
Vol.:(0123456789)

Applicable Algebra in Engineering, Communication and Computing
https://doi.org/10.1007/s00200-020-00453-9

1 3

ORIGINAL PAPER

Efficient hash maps to �
2
 on BLS curves

Alessandro Budroni1 · Federico Pintore2

Received: 4 September 2017 / Revised: 28 January 2019 / Accepted: 6 July 2020
© The Author(s) 2020

Abstract
When a pairing e ∶ �1 × �2 → �T , on an elliptic curve E defined over a finite
field �q , is exploited for an identity-based protocol, there is often the need to hash
binary strings into �1 and �2 . Traditionally, if E admits a twist Ẽ of order d, then
�1 = E(�q) ∩ E[r] , where r is a prime integer, and �2 = Ẽ(�qk∕d) ∩ Ẽ[r] , where
k is the embedding degree of E w.r.t. r. The standard approach for hashing into
�2 is to map to a general point P ∈ Ẽ(�qk∕d) and then multiply it by the cofactor
c = #Ẽ(�qk∕d)∕r . Usually, the multiplication by c is computationally expensive. In
order to speed up such a computation, two different methods—by Scott et al. (Inter-
national conference on pairing-based cryptography. Springer, Berlin, pp 102–113,
2009) and by Fuentes-Castaneda et al. (International workshop on selected areas in
cryptography)—have been proposed. In this paper we consider these two methods
for BLS pairing-friendly curves having k ∈ {12, 24, 30, 42, 48} , providing efficiency
comparisons. When k = 42, 48 , the application of Fuentes et al. method requires
expensive computations which were infeasible for the computational power at our
disposal. For these cases, we propose hashing maps that we obtained following
Fuentes et al. idea.

Keywords Pairing-based cryptography · Pairing-friendly elliptic curves · Fast
hashing

Mathematics Subject Classification 14G50 · 94A60

A. Budroni: Large part of this work was done when employed at MIRACL Labs, London, England.
F. Pintore: This work was done when at the Department of Mathematics, University of Trento, Italy,
and it was supported by CARITRO Foundation.

 * Federico Pintore
 federico.pintore@maths.ox.ac.uk

 Alessandro Budroni
 alessandro.budroni@uib.no

1 Department of Informatics, University of Bergen, Bergen, Norway
2 Mathematical Institute, University of Oxford, Oxford, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00200-020-00453-9&domain=pdf

 A. Budroni, F. Pintore

1 3

1 Introduction

1.1 Pairings in cryptography

Pairings on elliptic curves have been first used in cryptography to transport ellip-
tic curve discrete logarithms into finite field discrete logarithms[15, 28], for which
there are index-calculus algorithms running in subexponential time. In recent years,
several protocols have been proposed with pairings on elliptic curves as building
blocks. Among them, it is possible to enumerate Joux’s three party key agreement
protocol[21], a non-interactive key-exchange[32], an identity-based encryption[8],
and a short signatures scheme[9].

Traditionally, pairings that have been considered for applications are the Tate
and Weil pairings on elliptic curves over finite fields, and other related pairings, for
example the Eta pairing[5], the Ate pairing[20], and their generalisations[19]. For a
given finite field �q and an elliptic curve E defined over it, all these pairings take as
inputs points on E(�q) or on E(�qk) - where �qk is an extension field of the base field
�q - and return as outputs elements of (�qk)∗.

In this paper we will only consider asymmetric pairings e. In particular, given a
prime r such that r||#E(�q) (i.e. r|#E(�q) but r2 ∤ #E(�q)), then e will be of the form:

where �1 and �2 are elliptic curve subgroups of order r defined as:

• �1 = E(�q) ∩ E[r],
• �2 = {(x, y) ∈ E(�qk)|(xq, yq) = [q](x, y)} ∩ E[r],

while �T is a subgroup of order r of (�qk)∗ . With k is denoted the embedding degree
of E with respect to r, i.e. the smallest positive integer such that r ∣ qk − 1.

For pairing-based cryptosystems to be secure, the discrete logarithm problems
on both E(�q) and (�qk)∗ must be computationally infeasible. Those elliptic curves
providing a fixed level of security along with efficiency of computations are called
pairing-friendly elliptic curves.

1.2 Families of pairing‑friendly elliptic curves

The first formal definition of pairing-friendly elliptic curves has been formulated
by Freeman et al. in their comprehensive paper[14]. The works of Balasubramanian
and Koblitz[2] and Luca et al.[26] show that pairing-friendly elliptic curves are rare,
and hence they require dedicated constructions. In recent years a number of meth-
ods for constructing such curves have been proposed[6, 7, 10, 13, 22, 29]. The gen-
eral pattern is the same for all of them: given an embedding degree k, three integers
n, r, q for which there exists an elliptic curve E defined over �q and such that

• #E(�q) = n,

e ∶ �1 × �2 → �T

1 3

Efficient hash maps to on BLS curves

• r||n,
• k is the embedding degree of E w.r.t. r

are computed. Then the complex multiplication (CM) method[31] is used to deter-
mine the equation of the above elliptic curve E.

However, instead of producing single pairing-friendly elliptic curves by means of
specific integers k, n, r, q, all the cited methods produce families of pairing-friendly
elliptic curves. In particular, the integers n, r, q are replaced by suitable polyno-
mials n(x), r(x), q(x) ∈ ℚ[x] . For some appropriate x0 ∈ ℤ , n(x0), r(x0), q(x0) are
integers such that there exists an elliptic curve E defined over �q(x0) , having n(x0)
rational points, with r(x0)||n(x0) , and k as embedding degree w.r.t. r(x0) . The tri-
ple {n(x), r(x), q(x)} defines a family of pairing-friendly elliptic curves, each of them
parametrised by the integers n(x0), r(x0), q(x0) for some x0 ∈ ℤ . If for every x0 ∈ ℤ
there exists an elliptic curve with n(x0), r(x0), q(x0) as parameters, the family defined
by {n(x), r(x), q(x)} is said complete, otherwise it is called sparse.

The paring-friendly (sparse or complete) families of curves obtained with the
methods enumerated above are known as MNT curves[29], BLS curves[6, 10], BN
curves[7], Freeman curves[13] and KSS curves[22], respectively.

1.3 Hashing to �
2

When pairings on elliptic curves are exploited for identity-based protocols, there is
often the need to map binary strings into �1 or �2 in a seemingly random fashion.
These problems are known as hashing to �1 and hashing to �2 respectively.

Hashing to �1 is relatively easy. In fact, since �1 is the unique subgroup of order
r in E(�q) (thanks to the assumption r||#E(�q)), the standard approach is to hash
to a general point P ∈ E(�q) and then multiply it by the cofactor c = #E(�q)∕r . On
the other hand, if E admits a twist of degree d that divides k, then �2 is isomorphic
to Ẽ(�qk∕d) ∩ Ẽ[r] for a unique degree d twist Ẽ of E[20]. Consequently the same
approach can be used for hashing into �2 . Nevertheless, the latter requires a multi-
plication by a large cofactor and hence expensive computations.

We note that the intermediate step of hashing into a general rational point should
be handled carefully for efficiency and security reasons. In particular, some crypto-
systems are proved to be secure when such an intermediate hash function is mod-
elled as a random oracle into the curve. In order to guarantee its secure replace-
ment with the random oracle, the concept of indifferentiable hash function has been
introduced[11].

1.4 Related work

In 2009, Scott et al.[33] exploited an efficiently-computable endomorphism
𝜓 ∶ Ẽ → Ẽ to reduce the computational cost of the cofactor multiplication required
for hashing to �2 . An improvement of this method was then proposed by Fuentes
et al.[16]. Since pairing-friendly families vary significantly, in order to highlight
the benefits of the two methods, families of curves were considered case-by-case

 A. Budroni, F. Pintore

1 3

in[33] and in[16]. In particular, both papers focus on BN curves with k = 12 , Free-
man curves with k = 10 and KSS curves with k = 8, 18 . However, new advances on
the Number Field Sieve ([4, 23, 24]) for computing discrete logarithms in multipli-
cative groups of finite fields, and hence in �T , have decreased the security of some
asymmetric parings, including those built on BN curves[3, 27]. In the light of these
results, BLS curves are attracting more interest for efficiency reasons, since their
security has been only slightly reduced by recent NFS advances[3, 27].

A developer using pairings on BLS curves for cryptosystems needing to hash to
�2 during their execution, has to tackle the expensive cofactor multiplications in
�2 . Scott et al. and Fuentes et al. methods are the only two proposed so far, that
improve on standard point multiplication on elliptic curves. In the light of this, the
developer has to choose one of these two methods in order to optimise their imple-
mentation. However, to the best of our knowledge, there are not published sources
explicitly applying both Scott et al. and Fuentes et al. methods to BLS curves with
k ∈ {12, 24, 30, 42, 48} , and providing efficiency comparison of the outcomes.

1.5 Contributions and outline

In this paper that gap is filled for BLS curves having k = 12, 24, 30 , and efficiency
comparisons of the results obtained with the two methods are presented. Such a
comparison contrasts with a recently-published book[12], where it is stated that, for
BLS curves with k = 12, 24 , the most efficient method for mapping into �2 is the
one proposed by Scott et al.

Scott et al. and Fuentes et al. methods both require a pre-computation to obtain
parameterised hashing formulas valid for all the curves that belong to a specific fam-
ily of pairing-friendly curves. In particular, Scott et al. method needs polynomial
modular arithmetic, while Fuentes et al. method goes through the application of a
generalisation of the LLL algorithm to a polynomial matrix, in order to obtain a lat-
tice’s polynomial h(z) having small coefficients. We executed the former computa-
tion not just for BLS curves with k ∈ {12, 24, 30} , but also for BLS curves having
k = 42, 48 . On the other hand, the latter computation is prohibitive as the embedding
degree k grows. Consequently, we were able to explicitly apply Scott et al. method
also to BLS curves with k = 42, 48 , but we were not able to accomplish the same for
Fuentes et al. method. Nevertheless, for the cases k = 42 and k = 48 here we pro-
pose suitable polynomials �(z) having bounded coefficients, which allow to speed up
the execution of cofactor multiplications with respect to Scott et al. method.

Our efficiency conclusions are that hashing on BLS curves following Fuentes et al.
method is faster than applying Scott et al. method, for every k ∈ {12, 24, 30, 42, 48}.

The remainder of this paper is organized as follows. In Sect. 2 we recall Scott
et al. and Fuentes et al. methods. For the sake of easy reference, in Sect. 2.1 we
summarise BLS curves’ parameters. In Sect. 3, Scott et al. method is applied to BLS
curves with embedding degree k ∈ {12, 24, 30, 42, 48} . In Sect. 4, Fuentes et al.
method is applied to BLS curves with k ∈ {12, 24, 30} . The proposed polynomials
�(z) , for BLS curves with k = 42, 48 , are the subject of Sect. 5. Finally, in Sect. 6 an
efficiency comparison of the obtained results is provided.

1 3

Efficient hash maps to on BLS curves

2 Known methods for efficiently mapping into �2

The problem of generating random points in �2 , known as hashing to �2 , is usu-
ally solved selecting a random point P ∈ Ẽ(�qk∕d) and then computing [c]P, where
c is the cofactor defined as c = #Ẽ(�qk∕d)∕r . Due to the size of c, this scalar multi-
plication is generally expensive and consequently a bottleneck in hashing to �2.

In[18], Gallant, Lambert and Vanstone give a method to speed up scalar mul-
tiplications [w]P in E(�q)[r] . This method is based on the knowledge of a non-
trivial multiple of the point P, that is obtained from an efficiently computable
endomorphism � ∶ E → E such that �(P) is a multiple of P. Building on this
idea, Galbraith and Scott[17] reduced the computational cost of multiplying by
the cofactor c introducing a suitable group endomorphism 𝜓 ∶ Ẽ → Ẽ . Such an
endomorphism is defined as � = �

−1
◦�◦� , where � is the q-power Frobenius on

E and � is an isomorphism from the twist curve Ẽ to E. The endomorphism �
satisfies

for all P ∈ Ẽ(�qk∕d) . In the above relation t is the trace of Frobenius q + 1 − #E(�q) .
Galbraith and Scott proposed to first express the cofactor c to the base q as

and then use (1) to simplify the multiplication cP as

where ∣ gi ∣< q for every i.

2.1 Scott et al. method

The above approach was further developed by Scott et al. in[33], where it is
applied to several families of pairing-friendly curves. In particular, the curves
taken into account in[33] are: the MNT curves for the case k = 6 , the BN curves
with k = 12 , the Freeman curves with k = 10 and the KSS curves for the cases
k = 8 and k = 18 . It is important to highlight that all these families are com-
posed by curves defined over a prime field �p , with p, the order r and the trace
t expressed as polynomials having rational coefficients. Consequently, also the
cofactor c can be described as a polynomial in ℚ[x] . Thanks to such a parame-
terisation, Scott et al. speed up the cofactor multiplication [c]P reducing it to the
evaluation of a polynomial of the powers � i(P) , with coefficients that are poly-
nomials in x. Such coefficients are obtained by means of polynomial modular
arithmetic. In particular, due to Euclidean Division, all these coefficients have
degrees smaller than deg(p(x)) (for the same reason, numerical coefficients gi are
bounded by q).

(1)�
2(P) − [t]�(P) + [q]P = ∞

(2)c = c0 + c1q +⋯ + c
𝓁
q𝓁

(3)[g0]P + [g1]�(P) +⋯ + [g2𝓁]�
2𝓁(P)

 A. Budroni, F. Pintore

1 3

2.2 Fuentes et al. method

Fuentes et al.[16] improved Scott et al. method observing that, in order to obtain
a non-zero multiple of P ∈ Ẽ(�

k∕d
q) having order r, it is sufficient to multiply P by

c′ , a multiple of c such that c� ≢ 0 (mod r) . In particular they proved the follow-
ing result (see[16], page 11):

Theorem 1 If Ẽ(�qk∕d) is cyclic and q ≡ 1 (mod d), then there exists a polynomial

such that:

• h(�)P is a multiple of [c]P for all P ∈ Ẽ(�qk∕d);
• the coefficients of h(z) satisfy ∣ hi ∣�(k)≤ c for all i.

We note that here � stands for the Euler’s totient function, while � is the effi-
ciently computable endomorphism satisfying (1).

The first condition about h(z) gives a tool for computing a multiple of [c]P as
the sum of some scalar multiplications. These multiplications are computation-
ally light since their scalar factors are bounded thanks to the second condition
satisfied by h(z).

The proof of Thereom 1 is by construction and, exploiting the LLL algorithm
of Lenstra, Lenstra and Lovasz[25], it leads to a procedure to explicitly compute
h(z). For the sake of easy reference we briefly sketch the proof’s steps.

With ñ we denote the cardinality #Ẽ(�qk∕d) = qk∕d + 1 − t̃ , with f̃ the integer
such that t̃2 − 4qk∕d = Df̃ 2 (where D is square-free) and, analougously, with f the
integer for which t2 − 4q = Df 2 holds.

First of all it is observed that, for every point P ∈ Ẽ(�qk∕d) , it holds �(P) = [a]P
with:

and therefore h(�)P = [h(a)]P . Then, the relation

is obtained. Hence 𝛷k(a) ≡ 0 (mod ñ) , where �k is the k-th cyclotomic polynomial
(which has degree equal to �(k)). This allows to restrict the search of h(z) into the
set of all polynomials of ℤ[z] having degree less than �(k) . Denoting with a the col-
umn vector with i-entry −ai , if we consider the vectors of the integer lattice gener-
ated by the matrix

(4)h(z) = h0 + h1z +⋯ + h
�(k)−1z

�(k)−1 ∈ ℤ[z]

(5)a =
t

2
±

f (t̃ − 2)

2f̃

(𝜓∣Ẽ(�
qk∕d

))
k = idẼ(�

qk∕d
)

1 3

Efficient hash maps to on BLS curves

as coefficients of 1, z, z2 , … , z�(k)−1 respectively, we obtain polynomials h(z) ∈ ℤ[z]
such that h(a) ≡ 0 (mod c) . Finally, it is observed that the considered lattice and
the convex set generated by all vectors of the form (± ∣ c ∣1∕�(k),… ,± ∣ c ∣1∕�(k))
have non-empty intersection. A lattice element lying in this intersection could be
obtained using the LLL algorithm[25]; such an element determines the coefficients
of a polynomial h(z) ∈ ℤ[z] with the desired properties.

In[16], such a polynomial is obtained for the BN curves with k = 12 , the
Freeman curves with k = 10 , the KSS curves for the cases k = 8 and k = 18 . As
already observed, these families are composed by curves defined over a prime
field �p , with p, the order r and the trace t expressed as polynomials having
rational coefficients. Consequently, also the cofactor c and the scalar a can be
described as a polynomials in ℚ[x].

The matrix M obtained considering the parameterised forms of c and a is

where a(x) is the column vector with i-entry −ai(x) (mod c(x)) , and it generates
a lattice in ℚ[x]�(k) . Exploiting the algorithm in[30], the matrix M could be trans-
formed into a new matrix M′ having as rows the elements of a reduced basis for
the lattice. Considering the polynomials composing a row of M′ as coefficients
of 1, z, z2 , … , z�(k)−1 respectively, Fuentes et al. were able to obtain a polynomial
h(z) =

∑
i hi(x)z

i ∈ ℤ[x][z] satisfying the following two conditions:

 (CI) h(a(x)) ≡ s(x)c(x) (mod ñ(x)) , with gcd(s(x), r(x)) = 1 , for some s(x) ∈ ℚ[x]

;
 (CII) deg(hi(x)) ≤ deg(c(x))∕�(k) , where � is the Euler’s totient function.

The first condition assures that [a(x0)]P is a non-zero multiple of [c(x0)]P for
every value x0 ∈ ℤ of the parameter x, and that such a multiple can be computed
as the sum of some scalar multiplications. These multiplications are computa-
tionally light thanks to the second condition in which scalar factors are bounded.

Consequently, for each of the curves in the above pairing-friendly families,
Fuentes et al. compute a formula for hashing into �2 that is valid for every curve
in the family itself. In particular, the cofactor multiplication [c(x)]P is reduced
to the evaluation of a polynomial of the powers � i(P) , with coefficients that are
polynomials in x. Comparing their computational results with those of Scott
et al. method for the same families, Fuentes et al. provided evidence that their
method is faster for all the considered curves.

M =

[
c �

� I
�(k)−1

]

M =

[
c(x) �

�(x) I
�(k)−1

]
,

 A. Budroni, F. Pintore

1 3

2.3 BLS curves

Families of pairing-friendly curves vary significantly, hence it is not possible to
a priori determine if one of the two above hashing methods is more efficient than
the other for a given family. BLS curves are recently gaining increasing inter-
est[3, 27]. Thus it is of great concern to determine also for these curves which is,
among Scott et al. and Fuentes et al. methods, the more efficient one. In[12, Sec.
8.5], Scott et al. method is explicitly applied to BLS curves having k ∈ {12, 24} ,
and authors state that in these cases the most efficient method for hashing into �2
is the one proposed by Scott et al.

In this paper we deduce the formulas derived from the application of both
methods to BLS curves having k = {12, 24, 30} , and we provide evidences that,
on the contrary, the most efficient method is the one of Fuentes et al. Further-
more, we apply Scott et al. method also to BLS curves with k ∈ {42, 48} . On the
other hand, the computations necessary, within Fuentes et al. method, to obtain
the polynomial h(z) for BLS curves having k = 42, 48 were infeasible for the com-
putational power at our disposal. Nevertheless, in Sect. 5 we propose two poly-
nomials �(z) , for the cases k = 42 and k = 48 , that fully satisfies and almost fully
satisfies conditions (CI), (CII), respectively. In particular, in both cases �(a(x))
is congruent to a multiple of c(x) modulo ñ(x) , i.e. �(�)P is a multiple of [c(x)]P
for all P ∈ Ẽ(�qk∕d) . Furthermore, for k = 48 the proposed polynomial satisfies the
relation deg(�i(x)) ≤ deg(c(x))∕�(k) for every i, while for k = 42 this condition
holds for every �i(x) except �0(x) , that has degree equal to ⌊deg(c(x))∕�(k)⌋ + 1.

We conclude this section briefly recalling BLS curves’ parameters. Barreto,
Lynn and Scott[6], and Brezing and Weng[10] proposed a polynomial parameteri-
sation for complete families of pairing-friendly curves having prime fields �p as
basefields, fixed embedding degrees, and short Weierstrass equations of the form
y2 = x3 + b.

In the following, we consider only those BLS curves with embedding degree
k ≡ 0 (mod 6) , and such that 18 ∤ k . This choice is due to efficiency reasons, since
each of such curves admits a twist having the highest possible degree d = 6[20],
allowing to consider �2 as a subgroup of Ẽ(�pk∕6) . In this case BLS curves are
parameterised by the following polynomials[14]:

where �k is the cyclotomic polynomial of order k.

p(x) =
1

3
(x − 1)2(xk∕3 − xk∕6 + 1) + x

r(x) =�k(x)

t(x) =x + 1,

1 3

Efficient hash maps to on BLS curves

3 Scott et al. method on BLS curves

In this section Scott et al. hashing method is applied to BLS curves having
embedding degree k equal to 12, 24, 30, 42 and 48 respectively. Such an applica-
tion requires first to determine the cardinality ñ(x) ∈ ℚ[x] of Ẽ(�p(x)k∕d) - where
d, in what follows, is always equal to 6 - and then to execute polynomial modu-
lar arithmetic as briefly described in the previous section (for further details the
reader could refer to Algorithm 2 in[33]).

3.1 BLS‑12

For BLS curves with k = 12 , the prime p and the group order r are parameterised by
the polynomials:

Since k∕d = 2 , the group �2 is expressed as a subgroup of Ẽ(�p(x)2) and the cofactor
c(x) is:

Given some rational point P ∈ Ẽ(�p(x)2) , Scott et al. method reduces the scalar multi-
plication [3c(x)]P to

We consider [3c(x)]P instead of [c(x)]P to ignore the common denominator of 3 that
occurs writing c(x) to the base p(x). According to[12, sec. 8.5], scalar multiplication
(7) can be computed at the cost of 6 point additions, 2 point doublings, 3 scalar mul-
tiplications by the parameter x and 3 applications of �.

3.2 BLS‑24

With the name BLS-24 we denote the BLS family of elliptic curves having embedding
degree k equal to 24. Such curves are parameterised by the polynomials:

As before, we consider [3c(x)]P instead of [c(x)]P in order to ignore the common
denominator of 3 that occurs writing c(x) to the base p(x). In this case �2 ⊂ Ẽ(�p(x)4)
and the cofactor is a polynomial c(x) of degree 32. Applying Scott et al. method, the
scalar multiplication [3c(x)]P - where P ∈ Ẽ(�p(x)4) - is reduced to

p(x) =
1

3
(x − 1)2(x4 − x2 + 1) + x

r(x) =x4 − x2 + 1.

(6)c(x) =
1

9
(x8 − 4x7 + 5x6 − 4x4 + 6x3 − 4x2 − 4x + 13).

(7)[x3 − x2 − x + 4]P + [x3 − x2 − x + 1]�(P) + [−x2 + 2x − 1]�2(P).

p(x) =
1

3
(x − 1)2(x8 − x4 + 1) + x

r(x) =x8 − x4 + 1.

 A. Budroni, F. Pintore

1 3

where �0, �1, �2, �3, �4, �5, �6 are polynomials of ℤ[x] of degrees less than or equal
to 8. For the sake of readability, these polynomials are fully reported in “Appendix”.
According to[12, sec. 8.5], the multiplication [3c(x)]P can be computed at the cost
of 21 point additions, 4 point doublings, 8 scalar multiplications by the parameter x
and 6 applications of �.

3.3 BLS‑30

BLS curves having embedding degree k = 30 are parameterised by:

In this case the cofactor is a polynomial c(x) of degree 52 while �2 is a subgroup of
order r(x) of Ẽ(�p(x)5) . Given some rational point P ∈ Ẽ(�p(x)5) , Scott et al. method
leads to express the scalar multiplication [3c(x)]P as:

where {�j ∣ j = 0,… , 8} are polynomials of ℤ[x] having degrees less than or equal to
11 (see “Appendix” for their details). The multiplication [3c(x)]P can be computed
at the cost of 82 point additions, 16 point doublings, 11 scalar multiplications by the
parameter x and 67 applications of �.

3.4 BLS‑42

In the case of BLS curves having k = 42 , �2 is the subgroup Ẽ(�p(x)7) ∩ Ẽ[r(x)] ,
where:

The cofactor is parameterised by a polynomial c(x) of degree 100. Writing it to the
base p(x), the scalar multiplication [3c(x)]P, with P ∈ Ẽ(�p(x)7) , is reduced to

where {�j ∣ j = 0,… , 12} are polynomials in x with integral coefficients and degrees
less than or equal to 15 (see “Appendix” for their complete form). Then [3c(x)]P can

(8)[�0]P +

6∑
i=1

[�i]�
i(P)

p(x) =
1

3
(x − 1)2(x10 − x5 + 1) + x

r(x) =x8 + x7 − x5 − x4 − x3 + x + 1.

(9)[�0]P +

8∑
i=1

[�i]�
i(P)

p(x) =
1

3
(x − 1)2(x14 − x7 + 1) + x

r(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x + 1.

(10)[�0]P +

12∑
i=1

[�i]�
i(P)

1 3

Efficient hash maps to on BLS curves

be computed at the cost of 151 point additions, 54 point doublings, 15 scalar multi-
plications by the parameter x and 125 applications of �.

3.5 BLS‑48

For BLS curves having k = 48 , the prime p and the group order r are parameterised
by the polynomials:

The cofactor c(x) is a polynomial of degree 128 and �2 is a subgroup of Ẽ(�p(x)8) .
Given some rational point P ∈ Ẽ(�p(x)8) , Scott et al. method reduces the scalar multi-
plication [3c(x)]P to

where {�j ∣ j = 0,… , 14} are polynomials of ℤ[x] having degrees less than or equal
to 16 (see “Appendix” for details). As in previous cases, we consider [3c(x)]P
instead of [c(x)]P for the common denominator of 3 that occurs writing c(x) to the
base p(x). This scalar multiplication can be computed at the cost of 132 point addi-
tions, 120 point doublings, 16 scalar multiplications by the parameter x and 130
applications of �.

4 Fuentes et al. method on BLS curves with k = 12, 24, 30

In this section we apply Fuentes et al. hashing method to BLS curves having embed-
ding degree k equal to 12, 24 or 30. We have already noticed that this method
requires an expensive one-off pre-computation in order to obtain the polynomial
h(z). Such a computation was infeasible, for the computational power at our dis-
posal, when k ∈ {42, 48} . This two cases will be considered in the next section.

4.1 BLS‑12

For BLS curves with k = 12 , the parameter a, deduced from (5), is parameterised by
the following polynomial in x:

Reducing the matrix

p(x) =
1

3
(x − 1)2(x16 − x8 + 1) + x

r(x) = x16 − x8 + 1.

(11)[�0]P +

14∑
i=1

[�i]�
i(P)

a(x) =
1

2

(
t(x) + f (x)

t̃(x) − 2

f̃ (x)

)
≡

25

299
x11 −

25

69
x10 +

508

897
x9 −

268

897
x8 −

112

897
x7+

+
586

897
x6 −

518

897
x5 −

126

299
x4 +

367

299
x3 −

215

897
x2 +

64

299
x +

41

69
(mod ñ(x)).

 A. Budroni, F. Pintore

1 3

by means of the algorithm[30], we obtain

If we consider the 4-th row of M′ , the polynomial h(z) can be defined as

and so

with gcd (3x2 − 3, r(x)) = 1 . Hence, if P ∈ Ẽ(�p(x)2) , then [h(a(x))]P is a multiple of
[c(x)]P. In particular:

that can be computed at the cost of 5 point additions, 1 point doubling, 2 scalar mul-
tiplications by the parameter x and 3 applications of �.

4.2 BLS‑24

Proceeding as in the previous case also for the BLS curves having k = 24 , we obtain a
polynomial a(x) of degree 39, and h(z) defined as:

with h(a(x)) congruent to (3x4 − 3)c(x) modulo ñ(x) . Since gcd (3x4 − 3, r(x)) = 1 ,
the following map sends a point P ∈ Ẽ(�p(x)4) to a point of �2:

To compute the image of P, such a map requires 9 point additions, 1 point doubling,
4 scalar multiplications by x and 10 applications of the endomorphism �.

M =

⎡
⎢⎢⎢⎣

c(x) 0 0 0

−a(x) mod c(x) 1 0 0

−a(x)2 mod c(x) 0 1 0

−a(x)3 mod c(x) 0 0 1

⎤
⎥⎥⎥⎦

M� =

⎡
⎢⎢⎢⎣

−x + 1 − 2 x − 1 x2 − x + 1

−2 0 x2 − x + 1 x − 1

0 x2 − x − 1 x − 1 2

x2 − x − 1 x − 1 2 0

⎤⎥⎥⎥⎦
.

(12)h(z) =

4∑
i=1

M�(4, i)zi−1 = (x2 − x − 1) + (x − 1)z + 2z2

h(a(x)) = (x2 − x − 1) + (x − 1)a(x) + 2a(x)2 ≡ (3x2 − 3)c(x) (mod ñ(x))

(13)[h(a(x))]P = h(�)P = [x2 − x − 1]P + [x − 1]�(P) + [2]�2(P),

(14)h(z) = (x4 − x3 − 1) + (x3 − x2)z + (x2 − x)z2 + (x − 1)z3 + 2z4

(15)
P ↦ [x4 − x3 − 1]P + [x3 − x2]�(P) + [x2 − x]�2(P) + [x − 1]�3(P) + [2]�4(P).

1 3

Efficient hash maps to on BLS curves

4.3 BLS‑30

In the case of BLS curves having embedding degree k = 30 , Fuentes et al. method
leads to a polynomial a(x) having degree equal to 59 and to a polynomial h(z)
defined as follows:

with h(a(x)) congruent to (3x5 − 3)c(x) modulo ñ(x) . Hence the following map

returns a point of �2 = Ẽ(�p(x)5) ∩ Ẽ[r(x)] when applied to P ∈ Ẽ(�p(x)5) , since
gcd(3x5 − 3, r(x)) = 1 . The image (17) can be computed at the cost of 25 point addi-
tions, 2 point doubling, 5 scalar multiplications by the parameter x and 27 applica-
tions of �.

5 Fuentes et al. method for BLS curves with k = 42, 48

From previous section, we can observe that the degree of the polynomial a(x)
grows when k grows. The results provided in Sect. 3 show that the same holds
also for c(x). This affects the sizes of the polynomials composing the matrix
M, and then the computational cost necessary to reduce it. The computational
power at our disposal did not allow us to complete the application of Fuentes
et al. method to BLS curves with k = 42 or k = 48 . Nevertheless, the aim of this
section is to provide two polynomials �(z) that resemble the polynomial h(z) of
Theorem 1. We begin considering the case k = 48.

5.1 BLS‑48

We note that two of the polynomials h(z) obtained in the previous section, pre-
cisely (12) and (14), share some common features:

• they both have degree k/6;
• their leading coefficients are equal to 2;
• given zi , its coefficient is xdeg(h(z))−i − xdeg(h(z))−i−1 whenever 0 < i < k∕6;
• the constant terms are equal to xdeg(h(z)) − xdeg(h(z))−1 − 1.

(16)

h(z) =(x5 − x4 − 1) + (−x5 + 2x4 − x3 + 1)z + (x5 − 2x4 + 2x3 − x2 − 1)z2

+ (x4 − 2x3 + 2x2 − x)z3 + (x3 − 2x2 + 2x − 1)z4 + (x2 − 2x + 3)z5

+ (x − 3)z6 + 2z7

(17)

P ↦[x5 − x4 − 1]P + [−x5 + 2x4 − x3 + 1]�(P)

+ [x5 − 2x4 + 2x3 − x2 − 1]�2(P) + [x4 − 2x3 + 2x2 − x]�3(P)

+ [x3 − 2x2 + 2x − 1]�4(P) + [x2 − 2x + 3]�5(P) + [x − 3]�6(P)

+ [2]�7(P)

 A. Budroni, F. Pintore

1 3

When k = 48 , the polynomial �(z)

has the above features and, surprisingly, satisfies the two conditions (CI), (CII), as
proved in the following.

Proposition 2 Given a BLS curve E, defined over �p(x) and having k = 48, the
polynomial

satisfies the two conditions:

• �(�)P is a multiple of [c(x)]P for all P ∈ Ẽ(�p(x)k∕d);
• the coefficients �i of �(z) satisfy deg(�i(x)) ≤ deg(c(x))∕�(k) for all i.

and so the map

returns a point of �2 = Ẽ(�p(x)8) ∩ Ẽ[r(x)] for every P ∈ Ẽ(�p(x)8).

Proof Deducing a(x) from relation (5), it follows that:

with gcd (3x8 − 3, r(x)) = 1 . Furthermore, denoting with �0(x),… , �8(x) the coef-
ficients of �(z) , it is easy to observe that deg(�i(x)) ≤ deg(c(x))∕�(k) for all
i ∈ {0,… , 8} , since c(x) has degree 128 and �(48) = 16 . ◻

The image (18) can be computed at the cost of 17 point additions, 1 point doubling,
8 scalar multiplications by the parameter x and 36 applications of �.

5.2 BLS‑42

The same approach does not work for the case of BLS curves with embedding degree k
equal to 42. Indeed, for k = 42 , the polynomial

�(z) = (x8 − x7 − 1) +

7∑
i=1

(x8−i − x7−i)zi + 2z8

�(z) = (x8 − x7 − 1) +

7∑
i=1

(x8−i − x7−i)zi + 2z8,

(18)P ↦ [x8 − x7 − 1]P +

7∑
i=1

[x8−i − x7−i]� i(P) + [2]�8(P)

�(a(x)) ≡ 3(x8 − 1)c(x) mod ñ(x)

(x7 − x6 − 1) +

6∑
i=1

(x8−i − x7−i)zi + 2z7

1 3

Efficient hash maps to on BLS curves

satisfies the above features but it is not a multiple of c(x). However, we observed that
the following relation holds:

Defining �(z) as (x2 − x + 1)((x7 − x6 − 1) +
∑6

i=1
(x8−i − x7−i)zi + 2z7) , we were able

to obtain a multiple of c(x) that almost satisfies the two conditions (CI), (CII). This
is specified in the following proposition.

Proposition 3 Given a BLS curve E, defined over �p(x) and having k = 42, the
polynomial

is such that:

• �(�)P is a multiple of [c(x)]P for all P ∈ Ẽ(�p(x)k∕d);
• the coefficients �i of �(z) satisfy deg(�i(x)) ≤ deg(c(x))∕�(k) for all i ≠ 0;
• the constant term �0 of �(z) has degree equal to ⌊deg(c(x))∕�(k)⌋ + 1.

Hence the map

returns a point of �2 = Ẽ(�p(x)7) ∩ Ẽ[r(x)] for every P ∈ Ẽ(�p(x)7).

Proof Once that a(x) is deduced from relation (5), it could be verified by computa-
tions that:

with gcd (3x7 − 3, r(x)) = 1.
Denoting with �0(x),… , �7(x) the coefficients of �(z) , it could be observed that
deg(�i(x)) ≤ deg(c(x))∕�(k) for all i ∈ {1,… , 7} , since c(x) has degree 100 and

�(42) is equal to 12. The degree of �0(x) is equal to ⌊deg(c(x))∕�(k)⌋ + 1 . ◻

The image (20) can be computed at the cost of 33 point additions, 1 point
doubling, 9 scalar multiplications by the parameter x and 42 applications of � .
We observe that �(z) does not fully satisfies the condition (CII), since the degree

((x7 − x6 − 1) +

6∑
i=1

(x8−i − x7−i)zi + 2z7)∕c(x) = 3(x7 − 1)∕(x2 − x + 1).

(19)

�(z) =
(
x9 − 2x8 + 2x7 − x6 − x2 + x − 1

)

+

6∑
i=1

(
x9−i − 2x8−i + 2x7−i − x6−i

)
zi +

(
2x2 − 2x + 2

)
z7

(20)

P ↦h(�)P =
[
x9 − 2x8 + 2x7 − x6 − x2 + x − 1

]
P

+

6∑
i=1

[
x9−i − 2x8−i + 2x7−i − x6−i

]
�

i(P) +
[
2x2 − 2x + 2

]
�

7(P)

�(a(x)) ≡ 3(x7 − 1)c(x) mod ñ(x)

 A. Budroni, F. Pintore

1 3

of �0(x) = x9 − 2x8 + 2x7 − x6 − x2 + x − 1 is equal to ⌊deg(c(x))∕�(k)⌋ + 1 = 9 ,
instead of being of degree less than or equal to 8. A coefficient �0 with the latter
degree would have save one point multiplication by the parameter x and a point
addition. This gives an idea of the reason why the degrees of coefficients �i are
relevant in terms of efficiency.

6 Comparisons and conclusions

Here we present an efficiency comparison between the hash maps into �2 found
in the previous three sections. In Table 1, computational costs for hashing into
�2 are reported. The second column refers to the results obtained applying Scott
et al. method (see Sect. 3). The third column contains computational costs obtained
applying Fuentes et al. method (see Sect. 4). The last column reports efficiency data
relative to the hash functions we proposed in Sect. 5, that resemble those one would
obtain applying Fuentes et al. method. With ‘A’ we denote a point addition, with ‘D’
a point doubling, with ‘Z’ a scalar multiplication by the parameter x and with ‘ � ’ an
application of the endomorphism �.

We underline that, in each hashing map, the most significant component is the
multiplication by x, since it computationally dominates the other operations. In fact,
the algorithms to compute large scalar multiplications require many point additions
and doublings. Furthermore, the endomorphism � can be efficiently computed.

In all the cases we have examined, the hash map found following Fuentes et al.
method turned out to be more efficient than the one found with Scott et al. method.
The hash maps of Sect. 4 were obtained applying rigorously Fuentes et al. method.
For k = 12 we see a 3/2-fold improvement, for k = 24 the hash map is twice as
fast as that of Scott et al., while for k = 30 the hash map determines a 11/5-fold
improvement.

Concerning BLS curves with k ∈ {42, 48} , we propose two suitable polynomials
�(z) : one satisfies the two conditions (CI), (CII) deduced from Theorem 1 (k = 48) ;
the other is extremely tight to a polynomial fully satisfying such conditions (k = 42).
The hash function deduced for the case k = 42 leads to a 15/9-fold improvement
with respect to the method of Scott et al. For k = 48 , the introduced hash map is
twice as fast as that of Scott et al.

Using the Apache Milagro Crypto Library [1] we implemented the hash maps (7)
and (13), obtained applying Scott et al. and Fuentes et al. methods on BLS curves

Table 1 Comparison between
the computational cost of each
hash map

Curve Scott et al. Fuentes et al. Our proposals

BLS-12 6A 2D 3Z 3 � 5A 1D 2Z 3 �
BLS-24 21A 4D 8Z 6 � 9A 1D 4Z 10�
BLS-30 82A 16D 11Z 67� 25A 2D 5Z 27�
BLS-42 151A 54D 15Z 125� 33A 1D 9Z 42�
BLS-48 132A 120D 16Z 130� 17A 1D 8Z 36�

1 3

Efficient hash maps to on BLS curves

with embedding degree k = 12 . In Table 2 we summarise the timing results of a
benchmark test on the two maps.

These experimental results show that the hashing map obtained with Fuentes
et al. method is approximately 30% faster than the map obtained with Scott et al.
method, as we expected from Table 1.

Acknowledgements The authors acknowledge Professor Massimiliano Sala for insightful discussions
and for the support, and greatly thank Professor Michael Scott for his critical reading of the manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

Appendix

In the following we report the polynomials in x which are the coefficients of the hash
maps obtained applying Scott et al. method to BLS curves having k = 24, 30, 42, 48.

BLS‑24

Given a rational point P ∈ Ẽ(�p(x)4) , the map (8) sends P into the element
[�0]P +

∑6

i=1
[�i]�

i(P) of �2 , where:

�0 = − 2x8 + 4x7 − 3x5 + 3x4 − 2x3 − 2x2 + x + 4,

�1 =x
5 − x4 − 2x3 + 2x2 + x − 1,

�2 =x
5 − x4 − x + 1,

�3 =x
5 − x4 − x + 1,

�4 = − 3x4 + x3 + 4x2 + x − 3,

�5 =3x
3 − 3x2 − 3x + 3,

�6 = − x2 + 2x − 1.

Table 2 Each value corresponds
to the average time (in millisec-
onds) considered for each hash
from a sample of 1000 hashes

Processor Scott et al. Fuentes et al.

Intel(R) Core(TM)
i5-5257U 64-bit—2.7 GHz

2.83 ms 1.98 ms

Quad-core ARM
Cortex A53 64-bit—1.2 GHz

50.26 ms 35.88 ms

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 A. Budroni, F. Pintore

1 3

BLS‑30

The map (9) sends P ∈ Ẽ(�p(x)5) into the element [�0]P +
∑8

i=1
[�i]�

i(P) ∈ �2 , with:

BLS‑42

The map (10) sends P ∈ Ẽ(�p(x)7) into the element [�0]P +
∑12

i=1
[�i]�

i(P) ∈ �2 , with:

�0 = x11 − x10 − 2x9 + 3x8 + 2x7 − 3x6 − x5 + 2x4 − x3 + 4x2 + x + 7,

�1 = x11 − 3x10 + 3x9 + x8 − 5x7 + x6 + 4x5 − x4 − 4x3 + 4x2 − 8x − 11,

�2 = − x10 + 4x9 − 6x8 + 5x7 − 2x6 + 2x5 − 5x4 + 4x3 − 3x + 11,

�3 = x8 − 2x7 + 2x6 − x5 − x4 + 2x3 − 2x2 + x,

�4 = x8 − 2x7 + 2x6 − x5 − x3 + 2x2 − 2x + 1,

�5 = − 4x7 + 3x6 + 2x5 − x4 − x3 + 2x2 + 3x − 4,

�6 = 6x6 − 7x5 − 3x4 + 8x3 − 3x2 − 7x + 6,

�7 = − 4x5 + 8x4 − 4x3 − 4x2 + 8x − 4,

�8 = x4 − 3x3 + 4x2 − 3x + 1.

�0 = − 4x15 + 7x14 − x13 − 4x12 + 4x11 + 2x10 − 4x9 + 5x8 − 4x7 − 2x6 + 2x5

− 2x4 − 4x3 + 9x2 + 5x + 9,

�1 =6x
15 − 7x14 − 9x13 + 15x12 − 14x10 + 7x9 − 2x8 − 5x7 + 13x6 − 3x5

− 7x4 + 11x3 + 6x2 − 22x − 19,

�2 = − 7x14 + 15x13 − 4x12 − 14x11 + 15x10 + 2x9 − 13x8 + 19x7 − 9x6 − 14x5

+ 15x4 − 16x2 + 4x + 22,

�3 =2x
13 − 6x12 + 6x11 + x10 − 8x9 + 8x8 − 3x7 − 9x6 + 12x5 + 2x4 − 13x3

+ 10x2 + 4x − 6,

�4 = − x12 + 4x11 − 6x10 + 5x9 − 2x8 + 3x5 − 7x4 + 5x3 + x2 − 5x + 3,

�5 =x
10 − 2x9 + 2x8 − x7 − x4 + 2x3 − 2x2 + x,

�6 =x
10 − 2x9 + 2x8 − x7 − x3 + 2x2 − 2x + 1,

�7 = − 6x9 − 2x8 + 2x7 + 6x6 + 6x3 + 2x2 − 2x − 6,

�8 =15x
8 + 5x7 − 19x6 − 8x5 + 14x4 − 8x3 − 19x2 + 5x + 15,

�9 = − 20x7 + 5x6 + 30x5 − 15x4 − 15x3 + 30x2 + 5x − 20,

�10 =15x
6 − 16x5 − 12x4 + 26x3 − 12x2 − 16x + 15,

�11 = − 6x5 + 12x4 − 6x3 − 6x2 + 12x − 6,

�12 =x
4 − 3x3 + 4x2 − 3x + 1.

1 3

Efficient hash maps to on BLS curves

BLS‑48

The map (11) sends P ∈ Ẽ(�p(x)8) into the element [�0]P +
∑14

i=1
[�i]�

i(P) of �2 ,
where:

References

 1. Apache Milagro Crypto Library (AMCL): MIRACL Labs. https ://githu b.com/milag ro-crypt o/
milag ro-crypt o-c

 2. Balasubramanian, R., Koblitz, N.: The improbability that an elliptic curve has subexponential
discrete log problem under the Menezes–Okamoto–Vanstone algorithm. J. Cryptol. 11(2), 141–
145 (1998)

 3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryptol. 32(4),
1298–1336 (2019)

 4. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In: Advances in Cryp-
tology—ASIACRYPT 2015, LCNS 9453, pp. 31–55 (2015)

 5. Barreto, P.S.L.M., Galbraith, S., Ó’hÉigeartaigh, C., Scott, M.: Efficient pairing computation on
supersingular abelian varieties. Des. Codes Crypt. 42(3), 239–271 (2007)

 6. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding
degrees. In: International Conference on Security in Communication Networks. Springer, Berlin
(2002)

�0 = − 6x16 − 2x15 + 8x14 + 14x13 − 14x11 − 8x10 + 3x9 + 11x8 + 8x7 − 14x5

− 14x4 + 8x2 + 5x + 4,

�1 =10x
15 + 6x14 − 26x13 − 22x12 + 22x11 + 26x10 − 5x9 − 11x8 − 16x7 − 24x6

+ 10x5 + 46x4 + 24x3 − 16x2 − 19x − 5,

�2 = − 14x14 + 4x13 + 34x12 − 34x10 − 3x9 + 13x8 + 24x6 + 26x5 − 34x4 − 56x3

+ 29x + 11,

�3 =8x
13 − 8x12 − 16x11 + 16x10 + 9x9 − 9x8 − 22x5 − 10x4 + 40x3 + 24x2

− 19x − 13,

�4 = − 4x12 + 8x11 − 7x9 + 3x8 + 12x4 − 4x3 − 20x2 + 3x + 9,

�5 =x
9 − x8 − 4x3 + 4x2 + 3x − 3,

�6 =x
9 − x8 − x + 1,

�7 =x
9 − x8 − x + 1,

�8 = − 7x8 − 13x7 − 8x6 + 14x5 + 28x4 + 14x3 − 8x2 − 13x − 7,

�9 =21x
7 + 43x6 + 6x5 − 70x4 − 70x3 + 6x2 + 43x + 21,

�10 = − 35x6 − 55x5 + 34x4 + 112x3 + 34x2 − 55x − 35,

�11 =35x
5 + 29x4 − 64x3 − 64x2 + 29x + 35,

�12 = − 21x4 + x3 + 40x2 + x − 21,

�13 =7x
3 − 7x2 − 7x + 7,

�14 = − x2 + 2x − 1.

https://github.com/milagro-crypto/milagro-crypto-c
https://github.com/milagro-crypto/milagro-crypto-c

 A. Budroni, F. Pintore

1 3

 7. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: International
Workshop on Selected Areas in Cryptography, pp. 319–331. Springer, Berlin (2005)

 8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Advances in Cryp-
tology—CRYPTO 2001, pp. 213–229. Springer, Berlin (2001)

 9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17(4),
297–319 (2004)

 10. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des. Codes Crypt.
37(1), 133–141 (2005)

 11. Brier, E., Coron, J.S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indifferen-
tiable hashing into ordinary elliptic curves. In: Annual Cryptology Conference, pp. 237–254.
Springer, Berlin (2010)

 12. El Mrabet, N., Joye, M.: Guide to Pairing-Based Cryptography. Cryptography and Network
Security, 1st edn. Chapman and Hall, Boca Raton (2017)

 13. Freeman, D.: Constructing pairing-friendly elliptic curves with embedding degree 10. In: Algo-
rithmic Number Theory Symposium, pp. 452–465. Springer, Berlin (2006)

 14. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol.
23(2), 224–280 (2010)

 15. Frey, G., Rück, H.G.: A remark concerning m-divisibility and the discrete logarithm in the divi-
sor class group of curves. Math. Comput. 62(206), 865–874 (1994)

 16. Fuentes-Castaneda, L., Knapp, E., Rodriguez-Henriquez, F.: Faster hashing to �2 . In: Selected
Areas in Cryptography - 18th International Workshop, SAC 2011, Toronto, ON, Canada, August
2011, Revised Selected Papers, pp. 412–430 (2011)

 17. Galbraith, S.D., Scott, M.: Exponentiation in pairing-friendly groups using homomorphisms. In:
International Conference on Pairing-Based Cryptography, pp. 211–224. Springer, Berlin (2008)

 18. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves
with efficient endomorphisms. In: Annual International Cryptology Conference, pp. 190–200.
Springer, Berlin (2001)

 19. Hess, F.: Pairing lattices. In: International Conference on Pairing-Based Cryptography, pp.
18–38. Springer, Berlin (2008)

 20. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf. Theory 52(10),
4595–4602 (2006)

 21. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: International Algorithmic Num-
ber Theory Symposium, pp. 385–393. Springer, Berlin (2000)

 22. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-friendly elliptic
curves using elements in the cyclotomic field. In: International Conference on Pairing-Based
Cryptography, pp. 126–135. Springer, Berlin (2008)

 23. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for medium prime
case. In: Annual Cryptology Conference, LCNS 9814, pp. 543–571. Springer, Berlin (2016)

 24. Kim, T., Jeong, J.: Extended tower number field sieve with application to finite fields of arbitrary
composite extension degree. In: IACR International Workshop on Public Key Cryptography, pp.
388–408. Springer, Berlin (2017)

 25. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coefficients. Math.
Ann. 261(4), 515–534 (1982)

 26. Luca, F., Mireles, D.J., Shparlinski, I.E.: MOV attack in various subgroups on elliptic curves. Ill.
J. Math. 48(3), 1041–1052 (2004)

 27. Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS advances on the
security of pairing-based cryptography. In: Proceedings of Mycrypt (2016)

 28. Menezes, A., Vanstone, S., Okamoto, T.: Reducing elliptic curve logarithms to logarithms in a
finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)

 29. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-
reduction. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 84(5), 1234–1243 (2001)

 30. Paulus, S.: Lattice basis reduction in function fields. In: International Algorithmic Number The-
ory Symposium. Springer, Berlin (1998)

 31. Rubin, K., Silverberg, A.: Choosing the correct elliptic curve in the CM method. Math. Comput.
79(269), 545–561 (2010)

 32. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Symposium on Cryp-
tography and Information Security. SCIS, Okinawa, Japan (2000)

1 3

Efficient hash maps to on BLS curves

 33. Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: Fast hashing to G2 on pair-
ing friendly Curves. In: International Conference on Pairing-Based Cryptography, pp. 102–113.
Springer, Berlin (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Efficient hash maps to on BLS curves
	Abstract
	1 Introduction
	1.1 Pairings in cryptography
	1.2 Families of pairing-friendly elliptic curves
	1.3 Hashing to
	1.4 Related work
	1.5 Contributions and outline

	2 Known methods for efficiently mapping into
	2.1 Scott et al. method
	2.2 Fuentes et al. method
	2.3 BLS curves

	3 Scott et al. method on BLS curves
	3.1 BLS-12
	3.2 BLS-24
	3.3 BLS-30
	3.4 BLS-42
	3.5 BLS-48

	4 Fuentes et al. method on BLS curves with
	4.1 BLS-12
	4.2 BLS-24
	4.3 BLS-30

	5 Fuentes et al. method for BLS curves with
	5.1 BLS-48
	5.2 BLS-42

	6 Comparisons and conclusions
	Acknowledgements
	References

