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1 | INTRODUCTION

The slowdown in the global-mean surface air tempera-
ture (GMST) trend during the beginning of the 21st cen-
tury, concurring in time with a strong increase in

Abstract

Concurrent with the slowdown of global warming during 2002-2013, the win-
tertime land surface air temperatures over Eurasia, North America, Africa,
Australia, South America, and Greenland experienced notable cooling trends.
The oceanic effects on the continental cooling trends are here investigated
using two sets of uncoupled experiments with six different climate models.
Daily and annually varying sea ice is prescribed for both sets of experiments,
while daily and annually varying SST is used in the first set (EXP1) and daily
and annually repeating climatological mean SST in the second set (EXP2). All
six models capture the slowdown of global-mean land surface air temperature
during 2002-2013 winters in EXP1 only. The slowdown concurs with a nega-
tive phase of the Pacific Decadal Oscillation (PDO), indicating that PDO plays
an important role in modulating the global warming signal. Not all ensemble
members capture the cooling trends over the continents, suggesting additional

contribution from internal atmospheric variability.
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atmospheric greenhouse gas concentrations, led to an
intense public and scientific interest in the cause for the
so-called global warming hiatus (Easterling & Wehner,
2009; Kosaka & Xie, 2016). Although under debate, it has
been suggested that the central and eastern tropical
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Pacific surface cooling played an important part in the
hiatus period (1998-2012; Kosaka & Xie, 2013; Trenberth,
Fasullo, Branstator, & Phillips, 2014). In boreal winter,
the warming hiatus manifested as the land surface
cooling and cold extremes over Northern Hemisphere
mid-latitudes (Cohen, Furtado, Barlow, Alexeev, &
Cherry, 2012; Johnson, Xie, Yu, & Li, 2018).

Previous studies have shown that the hiatus period
was partially associated with increased stratospheric
aerosol and slightly weaker solar forcing, as well as inter-
nal climate variability (Hu & Fedorov, 2017; Huber &
Knutti, 2014; Kosaka & Xie, 2013; Marotzke & Forster,
2015; Meehl, Arblaster, Fasullo, Hu, & Trenberth, 2011).
Using three sets of coupled model experiments, Kosaka
and Xie (2013) demonstrated that tropical Pacific decadal
cooling can cause unusually low GMST trend. Some
other studies have also revealed results supporting such a
viewpoint (England et al., 2014; Kosaka & Xie, 2016;
Medhaug & Drange, 2016; Trenberth et al.,, 2014;
Watanabe et al.,, 2014). For example, Trenberth et al.
(2014) has simulated the global quasi-stationary wave
patterns and much of the regional climate anomalies dur-
ing the hiatus, by forcing an atmospheric model with an
idealized heating at the equator. Deser, Guo, and Lehner
(2017) found that tropical Pacific sea surface temperature
(SST) and internal atmospheric variability contributed
approximately equally to the GMST trend. In addition to
increased heat uptake in the deeper layer of the Pacific
via intensified wind-driven circulation that eventually
leads to hiatus (Balmaseda, Trenberth, & Killén, 2013;
England et al.,, 2014; Ou, Lin, & Bi, 2015; Yeo et al.,
2014), heat transport to Atlantic and the southern deep
oceans might have a cooling impact on the global tem-
perature (Chen & Tung, 2014). Several studies have

suggested that Arctic sea ice decline (or Arctic warming)
is linked to the Eurasian winter cooling trend which
might have contributed to the recent pause in global
warming (Kim et al., 2014; Li, He, Li, & Wang, 2018b; Li,
Wang, & Gao, 2015b; Liu, Curry, Wang, Song, & Horton,
2012; Luo et al., 2016; Mori, Watanabe, Shiogama,
Inoue, & Kimoto, 2014; Outten & Esau, 2012; Wang,
Chen, & Liu, 2015; Wang & Liu, 2016; Xu, He, Li, &
Wang, 2018a; Xu, Li, He, & Wang, 2018b; Xu et al., 2019;
Zhu, Wang, Wang, & Guo, 2018). The influence of inter-
nal atmospheric variability on the cooling of Eurasian
winter climate has been inferred from Atmospheric
Model Intercomparison Project (AMIP) simulations by
Li, Stevens, and Marotzke (2015a).

The prominent continental cooling trends in boreal
winter have aroused great research attention. The relative
importance of tropical Pacific SST and radiative forcing
(Kosaka & Xie, 2013), the Arctic sea ice and internal
atmospheric variability (Li, Stevens, et al., 2015a), and
the tropical Pacific SST and internal atmospheric vari-
ability (Deser et al., 2017), on temperature change over
Eurasia, have all been examined.

In this study, the effects of SST and sea ice on the
regional cooling trends on all continents (black frames in
Figure 1c,d) are investigated using two sets of multi-
model simulations. Six uncoupled climate models with
observation-based SST and sea ice as the surface bound-
ary are utilized. The reason why we choose uncoupled
models is that the coupled models’ simulations usually
overestimate warming during the beginning of the 21st
century (Kosaka & Xie, 2013; Medhaug, Stolpe, Fischer, &
Knutti, 2017). The novelty of this study is the robust evi-
dence from multi-model simulations which supports the
oceanic effects on the global warming slowdown.

FIGURE 1 (a)Observed
GMLST anomalies (°C) in winter for
1982-2013, relative to the climatology
of 1982-2013, with linear trends for

1982-2000 (red line) and 2002-2013
(blue line). (c) Observed global
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(°C-decade™) in winter for
2002-2013 from CRUT4. Black boxes
mark the six cooling regions (Eurasia,
North America, Greenland, Africa,
Australia, and South America). (b, d)
Same as (a, c), but from GISS, relative
to the climatology of 1951-1980.
CRUT4: Climate Research Unit;
GISS: Goddard Institute for Space

Studies [Colour figure can be viewed
at wileyonlinelibrary.com|
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The rest of the paper is organized as follows. Data and
methods are described in section 2. The observed slow-
down of continental warming is illustrated in section 3.
Discussion on the simulated land surface air temperature
trend in the multi-model simulations are presented in
section 4. Finally, a summary is given in section 5.

2 | DATA AND METHODS

Datasets employed in the study include monthly surface
air temperature from the Climate Research Unit, version
4 (CRUT4; https://crudata.uea.ac.uk/cru/data/hrg/; Har-
ris, Jones, Osborn, & Lister, 2014) and Goddard Institute
for Space Studies (GISS; Hansen, Ruedy, Sato, & Lo,
2010), and atmospheric variables from European Centre
for Medium-Range Weather Forecasts Interim Reanalysis
(ERA-I; Dee et al., 2011).

Two coordinated experiments (Ogawa et al., 2018)
are performed to investigate the effects of global SST and
sea ice on the climate change. Five independent
uncoupled (atmosphere-only) climate models, composed
of 20-member ensembles each, are adopted: CAM4
(0.9 x 1.25° with 26 vertical levels up to 3 hPa; Neale
et al., 2013), WACCM (0.9 x 1.25° with 66 vertical levels
up to 0.000006 hPa; Marsh et al., 2013), IFS (T255 with
91 vertical levels up to 0.01 hPa; Balsamo et al., 2009),
IAP4 (1.4 x 1.4° with 26 vertical levels up to 10 hPa;
Dong, Xue, Zhang, & Zeng, 2012), and LMDZOR
(2.5 x1.25° with 39 vertical levels up to 0.04 hPa;
Hourdin et al., 2013). These experiments are forced by
the historical forcing of CMIP5 for the years 1982-2005
and the Representative Concentration Pathway 8.5 sce-
narios (RCP 8.5) over 2006-2014. Daily SST and sea ice
taken from NOAA OISST are used as the surface bound-
ary forcing for the period 1982-2014 (Reynolds et al.,
2007). The first set of experiment (EXP1) is forced by both
daily and annually varying SST and sea ice, while the sec-
ond set (EXP2) is forced by daily and annually varying
sea ice but daily and annually repeating climatological
mean SST (Screen, Simmonds, Deser, & Tomas, 2013).
For evaluating the robustness of the results (Ogawa et al.,
2018), the sixth model (AFES; 1.5 x 1.5° with 56 vertical
levels up to 0.09 hPa; Ohfuchi et al., 2004) has the same
experiment set up as the other five models, but was pre-
scribed with monthly mean SST and sea ice from
(Hurrell, Hack, Shea, Caron, & Rosinski, 2008). Thirty
ensembles are performed for AFES of both experiments.
No systematic deviations are found between results
derived from AFES and the other five models (Koenigk
et al., 2018).

The extended winter 1982 refers to November and
December in 1982 and January, February, and March in
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1983. The starting year of hiatus in multi-model simula-
tions (2002) is one year later than the observed (2001)
(Figure 1a,b vs. Figure 2a-f,h-m,o-t), the choice of the
hiatus period (2002-2013) is therefore contrived to achieve
consistency between model simulations and observations.
Only land surface air temperatures are considered in this
study since we focus on temperature trends over land
areas and that the modelled temperatures over the oceans
in the uncoupled models are nearly identical to observa-
tions. The global-mean land surface air temperature
(GMLST) is calculated by area-weighted averaging.

3 | OBSERVED COOLING TRENDS
IN MOST OF THE GLOBAL
CONTINENT

Observed GMLST anomalies in winter for 1982-2013
from different datasets are provided in Figure 1. Slow-
down in the rise of GMLST over 2002-2013 is striking rel-
ative to the accelerated global warming epoch 1982-2000
from the CRUT4 dataset (Figure la), with a transition
from a warming trend that rates of approximately
0.3°C-decade™ over 1982-2000 to a cooling trend in mag-
nitude greater than 0.15°C-decade™ over 2002-2013
(Figure 2g and Table 1(a)). Changes in the GISS global
land temperature (Figure 1b), which is computed by
removing the climatological mean from 1951 to 1980,
resemble well that in the CRUT4 (Figure 1a), suggesting
the robustness of the slowdown of global warming. Con-
current with the lapse in global warming reflected as
dominant tropical Pacific temperature trend reduction,
land surface air temperatures in most of Eurasia, North
America, Africa, Australia, South America, and Green-
land experience conspicuous cooling trends (Figure 1c,d).
It should be noted that there is a clear pattern similar to
the negative phase of the Pacific Decadal Oscillation
(PDOI—-; Wang & Miao, 2018) but no apparent signal of
the positive phase of the Atlantic Multidecadal Oscilla-
tion (Li, Orsolini, Wang, Gao, & He, 2018a) in the surface
air temperature (SAT; Figure 1d). In order to study the
regional characteristics of the continental cooling trends
during 2002-2013, we choose the six sub-regions
(Eurasia: 50°-135°E, 20°-65°N; North America: 90°-
165°W, 35°-70°N; Africa: 10°—40°E, 25°S-5°N; Australia:
120°-155°E, 30°-10°S; South America: 40°-80°W, 20°S-
10°N; and Greenland: 20°-60°W, 60°-75°N) as indicated
schematically by the black frames in Figure 1c,d.
Specifically, the observed regional-mean land surface
air temperatures (RMLSTSs) over the six sub-regions have
all shown a decrease after the early 2000s (Figure 3). Note
that the RMLST is defined as the ratio between the
regional area-weighted averaging and the summation of
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(a-f) Simulated GMLST anomalies (°C) in winter for 1982-2013, relative to the climatology of 1982-2013, from ensembles’

means of (a) CAM4, (b) WACCM, (c) IFS, (d) IAP4, (¢) LMDZOR, and (f) AFES in EXP1, respectively, with linear trends for 1982-2000 (red

lines) and 2002-2013 (blue lines). (g) Observed GMLST trends (°C-decade™) in winter from CRUT4 and simulated GMLST trends

(°C-decade™) in winter from ensembles’ means of CAM4, WACCM, IFS, IAP4, LMDZOR, and AFES in EXP1. (h-n) and (0o-u) Same as
(a-g), but in EXP2 and EXP1-minus-EXP2, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 1

CAM4, WACCM,, IFS, IAP4, LMDZOR, AFES in EXP1-minus-EXP2, respectively

(a) Global
CRUT4 -0.151 -0.125
GISS —0.089 —0.110
CAM4 —0.024 0.069
WACCM —0.153 —0.056
IFS —0.093 0.021
IAP4 —-0.174 —0.027
LMDZOR —0.102 —0.040
AFES —0.236 —0.018

FIGURE 3 Observed RMLST
trends (°C-decade™) in winter from
CRUT4 and simulated RMLST trends
(°C-decade™) in winter from
ensembles’ means of CAM4,
WACCM, IFS, IAP4, LMDZOR, and
AFES in EXP1-minus-EXP2 over
(a) Eurasia, (b) North America,

(c) Africa, (d) Australia, (e) South
America, (f) Greenland, and (g) the
rest part of the globe, respectively
[Colour figure can be viewed at
wileyonlinelibrary.com]

global land grids, in order to quantitatively present the
regional contributions to the GMLST trend. Eurasia
shows the strongest slowdown in surface warming; for

(b) Eurasia
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instance, the Eurasian temperature trend reverses from a
warming of 0.057°C-decade ™"
of —0.125°C-decade™

over 1982-2000 to a cooling

over 2002-2013 (Figure 3a and
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Tables 1(b) vs. 2(b)). North America comes in the second
with a RMLST trend of —0.077°C-decade™" for 2002-2013,
reduced by 0.122°C-decade™ compared to the previous
warming period (Figure 3b and Tables 1(c) vs. 2(c)). For the
other four sub-regions, RMLST trends in the latter period
are —0.027°C-decade ™! over Africa, —0.018°C-decade ™ over
Australia, —0.017°C-decade™ over South America, and
—0.009°C-decade™" over  Greenland, respectively
(Figure 3c—f and Table 1(d)-(g)). Covering relatively small
land areas compared to the global land, winter surface tem-
peratures in these regions all make a cooling contribution
to the GMLST trend (—0.151°C-decade™).

4 | RESULTS FROM MULTI-
MODEL SIMULATIONS

We first address whether the six models can reproduce
the realistic GMLST variability. During 1982-2013, the
correlations between the observed GMLST and the simu-
lated GMLST in the ensemble-mean of CAM4, WACCM,
IFS, IAP4, LMDZOR, and AFES simulations in the EXP1
range from 0.77 to 0.84 (significant at 99% confidence

level; Table 3(a)). In the EXP2, the linear correlations
with observations are lower than those in the EXP1 but
still significant at 99% confidence level (Table 3(a)). The
simulated GMLST in the EXP1 is also closer to the
observed GMLST in magnitude than that in the EXP2
(Figure 2a-f vs. h-m). Although the simulations suggest
the contribution of both SST and sea ice to the GMLST, it
is interesting to note that global SST and sea ice varia-
tions jointly account for 59.3-70.6% of the inter-annual
variability of GMLST, approximately double of that
explained by sea ice alone (Table 3(b)). As shown in
Figure 2g,n, EXP1 reproduces the slowdown of warming
trend in the GMLST which has not been reproduced by
the EXP2. The oceanic effect is further estimated through
subtracting the simulations in the EXP2 from EXP1
(referred to as EXP1l-minus-EXP2; Screen, Deser, &
Simmonds, 2012). As shown in Figure 20-t, EXP1-minus-
EXP2 effectively depicts the time evolution of the
observed GMLST, with the highest correlation coefficient
of 0.80 (Table 3(a)). The impact of global SST, indicated
by the EXP1-minus-EXP2, can explain 46.2-64.0% of the
GMLST variance (Table 3(b)). More specifically, global
SST changes have lowered the fully forced GMLST trend

TABLE 2 Same as Table 1, but for 1982-2000
(c) North (f) South
(a) Global (b) Eurasia  America (d) Africa (e) Australia  America (g) Greenland (h) Rest
CRUT4 0.288 0.057 0.045 0.009 —0.010 0.009 0.009 0.171
GISS 0.306 0.087 0.040 0.000 —0.007 0.010 0.008 0.167
CAM4 0.157 0.051 —0.012 0.009 0.004 0.001 0.004 0.100
WACCM 0.161 0.043 —0.007 0.012 0.004 0.002 0.004 0.104
IFS 0.139 0.068 —0.012 0.006 0.006 —0.002 0.003 0.071
IAP4 0.182 0.070 —0.009 0.008 0.004 0.007 0.001 0.101
LMDZOR 0.122 0.028 0.009 0.007 0.007 0.003 0.003 0.064
AFES 0.187 0.077 —0.006 0.002 0.005 0.003 0.002 0.105

TABLE 3 Correlation coefficients between GMLST anomalies from CRUT4 and the simulated ensembles’ means of CAM4, WACCM,
IFS, IAP4, LMDZOR, and AFES in EXP1, EXP2, and EXP1-minus-EXP2, respectively, and the corresponding variance that explained by

natural forcing

(a) Correlation coefficient

(b) Explained variance (%)

EXP1 EXP2 EXP1-minus-EXP2 EXP1 EXP2 EXP1-minus-EXP2
CAM4 0.77 0.61 0.68 59.3 37.2 46.2
WACCM 0.81 0.48 0.74 65.6 23.0 54.8
IFS 0.78 0.60 0.75 60.8 36.0 56.3
IAP4 0.81 0.56 0.78 68.4 31.4 60.8
LMDZOR 0.84 0.51 0.80 70.6 26.0 64.0
AFES 0.80 0.45 0.75 64.0 20.3 56.3
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in the six models to —0.024, —0.153, —0.093, —0.174,
—0.102, and —0.236°C-decade™}, respectively, close to the
observed trend of —0.151°C-decade™’ (Figure 2u and
Table 1(a)). The successful simulation of inter-annual
variability and recent warming slowdown of the GMLST
by most of the models implies the potential influence of

of Climatology

global SST and sea ice on the global continental tempera-
ture variability, with SST being the dominant factor.
Regionally, cooling trends over North America,
Africa, Australia, and South America are generally
reproduced by the EXP1 and EXP1l-minus-EXP2
(Figures 3a-f and 4a-fm-r). While the simulated

EXP1-minus-EXP2

~ T T -
-16 -08 0 08 16 -1.6 -0.8

FIGURE 4

08 1.6 -16 -08 0 0.8 1.6

(a-f) Simulated global surface temperature trend patterns (°C-decade™) in winter for 2002-2013 from ensembles’ means of

(a) CAM4, (b) WACCM, (c) IFS, (d) IAP4, (e) LMDZOR, and (f) AFES in EXP1, respectively. (g-1) and (m-r) same as (a-f), but in EXP2 and
EXP1-minus-EXP2, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Global SST trend patterns (°C-decade™) in winter
for 2002-2013 from EXP1 [Colour figure can be viewed at
wileyonlinelibrary.com]

Eurasian winter temperature trend shows diversity
among models. WACCM, IAP4, LMDZOR, and AFES
ensembles show a slight cooling of the Eurasian winter
climate, but CAM4 and IFS capture a slight warming
trend in the high latitudes of Eurasia (Figures 3a and
4m-r). The EXP1-minus-EXP2 displays broadly similar
trend patterns with the EXP1, except for the absent
warming over the Barents—Kara Seas (Figure 4a-f vs. m-r).
It can be seen that the spatial distribution of the forced
tropical cooling and extratropical warming over the
Pacific Ocean resemble the PDOI|—, accompanied with
weak cooling trends above the North Atlantic Ocean
(Figure 4m-r). Moreover, the PDOI- signal is the most
dominant feature in the trend of the daily varying global
SST which is prescribed as one of the boundaries in the
EXP1 (Figure 5). The presence of the PDOI- in both the
SAT and SST trend fields indicates the atmospheric
response to SST variability in numerical simulations and
thus suggests the potential influence of the PDOI- on the
slowdown of warming trend in the GMLST, consistent
with a previous numerical study (Trenberth et al., 2014).
Also, the PDOI— pattern is complemented with strong
easterly winds in the tropical Pacific and remarkable
change of the sea level pressure in the subtropics in both
reanalysis (Figure 6a) and numerical simulations
(Figure 6b-g). The observed upper tropospheric global
teleconnection wave patterns from the tropics to
extratropics (Figure 6h) are proposed as possible mecha-
nisms through which the PDOI- causes regional climate
anomalies during the hiatus (Trenberth et al.,, 2014).
Here, the wave trains have also been generally replicated
(Figure 6i-n), supporting the hypothesis that the PDOI-
could lead to continental cooling.

It is worth noting that the model ensemble mean
reduces the amplitude of internal variability relative to
prescribed forcing (Ogawa et al., 2018). A recent study by
Sung et al. (2019) emphasized the role of internal climate

variability on the remarkable North American cooling. In
addition to the fundamental effect of PDO (Sung, Kim,
Baek, Lim, & Kim, 2016), we further examine the poten-
tial role of atmospheric internal dynamics through
removing the ensemble mean of each model from indi-
vidual members in the EXP1. It shows that six members
from CAMA4, six members from WACCM, three members
from IFS, seven members from IAP4, six members from
LMDZOR, and ten members from AFES (from which the
ensemble mean has been removed) did reproduce the
North American cooling trend (identified by the thresh-
old above 0.5°C-decade™ over North America), though
the temperature trend over the ocean becomes consider-
ably weak (Figure 7a—f). The accompanied intensification
of the anticyclonic ridge near Alaska and cyclone to the
south (Figure 8a-f), which show a basin-scale north-
south atmospheric circulation over the North Pacific,
resemble the negative phase of the North Pacific Oscilla-
tion (NPOI—; Lee, Hong, & Hsu, 2015; Rogers, 1981). The
overlying atmospheric circulation trend in the upper tro-
posphere (Figure 8g-1) corresponds to the negative phase
of the Pacific North America (PNAI|-) pattern (Wallace &
Gutzler, 1981). It suggests that the internal atmospheric
variability might also be a possible driver for the North
American cooling (Sung et al.,, 2019). Therefore, our
results suggest that the internal atmospheric variability
still has impacts on climate change though the contribu-
tion of external forcing is dominant.

Apparent temperature trends mainly occur in high
latitudes of Northern Hemisphere in the EXP2, showing
much weaker amplitude over North America relative to
EXP1-minus-EXP2 (Figure 4g-1 vs. m-r). Strong warming
emerges over the Barents-Kara Seas and subarctic
Russia, while the observed surface warming in the East
Siberian—Chukchi Seas, which is suggested to be respon-
sible for North American cold winters (Kug et al., 2015),
is not clear in the EXP2 (Figure 4g-1). The feature of Eur-
asian temperature trend in the multi-model simulations
forced by sea ice variations is also interesting. Generally,
cooling in two (Figure 4gl) and warming in four
(Figure 4h-k) sets of simulations over Eurasia make it
difficult to attribute the Eurasian cooling to the reduction
of sea ice in this study. A recent study by Ogawa et al.
(2018), which is based on the same model simulations,
has focused on the impacts of Arctic sea ice loss on the
Eurasian winter cooling trend. Only a small number of
members in both experiments can simulate Eurasian
cooling trend with the observed amplitude (Ogawa et al.,
2018, fig. 3), leading to the conclusion that atmospheric
internal dynamics instead of sea ice changes might play
an important role in the observed Eurasian cooling. In
this study, some individual members of EXP1, from
which the ensemble mean has been removed, have
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FIGURE 6 (a) Sea level pressure
(shading) and 850-hPa vector winds
(vectors) and (h) 300-hPa
streamfunction trend patterns

(10° m*s™*-decade™) in winter for
2002-2013 from ERA-I. (b-g) Same as
(a), (i-n) same as (h), but for simulated
ones from ensembles’ means of (b, i)
CAM4, (¢, j) WACCM, (d, k) IFS, (e, 1)
IAP4, (f, m) LMDZOR, and (g, n) AFES
in EXP1-minus-EXP2, respectively.
ERA-I: European Centre for Medium-
Range Weather Forecasts Reanalysis
ERA-Interim [Colour figure can be
viewed at wileyonlinelibrary.com]
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(h) ERA-Interim
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FIGURE 7 Simulated global surface

temperature trend patterns (°C-decade™) in
winter for 2002-2013 from the ensemble
members (from which the model ensemble
mean has been removed) that have
simulated the North American cooling trend
in (a) CAM4, (b) WACCM, (c) IFS, (d) IAP4,

(e) LMDZOR, and (f) AFES in EXP1,
respectively. (g-1) Same as (a-f), but for

ensemble members that have simulated the
Eurasian cooling trend [Colour figure can be
viewed at wileyonlinelibrary.com]|

captured the cooling trend in Eurasia and warming trend
in the Barents-Kara Seas (Figure 7g-1). Correspondingly,
an intensified surface high pressure over Northern Eur-
asia (Honda, Inoue, & Yamane, 2009) is found in these
individual members (Figure 8m-r), consistent with the

reanalysis (Figure 5a). High-latitude internal variability
(Figure 8m-x) thus seems to play a role in the process.
On the other hand, some other modelling studies suggest
that Arctic sea ice loss can result in Eurasian cooling
(Kim et al., 2014, Liu et al., 2012; Mori et al., 2014). Mori,
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FIGURE 8
patterns (10° m

(a-f) Simulated sea level pressure (shading) and 850-hPa vector winds (vectors) and (g-1) 300-hPa streamfunction trend
2 —1
S

.decade™") in winter for 2002-2013 from the ensemble members (from which the model ensemble mean has been

removed) that have simulated the North American cooling trend in (a, g) CAM4, (b, h) WACCM, (c, i) IFS, (d, j) IAP4, (e, k) LMDZOR, and
(f, 1) AFES in EXP1, respectively. (m-x) Same as (a-1), but for the ensemble members that have simulated the Eurasian cooling trend

[Colour figure can be viewed at wileyonlinelibrary.com]

Kosaka, Watanabe, Nakamura, and Kimoto (2019) con-
cluded that ~44% of the Eurasian cooling trend in recent
decades is due to sea ice loss in the Barents-Kara Seas by
using a hybrid analysis of observations and multi-model
ensembles from atmospheric general circulation models.
Both viewpoints can get supporting evidences from our
multi-model simulations (Figures 4 and 7), which
explains why it has been a controversial issue whether
the Arctic sea ice loss (Kim et al., 2014; Liu et al., 2012;
Mori et al., 2014, 2019) or internal atmospheric variability
(Kosaka & Xie, 2013; Li, Stevens, et al., 2015a; McCusker,

Fyfe, & Sigmond, 2016; Ogawa et al., 2018; Sun,
Perlwitz, & Hoerling, 2016) can influence Eurasian win-
ter climate.

Quantitatively, RMLST trends simulated by the
EXP1l-minus-EXP2 are in broad agreement with the
observations, except for those over Eurasia (Figure 3). In
response to the oceanic forcing, the simulated RMLST in
North America exhibits a cooling trend of —0.073,
—0.089, —0.059, —0.069, —0.039, and —0.080°C-decade™*
during 2002-2013, approximate to the observed
—0.077°C-decade™" (Figure 3b and Table 1(c)). Over the
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other four sub-regions, the simulated RMLST trends are
close to the observed ones (Figure 3c-f and Table 1(d)—(g)).
Note that the observed Greenland cooling is not well
reproduced by two models in the EXP1l-minus-EXP2
(Figures 3f and 4p-q), which is likely associated with the
atmospheric teleconnection (e.g., the North Atlantic Oscil-
lation; figure not shown) as suggested by previous studies
(Hurrell, 1995; Hurrell, Kushnir, & Visbeck, 2001). In gen-
eral, the high consistency between the RMLST trends in
observations and numerical simulations (Figure 3), which
targets potentially the response to dominate SST change,
strengthens the hypothesis that the PDOI— largely explains
the surface temperature cooling trends contributing to the
slowdown of warming trend in GMLST.

The comparisons of atmospheric response between
simulations forced with observed daily-varying SST and
daily-varying sea ice and those forced with climatological
SST and daily-varying sea ice have suggested the poten-
tial oceanic contribution to the slowdown of global
warming. The results are consistent with previous studies
(such as Kosaka & Xie, 2013). However, it might be noted
that the effects of SST and sea ice have not been totally
separated in this study due to the potential interaction
between SST and sea ice. Further study can focus on the
atmospheric response to the observed daily-varying SST
and climatological sea ice, which will further improve
our understanding of oceanic impacts on climate. Addi-
tionally, the simulations in this study are not suitable to
investigate the role of external forcing on the continental
cooling, which, however, has been revealed by many
studies (Fyfe, von Salzen, Cole, Gillett, & Vernier, 2013;
Huber & Knutti, 2014; Marotzke & Forster, 2015; Santer
et al., 2014). For example, a modelling study of Fyfe et al.
(2013) suggested that increasing stratospheric aerosol
since the late 1990s has a global cooling impact of about
0.07°C-decade™". Such knowledge on the global warming
slowdown will improve our understanding of climate
change in the future.

5 | SUMMARY

Observations indicate that the land surface air tempera-
tures over Eurasia, North America, Africa, Australia,
South America, and Greenland exhibit remarkable cooling
trends, concurrent with the slowdown of global warming
during 2002-2013. The regional-mean land surface air
temperatures (RMLSTs) over the six sub-regions have
shown cooling trend with rate of —0.125, —0.077, —0.027,
—0.018, —0.017, and —0.009°C-decade ™ during 2002-2013,
contributing to the global-mean land surface temperature
(GMLST) cooling trend of —0.151°C-decade ™.

The inter-annual variability and recent warming
slowdown of GMLST are successfully reproduced by the
multi-model simulations. Global SST and sea ice anoma-
lies in combination play a major role, and that oceanic
contribution dominates. The observed global tele-
connection wave trains, which are suggested associated
with the PDOI—-, have been reproduced by the multi-
model simulations. We thus hypothesize that the winter-
time cooling trends in North America, Africa, Australia,
South America, and Greenland during 2002-2013 might
be the response to the shift of the PDO to its negative
phase. Additionally, the internal atmospheric variability
has also contributed to the cooling trend over Eurasia
and North American. It might be noted that there is an
apparent La Nifa-like decadal cooling trend which may
also contribute to the global warming hiatus. However,
the multi-model simulations in the present study cannot
identify the impact of regional SST. Further investigation
is needed in this regard, and numerical simulation by
multi-models is an essential way to understand the cli-
mate response to the natural forcing.
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