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Abstract

As global exploitation of available resources increases, operations extend towards sen-

sitive and previously protected ecosystems. It is important to monitor such areas in

order to detect, understand and remediate environmental responses to stressors. The

natural heterogeneity and complexity of communities means that accurate monitoring

requires high resolution, both temporally and spatially, as well as more complete

assessments of taxa. Increased resolution and taxonomic coverage is economically chal-

lenging using current microscopy-based monitoring practices. Alternatively, DNA

sequencing-based methods have been suggested for cost-efficient monitoring, offering

additional insights into ecosystem function and disturbance. Here, we applied DNA

metabarcoding of eukaryotic communities in marine sediments, in areas of offshore

drilling on the Norwegian continental shelf. Forty-five samples, collected from seven

drilling sites in the Troll/Oseberg region, were assessed, using the small subunit ribo-

somal RNA gene as a taxonomic marker. In agreement with results based on classical

morphology-based monitoring, we were able to identify changes in sediment commu-

nities surrounding oil platforms. In addition to overall changes in community struc-

ture, we identified several potential indicator taxa, responding to pollutants associated

with drilling fluids. These included the metazoan orders Macrodasyida, Macrostomida

and Ceriantharia, as well as several ciliates and other protist taxa, typically not tar-

geted by environmental monitoring programmes. Analysis of a co-occurrence network

to study the distribution of taxa across samples provided a framework for better

understanding the impact of anthropogenic activities on the benthic food web, generat-

ing novel, testable hypotheses of trophic interactions structuring benthic communities.
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Introduction

Traditional biodiversity assessments of marine sedi-

ments are based on taxonomic determination of fauna

using morphological characters (Gray 2000; Diaz et al.

2004). However, the temporal resolution varies between

environmental monitoring programmes (for Norwegian

Standard sampling guidelines, see ISO 5667-19:2004 and

ISO 16665:2014) and relatively low frequency sampling

limits in-depth understanding of stressors (Chariton

et al. 2010a; Baird & Hajibabaei 2012). Another con-

straint is that monitoring is typically focused on macro-

fauna (>1 mm fraction). To generate a more complete

and mechanistic understanding of marine benthic

ecosystems, the meio- and microfauna should also be

assessed (Bourlat et al. 2013). This may be especially

important to identify early-warning signs of disturbance
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(Cowart et al. 2015). Microbial eukaryotes are of vital

importance to marine ecosystems and, together with

prokaryotes, represent the base of the food web. Hence,

alterations in the composition of this base can generate

structural changes affecting the whole ecosystem.

In spite of the benefits of increased taxonomic and

temporal coverage, it is typically not considered eco-

nomically viable for routine monitoring programmes

(Borja & Elliott 2013; Bourlat et al. 2013) and most cur-

rent monitoring programmes are limited by the need

for highly trained taxonomists to laboriously examine

samples by microscopy (Hynes 1994; Maurer 2000). This

creates an analytical bottleneck, limiting more compre-

hensive sampling. In addition, accuracy is decreased

due to variable taxonomical skills, as well as problems

associated with cryptic species complexes (Chariton

et al. 2014; Cowart et al. 2015). Consequently, marine

reports and inventories frequently fail to detect or

determine the composition of significant taxonomic

groups, reducing their value for ecosystem assessment

(Schander & Willassen 2005; Bourlat et al. 2013).

Developments in DNA sequencing technology may

offer a solution to these shortcomings, with competitive

speed, cost and ease of use (Baird & Hajibabaei 2012).

Sequencing of environmental DNA using a taxonomic

marker such as 18S rRNA allows assessment of a broad

taxonomic spectrum of the eukaryotic community

(Chariton et al. 2014; Cowart et al. 2015; Gong et al.

2015; Lallias et al. 2015; Zimmermann et al. 2015). Com-

monly referred to as metabarcoding, this provides a

more complete description of biodiversity including

macro- and meiofauna (Baird & Hajibabaei 2012). This,

in turn, can improve the understanding of structural

changes in benthic ecosystems, enabling better assess-

ment and prediction of anthropogenic effects (Baird &

Hajibabaei 2012).

Indeed, studies investigating the diversity of eukary-

otic micro-organisms using metabarcoding in marine

sediments are becoming more common and have con-

firmed their key role in maintaining ecosystem function

(reviewed in Bik et al. 2012a).

A number of studies have evaluated the accuracy of

metabarcoding using mock communities with known

compositions of vertebrates (Valentini et al. 2015), zoo-

plankton (Brown et al. 2015; Elbrecht & Leese 2015) or

ciliates (Gong et al. 2013). The performance of metabar-

coding has also been directly compared to traditional

morphology-based identification in environmental sedi-

ment samples (e.g. Hajibabaei et al. 2011; Chariton et al.

2014; Kermarrec et al. 2014; Cowart et al. 2015; Pochon

et al. 2015; Zimmermann et al. 2015). Perhaps most rele-

vant for monitoring programmes, a number of studies

have evaluated the ability of metabarcoding to identify

shifts induced by contamination and other

anthropogenic impacts on total benthic communities

(Chariton et al. 2010b, 2014; Santos et al. 2010; Bik et al.

2012b), or within particular groups such as macro-

invertebrates (Hajibabaei et al. 2011; Lejzerowicz et al.

2015) or foraminifera (Pawlowski et al. 2014; Pochon

et al. 2015). These studies revealed a far greater biodi-

versity than microscopy and generally confirmed the

capacity to separate samples based on contamination or

other environmental characteristics. Thus, they verify

the potential of metabarcoding to improve our under-

standing of anthropogenic impacts and to guide regula-

tory agencies and stakeholders in coastal zone

management. Nonetheless, limitations in metabarcod-

ing, including lack of reference data, technical artefacts

and variable degrees of correlation to traditional mor-

phology-based species assessments (Brown et al. 2015;

Cowart et al. 2015), remain. Further studies and the

establishment of clearer methodological guidelines

(Baird & Hajibabaei 2012; Lallias et al. 2015) will be

important in overcoming the above limitations.

We assessed the use of metabarcoding, using the 18S

rRNA gene, for biomonitoring of samples adjacent to

offshore oil-drilling platforms on the Norwegian conti-

nental shelf. In particular, we focused on the relation-

ships between sequencing data and environmental

parameters, in comparison with classical morphology-

based characterization. We identified a number of puta-

tive indicator taxa, whose abundances were strongly

correlated with contamination levels, and evaluated a

co-occurrence network based on sequencing data, to

establish possible trophic links and other ecological

interactions in the benthos.

Materials and methods

Study site and samples

Sediments from the Norwegian continental shelf in the

North Sea, in the Troll–Oseberg offshore oil-drilling

region (Region III), were studied (Fig. S1, Supporting

information). We analysed 45 sediment samples from

different oilfields as part of ongoing periodic sampling

for environmental monitoring in 2010 by DNV for Sta-

toil Petroleum AS (DNV 2011). All samples were

located within 250–5000 m from oil platforms. The

fields studied were Oseberg C, D and G (‘OSEC’,

‘OSED’ and ‘OSEG’, respectively); Veslefrikk (‘VFR’);

and Tune. Sediments from Oseberg and VFR were com-

posed of fine to medium-fine sand, whereas Tune had

more coarse sand. Individual samples were also taken

from the oilfields Fram West (station A02) and Huldra

(station 9). Table S1 (Supporting information) lists all

samples with station of origin, geographical coordinates

and results of physiochemical measurements as they
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appear in the monitoring report by DNV (2011). Param-

eters include distance from platform; depth; sediment

grain size and composition (share of sand, silt/mud

and gravel); total organic material (TOM); total hydro-

carbons (THC); polycyclic aromatic hydrocarbons

(PAH); naphthalene phenanthrene and dibenzothio-

phene (NPD); and heavy metals Ba, Cd, Cr, Cu, Hg, Pb

and Zn.

For several of the samples studied, traditional

microscopy-based taxonomic classification and enumer-

ation of the macrofauna were available (DNV 2011).

These data were transformed to allow statistical analy-

sis, and duplicate taxa with ambiguous names were

merged (e.g. ‘spp.’ vs. ‘indet’; Table S2, Supporting

information).

Sample processing, DNA extraction, amplification and
sequencing

Sample processing and DNA extraction were essen-

tially performed as optimized for marine sediments

by Lekang et al. (2015). Aliquots of 50–100 g of sedi-

ment were transferred from each sample to a 250-mL

plastic container (Kautex Textron) and fixed with 96%

ethanol (to a final concentration of 80%). Samples

were stored at �20°C until further analysis. Ethanol

was removed prior to DNA extraction by centrifuga-

tion at 6000 g followed by pipetting. Genomic DNA

was extracted from ten 0.5 g replicates of each sedi-

ment using PowerSoil� DNA extraction kits (MO BIO

Laboratories Inc., Carlsbad, CA), to decrease hetero-

geneity and stochastic extraction effects. An equal vol-

ume of each replicate extraction was pooled prior to

PCR amplification.

PCR amplification targeting the V4-V5 region of the

18S rRNA gene was carried out using the barcode- and

adapter-linked primers F566 and R1200 (Hadziavdic

et al. 2014), with eight replicates per sample, each using

2.5 lL pooled, extracted DNA; with 25 lL HotStar Taq

Master Mix (Qiagen), 0.5 lM of each primer and 1 lg/
lL of BSA (Fermentas). A C100 Thermal Cycler (Bio-

Rad) was used with the following program: 95°C for

15 min and 35 cycles of 95°C for 45 s, 60°C for 45 s,

72°C for 1 min and a final extension step of 72°C for

10 min. Resulting amplicons were visualized on a 1.5%

agarose gel electrophoresis stained with GelRed (Bio-

tium). Successful PCR replicates were pooled, and fur-

ther concentrated using a vacuum centrifuge.

Concentrated amplicons were purified to remove pri-

mers and PCR reagents using Agencourt AMPure XP

(Beckman Coulter Inc.) following the manufacturer’s

recommendations. DNA concentrations were deter-

mined by Quant-iTTM PicoGreen� dsDNA quantification

kit (Invitrogen) and an ND3000

fluorospectrophotometer (Nanodrop Technologies Inc.),

using bacteriophage k DNA (Invitrogen) to produce the

DNA standard curve. Finally, amplicon libraries were

pooled in equimolar amounts.

Pyrosequencing was performed using a Genome

Sequencer FLX (454 Life Sciences) using titanium

reagents at the Norwegian Sequencing Center (Univer-

sity of Oslo, Norway). Three runs were carried out

using one-region gaskets, with 3–19 barcoded samples

included per run.

Quantitative real-time PCR

Eukaryotic and prokaryotic community DNA was quan-

tified by quantitative real-time PCR (qPCR). For each

sample, three replicates of 2 lL genomic DNA extract

were amplified with eukaryotic primers F566 and R1200

(Hadziavdic et al. 2014) and prokaryotic primers 1055F

and 1392R (Ferris et al. 1996), SsoAdvanced SYBR-Green

mix (Bio-Rad) and 1 lg/lL BSA (Fermentas) optimized

for qPCR assay (96–99% primer efficiency). A plasmid

dilution series (copy numbers: 108, 106, 104, 102) was

used for eukaryotes and prokaryotes as a standard

curve. The reaction was carried out using a CFX96TM

RealTime PCR Detection Systems (Bio-Rad).

Sequence analysis and multivariate statistics

Demultiplexed flowgram data (SFF files) were pro-

cessed using AmpliconNoise (Quince et al. 2011) with

default parameters. This program removes low-quality

reads including those not matching the forward primer

and performs iterative probabilistic clustering based on

flowgrams and base-called sequences, to correct arte-

facts from PCR and sequencing. Removal of chimeric

sequences was performed using Perseus, and sequence

data sets pooled and subjected to maximum distance

(complete linkage) hierarchical clustering using NDist

and FCluster (Quince et al. 2011), retaining read abun-

dance information from AmpliconNoise. An OTU fre-

quency table was derived for a divergence cut-off of 2%

(OTU98, used for subsequent analysis). Alternative OTU

tables used for evaluating the effect of varying the OTU

cut-off were also derived using 1% (OTU99), 3%

(OTU97) and 5% (OTU95). A fifth ‘plankton-filtered’

OTU98 table was derived by manually removing all

OTUs classified as taxa thought to be dominated by

pelagic organisms (OTUF). Representative OTU98

sequences were taxonomically classified using CREST

(SilvaMod) with default parameters except for a mini-

mum bitscore of 100 (Lanz�en et al. 2012). Based on clas-

sification, two additional OTU distribution tables were

derived as follows: exclusively metazoans and nonmeta-

zoans.
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Calculation of diversity estimates, multivariate statis-

tics and visualization was performed using the R vegan

package (Oksanen et al. 2013). Rarefied OTU98 richness

estimates (expected richness in a random subsample)

were calculated based on the lowest number of reads

for each taxonomic subset (total communities, meta-

zoans and nonmetazoans; function rarefy). Rarefied Pie-

lou evenness estimates were obtained using Shannon

diversity estimates divided by the logarithm of rarefied

richness. All analyses were limited to these rarefied

diversity estimates for amplicon data sets, as opposed

to microscopy-based species composition where other

measures were taken to prevent sampling bias (DNV

2011).

Sample-specific read abundances for OTU distribution

tables, as well as the classical morphology-based taxon

table, were transformed into relative abundances using

the function DECOSTAND (method = ‘total’, i.e. total reads

for each OTU divided by the total number of reads in the

corresponding sample). All subsequent analysis was

based only on relative abundance data. This approach, as

opposed to rarefaction of abundance data, was motivated

by the fact that valid read abundance data are not omit-

ted, thus inflating random variance in sample dissimilar-

ity estimates (McMurdie & Holmes 2014).

Relative abundance estimates were subjected to Hel-

linger-transformation before calculation of Bray–Curtis
dissimilarity matrices. Nonmetric multidimensional

scaling (NMDS) using METAMDS, permutational ANOVA

(PERMANOVA) using ADONIS, and Mantel tests (including

partial) were performed using these dissimilarity matri-

ces. PERMANOVA was carried out only with parameters

that were significantly correlated (P < 0.05) to the

resulting NMDS coordinates using function ENVFIT.

Parameters were divided into two subsets: (i) contami-

nation independent (depth, grain size and %sand) and

(ii) contaminants. Parameters from each subset were

added sequentially in order of correlation strength to

NMDS (best fit first) and subsequently removed unless

found to also be significant in the PERMANOVA model.

For Mantel tests, a geographical position distance

matrix was calculated using simple Euclidean distances

(function DIST). Parameter dissimilarity matrices were

calculated for the two parameter subsets (i) and (ii)

using log-transformation (VEGDIST option log).

Taxon distribution was studied at order rank as

determined by CREST, manually including taxa of

lower ranks lacking child nodes at order level. Meta-

zoan and nonmetazoan taxa were separated as for OTU

data and the top 20 taxa of each subset visualized using

the R GGPLOT2 package (Wickham 2009). Putative indica-

tor taxa were identified using Kendall rank correlations

between relative abundances and contamination-related

parameters measured. A P-value cut-off of 0.05 after

Bonferroni correction was used. Co-occurrence network

analysis based on all taxa with average relative abun-

dance above 0.01% was performed with the R package

IGRAPH (Csardi & Nepusz 2006) using Kendall rank cor-

relation. All correlations resulting in s coefficients above

0.45 or below �0.45 were visualized as edges and taxa

with at least one edge included in further analysis.

Results

Biodiversity and environmental parameters

Amplicon sequencing resulted in over 1.6 million reads

after quality and chimera filtering for the 45 samples,

yielding 26 213 OTUs (including 37% singleton reads,

2% maximum divergence). Table S3 (Supporting infor-

mation) provides a detailed overview of read counts,

OTUs and diversity estimates, including data from clas-

sical monitoring based on morphology (DNV 2011). The

number of reads per sample varied greatly, resulting in

a trend of higher OTU richness and share of singletons

with read depth. Thus, sequencing depth was insuffi-

cient to cover the full biodiversity of most sediment

samples studied, although this trend can partially be

attributed to remaining sequence artefacts (Quince et al.

2011). To compensate, only rarefied OTU richness and

evenness were considered, that is expected richness of

theoretical subsamples corresponding to the smallest

sequencing depth. Rarefied richness ranged from 455

OTUs in Tune-01 to 1254 in OSEG-06-07. OSEG-06-07

also had the highest rarefied Pielou evenness, whereas

Tune-08 had the lowest evenness. Neither rarefied rich-

ness nor evenness correlated to sequencing coverage

(P = 0.9 and 0.7, respectively).

Concentration of contaminants associated with efflu-

ents from oil drilling varied considerably between sam-

ples and oilfields. The Veslefrikk samples VFR-04 and

05 were the most contaminated in terms of total hydro-

carbon (0.1 and 1 g THC/kg, respectively) and Ba con-

centrations (>5 g/kg), whereas THC was below

detection limits and Ba was <50 mg/kg at other sites

(DNV, 2011; Table S1, Supporting information). All sig-

nificant correlations between diversity indices and envi-

ronmental parameters are illustrated in Fig. 1 as a

network annotated with coefficients (Kendall’s s) and

P-values (mentioned below; see also Fig. S2, Supporting

information). No significant relationship could be iden-

tified between sequencing-based diversity estimates and

corresponding data from classical morphology-based

monitoring. However, both rarefied OTU richness and

evenness correlated significantly with the ratio of bacte-

rial to eukaryotic rRNA copies as determined by qPCR

(B/E, Fig. 1A). This indicates that sediments with more

dominant bacterial food webs tended to have more

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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diverse eukaryotic communities, although bacterial

diversity as such was not evaluated.

Total rarefied OTU richness correlated negatively to

Cd concentration (Fig. 1B). Similar to Ba, elevated Cd is

associated with effluents from offshore drilling. The

same comparisons resulted in significant correlations

using all alternative OTU divergence cut-offs (OTU99,

OTU97 and OTU95). Rarefied richness using these alter-

native cut-offs showed strong linear correlations with

the default OTU98 rarefied richness (Fig. S3, Supporting

information).

Metazoan sequence reads contributed 22% of total

abundance, ranging from 6% in VFR-20 to 61% at Tune-

03 (Table S3, Supporting information). This share (see ‘M’

in Fig. 1B) was negatively correlated to several contami-

nants including Ba, Pb, Cu and THC. Communities with

a lower relative abundance of metazoans tended to have

higher metazoan diversity (Fig. 1B). The highest rarefied

metazoan OTU richness was encountered at VFR-K1, the

third most contaminated station in terms of Ba and THC.

Multivariate analysis of community structure

Ordination based on molecular OTU composition

(NMDS) resulted in one distinct cluster containing the

samples collected from VFR and the single sample from

nearby Huldra (Fig. 2A). Samples from Oseberg C and D

formed distinct clusters, although both overlapped with

samples from Oseberg G and the latter with Tune. This

pattern indicates that geographical location of the oilfield

had a strong effect on community composition. However,

it is not sufficient to distinguish geographical or dispersal

effects from contrasting environmental properties or con-

tamination levels. Several such parameters correlated sig-

nificantly with the NMDS coordinates including bottom

depth, percentage of sand, median grain size (in φ-scale),
total organic material (TOM) and concentration of heavy

metals (see Fig. 2A and Table 1). The two most contami-

nated samples VFR-05 and VFR-04 (in terms of THC and

Ba) appear strongly associated with Ba and Cd concen-

trations, as expected. Morphology-based monitoring

(DNV, 2011) confirms the strong effects on metazoan

community structure at these sites.

To evaluate the influence of OTU divergence cut-off

and filtering of OTUs likely to be pelagic (detritus), the

above analysis was repeated using the corresponding

alternative OTU tables. Approximately 25% of OTUs,

representing 43% of reads, were removed based on their

taxonomic classification and removed from the filtered

OTU table (OTUF; see Table S4, Supporting information).

Fig. 1 Correlation network of diversity

estimates and environmental parameters.

Network A represents significant

(P < 0.05) positive Kendall correlations

(s > 0) and Network B negative correla-

tions (s < 0). Thickness of edges repre-

sents strength of correlation, and different

coloured nodes represent different types

of parameters according to the legend.

S0 = rarefied OTU richness, S = taxon

richness (microscopy-based), J0 = rarefied

Pielou evenness (H0/ln(S0)), J = estimated

Pielou evenness (microscopy-based),

M = metazoan proportion of read abun-

dance, B/E = bacterial rRNA copy num-

ber abundance relative eukaryotic as

determined by qPCR. PAH and NPD were

not included due to limited data.
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Almost half of the OTUs (49%), representing 30% of

reads, were from taxa that we could not distinguish

based on taxonomic classification alone and these were

retained in OTUF. NMDS clustering patterns for these

alternative OTU distributions and correlations to physio-

chemical parameters were generally consistent, although

the Tune, OSEC and OSED data sets were generally more

clearly separated for OTUF (Fig. S4, Supporting informa-

tion). Further, filtering or alternative cut-offs improved

correlation of several physiochemical parameters,

although not in a consistent manner (Table S5, Support-

ing information), with NPD, Cu and Zn correlated signif-

icantly to only the OTUF and OTU97 NMDS, whereas Ba

only correlated with that of OTU95 or OTU98 (default),

A separate NMDS was carried out, including only

molecular OTUs from metazoa. This resulted in a similar

ordination pattern, except for larger overlap between

Oseberg and Tune samples and different positions of

Fram and Huldra samples (Fig. S5, Supporting informa-

tion). All but two measured parameters correlated more

strongly to the resulting ordination space based on meta-

zoan composition (see Table 1). A corresponding analy-

sis based on nonmetazoan taxa resulted in an ordination

pattern visually similar to that based on all OTUs and an

intermediate strength of parameter correlations (Table 1

and Fig. S6, Supporting information). Thus, when divid-

ing the community data into metazoan and nonmetazoan

taxa, both subsets corresponded better to environmental

parameters than the total data set, similar to the trends

observed with diversity estimates (Fig. 1).

NMDS based on morphology (microscopy data)

(DNV 2011) resulted in a pattern similar to those based

on metabarcoding (Fig. 2B). However, the locations (oil-

fields) appearing to harbour the most heterogeneous

communities based on metabarcoding formed much

smaller clusters, and different oilfields were generally

better separated. Further, correlations were stronger for

all parameters except distance from the drilling site (see

Table 1). This is consistent with metazoan composition

being more sensitive to environmental parameters and

contaminants. It also suggests that morphology-based

monitoring was more sensitive than sequencing-based

assessments in this respect. However, all environmental

parameters correlating significantly to the morphology-

based NMDS coordinates were also significant in the

metabarcoding-based NMDS (metazoan subset) and in

three cases with better P-values in spite of lower ‘good-

ness of fit’ (Cd, Pb and Zn; Table 1).

The influence of environmental parameters on molec-

ular OTU composition across all sample sites was veri-

fied using PERMANOVA, indicating that depth, sand and

grain size together explained 16% of the variability

(data available for 40 samples). By adding the heavy

metals Cd, Cr and Ba to the model, 26% was explained.

Including TOM (n = 32 samples), allowed 33% of vari-

ability to be explained. The same model based on the

metazoan OTUs resulted in a similar result (R2 = 32%).

Results based on morphology explained 62% of the

variability (n = 32). PERMANOVA models based on the

‘plankton-filtered’ OTUF distribution resulted in essen-

tially identical significance and residual vs. modelled R2

values. The model including TOM was not significant

for alternative OTU cut-off distributions, and heavy

metals were not significant for OTU97. However, resid-

ual R2 was lower for OTU95 compared to the default

OTU98 for the first two models (explaining 18% and

28% of variance, respectively). For OTU99, residual vari-

ance was consistently higher.

Mantel tests (see Table 2) were used to verify results

from PERMANOVA and make further comparisons between

data sets. This analysis verified that community dissimi-

larity correlated significantly to the combined influence

Fig. 2 Nonmetric multidimensional scaling (NMDS) based on Bray–Curtis dissimilarities of community composition. Composition

based on (A) all molecular OTU abundances resulting from amplicon sequencing and (B) individuals based on morphology identi-

fied using microscopy (DNV, 2011). Relative abundance data were Hellinger-transformed, and fitted environmental parameters repre-

sented by blue vectors significantly correlated. Samples are coloured according to oilfield, and circles represent 95% confidence

intervals of community composition in NMDS space for each field. Stress values are indicated in each plot.
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of all environmental parameters (r = 0.47, P < 0.001).

However, geographical distance was more strongly cor-

related than environmental parameters (r = 0.52). Geo-

graphical distance was also correlated to differences in

contamination among the samples studied (r = 0.48).

Partial Mantel tests compensating for either the com-

bined influence of depth, sand and grain size (r = 0.33,

P < 0.001), or geographical distance (r = 0.16, P = 0.03)

verified that contamination-related variables alone con-

tributed significantly to OTU composition (Table 2).

We also verified that relative abundances of molecu-

lar OTUs added significant explanatory power com-

pared to transformation into presence/absence, when

correlated to all environmental parameters (r = 0.19,

P = 0.007; Table 2). Community dissimilarities based on

morphology strongly correlated to those based on

metabarcoding (r = 0.66) and to environmental parame-

ters (r = 0.60, P < 0.001; Table 2).

Taxonomic composition, indicator taxa and network
analysis

In total, 68% and 62% of the metazoan and nonmeta-

zoan sequence reads, respectively, could be classified

taxonomically, by including all taxa at order rank

(Note: in some cases, lower ranks were used when

taxonomic information at the order rank was missing;

91 and 75%, respectively, could be classified to class

level). The most abundant metazoan orders based on

sequencing were the benthic copepods Harpacticoida,

followed by the polychaetes Sabellida and Spionida

(Fig. S7, Supporting information). Several samples

were strongly dominated by other taxa, and no obvi-

ous trends were identified with respect to differences

between oilfields. Nonmetazoan taxon distributions

appeared more consistent, with the most abundant

orders being Thalassiosirales followed by Chaetocero-

tales (both diatoms) and Thaumatomonadida (cerco-

zoan flagellates). Nonmetazoans appeared to include

detritus from planktonic organisms to a large extent,

although making such a distinction was often uncer-

tain at order rank for many taxa. The majority of non-

metazoan reads were classified as taxa lacking

multicellular organisms, although multicellular algae

or fungi were also present.

The distribution of abundant metazoan taxa based on

morphology (DNV 2011) also indicated considerable

differences between oilfields (Fig. S8, Supporting infor-

mation). The two most contaminated samples VFR-04

and VFR-05 were dominated by Chaetozone setosa,

whereas no such shift was identified from sequencing

data. Several of the most abundant species identified by

morphology also belonged to orders dominating

sequencing data, including Spionida (C. setosa, Spio-

phanes bombyx and Aonides paucibranchiata) and Sabellida

(Galathowenia oculata and Owenia fusiformis).

Table 1 Correlation of environmental parameters to NMDS clustering pattern. R2 values for linear correlation of parameter vectors

with maximal correlation to NMDS space resulting from Bray–Curtis distance of Hellinger-transformed OTU or taxon abundance val-

ues are displayed and annotated with significance (* < 0.05, ** < 0.01, *** < 0.001) as determined by function ENVFIT in the R package

vegan. Best fitting clustering for each parameter marked in bold

All

OTUs

Metazoan

OTUs

Nonmetazoan

OTUs

Microscopy

data DNV (2011)

Bottom depth 0.84*** 0.88*** 0.82*** 0.95***
Distance from drilling site 0.13 0.34 0.08 0.14

Median grain size 0.39* 0.62** 0.38* 0.78***
Sand (%) 0.69** 0.85*** 0.71** 0.88***
Gravel (%) 0.09 0.05 0.13 0.36

Total organic material (TOM) 0.65** 0.84*** 0.67** 0.89***

Total hydrocarbons (THC) 0.23 0.47*** 0.24 0.52***

Polycyclic aromatic hydrocarbons (PAH) 0.29 0.54*** 0.32* 0.59***

Naphthalene, Phenanthrene and

Dibenzothiophene (NPD)

0.31 0.56*** 0.32* 0.61***

Barium (Ba) 0.35* 0.52** 0.36 0.67**

Cadmium (Cd) 0.39* 0.58*** 0.41* 0.61**

Chromium (Cr) 0.38* 0.64*** 0.40* 0.71***

Copper (Cu) 0.31 0.57*** 0.33* 0.62***

Mercury (Hg) 0.38* 0.59*** 0.40* 0.64***

Lead (Pb) 0.29 0.53*** 0.30 0.61**

Zinc (Zn) 0.31 0.56*** 0.33* 0.61**

Bacterial/eukaryotic rRNA copy ratio (qPCR) 0.07 0.06 0.08 0.15
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A number of metazoan and nonmetazoan indicator

taxa were identified, with relative abundance signifi-

cantly correlated to contamination levels (Tables 3–4
and Fig. S9, Supporting information). Metazoans

sensitive to contamination were the gastrotrich order

Macrodasyida, the flatworms Macrostomida and the

tube-dwelling anemones Ceriantharia. In contrast, Spi-

onida appeared more abundant in sediments with

higher levels of THC and heavy metals. Compared to

metazoans, more nonmetazoan indicator taxa were

identified, including several orders of ciliates (Euplo-

tida, Philasterida, Pleurostomatida and Heterotrichida),

Naviculales (diatoms), Labyrinthulida and Perkinsida,

as well as the aquatic fungi Chytridiomycota and the

oomycetes Olpidiopsidales.

Different taxa are expected to interact and influence

each other in sediment communities. To identify such

ecological interactions, Kendall rank-correlation net-

work analysis was used. Thus, six modules of intercon-

nected co-occurring taxa were identified (see Fig. 3A).

The two largest modules were connected to each other

by three negative correlations and appeared highly

interconnected internally. The largest of these (Module

1) contained several indicator taxa, suggesting that sen-

sitivity to contamination may influence abundance both

within and across modules (e.g. Module 5 or Pho-

ladomyodia). Module 2 also contained indicator taxa,

indicating a more complex interaction mechanism with

Module 1. Several co-occurrence links represented puta-

tive trophic interactions (Fig 3B), such as metazoa

grazing on ciliates and ciliates grazing on heterotrophic

flagellates as well as the detrital component of the

sediments.

Discussion

This study illustrates the utility of metabarcoding to

assess anthropogenic impacts on benthic eukaryotic

community structure and arrives at conclusions compat-

ible with those previously obtained by classical mor-

phology-based monitoring techniques (DNV 2011) in a

cost-effective, faster and more comprehensive manner.

This supports projections that metabarcoding of envi-

ronmental DNA has several advantages over classical

monitoring (Santos et al. 2010; Baird & Hajibabaei 2012;

Cowart et al. 2015; Zimmermann et al. 2015).

Whereas morphology-based monitoring is typically

limited to macro-invertebrates, metabarcoding can

assess a substantially larger fraction of the biodiversity,

including meio- and microfauna that are difficult to

identify using morphological characteristics. However,

abundances derived from sequencing do not compare

directly to morphology-based methods, and similarly,

OTU richness is not analogous to morphology-based

diversity indicators (Chariton et al. 2014). Nonetheless,

we found rarefied OTU richness and evenness of non-

metazoans to be negatively influenced by several con-

taminant concentrations. Corresponding data from

morphology-based monitoring showed conflicting

trends with respect to evenness (negatively influenced,

Table 2 Mantel test statistics. Permutation-based Mantel tests were used to evaluate the correlation between two dissimilarity matri-

ces (‘explanatory’ and ‘dependent’ variables below). Using partial Mantel tests, we intended to compensate for the influence of a

third dissimilarity matrix (‘conditioning variables’) in order to evaluate the effect of explanatory on dependent variables, independent

of conditioning variables (by keeping the correlation structure constant between conditioning and explanatory matrices). Bray–Curtis
dissimilarity was used to derive community dissimilarities, log-transformation for environmental parameters and simple Euclidian

distance for geographical positions

Explanatory variables Conditioning variables Dependent variables R statistic Significance

All environmental variables (none) Community dissimilarity

(metabarcoding, relative abundances)

0.47 P < 0.001

Geographical position (none) Community dissimilarity

(metabarcoding, relative abundances)

0.52 P < 0.001

Geographical position (none) Contamination 0.48 P < 0.001

Contamination Depth, %sand and grain size Community dissimilarity

(metabarcoding, relative abundances)

0.33 P < 0.001

Contamination Geographical position Community dissimilarity

(metabarcoding, relative abundances)

0.16 P = 0.03

All environmental variables Community dissimilarity

(metabarcoding, presence/

absence)

Community dissimilarity

(metabarcoding, relative abundances)

0.19 P = 0.007

Community dissimilarity

(morphology-based)

(none) Community dissimilarity

(metabarcoding, relative abundances)

0.66 P < 0.001

All environmental parameters (none) Community dissimilarity

(morphology-based)

0.60 P < 0.001
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Fig. 1B) and richness (positively influenced, Fig. 1A).

Rarefied metazoan OTU richness showed no clear

trends. This supports earlier suggestions that the

response of macro- and meiofauna to oil contamination

differs from that of the microfauna (Ansari & Ingole

2002) and that nonmetazoan diversity may be a more

sensitive indicator of pollution in the studied environ-

ments.

Both biodiversity and community composition analy-

ses, including relative abundance data, demonstrated

that incorporating nonmetazoan organisms in the

assessment generated additional information that could

not be obtained from larger metazoans alone. In accor-

dance with earlier studies (Santos et al. 2010; Bik et al.

2012b; Chariton et al. 2014; Cowart et al. 2015; Lallias

et al. 2015), we identified several taxa among the non-

metazoan meio- and microfauna, as potential bio-indi-

cators of contamination. Metazoans, on the other hand,

only constituted a minority of such taxa (n = 8/36). This

is supported by previous studies of oil contamination

as well as ecological theory, suggesting that responses

of micro-organisms to environmental changes are often

faster and more pronounced due to their large surface-

to-volume ratio, high abundance and short generation

time (Santos et al. 2010; Payne 2013).

However, NMDS indicated that metazoan communi-

ties as a whole appeared more sensitive to contamina-

tion (Table 1). The low number of putative metazoan

Table 3 Putative metazoan indicator species significantly

correlated to contamination-related variables measured

Order

Average

relative

abundance

(%) Parameter P* Kendall’s s

Spionida 5.81 THC 4E-04 0.49

Cu 2E-03 0.47

Ba 4E-03 0.42

Cr 5E-03 0.43

TOM 2E-02 0.47

Grain size 2E-02 0.42

Pb 3E-02 0.38

Sand (%) 3E-02 �0.41

Macrodasyida 3.73 Cr 4E-04 �0.49

Cd 2E-03 �0.47

THC 3E-03 �0.46

Depth 3E-02 �0.40

Macrostomida 2.26 Cr 2E-02 �0.41

Hg 2E-02 �0.47

Ceriantharia 1.65 Cd 4E-02 �0.43

Echiniscoidea 0.50 Cd 5E-02 �0.40

Bursovaginoidea 0.35 Pb 2E-02 �0.45

Pholadomyoida 0.10 Depth 1E-02 0.45

Cd 2E-02 0.45

Ba 3E-02 0.42

Ascaridida 0.02 Hg 1E-02 0.55

*P-value from Kendall rank correlation after Bonferroni

correction.

Table 4 Putative nonmetazoan indicator species significantly

correlated to contamination-related variables measured

Order

Average

relative

abundance

(%) Parameter P*

Kendall’s

s

Euplotida 1.90 Cd 2E-06 �0.61

Depth 3E-02 �0.41

Hg 4E-02 �0.46

Sand (%) 4E-02 0.42

Philasterida 1.65 Cd 3E-04 �0.51

Cr 4E-03 �0.45

Ba 4E-02 �0.38

Pleurostomatida 1.29 Cd 1E-04 �0.53

THC 2E-03 �0.47

Cr 2E-02 �0.41

Ba 3E-02 �0.39

Naviculales 0.92 Cd 2E-03 �0.48

Labyrinthulida 0.87 Pb 3E-02 �0.38

Ba 4E-02 �0.36

Perkinsida 0.49 Depth 6E-04 �0.48

Cd 1E-03 �0.47

Zn 4E-02 �0.37

Olpidiopsidales 0.53 Cd 1E-05 �0.58

Sand (%) 2E-04 0.54

Cr 3E-04 �0.50

Depth 7E-04 �0.49

Grain size 2E-03 �0.50

THC 4E-03 �0.45

Ba 1E-02 �0.42

Cu 2E-02 �0.43

TOM 2E-02 �0.49

Spumellaria 0.33 Cd 2E-02 �0.41

Chytridiomycota† 0.20 Cd 6E-04 �0.50

THC 9E-03 �0.43

Ba 1E-02 �0.41

Cr 2E-02 �0.40

Cu 3E-02 �0.41

Heterotrichida 0.18 Cd 2E-02 �0.42

Fragilariophyceae 0.16 Cd 3E-02 �0.39

Telonemida 0.15 PAH 3E-02 �0.67

NPD 4E-02 �0.69

Microascales 0.06 Hg 8E-03 0.57

THC 3E-02 0.46

Pythiales 0.06 Depth 3E-04 �0.52

Cd 2E-03 �0.47

Ba 3E-02 �0.40

Sphenomonadales 0.05 TOM 4E-02 �0.47

Peritrichia 0.02 Cr 1E-03 �0.50

Sand 4E-02 0.44

Entodiniomorphida 0.00 Hg 3E-02 0.52

*P-value fromKendall rank correlation after Bonferroni correction.
†

Manual reclassification, originally incorrectly identified by

CREST as Mortierellales.
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indicator taxa identified (Table 2) may also be due to

lower accuracy in evaluating relative abundances when

using a molecular approach. As opposed to smaller

organisms, metabarcoding as implemented here is lim-

ited to targeting traces of DNA from macroinverte-

brates, rather than complete specimens. We expect this

fact to increase heterogeneity associated with metazoan

relative abundance estimates considerably.

Changes in some indicator taxa (Tables 2 and 3) may

be indirectly caused by contaminants. One such exam-

ple was Perkinsida, which is an order of mainly para-

sitic protists on hosts such as molluscs (genus Perkinsus,

present among reads classified to higher ranks). Its neg-

ative correlation with contaminants may be due to

decreasing abundance of the host organism. There were

also indicators that positively correlated to contami-

nants, such as Microascales. This fungal order has been

associated with degradation of toluene (Prenafeta-Bold�u

et al. 2006). Another example was the metazoan poly-

chaete Chaetozone setosa (order Spionida), which has

been characterized as highly tolerant to hydrocarbons,

even increasing in abundance as a result of contamina-

tion (Hiscock et al. 2004). Data from morphology-based

monitoring also confirmed that the two most contami-

nated samples were dominated by this species (DNV

2011; Fig. S8, Supporting information).

Using metabarcoding, we may also gain knowledge

regarding trophic interactions in the ecosystem, con-

tributing to a more mechanistic understanding of

responses to anthropogenic impacts. In the co-occur-

rence network (Fig. 3), interactions between detritus, cil-

iates, heterotrophic flagellates, metazoans, parasites and

decomposers were suggested. In particular, a co-occur-

ring group of organisms including ciliates, metazoans

and decomposers was identified (Module 1), including

several taxa that were negative indicators of contamina-

tion. Decreased abundance of organisms within this

module was associated with increased abundance of

several other modules (and vice versa), including pri-

mary producers (some of which likely did not belong to

the active benthic community, but rather were detritus

deposited in the sediments), as well as heterotrophic

flagellates (e.g. modules 2 and 5). This may result from

reduced grazing when the abundance of ciliates decli-

nes due to contaminations.

Other taxa classified as primary producers were

included in Module 1, notably Hemiaulales. Although

the majority of organisms in this order are pelagic pho-

tosynthetic diatoms, some have been reported to colo-

nize benthic sediments down to 10–14 cm (Yahia-Kef�ı

et al. 2005; Cibic & Facca 2010). This order could there-

fore represent an active member of benthic

Fig. 3 Kendall rank-correlation-based co-

occurrence network of taxa based on

relative abundances across samples. Taxa

are represented by circles in the correla-

tion network (A) and coloured according

to expected position in a simplified food

web model (B) adapted from Thingstad

et al. (2008). Edges represent Kendall cor-

relations above the threshold for inclu-

sion (s > 0.45). The size of circles is

proportional to average relative abun-

dance across data sets (cut-off for inclu-

sion = 0.01%) and the thickness of edges

proportional to strength of correlation.
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communities. Another example is the Pleurostomatida.

The most abundant genus detected in this ciliate order

was the Litonotus (and its most common species L. pic-

tus). Members of this taxon are predatory ciliates, feed-

ing on other protists including other ciliates (Coats &

Clamp 2009). This may explain its co-occurrence links

to four other ciliate taxa. It also illustrates the limita-

tions of simplified food web models such as that used

in Fig. 3 for understanding ecosystem dynamics. The

co-occurrence network structure and indicator taxa

obtained should mainly be regarded as a basis for form-

ing ecological hypotheses. However, it illustrates an

important strength of the sequencing-based approach

for monitoring total eukaryotic diversity, compared to

metazoans alone. This permits us to explore possible

biological interactions between taxa, enabling a more

holistic approach to environmental monitoring and pro-

viding a functional interpretation of ecosystems

impacted by anthropogenic stressors.

To assess any overall change between the prokaryotic

and eukaryotic fraction as a function of the environ-

mental parameters measured here, we conducted a

qPCR analysis using universal prokaryote and eukary-

otic primers on all samples. Relative bacterial abun-

dance was positively correlated to rarefied eukaryotic

richness and evenness, suggesting that the bacterial

community is another important factor determining

eukaryotic diversity. Indeed, bacteria compose a sub-

stantial part of the biomass in marine sediments and

contribute significantly to nutrient cycling (Nodder et al.

2003). Considering this, it would be interesting to

include prokaryotes in future evaluations of sequenc-

ing-based monitoring.

Using a partial Mantel test, we verified the utility of

incorporating relative abundance data when calculating

community dissimilarities. This resulted in significantly

better correlation with environmental parameters, com-

pared to using presence/absence alone, which in effect

discards useful abundance data. This is also illustrated

by the fact that many indicator taxa identified in this

study showed a decrease in abundance in the presence

of pollutants, although they were also detected at the

most contaminated sites (Fig. S9, Supporting informa-

tion). This supports the notion that read abundance

data are meaningful as a semiquantitative indicator

when comparing community structure between biologi-

cal samples (Pilloni et al. 2012; D’Amore et al. 2016).

Most studies pioneering metabarcoding for environ-

mental monitoring have focused on presence/absence

of taxa (Bik et al. 2012b; Chariton et al. 2014; Lallias

et al. 2015) and may consequently have overlooked

some potential indicator taxa identified here, whereas

the use of foraminiferal metabarcoding for monitoring

of fish-farming sites did successfully utilize read

abundance data (Pawlowski et al. 2014; Pochon et al.

2015). However, these studies are not directly compara-

ble, because relative abundance data can be more accu-

rately estimated for unicellular protists such as

foraminifera, compared to metazoa.

Although metabarcoding holds promise for routine

environmental monitoring, there are methodological

aspects that require further consideration. For example,

despite synthesizing relatively long amplicons, reducing

amplification efficiency of degraded DNA, we still

detected several pelagic taxa. Nonetheless, considering

the importance of detritus as an energy source for sedi-

ment communities, its composition and subsequent

degradation can provide useful information about the

food web in healthy and disturbed sediments. The

influence of dead biomass could be minimized in future

studies using propidium monoazide treatment (Nocker

et al. 2010), or by targeting RNA instead of DNA (see,

e.g. Orsi et al. 2013), although it may remain useful

(Cowart et al. 2015) to complement such analyses with

intentional sequencing of detritus DNA in sediments as

has been carried out previously (Bohmann et al. 2014).

Our attempt to remove OTUs that were likely of pela-

gic origin did not change results based on multivariate

models (NMDS and PERMANOVA) in any meaningful

manner, although OTUs representing almost half of the

sequencing reads were removed. However, taxonomic

resolution or information about specific taxa was often

lacking, raising questions about the systematic reliabil-

ity of such an approach. It would certainly not be possi-

ble to standardize or replicate in a manner suitable for

routine monitoring, lacking a thoroughly curated refer-

ence database at higher taxonomic levels. This also

illustrates another limitation of metabarcoding, namely

the reliance on taxonomic reference databases (Blaxter

et al. 2005). We have overcome this limitation when

comparing community composition and diversity, using

taxonomy-independent OTUs defined by de novo clus-

tering. As databases and tools for taxonomic classifica-

tion and prediction of ecological function improve, so

will the analysis of indicator taxa and co-occurrence in

ecosystems. Phylogenetic distances, such as UniFrac,

may also improve the accuracy of community dissimi-

larity matrices (Lozupone & Knight 2005), although

such measures depend on the quality of phylogenetic

alignments used to define reference taxa.

The taxonomic markers used can also influence taxo-

nomic coverage and the ability to discriminate between

taxa; much like similar morphology can limit the abil-

ity to discriminate taxa in classical approaches. Cowart

et al. (2015) have begun to address this issue by com-

paring morphological identification to cytochrome oxi-

dase I and 18S rRNA-based metabarcoding. More such

comparisons are needed to improve metabarcoding

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

4402 A. LANZ �EN ET AL.



approaches in different types of samples and over

time.

Metabarcoding may ‘overestimate’ diversity com-

pared to microscopy-based species identification due

to intraspecific variation in the 18S rRNA V4-V5

region targeted here, even when using divergence

cut-offs as high as 10% (Brown et al. 2015). However,

such divergence varies considerable between

taxonomic groups and cut-offs as low as 1% may

inappropriately cluster together closely related zoo-

plankton species such as Daphnia pulex and D. puli-

caria, or ‘Artemia salina’ spp. Thus, there is no

‘perfect’ cut-off for OTU clustering, analogous to mor-

phological identification of species, suggesting that

group-specific or multiple cut-offs should instead be

applied (Brown et al. 2015). On the other hand, less

well-studied species, particularly protists, may also

harbour groups of ecologically divergent subspecies

or populations, not easily distinguishable using micro-

scopy. We consider separation of such groups into

separate OTUs to be as important as avoiding artefac-

tual OTUs due to technical errors and intragenomic

or intrapopulation variation.

We applied a 2% sequence divergence cut-off, as a

compromise maximizing the possibility of distinguishing

such ecologically relevant groups, while compensating

for most PCR- and sequencing errors remaining after the

application of AmpliconNoise (Quince et al. 2011). This

is in line with recommendations by Lie et al. (2014) and

Mohrbeck et al. (2015) based on different SSU rRNA

regions. We expect a smaller influence of errors com-

pared to the above studies because the denoising and

Needleman–Wunsch alignment-based clustering applied

here is more appropriate for the indel errors associated

with 454 pyrosequencing. Alternative OTU cut-offs were,

however, also evaluated. Rarefied OTU richness showed

strong linear correlation with the default divergence and

consistent correlation patterns with physiochemical

parameters. Multivariate analyses based on resulting

community dissimilarities also generated similar results,

suggesting that ecological patterns persist independent

of the divergence cut-off chosen.

We anticipate that the accuracy of metabarcoding can

be improved relative to this study using newer sequenc-

ing platforms such as Illumina MiSeq, allowing a consid-

erably higher read depth and better per-base sequence

quality (although lower read length), at a lower cost. As

sequencing technology continues its rapid development

and becomes more affordable, alternative approaches

will also become economically viable for routine biomon-

itoring, such as metagenomics or ‘total RNA’ metatran-

scriptomics, allowing for reconstruction of full-length

rRNA genes and profiling of the most abundant protein-

coding transcripts (Epelde et al. 2014).

In conclusion, the metabarcoding approach presented

here shows considerable promise for routine monitoring

of marine sediments affected by anthropogenic activi-

ties. Microscopic analyses of macrofauna have been

used in monitoring programmes for decades, and the

long time series generated have value for historical

comparisons, even though they do not provide a com-

prehensive assessment of the structure and function of

the sediments. In general, any change to current regula-

tory practices will require stringent comparison of

metabarcoding over time with classical monitoring.

Documentation of added value in terms of comprehen-

siveness, and better temporal and spatial resolution at

cost-effective levels for operators, will be required to

inform any new monitoring regulations and policies.

However, current routine monitoring is standardized,

and current methods are used within long time series

for comparisons. Therefore, any change to current prac-

tice will require that new sampling designs, processing

and handling as well as analyses methods are com-

pared over time, and improvements documented to reg-

ulatory authorities.

In this study, we demonstrated the application of

metabarcoding for monitoring of sediment biodiversity

in association with oil-drilling activities. We were able

to identify effects of oil-drilling operations on both the

metazoan and nonmetazoan benthic compartments, the

latter of which is not typically assessed by classical

monitoring programmes. Using a network of co-occur-

ring taxa, we further illustrated the potential for eco-

logical insights when using such an approach.

Compared to morphology-based monitoring, metabar-

coding permits evaluations of more samples at a corre-

sponding or lower cost, generating increased temporal

and spatial resolution together with a more complete

ecosystem assessment, important for understanding the

effect of anthropogenic stressors at regional and global

scales.
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