.21, the digraph D may be
constructed in time O(|N | · kO(1) · n), and has |N | vertices and O(|N | · k) arcs; note here that
we do not need to additionally compute the weights of arcs in D, since values |E(X,Y )| have
been provided together with the cuts (X,Y ) by the enumeration algorithm.

Now observe that paths from (∅, V (T )) to (V (T ), ∅) of total weight ` ≤ k correspond one-
to-one to orderings with cost `: the weight accumulated along the path computes correctly the
cost of the ordering due to Lemma 5.6. Note that Lemma 5.19 ensures that in an ordering of
cost at most k, the only feasible partitions into prefix and suffix of the ordering are in N , so they
constitute legal vertices in D. Hence, we may apply Dijkstra’s algorithm to check whether vertex
(V (T ), ∅) is reachable from (∅, V (T )) via a path of total weight at most k, and this application

takes O((|V (D)|+ |E(D)|) log |V (D)|) = 2O(k1/3
√

log k) ·n log n time. The corresponding ordering
may be retrieved from this path in O(n) time.

Similarly to Theorem 5.21, it is also straightforward to adapt the algorithm of Theorem 5.23
to the natural weighted variant of the problem, where each arc is assigned a real weight larger
or equal to 1, each arc directed forward in the ordering contributes to the cost with its weight
multiplied by the length of the arc, and we parametrize by the total target cost. One needs also
to maintain the total weight of the cut in the enumeration algorithm of Lemma 5.9 to avoid its
recomputation for every arc of D, which done by brute-force would increase the running time
from quadratic in terms of n to cubic.

6 Algorithms for containment testing

In this section we utilize the results of the previous sections to give fast algorithms for contain-
ment testing. We would like to design a dynamic programming routine that on decomposition
of width p of a semi-complete digraph T on n vertices, works in time f(|H|, p) · n2 for some
(possibly small) function f . Existence of such an algorithm for the topological subgraph and
minor relations follows immediately from Theorem 2.16, as the definition of containing H as
a topological subgraph or a minor can be trivially expressed by a MSO1 formula of length
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depending on |H| only. For the immersion relation one can use the following result of Ganian
et al. [34].

Theorem 6.1 ([34]). For every ` there exists an MSO1 formula π`(s1, s2, . . . , s`, t1, t2, . . . , t`)
that for a digraph with distinguished vertices s1, s2, . . . , s`, t1, t2, . . . , t` (some of which are pos-
sibly equal) asserts whether there exists a family of arc-disjoint paths P1, P2, . . . , P` such that Pi
begins in si and ends in ti, for i = 1, 2, . . . , `.

Therefore, in order to construct a formula expressing that a digraph T contains a digraph H
as an immersion, we can quantify existentially the images of vertices of H, verify that they are
pairwise different, and then use formula π|E(H)| to check existence of arc-disjoint paths between
corresponding images. Unfortunately, for Theorem 2.16 only very crude upper bounds on the
obtained function f can be given. Essentially, the engine behind Theorem 2.16 is a translation
of formulas of MSO logic on trees to tree automata. It is known that the dependence of the
size of the automaton obtained in the translation on the size of the formula is roughly q-times
exponential, where q is the quantifier rank of the formula. Moreover, this is unavoidable in the
following sense: the size of the automaton cannot be bounded by any elementary function of the
length of the formula. Since formulas expressing the topological subgraph and minor relations
have constant quantification rank, the function f(·, ·) given by an application of Theorem 2.16
will be in fact elementary. As far as the immersion relation is concerned, the quantification rank
of the formula given by Theorem 6.1 is linear in `, and thus we cannot even claim elementary
running time bounds.

Instead, in order to give explicit bounds on the running time of topological subgraph, im-
mersion, and minor testing, we design explicit dynamic programming routines. The routines
are presented in Section 10, and here we only state the results. We remark that the routines
can in fact check more involved properties, which will be useful in applications.

Theorem 6.2. There exists an algorithm that given a digraph H with k vertices, ` arcs, a set
F ⊆ E(H) of constraints, and a semi-complete digraph T on n vertices together with its path
decomposition of width p, checks whether H is topologically contained in T with constraints F
in time 2O((p+k+`) log p) · n.

Theorem 6.3. There exists an algorithm that, given a rooted digraph (H; v1, v2, . . . , vt) with
k vertices and ` arcs, and a semi-complete rooted digraph (T ;w1, w2, . . . , wt) on n vertices
together with its path decomposition of width p, checks whether H can be immersed into T while
preserving roots in time 2O(k log p+p`(log `+log p)) · n.

It may be somewhat surprising that the algorithms of Theorems 6.2 and 6.3 work in time
linear in n, while representation of T using adjacency matrix uses O(n2) space. Note however,
that a representation of a path decomposition of width p uses only O(pn) space. In these
theorems we assume that the algorithm is given access to an adjacency matrix representing T
that can be queried in constant time. Both algorithms perform one linear scan through the
given path decomposition using the adjacency matrix as a black-box, and performing only a
linear number of queries on it.

By pipelining Lemma 2.4 and Theorem 6.2 we obtain also the routine for the minor relation.

Theorem 6.4. There exists an algorithm that given digraph H with k vertices and ` arcs,
and a semi-complete digraph T together with its path decomposition of width p, checks in time
2O((p+k+`)(log p+log k+log `)) · n, whether H is a minor of T .

We are ready to provide formal descriptions of the containment testing algorithms.
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Theorem 6.5. There exists an algorithm that, given a semi-complete T on n vertices and a
digraph H with k = |H|, in time 2O(k log k) ·n2 checks whether H is topologically contained in T .

Proof. We run the algorithm given by Theorem 4.12 for parameters 20k and 520k, which either
returns a (520k+ 2, 20k)-degree tangle, a (20k+ 1, 20k)-matching tangle or a decomposition of
width at most 560k. If the last is true, we run the dynamic programming routine of Theorem 6.2,
which works in 2O(k log k) ·n time. However, if the approximation algorithm returned an obstacle,
by Lemmas 3.9, 3.12 and 3.3 we can provide a positive answer: existence of a (520k + 2, 20k)-
degree tangle or a (20k + 1, 20k)-matching tangle ensures that H is topologically contained
in T .

By plugging in the dynamic programming routine for immersion (Theorem 10.8 with no
roots specified) instead of topological containment, we obtain the following:

Theorem 6.6. There exists an algorithm that, given a semi-complete T on n vertices and a
digraph H with k = |H|, in time 2O(k2 log k) · n2 checks whether H can be immersed into T .

Finally, in the same manner we can use the algorithm of Theorem 6.4 and substitute the
usage of Lemma 3.3 with Lemma 3.4 to obtain the algorithm for testing the minor relation.
Note that application of Lemma 3.4 requires providing a slightly larger jungle; hence, in the
application of Theorem 4.12 we use parameters 45k and 1170k instead of 20k and 520k.

Theorem 6.7. There exists an algorithm that, given a semi-complete T on n vertices and a
digraph H with k = |H|, in time 2O(k log k) · n2 checks whether H is a minor of T .

7 Weak duality of width measures and containment relations

A direct consequence of the obtained combinatorial results is that we can relate the pathwidth
of a semi-complete digraph with the size of the smallest excluded topological subgraph/minor,
and its cutwidth with the size of the smallest excluded immersion. We remark that the pure ex-
istence of these relations was already discovered in the works of Fradkin and Seymour [31], and
of Chudnovsky, Fradkin, and Seymour [11]; however, the quantitative relation is multiple expo-
nential and unspecified. Our results imply explicit and asymptotically tight bounds: excluding
H as a topological subgraph or a minor implies an O(|H|) upper bound on the pathwidth, and
excluding H as an immersion implies an O(|H|2) upper bound on cutwidth. The proofs follow
closely the strategy presented in the proof of Theorem 6.5.

Theorem 7.1. Let T be a semi-complete digraph that does not contain a digraph H as a
topological subgraph. Then pw(T ) ≤ 560k, where k = |H|.

Proof. From Theorem 4.12 applied to T for parameters 20k and 520k we infer that either
pw(T ) ≤ 560k, or T contains a (520k + 2, 20k)-degree tangle or a (20k + 1, 20k)-matching
tangle. Similarly as in the proof of Theorem 6.5, it follows from Lemmas 3.9, 3.12 and 3.3 that
the existence of any of these two obstacles would imply that H is topologically contained in T ,
contradicting the assumption. Hence pw(T ) ≤ 560k.

Theorem 7.2. Let T be a semi-complete digraph that does not contain a digraph H as a minor.
Then pw(T ) ≤ 1260k, where k = |H|.

Proof. As in Theorem 6.7, we follow the same approach as in the proof of Theorem 7.1, but we
use Theorem 4.12 with parameters 45k and 1170k and substitute the usage of Lemma 3.3 with
Lemma 3.4.
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Theorem 7.3. Let T be a semi-complete digraph that does not contain a digraph H as an
immersion. Then ctw(T ) ≤ m(55k), where k = |H| and m(t) = 64t2 + 18t+ 1.

Proof. From Theorem 5.2 applied to T for parameter 55k we infer that either ctw(T ) ≤ m(55k),
or T contains a (m(55k) + 1)-backwards tangle. Observe that m(55k) + 1 > 64 · 552 · k2 >
4362 · k2 = 1092(4k)2. Thus, by Lemma 3.3 the existence of a (m(55k) + 1)-backwards tangle
would imply the existence of a (4k, 4)-short immersion jungle. By Lemma 3.3 this would imply
that H can be immersed into T , contradicting the assumption. Hence ctw(T ) ≤ m(55k).

We conclude this section by observing that the upper bounds of Theorems 7.1, 7.2, and 7.3
are asymptotically tight in the following sense: the upper bounds on pw(T ) in Theorems 7.1
and 7.2 have to be at least linear in k, and the upper bound on ctw(T ) of Theorem 7.3 has
to be at least quadratic in k. To see this, let S2k be a complete digraph on 2k vertices, i.e.,
one where for every pair of distinct u, v ∈ V (S2k) both arcs (u, v) and (v, u) are present in
S2k. Then pw(S2k) = 2k − 1 and ctw(S2k) = k2. On the other hand, if H is any digraph on
2k + 1 vertices that has O(k) arcs (for instance, it is a directed path on 2k + 1 vertices), then
|H| = O(k) and S2k contains H neither as a topological subgraph, nor as a minor, nor as an
immersion. By considering H and T = S2k in the statements of Theorems 7.1, 7.2, and 7.3 we
infer the claimed tightness of our upper bounds.

8 Containment testing and meta-theorems

We observe that FPT algorithms for testing containment relations can be used also to prove
meta-theorems of more general nature using the WQO results of Chudnovsky and Seymour [13]
and of Kim and Seymour [42]. We explain this on the following example. Let Π be a class
of digraphs and denote by Π + kv the class of digraphs, from which one can delete at most k
vertices to obtain a member of Π. We study the following problem:

Π + kv Recognition

Input: Digraph D and a non-negative integer k

Parameter: k

Question: Is there S ⊆ V (D), |S| ≤ k, such that D \ S ∈ Π?

We are interested in classes Π which are closed under immersion. For example the class
of acyclic digraphs, or digraphs having cutwidth at most c, where c is some constant, are
of this type (see Lemma 2.8). In particular, the parameterized Feedback Vertex Set in
directed graphs is equivalent to Π + kv Recognition for Π being the class of acyclic digraphs.
Chudnovsky and Seymour [13] showed that immersion order on semi-complete digraphs is a
well-quasi-order, see Theorem 2.5. Based on this result and the approximation algorithm for
pathwidth, we are able to prove the following meta-theorem. Note that it seems difficult to
obtain the results of this flavor using cutwidth, as cutwidth can decrease dramatically even
when one vertex is deleted from the digraph.

Theorem 8.1. Let Π be an immersion-closed class of semi-complete digraphs. Then Π + kv
Recognition is FPT on semi-complete digraphs.

Proof. As Π is immersion-closed, by Theorem 2.5 we infer that Π can be characterized by
admitting no member of a family of semi-complete digraphs {H1, H2, . . . ,Hr} as an immersion,
where r = r(Π) depends only on the class Π. We will again make use of Theorem 6.1. For
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every i ∈ {1, 2, . . . , r} we construct an MSO1 formula ϕi(X) with one free monadic vertex
variable X that is true if and only if digraph G \X contains Hi as an immersion. We simply
quantify existentially over the images of vertices of Hi, use the appropriate formula π|E(H)| for
quantified variables to express existence of arc-disjoint paths, and at the end relativize the whole
formula to the subdigraph induced by V (T ) \X. Hence, if we denote by ψk(X) the assertion
that |X| ≤ k (easily expressible in FO by a formula, whose length depends on k), the formula
ϕ = ∃Xψk(X) ∧ ∧r

i=1 ¬ϕi(X) is true exactly in semi-complete digraphs from which one can
delete at most k vertices in order to obtain a semi-complete digraphs belonging to Π.

Observe that every member of class Π has pathwidth bounded by a constant depending on
Π only, as by Theorem 4.12 and Lemmas 3.9, 3.12 and 3.3, a semi-complete digraph of large
enough pathwidth contains a sufficiently large short jungle, in which one of the digraphs Hi is
topologically contained, so also immersed. It follows that if the pathwidth of every member of Π
is bounded by cΠ, then the pathwidth of every member of Π+kv is bounded by cΠ+k. Therefore,
we can apply the following WIN/WIN approach. We apply Theorem 4.12 for parameters k′ and
4k′ where k′ = cΠ + k. This application takes time g(k)|V (T )|2 and provides either an obstacle
for admitting a path decomposition of width at most cΠ + k, which is sufficient to provide a
negative answer, or a path decomposition of width at most 6(cΠ + k), on which we can run the
algorithm given by Theorem 2.16 applied to formula ϕ.

9 The algorithm for Rooted Immersion

In this section we apply the developed tools to solve the Rooted Immersion problem in semi-
complete digraphs, i.e., testing whether one digraph H is an immersion of another semi-complete
digraph T where some of the vertices have already prescribed images.

The algorithm of Theorem 6.6 cannot be used to solve Rooted Immersion because in the
case when an obstacle is found, we are unable to immediately provide the answer: even though
H can be found in the obstacle as an immersion, this embedding can have nothing to do with
the roots. Therefore, we need to exploit the identified obstacle in a different way. Following the
classical approach in such a case, we design an irrelevant vertex rule. That is, given the obstacle
we find in polynomial time a vertex that can be assumed to be not used by some solution, and
which therefore can be safely deleted from the graph. After this deletion we simply restart the
algorithm. Thus at each step of this process the algorithm either solves the problem completely
using dynamic programming on a path decomposition of small width, or removes one vertex of
the graph; as a result, we run the approximation algorithm of Theorem 4.12 and identification
of an irrelevant vertex at most n times.

The design of the irrelevant vertex rule needs very careful argumentation, because one has
to argue that some vertex is omitted by some solution without having any idea about the shape
of this solution, or even of existence of any solutions at all. Therefore, instead of short jungles
that were the main tool used in Section 6, we use the original obstacle introduced by Fradkin
and Seymour [31], namely the triple.

9.1 Irrelevant vertex in a triple

In this section we show how to identify a vertex that is irrelevant for the Rooted Immersion
problem in a semi-complete graph with a sufficiently large triple. Let p(k) = 80k2 + 80k + 5.
We prove the following theorem.

Theorem 9.1. Let I = ((H;u1, u2, . . . , ut), (T ; v1, v2, . . . , vt)) be an instance of the Rooted
Immersion problem, where k = |H| and T is a semi-complete graph on n vertices containing a
p(k)-triple (A,B,C) disjoint with {v1, v2, . . . , vt}. Then it is possible in time O(p(k)2 · n2) to
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identify a vertex x ∈ B such that I is a YES instance of Rooted Immersion if and only if
I ′ = ((H,u1, u2, . . . , ut), (T \ {x}, v1, v2, . . . , vt)) is a YES instance.

Before we proceed with the proof of Theorem 9.1, we need to make several auxiliary obser-
vations.

Let η be a solution to the Rooted Immersion instance and let Q be the family of paths
being images of all the arcs in H, i.e., Q = η(E(H)). We call an arc (a vertex) used by a path
P if it is traversed by P . We say that an arc (a vertex) is used by Q if it is used by any path
of Q. We omit the family Q whenever it is clear from the context. An arc (a vertex) which is
not used is called a free arc (vertex).

Observation 9.2. If Q is a family of paths containing simple paths only, then every vertex in
T is adjacent to at most k used incoming arcs and at most k used outgoing arcs.

Proof. Otherwise, there is a path in the solution that visits that vertex at least two times.
Therefore, there is a cycle on this path, which contradicts its simplicity.

Let η be a solution to Rooted Immersion instance I that minimizes the total sum of
length of paths in η(E(H)), and let Q = η(E(H)). Firstly, we observe some easy properties of
Q.

Observation 9.3. Every path from Q uses at most 2 arcs from the matching between C and
A.

Proof. Assume otherwise, that there is a path P ∈ Q that uses three arcs of the matching:
(c1, a1), (c2, a2), (c3, a3), appearing in this order on the path. By Observation 9.2, for at most
k vertices of v ∈ B the arc (a1, v) is used. For the same reason, for at most k vertices v ∈ B
the arc (v, c3) is used. As |B| > 2k, there exists v ∈ B such that (a1, v) and (v, c3) are not
used. Now replace the part of P appearing between a1 and c3 with a1 → v → c3. We obtain a
solution with smaller sum of lengths of the paths, a contradiction.

Observation 9.4. Every path from Q uses at most 2k + 4 vertices from A.

Proof. Assume otherwise, that there is a path P ∈ Q passing through at least 2k + 5 vertices
from A. By Observation 9.3, at most 2k of them are endpoints of used arcs of the matching
between C and A. Therefore, there are at least 5 visited vertices, which are endpoints of an
unused arc of the matching. Let us denote any 5 of them by a1, a2, a3, a4, a5 and assume that
they appear on P in this order. Let (c5, a5) be the arc of the matching between C and A that is
incident to a5. By the same reasoning as in the proof of Observation 9.3, there exists a vertex
v ∈ B, such that (a1, v) and (v, c5) are unused arcs. Substitute the part of the path P between
a1 and a5 by the path a1 → v → c5 → a5, which consists only of unused arcs. We obtain a
solution with smaller sum of lengths of the paths, a contradiction.

A symmetrical reasoning yields the following observation.

Observation 9.5. Every path from Q uses at most 2k + 4 vertices from C.

Finally, we prove a similar property for B.

Observation 9.6. Every path from Q uses at most 4 vertices from B.
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Proof. Assume otherwise, that there is a path P ∈ Q such that it passes through at least 5
vertices from B. Let us denote any 5 of them by b1, b2, b3, b4, b5 and assume that they appear
on P in this order. By Observation 9.2 there are at most k outgoing arcs incident to b1 used,
and there are at most k incoming arcs incident to b5 used. Moreover, by Observation 9.3 there
are at most 2k arcs of the matching between C and A used. As p(k) > 4k, we conclude that
there is an unused arc of the matching (c, a), such that arcs (b1, c) and (a, b5) are also unused.
Substitute the part of the path P between b1 and b5 by the path b1 → c→ a→ b5. We obtain
a solution with smaller sum of lengths of the paths, a contradiction.

From Observations 9.4-9.6 we obtain the following corollary.

Corollary 9.7. In B there are at most 4k vertices used by Q, so in particular there are at least
5k + 1 vertices free from Q. Moreover, within the matching between C and A there are at least
4k arcs having both endpoints free from Q.

We note that the Corollary 9.7 holds also for much larger values than 5k+1, 4k, respectively;
we choose to state it in this way to show how many free vertices from B and free arcs of the
matching we actually use in the proof of Theorem 9.1. We need one more auxiliary lemma that
will prove to be useful.

Lemma 9.8. Let T = (V1 ∪ V2, E) be a semi-complete bipartite digraph, i.e., a directed graph,
where arcs are only between V1 and V2, but for every v1 ∈ V1 and v2 ∈ V2 at least one of the
arcs (v1, v2) and (v2, v1) is present. Then at least one of the assertions holds:

(a) for every v1 ∈ V1 there exists v2 ∈ V2 such that (v1, v2) ∈ E;

(b) for every v2 ∈ V2 there exists v1 ∈ V1 such that (v2, v1) ∈ E.

Proof. Assume that (a) does not hold. This means that there is some v0 ∈ V1 such that for all
v2 ∈ V2 we have (v2, v0) ∈ E. Then we can always pick v0 as v1 in the statement of (b), so (b)
holds.

Observe that by reversing all the arcs we can obtain a symmetrical lemma, where we assert
existence of inneighbors instead of outneighbors.

We are now ready to prove Theorem 9.1. Whenever we will refer to the matching, we mean
the matching between C and A.

Proof of Theorem 9.1. To prove the theorem we give an algorithm that outputs a vertex x ∈ B,
such that if there exists a solution to the the given instance, then there exists also a solution in
which no path passes through x. The algorithm will run in time O(p(k)2 · n2).

We proceed in three steps. The first step is to identify in O(p(k)2 · n2) time a set X ⊆ B,
|X| ≥ 16k2 + 16k+ 1, such that if I is a YES instance, then for every x ∈ X there is a solution
η with P = η(E(H)) having the following properties:

(1.i) at least 3k + 1 vertices of B are free from P;

(1.ii) at least 2k arcs of the matching have both endpoints free from P;

(1.iii) if x is accessed by some path P ∈ P from a vertex v, then v ∈ A.

The second step of the proof is to show that one can identify in O(p(k)2 · n2) time a vertex
x ∈ X such that if I is a yes instance, then there is a solution with P = η(E(H)) having the
following properties:

(2.i) at least k + 1 vertices of B are free from P;
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(2.ii) if x is accessed by some path P ∈ P from a vertex v, then v ∈ A;

(2.iii) if x is left by some path P ∈ P to a vertex v, then v ∈ C.

The final, concluding step of the proof is to show that there is a solution P = η(E(H)) such
that

(3.i) No path from P is using x.

We proceed with the first step. Let Q = η(E(H)), where η is the solution for the Rooted
Immersion instance with the minimum sum of lengths of the paths.

For every vertex b ∈ B, we identify two sets: Gb, Rb. The set Rb consists of those inneighbors
of b outside A, which are inneighbors of at least 6k vertices from B, while Gb consists of the
rest of inneighbors of b outside A. Formally,

Rb = {v | v ∈ V (T ) \A ∧ (v, b) ∈ E ∧ |N+(v) ∩B| ≥ 6k},
Gb = {v | v ∈ V (T ) \A ∧ (v, b) ∈ E ∧ |N+(v) ∩B| < 6k}.

Note that Rb, Gb can be computed in O(n2) time. Let B∅ be the set of those vertices b ∈ B, for
which Gb = ∅. We claim that if |B∅| ≥ 16k2 + 16k + 1, then we can set X = B∅.

Take any b ∈ B∅. We argue that we can reroute the paths of Q that access b from outside A
in such a manner, that during rerouting each of them we use at most one additional free vertex
from B and at most one additional arc from the matching. We reroute the paths one by one.
Take path P that accesses b from outside A, and let v be the previous vertex on the path. As
Gb = ∅, v ∈ Rb. Therefore, v has at least 6k outneighbors in B. Out of them, at most 4k are
not free with respect to Q, due to Observation 9.6, while at most k − 1 were used by previous
reroutings. Therefore, there is a vertex b′ ∈ B ∩N+(v), such that b′ is still free. Thus we can
substitute usage of the arc (v, b) on P by the path v → b′ → c → a → b, where (c, a) is an
arbitrary arc of the matching that still has both endpoints free, which exists due to using at
most k−1 of them so far. After the rerouting we examine the obtained walk and remove all the
cycles on this walk so that we obtain a simple path. Note that this shortcutting step cannot
spoil property (1.iii) for this path.

We are now left with the case when |B∅| < 16k2 + 16k + 1. Let Bg = B \ B∅. Then
|Bg| ≥ 4(16k2 + 16k + 1). We construct a semi-complete digraph S = (Bg, L) as follows. For
every b1, b2 ∈ Bg, b1 6= b2, we put arc (b1, b2) if for every v ∈ Gb1 , either v ∈ Gb1 ∩ Gb2 or v
has an outneighbor in Gb2 . Similarly, we put arc (b2, b1) into L if for every v ∈ Gb2 , either
v ∈ Gb1 ∩ Gb2 or v has an outneighbor in Gb1 . By applying Lemma 9.8 to the semi-complete
bipartite graph ((Gb1 \Gb2)∪ (Gb2 \Gb1), E(Gb1 \Gb2 , Gb2 \Gb1)) we infer that for every pair of
distinct b1, b2 ∈ Bg there is at least one arc with endpoints b1 and b2. Hence S is semi-complete.
The definition of S gives raise to a straightforward algorithm constructing it in O(p(k)2 · n2)
time.

Let X be the set of vertices of Bg that have outdegree at least 6k2 +6k in S; note that X can
be constructed in O(p(k)2) time. Observe that |X| ≥ 16k2 +16k+1, since otherwise the sum of
the outdegrees in S would be at most (16k2 + 16k)(|Bg|−1) + (|Bg|−16k2−16k)(6k2 + 6k−1),

which is smaller than
(|Bg |

2

)
for |Bg| ≥ 4(16k2 + 16k + 1).

We now claim that for every b ∈ X, every path of Q using vertex b can be rerouted at the
cost of using at most two free vertices of B and at most two arcs from the matching that have
still both endpoints free. We perform reroutings one by one. Assume that there is a path P ∈ Q
accessing b from outside A. Let v be the predecessor of b on P . If v ∈ Rb, then we use the
same rerouting strategy as in the case of large B∅. Assume then that v ∈ Gb. As b ∈ X, its
outdegree in S is at least 6k2 + 6k. This means that there are at least 6k2 + 6k vertices b′ in
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Figure 4: Rerouting strategy for a path accessing vertex b from Gb. The original path is depicted
in violet, while the rerouted path is depicted in blue.

Bg and corresponding vertices vb′ ∈ N−(b′), such that for every b′ either vb′ = v or (v, vb′) ∈ E.
Out of these 6k2 + 6k vertices b′, at most 4k are not free due to Observation 9.6, at most 2k− 2
were used in previous reroutings, which leaves us with at least 6k2 vertices b′ still being free. If
for any such b′ we have vb′ = v, we follow the same rerouting strategy as in the case of large
B∅. Assume then that these 6k2 vertices vb′ are all distinct from v; note that, however, they are
not necessarily distinct from each other. As each vb′ belongs to Gb′ , vb′ can have at most 6k− 1
outneighbors in B. Hence, each vertex of V (T ) can occur among these 6k2 vertices vb′ at most
6k − 1 times, so we can distinguish at least k + 1 pairwise distinct vertices vb′ . We have that
arcs (v, vb′) and (vb′ , b

′) exist, while b′ is still free. By Observation 9.2, at most k arcs (v, vb′)
are used by some paths, which leaves us at least one vb′ , for which arc (v, vb′) is free. We can
now substitute the arc (v, b) in P by the path v → vb′ → b′ → c → a → v, where (c, a) is an
arbitrarily chosen arc from the matching that still has both endpoints free, which exists due
to using at most 2k − 2 of them so far. See Figure 4. After rerouting, remove all cycles that
appeared on the obtained walk in order to obtain a simple path; again, this shortcutting step
does not spoil property (1.iii) for the path. Thus, Observation 9.2 still holds after rerouting.
Observe that in this manner we use additional vertex b′ that was free, additional one arc (c, a)
from the matching, whereas passing the path through vb′ can spoil at most one arc of the
matching that still had both endpoints free, or at most one free vertex from B. This concludes
the construction of the set X.

We proceed with the second step of the proof. We mimic the rerouting arguments from the
first step to obtain a vertex x ∈ X with the following property: the rerouted family of paths P
obtained in the first step that can access x only from A, can be further rerouted so that every
path can only leave x by accessing some vertex from C.

For every b ∈ X consider sets R′b and G′b defined similarly as before:

R′b = {v | v ∈ V (T ) \ C ∧ (b, v) ∈ E ∧ |N−(v) ∩B| ≥ 8k},
G′b = {v | v ∈ V (T ) \ C ∧ (b, v) ∈ E ∧ |N−(v) ∩B| < 8k}.

Assume first that there is some y ∈ X, such that G′y = ∅. We argue that we can in such a
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case set x = y. Firstly, reroute a solution that minimizes the total sum of lengths of the paths
obtaining a solution with the family of paths P that uses at most 2k additional free vertices
from B and at most 2k additional arcs from the matching that had both endpoints free, but
does not access x from outside A. One by one we reroute paths that traverse y. Each rerouting
will cost at most one free vertex from B and at most one arc from the matching that has still
both endpoints free. Let P be a path from the solution that passes through y and let v ∈ R′y
be the next vertex on P . The vertex v has at least 8k inneighbors in B; at most 4k of them
could be used by the original solution, at most 2k of them could be used in rerouting during the
first phase and at most k − 1 of them could be used during previous reroutings in this phase.
Therefore, we are left with at least one vertex y′ ∈ B that is still free, such that (y′, v) ∈ E(T ).
We can now substitute the arc (y, v) in P by the path y → c→ a→ y′ → v, where (c, a) is an
arbitrarily chosen arc from the matching that was not yet used, which exists due to using at
most 3k−1 of them so far. Again, we shortcut all the cycles that appeared after this substitution
so that we obtain a simple path. Note that this shortcutting step spoils neither property (2.ii)
nor (2.iii) for the path.

We are left with the case when G′y is nonempty for all y ∈ X. Construct a digraph S′ =
(X,L′) in symmetrically to the previous construction: put arc (b1, b2) into L′ iff for every
vb2 ∈ G′b2 there exists vb1 ∈ G′b1 such that vb1 = vb2 or (vb1 , vb2) ∈ E. The remark after
Lemma 9.8 ensures that S′ is semi-complete. Again, S′ can be computed in O(p(k)2 · n2) time.

As |X| ≥ 16k2 + 16k + 1, there exists x ∈ X, which has indegree at least 8k2 + 8k in S′;
note that x can be found in O(p(k)2) time. As before, we argue that after the first rerouting
phase for x, we can additionally reroute the paths so that every path can leave x only into C.
We reroute the paths one by one; each rerouting uses at most two free vertices from B and at
most two arcs from the matching that still had both endpoints free. As the indegree of x in
S′ is at least 8k2 + 8k, we have at least 8k2 + 8k vertices x′ ∈ X and corresponding vx′ ∈ G′x′ ,
such that vx′ = v or (vx′ , v) ∈ E. At most 4k of them were used in Q, at most 2k were used in
the first phase of rerouting, and at most 2k − 2 of them were used in this phase of rerouting.
This leaves at least 8k2 vertices x′ which are still free. If for any of them we have vx′ = v, we
can make the rerouting similarly as in the previous case: we substitute the arc (x, v) with the
path x → c → a → x′ → v, where (c, a) is an arbitrary arc of the matching that still has both
endpoints free, which exists due to using at most 4k − 2 of them so far. Assume then, that all
vertices vx′ are distinct from v; note that, however, they are not necessarily distinct from each
other. As for every x′ we have vx′ ∈ G′x′ , by the definition of G′x′ the vertices vx′ can have at
most 8k− 1 inneighbors in X. This means that every vertex of V (T ) can occur among vertices
vx′ at most 8k − 1 times, which proves that there are at least k + 1 pairwise distinct vertices
among them. By Observation 9.2, for at most k of them the arc outgoing to v can be already
used, which leaves us with a single vertex x′ such that arcs (x′, vx′) and (vx′ , v) exist and are not
yet used, whereas x′ is still free. Now we can perform the rerouting as follows: we substitute
the arc (x, v) in P by the path x→ c→ a→ x′ → vx′ → v, where (c, a) is an arbitrary arc from
the matching that still had both endpoints free. Such an arc exists since we used at most 2k
such arcs in the first phase of the rerouting, and at most 2k − 2 in this phase of the rerouting.
Similarly as before, we use one additional free vertex x′ from B, one additional arc (c, a) from
the matching, while usage of vx′ can spoil at most one free vertex from B or at most one arc
from the matching. After this, we delete all the possible cycles created on the path in order to
make Observation 9.2 still hold; again, this shortcutting step spoils neither property (2.ii) nor
property (2.iii). This concludes the construction of the vertex x.

To finish the proof it remains to show that after performing the two phases of rerouting and
obtaining a solution η′, whose paths can access and leave x only from A and into C, we can
reroute every path so that it does not traverse x at all. Note that so far we have used at most
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4k vertices from B, so we still have at least k + 1 vertices unused. Observe that at most k of
these vertices can belong to η′(V (H)), which leaves us with at least one vertex x′ that is still
free and is not an image of any vertex of H in η′.

If x ∈ η(u) for some u ∈ V (H), then we simply move the image u: we consider η′′ that
differs from η′ by replacing x with x′ both in the image of u and in all the paths from η′(E(H))
which traverse x. Note that we can make this move since x is not a root vertex: the triple does
not contain any roots. In case when x /∈ η(V (H)) we can perform the same rerouting scheme:
in all the paths from η′(E(H)) we substitute every appearance of x with x′. Then no path
traverses x, so I ′ = ((H,u1, u2, . . . , ut), (T \ {x}, v1, v2, . . . , vt)) is a YES instance if I was.

9.2 Applying the irrelevant vertex rule

Armed with the irrelevant vertex rule, we can proceed to the algorithm for Rooted Immersion.

Theorem 9.9. There exists an algorithm that, given a rooted semi-complete digraph T on
n vertices and a rooted digraph H, in time f(|H|) · n3 checks whether there exists a rooted
immersion from H to T, for some elementary function f .

Proof. Let f be the function given by Lemma 3.6; i.e., basing on a f(t)-jungle in any semi-
complete digraph S, one can find a t-triple in S in time O(|V (S)|3 log |V (S)|). Moreover, let p
be the polynomial given by Theorem 9.1; i.e., in a p(|H|)-triple that is disjoint from the roots
one can find an irrelevant vertex for the Rooted Immersion problem in O(p(|H|)2 · n2) time.

Given the input semi-complete rooted digraph T and a rooted digraph H, we run the
approximation algorithm of Theorem 4.12 for parameters 5k and 130k on T with the roots
removed, where k = f(p(|H|)); this takes at most g(|H|) ·n2 time for some elementary function
g. If the algorithm returns a decomposition of T without roots of width at most 140k, we
include all the roots in every bag of the decomposition and finalize the algorithm by running
the dynamic programming routine for Rooted Immersion (Theorem 6.3), which takes h(|H|)·n
time for some elementary function h. Otherwise, using Lemma 3.9 or Lemma 3.12 we extract
a (k, 4)-short jungle X from the output (130k + 2, 5k)-degree tangle or (5k + 1, 5k)-matching
tangle; this takes O(k3 · n2) time.

Obviously, X is also a k-jungle in the sense of Fradkin and Seymour, so we are tempted
to run the algorithm of Lemma 3.6 to extract a triple; however, the running time is a bit too
much. We circumvent this obstacle in the following manner. As X is a (k, 4)-short jungle, then
if we define S to be the subdigraph induced in T by X and, for every pair v, w of vertices in X,
k internally vertex-disjoint paths of length at most 4 from v to w, then X is still a (k, 4)-short
jungle in S, but S has size polynomial in k. As we store the short jungle together with the
corresponding family of paths between the vertices, we can construct S in O(kO(1)) time and,
using Lemma 3.6, in O(kO(1)) time find a p(|H|)-triple inside S. This p(|H|)-triple is of course
also a p(|H|)-triple in T . We apply Theorem 9.1 to find an irrelevant vertex in this triple in
p(|H|)2 · n2 time, delete it, and restart the algorithm.

Since there are n vertices in the graph, the algorithm makes at most n iterations. Since
every iteration takes h(k) · n2 time for some elementary function h, the claim follows.

10 Dynamic programming routines for containment relations

In this section we provide details of the dynamic programming routines that solve containment
problems when a path decomposition of small width is given. First, we explain the terminology
used to describe the constructed parts of expansions or immersions. Then we explain the routine
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for topological containment that is somewhat simpler, and finally proceed to immersion. But
before all of these, let us give some intuition behind the algorithms.

The main idea of our routine is as follows: we will encode the interaction of the model of
H with all the already introduced vertices as sequences of paths in a standard folio manner.
Every such path has to end in the separator, but can begin in any forgotten vertex since it may
be accessed from a vertex not yet introduced. In general setting the dynamic program would
need to remember this first vertex in order to check whether it can be indeed accessed; that
would yield an XP algorithm and, in essence, this is exactly the idea behind the algorithm of
Fradkin and Seymour [31]. However, if the digraph is semi-complete, then between every not
yet introduced vertex and every forgotten vertex there is an arc. Therefore, we do not need to
remember the forgotten vertex itself to check accessibility; a marker saying forgotten, together
with information about which markers in fact represent the same vertices in case of immersion,
will suffice.

We hope that a reader well-familiar with construction of dynamic programs on various
decompositions already has a crude idea about how the computation will be performed. Let us
proceed with the details in the next subsections.

10.1 Terminology

First, we need to introduce definitions that will enable us to encode all the possible interactions
between a model of a digraph H and a separation. Let (A,B) be a separation of T , where T is
a given semi-complete digraph.

In the definitions we use two special symbols: F,U; the reader can think of them as an
arbitrary element of A \ B (forgotten) and B \ A (unknown), respectively. Let ι : V (T ) →
(A ∩ B) ∪ {F,U} be defined as follows: ι(v) = v if v ∈ A ∩ B, whereas ι(v) = F for v ∈ A \ B
and ι(v) = U for v ∈ B \A.

Definition 10.1. Let P be a path. A sequence of paths (P1, P2, . . . , Ph) is a trace of P with
respect to (A,B), if Pi for 1 ≤ i ≤ h are all maximal subpaths of P that are fully contained in
T [A], and the indices in the sequence reflect their order on path P .

Let (P1, P2, . . . , Ph) be the trace of P with respect to (A,B). A signature of P on (A,B) is
a sequence of pairs ((b1, e1), (b2, e2), . . . , (bh, eh)), where bh, eh ∈ (A ∩ B) ∪ {F}, such that for
every i ∈ {1, 2, . . . , h}:

• bi is the beginning of path Pi if bi ∈ A ∩B, and F otherwise;

• ei is the end of path Pi if ei ∈ A ∩B, and F otherwise.

In other words, bi, ei are images of the beginning and the end of path Pi in mapping ι.
Observe the following properties of the introduced notion:

• Signature of a path P on separation (A,B) depends only on its trace; therefore, we can
also consider signatures of traces.

• It can happen that bi = ei 6= F only if Pi consists of only one vertex bi = ei.

• From the definition of separation it follows that only for i = h it can happen that ei = F,
since there is no arc from A \B to B \A.

• The empty signature corresponds to P entirely contained in B \A.

Now we are able to encode relevant information about a given expansion of H.
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Definition 10.2. Let η be an expansion of a digraph H in T . An expansion signature of η on
(A,B) is a mapping ρ such that:

• for every v ∈ V (H), ρ(v) = ι(η(v));

• for every a ∈ E(H), ρ(a) is a signature of η(a) on (A,B).

The set of possible expansion signatures on separation (A,B) will be denoted by V(A,B).
Observe that in an expansion η all the paths in η(E(H)) are internally vertex-disjoint, so the
non-forgotten beginnings and ends in all the signatures of paths from ρ(E(H)) can be equal
only if they are in the same pair or correspond to a vertex from ρ(V (H)) at the beginning or at
the end of a signature of some path. Armed with this observation, we can bound the number
of possible expansion signatures on a separation of small order.

Lemma 10.3. If |V (H)| = k, |E(H)| = `, |A ∩ B| = m, then the number of possible different
expansion signatures on (A,B) is at most

(m+ 2)k · (m+ 2)m ·m` ·m! · (m+ 2)` · (m+ 2)` = 2O((k+`+m) logm).

Moreover, all of them can be enumerated in 2O((k+`+m) logm) time.

Proof. The consecutive terms correspond to:

1. the choice of mapping ρ on V (H);

2. for every element of (A∩B) \ρ(V (H)), choice whether it will be the end of some subpath
in some path signature, and in this case, the value of corresponding beginning (a vertex
from A ∩B or F);

3. for every pair composed in such manner, choice to which ρ(a) it will belong;

4. the ordering of pairs along the path signatures;

5. for every (v, w) ∈ E(H), choice whether to append a pair of form (b, ρ(w)) at the end of
the signature ρ((v, w)), and in this case, the value of b (a vertex from A ∩B or F).

6. for every (v, w) ∈ E(H), choice whether to append a pair of form (ρ(v), e) at the beginning
of the signature ρ((v, w)), and in this case, the value of e (a vertex from A ∩B or F).

It is easy to check that using all these information one can reconstruct the whole signature.
For every object constructed in the manner above we can check in time polynomial in k, `,m,
whether it corresponds to a possible signature. This yields the enumeration algorithm.

We now proceed to encoding intersection of an immersion with a given separation (A,B).
Unfortunately, the definition must be slightly more complicated for the following reason. Assume
that we have two subpaths P1, P2 in some path traces that both start in some vertices b1, b2 that
are forgotten, i.e., b1, b2 ∈ A\B. Observe that not only need to remember that ι(b1) = ι(b2) = F,
but also need to store the information whether b1 = b2: in the future computation we might
need to know whether b1 and b2 are actually not the same vertex, in order to prevent using
twice the same arc incoming to this vertex from the unknown region, in two different images of
paths. Fortunately, this is the only complication.

Definition 10.4. Let η be an immersion of a digraph H in T . An immersion signature of η
on (A,B) is a mapping ρ together with an equivalence relation ≡ on the set of all the pairs of
form (F, e) appearing in the image of ρ, such that:
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• for every v ∈ V (H), ρ(v) = ι(η(v));

• for every a ∈ E(H), ρ(a) is a signature of η(a);

• (F, e1) ≡ (F, e2) if and only if markers F in both pairs correspond to the same forgotten
vertex before being mapped by ι.

We remark that the same pair of form (F, e) can appear in different signatures; in this case,
by somehow abusing the notation, we consider all the appearances as different pairs. Also,
we often treat the equivalence relation ≡ as part of the mapping ρ, thus denoting the whole
signature by ρ. We denote the set of possible immersion signatures on separation (A,B) by
E(A,B). Similarly as in Lemma 10.3, we can bound the number of immersion signatures on a
separation of small order.

Lemma 10.5. If |V (H)| = k, |E(H)| = `, |A ∩ B| = m, then the number of possible different
immersion signatures on (A,B) is bounded by

(m+ 2)k · ((m+ 2)m ·m! · (m+ 2)2)` ·B(m+2)` = 2O(k logm+m`(log `+logm)).

Moreover, all of them can be enumerated in 2O(k logm+m`(log `+logm)) time.

Proof. The consecutive terms correspond to:

1. the choice of mapping ρ on V (H);

2. for every arc a = (v, w) ∈ E(H) the complete information about the signature ρ(a):

• for every element of A∩B, whether it will be the end of some path in the signature,
and in this case, the value of corresponding beginning (a vertex from A ∩B or F),

• the ordering of pairs along the signature,

• whether to append a pair of form (b, ρ(w)) at the end of the signature ρ(a), and in
this case, the value of b (a vertex from A ∩B or F),

• whether to append a pair of form (ρ(v), e) at the beginning of the signature ρ(a),
and in this case, the value of e (a vertex from A ∩B or F).

3. partition of at most (m + 2)l pairs in all the signatures from ρ(E(H)) into equivalence
classes with respect to ≡.

In the last term we used Bell numbers Bn, for which a trivial bound Bn ≤ nn applies.
It is easy to check that using all these information one can reconstruct the whole signature.

For every object constructed in the manner above we can check in time polynomial in k, l,m,
whether it corresponds to a possible signature. This yields the enumeration algorithm.

10.2 The algorithm for topological containment

Finally, we are able to present the dynamic programming routine for topological containment.
Recall that we will solve a slightly more general problem, where arcs from some subset F ⊆
E(H), called constraints, are required to be mapped to single arcs instead of possibly longer
paths. We first prove a simple lemma that will be useful to handle the constraints.

Lemma 10.6. Let H,G be simple digraphs, and let F ⊆ E(H). Then H can be topologically
embedded in G with constraints F if and only if H ′ = H \F can be topologically embedded in G
using expansion η such that (η(v), η(w)) ∈ E(G) for every (v, w) ∈ F .
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Proof. From left to right, if η is an expansion of H in G that respects constraints F , then η
restricted to H ′ is also an expansion of H ′ in G, and moreover (η(v), η(w)) ∈ E(G) for every
(v, w) ∈ F since η respects constraints F . From right to left, assume that η is an expansion
of H ′ in G such that (η(v), η(w)) ∈ E(G) for every (v, w) ∈ F . Then we can extend η to H
by setting η((v, w)) = (η(v), η(w)) for every (v, w) ∈ F , and these new paths will be pairwise
internally vertex-disjoint, and internally vertex-disjoint from η(a) for a /∈ F .

We are ready to provide the dynamic programming routine.

Theorem 10.7 (Theorem 6.2, restated). There exists an algorithm that, given a digraph H with
k vertices, ` arcs, a set F ⊆ E(H) of constraints, and a semi-complete digraph T on n vertices
together with its path decomposition of width p, checks whether H is topologically contained in
T with constraints F in time 2O((p+k+`) log p) · n.

Proof. Let H ′ = H \ F , and let W = (W1, . . . ,Wr) be a path decomposition of T of width p.
Without loss of generality we assume that W is a nice path decomposition and r = O(n).

By Lemma 10.3, for every separation (A,B) = (
⋃i
j=1Wj ,

⋃r
j=iWj) with separator Wi the

number of possible signatures is 2O((p+k+`) log p). We will consecutively compute the values of a
binary table D(A,B) : V(A,B) → {⊥,>} with the following meaning. For ρ ∈ V(A,B), D(A,B)[ρ]
tells whether there exists a mapping ρ with the following properties:

• for every v ∈ V (H), ρ(v) = ρ(v) if ρ(v) ∈ (A ∩B) ∪ {U} and ρ(v) ∈ A \B if ρ(v) = F;

• for every a = (v, w) ∈ E(H ′), ρ(a) is a correct path trace with signature ρ(a), beginning
in ρ(v) if ρ(v) ∈ A and anywhere in A otherwise, ending in ρ(w) if ρ(w) ∈ A and anywhere
in A ∩B otherwise;

• path traces ρ(a) are vertex-disjoint, apart possibly from meeting at the ends if the ends
correspond to images of appropriate endpoints of arcs in ρ;

• for every a = (v, w) ∈ F , if ρ(v) 6= U and ρ(w) 6= U, then (ρ(v), ρ(w)) ∈ E(T ).

Such mapping ρ will be called a partial expansion of H ′ on (A,B) respecting constraints F .
Note that we may also talk about signatures of partial expansions; in the definition above, ρ is
the signature of ρ on (A,B).

For the first separation (∅, V (T )) we have exactly one signature with value >, being the sig-
nature which maps all the vertices into U and all the arcs into empty signatures. By Lemma 10.6,
the result of the whole computation should be the value for the signature on the last separation
(V (T ), ∅) which maps all vertices into F and arcs into signatures consisting of one pair (F,F).
Therefore, it suffices to show how to fill the values of the table for introduce vertex step and
forget vertex step. Note that the introduce bags of the decomposition may be viewed as in-
troducing a vertex v to a separation (A,B), i.e., considering the next separation (A∪{v}, B) for
v /∈ A, v ∈ B. Similarly, forget bags may be viewed as forgetting a vertex w from a separation
(A,B ∪ {w}) with w ∈ A, w /∈ B, i.e., considering the next separation (A,B).

Introduce vertex step. Let us introduce vertex v ∈ B \A to the separation (A,B), i.e., we
consider the new separation (A ∪ {v}, B). Let ρ ∈ V(A∪{v},B). We show that D(A∪{v},B)[ρ] can
be computed using the stored values of D(A,B) by analyzing the way signature ρ interferes with
vertex v. In each case we argue that one can take D(A∪{v},B)[ρ] =

∨
ρ′∈G D(A,B)[ρ

′] for some
set G that corresponds to possible trimmings of ρ to the previous separation of smaller order.
Formally, one needs to argue that (i) if there exists a partial expansion with signature ρ on
(A ∪ {v}, B), then after deleting vertex v this partial expansion has some signature ρ′ ∈ G on
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(A,B), and (ii) if there exists a partial expansion with signature ρ′ on (A,B) such that ρ′ ∈ G,
then one can extend this partial expansion using vertex v to obtain a partial expansion on
(A∪{v}, B) with signature ρ. Since this check in each case follows directly from the explanations
provided along with the construction of G, we leave the formal verification of this statement to
the reader.

Case 1: v /∈ ρ(V (H)), that is, v is not an image of a vertex of H. Observe that in this situation v
can be contained in at most one pair of at most one signature ρ(a) for some a ∈ E(H ′).

Case 1.1: bi = v = ei for some pair (bi, ei) ∈ ρ(a) and some a ∈ E(H ′). This means that the
signature of the partial expansion truncated to separation (A,B) must look exactly
like ρ, but without this subpath of length zero. Thus D(A∪{v},B)[ρ] = D(A,B)[ρ

′],
where ρ′ is constructed from ρ by deleting this pair from the corresponding signature.

Case 1.2: bi = v 6= ei for some pair (bi, ei) ∈ ρ(a) and some a ∈ E(H ′). This means that the
partial expansion truncated to separation (A,B) has to look the same but for the
path corresponding to this very pair, which needs to be truncated by vertex v. The
new beginning has to be either a vertex in A∩B, or a forgotten vertex from A\B. As
T is semi-complete and (A,B) is a separation, there is an arc from v to every vertex
of A \ B. Therefore, D(A∪{v},B)[ρ] =

∨
ρ′ D(A,B)[ρ

′], where the disjunction is taken
over all signatures ρ′ differing from ρ as follows: in ρ′ the pair (bi, ei) is substituted
with (b′i, ei), where b′i = F or b′i is any vertex of A∩B such that there is an arc (v, b′i).

Case 1.3: bi 6= v = ei for some pair (bi, ei) ∈ ρ(a) and some a ∈ E(H ′). Similarly as before,
the partial expansion truncated to separation (A,B) has to look the same but for
the path corresponding to this very pair, which needs to be truncated by vertex v.
As (A,B) is a separation, the previous vertex on the path has to be in the separator
A∩B. Therefore, D(A∪{v},B)[ρ] =

∨
ρ′ D(A,B)[ρ

′], where the disjunction is taken over
all signatures ρ′ differing from ρ as follows: in ρ′ the pair (bi, ei) is substituted with
(bi, e

′
i), where e′i is any vertex of A ∩B such that there is an arc (e′i, v).

Case 1.4: v is not contained in any pair in any signature from ρ(E(H ′)). Either v lies on some
path in the partial expansion, or it does not. In the first case the corresponding path
in partial expansion on (A∪{v}, B) has to be split into two subpaths, when truncating
the expansion to (A,B). Along this path, the arc that was used to access v had to
come from inside A ∩B, due to (A,B) being a separation; however, the arc used to
leave v can go to A∩B or to any forgotten vertex from A\B, as (A,B) is a separation
and T is a semi-complete digraph. In the second case, the signature of the truncated
expansion stays the same. Therefore, D(A∪{v},B)[ρ] = D(A,B)[ρ] ∨ ∨ρ′ D(A,B)[ρ

′],
where the disjunction is taken over all signatures ρ′ differing from ρ as follows: in
ρ′ exactly one pair (bi, ei) is substituted with two pairs (bi, e

′
i) and (b′i, ei), where

e′i ∈ A ∩B with (e′i, v) ∈ E(T ), whereas b′i = F or b′i ∈ A ∩B with (v, b′i) ∈ E(T ).

Case 2: v = ρ(u) for some u ∈ V (H). For every (u, u′) ∈ E(H ′), v has to be the beginning of the
first pair of ρ((u, u′)); otherwise, D(A∪{v},B)[ρ] = ⊥. Similarly, for every (u′, u) ∈ E(H ′), v
has to be the end of the last pair of ρ((u′, u)); otherwise, D(A∪{v},B)[ρ] = ⊥. Furthermore,
for every (u, u′) ∈ F such that ρ(u′) 6= U, if ρ(u′) ∈ A ∩ B then (ρ(u), ρ(u′)) must
be an arc of T ; otherwise, D(A∪{v},B)[ρ] = ⊥. Finally, for every (u′, u) ∈ F such that
ρ(u′) 6= U, it must hold that ρ(u′) ∈ A ∩ B and (ρ(u′), ρ(u)) must be an arc of T ;
otherwise, D(A∪{v},B)[ρ] = ⊥. Assume then that all these four assertions hold. Then
D(A∪{v},B)[ρ] =

∨
ρ′ D(A,B)[ρ

′], where the disjunction is taken over all signatures ρ′ such
that: (i) ρ′ differs on V (H) from ρ only by having ρ′(u) = U; (ii) the first pairs of all
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ρ((u, u′)) are truncated as in Case 1.2 for all (u, u′) ∈ E(H) (or as in Case 1.1, if the
beginning and the end coincide), and (iii) the last pairs of all ρ((u′, u)) are truncated as in
Case 1.3 for all (u′, u) ∈ E(H) (or as in Case 1.1, if the beginning and the end coincide).

Forget vertex step Let us forget vertex w ∈ A \ B from the separation (A,B ∪ {w}),
i.e., we consider the new separation (A,B). Let ρ ∈ V(A,B); we argue that D(A,B)[ρ] =∨
ρ′∈G D(A∪{w},B)[ρ

′] for some set G ⊆ V(A∪{w},B), which corresponds to possible extensions
of ρ to the previous separation of larger order. Formally, one needs to argue that (i) if there
exists a partial expansion with signature ρ on (A,B), then this partial expansion has signa-
ture ρ′ ∈ G on (A,B ∪ {w}), and (ii) if there exists a partial expansion with signature ρ′ on
(A,B ∪ {w}) such that ρ′ ∈ G, then the signature of this partial expansion on (A,B) is ρ.
Since this check in each case follows directly from the explanations provided along with the
construction of G, we leave the formal verification of this statement to the reader.

We now discuss, which signatures ρ′ are needed in G by considering all the signatures ρ′ ∈
V(A∪{w},B) partitioned with respect to behaviour on vertex w. For a fixed signature ρ′ we put
constraints on how ρ′ must look like to be included in G: we first put a constraint on the image
of V (H) in ρ′, and then for every a ∈ E(H ′) we list the possible values of ρ′(a). In G we take
into the account all signatures ρ′ that (i) satisfy the imposed constraints on the image of V (H),
(ii) have one of the correct values for every a ∈ E(H ′).

Case 1: w /∈ ρ′(V (H)), that is, w is not in the image of V (H). In this case we require that
ρ′|V (H) = ρ|V (H). We now inspect one arc a ∈ E(H ′) and determine the correct values of
ρ′(a) by looking at all possible values of ρ′(a) partitioned with respect to behaviour on w.

Case 1.1: bi = w = ei for some pair (bi, ei) ∈ ρ′(a). This means that in the corresponding
partial expansions w had to be left to B \ A; however, in T there is no arc from w
to B \ A since (A,B) is a separation. Therefore, in G we consider no signatures ρ′

having such a behaviour on any arc a.

Case 1.2: bi = w 6= ei for some pair (bi, ei) ∈ ρ′(a). If we are to consider ρ′ in G, then
w must prolong some path from the signature ρ in such a manner that w is its
beginning. After forgetting w the beginning of this path belongs to the forgotten
vertices; therefore, in G we consider only signatures with ρ′(a) differing from ρ(a) on
exactly one pair: in ρ′(a) there is (w, ei) instead of (F, ei) in ρ(a).

Case 1.3: bi 6= w = ei for some pair (bi, ei) ∈ ρ′(a). This means that in the corresponding
partial expansions w have to be left to B \ A; however, in T there is no arc from w
to B \ A since (A,B) is a separation. We obtain a contradiction; therefore, in G we
consider no signatures having such a behaviour on any arc a.

Case 1.4: w is not contained in any pair of ρ′(a). In this case, in the corresponding partial
expansions w has to be either unused by the trace of a, or be an internal vertex of a
path in this trace. In both cases the signatures on (A,B ∪ {w}) and on (A,B) are
equal. It follows that in G we can consider only signatures with ρ′(a) = ρ(a) for such
arcs a.

Case 2: w = ρ′(u) for some u ∈ V (H). We consider in G signatures ρ′ that differ from ρ in
following manner: (i) ρ′ differs on V (H) from ρ only by having ρ′(u) = w for exactly
one vertex u ∈ V (H) whereas ρ(u) = F; (ii) for all arcs (u, u′) ∈ E(H ′), the first pair of
ρ′((u, u′)) is of form (w, e1), whereas the first pair of ρ((u, u′)) is of form (F, e1); (iii) for
all arcs (u′, u) ∈ E(H ′), the last pair of ρ′((u′, u)) is of form (bh, w), whereas the last pair
of ρ((u′, u)) is of form (bh,F) (or (F,F) in case bh = w).
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Updating table D(A,B) for each separation requires at most O(|V(A,B)|2 · (p+ k + `)O(1)) =

2O((p+k+`) log p) time, and since the number of separations in the path decomposition W is O(n),
the theorem follows.

10.3 The algorithm for Rooted Immersion

Theorem 10.8 (Theorem 6.3, restated). There exists an algorithm that, given a rooted digraph
(H; v1, v2, . . . , vt) with k vertices and ` arcs and a semi-complete rooted digraph (T ;w1, w2, . . . , wt)
on n vertices together with its path decomposition of width p, checks whether H can be immersed
into T while preserving roots in time 2O(k log p+p`(log `+log p)) · n.

Proof. Let W = (W1, . . . ,Wr) be the given path decomposition of T of width p. Without loss
of generality we assume that W is a nice path decomposition and r = O(n).

By Lemma 10.5, for every separation (A,B) = (
⋃i
j=1Wj ,

⋃r
j=iWj) with separator Wi we can

bound the number of possible signatures by 2O(k log p+p`(log `+log p)). We show how to compute the
values of a binary table D(A,B) : E(A,B) → {⊥,>} with the following meaning. For ρ ∈ E(A,B),
D(A,B)[ρ] tells, whether there exists a mapping ρ with the following properties:

• for every v ∈ V (H), ρ(v) = ρ(v) if ρ(v) ∈ (A ∩B) ∪ {U} and ρ(v) ∈ A \B if ρ(v) = F;

• for every i = 1, 2, . . . , t, ρ(vi) = wi if wi ∈ A and ρ(vi) = U otherwise;

• for every a = (v, w) ∈ E(H), ρ(a) is a correct path trace with signature ρ(a), beginning in
ρ(v) if ρ(v) ∈ A and anywhere in A otherwise, ending in ρ(w) if ρ(w) ∈ A and anywhere
in A ∩B otherwise;

• all the paths in path traces ρ(a) are arc-disjoint for a ∈ E(H).

Such mapping ρ will be called a partial immersion of H on (A,B). Note that we may also talk
about signatures of partial immersions; in the definition above, ρ is the signature of ρ on (A,B).

For the first separation (∅, V (T )) we have exactly one signature with value >, being the
signature which maps all the vertices into U and all the arcs into empty signatures. The result
of the whole computation should be the value for the signature on the last separation (V (T ), ∅),
which maps all the vertices to F and arcs to signatures consisting of one pair (F,F). Therefore,
it suffices to show how to fill the values of the table for introduce vertex step and forget
vertex step. Similarly as in Theorem 10.7, we view these steps as introducing and forgetting a
vertex from a separation.

Introduce vertex step Let us introduce vertex v ∈ B \ A to the separation (A,B), i.e., we
consider the new separation (A∪ {v}, B). Let ρ ∈ E(A∪{v},B), we need to show how to compute
D(A∪{v},B)[ρ] by a careful case study of how the signature ρ interferes with vertex v. If v = wi
for some i ∈ {1, 2, . . . , t}, then we consider only such ρ for which ρ(vi) = v; for all the others we
fill false values. Let us fix one ρ ∈ E(A∪{v},B). We argue that D(A∪{v},B)[ρ] =

∨
ρ′∈G D(A,B)[ρ

′]
for some set G that corresponds to possible trimmings of ρ to the previous separation of smaller
order. Formally, one needs to argue that (i) if there exists a partial immersion with signature ρ
on (A∪{v}, B), then after deleting vertex v this partial immersion has some signature ρ′ ∈ G on
(A,B), and (ii) if there exists a partial immersion with signature ρ′ on (A,B) such that ρ′ ∈ G,
then one can extend this partial immersion using vertex v to obtain a partial immersion on
(A∪{v}, B) with signature ρ. Since this check in each case follows directly from the explanations
provided along with the construction of G, we leave the formal verification of this statement to
the reader.
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We examine every signature ρ′ ∈ E(A,B) and put constraints on how ρ′ must look like to
be included in G: we first put a constraint on the image of V (H) in ρ′, and then for every
a ∈ E(H) we list the possible values of ρ′(a). The set G consists of all the signatures ρ′ that
(i) satisfy the imposed constraints on the image of V (H), (ii) have one of the correct values for
every a ∈ E(H), and (iii) satisfy some additional, global constraints that are described later.

Case 1: v /∈ ρ(V (H)), that is, v is not being mapped on by any vertex of H. In this case we
require that ρ′|V (H) = ρ|V (H). We now examine one arc a ∈ E(H) and list the correct
values of ρ′(a).

Case 1.1: bi = v = ei for some pair (bi, ei) ∈ ρ(a). This means that the signatureρ(a) truncated
to separation (A,B) must look exactly like ρ(a), but without this subpath of length
one. Thus we have one possible value for ρ′(a), being ρ(a) with this pair deleted.

Case 1.2: bi = v 6= ei for some pair (bi, ei) ∈ ρ(a). This means that the signature ρ(a) truncated
to separation (A,B) has to look the same as ρ(a) but for the path corresponding to
this very pair, which needs to be truncated by vertex v. The new beginning has to
be either a vertex in A∩B, or a forgotten vertex from A \B. As T is semi-complete
and (A,B) is a separation, there is an arc from v to every vertex of A\B. Therefore,
in ρ′(a) the pair (bi, ei) has to be replaced with (b′i, ei), where b′i = F or b′i is any
vertex of A ∩ B such that there is an arc (v, b′i). All the vertices b′i 6= F obtained in
this manner have to be pairwise different. Moreover, we impose a condition that for
all a ∈ E(H) for which some pair of form (v, ei) has been truncated to (F, ei), these
pairs have to be pairwise non-equivalent with respect to ≡ in ρ′; in this manner we
forbid multiple usage of arcs going from v to the forgotten vertices.

Case 1.3: bi 6= v = ei for some pair (bi, ei) ∈ ρ(a). Similarly as before, signature ρ(a) truncated
to separation (A,B) has to look the same as ρ(a) but for the path corresponding to
this very pair, which needs to be truncated by vertex v. As (A,B) is a separation,
the previous vertex on the path has to be in the separator A ∩ B. Therefore, in G
we take into consideration all signatures ρ′ such that in ρ′ the pair (bi, ei) is replaced
with (bi, e

′
i), where e′i is any vertex of A ∩ B such that there is an arc (e′i, v). Also,

all the vertices e′i used in this manner for all a ∈ E(H) have to be pairwise different.

Case 1.4: v is not contained in any pair in ρ(a). Either v lies in the interior of some subpath
from ρ(a), or it is not used by ρ(a) at all. In the first case the corresponding path in
partial immersion on (A∪{v}, B) has to be split into two subpaths when truncating
the immersion to (A,B). Along this path, the arc that was used to access v had
to come from inside A ∩ B, due to (A ∪ B) being a separation. However, the arc
used to leave v can go to A ∩B as well as to any forgotten vertex from A \B, since
(A,B) is a separation and T is a semi-complete digraph. In the second case, the
signature of the truncated immersion stays the same. Therefore, in G we take into
consideration signatures ρ′ such that they not differ from ρ on a, or in ρ′(a) exactly
one pair (bi, ei) is replaced with two pairs (bi, e

′
i) and (b′i, ei), where e′i ∈ A ∩B with

(e′i, v) ∈ E(T ), whereas b′i = F or b′i ∈ A∩B with (v, b′i) ∈ E(T ). Similarly as before,
all vertices b′i 6= F used have to be pairwise different and different from those used in
Case 1.2, all vertices e′i used have to be pairwise different and different from those
used in Case 1.3, and all the pairs (F, ei) created in this manner have to be pairwise
non-equivalent and non-equivalent to those created in Case 1.2 (with respect to ≡ in
ρ′).

Case 2: v = ρ(u) for some u ∈ V (H). For every (u, u′) ∈ E(H), v has to be the beginning of the
first pair of ρ((u, u′)); otherwise, D(A∪{v},B) = ⊥. Similarly, for every (u′, u) ∈ E(H), v
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has to be the end of the last pair of ρ((u′, u)); otherwise, D(A∪{v},B)[ρ] = ⊥. Assuming
both of these assertions hold, into G we can take all signatures ρ′ such that: (i) ρ′ differs
on V (H) from ρ only by having ρ′(u) = U; and (ii) the images from ρ′(E(H)) follow
exactly the same rules as in Cases 1.1-1.4.

Forget vertex step Let us forget vertex w ∈ A \ B from the separation (A,B ∪ {w}),
i.e., we consider the new separation (A,B). Let ρ ∈ E(A,B); we argue that D(A,B)[ρ] =∨
ρ′∈G D(A∪{w},B)[ρ

′] for some set G ⊆ E(A∪{w},B), which corresponds to possible extensions
of ρ to the previous separation of larger order. Formally, one needs to argue that (i) if there
exists a partial immersion with signature ρ on (A,B), then this partial immersion has signa-
ture ρ′ ∈ G on (A,B ∪ {w}), and (ii) if there exists a partial immersion with signature ρ′ on
(A,B ∪ {w}) such that ρ′ ∈ G, then the signature of this partial immersion on (A,B) is ρ.
Since this check in each case follows directly from the explanations provided along with the
construction of G, we leave the formal verification of this statement to the reader.

We now discuss which signatures ρ′ are needed in G by considering all the signatures ρ′ ∈
E(A∪{w},B) partitioned with respect to behaviour of the vertex w. For a fixed signature ρ′ we
put constraints on how ρ′ must look like to be included in G: we first put a constraint on the
image of V (H) in ρ′, and then for every a ∈ E(H) we list the possible values of ρ′(a). In G we
take into the account all signatures ρ′ that (i) satisfy the imposed constraints on the image of
V (H), (ii) have one of the correct values for every a ∈ E(H), and (iii) satisfy some additional,
global constraints that are described later.

Case 1: w /∈ ρ′(V (H)), that is, w is not an image of a vertex of H. In this case we require that
ρ′|V (H) = ρ|V (H). We now examine one arc a ∈ E(H) and list the correct values of ρ′(a)
by looking at all possible values of ρ′(a) partitioned with respect to behaviour on w.

Case 1.1: bi = w = ei for some pair (bi, ei) ∈ ρ′(a). This means that in the corresponding
partial immersions w had to be left to B \ A; however, in T there is no arc from
w to B \ A as (A,B) is a separation. Therefore, in G we consider no signatures ρ′

behaving in this manner on any arc a.

Case 1.2: bi = w 6= ei for some pair (bi, ei) ∈ ρ′(a). If we are to consider ρ′ in G, then
w must prolong some path from the signature ρ in such a manner, that w is its
beginning. After forgetting w the beginning of this path belongs to the forgotten
vertices; therefore, in G we consider only signatures ρ′ in which ρ′(a) differs from
ρ(a) on exactly one pair: in ρ′(a) there is (w, ei) instead of (F, ei) in ρ. Moreover, all
such pairs (F, ei) that were extended by w have to form one whole equivalence class
with respect to ≡ in ρ.

Case 1.3: bi 6= w = ei for some pair (bi, ei) ∈ ρ′(a). This means that in the corresponding
partial expansions w have to be left to B \ A; however, in T there is no arc from w
to B \ A since (A,B) is a separation. We obtain a contradiction; therefore, in G we
consider no signatures ρ′ behaving in this manner on any arc a.

Case 1.4: w is not contained in any pair in ρ′(a). In this case, in the corresponding partial
expansions w has to be either unused by the trace of a, or be an internal vertex of a
path in this trace. In both cases the signatures on (A,B ∪ {w}) and on (A,B) are
equal. It follows that in G we can consider only signatures with ρ′(a) = ρ(a) for such
arcs a.

Case 2: w = ρ′(u) for some u ∈ V (H). We consider in G signatures ρ′ that differ from ρ in
following manner: (i) ρ′ differs on V (H) from ρ only by having ρ′(u) = w for exactly
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one vertex u ∈ V (H) whereas ρ(u) = F; (ii) for all arcs (u, u′) ∈ E(H) the first pair
of ρ′((u, u′)) is of form (w, e1), whereas the first pair of ρ((u, u′)) is of form (F, e1); (iii)
for all arcs (u′, u) ∈ E(H) the last pair of ρ′((u′, u)) is of form (bh, w), whereas the last
pair of ρ((u′, u)) is of form (bh,F) (or (F,F) in case bh = w); (iv) for all arcs a ∈ E(H)
non-incident with u we follow the same truncation rules as in Cases 1.1-1.4. Moreover, all
the pairs in which w has been replaced with F marker have to form one whole equivalence
class with respect to ≡.

Since updating the table D(A,B) for every separation (A,B) requires at most O(|E(A,B)|2) =

2O(k log p+p`(log `+log p)) steps, while the number of separations in the pathwidth decomposition is
O(n), the theorem follows.

11 Conclusions and open problems

In this paper we have presented new methods of computing the two main width measures of
semi-complete digraphs: cutwidth and pathwidth. For both of the width measures we have
designed polynomial-time approximation and FPT exact algorithms.

We leave a number of open questions about the complexity of computing the cutwidth and
the pathwidth of a semi-complete digraph. To begin with, we are still lacking proofs that
computing the cutwidth or the pathwidth of a semi-complete digraph exactly is NP-hard. It is
very hard to imagine that any of these problems could be solved in polynomial-time; however,
proving NP-hardness of computing width measures is often technically very challenging. For
example, NP-hardness of computing the cliquewidth of an undirected graph has been shown
only in 2006 by Fellows et al. [24], after resisting attacks for a few years as a long-standing
open problem. Furthermore, proving NP-hardness results for problems on tournaments is also
known to be extremely difficult, because the instance obtained in the reduction is already very
much constrained by the fact that it must be a tournament. The Feedback Arc Set in
Tournaments problem, which is a simpler relative of the problem of computing exactly the
cutwidth of a tournament, was proven to be NP-hard only recently. First, Ailon et al. proved
that the problem is NP-hard under randomized reductions [1], and then Alon [2] and Charbit
et al. [9] independently presented proofs that used only deterministic reductions.

When it comes to approximation algorithms, the obvious open question is to determine
whether cutwidth admits a constant factor approximation; recall that the algorithm presented
in this paper is only an O(OPT )-approximation. As far as pathwidth is concerned, it is natural
to ask if the parameter admits a PTAS, or whether computing it is APX-hard. Obviously, we
need first to answer the question about NP-hardness, which is still unclear.

The exact algorithms also leave a room for improvement. For pathwidth it is natural to
ask for an algorithm working in 2O(k)nO(1) time. Currently, the additional log k factor in the
exponent is an artefact of using quadratic kernel of Buss for identifying sets of candidates for
consecutive bags. If one was able for every bag to find a set of candidates for elements of
this bag which was of size linear in k instead of quadratic, then an algorithm working in time
2O(k)nO(1) would immediately follow. As far as cutwidth is concerned, the log k factor under
the square root in the exponent seems also artificial. At this moment, the appearance of this
factor is a result of pipelining Lemma 5.13 with Lemma 5.16 in the proof of Lemma 5.17. A
closer examination of the proofs of Lemmas 5.13 and 5.16 shows that bounds given by them
are essentially optimal on their own; yet, it is not clear whether the bound given by pipelining
them is optimal as well.

We have shown how our algorithms for pathwidth and cutwidth can be used to design FPT
algorithms for testing various containment relations, and to obtain some exemplary meta-results.

68



We have also shown how to design an irrelevant vertex rule on a triple for rerouting a family
of arc-disjoint paths, which leads to an FPT algorithm for the Rooted Immersion problem.
It is noteworthy that the presented algorithms have much better running time guarantees than
their famous analogues in the Graph Minors series of Robertson and Seymour. For instance,
the celebrated algorithm testing whether H is a minor of G [47] runs in time f(|H|) · |V (G)|3
for a gargantuan function f that is not even specified; in particular, f is not elementary. The
algorithms presented in this paper have good dependency both on the size of the digraph to
be embedded (single exponential), and on the size of the semi-complete digraph into which we
embed (linear). This is mostly thanks to the usage of the new set of obstacles, especially the
short jungles.

The natural question here is whether this new set of obstacles, and in particular the short
jungles, can give raise to more powerful irrelevant vertex rules. For example, if we consider the
Rooted Immersion problem, it is tempting to try to replace finding an irrelevant vertex in a
triple with a direct irrelevant vertex rule on a short jungle of size polynomial in the size of the
digraph to be immersed. If this was possible, the running time of the algorithm for Rooted
Immersion could be reduced to single-exponential in terms of the size of the tested pattern
digraph.

Perhaps a much more important question is whether one can also design an FPT algorithm
for the rooted variant of topological containment testing, called further Rooted Topologi-
cal Containment, since this was possible for Rooted Immersion. Observe that the classical
Vertex Disjoint Paths problem is in fact a special case of Rooted Topological Contain-
ment where all the vertices of H have specified images. Chudnovsky, Scott and Seymour [12]
proved that k-Vertex Disjoint Paths is solvable in time nO(f(k)), for some function f , i.e is in
class XP, on semi-complete digraphs. Their results also imply that the Rooted Topological
Containment is in XP on semi-complete digraphs. To the best of our knowledge, the question
whether Vertex Disjoint Paths on semi-complete digraphs can be solved in FPT time is
still open.

Unfortunately, our approach used for Rooted Immersion does not apply directly to this
problem. Dynamic programming on path decomposition works fine but the problem is with the
irrelevant vertex arguments. Even for k = 2 there exist tournaments that contain arbitrarily
large triples, but in which every vertex is relevant; let us now provide such an example.

For even n we construct a tournament Tn with two pairs of vertices (s1, t1), (s2, t2) so that
the following properties are satisfied:

(i) Tn contains an (n/2− 1)-triple;

(ii) there is exactly one solution to Vertex Disjoint Paths instance (Tn, {(s1, t1), (s2, t2)})
in which all the vertices of V (Tn) lie on one of the paths.

This example shows that even though a graph can be complicated from the point of view of
path decompositions, all the vertices can be relevant.

Let V (Tn) = {ai, bi : 1 ≤ i ≤ n}, where s1 = a1, t1 = an, s2 = bn and t2 = b1. Construct
following arcs:

• for every i ∈ {1, 2, . . . , n− 1} create an arc (ai, ai+1);

• for every i, j ∈ {1, 2, . . . , n}, i < j − 1 create an arc (aj , ai);

• for every i ∈ {1, 2, . . . , n− 1} create an arc (bi+1, bi);

• for every i, j ∈ {1, 2, . . . , n}, i > j + 1 create an arc (bj , bi);
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a2 b2

a3 b3

s1 = a1

t1 = a4

b1 = t2

b4 = s2

Figure 5: Tournament T4.

• for every i ∈ {1, 2, . . . , n} create an arc (ai, bi);

• for every i, j ∈ {1, 2, . . . , n}, i 6= j create an arc (bj , ai).

To see that Tn satisfies (i), observe that

( {b1, b2, . . . , bn/2−1},
{an/2+1, an/2+2, . . . , an},
{a1, a2, . . . , an/2−1} )

is a (n/2 − 1)-triple. To prove that (ii) is satisfied as well, observe that there is a solution to
Vertex Disjoint Paths problem containing two paths (a1, a2, . . . , an) and (bn, bn−1, . . . , b1)
which in total use all the vertices of Tn. Assume that there is some other solution and let k
be the largest index such that the path connecting a1 to an begins with prefix (a1, a2, . . . , ak).
As the solution is different from the aforementioned one, it follows that k < n. Therefore, the
next vertex on the path has to be bk, as this is the only unused outneighbor of ak apart from
ak+1. But if the path from a1 to an already uses {a1, a2, . . . , ak, bk}, we see that there is no arc
going from {ak+1, ak+2, . . . , an, bk+1, bk+2, . . . , bn} to {b1, b2, . . . , bk−1}, so we are already unable
to construct a path from bn to b1. This is a contradiction.

The presented example suggests that a possible way of obtaining an FPT algorithm for
Vertex Disjoint Paths problem requires another width parameter admitting more powerful
obstacles.

Acknowledgement. The authors thank Stéphan Thomassé for an excellent remark after the
presentation during STACS 2013, which enabled to prove the bound 4k+2 in Lemma 3.8 instead
of original 5k + 2. Consequence of this better bound is approximation ratio 6 for pathwidth of
a semi-complete digraph, instead of original 7.
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