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Abstract
When a pairing e ∶ �1 × �2 → �T , on an elliptic curve E defined over a finite 
field �q , is exploited for an identity-based protocol, there is often the need to hash 
binary strings into �1 and �2 . Traditionally, if E admits a twist Ẽ of order d, then 
�1 = E(�q) ∩ E[r] , where r is a prime integer, and �2 = Ẽ(�qk∕d ) ∩ Ẽ[r] , where 
k is the embedding degree of E w.r.t. r. The standard approach for hashing into 
�2 is to map to a general point P ∈ Ẽ(�qk∕d ) and then multiply it by the cofactor 
c = #Ẽ(�qk∕d )∕r . Usually, the multiplication by c is computationally expensive. In 
order to speed up such a computation, two different methods—by Scott et al. (Inter-
national conference on pairing-based cryptography. Springer, Berlin, pp 102–113, 
2009) and by Fuentes-Castaneda et al. (International workshop on selected areas in 
cryptography)—have been proposed. In this paper we consider these two methods 
for BLS pairing-friendly curves having k ∈ {12, 24, 30, 42, 48} , providing efficiency 
comparisons. When k = 42, 48 , the application of Fuentes et  al. method requires 
expensive computations which were infeasible for the computational power at our 
disposal. For these cases, we propose hashing maps that we obtained following 
Fuentes et al. idea.
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1 Introduction

1.1  Pairings in cryptography

Pairings on elliptic curves have been first used in cryptography to transport ellip-
tic curve discrete logarithms into finite field discrete logarithms[15, 28], for which 
there are index-calculus algorithms running in subexponential time. In recent years, 
several protocols have been proposed with pairings on elliptic curves as building 
blocks. Among them, it is possible to enumerate Joux’s three party key agreement 
protocol[21], a non-interactive key-exchange[32], an identity-based encryption[8], 
and a short signatures scheme[9].

Traditionally, pairings that have been considered for applications are the Tate 
and Weil pairings on elliptic curves over finite fields, and other related pairings, for 
example the Eta pairing[5], the Ate pairing[20], and their generalisations[19]. For a 
given finite field �q and an elliptic curve E defined over it, all these pairings take as 
inputs points on E(�q) or on E(�qk ) - where �qk is an extension field of the base field 
�q - and return as outputs elements of (�qk )∗.

In this paper we will only consider asymmetric pairings e. In particular, given a 
prime r such that r||#E(�q) (i.e. r|#E(�q) but r2 ∤ #E(�q) ), then e will be of the form:

where �1 and �2 are elliptic curve subgroups of order r defined as:

• �1 = E(�q) ∩ E[r],
• �2 = {(x, y) ∈ E(�qk )|(xq, yq) = [q](x, y)} ∩ E[r],

while �T is a subgroup of order r of (�qk )∗ . With k is denoted the embedding degree 
of E with respect to r, i.e. the smallest positive integer such that r ∣ qk − 1.

For pairing-based cryptosystems to be secure, the discrete logarithm problems 
on both E(�q) and (�qk )∗ must be computationally infeasible. Those elliptic curves 
providing a fixed level of security along with efficiency of computations are called 
pairing-friendly elliptic curves.

1.2  Families of pairing‑friendly elliptic curves

The first formal definition of pairing-friendly elliptic curves has been formulated 
by Freeman et al. in their comprehensive paper[14]. The works of Balasubramanian 
and Koblitz[2] and Luca et al.[26] show that pairing-friendly elliptic curves are rare, 
and hence they require dedicated constructions. In recent years a number of meth-
ods for constructing such curves have been proposed[6, 7, 10, 13, 22, 29]. The gen-
eral pattern is the same for all of them: given an embedding degree k, three integers 
n, r, q for which there exists an elliptic curve E defined over �q and such that

• #E(�q) = n,

e ∶ �1 × �2 → �T
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• r||n,
• k is the embedding degree of E w.r.t. r

are computed. Then the complex multiplication (CM) method[31] is used to deter-
mine the equation of the above elliptic curve E.

However, instead of producing single pairing-friendly elliptic curves by means of 
specific integers k, n, r, q, all the cited methods produce families of pairing-friendly 
elliptic curves. In particular, the integers n,  r,  q are replaced by suitable polyno-
mials n(x), r(x), q(x) ∈ ℚ[x] . For some appropriate x0 ∈ ℤ , n(x0), r(x0), q(x0) are 
integers such that there exists an elliptic curve E defined over �q(x0) , having n(x0) 
rational points, with r(x0)||n(x0) , and k as embedding degree w.r.t. r(x0) . The tri-
ple {n(x), r(x), q(x)} defines a family of pairing-friendly elliptic curves, each of them 
parametrised by the integers n(x0), r(x0), q(x0) for some x0 ∈ ℤ . If for every x0 ∈ ℤ 
there exists an elliptic curve with n(x0), r(x0), q(x0) as parameters, the family defined 
by {n(x), r(x), q(x)} is said complete, otherwise it is called sparse.

The paring-friendly (sparse or complete) families of curves obtained with the 
methods enumerated above are known as MNT curves[29], BLS curves[6, 10], BN 
curves[7], Freeman curves[13] and KSS curves[22], respectively.

1.3  Hashing to �
2

When pairings on elliptic curves are exploited for identity-based protocols, there is 
often the need to map binary strings into �1 or �2 in a seemingly random fashion. 
These problems are known as hashing to �1 and hashing to �2 respectively.

Hashing to �1 is relatively easy. In fact, since �1 is the unique subgroup of order 
r in E(�q) (thanks to the assumption r||#E(�q) ), the standard approach is to hash 
to a general point P ∈ E(�q) and then multiply it by the cofactor c = #E(�q)∕r . On 
the other hand, if E admits a twist of degree d that divides k, then �2 is isomorphic 
to Ẽ(�qk∕d ) ∩ Ẽ[r] for a unique degree d twist Ẽ of E[20]. Consequently the same 
approach can be used for hashing into �2 . Nevertheless, the latter requires a multi-
plication by a large cofactor and hence expensive computations.

We note that the intermediate step of hashing into a general rational point should 
be handled carefully for efficiency and security reasons. In particular, some crypto-
systems are proved to be secure when such an intermediate hash function is mod-
elled as a random oracle into the curve. In order to guarantee its secure replace-
ment with the random oracle, the concept of indifferentiable hash function has been 
introduced[11].

1.4  Related work

In 2009, Scott et  al.[33] exploited an efficiently-computable endomorphism 
𝜓 ∶ Ẽ → Ẽ to reduce the computational cost of the cofactor multiplication required 
for hashing to �2 . An improvement of this method was then proposed by Fuentes 
et  al.[16]. Since pairing-friendly families vary significantly, in order to highlight 
the benefits of the two methods, families of curves were considered case-by-case 
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in[33] and in[16]. In particular, both papers focus on BN curves with k = 12 , Free-
man curves with k = 10 and KSS curves with k = 8, 18 . However, new advances on 
the Number Field Sieve ([4, 23, 24]) for computing discrete logarithms in multipli-
cative groups of finite fields, and hence in �T , have decreased the security of some 
asymmetric parings, including those built on BN curves[3, 27]. In the light of these 
results, BLS curves are attracting more interest for efficiency reasons, since their 
security has been only slightly reduced by recent NFS advances[3, 27].

A developer using pairings on BLS curves for cryptosystems needing to hash to 
�2 during their execution, has to tackle the expensive cofactor multiplications in 
�2 . Scott et  al. and Fuentes et  al. methods are the only two proposed so far, that 
improve on standard point multiplication on elliptic curves. In the light of this, the 
developer has to choose one of these two methods in order to optimise their imple-
mentation. However, to the best of our knowledge, there are not published sources 
explicitly applying both Scott et al. and Fuentes et al. methods to BLS curves with 
k ∈ {12, 24, 30, 42, 48} , and providing efficiency comparison of the outcomes.

1.5  Contributions and outline

In this paper that gap is filled for BLS curves having k = 12, 24, 30 , and efficiency 
comparisons of the results obtained with the two methods are presented. Such a 
comparison contrasts with a recently-published book[12], where it is stated that, for 
BLS curves with k = 12, 24 , the most efficient method for mapping into �2 is the 
one proposed by Scott et al.

Scott et al. and Fuentes et al. methods both require a pre-computation to obtain 
parameterised hashing formulas valid for all the curves that belong to a specific fam-
ily of pairing-friendly curves. In particular, Scott et  al. method needs polynomial 
modular arithmetic, while Fuentes et al. method goes through the application of a 
generalisation of the LLL algorithm to a polynomial matrix, in order to obtain a lat-
tice’s polynomial h(z) having small coefficients. We executed the former computa-
tion not just for BLS curves with k ∈ {12, 24, 30} , but also for BLS curves having 
k = 42, 48 . On the other hand, the latter computation is prohibitive as the embedding 
degree k grows. Consequently, we were able to explicitly apply Scott et al. method 
also to BLS curves with k = 42, 48 , but we were not able to accomplish the same for 
Fuentes et al. method. Nevertheless, for the cases k = 42 and k = 48 here we pro-
pose suitable polynomials �(z) having bounded coefficients, which allow to speed up 
the execution of cofactor multiplications with respect to Scott et al. method.

Our efficiency conclusions are that hashing on BLS curves following Fuentes et al. 
method is faster than applying Scott et al. method, for every k ∈ {12, 24, 30, 42, 48}.

The remainder of this paper is organized as follows. In Sect. 2 we recall Scott 
et  al. and Fuentes et  al. methods. For the sake of easy reference, in Sect.  2.1 we 
summarise BLS curves’ parameters. In Sect. 3, Scott et al. method is applied to BLS 
curves with embedding degree k ∈ {12, 24, 30, 42, 48} . In Sect.  4, Fuentes et  al. 
method is applied to BLS curves with k ∈ {12, 24, 30} . The proposed polynomials 
�(z) , for BLS curves with k = 42, 48 , are the subject of Sect. 5. Finally, in Sect. 6 an 
efficiency comparison of the obtained results is provided.



1 3

Efficient hash maps to  on BLS curves  

2  Known methods for efficiently mapping into �2

The problem of generating random points in �2 , known as hashing to �2 , is usu-
ally solved selecting a random point P ∈ Ẽ(�qk∕d ) and then computing [c]P, where 
c is the cofactor defined as c = #Ẽ(�qk∕d )∕r . Due to the size of c, this scalar multi-
plication is generally expensive and consequently a bottleneck in hashing to �2.

In[18], Gallant, Lambert and Vanstone give a method to speed up scalar mul-
tiplications [w]P in E(�q)[r] . This method is based on the knowledge of a non-
trivial multiple of the point P, that is obtained from an efficiently computable 
endomorphism � ∶ E → E such that �(P) is a multiple of P. Building on this 
idea, Galbraith and Scott[17] reduced the computational cost of multiplying by 
the cofactor c introducing a suitable group endomorphism 𝜓 ∶ Ẽ → Ẽ . Such an 
endomorphism is defined as � = �

−1
◦�◦� , where � is the q-power Frobenius on 

E and � is an isomorphism from the twist curve Ẽ to E. The endomorphism � 
satisfies

for all P ∈ Ẽ(�qk∕d ) . In the above relation t is the trace of Frobenius q + 1 − #E(�q) . 
Galbraith and Scott proposed to first express the cofactor c to the base q as

and then use (1) to simplify the multiplication cP as

where ∣ gi ∣< q for every i.

2.1  Scott et al. method

The above approach was further developed by Scott et  al. in[33], where it is 
applied to several families of pairing-friendly curves. In particular, the curves 
taken into account in[33] are: the MNT curves for the case k = 6 , the BN curves 
with k = 12 , the Freeman curves with k = 10 and the KSS curves for the cases 
k = 8 and k = 18 . It is important to highlight that all these families are com-
posed by curves defined over a prime field �p , with p, the order r and the trace 
t expressed as polynomials having rational coefficients. Consequently, also the 
cofactor c can be described as a polynomial in ℚ[x] . Thanks to such a parame-
terisation, Scott et al. speed up the cofactor multiplication [c]P reducing it to the 
evaluation of a polynomial of the powers � i(P) , with coefficients that are poly-
nomials in x. Such coefficients are obtained by means of polynomial modular 
arithmetic. In particular, due to Euclidean Division, all these coefficients have 
degrees smaller than deg(p(x)) (for the same reason, numerical coefficients gi are 
bounded by q).

(1)�
2(P) − [t]�(P) + [q]P = ∞

(2)c = c0 + c1q +⋯ + c
𝓁
q𝓁

(3)[g0]P + [g1]�(P) +⋯ + [g2𝓁]�
2𝓁(P)
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2.2  Fuentes et al. method

Fuentes et al.[16] improved Scott et al. method observing that, in order to obtain 
a non-zero multiple of P ∈ Ẽ(�

k∕d
q ) having order r, it is sufficient to multiply P by 

c′ , a multiple of c such that c� ≢ 0 (mod r) . In particular they proved the follow-
ing result (see[16], page 11):

Theorem 1 If Ẽ(�qk∕d ) is cyclic and q ≡ 1 (mod d), then there exists a polynomial

such that:

• h(�)P is a multiple of [c]P for all P ∈ Ẽ(�qk∕d );
• the coefficients of h(z) satisfy ∣ hi ∣�(k)≤ c for all i.

We note that here � stands for the Euler’s totient function, while � is the effi-
ciently computable endomorphism satisfying (1).

The first condition about h(z) gives a tool for computing a multiple of [c]P as 
the sum of some scalar multiplications. These multiplications are computation-
ally light since their scalar factors are bounded thanks to the second condition 
satisfied by h(z).

The proof of Thereom 1 is by construction and, exploiting the LLL algorithm 
of Lenstra, Lenstra and Lovasz[25], it leads to a procedure to explicitly compute 
h(z). For the sake of easy reference we briefly sketch the proof’s steps.

With ñ we denote the cardinality #Ẽ(�qk∕d ) = qk∕d + 1 − t̃ , with f̃  the integer 
such that t̃2 − 4qk∕d = Df̃ 2 (where D is square-free) and, analougously, with f the 
integer for which t2 − 4q = Df 2 holds.

First of all it is observed that, for every point P ∈ Ẽ(�qk∕d ) , it holds �(P) = [a]P 
with:

and therefore h(�)P = [h(a)]P . Then, the relation

is obtained. Hence 𝛷k(a) ≡ 0 (mod ñ) , where �k is the k-th cyclotomic polynomial 
(which has degree equal to �(k) ). This allows to restrict the search of h(z) into the 
set of all polynomials of ℤ[z] having degree less than �(k) . Denoting with a the col-
umn vector with i-entry −ai , if we consider the vectors of the integer lattice gener-
ated by the matrix

(4)h(z) = h0 + h1z +⋯ + h
�(k)−1z

�(k)−1 ∈ ℤ[z]

(5)a =
t

2
±

f (t̃ − 2)

2f̃

(𝜓∣Ẽ(�
qk∕d

))
k = idẼ(�

qk∕d
)
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as coefficients of 1, z, z2 , … , z�(k)−1 respectively, we obtain polynomials h(z) ∈ ℤ[z] 
such that h(a) ≡ 0 (mod c) . Finally, it is observed that the considered lattice and 
the convex set generated by all vectors of the form (± ∣ c ∣1∕�(k),… ,± ∣ c ∣1∕�(k)) 
have non-empty intersection. A lattice element lying in this intersection could be 
obtained using the LLL algorithm[25]; such an element determines the coefficients 
of a polynomial h(z) ∈ ℤ[z] with the desired properties.

In[16], such a polynomial is obtained for the BN curves with k = 12 , the 
Freeman curves with k = 10 , the KSS curves for the cases k = 8 and k = 18 . As 
already observed, these families are composed by curves defined over a prime 
field �p , with p, the order r and the trace t expressed as polynomials having 
rational coefficients. Consequently, also the cofactor c and the scalar a can be 
described as a polynomials in ℚ[x].

The matrix M obtained considering the parameterised forms of c and a is

where a(x) is the column vector with i-entry −ai(x) (mod c(x)) , and it generates 
a lattice in ℚ[x]�(k) . Exploiting the algorithm in[30], the matrix M could be trans-
formed into a new matrix M′ having as rows the elements of a reduced basis for 
the lattice. Considering the polynomials composing a row of M′ as coefficients 
of 1, z, z2 , … , z�(k)−1 respectively, Fuentes et al. were able to obtain a polynomial 
h(z) =

∑
i hi(x)z

i ∈ ℤ[x][z] satisfying the following two conditions: 

 (CI) h(a(x)) ≡ s(x)c(x) (mod ñ(x)) , with gcd(s(x), r(x)) = 1 , for some s(x) ∈ ℚ[x]

;
 (CII) deg(hi(x)) ≤ deg(c(x))∕�(k) , where � is the Euler’s totient function.

The first condition assures that [a(x0)]P is a non-zero multiple of [c(x0)]P for 
every value x0 ∈ ℤ of the parameter x, and that such a multiple can be computed 
as the sum of some scalar multiplications. These multiplications are computa-
tionally light thanks to the second condition in which scalar factors are bounded.

Consequently, for each of the curves in the above pairing-friendly families, 
Fuentes et al. compute a formula for hashing into �2 that is valid for every curve 
in the family itself. In particular, the cofactor multiplication [c(x)]P is reduced 
to the evaluation of a polynomial of the powers � i(P) , with coefficients that are 
polynomials in x. Comparing their computational results with those of Scott 
et al. method for the same families, Fuentes et al. provided evidence that their 
method is faster for all the considered curves.

M =

[
c �

� I
�(k)−1

]

M =

[
c(x) �

�(x) I
�(k)−1

]
,
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2.3  BLS curves

Families of pairing-friendly curves vary significantly, hence it is not possible to 
a priori determine if one of the two above hashing methods is more efficient than 
the other for a given family. BLS curves are recently gaining increasing inter-
est[3, 27]. Thus it is of great concern to determine also for these curves which is, 
among Scott et al. and Fuentes et al. methods, the more efficient one. In[12, Sec. 
8.5], Scott et al. method is explicitly applied to BLS curves having k ∈ {12, 24} , 
and authors state that in these cases the most efficient method for hashing into �2 
is the one proposed by Scott et al.

In this paper we deduce the formulas derived from the application of both 
methods to BLS curves having k = {12, 24, 30} , and we provide evidences that, 
on the contrary, the most efficient method is the one of Fuentes et  al. Further-
more, we apply Scott et al. method also to BLS curves with k ∈ {42, 48} . On the 
other hand, the computations necessary, within Fuentes et al. method, to obtain 
the polynomial h(z) for BLS curves having k = 42, 48 were infeasible for the com-
putational power at our disposal. Nevertheless, in Sect. 5 we propose two poly-
nomials �(z) , for the cases k = 42 and k = 48 , that fully satisfies and almost fully 
satisfies conditions (CI), (CII), respectively. In particular, in both cases �(a(x)) 
is congruent to a multiple of c(x) modulo ñ(x) , i.e. �(�)P is a multiple of [c(x)]P 
for all P ∈ Ẽ(�qk∕d ) . Furthermore, for k = 48 the proposed polynomial satisfies the 
relation deg(�i(x)) ≤ deg(c(x))∕�(k) for every i, while for k = 42 this condition 
holds for every �i(x) except �0(x) , that has degree equal to ⌊deg(c(x))∕�(k)⌋ + 1.

We conclude this section briefly recalling BLS curves’ parameters. Barreto, 
Lynn and Scott[6], and Brezing and Weng[10] proposed a polynomial parameteri-
sation for complete families of pairing-friendly curves having prime fields �p as 
basefields, fixed embedding degrees, and short Weierstrass equations of the form 
y2 = x3 + b.

In the following, we consider only those BLS curves with embedding degree 
k ≡ 0 (mod 6) , and such that 18 ∤ k . This choice is due to efficiency reasons, since 
each of such curves admits a twist having the highest possible degree d = 6[20], 
allowing to consider �2 as a subgroup of Ẽ(�pk∕6) . In this case BLS curves are 
parameterised by the following polynomials[14]:

where �k is the cyclotomic polynomial of order k.

p(x) =
1

3
(x − 1)2(xk∕3 − xk∕6 + 1) + x

r(x) =�k(x)

t(x) =x + 1,
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3  Scott et al. method on BLS curves

In this section Scott et  al. hashing method is applied to BLS curves having 
embedding degree k equal to 12, 24, 30, 42 and 48 respectively. Such an applica-
tion requires first to determine the cardinality ñ(x) ∈ ℚ[x] of Ẽ(�p(x)k∕d ) - where 
d, in what follows, is always equal to 6 - and then to execute polynomial modu-
lar arithmetic as briefly described in the previous section (for further details the 
reader could refer to Algorithm 2 in[33]).

3.1  BLS‑12

For BLS curves with k = 12 , the prime p and the group order r are parameterised by 
the polynomials:

Since k∕d = 2 , the group �2 is expressed as a subgroup of Ẽ(�p(x)2 ) and the cofactor 
c(x) is:

Given some rational point P ∈ Ẽ(�p(x)2 ) , Scott et al. method reduces the scalar multi-
plication [3c(x)]P to

We consider [3c(x)]P instead of [c(x)]P to ignore the common denominator of 3 that 
occurs writing c(x) to the base p(x). According to[12, sec. 8.5], scalar multiplication 
(7) can be computed at the cost of 6 point additions, 2 point doublings, 3 scalar mul-
tiplications by the parameter x and 3 applications of �.

3.2  BLS‑24

With the name BLS-24 we denote the BLS family of elliptic curves having embedding 
degree k equal to 24. Such curves are parameterised by the polynomials:

As before, we consider [3c(x)]P instead of [c(x)]P in order to ignore the common 
denominator of 3 that occurs writing c(x) to the base p(x). In this case �2 ⊂ Ẽ(�p(x)4 ) 
and the cofactor is a polynomial c(x) of degree 32. Applying Scott et al. method, the 
scalar multiplication [3c(x)]P - where P ∈ Ẽ(�p(x)4 ) - is reduced to

p(x) =
1

3
(x − 1)2(x4 − x2 + 1) + x

r(x) =x4 − x2 + 1.

(6)c(x) =
1

9
(x8 − 4x7 + 5x6 − 4x4 + 6x3 − 4x2 − 4x + 13).

(7)[x3 − x2 − x + 4]P + [x3 − x2 − x + 1]�(P) + [−x2 + 2x − 1]�2(P).

p(x) =
1

3
(x − 1)2(x8 − x4 + 1) + x

r(x) =x8 − x4 + 1.
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where �0, �1, �2, �3, �4, �5, �6 are polynomials of ℤ[x] of degrees less than or equal 
to 8. For the sake of readability, these polynomials are fully reported in “Appendix”. 
According to[12, sec. 8.5], the multiplication [3c(x)]P can be computed at the cost 
of 21 point additions, 4 point doublings, 8 scalar multiplications by the parameter x 
and 6 applications of �.

3.3  BLS‑30

BLS curves having embedding degree k = 30 are parameterised by:

In this case the cofactor is a polynomial c(x) of degree 52 while �2 is a subgroup of 
order r(x) of Ẽ(�p(x)5 ) . Given some rational point P ∈ Ẽ(�p(x)5 ) , Scott et al. method 
leads to express the scalar multiplication [3c(x)]P as:

where {�j ∣ j = 0,… , 8} are polynomials of ℤ[x] having degrees less than or equal to 
11 (see “Appendix” for their details). The multiplication [3c(x)]P can be computed 
at the cost of 82 point additions, 16 point doublings, 11 scalar multiplications by the 
parameter x and 67 applications of �.

3.4  BLS‑42

In the case of BLS curves having k = 42 , �2 is the subgroup Ẽ(�p(x)7 ) ∩ Ẽ[r(x)] , 
where:

The cofactor is parameterised by a polynomial c(x) of degree 100. Writing it to the 
base p(x), the scalar multiplication [3c(x)]P, with P ∈ Ẽ(�p(x)7 ) , is reduced to

where {�j ∣ j = 0,… , 12} are polynomials in x with integral coefficients and degrees 
less than or equal to 15 (see “Appendix” for their complete form). Then [3c(x)]P can 

(8)[�0]P +

6∑
i=1

[�i]�
i(P)

p(x) =
1

3
(x − 1)2(x10 − x5 + 1) + x

r(x) =x8 + x7 − x5 − x4 − x3 + x + 1.

(9)[�0]P +

8∑
i=1

[�i]�
i(P)

p(x) =
1

3
(x − 1)2(x14 − x7 + 1) + x

r(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x + 1.

(10)[�0]P +

12∑
i=1

[�i]�
i(P)
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be computed at the cost of 151 point additions, 54 point doublings, 15 scalar multi-
plications by the parameter x and 125 applications of �.

3.5  BLS‑48

For BLS curves having k = 48 , the prime p and the group order r are parameterised 
by the polynomials:

The cofactor c(x) is a polynomial of degree 128 and �2 is a subgroup of Ẽ(�p(x)8 ) . 
Given some rational point P ∈ Ẽ(�p(x)8 ) , Scott et al. method reduces the scalar multi-
plication [3c(x)]P to

where {�j ∣ j = 0,… , 14} are polynomials of ℤ[x] having degrees less than or equal 
to 16 (see “Appendix” for details). As in previous cases, we consider [3c(x)]P 
instead of [c(x)]P for the common denominator of 3 that occurs writing c(x) to the 
base p(x). This scalar multiplication can be computed at the cost of 132 point addi-
tions, 120 point doublings, 16 scalar multiplications by the parameter x and 130 
applications of �.

4  Fuentes et al. method on BLS curves with k = 12, 24, 30

In this section we apply Fuentes et al. hashing method to BLS curves having embed-
ding degree k equal to 12, 24 or 30. We have already noticed that this method 
requires an expensive one-off pre-computation in order to obtain the polynomial 
h(z). Such a computation was infeasible, for the computational power at our dis-
posal, when k ∈ {42, 48} . This two cases will be considered in the next section.

4.1  BLS‑12

For BLS curves with k = 12 , the parameter a, deduced from (5), is parameterised by 
the following polynomial in x:

Reducing the matrix

p(x) =
1

3
(x − 1)2(x16 − x8 + 1) + x

r(x) = x16 − x8 + 1.

(11)[�0]P +

14∑
i=1

[�i]�
i(P)

a(x) =
1

2

(
t(x) + f (x)

t̃(x) − 2

f̃ (x)

)
≡

25

299
x11 −

25

69
x10 +

508

897
x9 −

268

897
x8 −

112

897
x7+

+
586

897
x6 −

518

897
x5 −

126

299
x4 +

367

299
x3 −

215

897
x2 +

64

299
x +

41

69
(mod ñ(x)).
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by means of the algorithm[30], we obtain

If we consider the 4-th row of M′ , the polynomial h(z) can be defined as

and so

with gcd (3x2 − 3, r(x)) = 1 . Hence, if P ∈ Ẽ(�p(x)2 ) , then [h(a(x))]P is a multiple of 
[c(x)]P. In particular:

that can be computed at the cost of 5 point additions, 1 point doubling, 2 scalar mul-
tiplications by the parameter x and 3 applications of �.

4.2  BLS‑24

Proceeding as in the previous case also for the BLS curves having k = 24 , we obtain a 
polynomial a(x) of degree 39, and h(z) defined as:

with h(a(x)) congruent to (3x4 − 3)c(x) modulo ñ(x) . Since gcd (3x4 − 3, r(x)) = 1 , 
the following map sends a point P ∈ Ẽ(�p(x)4 ) to a point of �2:

To compute the image of P, such a map requires 9 point additions, 1 point doubling, 
4 scalar multiplications by x and 10 applications of the endomorphism �.

M =

⎡
⎢⎢⎢⎣

c(x) 0 0 0

−a(x) mod c(x) 1 0 0

−a(x)2 mod c(x) 0 1 0

−a(x)3 mod c(x) 0 0 1

⎤
⎥⎥⎥⎦

M� =

⎡
⎢⎢⎢⎣

−x + 1 − 2 x − 1 x2 − x + 1

−2 0 x2 − x + 1 x − 1

0 x2 − x − 1 x − 1 2

x2 − x − 1 x − 1 2 0

⎤⎥⎥⎥⎦
.

(12)h(z) =

4∑
i=1

M�(4, i)zi−1 = (x2 − x − 1) + (x − 1)z + 2z2

h(a(x)) = (x2 − x − 1) + (x − 1)a(x) + 2a(x)2 ≡ (3x2 − 3)c(x) (mod ñ(x))

(13)[h(a(x))]P = h(�)P = [x2 − x − 1]P + [x − 1]�(P) + [2]�2(P),

(14)h(z) = (x4 − x3 − 1) + (x3 − x2)z + (x2 − x)z2 + (x − 1)z3 + 2z4

(15)
P ↦ [x4 − x3 − 1]P + [x3 − x2]�(P) + [x2 − x]�2(P) + [x − 1]�3(P) + [2]�4(P).
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4.3  BLS‑30

In the case of BLS curves having embedding degree k = 30 , Fuentes et al. method 
leads to a polynomial a(x) having degree equal to 59 and to a polynomial h(z) 
defined as follows:

with h(a(x)) congruent to (3x5 − 3)c(x) modulo ñ(x) . Hence the following map

returns a point of �2 = Ẽ(�p(x)5 ) ∩ Ẽ[r(x)] when applied to P ∈ Ẽ(�p(x)5 ) , since 
gcd(3x5 − 3, r(x)) = 1 . The image (17) can be computed at the cost of 25 point addi-
tions, 2 point doubling, 5 scalar multiplications by the parameter x and 27 applica-
tions of �.

5  Fuentes et al. method for BLS curves with k = 42, 48

From previous section, we can observe that the degree of the polynomial a(x) 
grows when k grows. The results provided in Sect.  3 show that the same holds 
also for c(x). This affects the sizes of the polynomials composing the matrix 
M, and then the computational cost necessary to reduce it. The computational 
power at our disposal did not allow us to complete the application of Fuentes 
et al. method to BLS curves with k = 42 or k = 48 . Nevertheless, the aim of this 
section is to provide two polynomials �(z) that resemble the polynomial h(z) of 
Theorem 1. We begin considering the case k = 48.

5.1  BLS‑48

We note that two of the polynomials h(z) obtained in the previous section, pre-
cisely (12) and (14), share some common features:

• they both have degree k/6;
• their leading coefficients are equal to 2;
• given zi , its coefficient is xdeg(h(z))−i − xdeg(h(z))−i−1 whenever 0 < i < k∕6;
• the constant terms are equal to xdeg(h(z)) − xdeg(h(z))−1 − 1.

(16)

h(z) =(x5 − x4 − 1) + (−x5 + 2x4 − x3 + 1)z + (x5 − 2x4 + 2x3 − x2 − 1)z2

+ (x4 − 2x3 + 2x2 − x)z3 + (x3 − 2x2 + 2x − 1)z4 + (x2 − 2x + 3)z5

+ (x − 3)z6 + 2z7

(17)

P ↦[x5 − x4 − 1]P + [−x5 + 2x4 − x3 + 1]�(P)

+ [x5 − 2x4 + 2x3 − x2 − 1]�2(P) + [x4 − 2x3 + 2x2 − x]�3(P)

+ [x3 − 2x2 + 2x − 1]�4(P) + [x2 − 2x + 3]�5(P) + [x − 3]�6(P)

+ [2]�7(P)
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When k = 48 , the polynomial �(z)

has the above features and, surprisingly, satisfies the two conditions (CI), (CII), as 
proved in the following.

Proposition 2 Given a BLS curve E, defined over �p(x) and having k = 48, the 
polynomial

satisfies the two conditions:

• �(�)P is a multiple of [c(x)]P for all P ∈ Ẽ(�p(x)k∕d );
• the coefficients �i of �(z) satisfy deg(�i(x)) ≤ deg(c(x))∕�(k) for all i.

and so the map

returns a point of �2 = Ẽ(�p(x)8 ) ∩ Ẽ[r(x)] for every P ∈ Ẽ(�p(x)8 ).

Proof Deducing a(x) from relation (5), it follows that:

with gcd (3x8 − 3, r(x)) = 1 . Furthermore, denoting with �0(x),… , �8(x) the coef-
ficients of �(z) , it is easy to observe that deg(�i(x)) ≤ deg(c(x))∕�(k) for all 
i ∈ {0,… , 8} , since c(x) has degree 128 and �(48) = 16 .   ◻

The image (18) can be computed at the cost of 17 point additions, 1 point doubling, 
8 scalar multiplications by the parameter x and 36 applications of �.

5.2  BLS‑42

The same approach does not work for the case of BLS curves with embedding degree k 
equal to 42. Indeed, for k = 42 , the polynomial

�(z) = (x8 − x7 − 1) +

7∑
i=1

(x8−i − x7−i)zi + 2z8

�(z) = (x8 − x7 − 1) +

7∑
i=1

(x8−i − x7−i)zi + 2z8,

(18)P ↦ [x8 − x7 − 1]P +

7∑
i=1

[x8−i − x7−i]� i(P) + [2]�8(P)

�(a(x)) ≡ 3(x8 − 1)c(x) mod ñ(x)

(x7 − x6 − 1) +

6∑
i=1

(x8−i − x7−i)zi + 2z7
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satisfies the above features but it is not a multiple of c(x). However, we observed that 
the following relation holds:

Defining �(z) as (x2 − x + 1)((x7 − x6 − 1) +
∑6

i=1
(x8−i − x7−i)zi + 2z7) , we were able 

to obtain a multiple of c(x) that almost satisfies the two conditions (CI), (CII). This 
is specified in the following proposition.

Proposition 3 Given a BLS curve E, defined over �p(x) and having k = 42, the 
polynomial

is such that:

• �(�)P is a multiple of [c(x)]P for all P ∈ Ẽ(�p(x)k∕d );
• the coefficients �i of �(z) satisfy deg(�i(x)) ≤ deg(c(x))∕�(k) for all i ≠ 0;
• the constant term �0 of �(z) has degree equal to ⌊deg(c(x))∕�(k)⌋ + 1.

Hence the map

returns a point of �2 = Ẽ(�p(x)7 ) ∩ Ẽ[r(x)] for every P ∈ Ẽ(�p(x)7 ).

Proof Once that a(x) is deduced from relation (5), it could be verified by computa-
tions that:

with gcd (3x7 − 3, r(x)) = 1.
Denoting with �0(x),… , �7(x) the coefficients of �(z) , it could be observed that
deg(�i(x)) ≤ deg(c(x))∕�(k) for all i ∈ {1,… , 7} , since c(x) has degree 100 and 

�(42) is equal to 12. The degree of �0(x) is equal to ⌊deg(c(x))∕�(k)⌋ + 1 .   ◻

The image (20) can be computed at the cost of 33 point additions, 1 point 
doubling, 9 scalar multiplications by the parameter x and 42 applications of � . 
We observe that �(z) does not fully satisfies the condition (CII), since the degree 

((x7 − x6 − 1) +

6∑
i=1

(x8−i − x7−i)zi + 2z7)∕c(x) = 3(x7 − 1)∕(x2 − x + 1).

(19)

�(z) =
(
x9 − 2x8 + 2x7 − x6 − x2 + x − 1

)

+

6∑
i=1

(
x9−i − 2x8−i + 2x7−i − x6−i

)
zi +

(
2x2 − 2x + 2

)
z7

(20)

P ↦h(�)P =
[
x9 − 2x8 + 2x7 − x6 − x2 + x − 1

]
P

+

6∑
i=1

[
x9−i − 2x8−i + 2x7−i − x6−i

]
�

i(P) +
[
2x2 − 2x + 2

]
�

7(P)

�(a(x)) ≡ 3(x7 − 1)c(x) mod ñ(x)
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of �0(x) = x9 − 2x8 + 2x7 − x6 − x2 + x − 1 is equal to ⌊deg(c(x))∕�(k)⌋ + 1 = 9 , 
instead of being of degree less than or equal to 8. A coefficient �0 with the latter 
degree would have save one point multiplication by the parameter x and a point 
addition. This gives an idea of the reason why the degrees of coefficients �i are 
relevant in terms of efficiency.

6  Comparisons and conclusions

Here we present an efficiency comparison between the hash maps into �2 found 
in the previous three sections. In Table  1, computational costs for hashing into 
�2 are reported. The second column refers to the results obtained applying Scott 
et al. method (see Sect. 3). The third column contains computational costs obtained 
applying Fuentes et al. method (see Sect. 4). The last column reports efficiency data 
relative to the hash functions we proposed in Sect. 5, that resemble those one would 
obtain applying Fuentes et al. method. With ‘A’ we denote a point addition, with ‘D’ 
a point doubling, with ‘Z’ a scalar multiplication by the parameter x and with ‘ � ’ an 
application of the endomorphism �.

We underline that, in each hashing map, the most significant component is the 
multiplication by x, since it computationally dominates the other operations. In fact, 
the algorithms to compute large scalar multiplications require many point additions 
and doublings. Furthermore, the endomorphism � can be efficiently computed.

In all the cases we have examined, the hash map found following Fuentes et al. 
method turned out to be more efficient than the one found with Scott et al. method. 
The hash maps of Sect. 4 were obtained applying rigorously Fuentes et al. method. 
For k = 12 we see a 3/2-fold improvement, for k = 24 the hash map is twice as 
fast as that of Scott et  al., while for k = 30 the hash map determines a 11/5-fold 
improvement.

Concerning BLS curves with k ∈ {42, 48} , we propose two suitable polynomials 
�(z) : one satisfies the two conditions (CI), (CII) deduced from Theorem 1 ( k = 48) ; 
the other is extremely tight to a polynomial fully satisfying such conditions ( k = 42 ). 
The hash function deduced for the case k = 42 leads to a 15/9-fold improvement 
with respect to the method of Scott et  al. For k = 48 , the introduced hash map is 
twice as fast as that of Scott et al.

Using the Apache Milagro Crypto Library [1] we implemented the hash maps (7) 
and (13), obtained applying Scott et al. and Fuentes et al. methods on BLS curves 

Table 1  Comparison between 
the computational cost of each 
hash map

Curve Scott et al. Fuentes et al. Our proposals

BLS-12 6A 2D 3Z 3 � 5A 1D 2Z 3 �
BLS-24 21A 4D 8Z 6 � 9A 1D 4Z 10�
BLS-30 82A 16D 11Z 67� 25A 2D 5Z 27�
BLS-42 151A 54D 15Z 125� 33A 1D 9Z 42�
BLS-48 132A 120D 16Z 130� 17A 1D 8Z 36�



1 3

Efficient hash maps to  on BLS curves  

with embedding degree k = 12 . In Table  2 we summarise the timing results of a 
benchmark test on the two maps.

These experimental results show that the hashing map obtained with Fuentes 
et  al. method is approximately 30% faster than the map obtained with Scott et  al. 
method, as we expected from Table 1.
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Appendix

In the following we report the polynomials in x which are the coefficients of the hash 
maps obtained applying Scott et al. method to BLS curves having k = 24, 30, 42, 48.

BLS‑24

Given a rational point P ∈ Ẽ(�p(x)4 ) , the map (8) sends P into the element 
[�0]P +

∑6

i=1
[�i]�

i(P) of �2 , where:

�0 = − 2x8 + 4x7 − 3x5 + 3x4 − 2x3 − 2x2 + x + 4,

�1 =x
5 − x4 − 2x3 + 2x2 + x − 1,

�2 =x
5 − x4 − x + 1,

�3 =x
5 − x4 − x + 1,

�4 = − 3x4 + x3 + 4x2 + x − 3,

�5 =3x
3 − 3x2 − 3x + 3,

�6 = − x2 + 2x − 1.

Table 2  Each value corresponds 
to the average time (in millisec-
onds) considered for each hash 
from a sample of 1000 hashes

Processor Scott et al. Fuentes et al.

Intel(R) Core(TM)  
i5-5257U 64-bit—2.7 GHz

2.83 ms 1.98 ms

Quad-core ARM  
Cortex A53 64-bit—1.2 GHz

50.26 ms 35.88 ms

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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BLS‑30

The map (9) sends P ∈ Ẽ(�p(x)5 ) into the element [�0]P +
∑8

i=1
[�i]�

i(P) ∈ �2 , with:

BLS‑42

The map (10) sends P ∈ Ẽ(�p(x)7 ) into the element [�0]P +
∑12

i=1
[�i]�

i(P) ∈ �2 , with:

�0 = x11 − x10 − 2x9 + 3x8 + 2x7 − 3x6 − x5 + 2x4 − x3 + 4x2 + x + 7,

�1 = x11 − 3x10 + 3x9 + x8 − 5x7 + x6 + 4x5 − x4 − 4x3 + 4x2 − 8x − 11,

�2 = − x10 + 4x9 − 6x8 + 5x7 − 2x6 + 2x5 − 5x4 + 4x3 − 3x + 11,

�3 = x8 − 2x7 + 2x6 − x5 − x4 + 2x3 − 2x2 + x,

�4 = x8 − 2x7 + 2x6 − x5 − x3 + 2x2 − 2x + 1,

�5 = − 4x7 + 3x6 + 2x5 − x4 − x3 + 2x2 + 3x − 4,

�6 = 6x6 − 7x5 − 3x4 + 8x3 − 3x2 − 7x + 6,

�7 = − 4x5 + 8x4 − 4x3 − 4x2 + 8x − 4,

�8 = x4 − 3x3 + 4x2 − 3x + 1.

�0 = − 4x15 + 7x14 − x13 − 4x12 + 4x11 + 2x10 − 4x9 + 5x8 − 4x7 − 2x6 + 2x5

− 2x4 − 4x3 + 9x2 + 5x + 9,

�1 =6x
15 − 7x14 − 9x13 + 15x12 − 14x10 + 7x9 − 2x8 − 5x7 + 13x6 − 3x5

− 7x4 + 11x3 + 6x2 − 22x − 19,

�2 = − 7x14 + 15x13 − 4x12 − 14x11 + 15x10 + 2x9 − 13x8 + 19x7 − 9x6 − 14x5

+ 15x4 − 16x2 + 4x + 22,

�3 =2x
13 − 6x12 + 6x11 + x10 − 8x9 + 8x8 − 3x7 − 9x6 + 12x5 + 2x4 − 13x3

+ 10x2 + 4x − 6,

�4 = − x12 + 4x11 − 6x10 + 5x9 − 2x8 + 3x5 − 7x4 + 5x3 + x2 − 5x + 3,

�5 =x
10 − 2x9 + 2x8 − x7 − x4 + 2x3 − 2x2 + x,

�6 =x
10 − 2x9 + 2x8 − x7 − x3 + 2x2 − 2x + 1,

�7 = − 6x9 − 2x8 + 2x7 + 6x6 + 6x3 + 2x2 − 2x − 6,

�8 =15x
8 + 5x7 − 19x6 − 8x5 + 14x4 − 8x3 − 19x2 + 5x + 15,

�9 = − 20x7 + 5x6 + 30x5 − 15x4 − 15x3 + 30x2 + 5x − 20,

�10 =15x
6 − 16x5 − 12x4 + 26x3 − 12x2 − 16x + 15,

�11 = − 6x5 + 12x4 − 6x3 − 6x2 + 12x − 6,

�12 =x
4 − 3x3 + 4x2 − 3x + 1.
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BLS‑48

The map (11) sends P ∈ Ẽ(�p(x)8 ) into the element [�0]P +
∑14

i=1
[�i]�

i(P) of �2 , 
where:
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