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Summary 

The salmon louse (Lepeophtheirus salmonis) is an obligate, hematophagous 

ectoparasite infecting salmonid fish such as the Atlantic salmon (Salmo salar). The 

parasite is at present the number one threat to the Norwegian salmon farming industry. 

There is a high density of hosts in salmon farms, and due to the high mutation rate and 

fecundity of the parasite, the salmon louse is currently ahead of the development of 

effective pest controls. Resistance has been reported against several available 

chemotherapeutants, and non-therapeutic interventions are as per now not sufficient to 

treat salmon louse infestations. Particularly adult female lice have blood as a major 

dietary component. This is a high-risk, high-reward strategy which the parasite is well-

adapted to. Blood is highly nutritious and constantly renewed in the vertebrate host, 

but also contains toxic, yet necessary, compounds such as iron and heme (iron 

protoporphyrin IX). The salmon louse is likely a heme auxotroph, as many homologous 

enzymes of the conserved heme biosynthetic pathway are not found within its genome. 

As such, the salmon louse is innately dependent on its host for iron and heme supply. 

Blood-feeding and subsequent iron and heme trafficking are thus essential to study in 

the salmon louse, and could potentially reveal candidate proteins for pest management 

by e.g. vaccination or nutritional deprivation. 

Ferritin is a well-conserved multi-subunit iron storage and distribution protein that can 

be either cytosolic or secreted. In the present study, several ferritin-encoding genes 

were identified in the salmon louse genome (LsFer1, 2, 3 and 4). Secreted heavy chain 

homolog (LsFer1) and secreted light chain homolog (LsFer2) transcripts were found 

to be expressed in the salmon louse intestine, where the precursor protein is probably 

loaded with iron intracellularly before it is secreted to the hemolymph. RNA 

interference-mediated knockdown of these two transcripts resulted in severe phenotype 

alterations for the adult female salmon louse. In both knockdown groups, it was unable 

to produce proper egg strings, and with an almost complete egg hatching failure. 

Histological sections of knockdown animal genital segments revealed that the 

developing oocytes lacked the structure and integrity seen in normal developing 

oocytes. Furthermore, the knockdown animals lacked the ability to fully engorge in 
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salmon blood. Additionally, in wildtype lice, the transcript levels of LsFer1 and LsFer2 

were decreasing during starvation, further indicating the importance of these genes in 

relation to the blood meal. 

Further, an investigation of a CD36-like protein named L. salmonis heme scavenger 

receptor class B (LsHSCARB) was performed. The transcript and protein were located 

to the salmon louse intestine. The receptor has an extracellular domain likely facing 

the intestinal lumen. The postulation was that the domain could scavenge host-derived 

heme. The domain was able to bind to heme in silico as demonstrated by ligand docking 

using bioinformatical tools. The receptor was also able to bind heme in vitro, as shown 

using a recombinantly expressed protein in a hemin-agarose pull down assay. During 

a starvation period, the transcript levels of LsHSCARB in the adult female salmon louse 

decreased steadily, suggesting that the receptor is down-regulated by the absence of a 

food source. RNAi mediated receptor ablation in vivo led to a decrease in absorbed 

heme levels in salmon louse tissues, and knockdown animals had shorter egg strings 

with a lower hatching success.  

Because having blood as a diet requires proper handling of blood-components, a 

hypothesis was that initiating in blood-feeding would to a shift in the salmon louse 

transcriptome. Results in this thesis indicate that the salmon louse normally starts 

feeding on blood in the mobile preadult I stage, but that those lice that were attached 

to the vascular fish gills were feeding on blood already in the chalimus I stage. The lice 

attached to the gills also developed at a slower pace than those lice elsewhere on the 

host. Chalimus larvae located on gills were therefore sampled for RNA-sequencing and 

subsequent gene expression analyses, and compared to chalimus larvae from host fins 

and general body surfaces, that were of similar instar age. Several transcripts were 

found differentially expressed in chalimus larvae on gills, among these ferritins, 

digestive enzymes, genes of unknown functions and genes with FNII domains, to 

mention some. These genes could be vital for blood-feeding in the salmon louse.  

Combined, these results stress the importance for the salmon louse to maintain proper 

ways of handling the blood meal, particularly the micronutrients iron and heme. This 
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thesis builds on the little knowledge on iron and heme biology in L. salmonis from 

earlier, and provides a further understanding of salmon louse hematophagy. The results 

of this thesis could possibly be used to lay the groundwork for future methods of 

controlling the salmon louse infestations in the salmon aquaculture. 
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1. General introduction 

This thesis investigates hematophagy (blood-feeding habit), with a special focus on 

genes and proteins involved in the trafficking and storage of iron and heme in the 

ectoparasitic arthropod Lepeophtheirus salmonis (Krøyer, 1837). The following 

sections will provide background information on the parasite and its host and why 

salmon louse infestations are of major concern in the aquaculture sector. Further details 

on the parasite lifestyle will eventually lead the reader to understand the significance 

of hematophagy. Finally, benefits and risks regarding the diet of L. salmonis will be 

stressed, alongside the knowledge as to how this can potentially lay the foundation for 

future pest control. 

1.1 Lepeophtheirus salmonis (Krøyer, 1837) 

The marine ectoparasitic copepod of the phylum Arthropoda, L. salmonis (see Table 1 

for full taxonomic classification), is otherwise known by its common name “salmon 

louse”. Its hosts are namely salmonid species within the genera Salmo (S. salar 

(Linnaeus, 1758) and S. trutta (Linnaeus, 1758)), Salvelinus (S. alpinus (Linnaeus, 

1758)) and Oncorhynchus (O. mykiss (Walbaum, 1792)), and it has a circumpolar 

distribution in the Northern Hemisphere (Kabata, 1979; Pike and Wadsworth, 1999). 

Salmon louse subspecies include the Atlantic (L. salmonis salmonis) and the Pacific 

(L. salmonis oncorhynchi) variant (Skern-Mauritzen et al., 2014). The Atlantic 

subspecies has been the organism subjected to investigation in this thesis, and is for 

simplification referred to as “salmon louse” from here on out. 
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Table 1: Salmon louse taxonomic classification* 

Rank Taxa 

Kingdom Animalia 

Phylum Arthropoda 

Subphylum Crustacea (Brünnich, 1772) 

Class Maxillopoda (Dahl, 1956) 

Subclass Copepoda (Milne-Edwards, 1840) 

Infraclass Neocopepoda (Huys & Boxshall, 1991) 

Superorder Podoplea (Giesbrecht, 1882) 

Order Siphonostomatoida (Thorell, 1859) 

Family Caligidae (Burmeister, 1834) 

Genus Lepeophtheirus (von Nordmann, 1832) 

Species salmonis (Krøyer, 1837) 

*Retrieved (March 2019) from the Integrated Taxonomic 

Information System (ITIS) (https://www.itis.gov).  

 

1.1.1 Occurrence in salmon aquaculture 

Aquaculture, the farming of aquatic organisms, is the fastest growing food producing 

sector worldwide, which is necessary to meet the nutritional demand of the growing 

population in a sustainable way (FAO, 2018). In Norway, particularly farming of 

Atlantic salmon (S. salar) contributes significantly to the labor and economy. In 2017, 

1.22 million tons salmon were produced, which amounts to a first-hand value of NOK 

61.4 billion (Statistics Norway 2018), making Norway the largest producer of Atlantic 

salmon in the world. However, as the industry of fish farming increases, directly related 

problems such as diseases, fish welfare and ecological issues increase alongside it. 

Among these problems is the occurrence of ectoparasitic salmon lice (Fig. 1). 

Amounting to an annual cost of around NOK 5 billion, sea louse (including salmon 

louse) infestations are seen as the culprit of inhibited economic growth in the salmon 

farming industry in Norway (Iversen et al., 2017). This is however not a new 

phenomenon; even before the salmon aquaculture rise in the 1960’s, wild salmonids 

have co-existed with parasitizing salmon lice. However, infestations were not a major 

issue under natural conditions, as the distance between hosts was significant, resulting 

in a low infestation rate. Furthermore, wild salmonids migrate up rivers to spawn. The 

infestation pressure then drops partly because the parasite falls of its host in freshwater 



 3 

as it is isoosmotic with the marine environment (1000 mOsm/l) (Hahnenkamp and 

Fyhn, 1985), and also because of a mechanical delousing when travelling up rivers with 

strong currents. Today, however, a high density of fish in sea cages in farms provide a 

high number of possible hosts for the parasite all year round, resulting in a high 

reproductive success and thus an epidemic of high infestation pressures by elevated 

concentrations of salmon louse larvae. This leads to negative impacts regarding 

economic, environmental and animal welfare issues.  

As the parasite has a short generation time with a continuous production of a high 

number of eggs and because there is a high usage of anti-salmon louse medicaments, 

the selection pressure favors individuals with mutations that cause decreased sensitivity 

towards various chemotherapeutants, yet with a fitness that allows for proliferation. A 

decrease in sensitivity toward treatments has been reported for e.g. organophosphates 

(Fallang et al., 2004; Jones et al., 1992; Kaur et al., 2015), avermectins (Carmichael et 

al., 2013; Espedal et al., 2013) and hydrogen peroxide (H2O2) (Helgesen et al., 2015; 

Treasurer et al., 2000) to mention a few. In order to minimize usage of chemicals in 

farms, alternative non-medical methods of managing salmon louse infestations have 

emerged. Cleaner fish such as the ballan wrasse (Labrus bergylta (Ascanius, 1767)) 

and lumpfish (Cyclopterus lumpus (Linnaeus, 1758)) are used as biological control in 

sea cages alongside salmon to aid in pest management by feeding on the parasites and 

thereby mitigating the infestation pressure (Hjeltnes et al., 2019; Treasurer, 2002). The 

wrasse industry is however criticized, as fish catching causes unwanted bycatching 

(Mortensen et al., 2013), and there is reported reduced fish welfare in the pens 

(Treasurer and Feledi, 2014). Other preventative actions against salmon lice include 

e.g. creating a physical barrier for the host-parasite interaction by using closed cages 

in farms supplied with seawater intake from 25 meter depth (Nilsen et al., 2017), 

thermal delousing by treating the fish with seawater heated above the preferable habitat 

of the parasite (Grøntvedt et al., 2015), and delousing with freshwater treatments as 

reviewed by Powell et al. (2015). Despite all efforts, the salmon louse problem 

seemingly appears here to stay. Consequently, an increased focus on researching the 

basic parasite biology is needed in order to find tools for pest control. 
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Figure 1: Salmon lice infestation. A group of mature adult female lice with egg strings, feeding 

off a salmon. Photo: Lars Are Hamre. 

 

1.1.2 Salmon louse life cycle 
 

The salmon louse life cycle consists of eight stages, each separated by a molt where a 

new exoskeleton is grown and the old one is shed. An illustrated life cycle overview is 

given in Figure 2. The stages are in chronological order as follows: nauplius I and II 

(both planktonic), copepodid (infective), chalimus I and II (both immobile parasitic), 

preadult I and II (both mobile parasitic) and adult (mobile parasitic and reproductive) 

(Hamre et al., 2013; Johnson and Albright, 1991a). At 10 °C, a new pair of egg strings 

is extruded from the mature adult female about every ten days, with the capacity of 

producing up to 1200 eggs with each cycle (Costello, 2006; Hamre et al., 2009). 

Developmental and reproductive rates are temperature dependent. The following 

details on development is based on a temperature of 10 ˚C. Development from 

fertilization to the adult stage is completed in approximately 40 (♂) to 52 (♀) days 

(Johnson and Albright, 1991b), but can be as short as 38 (♂) to 44 (♀) days for the 

fastest developers (Hamre et al., 2019). Nauplius I larvae (~0.5-0.6 mm) hatch directly 

from the mature adult female louse egg strings. As of the first molting, after 

approximately one day, the louse has developed to the nauplius II stage, which is 
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morphologically highly similar to the previous nauplius stage. After the second molt, 

4-5 days later, the salmon louse is in the copepodid stage (~0.7 mm). This is the 

infectious stage when the louse converts from a planktonic to a parasitic lifestyle. 

During its planktonic stages, the louse disperses with ocean currents, and infestations 

of lice in one farm can, given the right conditions, spread to neighboring farms and 

wild salmon up to 30 kilometers away (Salama et al., 2013). A range of stimuli affect 

the copepodid ability and specificity of host recognition, such as chemosensation 

(Devine et al., 2000; Fields et al., 2007; Komisarczuk et al., 2017), photosensation and 

mechanosensation (Bron et al., 1993a). The copepodid attaches to its host by a stabbing 

action with hook-like structures on its second antennae (Bron et al., 1991), before 

extruding a frontal filament directly before molting. Further molting occurs on the host, 

both chalimus stages last for about 4-5 days, first to the immobile chalimus I (~1.2 mm) 

and II (~2.2 mm) stages, which are attached to the host by the elongated frontal filament 

(Bron et al., 1991; Gonzalez-Alanis et al., 2001). At the chalimus II stage, sexual 

distinguishing can be completed by measuring size differences (Eichner et al., 2015a). 

The preadult stages both last about one week. Upon reaching the pre-adult I and II (♀= 

~3.6 - 5.2 mm, ♂= ~3.4 - 4.3 mm) and adult stages (♀ without egg strings= 8 - 11 mm, 

♂= 5-6 mm), the louse is mobile and can be sexually distinguished by visual 

inspections. Mature adults are reproductive, and produce eggs (hatching within ~9-10 

days) with larvae that have the potential of infecting new hosts and completing yet 

another life cycle.  
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Figure 2: Salmon louse life cycle. The salmon louse life cycle consists of eight 

developmental stages. These stages are the planktonic nauplia I and II, the infectious 

copepodid, the immobile chalimus I and II, and the mobile preadult I, II and adult louse. 

Animal sizes of various stages are indicated in the figure. Planktonic and attached stages are 

in scale, and mobile stages are in scale. The reader is referred to the text for further 

information on the salmon louse life cycle. Illustration: “SLRC Lepeophtheirus salmonis life 

cycle” by Sea Lice Research Centre is licensed under a Creative Commons Attribution-

ShareAlike 4.0 International License.  
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1.1.3 Salmon louse biology and anatomy 
 

The gross anatomy of the salmon louse body can be divided into a cephalothorax, 

genital segment and abdomen (Fig. 3) (Johnson and Albright, 1991a). The body of 

arthropods is covered by an exoskeleton, in which the major component is chitin, a 

polymer which is subjected to a tightly regulated synthesis and degradation process in 

the salmon louse (Eichner et al., 2015b; Harðardóttir et al., 2019). The rigid cuticle 

protects the vital louse body parts against external forces, but also exists to provide 

anchorage for muscles and epidermis (Bron et al., 2000). The tissue located underneath 

the cuticle is called the sub-epidermal tissue, and is assumed to perform liver-like 

functions with e.g. the presence of several types of glandular tissues (Øvergård et al., 

2016). Being a crustacean, the salmon louse has an open circulatory system containing 

hemolymph, which is a tissue fluid analogous to the blood of vertebrates. The sub-

epidermal tissue produces hemocoel, which is the body cavity that holds the 

hemolymph. 

The first three salmon louse life stages are lecithotrophic (Pike and Wadsworth, 1999), 

meaning they depend on maternal yolk sac reserves for nutrition. When the louse 

reaches the infectious copepodid stage, yolk nutrients are limited and the copepodid 

needs to attach to a host to complete its life cycle (see section 1.1.2). The salmon louse 

feeds on the salmonid skin and blood after it has attached to a suitable host (Brandal et 

al., 1976; Pike, 1989) which provides it with nutrients. As the louse molts into the 

mobile parasitic stages, it grazes on larger parts of its host and may cause greater 

damage. Fish skin is a metabolically active organ with living cells in all layers (unlike 

other vertebrates), and is vital for normal physiological functions. A louse feeding on 

a salmonid causes a mechanical disruption of this barrier, which can have detrimental 

effects for the fish, such as fatality due to osmoregulatory imbalance (Grimnes and 

Jakobsen, 1996; Pike and Wadsworth, 1999) and an increased susceptibility to 

secondary infections by opportunistic pathogens (Mustafa et al., 2000).  

Salmon louse reproductive organs include the ovaries (♀) (Fig. 3) and testes (♂). Both 

ovaries and testes are located on each side of the louse coalesced eyes (see 
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Komisarczuk et al. (2019) for more details on organ locations). Ovaries produce 

oocytes that are transported through the oviducts where they mature by increasing in 

size and convoluting (Ritchie et al., 1996), and also undergoing yolk maturation by 

vitellogenesis (Dalvin et al., 2009). Testes produce spermatozoa that are transported 

through vas deferens to spermatophore sacs in the genital segment and stored until 

copulation (Ritchie et al., 1996). The male salmon louse reaches the mature adult stage 

prior to the female salmon louse. The adult male precopulates with immature preadult 

II females, guarding the female until it has molted to the reproductive adult stage. At 

this point, the male will deposit its spermatophores onto the female genital segment, 

providing the female with spermatozoa that fertilizes its eggs as they are extruded from 

the genital segment (Ritchie et al., 1996). A knockdown of genes encoding mucin-like 

spermatophore wall proteins found expressed in the male salmon louse resulted in 

halted reproduction of female lice cultivated alongside the knockdown males (Borchel 

and Nilsen, 2018), highlighting the importance of spermatophore proteins for the 

parasite reproductive success. 

In the non-feeding, planktonic larval stages, the parasite does not have a functional 

alimentary canal; this first becomes present in the infectious copepodid stage (Bron et 

al., 1993b). As the salmon louse is semi-transparent, its intestine is clearly visible, 

particularly in the blood-feeding stages, as a red line when filled with salmon blood 

(Fig. 3). The intestine is stretched continuously from the oral cone ventrally on the 

cephalothorax, further through the cuticle-lined foregut, or the esophagus, followed by 

the midgut, and finally the cuticle-lined hindgut ending in a short rectum (Bron et al., 

1993b; Nylund et al., 1992). Peristaltic movement in the gut facilitates efficient food 

bolus homogenization (Nylund et al., 1992). A peritrophic membrane has not been 

described in the salmon louse alimentary canal (Bron et al., 1993b; Nylund et al., 1992). 

The salmon louse gut has been shown to be a site for expression of various genes related 

to the blood meal. Here, one finds e.g. digestive enzymes such as trypsin-like 

peptidases (LsTryp1-5) (Johnson et al., 2002; Kvamme et al., 2004), and the 

microsomal triglyceride transfer protein (LsMTP) (Khan et al., 2017). 
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Figure 3: Morphology of a mature adult female salmon louse (dorsal view). Photograph of live 

animal (top panel) and toluidine blue dyed histological section (bottom panel) showing the anatomy 

of a salmon louse body. The gross anatomical division includes a cephalothorax (CT), genital 

segment (GS) and abdomen (AB). The ovaries (ov) are located adjacent to the coalesced eyes. The 

GS contains unfertilized eggs, or oocytes (o). The blood-filled intestine (i) is seen as a red line 

stretching throughout the body from the mouth cone on the cephalothorax, through the genital 

segment, and finally through to the rectum in the posterior abdomen. Other tissues marked are 

glandular tissue (gt), hemocoel (h), sub-epidermal tissue (se) and cuticle (c). Scale bar = 1 mm. 

The figure is adapted from Paper II.  

1.2 Hematophagy 

Blood is a tissue fluid that consists of several nutrients, and can provide a great source 

of energy for many animals. Blood is also continuously renewed in vertebrates through 

hematopoiesis, allowing blood-feeding (hematophagous) organisms an ongoing supply 

of feed. Hematophagy has occurred in a broad range of taxa and several parasites (like 

various worms and arthropods) have adapted such a special feeding approach to 

CT                        GS AB
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facilitate their parasitic lifestyle. The nature of hematophagy has been described for 

several species, including the nematode Schistosomiasis mansoni (Hall et al., 2011), 

ticks (Mans and Neitz, 2004), mosquitos such as Aedes aegypti (Harrington et al., 

2001), and the salmon louse (Brandal et al., 1976) to mention a few. Blood is 

particularly rich in protein, with iron-proteins being among the most abundant 

(including in salmon (Røed et al., 1995; Sandnes et al., 1988)). Ingested proteins are 

digested to dipeptides and amino acids by intestinal enzymatic catalysis. These are 

further used as substrate for lipid, carbohydrate and protein synthesis, which are 

necessary for normal cellular processes. However, a consequence of intestinal protein 

degradation is the liberation of micronutrients such as iron and heme. Iron and heme 

both behave as double-edged swords as they are cofactors that are essential for aerobe 

life, yet they have potentially cytotoxic effects as described in the sections to follow.  

1.3 Iron 

Iron (Fe) is an elemental transition metal with atomic number 26 in the periodic system. 

It is one of the most abundant elements on Earth and has a wide range of industrial uses 

as an alloy ingredient of steel. However, in addition to being important for inorganic 

structures, iron also plays a vital role in biology. It is a mineral with many physiological 

purposes, as it contributes as a cofactor to the active center of several metalloproteins, 

enabling various biochemical pathways on a cellular level. Iron is necessary for non-

heme iron-proteins involved in e.g. DNA synthesis. As an example, iron is required as 

the enzyme ribonucleotide reductase metal center, which is involved in the formation 

of deoxyribonucleotides (Furukawa et al., 1992). Iron is also part of the inorganic 

cofactor iron-sulfur (Fe-S) cluster, which has many functions, such as being in the 

respiratory chain mitochondrial complexes I, II and III (Hatefi et al., 1962). While 

several oxidation numbers are possible for iron, +2 and +3 are the most common. 

Iron(II) compounds (Fe2+) are known as ferrous, whereas iron(III) compounds (Fe3+) 

are known as ferric. The nature of iron in being able to undergo cyclic reduction and 

oxidation (redox) enables the element to cause a wide range of cellular injury through 

the generation of reactive oxygen species (ROS) (Stohs and Bagchi, 1995). Ferric iron 
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reduction by superoxide anion can be seen in formula (1). Oxidation in the Fenton 

reaction (Fenton’s reagent was first described over a century ago (Fenton, 1894)), 

which can be seen in formula (2), shows that ferrous iron can react with H2O2 and 

produce hydroxyl radical (OH·) (Koppenol, 1993), a ROS able to initiate e.g. lipid 

peroxidation and cause oxidative stress. In brief, iron is an essential mineral, and must 

be obtained through the diet. However, as a consequence of the highly reactive nature 

of iron, free cellular iron is generally held at a minimum, and rather bound to proteins 

such as the iron storage protein ferritin, iron transporter transferrin, or contained to the 

heme group of hemoglobin in red blood cells circulating in vertebrate blood.  

 

(1)    Fe+3 + O2
-·  Fe+2 + O2 

(2)   Fe+2 + H2O2  Fe+3 + OH- + OH· 

1.3.1 Iron storage and trafficking 

In complex multicellular organisms, transportation mechanisms are vital to distribute 

the essential mineral iron to all cells, yet still avoiding toxic effects of iron excess. Not 

considering heme iron, vertebrate ferric iron is kept in a nontoxic state and for the most 

part transported in the circulation within blood serum (Holmberg and Laurell, 1945). 

The serum protein responsible for this was later named transferrin due to its ability of 

transporting iron between sites of absorption, storage and usage (Holmberg and 

Laurell, 1947). The major cellular storage protein for iron is ferritin, which is a protein 

with highly conserved features. Ferritin was initially isolated from horse spleen as early 

as in 1937, and in the following years, its properties and functions were steadily 

investigated (Granick, 1942). A few decades later, testing of serum ferritin was 

implemented clinically as an index of iron stores in humans (Lipschitz et al., 1974). 

Ferritin sequesters iron in the nonreactive, ferric state. The iron pool within ferritin is 

thus available for proteins that require the metal as cofactor. Ferritin is a large spherical 

and hollow protein, and the highly conserved three-dimensional structure is evident as 
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seen in similarities of crystal structures of ferritins from e.g. the Japanese tiger prawn 

(Penaeus japonicus) (PBD id: 6A4U) (Masuda et al., 2018), the American bullfrog 

(Lithobates catesbeiana) (PDB id: 1MFR), (Ha et al., 1999), human (Homo sapiens) 

(PDB id: 2FHA) and horse (Equus ferus caballus) (PBD id: 1AEW) (Hempstead et al., 

1997) to mention a few. The typical ferritin protein is cytosolic and consists of 24 

subunits of two types of chains; the heavy chain (HC) and the light chain (LC) subunit 

in various proportions, and can harbor approximately 29% (w/w) iron (Mann et al., 

1986), or roughly 4500 iron molecules. In arthropods, ferritin subunits are often 

secretory and are homologous to the vertebrate subunits. The subunits in arthropods 

are the heavy chain homolog (HCH) and the light chain homolog (LCH). HCH subunits 

have ferroxidase activity, which oxidizes ferrous (Fe2+) to ferric (Fe3+) iron (Pham and 

Winzerling, 2010). LCH subunits, on the other hand, are annotated as LCH because of 

lacking ferroxidase activity, and is rather implicated in the nucleation of iron (Pham 

and Winzerling, 2010). As many arthropod homologs of ferritin contain a signal 

peptide, directing it for the secretory pathway, they also act as a vehicle for iron 

transportation to recipient tissues, as well as for storage and detoxification. Secreted 

hemolymph ferritin has been reported in several arthropods, such as in the Brazilian 

skipper Calpodes ethlius (Nichol and Locke, 1989), the tobacco hornworm Manducta 

sexta (Huebers et al., 1988), the hard ticks Haemaphysalis longicornis (Galay et al., 

2014b) and Ixodes ricinus (Hajdusek et al., 2009). In ticks, RNAi-mediated silencing 

of ferritin has resulted in impaired egg production, a stop in their blood-feeding 

behavior and higher levels of oxidative stress (Galay et al., 2014b, 2013; Hajdusek et 

al., 2009). Ferritin synthesis is regulated on a transcriptional and/or post-transcriptional 

(translational) level. Post-transcriptional regulation is mediated by interaction of an 

iron-responsive element with its binding proteins in the untranslated region of the 

mRNA (Muckenthaler et al., 2008). 

1.4 Heme 

The word “heme” is derived from the Greek haima which means blood (Medical 

Dictionary, 2012), and has been called one of the key “pigments of life” as it causes 
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the characteristic red coloration of vertebrate blood. Heme is a cofactor found in 

hemoproteins, enabling a wide range of biochemical processes that are essential for the 

normal cell physiology. More specifically, heme is the iron-containing pyrrole ring of 

protoporphyrin IX (Fig. 4 and 5). Various types of heme exist, and the end-product of 

the synthesis pathway is heme B. Other types of heme include e.g. heme A and heme 

O (Fig. 4). Heme is herein used as a generic term, including various valence states of 

iron and heme types, unless otherwise stated. Heme B is largely bound to the gas 

transportation protein hemoglobin, which is the protein (alongside the oxygen storage 

heme-protein myoglobin) that was the very first atomic-level protein structure to be 

determined (Kendrew et al., 1960; Perutz et al., 1960). The work on this horse-derived 

hemoglobin structure laid the foundation for further elucidation of hemoglobin in other 

species, and the heme B cofactor is also seen in crystal structures of e.g. human 

hemoglobin (PDB id: 1GZX) (Paoli et al., 1996) and the teleost fish Leiostomus 

xanthurus hemoglobin (PDB id: 1SPG) (Mylvaganam et al., 1996). Other key cellular 

processes where heme is essential include electron transfer by cytochromes (Reid et 

al., 1984), gas and redox sensing (Shimizu et al., 2015), and DNA transcription (Hira 

et al., 2007). Heme is also a key element in processes related to oxygen metabolism in 

peroxidases (Ator and Montellano, 1987), and circadian clock control in mammals (Yin 

et al., 2007). The necessity of and adaptations to heme in blood-feeding arthropods are 

thoroughly reviewed (Graca-Souza et al., 2006; Whiten et al., 2018). E.g. in the blood-

feeding arthropods Rhodnius and Rhipicephalus, heme is found bound to hemolymph 

proteins Rhodnius heme-binding protein (RHBP) (Oliveira et al., 1995) and 

Hemelipoprotein (HeLp) (Maya-Monteiro et al., 2000). Prior to this study, several 

genes encoding proteins with predicted heme moieties have been described in the 

salmon louse, however none of these have offered particular focus to the heme group 

(Helgesen et al., 2017; Øvergård et al., 2017, 2016; Sandlund et al., 2018). Despite all 

cellular events that are dependent on heme as cofactor, heme acts cytotoxic by ROS 

generation and following oxidative stress. Lipid peroxidation is mainly induced by 

conversion of organic hydroperoxides (ROOH) into highly reactive alkoxyl (RO·) and 

peroxyl (ROO·) radicals (formulas (3) and (4)) (Graca-Souza et al., 2006). It has also 

been suggested that free heme in solution or bound to hemoproteins may produce 



 14 

hydroxyl radicals by a reaction similar to the Fenton reaction (Graca-Souza et al., 2006; 

Sadrzadeh et al., 1984). Heme is thus, alike iron, important to maintain bound by 

appropriate metalloproteins in order to avoid cellular demise.  

 

(3)   Heme-Fe+2 + ROOH  Heme-Fe+3 + OH- + RO· 

(4)   Heme-Fe+3 + ROOH  Heme-Fe+2 + H+ + ROO· 

 

 

Figure 4: Various heme types. Heme exists in various forms. Heme B is the most common, 

as the heme biosynthetic pathway product, and can be converted to e.g. heme A and O. The 

figure is assembled using KEGG COMPOUND Database illustrations. 

 

1.4.1 Heme biosynthesis and degradation 

Metazoan heme biosynthesis is a conserved and well-established biochemical pathway 

that is present in all aerobic branches in the tree of life and is described numerous times 

in literature (Ajioka et al., 2006; Donegan et al., 2019; Hamza and Dailey, 2012; 

Koreny et al., 2013; Ponka, 1999). Briefly, synthesis of heme involves eight enzymes, 

four cytoplasmic and four mitochondrial (Fig. 5). The pathway begins in the 

mitochondria with the synthesis of δ-aminolevulinic acid (δ-ALA) from the 

Heme A Heme B Heme O
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condensation of glycine and succinyl-CoA catalyzed by the enzyme ALA-synthase 

(ALAS: EC 2.3.1.37). The four steps that follow take place in the cytoplasm. Two δ-

ALA molecules are converted to a monopyrrole porphobilinogen (PBG) by 

dehydration catalyzed by ALA-dehydratase (ALAD: EC 4.2.1.24) (also known as PBG 

synthase or PBGS). Next, four PBG molecules combined make up the cyclic 

tetrapyrrole uroporphyrinogen III in two steps, catalyzed by hydroxymethylbilane 

synthase (HMBS: EC 2.5.1.61) and uroporphyrinogen synthase (UROS: EC 4.2.1.75) 

subsequently. The cyclic tetrapyrrole uroporphyrinogen III is then decarboxylated by 

uroporphyrinogen decarboxylase (UROD: EC 4.1.1.37) to make up 

coproporphyrinogen III. This concludes the cytoplasmic residency of the pathway, with 

the remaining synthesis steps occurring in the mitochondria again. 

Coproporphyrinogen oxidase (CPOX: EC 1.3.3.3 or EC 1.3.98.3) converts 

coproporphyrinogen III to protoporphyrinogen III, which is then further converted to 

protoporphrin IX (PPIX) by protoporphyrinogen oxidase (PPOX: EC 1.3.3.4 or EC 

1.3.5.3). The heme B (also known as protoheme) molecule is finally completed by 

addition of ferrous iron (Fe2+) to PPIX by the pathway terminal enzyme, ferrochelatase 

(FECH: EC 4.99.1.1). Heme B can be further converted to various kinds of heme (Fig. 

4) by cytochrome c oxidases (COX, EC 1.9.3.1) (Michel et al., 1998), depending on 

the protein it will be incorporated into (e.g. cytochromes). Heme B conversion to heme 

O is catalyzed by heme O synthase (COX10). Heme O can be further modified to heme 

A catalyzed by cytochrome c oxidase assembly protein subunit 15 (COX15). 
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Figure 5: Heme biosynthetic pathway. Biosynthesis of heme from amino acid glycine and succinyl-

CoA as precursors. Mitochondrial and cytoplasmic pathway locations are indicated. Boxed numbers 

represent pathway enzymes. 1 = δ-aminolevulinic acid synthase (ALAS), 2 = ALA-dehydratase 

(ALAD), 3 = hydroxymethylbilane synthase (HMBS), 4 = uroporphyrinogen synthase (UROS), 5 = 

uroporphyrinogen decarboxylase (UROD), 6 = coproporphyrinogen oxidase (CPOX), 7 = 

protoporphyrinogen oxidase (PPOX), 8 = ferrochelatase (FECH). More details on the pathway is 

found in the main text. The figure is assembled using KEGG COMPOUND Database illustrations.  

1
2

3

4

5

6

7

8

M
i
t
o
c
h
o
n
d
r
i
a

C
y
t
o
p
l
a
s
m

GLYCINE

SUCCINYL-CoA

PORPHOBILINOGEN

UROPORPHYRINOGEN III

COPROPORPHYRINOGEN III

HYDROXYMETHYLBILANE

PROTOPORPHYRINOGEN IX

PROTOPORPHRIN IX

HEME B

δ –AMINOLEVULINIC 

ACID

CO2

CoASH

H2O

4NH3

H2O

4H+

4CO2

2H+2CO2

6H

2H+
FE++



 17 

Heme catabolism in eukaryotes is mediated by the enzyme heme oxygenase (HO, EC 

1.14.14.18) which uses heme as substrate, and cleaves the ring structure into ferrous 

iron, biliverdin-IX-α and carbon monoxide (CO) intracellularly (Tenhunen et al., 

1969). The liberated iron may further be stored in ferritin or used in metalloproteins or 

transported to the mitochondria to e.g. be recycled as heme-iron (Fig. 6). Both synthesis 

and degradation of heme within a cell is tightly regulated as the availability of heme 

promotes feedback loops. Elevated levels of available heme inhibits new synthesis of 

endogenous heme (Furuyama et al., 2007), whereas it induces expression of HO 

(Shibahara et al., 1978). In this way, the cell balances heme levels to avoid excess heme 

and maintain homeostasis. Although this degradation pathway mediated by HO is 

highly conserved, the kissing bug Rhodnius prolixus pathway slightly deviates from it. 

Here, two cysteinylglycine residues are found to be added to the heme group prior to 

oxidative cleavage (Paiva-Silva et al., 2006). However, further modification and 

oxidative cleavage of degradation products are likely mediated through HO-like 

enzymes, and a conserved HO homolog has been identified in the R. proxilus genome 

(Walter-Nuno et al., 2013).  

 

Figure 6: Iron and heme trafficking intertwined. Simplified graphical illustration of how 

iron and heme trafficking are intertwined. HO = heme oxygenase, CO = carbon monoxide. It 

should be noted that in this simplified illustration, further trafficking of ferritin and 

hemoproteins, and incorporation of hemoproteins into the mitochondria are not shown. The 

illustrated cell components are downloaded from Servier Medical Art by Servier 

(https://smart.servier.com/) (Attribution 3.0 France: CC BY 3.0 FR).  
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1.4.2 Heme auxotrophy 

Until the late ‘90s, the consensus in communities within iron and heme research was 

that all nucleated cells in multicellular aerobe organisms have the ability to make up 

the iron-containing porphyrin ring structure de novo, as heme is a cofactor that is 

essential for every aerobe cell (Ponka, 1997). After this, however; the dogma on the 

universality of heme biosynthesis had to be reconsidered, as it turned out not all animals have 

the opportunity to rely on endogenous heme production. In 1999, the hematophagous 

parasitic cattle tick Rhipicephalus (Boophilus) microplus was the first reported animal that 

was not able to synthesize heme on its own, but rather being an obligate heme auxotroph 

(Braz et al., 1999). Following this, free-living worms such as the soil-nematode 

Caenorhabditis elegans and parasitic helminths were also found to be unable to make heme 

de novo (Perner et al., 2019; Rao et al., 2005). With more genomes being sequenced and 

annotated, more organisms are added to the list of natural heme auxotrophs, one being the 

tick vector of Lyme disease I. scapularis (Gulia-Nuss et al., 2016). Ticks appear to lack 

several orthologues of enzymes within the heme biosynthetic pathway, with only the three 

enzymes last in the synthesis still present, leaving ticks with no other option than to scavenge 

exogenous heme for survival. In addition to being heme auxotrophs, ticks and nematodes 

have been found to not possess a traditional heme degradation pathway as they lack HO 

activity (Perner et al., 2019, 2016; Rao et al., 2005) The malaria parasite Plasmodium spp., 

unlike the aforementioned species, is not an obligate heme auxotroph. The protozoan parasite 

encodes a full genetic apparatus for endogenous heme biosynthesis, yet does not rely on this 

during its blood-stage growth (Goldberg and Sigala, 2017), suggesting that a period with an 

abundance of exogenous heme from the host blood leads to a redundancy of the heme 

biosynthetic pathway in this parasite.  

1.4.3 Heme trafficking 

The ability of intestinal absorption of exogenous heme from the diet has early on been 

recognized in mammalia (Björn-Rasmussen et al., 1974; Gräsbeck et al., 1979; Tenhunen et 

al., 1980). Dietary heme works as a source of iron, as heme-iron is much more bioavailable 
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than non-heme iron (Carpenter and Mahoney, 1992; Lynch et al., 1989). Still, the mechanism 

behind the movement of heme across cellular membranes has to a great extent remained an 

unanswered question. It has been suggested that, due to its amphipathic nature, heme may 

passively diffuse unassisted over membranes, a phenomenon which has been observed in 

model intracellular lipid bilayers in vitro (Rose et al., 1985; Thöny-Meyer, 2009). However, 

considering the highly reactive nature of free heme, and the fact that free heme is prone to 

self-aggregation in aqueous solutions as well as aggregation with lipid membranes, this has 

been deemed an unlikely event to occur in vivo (Hamza and Dailey, 2012). Instead, highly 

regulated trafficking of heme across membranes, facilitated by committed protein(s) is 

probably a more accurate scenario. The first detailed characterization of an intestinal heme 

transporter was published in 2005, when Shayeghi et al. (2005) isolated the heme carrier 

protein 1 (HCP1) from mouse duodenum. Nevertheless, fast forward one year, HCP1 is 

renamed as the proton-coupled folate transporter/HCP1 (PCFT/HCP1) as further protein 

characterization uncovered that it is a transporter with approximately two orders of magnitude 

greater affinity for folate than heme (Qiu et al., 2006). In C. elegans, the heme responsive 

gene 1 (HRG-1) is situated in the endosome and lysosome, and is postulated to regulate heme 

homeostasis (Rajagopal et al., 2008). The HRG-1 paralogue HRG-4 is on the other hand 

expressed in the cytoplasm of intestinal cells of C. elegans, and has been implicated in heme 

uptake in the intestine of worms (Rajagopal et al., 2008). However, there are no reported 

arthropod or vertebrate homologs of HRG-4. Intestinal heme absorption in arthropods lack 

consensus, but an ATP binding cassette subtype B10 (ABCB10) was found to be implicated 

in heme transportation from digestive vacuoles to hemosomes in the tick R. microplus midgut 

(Lara et al., 2015, 2003). Further investigation is needed to elucidate the trafficking of heme 

in arthropods, and using heme auxotroph organisms could contribute to increased knowledge 

of this by taking advantage of an organism lacking an endogenous heme pool. Further details 

on inter- and intracellular trafficking of iron and heme are not included here, but can be found 

in a thorough review by Muckenthaler et al. (2016).  
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2. Aims of the study 

The overall aim of this research was to gain knowledge about salmon louse 

hematophagy, with a special focus on iron and heme trafficking. Ferritin is an iron-

storage protein, and ferritin-encoding genes were of interest to investigate in the blood-

feeding louse, which is exposed to substantial amounts of dietary iron. Heme 

trafficking is much more scarcely described throughout the available literature, and an 

aim was to search for a heme receptor in the parasite intestine. The silencing of a heme 

receptor should result in a reduction of absorbed heme levels, and this should ultimately 

have negative impacts on parasite physiology. In silico examination of the heme 

synthesis and degradation pathways is included as extra results in this thesis to 

understand iron and heme trafficking in the louse. Finally, further insight into the 

salmon louse transcriptome upon initiating hematophagy could provide several 

candidate genes to investigate and characterize in the future. The knowledge created in 

this thesis could give a better understanding of salmon louse weaknesses as a result of 

its hematophagous, parasitic lifestyle, and could contribute to propose new targets for 

pest management. 

Key objectives of this thesis were: 

 Characterize and annotate ferritins in the salmon louse genome. 

 Perform functional studies of secreted ferritins in the salmon louse.  

 Establish a reproducible assay for quantifying heme in the salmon louse. 

 Identify and characterize a heme receptor in the salmon louse intestine. 

 Perform putative heme receptor knockdown studies and assess absorbed heme 

levels in salmon louse tissues. 

 Investigate the onset of hematophagy in the salmon louse. 

 Study the transcriptome of chalimus larvae with a premature onset of blood-

feeding while attached to host gills. 



 21 

3. Methodology 

3.1 Fish experiments and lice infestations 

When performing in vivo experiments, mimicking natural conditions of salmon lice 

infesting salmon is essential for studying the host parasite interaction and the parasite 

biology. However, the benefit of using defined conditions in a laboratory includes 

minimization of natural variations, which could otherwise disturb the experimental 

setup. For this thesis, biological experiments with salmon lice have been performed 

both at the wet laboratory facilities at the Institute of Marine Research (IMR) in Bergen, 

Norway, and at the LiceLab at the Institute of Biological Sciences at the University of 

Bergen, Norway. The facilities have specialized units for cultivating salmon lice 

required for biological experiments. Salmonids are cultivated according to ethical 

guidelines determined by the Norwegian Food Safety Authority (Norwegian Food 

Satefy Authority, 2015) and the Norwegian legislation on the care and use of animals 

for scientific procedures (Lovdata, 2015). Seawater is pumped from 105 meter depths 

and particle filtered (20 µm) to maintain proper and relatively steady environmental 

conditions for the fish at all times. Parameters such as oxygen saturation, water 

temperature, water salinity and fish welfare were monitored daily. Salmon louse eggs 

collected from in-house laboratory strains of salmon lice were hatched in continuous 

flow incubators (Fig. 7) and allowed to develop to the copepodid stage (Hamre et al., 

2009). The copepodids were used to infect Atlantic salmon in common tanks (500 l), 

and the lice were collected from the fish when reaching the desired life stage, e.g. 

preadult II females for dsRNA injections. When re-attaching preadult or adult lice to 

the host fish, lice were placed on their back on a wet piece of paper. The paper with 

lice was then placed on the side of an anesthetized salmon (mixture of 60 mg/l 

benzocaine and 5 mg/ml methomidate), before removing the paper and placing the 

salmon back in an array of single fish tanks (50 l) with a continuous supply of fresh 

seawater (6 l min-1) (Fig. 8) (Hamre and Nilsen, 2011). 
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Figure 7: Salmon louse incubators. Incubators with individual hatching wells used to keep 

and observe egg strings and the developing salmon louse larvae. A continuous supply of sea 

water is obtained through the green tubes. Photo: Lars Are Hamre. 
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Figure 8: Single fish tank arrays. Wet-lab facility at the SLRC used in salmon louse experiments. 

Each tank holds one salmon with salmon lice. Photo: Lars Are Hamre. 

3.2 Genome browsing 

The salmon louse genome has been sequenced and is publicly available at LiceBase 

(https:/licebase.org) and Ensembl Metazoa 

(http://metazoa.ensembl.org/Lepeophtheirus_salmonis/). In addition to the sequenced 

genome in LiceBase, there are among other things an Atlantic salmon louse genome 

annotation, a genome browser, a Basic local alignment search tool (Blast) (Altschul et 

al., 1990) function and access to related high-throughput genomics and transcriptomic 

data. These data allow for analyses across salmon louse developmental stages and also 

across various salmon louse tissues, such as intestine, ovaries, testis etc. RNA-

sequencing (RNA-seq) data reveals the transcript quantity and presence in a biological 

sample (Wang et al., 2009). 

To investigate the heme biosynthetic and degradation pathways in the salmon louse, 

orthologue protein sequences from Drosophila melanogaster (described in a review by 
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Perner et al. (2019)) and I. scapularis were downloaded in FASTA format from the 

National Center for Biotechnology Information (NCBI) 

(https://www.ncbi.nlm.nih.gov/). These sequences were applied as queries in the Blast 

function with default settings in LiceBase against the genome of the Arctic-endemic 

copepod Tigriopus kingsejongensis, which is the only other copepod (in addition to the 

salmon louse) with a publicly available genome upon finishing this thesis (Kang et al., 

2017). T. kingsejongensis is free-living, and not a hematophagous parasite, and ought 

to therefore have a complete heme biosynthetic pathway. The primary search was 

BlastP (protein  protein), and if no hits were found, a tBlastN (6 frames, protein  

translated nucleotide) search was conducted. The obtained hits were fed into the 

InterProScan 5 database (https://www.ebi.ac.uk/interpro/; Jones et al. (2014)), for 

protein sequence analysis and classification to obtain protein families (Pfam) and gene 

ontology (GO) terms. Sequences of likely bacterial origin (minimum 10 best NR Blast 

hits were bacteria) were not used further. The Blast hits from T. kingsejongensis and 

D. melanogaster were then used as query for Blast searches against the salmon louse 

genome, with the same approach of downstream sequence analyses. Only hits with an 

E-value below 1E-6 were considered. 

3.3 RNA interference 

RNA interference (RNAi) was first reported in the flower Petunia (Napoli et al., 1990), 

and later unraveled by Fire et al. (1998) as a genetic interference by double stranded 

RNA (dsRNA) in the nematode worm C. elegans. RNAi is a conserved biological 

process in cells that can be provoked by introduction of dsRNA into an organism with 

the purpose of gene expression manipulation. RNAi can also be triggered naturally e.g. 

in response to foreign dsRNA of viral origin to protect against pathogens, as first 

described in plants (Hamilton and Baulcombe, 1999). The gene silencing mechanism 

of RNAi is described in a review by Sen and Blau (2006). Briefly, the silencing is 

initially driven by Dicer-mediated cleavage of the trigger (e.g. dsRNA) into small 

interfering RNAs (siRNAs). These siRNAs will then become part of the RNA-induced 

silencing complex (RISC) that interacts with the target mRNA, leading to the cleavage 
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of it and thus its degradation. By that, mRNA translation is inhibited, which leads to a 

decreased protein expression. 

RNAi has proven to be a powerful tool in investigating physiological functions and 

phenotype alterations by a loss-of-function manner in the salmon louse. Lice may be 

subjected to dsRNA at various life stages in different formulas. In newly hatched 

nauplius I, dsRNA is introduced to the larvae in a bath treatment where they are left to 

soak in the dsRNA until they have molted to the nauplius II stage (approximately 24 

hours at 10 °C) (Eichner et al., 2014). After this, the larvae are placed in incubators in 

running seawater until they reach the copepodid stage. At this point, phenotype 

alterations (e.g. inhibited molting, decreased swimming capacity, increased mortality 

etc.) can be observed, if present, and lice may be sampled for assessment of transcript 

down-regulation by real time quantitative PCR (RT-qPCR), or used in infestation trials 

and sampled at a later life stage. In the preadult II and adult stages, lice (male or female) 

are injected in the cephalothorax using thin capillaries with a dsRNA solution to 

provoke the RNAi mediated knockdown (Dalvin et al., 2009) (Fig. 9). Upon injection, 

the lice are placed back on their host and left until they reach the mature adult stage 

with egg string production. In this thesis, louse fitness was monitored with a special 

focus on the parasite fecundity. This because one of the main goals of studying the 

salmon louse is to obtain more knowledge about the parasite biology and its specific 

protein functions, and ultimately to discover targets for therapeutic intervention by 

identifying its Achilles heel(s). 
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Figure 9: dsRNA injection. An adult female salmon louse is injected with borosilicate glass capillaries 

containing dsRNA in order to provoke a transcript knockdown. The dsRNA is mixed with 

bromophenol blue in order to observe the success of an injection. Photo: Lars Are Hamre. 

3.4 Heme quantification 

Heme is a molecule with various biochemical properties with characteristic spectrums 

that can be quantitatively analyzed with e.g. spectrophotometry measuring the 

absorbance, high-performance liquid chromatography (HPLC) or fluorescence 

(Sinclair et al., 1999). Heme is not fluorescent in itself. Therefore, in order to quantify 

heme by fluorescence, one must reduce the heme molecule to the ring structure 

protoporphyrin IX without iron. This can be accomplished by boiling a sample in e.g. 

saturated oxalic acid. The resulting porphyrin ring structure without iron may be 

emitted with light around λ 400 nm and the emission spectrum peak is read at around 

λ 600 nm using a spectrofluorometer (Morrison, 1965; Sinclair et al., 1999; Paper II). 

Results may then be compared to a standard curve of heme where there is a linear 

relationship of arbitrary fluorescence levels with a known set of concentrations. This 

approach was in this thesis adapted to quantify heme in the salmon louse. However, 

only absorbed heme levels were of interest, and not heme in the still digesting blood 

meal. Blood contains an excess of heme, and measuring heme from the ingested fish 

blood could lead to false positive results, possibly masking the actual absorbed heme 

levels. This was a vital point in designing the experiment, as the heme quantification 

assay was to be used on RNAi knockdown salmon lice where a gene encoding a 

possible mediator of intestinal heme absorption was silenced. In order to avoid 
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intestinal blood in the analyses, the adult female salmon louse intestine was dissected 

out and used to check for knockdown success by RT-qPCR. To normalize heme levels, 

a protein quantification assay was used to ensure that differences in heme 

concentrations are not due to an overall protein reduction in the salmon louse caused 

by the knockdown (Paper II). 
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4. Summary of papers 

4.1 Paper I 

«Heavy and light chain homologs of ferritin are essential for blood-feeding and 

egg production of the ectoparasitic copepod Lepeophtheirus salmonis» 

Here, the goal was to study the importance of ferritin in the salmon louse. Ferritin is 

the major known iron storage protein in animals, and is well characterized and much 

described in literature. Vertebrate ferritin is mostly made up of two subunits, the heavy 

chain and the light chain, which assemble into a three dimensional protein shell. 

Together, these two subunits oxidize, detoxify and store iron, which otherwise could 

harm the cell by generating reactive oxygen species. Arthropods have ferritin subunits 

that are homologous to the vertebrate ones. The salmon louse has several predicted 

ferritin subunits (LsFer1-4). These include intracellular heavy chain homologs 

(LsFer3-4), a secreted heavy chain homolog (LsFer1) and a secreted light chain 

homolog (LsFer2). Secreted ferritins are common in arthropods, where they are found 

to be involved in transportation of iron in addition to its storage and detoxification. The 

transcripts of LsFer1 and LsFer2 are both expressed in the salmon louse midgut, both 

decrease under starvation, and both yield similar phenotypic alterations during RNAi 

knockdown experiments, and they both have a similar temporal expression pattern. 

These similarities indicate that the two subunits may be heterodimers of one ferritin 

protein. The knockdowns of LsFer1 and 2 caused the adult female lice to cease blood-

feeding and almost completely halted egg production. Histological analyses of 

knockdown animals revealed that the silencing of LsFer1 and 2 caused oocytes to not 

develop properly, as they lacked the structure seen in control oocytes. Combined, these 

results stress the importance of these genes for the normal parasite biology, and could 

potentially be targets for pest management. 
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4.2 Paper II 

«A scavenger receptor B (CD36)-like protein is a potential mediator of intestinal 

heme absorption in the hematophagous ectoparasite Lepeophtheirus salmonis» 

In this project, the aim was to learn more about intestinal heme absorption, using the 

salmon louse as a model organism. Heme, or iron protoporphyrin IX, is a protein 

cofactor most commonly found in the hemoglobin of red blood cells where it acts as a 

vehicle for gas transportation. Heme is also, alike iron, potentially cytotoxic if not 

bound and detoxified by appropriate metalloproteins. The intestinal absorption of heme 

has remained an enigmatic process, even though dietary heme provides the most 

bioavailable form of iron. The hypothesis was that the scavenging of exogenous heme 

is essential for the normal parasite biology, and that there should be an intestinal protein 

in the salmon louse that facilitates heme absorption. A scavenging CD36-like receptor 

is a potential mediator of heme absorption in the salmon louse. Homologs of CD36-

like receptors in other species have not been suggested to be implicated in the 

absorption of heme previously. The receptor was named “heme scavenger receptor 

class B” or LsHSCARB. The receptor is expressed in the adult female salmon louse 

midgut, and the protein was found to bind heme in silico as well as in vitro. Adult 

female louse starvation led to a decrease in the receptor transcript levels. Moreover, a 

functional knockdown study mediated by RNAi caused the adult female lice to have 

significantly lowered absorbed heme levels, as measured by fluorescence. The 

knockdown animals also produced shorter egg strings with a worsened egg hatching 

success. These results provide the first clue of a heme trafficking pathway not described 

in any other species to date. 
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4.3 Paper III 

«Host gill attachment enables blood-feeding by the salmon louse (Lepeophtheirus 

salmonis) chalimus larvae, and alters parasite development and transcriptome» 

The main objective of this project was to investigate the salmon lice transcriptome 

connected to blood-feeding, and also to investigate when, during the louse 

development, blood-feeding starts. Hematophagy (blood-feeding habit) is a common 

trait in parasitizing arthropods as blood is a highly nutritious tissue fluid which is 

constantly renewed in the vertebrate host. Blood also contains micronutrients such as 

iron and the iron-containing pyrrole ring, heme. Iron and heme are both molecules that 

the salmon louse needs to obtain from its diet, yet they are also potentially highly toxic 

if not properly detoxified. Initiating in hematophagy should thus require a shift in the 

salmon louse transcriptome. In order to study this, Atlantic salmon were infected with 

salmon louse copepodids, and lice were sampled at 10 and 18 days post infestation 

(dpi). Lice developmental state (stage and instar age), settlement sites, and whether the 

louse guts were filled with blood, were determined. Lice mostly settled on the host fins, 

and moved towards the host body upon becoming mobile preadults. The lice found on 

gills were slower developed than lice elsewhere on the host, and these lice often had a 

blood-filled intestine already at the chalimus I stage. Aside from lice on the gills, the 

observation was that blood-feeding would start only when the lice reach the mobile 

preadult I stage. Chalimus larvae on gills and on skin (fins or body) sampled at 10 and 

18 dpi were therefore used for RNA-sequencing. The expression of several genes is 

differently regulated comparing lice from the gills versus those from the skin. Many 

genes are up-regulated in lice sampled from gills, and among these are ferritins (iron 

storage/transportation), peptidases (digestion), genes of unknown functions, FNII-

encoding genes etc. In conclusion, ingesting blood should normally start when the 

louse reaches the mobile stages, and a premature onset of this diet causes the lice to 

develop at a slower pace. A shift in gene expression is evident in the lice that have been 

attached to the vascular host gills. 
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5. General discussion 

The major aim of the present study was to obtain more knowledge about hematophagy 

in the salmon louse. Hematophagy is a common trait in parasitism, as blood from a 

vertebrate host is highly nutritious, as well as continuously renewed through 

hematopoiesis. Blood is heavily biased towards proteins containing iron and heme, 

which are micronutrients that work as cofactors of certain proteins, enabling several 

biochemical events in cells of all animals. However, the potential cytotoxic effects 

caused by the blood meal stress the need for tightly regulated processes in handling its 

components. The salmon louse is an obligate marine ectoparasite feeding off the skin 

and blood from its salmon host. Elucidating blood as a diet, with a particular focus on 

iron and heme trafficking pathways in the salmon louse, has yielded new insight about 

the biology of the hematophagous arthropod, and the results of Paper I, II and III are 

here linked together and discussed. 

5.1 Characterization of studied genes and proteins 

Throughout the course of this study, genes and proteins analyzed have been 

characterized by bioinformatical and functional studies, and have been annotated 

accordingly. 

5.1.1 Ferritin subunits LsFer1-4 

In Paper I, salmon louse ferritin homologs were characterized. Due to sequence 

similarities throughout investigated phyla and the conservation of ferritin motifs, the 

hypothesis that LsFer1, 2, 3 and 4 have the function of iron storage and detoxification 

and belonging to the ferritin-like superfamily (PF00210) is sustained. Of the cytosolic 

ferritins, there were identified HCHs (LsFer3 and LsFer4), whereas of the secreted 

ferritins one HCH (LsFer1) and one LCH (LsFer2) were identified. All HCH ferritins 

investigated here, however, have the predicted ability of nucleating iron (in addition to 

HCH specific conserved motifs such as ferroxidase activity) which is normally reported 

as being LCH specific (Pham and Winzerling, 2010). The intracellular HCH subunits 

may therefore make up an iron storage molecule alone. Hybrid type ferritins, having 
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both HCH and LCH features, are common in crustaceans (Maiti et al., 2010; Masuda 

et al., 2018; Qiu et al., 2008). As LsFer3 was mainly found to be expressed in testis, it 

most likely has a male specific function. There was no sign of post-transcriptional 

control of ferritin in the salmon louse, as no iron-responsive element motifs were 

predicted in the mRNA untranslated regions. The results here rather suggest that 

LsFer1 and 2 are primarily regulated at a transcriptional level, as transcripts are 

responsive to starvation (Paper I) and blood-feeding (Paper III). 

5.1.2 Heme scavenger LsHSCARB 

In Paper II, a gene encoding a scavenger receptor class B (SCARB) was identified and 

subjected to bioinformatical and functional investigation. The characteristics of 

SCARB (PF01130) includes transmembrane domains in the N- and C-terminuses in 

the amino acid sequence, with ends located intracellularly, and an extracellular ligand 

binding domain, which are criteria that LsHSCARB fulfill. Scavenger receptors make 

up a heterogeneous protein group, which has been reported to scavenge various ligands. 

In Mammalia, SCARB homologs are reported to scavenge e.g. oxidized and non-

oxidized low-density lipoprotein (Endemann et al., 1993), β-carotene (van Bennekum 

et al., 2005) and very long chain fatty acids (Drover et al., 2008). In arthropods, 

SCARB homologs have been found to mediate tick systemic RNAi (Aung et al., 

2011b), and a gene knockdown caused negative effects on egg weight, hatching rate 

and tick survival (Aung et al., 2011a). Furthermore, a scavenger receptor in the 

crustacean freshwater shrimp Macrobrachium nipponese was up-regulated by various 

dietary lipid sources (Ding et al., 2016), suggesting that scavenger receptors may be 

important in nutrient trafficking in other crustacean species in addition to the salmon 

louse. Further analyses of LsHSCARB all pointed in the direction of it being able to 

scavenge heme from the blood ingested by the salmon louse. The hypothesis was 

strengthened by in silico, in vitro as well as in vivo experiments (Paper II), however 

further recombinant protein characterization should be conducted. LsHSCARB ligand 

specificity is not known, as only heme was investigated as a potential ligand here. Other 

proteins that can mediate heme absorption in the salmon louse intestine may also exist. 
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5.1.3 Transcripts identified by RNA-sequencing 

Genome annotation underlying transcriptomics is done automatically and transcripts 

found in RNA-seq (as in Paper III) are mapped to genes of this model. Annotations of 

predicted amino acid sequences are conducted by blasting against the NCBI GenBank 

NR (https://www.ncbi.nlm.nih.gov/) and SwissProt (Bairoch and Apweiler, 2000) 

databases. Due to large datasets, automatic annotation is necessary, but the drawbacks 

may be that genes in the reference genome 

(http://metazoa.ensembl.org/Lepeophtheirus_salmonis) could have been wrongly 

assembled and in that way, protein domains could be lost or fusion proteins could be 

produced. Proteins could be annotated with erroneous functions due to similarity with 

proteins sharing a conserved region, yet not having the same functional domains. An 

incorrect assembly could also result in inaccurate transcript predictions in the datasets 

if e.g. two differently regulated transcripts are annotated as one. Nevertheless, specific 

protein families are predicted for the output transcripts from the experiments, which 

adds more confidence to the analyses. Additionally, in transcriptomics, the purpose is 

often to identify unexpected groups of transcripts that are regulated in an experiment. 

Important transcripts that emerge in the datasets are investigated further manually to 

evaluate the sequence quality.  

5.2 Missing genes in the salmon louse 

Because comprehending salmon louse heme biology is vital in order to understand and 

discuss the results of this thesis, extra genome analyses are included here. In order to 

investigate the salmon louse heme biosynthetic and degradation pathways, the first goal 

was to find homologous sequences in the free-living copepod T. kingsejongensis (Kang 

et al., 2017). This copepod had homologs for all synthesis and degradation pathway 

enzymes, however no homologs for COX10 were found, the enzyme needed for the 

conversion of heme B to heme O (Table 2). Sequences from T. kingsejongensis and D. 

melanogaster were further used as query for Blast searches against the salmon louse 

genome. Here, homologs for only one synthesis enzyme were found; CPOX (Stable 

ID: EMLSAP00000008964 and EMLSAP00000009295) (Table 3). CPOX catalyzes 



 34 

the synthesis of protoporphyrinogen III from coproporphyrinogen III. Assuming that 

the salmon louse could obtain coproporphyrinogen III from its diet, any further 

modifications of protoporphyrinogen III to PPIX and insertion of an iron atom to the 

porphyrin ring center by FECH are still unlikely events as the enzymes able to catalyze 

these reactions are seemingly missing. The parasite has retained both the oxygen 

dependent and independent version of CPOX. Additionally, the two genes are not only 

found in the genome, they are also found in the salmon louse transcriptome, suggesting 

that translated CPOX homologs in the salmon louse are functional. Publicly available 

RNA-seq data in LiceBase report that the aerobe CPOX homolog transcript, 

EMLSAT00000008964, is expressed somewhat evenly in all salmon louse life stages 

and tissues (https://licebase.org/). Anaerobe CPOX homolog transcript, 

EMLSAT00000009295, is expressed mostly in testis, but is also found in ovaries and 

eggs (https://licebase.org/). CPOX homolog function in the salmon louse remains an 

unanswered question. The presence of homologs for COX10 and COX15 indicates that 

the salmon louse could convert heme B to heme O and heme A, required in various 

hemoproteins. The heme B molecule is probably mostly scavenged from host 

hemoglobin, as the salmon has a complete heme biosynthetic pathway 

(https://www.kegg.jp/kegg-bin/show_pathway?sasa00860). Lack of HO indicates that 

the salmon louse cannot break down the heme molecule to obtain iron, at least not 

according to current knowledge about heme catabolism. Iron is likely scavenged from 

circulating host transferrin. Based on the lack of stated enzymes, the proposed 

postulation is that the salmon louse is among the natural heme auxotrophic organisms 

(alongside e.g. ticks (Braz et al., 1999) and worms (Rao et al., 2005)), and to our 

knowledge this is the first detailed report of a Crustacean species in this group. The co-

evolution of the hematophagous parasitizing salmon louse with its host seem to have 

rendered the heme biosynthetic pathway redundant in this species and likely promoted 

gene loss. Genes not being transcribed are prone to accumulate mutations, be truncated 

and eventually lost from the genome (Albalat and Cañestro, 2016). An excess of 

exogenous heme might have repressed ALAS transcription (Furuyama et al., 2007), 

and thus eliminated the synthesis of endogenous heme in the louse with neutral effects 

on parasite fitness. However, the suggestion that salmon lice lack means of heme 
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biosynthesis and degradation are based on in silico genomic analyses alone. 

Furthermore, this raises a new question: how does the salmon louse cope with excess 

heme obtained from the diet? Alternative heme detoxification, catabolic mechanisms 

and cellular heme excretion events should be studied further. 

 

Table 2: Genome mining in Tigriopus kingsejongensis. Predicted enzymes of the heme 

biosynthesis and degradation pathway in T. kingsejongensis found by Blast searches using D. 

melanogaster and I. scapularis sequences as query. Green = positive hits, white = no hits with 

an E-value less than 1E-6. 

Protein Blast search Query Best hit 
Score 

(bits) 
E-value PFAM 

ALAS BlastP NP_477281.1 (a) Tk02602 618 0 PF00155* 

ALAD BlastP 
NP_001261752.1 

(a) 
Tk04959 369 2E-128 

PF00490 

(ALAD) 

HMBS BlastP NP_612103.1 (a) Tk00609 276 8E-87 
PF03900 

(HMBS) 

UROS tBlastN NP_572507.1  (a) 

maker-

scaffold1394_size4355

8-snap-gene-0.7 

89 9E-19 
PF02602 

(UROS) 

UROD BlastP NP_610501.1  (a) Tk06395 433 3E-146 
PF01208 

(UROD) 

CPOX BlastP NP_524777.1 (a) Tk12349 484 2E-171 
PF01218 

(CPOX) 

  EEC11362.1 (b) Tk08114 192 1E-56 PF04832** 

PPOX BlastP NP_651278.2 (a) Tk10742 354 9E-118 PF01593*** 

FECH BlastP NP_524613.1  (a) Tk06128 512 0 
PF00762 

(FECH) 

HO BlastP NP_524321.1 (a) Tk11351 134 2E-38 
PF01126 

(HO) 

COX10 tBlastN NP_609382.1  (a) No hit N/A N/A N/A 

COX15 BlastP NP_611855.1 (a) Tk00231 397 3E-137 
PF02628 

(COX15) 

a) D. melanogaster 

b) I. scapularis 

*Aminotransferase class I and II (GO:0003870 5-aminolevulinate synthase activity ) 

**SOUL heme-binding protein (GO:0003824 catalytic activity/IPR034505: Anaerobic CPOX) 

***Flavin containing amine oxidoreductase (GO:0004729 oxygen-dependent protoporphyrinogen oxidase 

activity) 
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Table 3: Genome mining in the salmon louse. Predicted enzymes of the heme synthesis and 

degradation pathway in the salmon louse found by Blast searches using T. kingsejongensis and 

D. melanogaster sequences as query. Green = positive hits, grey = only sequence similarity, 

white = no hits with an E-value less than 1E-6. 

Protein 
Blast 

search 
Query Best hit 

Score 

(bits) 
E-value PFAM 

ALAS BlastP Tk02602 (a) EMLSAP00000001120 183 7E-52 PF00155* 

 BlastP NP_477281.1 (b) EMLSAP00000001120 179 1E-50 PF00155* 

ALAD tBlastN Tk04959 (a) No hit N/A N/A N/A 

 tBlastN NP_001261752.1 (b) No hit N/A N/A N/A 

HMBS tBlastN Tk00609  (a) No hit N/A N/A N/A 

 tBlastN NP_612103.1 (b) No hit N/A N/A N/A 

UROS BlastN 

maker-

scaffold1394_size43558-

snap-gene-0.7 (a) 

No hit N/A N/A N/A 

 tBlastN NP_572507.1 (b) No hit N/A N/A N/A 

UROD BlastP Tk06395 (a) EMLSAP00000006932 142 7E-37 PF00001** 

 tBlastN NP_610501.1 (b) No hit N/A N/A N/A 

CPOX BlastP Tk12349 (a) EMLSAP00000008964 466 4E-165 
PF01218 

(CPOX) 

 BlastP Tk08114 (a) EMLSAP00000009295 259 3E-81 PF04055*** 

PPOX BlastP Tk10742 (a) EMLSAP00000003284 47.4 7E-06 PF01593† 

 tBlastN NP_651278.2 (b) No hit N/A N/A N/A 

FECH tBlastN Tk06128 (a) No hit N/A N/A N/A 

 tBlastN NP_524613.1 (b) No hit N/A N/A N/A 

HO tBlastN Tk11351 (a) No hit N/A N/A N/A 

 tBlastN NP_524321.1 (b) No hit N/A N/A N/A 

COX10 BlastP NP_609382.1 (b) EMLSAP00000000335 334 1E-112 PF01040†† 

COX15 BlastP Tk00231 (a) EMLSAP00000010869 512 0 
PF02628 

(COX15) 

a) T. kingsejongensis 

b) D. melanogaster 

* Aminotransferase class I and II (GO:0008890 glycine C-acetyltransferase activity) 

**7 transmembrane receptor (rhodopsin family) 

***Radical SAM superfamily (GO:0004109 coproporphyrinogen oxidase activity/ IPR034505: Anaerobic 

CPOX) 
†Flavin containing amine oxidoreductase 
††UbiA prenyltransferase family (GO:0048034 heme O biosynthetic process) 
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5.3 Iron and heme trafficking in the salmon louse 

In the traditional view of iron and heme trafficking, the two pathways are linked 

together as heme degradation by HO liberates one iron molecule per heme molecule. 

This iron molecule may be further incorporated into iron-storage proteins, iron-binding 

proteins, or it can be recycled into the heme biosynthetic pathway by insertion of iron 

to PPIX by FECH in the mitochondria (Fig. 6 and 10A). As no homologs of HO and 

an incomplete heme biosynthetic pathway are found in the salmon louse, the proposed 

systems of iron and heme trafficking here would be separate events, with no donation 

of heme-iron to the intracellular iron pool (Fig. 10B). This would imply that the salmon 

louse is innately dependent on scavenging of both host iron and heme, without the 

option of using heme as an iron source or using absorbed iron in endogenous heme 

synthesis. This could be a weakness in the blood-feeding parasite, as it would imply 

that there exists at least two vital pathways that could be targeted by novel louse 

interventions. Absence of HO upon the heme biosynthetic pathway loss could reassure 

that cells are not harmed by excess levels of iron liberated by heme degradation. In this 

thesis, the putative absorption of heme in the salmon louse (by LsHSCARB) is 

described (Paper II). Here, both LsHSCARB transcript and protein are detected in 

cells lining the adult female salmon louse intestinal tract, supporting the functional 

hypothesis that LsHSCARB is a nutrient-scavenging protein. In Paper I, an iron 

storage and transportation mechanism is proposed mediated by the ferritin subunits 

LsFer1 and LsFer2. The transcripts of these subunits were located also in cells lining 

the intestinal tract of the adult female salmon louse. In Paper I, the mature protein 

localizations have not been analyzed, and hence conclusions about its spatial 

distribution cannot be drawn. However, based on the signal peptides in both sequences, 

and knowledge from literature on other secreted ferritins in arthropoda (Galay et al., 

2014b; Hajdusek et al., 2009; Huebers et al., 1988; Nichol and Locke, 1989), the 

postulation is that the mature protein is secreted to the salmon louse hemolymph.  
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Figure 10: Iron and heme trafficking. Simplified graphical illustration of iron and heme trafficking 

in (A) common intestinal epithelial cell and (B) proposed salmon louse intestinal epithelial cell 

exposed to a blood meal. See main text for further explanation of the two different systems. It should 

be noted that in this simplified illustration, further trafficking of ferritin and hemoproteins, and 

incorporation of iron (other than for heme biosynthesis) and hemoproteins into the mitochondria are 

not shown. HO = heme oxygenase, CO = carbon monoxide. The illustrated cell components are 

downloaded from Servier Medical Art by Servier (https://smart.servier.com/) (Attribution 3.0 France: 

CC BY 3.0 FR).  

5.4 Further insight into salmon louse hematophagy 

One of the conclusions of this thesis so far is that blood is an important dietary 

component for the salmon louse, as it provides the parasite with nutrients it cannot 

synthesize on its own. Learning more about the louse blood-feeding behavior can 

therefore provide new knowledge about basic salmon louse biology, and more 

generally about hematophagy in arthropods. In Paper III, a finding is that the salmon 

louse starts actively feeding on blood in the mobile preadult I stage. In an artificial 

infestation, as the results of this thesis are based on, the vascular fish gills are a common 

settlement site. Lice attached to gills have visual evidence of a blood-filled gut already 

at the chalimus I stage (also observed in attached copepodids, Dr. Christiane Eichner, 
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pers. comm.). This was the rationale behind examining the transcriptomes of chalimus 

lice on gills versus lice on other salmon parts. As such, chalimus larvae presumably 

developing on two different diets, one hematophagous and one on a diet of skin 

epidermis, could be compared. The higher expression of LsFer1 and LsFer2 in 

chalimus larvae on gills give support to the suggestion that these lice have been exposed 

to blood, as not obtaining adequate iron storage mechanisms upon ingestion of host 

blood would have detrimental effects for the lice (Paper I). The vast increase in 

digestive enzyme transcripts further supports the assumption that the chalimus lice on 

gills have another nutritional access than those elsewhere on the host. Thus, transcripts 

emerging in Paper III might be important for the salmon louse during hematophagy. 

Transcripts with e.g. putative anti-coagulative, heme detoxification, digestive and 

unknown functions could be at the center for new topics to be studied. Fibronectin type 

II (FNII) domains are widely distributed in the salmon louse genome, yet their 

functions here are still enigmatic (Harasimczuk et al., 2018; Øvergård et al., 2016). The 

FNII-encoding genes found to have a higher expression in chalimus larvae attached to 

gills should be further studied to elucidate the possible role of FNII in salmon louse 

hematophagy. 

Another interesting observation is that being attached to the host gills caused the lice 

to develop at a slower pace than those on skin (Paper III). There have been 

contradicting results about this in the past (Johnson, 1993; Johnson and Albright, 

1992). However, in this study, lice instar ages were determined (Eichner et al., 2018, 

2015a), and not only developmental stages, adding more confidence to the results of 

this thesis. Johnson and Albright (1992) suggested that reduced growth of lice 

developing on gills could be due to non-specific humoral factors of the host, which the 

parasite is more exposed to at vascular attachment sites. A continued hypothesis for the 

reduced growth of lice on gills is that blood exposure causes the lice to alter their 

transcriptome to sustain homeostasis upon ingesting a blood meal. This could be at the 

expense of cellular proliferation and thus organismal growth. 
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5.5 Considerations of methodology 

Several of the methods applied during this thesis are well-established within the field 

of salmon louse biology. Among these are e.g. in situ hybridization, salmon louse 

genome analyses with bioinformatical tools, immunohistochemistry and salmon louse 

infestation studies, and will not be considered to a deep extent. The heme quantification 

assay was established in order to conduct measurements needed for Paper II. This 

allowed the measurement of the lowered heme levels in LsHSCARB knockdown 

animals. However, it did not allow differentiation between the various kinds of heme 

in the louse. In order to study this, heme levels by e.g. mass spectrometry could be 

assessed. The starvation experiments conducted in both Paper I and II showed that the 

transcript levels of LsFer1, LsFer2 and LsHSCARB decreased with the time lice were 

absent from the host and thus food source. While this adds an interesting story to the 

publications, especially since it was believed that a heme receptor should be up-

regulated during heme shortage (Rajagopal et al., 2008), in retrospect it would be more 

convincing if a rescue experiment was included where starved lice were placed back 

on fish and transcript levels were subsequently analyzed. This would allow a stronger 

conclusion that ferritin and the putative heme scavenger receptor are regulated by the 

dietary status of the louse. RNAi knockdown experiments have been a significant 

driving force in this thesis, and are therefore thoroughly considered in the following 

section. 

5.5.1 RNAi experiments 

Although RNAi is a well-established methodology in the salmon louse and is routinely 

performed at the SLRC, discarding pest control candidates because of “invisible 

phenotype alterations” may occur. A routine RNAi experiment initiated in preadult II 

female lice is terminated upon the extrusion of the second pair of egg strings of the 

adult females (approximately 40 days after dsRNA injection). The knockdown animals 

are at this time point visually inspected, and sampled for assessment of knockdown 

efficacy and histological analyses. If there are no visible phenotype alterations (e.g. 

shorter egg strings or other abnormalities) at this time point, the knockdown target may 

be labeled as non-vital for the salmon louse, and therefore not inspected further. A pilot 
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knockdown of LsHSCARB was terminated when the control lice extruded their second 

egg string pair. At termination, knockdown animals appeared to have a normal 

morphology, with normal egg string lengths and hatching success, and also the 

knockdown animals did not have any visible negative effects as seen in histological 

sections (data not shown), even though the knockdown was 99% efficient. However, 

as the fluorescent heme quantification assay had been established for salmon louse 

tissues during the course of this PhD, there was a possibilty to measure absorbed heme 

levels in the louse, which were found to be significantly decreased (Paper II). As the 

salmon louse does not encode HO, it could be speculated that instead of excreting 

degradation products of heme, the louse recycles heme that is already absorbed. In that 

sense, a decreased heme absorption capacity may not manifest in detrimental 

consequences at an early stage after knockdown. Additionally, it has to be taken into 

consideration that free-living salmon louse larval stages are non-feeding, dependent on 

maternal yolk sac reserves and unable to synthesize heme de novo (as the louse is likely 

a heme auxotroph), even though they require the cofactor in their cells. Nauplius larvae 

and copepodids probably require maternally derived heme until they are attached to a 

host themselves. An extended period of LsHSCARB ablation should therefore in theory 

in time have a negative impact on the salmon louse fecundity, as there is a wide 

recognition for the importance of heme for development (Gaughan and Krassner, 1971; 

Perner et al., 2016; Toh et al., 2015; Walter-Nuno et al., 2013), illustrating that a portion 

of heme of maternal origin is probably deposited into the oocytes. By this reasoning, 

the second experimental knockdown of LsHSCARB was prolonged, and terminated 69 

days after dsRNA injection, when the control animals had extruded their fifth pair of 

egg strings. Upon the second RNAi experiment termination, the LsHSCARB silencing 

was still successful and knockdown animals had a 60% decrease in absorbed heme 

levels. There were also significantly shorter egg strings with a significantly lowered 

hatching success, likely due to the lowered heme levels (Paper II). Prolonging the 

experimental knockdown study design and assessment of heme levels hence allowed 

further studies of the scavenger receptor. 

The knockdowns of secretory ferritin subunits LsFer1 and LsFer2, on the other hand, 

resulted in severe phenotype alterations for the salmon louse already at the extrusion 
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of the second pair of egg strings of the control animals (Paper I). Knockdown animals 

produced little to no viable eggs, and their intestines were not filled with blood, as was 

observed in the engorged control animals. A possible explanation for the early visible 

phenotype alteration in ferritin knockdowns compared to the LsHSCARB knockdown 

could be attributed to different protein functions. LsHSCARB is, as already discussed, 

suspected to be related to heme absorption (Paper II), whereas ferritin is commonly 

related to iron storage and transportation (Paper I). If there is a limited possibility for 

the salmon louse to store iron upon ingestion of its blood meal, the louse is prone to 

the many cytotoxic effects of excess free iron. A strategy for the parasite to avoid this 

toxicity could be to cease the blood-feeding behavior, which would certainly have 

negative downstream effects such as under-nutrition (including, but not limited to, iron 

deficiency), which would further lead to a reduced parasite fecundity. Similar results 

were also obtained in the blood-feeding tick after ferritin knockdown (Galay et al., 

2013; Hajdusek et al., 2009). Ablation of an absorption mechanism, on the other hand, 

would not lead to the same immediate negative effects. Therefore, when designing an 

RNAi experiment, one should consider what effects to expect from silencing the 

selected target, and plan the experiment termination, and downstream analyses, 

accordingly. Another aspect to consider upon conducting knockdown experiments is 

that RNAi mediated knockdown targets mRNA, and not protein. A slow turnover of a 

protein could lead to a later onset of a phenotype alteration, even though mRNA levels 

are downregulated. Finally, herein gene knockdowns have been performed, as opposed 

to gene knockouts where gene expression is eliminated. Remaining transcripts may still 

be translated and cause a continued mature protein production, which may postpone 

phenotype alterations in the salmon louse. Gene knockout is per today not an 

established methodology in the salmon louse. 

5.6 Iron, heme and lice control 

As resistance towards a wide range of anti-sea lice medicaments is a common and 

growing problem, new therapeutic interventions for the aquaculture industry are sought 

after. One SLRC vision is to develop a vaccine for the salmon, with a significant 
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protection against the salmon louse. However, the nature of the host-parasite 

interaction between the salmon and the salmon louse causes challenges. Salmon lice 

are ectoparasites that are scavenging their host for nutrients from the external 

environment, creating a bottleneck in identifying antigens for a vaccine that initiates 

an immune response targeting the parasite. As till today, only one vaccine is 

commercially available against an ectoparasite. This is the Bm86 antigen vaccine 

against the tick R. microplus (Willadsen et al., 1989). Bm86 is a plasma membrane 

glycoprotein expressed on the microvilli of digestive cells of the tick midgut (Gough 

and Kemp, 1993). An RNAi mediated silencing of R. microplus Bm86 caused a reduced 

tick fitness, as knockdown animals had a lower survival rate and produced eggs with a 

decreased mass (Bastos et al., 2010). Membrane proteins with an extracellular domain 

facing the parasite midgut lumen could thus be potential targets for pest management 

by vaccination. LsHSCARB fulfils these criteria, as it is a protein within the CD36 

superfamily (PF01130) with two transmembrane regions, one extracellular ligand-

binding domain, and N- and C-terminal tails located intracellularly, and is expressed 

in the salmon louse midgut, and with knockdown effects already discussed (Paper II). 

Ferritin subunits LsFer1 and LsFer2 also fulfil these criteria to a certain degree as the 

transcripts are located in the salmon louse gut, and the knockdowns cause detrimental 

effects for parasite egg production (Paper I). However, as discussed, the secreted 

ferritin protein is likely in the salmon louse hemolymph. The recombinant secreted 

HCH IrFER2 (GenBank ID: ACJ70653) (Hajdusek et al., 2009) and HlFER2 

(GenBank ID: BAN13552) (Galay et al., 2013) have been tested in pilot studies as 

vaccine candidates in cattle and rabbits against tick infestations with promising results 

(Galay et al., 2014a; Hajdusek et al., 2010). However, a more recent vaccine trial could 

not reproduce these results (Knorr et al., 2018). Secreted ferritins are therefore worth 

testing as vaccine candidates in the salmon against the salmon louse, however results 

should be interpreted carefully. How well antibodies from the vaccinated salmon 

maintain their integrity in the salmon louse gut, and whether salmon antibodies may be 

transported across cellular membranes are unknown. Obtaining more knowledge about 

the salmon louse digestive tract is a key requirement. 
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An alternative to targeting the aforementioned proteins by vaccination could be 

receptor agonistic or antagonistic targeting. This is more relevant for LsHSCARB than 

for ferritin, as LsHSCARB has a predicted ligand-binding domain in the salmon louse 

intestinal lumen. In order to achieve this, the binding pocket structure and shape of 

LsHSCARB should be further investigated. A screen for various molecules, in addition 

to heme, that could bind to it need to be tested. This can be achieved using recombinant 

protein in vitro, but also by utilizing bioinformatical tools in silico. In order for a 

competitive binding to occur, the receptor should have a higher affinity for the tested 

molecule than for heme. The molecule should also be possible to add to the salmon 

feed, without compromising the nutritional status, and without accumulating in the 

salmon fillet as it is used for human consumption. Furthermore, the molecule should 

be LsHSCARB specific, and it needs to be able to avoid degradation in the salmon 

louse intestine. It also needs to avoid aggregation, as this could have detrimental effects 

for the salmon. This kind of nutritional immunity is depicted in Figure 11.  

 

 

Figure 11: Pest control by nutrient deprivation. Nutritional immunity may be achieved 

by agonistic or antagonistic binding to an intestinal nutrient receptor, blocking the natural 

ligand uptake from the intestinal lumen and into the cytoplasm.  

 

Vaccination and nutritional deprivation experiments that target salmon louse antigens 

related to hematophagy, such as ferritin (Paper I) and the heme scavenger receptor 
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(Paper II), should last until the louse population reaches the mobile, blood-feeding 

stages (Paper III). However, mobile lice can alternate between hosts (Ritchie, 1997), 

and in that way an effect (other than infestation rate) of sitting on a treated versus a 

control host could be camouflaged. A solution for this could be to avoid a common 

garden setup, and rather use single fish tanks in pilot tests (Hamre and Nilsen, 2011). 
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6. Conclusion 

This thesis has contributed to the understanding of the importance of hematophagy in 

the ectoparasitic salmon louse, L. salmonis. The work presented herein has provided 

details on the trafficking of iron and heme in the parasite. An insight into the salmon 

louse transcriptome while being attached to the vascular host gills has demonstrated 

that the salmon louse alters its gene expression drastically depending on its nutrient 

access. Perhaps most strikingly, this thesis has proposed a novel candidate for the 

intestinal heme absorption in an arthropod.  

Main conclusions of this thesis are: 

 The salmon louse has both intracellular and secreted homologs of the iron 

storage protein ferritin. 

 The secreted ferritins are vital for reproduction and hematophagy in the adult 

female salmon louse. 

 The salmon louse is likely among the natural heme auxotrophic organisms, 

rendering heme an essential micronutrient for the parasite. 

 A reproducible heme quantification assay has been established for salmon louse 

tissues, enabling functional knockdown studies of candidate heme receptors, 

and evaluating the total absorbed heme levels in the louse. 

 The CD36-like scavenger receptor, LsHSCARB, was characterized in the 

salmon louse, and was predicted to have heme as a ligand by a 3D model with 

in silico docking studies. This binding was further supported in vitro by a 

recombinant protein and heme-binding assay. 

 LsHSCARB knockdown resulted in decreased absorbed heme levels in the adult 

female salmon louse. The knockdown animals produced fewer eggs with a 

worsened hatching success.  

 Hematophagy does not begin until the mobile preadult I stage, unless lice are 

attached to the vascular host gills. 

 Chalimus larvae feeding of blood from the host gills, have an altered 

transcriptome. These larvae differentially express e.g. various digestive 

enzymes, transcripts related to iron and heme trafficking, gene transcripts of 

unknown functions and FNII-encoding genes etc. compared with chalimus 

larvae attached to host avascular sites. 
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7. Future perspectives 

The essence of this thesis has been in exploring the salmon louse hematophagous nature 

and emphasizing the importance of this. Several new questions have been raised here. 

Ferritin regulation, the role of a male-specific ferritin, the role of CPOX and FNII-

encoding genes in the louse should be further investigated. Future studies should also 

further focus on the trafficking of iron and heme from being protein-bound in salmon 

blood and until being utilized in metalloproteins in the salmon louse tissues. This 

include enzymatic breakdown of salmon iron- and hemoproteins such as hemoglobin 

and transferrin in the salmon louse intestine, movement across cellular membranes, 

distribution to various tissues, including shuttling to developing oocytes, and storage 

and detoxification mechanisms. Unravelling that both iron and likely heme are 

essential molecules for the salmon louse, and that heme oxygenase is seemingly lost 

from the parasite genome, reveal that iron and heme follow pathways that are both 

important, and are probably independent of each other. A heme quantification assay 

has already been established during the course of this thesis, and could be further 

applied when studying hemoproteins in the salmon louse. In parallel with establishing 

more knowledge of iron and heme in the salmon louse, the work of testing ferritin and 

the heme scavenger receptor (in addition to other possible proteins characterized in the 

future) as candidates for therapeutic interventions would be of interest. Pest control by 

vaccination or nutritional deprivation could help provide a protective effect for the 

salmon against the salmon louse. However, this is challenging work, as ectoparasites 

are experts of concealing their antigens from their hosts. In addition, in line with the 

3Rs principle (Replacement, Reduction, Refinement) (Russell and Burch, 1959), the 

use of experimental animals should be kept to a minimum. Future work should 

therefore be interdisciplinary and strongly include bioinformatical tools, in addition to 

biological tools, in order to analyze candidate vaccine targets, or receptor agonists and 

antagonists, in silico and in vitro prior to testing them experimentally.  
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A B S T R A C T

The salmon louse, Lepeophtheirus salmonis, is a hematophagous ectoparasite of salmonid fish. Due to its blood-
feeding activity, the louse is exposed to great amounts of iron, which is an essential, yet potentially toxic mi-
neral. The major known iron storage protein is ferritin, which the salmon louse encodes four genes of (LsFer1-4).
Two of the ferritins are predicted to be secreted. These are one of the heavy chain homologs (LsFer1) and the
light chain homolog (LsFer2). Here, we perform functional studies and characterize the two secreted ferritins.
Our results show that knocking down LsFer1 and LsFer2 both negatively affect the parasite’s physiology, as it is
not able to properly feed and reproduce. In a starvation experiment, the transcript levels of both LsFer1 and
LsFer2 decrease during the starvation period. Combined, these results demonstrate the importance of these genes
for the normal parasite biology, and they could thus potentially be targets for pest management.

1. Introduction

Iron is an essential element necessary for many cellular processes in
all animals. Iron-containing proteins are present in several key bio-
chemical pathways, such as DNA synthesis, energy metabolism and
electron transfer reactions [1]. Free intracellular iron can rapidly be
reduced to the ferrous (Fe2+) form, and may catalyze the generation of
reactive oxygen species (ROS) which are highly cytotoxic reactive ra-
dicals that can cause harm to cellular compounds such as lipids, DNA
and proteins [2]. In order to avoid cell harm, iron storage and dis-
tribution must be implemented by tightly regulated mechanisms, using
designated proteins in the cell.

Ferritin is the major intracellular iron storage protein. Here, ferric
iron (Fe3+) is sequestered and kept in a nontoxic, soluble and biolo-
gically non-reactive state [3]. In that state, the iron can be recruited to
various proteins that require the metal as cofactor to perform their
proper biological function. Typically, ferritin is composed of 24 sub-
units which can harbor up to 4000 Fe atoms [4]. Vertebrate ferritins are
made up of the heavy (H) chain and the light (L) chain subunits,
whereas arthropod ferritins are made up of homologs to these (heavy-
chain homolog, HCH, and light-chain homolog, LCH) which are often
secretory [4]. Characteristics for HCH ferritin are amino acid (aa) re-
sidues that contribute to a ferroxidase center, which oxidizes Fe2+ to
Fe3+, tyrosine residues that cause rapid biomineralization of iron, and a

pore opening that allows for iron passage. LCH ferritin is characterized
by aa residues that induce nucleation of iron. LCH ferritin often has a
larger sequence variety, with less similarity to its vertebrate orthologue,
and it is often annotated as LCH because of the lacking ferroxidase
center [5]. In contrast to cytoplasmic ferritins, secreted ferritins contain
cysteine residues that promote inter- and intrasubunit disulfide bonds
[6].

With the exception of intracellular iron within iron storage proteins,
the majority of vertebrate iron is found in blood, complexed within the
porphyrin ring of heme as a cofactor of hemoglobin used for gas
transportation, but also in other forms such as bound to the iron
transfer protein transferrin [7]. Blood-feeding parasites ingest high le-
vels of iron and thus need to protect their cells from iron overload upon
feeding and absorption. The salmon louse, Lepeophtheirus salmonis, is an
obligate marine ectoparasite, feeding off the skin and blood of its sal-
monid fish host [8]. With an increasing resistance towards various
chemical treatments [9], the salmon louse is considered to be an eco-
nomically and ecologically important parasite to combat. The parasite’s
life cycle is divided into eight stages which are as follows: the plank-
tonic nauplius I and II, the infectious copepodid, the attached parasitic
chalimus I and II, and the mobile parasitic preadult I and II and adult
lice [10,11]. At 10 °C, the development of L. salmonis from fertilization
to mature adult lice is completed in approximately 40 (male) to 52
(female) days [12]. Once the female louse has reached the mature adult
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stage, it will continuously produce pairwise egg strings. The hatching
larvae have the potential to further infect hosts upon reaching the co-
pepodid stage. In order to be able to successfully produce viable off-
spring, the louse needs to absorb several macro- and micronutrients
from its blood meal. One of the many micronutrients required for oo-
cyte development is the mineral iron, which the salmon louse requires
proper storage for until it is needed in iron-proteins.

Here, we report the presence of four ferritin homologs (LsFer1-4) in
the genome of L. salmonis and analyze the sequences. Further, we
perform functional studies of the two ferritins with signal peptides
(LsFer1 and LsFer2) by in situ hybridization, starvation as well as RNA
interference (RNAi) to evaluate the importance of these genes in re-
production and blood-feeding of the adult female salmon louse. Results
from the knockdown study illustrate the detrimental effects for the
hematophagous parasite lacking LsFer1 or LsFer2, as normal develop-
ment and fecundity is negatively impacted upon RNAi mediated
knockdown of the genes.

2. Material and methods

2.1. Sequence analyses

Initial data for searching transcript and protein sequences and primer
design were extracted from the L. salmonis genome annotation in Ensembl
Metazoa (https://metazoa.ensembl.org/Lepeophtheirus_salmonis). All
following analyses are based on the GenBank sequences: BT121711
(LsFer1), BT121232 (LsFer2), MK887318 (LsFer3), BT077723 (LsFer4a)
and BT121164 (LsFer4b). Glycosylation prediction was performed using
the NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/)
and the NetOGlyc 4.0 Server [13]. Protein BLAST searches were con-
ducted against the Genbank and SwissProt databases [14]. Conserved
domain search was conducted using InterProScan [15]. Signal peptides
and cleavage sites in the aa sequences were predicted using Phobius [16].
Searches for iron-responsive elements (IREs) in the untranslated regions
were performed using SIREs Web Server 2.0 [17].

2.2. Sequence alignment and phylogeny

Aa sequences of LsFer1-4 were used to obtain ferritins of various
species from a BLASTp search [14] or from searching The UniProt
Consortium [18] for ferritins of model organisms. Alignment was per-
formed in UGENE using MUSCLE alignment under default conditions
[19,20]. Grey shading indicates percentage identity. For alignment,
following sequences annotated with heavy chain were chosen: Homo
sapiens (UniProt: P02794), Salmo salar (UniProt: P49946), Xenopus
laevis (UniProt: P49948), Caenorhabditis elegans (NP_491198.1), Penaeus
monodon (ABP68819.1), Haemaphysalis longicornis (AAQ54713.1), H.
longicornis (BAN13552.1)*, Trichoplusia ni (XP_026744300.1)*, Man-
duca sexta (AAK39636.1)*, Anopheles gambiae (XP_312474.4)*. Light
chain sequences chosen were: H. sapiens (UniProt: P02792), X. laevis
(UniProt: Q7SXA5), S. salar (NP_001134896.1), T. ni
(XP_026744299.1)*, M. sexta (AAF44717.1)*, A. gambiae
(XP_001237468.3)*. Sequences with signal peptides are marked with *.
For alignment however, the signal sequence was removed. From se-
quences without signal peptides, the start methionine was removed for
alignment.

Sequences used for phylogenetic analysis were: Caligus clemensi
(ACO15165.1 and ACO14799.1), Caligus rogercresseyi (ACO11534.1),
Drosophila melanogaster (AAF07876.1, NP_524873.1 and NP_572854.1),
Aedes aegypti (AAO41698.1 and AQY17412.1), Ixodes ricinus
(ACJ70653.1), Rhipicephalus microplus (UniProt: A0A034WXT0), S.
salar (UniProt: P49947 and P49946, H. sapiens (UniProt: P02792 and
P02794), Mus musculus (UniProt: P29391 and P09528), C. elegans
(NP_504944.2 and NP_491198.1) and H. longicornis (BAN13552.1 and
AAQ54713.1). The website http://www.phylogeny.fr was used to
construct the phylogenetic tree with default settings [21]. More

specifically, sequences were adjusted and aligned by MUSCLE with
defaults [20]. The phylogenetic tree was reconstructed by maximum
likelihood in PhyML using WAG+G model [22]. The graphical tree
was obtained using TreeDyn [23].

2.3. Animals

L. salmonis salmonis was raised on Atlantic salmon (S. salar) under
laboratory conditions in tanks with seawater (salinity 34.5 ppt and
10 °C) as described before [24]. Fish were daily handfed commercial
dry pellets and kept according to Norwegian animal welfare regula-
tions. Experiments were approved by the governmental Norwegian
Animal Research Authority (ID8589). Fish carrying lice from RNAi
experiments were kept in single-fish tanks [25]. Fish were anesthetized
with a mixture of methomidate (5mg/l) and benzocaine (60mg/l)
upon samplings, or setup of salmon louse infections. Egg string pairs
with larvae were incubated and hatched in single incubators in a sea-
water flow through system [24].

2.4. Ontogeny

The genomic location for the validated transcript sequences (RACE-
PCR) were determined using the software GMAP [26] with the Atlantic
salmon louse genome (LSalAtl2s, https://metazoa.ensembl.org/
Lepeophtheirus_salmonis) and the raw reads of existing RNA-sequen-
cing data were recounted by featureCounts [27] at these regions.
Available RNA-sequencing data are used as found in LiceBase (http://
licebase.org, Dondrup et al., in prep) and from data of a time-series
previously published [28]. Data from LiceBase are bulk samples of
different developmental stages (nauplius I, nauplius II, planktonic co-
pepodids, attached copepodids at three different sampling time points,
chalimus I and II, female and male of preadult I and II and adult lice, as
well as eggs (unfertilized extracted from the genital complex of the
adult female, immature fertilized eggs (0–24 hours after extrusion) and
more mature fertilized eggs (2–7 days after extrusion)). In addition,
samples of different tissues (intestine, ovaries, testis feet and antenna)
are shown. The data from the time series [28] are RNA-sequencing
samples of attached parasitic stages (chalimus I and II and preadult I),
which were divided into different instar ages (called young (directly
after previous molt), middle and old (directly before next molt)) as well
as planktonic copepodids. In addition, unpublished RNA-sequencing
data (Eichner et al., unpublished) for the transcript regions from nau-
plius I and II, taken at three different time points (directly after
hatching or molting respectively, in the middle of the stage, and before
the next molt) as well as attached copepodids, sampled one, three and
five days after infection, are included. RNA-sequencing and data pro-
cessing for the nauplius and attached copepodid samples was done
using the same protocols as in Eichner et al. [28]. Six biological re-
plicates were sequenced for each time point. Normalization was done
by edgeR [29] after combining all data sets using the same protocol as
in Eichner et al. [28].

2.5. Isolating RNA, synthesis of cDNA, qRT-PCR and RACE

Tissues for RNA isolation were stored in RNAlater (Ambion), at 4 °C
overnight and then at −20 °C until usage. Total RNA extraction from
adult female lice was executed using TRI Reagent (Sigma-Aldrich) as
instructed by the manufacturer. Samples were homogenized using
5mm stainless steel beads and a TissueLyser II (Qiagen) for 1min at
30 Hz. Genomic DNA digestion was done by DNase I after manu-
facturer’s instructions (Invitrogen). Quantification of RNA and purity
check were done using NanoDrop ND-1000 UV–vis Spectrophotometer
(NanoDrop Technologies). DNase-treated RNA was reverse transcribed
using the AffinityScript QPCR cDNA Synthesis Kit (Stratagene). qRT-
PCR was performed on a QuantStudio 3 qPCR machine using PowerUp
SYBR Green Master Mix (Applied Biosystems) on duplicate samples
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(PCR: 50 °C for 2min, 95 °C for 2min, 40 cycles of 95 °C for 15 s and
60 °C for 1min, and finally a melt curve analysis at 60–95 °C). Duplicate
samples had a difference in Ct-values less than 0.35. The reference gene
LseEF1α [30] was used to calibrate the LsFer1 and LsFer2 transcript
levels. A five-point standard curve of twofold dilutions was prepared to
test the efficiency of the qPCR assays: E% = (101/slope – 1) × 100 [31].
Relative differences (ΔΔCt) in threshold were calculated and trans-
formed by the formula 2−ΔΔCt [32]. Rapid Amplification of cDNA Ends
(RACE) was conducted by using the SMARTer RACE cDNA Amplifica-
tion Kit (Clontech).

2.6. RNA interference

LsFer1 and LsFer2 were separately knocked down by RNAi in pre-
adult II female lice as described before [33] in two independent ex-
periments. Briefly, double stranded (ds) RNA fragments were synthe-
sized by the Megascript RNAi kit (Ambion) using adult female louse
cDNA as template. Atlantic cod (Gadus morhua) trypsin (CPY185)
fragment was used as negative control. All primers are listed in Table 1.
Fragments were diluted to 600 ng/μl and 2% (v/v) bromphenol blue
was added to enable visualization of the injections. Preadult II female
lice were injected with thin capillaries and left to recover for four hours
before being placed on fish in individual tanks (three fish per group
with a total of 30–39 female lice). Additionally, an equal number of
uninjected adult male lice (in relation to the number of female lice per
fish) were also placed on each fish to assess the fecundity of the
knockdown animals. Experiments were terminated upon the extrusion
of the control lice’s second pair of egg strings (approximately 40 days
after injection). Upon termination, egg strings were collected and in-
cubated in hatching wells. Any hatching of the egg strings was noted.
Adult female lice were sampled in RNAlater for knockdown assessment
or in Karnovsky’s fixative for histological analyses.

2.7. Histology

Salmon lice destined for histological analyses were fixed in
Karnovsky’s fixative and sectioned as earlier described [34]. Briefly,
2 μm thick plastic sections were stained with filtered toluidine blue and
rinsed with tap water. Ready slides were mounted with DPX mounting
solution (Sigma-Aldrich) and covered with glass cover slips.

2.8. In situ hybridization

The localizations of LsFer1 and LsFer2 mRNAs were detected in the
adult female salmon louse by using in situ hybridization (ISH) as earlier
described [35,36] with the DIG RNA Labelling Kit (Roche) on two
sections per probe. RNA antisense probes of 568 bp (LsFer1) and 576 bp
(LsFer2) were made from a target specific cDNA template (see Table 1
for primer sequences). Sense probes acted as negative control for
transcript localizations.

2.9. Starvation

Adult female lice were removed from their host, the Atlantic
salmon, and either sampled directly (zero days starved) in RNAlater or
placed in individual incubators with running sea water [24]. The lice in
the incubators were sampled one, two, four and eight days after being
separated from their food source as described before [37]. RNA isola-
tion and cDNA synthesis were performed as described in Section 2.5 on
five replicates of each sampling time point. The transcript levels of
LsFer1 and LsFer2 were finally assessed by qPCR.

2.10. Statistics

Statistics were performed by using IBM SPSS Statistics 23 for
Windows. Data sets were first tested by Shapiro-Wilk’s test of normality
and Levene’s test for equality of variances. An independent t-test was
used to evaluate the mean between two groups. For non-normal data
sets, a Mann-Whitney U test was conducted. A p-value ≤0.05 was
considered statistically significant. Data are presented as mean va-
lues ± standard deviations (SD) or as individual values.

3. Results

3.1. Sequence analyses

cDNA sequences of ferritins LsFer1-4 in the salmon louse were ob-
tained by 5′ and 3′ RACE using sequence specific primers (Table 1).
Main results of sequence analyses are summarized in Table 2. No IREs
were predicted for any of the genes. LsFer1 consists of an open reading
frame (ORF) of 639 bp. A protein BLAST search of the L. salmonis full

Table 1
Primers used for RACE, in situ hybridization (ISH), RNA interference (RNAi) and qPCR. T7 promoter extension is underlined. Primer efficiency (E%)
is given for qPCR assays.

Primer name Sequence (5’→3’) Application/E%

LsFer1 5’ RACE TCCAGTCACCAAGAGCCTCATG 5’ RACE
LsFer1 3’ RACE GCAAGATTATCTCTCTGGAGATTGGC 3’ RACE
LsFer2 5’ RACE GTATTTGGTCTTGTCATTCCGGGC 5’ RACE
LsFer2 3’ RACE GGTGCTCACACTGATGTACAATGTGG 3’ RACE
LsFer3 5’ RACE CACGCCTGGTCCAACACGTTTCATTC 5’ RACE
LsFer3 3’ RACE CAAGCATGGCTCAACAAATCCGAC 3’ RACE
LsFer4 5’ RACE ACGAGTTAAGAGGGTTCCAA 5’ RACE
LsFer4 3’ RACE ATGAGTTCCCAAATCCGTCA 3’ RACE
LsFer1 T7 fwd TAATACGACTCACTATAGGGACAGGAGCCCATGGATCTTGTA ISH/RNAi
LsFer1 rev TCCAGTCACCAAGAGCCTCATG ISH/RNAi
LsFer1 T7 rev TAATACGACTCACTATAGGGTCCAGTCACCAAGAGCCTCATG ISH/RNAi
LsFer2 fwd GGTGCTCACACTGATGTACAATGTGG ISH/RNAi
LsFer2 T7 fwd TAATACGACTCACTATAGGGGGTGCTCACACTGATGTACAATGTGG ISH/RNAi
LsFer2 rev GTATTTGGTCTTGTCATTCCGGGC ISH/RNAi
LsFer2 T7 rev TAATACGACTCACTATAGGGGTATTTGGTCTTGTCATTCCGGGC ISH/RNAi
Cod_CPY185 fwd TAATACGACTCACTATAGGGATAGGGCGAATTGGGTACCG RNAi
Cod_CPY185 rev TAATACGACTCACTATAGGGAAAGGGAACAAAAGCTGGAGC RNAi
SYBR LsEF1α fwd GGTCGACAGACGTACTGGTAAATCC qPCR/93%
SYBR LsEF1α rev TGCGGCCTTGGTGGTGGTTC qPCR
SYBR LsFer1 fwd GCAAGATTATCTCTCTGGAGATTGGC qPCR/93%
SYBR LsFer1 rev TCCAGTCACCAAGAGCCTCATG qPCR
SYBR LsFer2 fwd GGTGCTCACACTGATGTACAATGTGG qPCR/92%
SYBR LsFer2 rev CAAATGTCTGTTGATAAGAACCGAGAG qPCR

E.I. Heggland, et al. Molecular & Biochemical Parasitology 232 (2019) 111197

3



length LsFer1 protein showed 78% identity with a Ferritin subunit
precursor from Caligus rogercresseyi (Genbank accession: ACO11534.1),
54% identity with Ferritin, lower subunit-like from Eurytemora affinis
(Genbank accession: XP_023345228.1), and 40% identity with Ferritin
1-like protein A from Daphnia pulex (Genbank accession: ABK91577.1).
LsFer2 consists of an ORF of 672 bp. A protein BLAST search of the L.
salmonis full length LsFer2 protein showed 69% identity with a Ferritin
light chain, oocyte isoform from Caligus clemensi (Genbank accession:
ACO15165.1), and 29% identity with 32 kDa ferritin subunit from
Galleria mellonella (Genbank accession: AAL47694.1). The ORFs of
LsFer1 and LsFer2 were analyzed in Interpro-Scan, and both proteins
were characterized as containing a ferritin-like domain (PF00210). In
LsFer1 there is a predicted ferroxidase site, a ferrihydrite nucleation
center and an iron ion channel, which are not predicted in LsFer2.
LsFer2 has a predicted dinuclear metal binding motif. A scan in Phobius
shows that LsFer1 has a signal peptide from aa 1 → 21 with a cleavage
site from aa 17 → 21, and a non-cytoplasmic region from aa 22 → 213.
A Phobius scan for LsFer2 shows that the protein has a predicted signal
peptide from aa 1 → 24 with a cleavage site from aa 17 → 24, and a
non-cytoplasmic region from aa 25 → 224. LsFer1 has two predicted O-
linked glycosylation sites at aa 29 and 36 and no predicted N-linked
glycosylation sites. LsFer2 has no predicted O-linked glycosylation site,
and one predicted N-linked glycosylation site at aa 55.

LsFer3 has an ORF of 540 bp. A protein blast shows a 59% identity
with a ferritin of Calanus sinicus (Genbank accession: APC62655.1) and
58% identity with Pseudodiaptomus annandalei (Genbank accession:
AGT28487.1). LsFer4a and b encode similar ORFs with only slight
variations in their C-terminals affecting 3 aas only as well as 2 addi-
tional aas in LsFer4b. LsFer4a has an ORF of 513 bp whereas LsFer4b has
an ORF of 519 bp. Both LsFer4a and 4b have 60% identity with a fer-
ritin of Calanus sinicus (Genbank accession: APC62655.1) and a 58%
identity with a ferritin heavy chain A-like of Eurytemora affinis
(Genbank accession: XP_023344839.1). According to Phobius scans,
LsFer3-4 lack signal peptides. Interpro-Scan predicts that LsFer3-4 have
a ferritin-like domain (PF00210) and have ferroxidase activity, a fer-
rihydrite nucleation center and an iron ion channel.

3.2. Sequence alignment and phylogeny

Sequence alignment (Fig. 1) shows that LsFer1, 3, 4a and 4b contain
all conserved aas of the ferroxidase site. In addition, the conserved
aspartic acid of the iron entry pore is found in all these L. salmonis
ferritins, while the conserved glutamic acid is not found in LsFer1. Like
the insect sequences shown in the alignment, it is replaced by threo-
nine. There are only minor differences in the aa sequence between
LsFer4a and LsFer4b, as the nucleotide sequence at the C-terminal end
shows differences. LsFer2 contains only two of the conserved aas
making up the functional ferritin motif. However, all of the conserved
cysteins found in the light chain of insects responsible for disulfide
bridges are also found in LsFer2. Two cysteine residues common in
disulfide bridges are also conserved in LsFer1.

To investigate the relationship between LsFer1-4 and other verte-
brate and invertebrate ferritins, a maximum likelihood phylogenetic
analysis was performed (Fig. 2). The analysis shows that LsFer1 clusters
together with secretory invertebrate HCH ferritins. LsFer2 clusters

together with secretory invertebrate LCH ferritins. Both LsFer1 and
LsFer2 have their closest relation to ferritin sequences of the parasitic
copepod C. clemensi. LsFer3-4 cluster together in a separate clade, close
with intracellular ferritins (HC and LC) of both vertebrates and in-
vertebrates.

3.3. Ontogeny

To determine spatial and temporal expression patterns of the ferritin
subunits, RNA-sequencing data were used to count the transcripts
(Fig. 3). The two secreted ferritins LsFer1 (Fig. 3a) and LsFer2 (Fig. 3b)
have similar absolute expression counts and pattern, and they are
highly expressed in the intestine. LsFer3 (Fig. 3c) is nearly exclusively
found in male lice and transcripts are highly expressed in testis. LsFer4a
and LsFer4b are differing at the 3′ end only, and the total count of
LsFer4 is shown (Fig. 3d). LsFer4 (Fig. 3d) is expressed in the intestine,
but is also found in all other tissues investigated, it is highly expressed
already in immature eggs.

3.4. In situ hybridization

To localize and confirm where the secretory ferritin transcripts
(LsFer1 and LsFer2) are expressed, we utilized in situ hybridization. Both
transcripts were found to be expressed in cells lining the intestinal tract
of the adult female louse (Fig. 4).

3.5. Starvation

To evaluate the effect starvation has on the expression of LsFer1 and
LsFer2, transcript levels were measured by qPCR in a time series after
removing the lice from their host. With increased time absent from the
food source, decreased levels of both transcripts were found in the adult
female L. salmonis (Fig. 5). More specifically, the expression of LsFer1 is
significantly down-regulated from day 2 and throughout the starvation
period (t-test: day 1: p= 0.132, day 2: p= 0.001, day 4: p=0.005, day
8: p=0.0000213, n=5). At eight days of starvation, the expression of
LsFer1 is decreased with on average 67% (Fig. 5a). LsFer2 shows a si-
milar profile, but shows a significant decrease already from day 1 of
starvation (t-test: day 1: p=0.007, day 2: p=0.0000219, day 4:
p=0.0000493, day 8: p= 0.00000669, n=5) and at day 8 of star-
vation, LsFer2 has decreased with on average 82% (Fig. 5b).

3.6. RNAi phenotype, histology and knockdown effect of LsFer1 and LsFer2

In order to study the functions of LsFer1 and LsFer2 in vivo, two
independent RNAi knockdown experiments were conducted. In both
experiments, the knockdown animals’ recovery rates (lice sampled at
the end of the experiment/lice injected at the start of the experiment)
are similar to the control animals’, ranging from 17%–59% (Table 3).
However, the fecundity of the parasite is affected by knocking down
LsFer1 or LsFer2. In both experiments, larvae from control animals
hatched from all egg strings. However, knockdown of LsFer1 resulted in
one hatched out of ten egg string pairs (exp. 1), and when repeated, no
egg strings (out of 6 pairs) hatched (exp. 2). Knockdown of LsFer2 re-
sulted in egg strings present in 10 of 23 animals, and only 5 pairs of
these hatched (exp. 1). In experiment 2 of LsFer2 knockdown, all ani-
mals (7 out of 7) had egg strings upon termination, but none of these
hatched.

In all control adult female salmon lice, a salmon blood-filled in-
testinal tract is seen as a red line stretching from the mouth part in the
cephalothorax, through the genital segment with maturing oocytes, and
finally through the abdomen ending in the rectum (Fig. 6a). When
knocking down LsFer1 (Fig. 6b) and LsFer2 (Fig. 6c), an alteration in
phenotype is seen. In both knockdown groups, the animals have little or
no blood in their intestines, as seen by visual inspection (Table 3 and
Fig. 6). While all lice in the control groups had a high amount of blood

Table 2
Sequence summary of ferritin genes LsFer1-4 in the salmon louse.

Gene Signal
peptide

Predicted
subunit

ORF (including signal
peptide)

GenBank ID

LsFer1 Yes HCH 213 aa BT121711
LsFer2 Yes LCH 224 aa BT121232
LsFer3 No HCH 180 aa MK887318
LsFer4a No HCH 171 aa BT077723
LsFer4b No HCH 173 aa BT121164
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in their intestine, this was not the case in the LsFer1 and LsFer2
knockdown animals (Table 3). In order to more closely examine the
knockdown effects, sections were made for histology (Fig. 6). In the
control louse (Fig. 6a), oocytes are stacked and well-structured with
lipid-droplets (seen as white dots) and with chorions that define
boundaries between individual oocytes. In the LsFer1 knockdown an-
imal, oocytes appear as a homogenous mash and without visible
chorions subdividing individual oocytes (Fig. 6b). Histology of the
LsFer2 knockdown louse reveals a genital segment with little and highly
under-developed oocytes present (Fig. 6c). Lice shown in Fig. 6 are
representative of both experiments. Photographs of all lice from exp. 2
are shown in Supplementary Fig. S1.

The efficacies of the knockdowns of LsFer1 and LsFer2 were assessed
by qPCR. Knockdowns were successful for both treatments in both ex-
periments, and experiment 2 is presented with individuals’ levels of
transcripts (Fig. 7). In experiment 1, LsFer1 is on average 85% down-
regulated (Mann-Whitney U: p= 0.008, n=5), and LsFer2 is on
average 78% down-regulated (t-test: p= 0.005, n=5). In experiment
2, knockdown of LsFer1 resulted in an on average 93% down-regulation
(t-test: p= 0.000171, n=5) (Fig. 7a). Knockdown of LsFer2 resulted in
a down-regulation of 60–86% for four out of five animals tested,
whereas up-regulation of 41% was found in the last one (Fig. 7b). This
individual had a similar phenotype and morphology as the rest of the
knockdown group, and is therefore not omitted from the dataset or
statistical analysis (Mann-Whitney U: p=0.076, n=5).

4. Discussion

In this study, we present the characterization and first functional
studies of ferritin in the obligate hematophagous ectoparasitic salmon
louse, Lepeophtheirus salmonis. We report the presence of four ferritin
homologs (LsFer1-4) in the genome of the salmon louse, and find that
two of these (LsFer1-2) have predicted signal peptides in the N-terminus
of their aa sequences. Functional studies show that LsFer1-2 are ex-
pressed in the midgut, and both are essential for the blood-feeding and
reproduction of the adult female salmon louse.

Results from the sequence analysis tools used here give support to
the hypothesis that LsFer1-4 are homologs of ferritin as there are sig-
nificant sequence similarities with ferritins of other species found by
BLAST searches. Since LsFer1,3 and 4 have the highly conserved motifs
for the ferroxidase site, whereas LsFer2 does not, LsFer1,3 and 4 are
likely heavy chain homologs (HCH), whereas LsFer2 is likely a light
chain homolog (LCH). This is further supported by the phylogenetic
analysis, which shows that LsFer1 mainly clusters together with other
HCHs and LsFer2 mainly with other LCHs (Fig. 2). LsFer3-4 clusters
phylogenetically closer together with ferritin subunits without a signal
peptide. Classically secreted ferritins are commonly found in ar-
thropods where they are reported to be involved in detoxification,
storage and distribution of iron. As a well-studied phenomenon in in-
sects, ferritin is loaded with absorbed iron in the endoplasmic reticulum
(ER), and is then secreted to the hemolymph, a tissue fluid analogous to

Fig. 1. Ferritin sequence alignment. Sequences found in L. salmonis (LsFer1-4) with known ferritin sequences annotated as heavy (green outline) and light chain
(yellow outline). Amino acids that make up the ferroxidase center of the heavy chain in human are marked with a red box, the conserved pore for iron entry black and
the aa making up the human ferrihydrite nucleation center are marked with cyan (dashed line). The conserved cysteines, which are involved in inter and intra
disulphide bridges in insects are marked with blue. Differences in the aa sequence between Fer4a and Fer4b are marked with green. Sequences with signal sequences
are marked with*. For alignment, all signal sequences were removed. All other sequences were depleted for the start methionine.
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blood in vertebrates, and subsequently used as a vehicle for iron
transportation to various tissues [38]. In the current study, we find that
both LsFer1-2 ferritin subunits are predicted to have signal peptides,
and are thus likely destined for the secretory pathway. Since the salmon
louse lacks the iron transfer protein transferrin (unpublished, http://
licebase.org), it may utilize secreted ferritin to shuttle iron to recipient

tissues and still avoiding iron-related cytotoxicity. The localizations of
the precursor and mature LsFer1-2 proteins are however not de-
termined, as only transcript localization is assessed here. Further work
is required to determine if ferritin acts as an iron transporter in the
salmon louse. Also, whether LsFer1 and LsFer2 are subunits of the same
protein, or if they make up two different proteins remains an

Fig. 2. Unrooted phylogenetic tree of vertebrate and in-
vertebrate ferritin subunits. The phylogenetic analysis was
performed on the Phylogeny.fr platform. Secreted ferritins are
marked with the green box and intracellular ferritins with the blue
box. Salmon louse ferritins (LsFer1-4) are written in red letters.
LsFer1 clusters together with secreted invertebrate HCH ferritins,
and LsFer2 clusters together with secreted invertebrate LCH fer-
ritins. LsFer3-4 cluster together and are close to branches of in-
tracellular heavy and light chain ferritins of both vertebrate and
invertebrate origin. Numbers at branches represent support values
(approximate likelihood-ratio). HC(H) = heavy chain (homolog),
LC(H) = light chain (homolog). Scale bar: 0.3 amino acid sub-
stitutions per site.

Fig. 3. Ontogeny. RNA-sequencing data (left and middle column: LiceBase, right column: Eichner et al., 2018 [28] with additional data from nauplius and attached
copepodids (unpublished data)) for LsFer1 (a), LsFer2 (b), LsFer3 (c) and LsFer4 (d). Available reads were recounted for the transcribed regions of the ferritin genes
found by RACE-PCR. See Section 2.4 “Ontogeny” for explanations of the abbreviations used in the figure.
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unanswered question. Since LsFer2 lacks conserved aa residues for
ferroxidase catalytic activity, it is highly unlikely that the LCH subunit
may constitute an iron storage molecule on its own. Also, LsFer1 and
LsFer2 contain cysteine residues reported to form intersubunit disulfide
bonds in other secretory ferritins [6].

Characterization of the LsFer1-4 genes by RNA-Seq showed that
LsFer1-2 have similar expression patterns. Both secreted ferritin sub-
units are highly expressed in the intestine of the salmon louse, con-
sistent with having an iron storage and/or transportation function.
Additionally, LsFer1-2 are expressed in the larval, non-feeding stages of
the salmon louse, which could indicate extra functions of the ferritin
subunits, or they could be necessary for detoxification of iron from the
turnover of maternally derived iron-proteins. The similar expression
patterns of LsFer1-2 suggests that the two subunits could assemble into
a complete ferritin shell. LsFer3, which is primarily expressed in testis,
must have a male specific function. LsFer4 has a more uniform ex-
pression pattern, and probably has an intracellular iron storage function
in several tissues of the salmon louse. Further analysis by in situ hy-
bridization confirmed that the transcripts of LsFer1 and LsFer2 are both
expressed in cells lining the intestinal tract of the adult female salmon
louse. Epithelial cells in the gut are the entry site for iron absorbed from
the blood of the parasite’s host, and is where iron storage proteins need
to be ready and available. In the starvation experiment, the expression
of LsFer1-2 is decreasing with the increased starvation time. A reason
for this could be that the salmon louse is an ectoparasite that is either
on or off its host. It does not experience a gradient in iron availability,
other than remnants of blood in the gut after feeding (seen as a fainter
red color with increased starvation time). Expressing a nutrient storage
molecule when there is an absence of nutrients available is unnecessary
and requiring energy. Similar to our results, an HCH ferritin in A. ae-
gypti was found in the midgut of the mosquito and was regulated by
blood-feeding [39]. Also, Wu et al., found that a ferritin homolog in
abalone Haliotis discus hannai was up-regulated by dietary iron [40].
Walter-Nuno et al., also found that blood-feeding increased the ex-
pression level of several genes involved in heme and iron metabolism,
including ferritin [41]. These findings indicate that ferritin gene ex-
pression is a consequence of the dietary iron status. A common way of
controlling ferritin transcript translation in a cell is by iron regulatory

proteins (IRPs) that inhibit ferritin translation during iron shortage by
binding to an IRE upstream of the ferritin ORF [42]. Yet, no IREs were
predicted in any of the ferritin sequences in the salmon louse, even
though the louse does have an IRP-IRE complex [37]. We do not know if
uptake of iron is controlling ferritin translation here as it does post-
transcriptionally in vertebrates [43] and other various invertebrates
[44,45]. Not all organisms depend on translational control by IRE
however, e.g. plants regulate ferritin levels on a transcriptional level in
response to iron and oxidants [46]. How ferritin expression is regulated
in the salmon louse remains an unanswered question.

The functional study by knocking down LsFer1 and LsFer2 in the
salmon louse mediated by RNAi had negative consequences for the
fecundity of the parasite. Fewer of the adult female lice had egg strings,
and when present, they had an overall much lower hatching success in
both knockdown groups compared with the control group. Histological
analyses demonstrated that oocyte development was impaired, and this
is probably why eggs hatching was highly unsuccessful. Knockdown of
genes involved in iron metabolism is already known to limit re-
productive success of other hematophagous parasites, such as the tick’s
reproduction and development [44,47,48]. Furthermore, knockdown of
a ferritin in the vector Rhodnius proxilus resulted in drastically reducing
(95%) viable eggs for the hematophagous insect [41]. As the salmon
louse is semi-transparent, its red, blood-filled gut can easily be observed

Fig. 4. In situ hybridization. The transcripts of both LsFer1 (a) and LsFer2 (c) are only found in cells lining the gut of L. salmonis by in situ hybridization. Negative
controls (sense probes) of LsFer1 (b) and LsFer2 (d) show no signal.

Fig. 5. Effect of starvation. Transcripts of
both LsFer1 (a) and LsFer2 (b) were assessed in
adult female lice by qPCR. The mRNA levels of
both transcripts were calibrated against un-
starved lice (day 0 post start of starvation), and
showed increased down-regulation with in-
creasing starvation time. Data are presented as
mean values ± SD. Asterisks indicate statis-
tical significance against day 0: ** = p≤0.01,
*** = p≤0.0001, ns= not significant. n=5.

Table 3
Overview of RNA interference knockdown experiments of LsFer1 and LsFer2.

Experiment Treatment Animals recovered/
injected

Fully
engorgeda

Hatching
successb

1 Control 19/39 19/19 19/19
LsFer1 18/38 5/18 1/10
LsFer2 23/39 10/23 5/10

2 Control 5/30 5/5 5/5
LsFer1 12/30 0/12 0/6
LsFer2 7/30 1/7 0/7

a Determined by visual inspections of blood-filled intestines.
b Number of successfully hatched egg string pairs and number of females

bearing egg strings upon termination of the experiments.
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by visual inspection. Animals in the knockdown group had less blood in
their intestines than animals in the control group, which were fully
engorged. This phenomenon has also been reported in ticks upon
knockdown of ferritin [48]. An explanation for this could be as free iron
generates ROS, having a reduced capacity of sequestering and thus
detoxifying iron could lead to detrimental effects for the parasite upon
blood-feeding. A solution for the salmon louse could be to cease the

blood-feeding behavior. Downstream effects of not ingesting blood
would include severe undernutrition and consequently cause egg pro-
duction to be halted.

In conclusion, this report on four ferritin homologs in the salmon
louse is the first where we have functionally characterized the two se-
cretory subunits (LsFer1-2). LsFer1 and LsFer2 were both found to be
vital for blood-feeding and reproduction in the hematophagous parasite

Fig. 6. Phenotype and histology. Phenotype and toluidine blue stained histological sections of an untreated control adult female louse (a), a LsFer1 RNAi
knockdown louse (b) and a LsFer2 RNAi knockdown louse (c). Of every histological section, a magnified photo of the genital segment is shown in the lower panel. All
three lice are representative of their group. CT= cephalothorax, GS=genital segment, AB= abdomen, i= intestine, o= oocyte.

Fig. 7. Knockdown efficacy. RNAi mediated knockdown effect of (a) LsFer1 and (b) LsFer2measured by qPCR from experiment 2. Results are displayed as individual
animals’ values, and the mean value for each group is indicated by a dotted line. ** = p≤0.01. n=5.
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in a knockdown study and starvation experiment. Our results confirm
several previous findings on the importance of ferritin throughout ar-
thropods. Further work on these genes and proteins could provide a
deeper knowledge of the iron metabolism of L. salmonis and should be
studied further. Considering the detrimental effects the knockdown of
LsFer1-2 had on the egg production in the salmon louse, these results
could find their application as treatment targets in the aquaculture
sector in order to combat the infamous parasite.
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like protein is a potential mediator 
of intestinal heme absorption in 
the hematophagous ectoparasite 
Lepeophtheirus salmonis
Erna Irene Heggland1, Christiane Eichner1, Svein Isungset Støve2, Aurora Martinez2, 
Frank Nilsen1 & Michael Dondrup3

Intestinal absorption of heme has remained enigmatic for years, even though heme provides the 
most bioavailable form of iron. The salmon louse, Lepeophtheirus salmonis, is a heme auxotrophic 
ectoparasite feeding on large quantities of blood from its host, the salmon. Here we show that a 
scavenging CD36-like receptor is a potential mediator of heme absorption in the intestine of the 
salmon louse. The receptor was characterized by a heme binding assay using recombinantly expressed 
protein, in situ hybridization and immunohistochemistry, as well as functional knockdown studies in the 
louse. A computational structural model of the receptor predicted a binding pocket for heme, as also 
supported by in silico docking. The mRNA and protein were expressed exclusively in the intestine of the 
louse. Further, knocking down the transcript resulted in lower heme levels in the adult female louse, 
production of shorter egg strings, and an overall lower hatching success of the eggs. Finally, starving 
the lice caused the transcript expression of the receptor to decrease. To our knowledge, this is the first 
time a CD36-like protein has been suggested to be an intestinal heme receptor.

Iron is a transition metal, which is essential for many proteins present in all branches of the phylogenetic tree 
of life and must be obtained through the diet. The most bioavailable form of iron is heme, the iron-containing 
pyrrole ring of protoporphyrin IX1. Heme is a prosthetic group found as cofactor in many metalloproteins and is 
known to contribute to essential cellular processes, such as electron transport, signal transduction, detoxification, 
gas transport and sensing2–4. Although heme is necessary for many purposes in the cell, it may also exert cytotoxic 
effects by generation of reactive oxygen species (ROS) and cause damage to DNA, proteins and lipids5–7.

The classical heme biosynthetic pathway is an evolutionarily conserved multi-step enzymatic reaction that 
in eukaryotic cells takes place partially in the mitochondria and partially in the cytoplasm. Heme biosynthe-
sis begins with the synthesis of δ-aminolevulinic acid (ALA) by δ-aminolevulinate synthase 1 (ALAS1) as the 
rate-limiting reaction, and ends with the addition of an iron atom to the center of the protoporphyrin IX ring by 
ferrochelatase (FECH)8. Even though heme is essential for aerobe cells, some organisms are unable to produce 
this cofactor on their own. Natural heme auxotrophic organisms depend upon exogenous heme through their 
diet for survival. In this group we find, among others, the hematophagous parasitic cattle tick Rhipicephalus 
(Boophilus) microplus feeding off cattle blood9, the soil-nematode, Caenorhabditis elegans, and the parasitic nem-
atode Brugia malayi10.

By analyzing its genomic sequence, we uncovered that the Atlantic salmon louse, Lepeophtheirus salmonis, is 
likely among the natural heme auxotrophs as well, because it lacks homologs for most enzymes of the classical 
heme biosynthetic pathway, including ALAS1 and FECH (https://licebase.org, unpublished). The salmon louse 
is an obligate ectoparasite of salmonid fish. It is considered a major problem for both farmed and wild salmon 
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populations, and as resistances to various treatments have occurred recently, effective methods for pest control 
are in high demand11. The life cycle of this parasite is divided into eight stages separated by molts. These are in 
chronological order: nauplius I and II, copepodid, chalimus I and II, preadult I and II, and adult lice12,13. The 
developmental pace of L. salmonis correlates for the most part with temperature. At 10 °C, development from 
fertilization to mature adult lice is completed in approximately 40 (♂) to 52 (♀) days14. From hatching and until 
it reaches the infectious copepodid stage, L. salmonis is planktonic and survives on energy reserves from the yolk 
sac. When these eventually wear down, the copepodid has to infect a salmonid host in order to complete its life 
cycle. Once attached to a suitable host, L. salmonis feeds off the host’s skin and blood15. By hematophagy, the par-
asite is exposed to significant amounts of hemoproteins and other nutrients.

The salmon louse is likely dependent on its vertebrate host for heme supply; consequentially there needs to 
exist a way of absorbing heme from ingested blood within the digestive tract of the parasite. However, heme 
transport through the cell membrane as well as intra- and intercellular heme trafficking are generally poorly 
understood. An organism lacking endogenous heme provides the opportunity to study trafficking of the cofactor 
without further confounding effects by endogenous cellular synthesis. In the heme auxotroph C. elegans, heme 
transporter HRG-1 transmembrane proteins mediate heme uptake and homeostasis. Whereas HRG-1 primarily 
localizes to endosomal and lysosomal organelles, its paralogue HRG-4 localizes to the plasma membrane and is 
expressed in the intestine; therefore HRG-1 and HRG-4 might act in a concerted fashion to take up environmen-
tal heme16. However, the hrg-4 gene is nematode-specific implying that different mechanisms of heme uptake 
exist in other animal species. The mammalian proton-coupled folate transporter/heme carrier protein 1 (PCFT/
HCP1) was also initially proposed as an intestinal heme transporter17, but its function has since been debated, and 
later research characterized PCFT/HCP1 as a folate transporter with at best minor affinity to heme18.

Limited success in identifying an evident candidate for the function of intestinal heme absorption has led to 
a shift in the traditional thinking as to which characteristics a heme receptor or transporter should fulfill. As the 
porphyrine ring is an amphipathic molecule with both polar and nonpolar properties, it has been suggested that it 
may be trafficked, alike lipids, via membrane-tethered complexes, lipid transfer proteins, vesicular trafficking, or 
lipid transporters19. A gene found to be highly expressed in the salmon louse intestine encodes a CD36-like pro-
tein. By sequence similarity, it belongs to the scavenger receptor class B (SCARB) family. Proteins of the SCARB 
family consist of two transmembrane domains, an extracellular ligand-binding domain, and short intracellular N- 
and C-terminal tails. Mammalian homologous proteins have been reported to scavenge a large variety of ligands 
(albeit not including heme), e.g. various lipoproteins such as oxidized and non-oxidized LDL20, beta-carotene21, 
and very long chain fatty acids22.

In this study, we characterize the SCARB-like (LsHSCARB) gene and protein found in L. salmonis and hypoth-
esize that LsHSCARB facilitates heme uptake across the intestinal membrane. Localization of the gene and pro-
tein, structural analysis, functional knockdown studies and a recombinant binding assay support our hypothesis. 
Our data support the existence of a novel pathway of heme scavenging from the arthropod intestine, and yield a 
potential new drug target for sea lice control.

Results
Sequence analysis.  The full salmon louse heme scavenger (LsHSCARB) cDNA sequence (Ensembl meta-
zoa stable ID: EMLSAG00000005382, GenBank accession: CDW29028.1) was verified by 5′ and 3′ Rapid ampli-
fication of cDNA ends (RACE) PCR using sequence specific primers (Table 1). The gene consists of a 220 bp 
5′-untranslated region (UTR), an ORF of 1677 bp and a 288 bp 3′-UTR. The ORF translates into a 559 amino acid 
(aa) long protein with two predicted transmembrane domains in the N- and C-terminal (from aa 7 → 28 and 
from aa 528 → 549) with the terminals located intracellularly (Fig. 1c), and a signal anchor sequence from aa 1 → 
23. The protein has a predicted N-linked glycosylation site at aa 260 and three predicted O-linked glycosylation 
sites at aa 302, 303 and 376. The sequence of the ORF was analyzed in InterproScan, and was characterized as 
belonging to the cluster of differentiation 36 (CD36) family (PF01130). A protein BLAST search of the L. salmonis 
full length protein showed 31% identity with a scavenger receptor class B1 in the kuruma prawn, Marsupenaeus 

Primer name Sequence (5′→3′) Application

LsHSCARB 5′ RACE CCTCCTTCCACTTCCACTTCGGACTCA 5′ RACE

LsHSCARB 3′ RACE GTCAAGAATTTTTCTCATGCGCCAA 3′ RACE

LsHSCARB fwd AGCGGATAAACTCGATGGCT ISH/RNAi

LsHSCARB T7 fwd TAATACGACTCACTATAGGGAGAAGCGGATAAACTCGATGGCT ISH/RNAi

LsHSCARB rev TTTGCTTGGCGCATGAGAAA ISH/RNAi

LsHSCARB T7 rev TAATACGACTCACTATAGGGAGATTTGCTTGGCGCATGAGAAA ISH/RNAi

Cod_CPY185 fwd TAATACGACTCACTATAGGGATAGGGCGAATTGGGTACCG RNAi

Cod_CPY185 rev TAATACGACTCACTATAGGGAAAGGGAACAAAAGCTGGAGC RNAi

SYBR LsEF1α fwd GGTCGACAGACGTACTGGTAAATCC qPCR

SYBR LsEF1α rev TGCGGCCTTGGTGGTGGTTC qPCR

SYBR LsHSCARB fwd TCCGCTTGATCCCCATGTTC qPCR

SYBR LsHSCARB rev GCCAACGACATAGCCAAGAGC qPCR

Table 1.  Primers used for RACE, in situ hybridization (ISH), RNA interference (RNAi) and qPCR. T7 promoter 
extension is underlined.
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japonicus (GenBank accession: AKO62849), and 29% identity with the freshwater shrimp, Macrobrachium nip-
ponense scavenger receptor B1 (GenBank accession: ALK82306).

Homology modelling and heme binding.  A three-dimensional model of LsHSCARB was predicted 
using i-TASSER (Fig. 1a,b). The highest scoring model I (S-score = −1.33) presents with a lateral cavity in the 
extra-cytoplasmic domain that is enriched with hydrophobic residues. By sequence alignment with the highest 
ranked threading template (4F7B, Lysosomal Integral Membrane Protein, LIMP-2, RMSD = 0.56, Supplementary 
Fig. S1) the presence of a hydrophobic loop (residues 202–236: SAAIFDKLDTFLMLLLEVIQESLELDIPIKAKDF, 
Fig. 1a–c) is detected within an insertion in LsHSCARB (Supplementary Fig. S2). The opposite surface of the cav-
ity consists of a loop region (residues 416–423: VSACYGAP, Fig. 1c) with central Cys-419 Tyr-420 (CY) residues 
(Fig. 1d).

Using HemeBIND as a specialized predictor of heme-binding residues to integrate sequence and structural 
information following residues were predicted as potential heme interacting: Pro-147, Leu-152, Ile-170, Gly-174, 
Phe-256, Lys-259, Ile-531, and Gly-534 (Fig. 1b). While Ile-531 and Gly-534 are located in the intracellular part 
of the receptor, all other residues belong to the predicted extracellular domain.

We then performed docking simulations of the generated model I using protoporphyrin IX (PPOIX) as 
the ligand in AutoDock Vina. The best viable docking pose is predicted inside the hydrophobic pocket with 

Figure 1.  Structural de novo prediction for the protein sequence of LsHSCARB. Best scoring tertiary structure 
model generated from i-TASSER depicted as (a) hydrophobic surface (red: hydrophobic, blue: hydrophilic) The 
ligand protoporphyrin IX (C34H32N4O4, ZINC26671872) is depicted for comparison, scale bar = 10 Å. (b) 
ribbon representation with predicted secondary structure, and annotated residues with potential implication 
in heme binding (dark gray: aromatic, blue: aliphatic, cyan: potential axial ligand (C, M, Y, K, or H), red: 
residues predicted by HemeBIND). (c) Consensus membrane topology prediction by CCTOP over residues 
and sequence, red: intracellular, orange-green: trans-membrane, blue: extracellular domain, dark-red: lateral 
hydrophobic surface of the hydrophobic pocket, green: interior surface of predicted binding pocket. (d) Results 
from Receptor-Ligand docking by AutoDock Vina with the best-scoring (I) docking position. The highest 
scoring viable docking position is located inside the hydrophobic pocket, Cys-419 and Tyr-420 (yellow) are 
proximal to the hypothetical iron center of a heme ligand (Fe), residues are in same color code as in (b).
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the CY residues extending over the iron-center of heme (Vina score: −9, Fig. 1d, Supplementary Data S1–4). 
To assess whether the observed scores are comparable to docking results with known hemoproteins and other 
heme-binding proteins, we analyzed the best docking poses of ten experimentally obtained structures with heme 
ligand after removing the heme moiety and re-docking with PPOIX (Supplementary Table S1). Nine out of ten 
docking attempts placed the ligand at a distance of <2 Å between centroids, and six out of ten attempts resulted 
in an RMSD <1 Å between the docking pose and the experimental structure. The only failed docking attempt 
(3GNF, Cytochrome c-553 from Bacillus pasteurii) also presented with the worst Vina score of all experiments. 
All successful re-docking attempts to heme-proteins presented with a Vina score ≤−9. In addition, we tried 
docking PPOIX with two alternative PDB structures of LIMP-2, one of which was used as a threading template 
by i-TASSER to generate the LsHSCARB homology model. To the best of our knowledge, LIMP-2 has not been 
previously reported as a heme-interacting protein. These resulted in very similar optimal VINA scores of −7.6 
and −7.7 respectively (Supplementary Table S1).

When comparing in silico docking results and HemeBIND predictions, three out of six predicted extracellu-
lar residues are within a distance of <2 Å from the electrostatic surface of the docked ligand, Lys-259 interacts 
directly with the ligand surface, whereas Pro-147 and Phe-256 are proximal to the docking site (Fig. 1d)

In order to investigate whether LsHSCARB was able to bind heme directly, we expressed the extracellular part 
of LsHSCARB (residues 31–523) in E. coli Bl21 De3 cells and investigated its ability to bind hemin-conjugated 
agarose resin. Cells were lysed and the supernatant containing the recombinant protein was incubated with 
either hemin-conjugated agarose resin or un-conjugated agarose resin as negative control. As can be seen in 
Fig. 2, little or no LsHSCARB was detected in the hemin-agarose flow through, whereas an evident band was 
visible in the negative control flow through. Upon washing of the resin, any protein bound to the agarose was 
eluted by heat denaturation and sampled for detection by western blot (elution). The most evident band on the 
membrane is at 100 kDa, which corresponds with the predicted molecular weight of the recombinant protein 
(100.6 kDa), but there are also fainter bands seen at approximately 65 and 50 kDa. While LsHSCARB clearly could 
be detected in the hemin-agarose elution, no band was visible in the negative control (Fig. 2), strongly indicating 
that LsHSCARB is a heme-binding protein. Full length image of the western blot with the protein standard can 
be seen in Supplementary Fig. S3.

In situ hybridization.  To initially characterize the gene, we determined the localization of its transcript by 
in situ hybridization. In the adult female louse, the transcript of LsHSCARB was solely detected in cells lining the 
intestine (Fig. 3c).

Immunohistochemistry.  Immunohistochemistry was used to detect the localization of the LsHSCARB 
protein in the adult female louse by polyclonal anti-LsHSCARB antibody. The protein was detected in the intesti-
nal border facing the intestinal lumen identical to the location of LsHSCARB mRNA (Fig. 3d).

RNAi mediated ablation of LsHSCARB.  In order to assess the effect of RNA interference-mediated abla-
tion of LsHSCARB, two experiments were implemented. The first was terminated upon extrusion of the second 
pair of egg string (38 days). At this point, no visible phenotypic alteration was observed. Knockdown efficacies, as 
well as heme and protein measurements are documented in Supplementary Figs S4–S7. Knockdown efficacy was 
on average 99% and the heme concentration in knockdown lice was significantly (p = 0.02) reduced by on average 
58% compared to control lice. As no visible phenotype alteration was observed despite lower levels of heme, the 
second experiment was prolonged to observe the effect of an extended period of ablation. Observed values for 
effect size and standard error from experiment 1 were used as input to conduct power analysis; thus, a minimum 
n = 8 samples per group was required to achieve adequate power (1-β > 0.80) to detect the observed change in 

Figure 2.  Hemin-agarose pull-down assay. Cell lysates of E. coli Bl21 cells expressing LsHSCARB (residues 
31–523) were mixed with hemin-agarose (Sigma-Aldrich), and samples analysed by western blot using an 
anti-LsHSCARB antibody (Genscript). LsHSCARB was detected in the supernatant (SN), the elution (ELU) of 
hemin-agarose, and the flow through (FT) of the negative control. Exposure time = 29.5 sec. The experiment 
was conducted three independent times with similar results.



5Scientific Reports |          (2019) 9:4218  | https://doi.org/10.1038/s41598-019-40590-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

heme concentration, while n = 10 allows for a vast increase in statistical power (1-β > 0.90). The following results 
are from experiment two.

Knockdown efficacy after injection of double-stranded RNA was assessed in the dissected intestine of each 
louse (Fig. 3a) by qPCR. At the time point after the extrusion of the fifth egg string pair (observed in the control 
lice), LsHSCARB mRNA was significantly reduced in intestinal tissues of the treated group (Fig. 4). Seven out of 
ten animals in the treated group had between 95 and 99% reduction in mRNA; the other three animals in the 
treated group had a reduction of 60, 32 and 32%. All animals were included in the statistical analyses (n = 5 (con-
trol) and 10 (treated), p = 0.005).

Histology and phenotype.  Upon termination of the second experiment, RNAi knockdown animals 
appeared anatomically normal by visual inspection, although they had shorter egg strings than control animals 
(Fig. 5a,c). Histological sections of control and dsRNA-treated lice revealed no morphological change other than 
in the oocytes (Fig. 5b,d). Oocytes from the LsHSCARB dsRNA-treated group appear larger and chorions more 
swollen than in the control group, even though lice from both groups were at the same stage of oogenesis (i.e. 
egg strings hatched on the same day after terminating the experiment). An annotated histological section of an 
untreated adult female louse colored with toluidine blue is depicted in Fig. 3b.
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Figure 3.  Anatomy of a salmon louse. Photograph of an untreated adult female louse. The blood-filled intestine 
in the boxed area was dissected out after RNAi to assess knockdown success by qPCR, and the rest of the 
body was used for heme/protein analyses (a). Section of an untreated adult female louse toluidine blue dyed 
is shown with various structures named. Scale bar: 1 mm (b). In situ hybridization shows that the transcript of 
LsHSCARB is localized in cells lining the intestinal tract of the adult female salmon louse. The negative sense 
control in the upper right corner showed no signal. Scale bar: 1 mm (c). Immunohistochemical detection of 
LsHSCARB using anti-LsHSCARB antibody in an adult female louse. Protein is located in the intestine, and the 
negative control in the upper right corner showed no signal. Scale bar: 500 µm (d). Abbreviations: o = oocyte, 
i = intestine.
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Egg string lengths and offspring development.  67% of the control lice were recovered upon termina-
tion of the second LsHSCARB RNAi experiment. Here, 19 out of 20 lice carried egg strings, with a mean length of 
21 mm (Fig. 6a). 50% of the treated lice were recovered at the end of the experiment, and of these, 12 out of 15 lice 
presented with egg strings with a mean length of 16.5 mm whereas 3 had none (Fig. 6a) (n = 19 (control) and 12 
(treated), p = 0.001). Hatching and molting success of the egg strings were monitored. Emerging copepodids were 
counted, and the number of live animals in relation to their respective egg string length is shown in Fig. 6b (n = 19 
(control) and 12 (treated), p = 0.0002). One egg string pair from the control group did not hatch, and three pairs 
of egg strings did not hatch in the treated group. These are denoted at 0 copepodids per mm egg string, and are 
included in the calculations (Fig. 6b).

Heme and protein levels.  To measure the effect of RNA interference-mediated ablation of LsHSCARB 
on heme absorption, total heme levels were analyzed from body tissues excluding the intestine that is filled with 
salmon blood (Fig. 3a). Two animals in the LsHSCARB dsRNA-treated group displayed body heme levels below 
the LOD, and their heme levels were set to the threshold value. Heme levels are significantly lower in the treated 
animals (Fig. 6c). Total protein levels from the same lysates were slightly, but not significantly (p = 0.089) lower 
(Fig. 6d). In addition, the adjusted heme levels per protein unit were significantly lower (n = 10, p = 0.011) in the 
knockdown group compared to the control group (Fig. 6e).

Starvation.  To investigate whether the mRNA expression of LsHSCARB in the adult female salmon louse is 
affected by the presence of host blood in the louse intestine, adult female lice were collected from fish and thereby 
separated from their food source and starved for zero (sampled immediately), one, two, four and eight days. The 
expression profile shows a down-regulation in mRNA levels of LsHSCARB (Fig. 7) using lice fixed immediately 
after sampling as calibrator. Down-regulation is significant from day two (day 1: p = 0.124, day 2: p = 0.03, day 4: 
p = 0.007, day 8: p = 0.003). Compared to lice sampled immediately after being removed from fish, lice starved for 
eight days have on average an 85% down-regulation of transcript levels of LsHSCARB.

Discussion
As a hematophagous parasite without the option of synthesizing heme on its own, the salmon louse is depend-
ent on acquiring heme from the blood of its host to sustain essential cellular processes. In the present study, we 
propose a likely mechanism by which the salmon louse takes up heme from its blood-filled intestine. Although 
the hypothesis about the existence of an intestinal heme receptor has been framed already in 197923, few studies 
have since identified proteins involved in heme trafficking over intestinal membranes, one of the hindrances 
potentially being that many animal models have endogenous heme. Using the natural heme auxotrophic parasite 
L. salmonis as a model organism provides a great opportunity to study heme trafficking.

In this study, we have characterized a gene encoding a scavenger receptor class B-like protein that may facil-
itate heme absorption over the intestinal membrane of the salmon louse. While CD36 is abundant in epithelial 
cells of the mammalian small intestine and might play a role in gut homeostasis23, to the best of our knowledge, 
homologous proteins have not been previously implicated in heme internalization. Nevertheless, CD36-like 

Figure 4.  Gene expression analysis by qPCR reveals that LsHSCARB is down-regulated 69 days after induced 
RNAi. The stapled lines indicate the mean value of each group, and the dots represents expression values in 
individual lice. Asterisks indicate a significant difference between control and treated group. **: significant 
at p ≤ 0.01. n = 5 (control) and 10 (treated).
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receptors bind a multitude of ligands, among them thrombospondin-1, oxidized low-density lipoprotein, beta 
carotene, long-chain fatty acids, and pathogens20–22,24. Other scavenger receptors comprise an even wider family 
of integral membrane proteins with variety of domain architectures and a broad range of ligands, among them 
hemoproteins. As an example, Scavenger receptor cysteine-rich type 1 protein M130 (CD163) is involved in 
removal of the hemoglobin/haptoglobin complex by macrophages25,26. Compared to LsHSCARB, CD163 has 
only a single transmembrane domain and low overall sequence similarity to the receptor characterized here. 
Membrane topology prediction on the amino-acid sequence of LsHSCARB convincingly yields two transmem-
brane helices (residues 7 → 28 and 528 → 549), a feature distinguishing class B from all other characterized 
scavenger receptors. Hence, by domain architecture and by sequence and structural similarity we sustain the 
hypothesis that LsHSCARB is homologous to class B scavenger receptors.

The ability of recombinant LsHSCARB to bind heme was investigated by a hemin-agarose binding assay, as has 
also been used for other heme-binding proteins27,28. Three bands appear upon detection with anti-LsHSCARB, 
at approximately 100, 65 and 50 kDa. The band at 100 kDa is the strongest, and corresponds with the predicted 
molecular weight of the recombinant LsHSCARB with an MBP fusion tag (100.6 kDa). The other two bands are 
less evident, and could be degradation products, or alternative isoforms of the protein. Our results clearly show 
that recombinant LsHSCARB is able to bind hemin-agarose resin in vitro, but not agarose resin without conju-
gated hemin, further supporting our hypothesis that it is a heme-binding protein.

3D protein model and the result of in silico docking with protoporphyrin IX were also in accordance with 
our initial hypothesis. We tested the ability of AutoDock Vina to predict binding sites of a variety of known 
heme-binding proteins for calibration. For the majority of cases, the best binding pose was predicted with high 
accuracy with respect to RMSD and distance between centroids, giving further confidence that heme ligands 
could fit into the proposed docking pose geometrically. Of note, for two very similar experimental structures of 
a homologous receptor to LsHSCARB, the lysosomal integral membrane protein (LIMP), which has not been 
described as having heme affinity, docking yielded much worse but near identical scores, giving us further confi-
dence in the robustness of the approach. It is further worth noticing that our in silico model, unlike crystal struc-
tures, does not contain any side-chain information to guide the docking process. While we did not find a known 
heme-binding motif (e.g. cysteine-proline residues or CXXCH motif), the predicted binding pocket is enriched 
for non-polar residues (mostly isoleucine and leucine) and contains cysteine-tyrosine (CY) residues on the 

Figure 5.  Photographs of representative adult female lice from control (a) and LsHSCARB knockdown group 
(c). Toluidine blue colored histological sections of oocytes found in indicated areas in genital segments of these 
lice are shown in right panel for control (b) and knockdown (d) lice. Yellow lines are drawn along two chorions 
in each group (b,d) to indicate the boundaries of one oocyte. Lipid droplets are observed throughout the 
oocytes. Scale bars: (a,c = 5 mm, b,d = 50 µm).
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opposite interior surface, potentially forming the axial ligand to the iron atom of heme. In a comprehensive struc-
tural analysis of 125 non-redundant heme-binding protein chains, Li et al. (2011) reported that heme-binding 
pockets were enriched with non-polar residues that create a hydrophobic environment for heme binding, with 
leucine, isoleucine, and valine slightly more abundant29. Besides, the same study also reported enrichment of aro-
matic residues, whereas we did not observe aromatic residues within the predicted pocket except for the tyrosine 
residue. Of note, the extracellular domain is strongly enriched for three out of the five common axial ligands of 
heme compared to LIMP29. The structural characteristics of a heme receptor could however be evolutionarily 
adapted to support a rather transient binding mode compared to other heme-proteins, and this might explain 

Figure 6.  Effect of LsHSCARB knockdown. Top: mean egg string lengths (±SD) (a) and mean number of 
copepodids per mm egg string (±SD) (b) in control (dark grey) and LsHSCARB dsRNA treated (light grey) 
group (n = 19 for control and 12 for treated). Bottom: mean relative heme levels ( ± SD) (c). Mean total protein 
levels ( ± SD) (d) and adjusted heme levels to the amount of protein (±SD) (e) of lice from the control group 
(dark grey bars) compared to the LsHSCARB knockdown group (light grey bars) (n = 10). Asterisks indicate 
a significant difference between control and treated group. Ns: not significant, *: significant at p ≤ 0.05, 
**: p ≤ 0.01, ***: p ≤ 0.001.

Figure 7.  Relative expression of LsHSCARB in relation to starvation of adult female lice for 0, 1, 2, 4 and 8 days. 
Lice taken at 0 days of starvation were used as a calibrator. Asterisks indicate significant difference from day 0. 
ns: not significant, *: significant at p ≤ 0.05, **: ≤0.01. n = 5 per sampling day.
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some of the differences observed. Transient binding would further explain slightly lower Vina scores for our 
receptor, in contrast to proteins with catalytic heme groups, such as nitric oxide synthase, cytochrome P450’s or 
peroxidases. We further note the presence of multiple residues on the protein surface that have been identified as 
potentially heme-binding either by prediction or as commonly known axial ligands (Fig. 1b)29,30. The existence of 
multiple unmapped binding modes could contribute to increased efficiency of heme absorptions by binding mul-
tiple ligands. More in-depth structural analyses of the receptor in complex with heme are nevertheless required 
to precisely determine binding modes.

Both transcript and protein of the putative heme scavenger were exclusively expressed in epithelial cells lin-
ing the midgut of the salmon louse, further supporting our hypothesis that this protein is important for nutri-
ent absorption from the blood-filled intestine of the salmon louse. Because of the localization of the transcript, 
we dissected out the intestine to assess knockdown success by qPCR (Fig. 3a). Consequently, the rest of the 
body could be used for heme and protein measurements. This way, fish-blood in the intestine is excluded and 
only absorbed heme is measured. As fish blood is highly enriched in heme as seen by the red pigmentation due 
to heme, measuring heme levels in the blood-filled intestine would otherwise lead to a wrongful estimate of 
absorbed heme levels.

In the first RNA-interference knockdown experiment (terminated after 38 days) there was no visible phe-
notypic alteration in the knockdown animals. However, the heme levels of the knockdown animals are sig-
nificantly lowered. This drove us to prolong the second experiment to investigate how a longer period in the 
absence of LsHSCARB would affect the parasite. The next RNAi mediated knockdown (terminated after 69 days) 
of LsHSCARB also caused a significant reduction in the amount of heme in the tissues of the louse. Moreover, 
ablation caused lice to have 21% shorter egg strings, and 70% lower hatching success. The two animals with less 
effective knockdown and egg strings present (32% down-regulation for both) had a 74% greater hatching success 
than the animals with 95–99% knockdown. We conclude that detrimental effects of nutrient deprivation accumu-
late over the prolonged knockdown period and manifest in vastly reduced fecundity.

The necessity of heme for development is widely recognized, and the reduction of viable offspring due to heme 
depletion has been reported on several occasions. The blood fluke, Schistosoma mansoni, requires exogenous 
heme for the production of eggs as incubation with cyclosporin A inhibited heme uptake, and thus reduced 
fecundity31. The requirement of heme for growth is also reported for the hemoparasite Leishmania tarentolae32. 
Perner et al. (2016) found that serum fed ticks (Ixodes ricinus) did not have embryonal development in eggs, 
whereas adding 10% hemoglobin to the serum rescued embryogenesis33. Furthermore, the silencing of a mater-
nal heme-binding protein in the blood sucking insect Rhodnius proxilus impaired embryogenesis34. The heme 
measurements in this study indicate that the knockdown animals contain on average 60% less heme than the 
control animals. The remaining heme could be due to redundant uptake systems within the intestine that should 
be further investigated. However, since RNA-interference is not able to mediate a complete knockout, remain-
ing transcripts of LsHSCARB could lead to residual production of LsHSCARB protein in addition to remain-
ing LsHSCARB protein translated before dsRNA injection. These effects could contribute to continuous, albeit 
reduced, heme uptake. A passive diffusion of heme across the intestinal border membrane seems unlikely, as free 
heme is lipophilic and could lead to peroxidation of membrane lipids5.

Even though scavenger receptors have not been implicated in intestinal heme absorption before, ablation of 
similar genes has been done in other blood-feeders. A CD36-like scavenger receptor was knocked down by RNAi 
in the hard tick Haemaphysalis longicornis35. The experiment showed impact on blood-feeding behavior, egg 
production and the hatching rate. It is however unknown whether this is related to heme absorption, as the level 
of heme was not analyzed. Later, the authors presented that the receptor was involved in granulocyte-mediated 
microbial phagocytosis in ticks as well as mediating systemic RNAi in ticks36,37. We suggest investigating the role 
of this receptor in the absorption of heme in the mid-gut of the tick further.

Although the ablation of LsHSCARB led to shorter egg strings and lower hatching success, histological analy-
ses did not reveal any drastic morphological alteration that could explain these observations. The only difference 
observed was in the oocytes. In treated animals, the oocytes appear larger and swollen, and also less structured 
than in the controls, despite the fact that all egg strings hatched on the same day, indicating that oocytes were at 
a similar stage of maturation. These observations lead to the conclusion that LsHSCARB is essential for normal 
oocyte development in L. salmonis.

We further observe that starving animals causes a decrease in the transcript level of LsHSCARB. This sug-
gests a positive regulatory feedback system where a nutrient-rich blood-filled intestine leads to induction of gene 
expression. Down-regulation due to starvation is in contrast to reports from the free-living heme-auxotroph C. 
elegans, where the expression of HRG-1 is up-regulated as a response to decreasing levels of heme16. However, 
the lifestyle of the hematophagous parasite L. salmonis differs strongly from that of C. elegans. The salmon louse 
is, unlike C. elegans, either on or off its host. Thus, it is either able to feed or not, and will thus not experience a 
true gradient in heme concentration. Expression of a gene that is solely required for nutrient uptake is energy 
consuming and thus potentially wasteful under nutrient deprivation. This argument could contribute to explain 
increased down-regulation under prolonged starvation. In accordance with our findings, a nutrient induced pos-
itive feedback mechanism was observed in the crustacean Macrobrachium nipponense, where a scavenger receptor 
was up-regulated by various dietary lipid sources38. Further, Staron et al. (2017) reported induction of several 
heme associated proteins under dietary hemoglobin rescue39.

In conclusion, the results from functional studies, both in vitro and in vivo, as well as in silico data indicate that 
LsHSCARB is likely encoding a receptor of heme in the salmon louse intestine. The investigation of the CD36-like 
protein in relation to heme transport shown in this study may further elucidate the trafficking of heme in other 
species, which as of today is a process that remains enigmatic. Because ablation of the receptor mRNA gives rise 
to significant reduction of the fecundity of the parasite, the receptor could find its application as a new drug tar-
get in pest control of blood feeding parasites. More generally, we have demonstrated the possibility that class B 
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scavenger receptors, among a wide range of other known ligands, could also mediate heme absorption. It remains 
an open question if this ability is a singular evolutionary event, or if some of the many orthologous sequences 
in other animals have a similar function. Either way, given that heme is the most bioavailable iron source for 
humans, medical applications could arise in the future, prospectively for disorders related to iron uptake or the 
heme biosynthesis pathway.

Material and Methods
Sequence analysis, in silico modelling and docking.  Initial data for searching transcript and protein 
sequences and primer design were extracted from the L. salmonis genome annotation in Ensembl Metazoa (https://
metazoa.ensembl.org/Lepeophtheirus_salmonis). Gene expression data were retrieved from LiceBase (https://lice-
base.org). Pathway reconstruction was performed using the KEGG Automatic Annotation Server on all predicted 
protein sequences40. All following analyses are based on the GenBank sequence CDW29028.1. Glycosylation 
prediction was performed using the NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/) and the 
NetOGlyc 4.0 Server41. Protein BLAST searches were conducted against the GenBank and SwissProt databases42. 
Conserved domain search was conducted using InterProScan43 and consensus membrane topology prediction was 
performed using CCTOP44. Prediction of protein 3D-structure was done in i-TASSER45, and docking of the best 
scoring i-TASSER model (model I) with protoporphyrin IX (PPOIX, ZINC26671872) from the ZINC database46 
was performed using AutoDock Vina with default parameters47, using model I as receptor and PPOIX as ligand. 
Docking was evaluated using experimental heme-containing protein structures and other proteins not known for 
heme affinity (Supplementary Table S1) after manually removing the heme moiety and non-standard residues, 
if present. Visualization of structures and docking was done in UCSF Chimera48. RMSD and distances between 
centroids were calculated for all C, N, and O atoms shared between HEM residues in PDB structures and dock-
ing poses using UCSF Chimera and the R-package Rpdb (https://cran.r-project.org/package=Rpdb). Enriched 
residues that could serve as axial ligands to heme (C, M, Y, K, H)29 were evaluated in a conserved region only 
(Supplementary Fig. S1), after pruning potential N- and C-terminal His-tags and terminal gap regions: conserved 
region was extracted from structural alignment of model I, and PDB ids 4F7B and 4Q4B after re-aligning by 
MUSCLE49. The HemeBIND web-server was used to predict heme-binding residues in model I50.

Plasmid construction and recombinant LsHSCARB protein expression.  ORFs coding for the 
extracellular part of LsHSCARB (residues 31–523), synthesized and subcloned into a pETM41/His-MBP plas-
mid by GenScript, were transformed into E. coli Bl21 De3 cells for protein expression. Cells were grown at 28 °C 
until reaching an OD600 of 0.6, and protein expression was induced by adding IPTG to a final concentration of 
0.5 mM. Proteins were expressed o/n at 18 °C and harvested by centrifugation. Cell pellets were lysed in a buffer 
(50 mM Tris-HCl pH 7.4, 150 mM NaCl, cOmplete EDTA-free protease inhibitor (Roche), 1 mg/ml lysozyme and 
either 0.1% FOS16 or 2% DDM), incubated on ice for 30 min and sonicated for 1.5 min with 1 second impulses at 
50 amp. The cell sonicate was centrifuged at 15,000 g for 30 min at 4 °C and the supernatant collected. The protein 
concentration of the supernatant was determined by Direct Detect spectrometer and the supernatant was further 
used in downstream experiments.

LsHSCARB binding to hemin-agarose.  100 µl of hemin-agarose beads (Sigma, H6390) were washed 
four times with 50 mM Tris-HCl pH 7.4, 150 mM NaCl prior to use. The beads were then resuspended in 100 µl 
buffer and added to an Eppendorf tube with 350 µl of the supernatant containing 2.5 µg/µl protein. Incubation 
was performed on a rotating wheel for one hour at room temperature. After incubation, the flow through was 
sampled and mixed with SDS-PAGE sample buffer to assess the unbound fraction. The beads were washed four 
times with wash buffer and finally the beads were incubated in denaturing buffer containing 2% (wt/vol) SDS, 
1% (v/v) β-mercaptoethanol, and 500 mM Tris-HCl pH 6.6 for two min at room temperature followed by five 
min at 99 °C. The beads were centrifuged, and the supernatant was collected for analysis by western blot. Agarose 
beads with a glutathione ligand (sepharose 4b) were used as negative control and treated in the same manner as 
the hemin-agarose. Samples were separated on a SDS-PAGE and detected by anti-LsHSCARB on western blot. 
Initially, the protein was expressed with an N-terminal His-tag. In order to verify that the observed binding to 
hemin-agarose was not due to His-tag affinity for iron, the His-tag was removed by Q5 site-directed mutagenesis 
(NEB). The protein without His-tag was used in one of three binding experiments.

Animals.  A laboratory strain of L. salmonis was raised on Atlantic salmon (Salmo salar) in tanks with seawa-
ter (salinity 34.5‰ and temperature 10 °C) as earlier described51. Fish were daily handfed a commercial diet and 
maintained according to Norwegian animal welfare regulations. Experiments were approved by the governmental 
Norwegian Animal Research Authority (ID8589). Fish carrying lice from RNA interference (RNAi) experiments 
were kept in single-fish tanks52. Egg string pairs of salmon lice were incubated and hatched in single wells in a 
flow through system51 until being used for experiments.

RNA isolation, cDNA synthesis, and qRT-PCR.  All tissues destined for RNA extraction were stored in 
RNAlater (Ambion) first at 4 °C overnight, and then at −20 °C until usage. Total RNA was isolated from adult 
female louse intestines or whole animals using TRI Reagent (Sigma-Aldrich) following the manufacturer’s instruc-
tions. Samples were homogenized using 5 mm stainless steel beads and a TissueLyser II (Qiagen) for 1 min at max-
imum frequency. Genomic DNA was digested from the samples by DNase treatment using DNase I (Invitrogen). 
RNA was quantified and its purity checked by NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop 
Technologies). Isolated RNA was stored at −80 °C until further use. RNA (300 ng) was reverse transcribed to com-
plementary DNA (cDNA) using the AffinityScript QPCR cDNA Synthesis Kit (Stratagene), and diluted tenfold 
with RNAse-free water before being stored at −20 °C. LsHSCARB knockdown efficiency and the effect of starva-
tion were validated by assessing the transcript levels by quantitative PCR (qPCR) using the previously validated 
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reference gene LsEF1α53. qPCR was run on a QuantStudio 3 qPCR machine using PowerUp SYBR Green Master 
Mix (Applied Biosystems) on duplicate samples under standard conditions (50 °C for 2 min, 95 °C for 2 min, 40 
cycles of 95 °C for 15 s and 60 °C for 1 min, followed by a melt curve analysis at 60–95 °C). Duplicate samples had 
a difference in Ct-values < 0.35. A six-point standard curve of twofold dilutions was prepared to assess the PCR 
efficiency of the assay: E% = (101/slope – 1) × 10054, which was 94% for LseEF1α and 100% for LsHSCARB. Relative 
differences (ΔΔCt) in threshold were calculated and transformed by the formula 2−ΔΔCt 55.

LsHSCARB knockdown by RNA interference.  Double stranded (ds) RNA fragments for LsHSCARB 
were generated using the Megascript® RNAi kit (Ambion) with cDNA from an adult female louse as template. 
A fragment for trypsin (CPY185) from Atlantic cod (Gadus morhua) was used as negative control as this has no 
significant sequence similarity to transcripts of the salmon louse56. Primers used for fragment synthesis are listed 
in Table 1. Fragments were diluted to 600 ng/µl and bromophenol blue was added to visualize successful injec-
tions56. Knockdown was investigated in female lice only. On the startup day of the experiment, preadult II female 
lice were removed from reservoir fish by forceps and dsRNA solutions were injected using borosilicate glass 
capillaries and pressure from a mouth tube. Lice were placed in seawater to recover for four hours before being 
put on fish held in individual tanks. Ten females and seven males were placed on each fish. For each fragment, 
three fish in individual tanks were used. The first experiment was terminated after the extrusion of the second 
egg string pair of mature adult female lice 38 days after injection. The second experiment was terminated upon 
the extrusion of the fifth egg string pair of mature adult female lice at 69 days after injection. Upon termination, 
all lice were removed from the fish and photographed under a binocular. Two control lice and three treated female 
lice were stored in Karnovsky’s fixative, whereas the remaining lice were dissected as shown in Fig. 3a and stored 
in RNAlater (intestine) and homogenized in lysis buffer (rest of the body). Egg strings, if present on the adult 
female lice, were incubated in seawater in flow through hatching wells. Egg string hatching time point and the 
development of the larvae were monitored.

In situ hybridization.  The localization of LsHSCARB mRNA was detected in the adult female salmon louse 
by using in situ hybridization (ISH) as earlier described57,58. An RNA antisense (AS) probe of 731 bp was made 
from a target specific cDNA template (see Table 1 for primer sequences). A sense (S) probe acted as negative 
control for the transcript localization, whereas hybridization with a known set of probes detecting LsTryp1 acted 
as positive control59. The labelled probes were visualized by using anti-digoxigenin (DIG) alkaline phosphatase 
fragment antigen binding (FAB) fragment (Roche) and a chromogen substrate containing levamisole (Sigma), 
nitroblue tetrazolium (NTB; Roche) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP; Roche). Microscopy 
images were captured by an Axio Scope A1 light microscope connected to Axiocam 105 (Zeiss).

Heme and protein extraction.  Whole body tissues of adult female lice excluding intestine (Fig. 3a) were 
homogenized in 700 µl lysis buffer (50 mM Tris-HCl pH 7.4, 100 mM NaCl, 1% v/v Triton-X-100 (Sigma-Aldrich), 
1 × cOmplete™ EDTA-free Protease Inhibitor Cocktail (Roche)) using a mortar and pestle, followed by using a 
syringe and needle. Homogenates were centrifuged at 12,000 rpm at 4 °C for 15 min. Supernatants were either 
used directly or stored at −80 °C until use.

Fluorescent heme quantification assay.  The heme quantification method by Morrison (1965)60 was 
adapted to L. salmonis and performed as following. Supernatants from heme/protein extractions were diluted 1:20 
in 150 µl of 2 M oxalic acid containing 1% w/v iron oxalate (both from Sigma-Aldrich). The solution was divided 
into two aliquots, one boiled at 99 °C for 30 min and one left at room temperature. By boiling, non-fluorescing 
heme is reduced to fluorescent protoporphyrin IX60–62. The aliquot kept at room temperature was used to control 
that the tissues did not contain porphyrins naturally. Four parallels of lysis buffer diluted 1:20 and boiled in the 
oxalic acid solution were used as the blank and to calculate the limit of detection (LOD = 3× standard deviation 
(SD) of the blank). A positive control of 400 ng/ml hemin (Sigma-Aldrich) (dissolved in DMSO and diluted 
1:20 in 2 M oxalic acid containing 1% w/v iron oxalate) was boiled for 30 min and included in three parallels to 
ensure the samples being within the linear range of the assay (serial dilution from 0–400 ng/ml, Supplementary 
Fig. S8). A high precision cell made of Quartz SUPRASIL® (Hellma Analytics) held the samples of about 50 µl as 
they were excited at 406 nm, and emission was read between 600–605 nm using a LS-50B fluorescent spectrom-
eter (Perkin-Elmer). The reading speed was set to 50 nm/min. The cell was rinsed thoroughly with Milli-Q H2O 
between each sample. All samples were read at 25 °C.

Protein quantification.  Total protein levels were quantified using a bicinchoninic acid (BCA) assay with a 
Bovine serum albumin (BSA) standard (both from Sigma-Aldrich). Two dilutions of each lysate (1:10 and 1:20) 
were prepared and further diluted in BCA working reagent (1:20) and incubated at 37 °C in a PCR machine for 
30 min. Two microliters of the sample were mounted to the instrument and absorbance was read at 562 nm using 
NanoDrop-1000 spectrophotometer. Negative samples were measured frequently to ensure no protein residues 
interfered with the experimental sample readings. Protein amounts were used to calibrate heme levels.

Histology.  Animals destined for histological analyses were fixed in Karnovsky’s fixative for a minimum of 24 h 
at 4 °C. Fixed animals were then rinsed in 1xPBS and dehydrated in 70% EtOH (15 min), 96% EtOH (2 × 15 min), 
1:1 absolute EtOH:infiltration solution (1% w/v Hardener I (benzoyl peroxide) in Technovit 7100 resin (Nerliens 
Meszansky A.S)) (2 h), and incubated overnight in 100% infiltration solution on a shaker. Plastic embedding was 
done in 15:1 infiltration solution:Hardener II. Two micrometer thick sections were obtained using a microtome 
(Leica RM 2165) and placed on microscope slides (VWR International). Sections were stained in filtered tolui-
dine blue for 30 s and rinsed thoroughly in H2O to remove background stain. Dry slides were mounted with DPX 
mounting solution (Sigma-Aldrich) and covered with glass cover slips. Microscopy images were captured as 
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described under the in situ hybridization section. Images of whole animals were processed and stitched together 
using an ImageJ plugin as described by Preibisch et al.63.

Starvation experiment.  Adult female lice were removed from the fish and placed apart from their food 
source in individual incubators in running sea water, and left there starving for 0 (sampled immediately), 1, 2, 4 
and 8 days. Whole animals were sampled in RNAlater according to Trösse et al. (2015)64. qPCR was conducted 
as described above.

Immunohistochemistry.  Polyclonal anti-LsHSCARB antibodies (0.8 mg/ml) were produced in rab-
bits by the company GenScript. The whole extracellular part of the protein was used for the antibody pr 
oduction (PAMIKSQIYENLDLREGTEGFNAFKEPPAPVYLSYSLFHIKNTNEVIRGEPPVLLEVGPYSY
RETMRKENLMEQNSRYLSYGKYTKFEFDETNTHKLKCKNRINTPCSKNDKITIINPVLLTLADKLD
GLPKTVKDICFEIINNGNEALGIKAEDLFITEEVDKILYTGFDSKSAAIFDKLDTFLMLLLEVIQESLEL
DIPIKAKDFENIIKIISPAQLSEGTFAFFKGKNATKLQNYYTIENGRFDKESFMNIVEFNGKNKLPEA
WWPNVATSITGQLSSEGGSCHRIYGTDGTQFPPFLFNKKKFPLWMFVGELCRTIYVEFESEVEVEG
GITAYRYGVGKRVFSMSNPENFCYCQEFFSCAKQTDNDEWDLSQCLKCKDGVMDVSACYGAPIFM
SQPHFLQADKEVQAYVKGLEPNSEKHATYLDIEPNLGTPLRAHKKIQINMVLRKVAGIDLLKKVAD 
FRLIPMFWADEGAELDSEKAEELNNVLFSAITIGNT). Paraffi n embedded sections (3.0 µ­m) of an adult female 
louse were incubated at 60 °C for 30 min and treated with Histo-Clear II (National Diagnostics) for 2 × 10 min. 
Sections were then rehydrated in ethanol for 3 min per treatment (2 × 100%, 96%, 80%, 50%) and then rinsed in 
MilliQ H2O. Following this, sections were washed 2 × 2 min with TBST (150 mM NaCl, 50 mM TRIS, 0.05% Tween, 
pH 7.6). Blocking was done with Superblock TBS (ThermoScientific) for 30 min at room temperature before the 
sections again were washed with TBST for 2 × 2 min. The primary antibody was diluted 1:8000 in TBST and left 
on the sections for 1 hour at room temperature. The primary antibody was washed off with TBST (2 × 2 min) 
before incubating with a 1:100 dilution of the secondary antibody (goat anti-rabbit IgG, Sigma-Aldrich) for 30 min 
at room temperature, and then washed off with TBST (2 × 2 min). Sections were flushed with processing buffer 
(100 mM Tris-NaCl, 50 mM MgCl2, pH 9.5), and then incubated with processing buffer for 10 min. Staining was 
done with BCIP/NBT Liquid Substrate System (Sigma-Aldrich) for 3 min until a visible color appeared, upon 
which the reaction was stopped in MilliQ H2O. The negative control was incubated with secondary antibody only. 
Sections were mounted with ImmunoHistomount (Sigma-Aldrich), and images were captured and processed as 
described under the in situ hybridization section. Two individuals were investigated.

Statistics.  All statistical analyses were conducted using R and IBM SPSS Statistics 23 for Windows. The 
data sets’ parametric requirements were checked by Shapiro-Wilk’s test of normality. Levene’s test was then used 
to check for equality of variances. Independent two-sample t-tests were conducted to evaluate the difference 
in means between control and experimental groups. For data sets not fulfilling the parametric requirements a 
Mann-Whitney U test was performed (knockdown effect and number of copepodids after hatching). Power anal-
ysis was performed in R using the observed effect size and standard error in experiment 1, assuming a two-sided 
alternative hypothesis. A p-value ≤ 0.05 was considered statistically significant. Data are presented as mean val-
ues ± standard deviations (SD). Graphs were prepared in SigmaPlot 13.0 and processed in Inkscape.
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ABSTRACT 13 

Blood-feeding is a common strategy among parasitizing arthropods, including the ectoparasitic 14 

salmon louse (Lepeophtheirus salmonis), feeding off its salmon host’s skin and blood. Blood is 15 

rich in nutrients, among these iron and heme. These are essential molecules for the louse, yet 16 

their oxidative properties render them toxic to cells if not handled properly. Blood-feeding 17 

might therefore alter parasite gene expression. We infected Atlantic salmon with salmon louse 18 

copepodids and sampled the lice in four different experiments at day 10 and 18 post infestation. 19 

Parasite development and presence of host blood in their intestines were determined. We find 20 

that lice start feeding on blood when becoming mobile preadults if sitting on the fish body, 21 

however they may initiate in blood-feeding at the chalimus I stage if attached to gills. Lice 22 

attached to gills develop at a slower rate. Lice of similar instar age from gills versus lice from 23 

skin epidermis were sampled in three different experiments, and gene expression was analyzed 24 

by RNA-sequencing. By differential expression analysis, we found 355 transcripts elevated in 25 

lice sampled from gills and 202 transcripts elevated in lice sampled from skin consistent in all 26 

experiments. Genes annotated with “peptidase activity” are among the ones elevated in lice 27 

sampled from gills, while in the other group genes annotated with “phosphorylation” and 28 

“phosphatase” are most predominant. Transcripts elevated in lice sampled from gills are often 29 

genes relatively highly expressed in the louse intestine compared with other tissues, while this 30 

was not the case for transcripts found elevated in lice sampled from skin. In both groups, more 31 

than half the transcripts were also higher expressed after attachment. In conclusion, blood-32 

feeding results in an alteration in gene expression, and a premature onset of blood-feeding likely 33 

causes the parasite to develop at a slower pace. 34 
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INTRODUCTION 35 

The Atlantic salmon louse, Lepeophtheirus salmonis salmonis (Krøyer, 1837) (Crustacea: 36 

Caligidae) (Skern-Mauritzen et al., 2014), is an obligate ectoparasite of salmonid fish, such as 37 

the Atlantic salmon (Salmo salar). The parasite is of major concern for the aquaculture sector 38 

in the Northern Hemisphere, as it causes challenges for the industry with its high fecundity and 39 

resistance towards several chemotherapeutants (Aaen et al., 2015). The parasite life cycle 40 

consists of both planktonic and parasitic stages (Hamre et al., 2013; Johnson and Albright, 41 

1991a). Upon hatching from a fertilized egg, the parasite is in the nauplius I stage. Thereafter, 42 

the salmon louse molts into the nauplius II stage, and further to the infective copepodid stage. 43 

Successive molting occurs on the host, first to the parasitic chalimus I and II. These stages are 44 

attached to the host by their elongated frontal filament (Bron et al., 1991; Gonzalez-Alanis et 45 

al., 2001), and are therefore immobile. Another molting renders the parasite mobile, as it is no 46 

longer secured by the frontal filament, but holds itself by using its cephalothorax as a suction 47 

cup. These stages are the preadult I and II and adult lice. Now, the parasite grazes on larger 48 

parts of its host, selecting its preferred feeding site and is causing greater damage to the fish 49 

(Bjørn and Finstad, 1998; Grimnes and Jakobsen, 1996). Progression of the salmon louse life 50 

cycle is temperature dependent, and at 10 °C, the time from fertilization to mature adult is 51 

approximately 40 (male) to 52 (female) days (Johnson and Albright, 1991b), or 38 (male) to 44 52 

(female) days for the fastest developers (Hamre et al., 2019). 53 

The alimentary canal of the salmon louse develops during the copepodid stage (Bron et al., 54 

1993). The alimentary canal is composed of a mouthpart, an esophagus, a midgut, and a hindgut 55 

ending in a short rectum (Bron et al., 1993; Nylund et al., 1992). Vertebrate blood is a highly 56 

nutritious tissue fluid that is constantly renewed. Hematophagy (blood-feeding habit) is 57 

therefore a common strategy among parasitizing arthropods. The salmon louse diet is 58 

considered to consist of the skin and blood of its host (Brandal et al., 1976), and the blood-filled 59 
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intestine is visible as a red line throughout the salmon louse body. Upon ingestion of blood, 60 

hematophagous parasites need to express genes encoding proteins that can manage the blood 61 

components. Blood is particularly enriched in proteins that contain the pro-oxidant molecules 62 

heme and iron. These are essential cofactors for the salmon louse, yet also highly toxic if not 63 

bound and detoxified by chaperones. Therefore, the alimentary canal needs to withstand, digest 64 

and absorb components of the food bolus. Trypsin-like enzymes (Johnson et al., 2002; Kvamme 65 

et al., 2004), a lipid transfer protein (Khan et al., 2017), a putative heme scavenger receptor 66 

(Heggland et al., 2019a) and the iron storage units of ferritin (Heggland et al., 2019b) are all 67 

expressed in the salmon louse midgut. 68 

The distribution of copepodids on wild and farmed hosts shows that the preferred settlement 69 

site is on the fins and scaled body of the host (Bron et al., 1991). Some groups have reported 70 

the settlement of lice on gills as well, however this is considered rather uncommon (reviewed 71 

by Treasurer and Wadsworth (2004)). In laboratory trials, on the other hand, lice are often found 72 

on gills, although there still seems to be a higher preference for the fins and body (Bjørn and 73 

Finstad, 1998; Treasurer and Wadsworth, 2004). Copepodid gill settlement is therefore often 74 

considered an experimental artefact due to an altered host behavior during laboratory 75 

infestations (Treasurer and Wadsworth, 2004). Gill tissue in teleost fish is highly vascular, 76 

whereas skin epidermis is not. The chalimus frontal filament, appendages and mouth tube have 77 

been shown to not breach the basement membrane within the salmon skin (Jones et al., 1990), 78 

thus not reaching the dermal vascular layer. Salmon lice settling on gills might therefore be 79 

more prone to ingest a blood meal than those lice elsewhere on the host during early stages of 80 

attachment.  81 

The genome of the Atlantic salmon louse is fully sequenced and high-throughput 82 

transcriptomics studies have been conducted under various experimental conditions using 83 

microarrays as well as sequencing. Examples of such experimental settings include host-84 
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parasite interactions on different hosts (Braden et al., 2017), hosts fed different diets (Sutherland 85 

et al., 2017), response to drugs (Sutherland et al., 2014), larval stress response (Sutherland et 86 

al., 2012), parasite sex differences (Poley et al., 2016), and development (Eichner et al., 2008). 87 

Recently, we have used RNA-sequencing (RNA-seq) to investigate patterns of gene expression 88 

during molting in parasitic larval stages of L. salmonis (Eichner et al., 2018). Transcriptome 89 

plasticity in response to hematophagy has been investigated in various arthropods for which 90 

controlled blood-feeding is possible. Arthropod species subjected to such controlled feeding 91 

trials include mosquitos (Aedes species (Bonizzoni et al., 2011; Bottino-Rojas et al., 2015; 92 

Huang et al., 2015), Anopheles gambiae (Marinotti et al., 2005)), the biting midge Culicoides 93 

sonorensis (Nayduch et al., 2014), and ticks (Ixodes species  (Kotsyfakis et al., 2015; Perner et 94 

al., 2016). However, investigating transcriptional changes induced by a blood meal within the 95 

salmon louse is challenging, as no protocol for feeding lice in vitro exists. To overcome this 96 

limitation, equally developed lice of the same batch, infecting the same fish, were sampled from 97 

host body attachment sites with predicted differing access to blood. 98 

In this study, we infected Atlantic salmon with salmon louse copepodids and sampled the lice 99 

on the 10th and 18th day post infestation (dpi), when the lice were in the chalimus I and 100 

chalimus II stage respectively, or had recently molted to the preadult I stage. Parasite settlement 101 

site and visible presence of host blood in louse intestines were determined. Transcriptomes of 102 

equally developed lice sampled from different locations (gills and the body/fins), representing 103 

lice with access to blood versus lice without access at 10 and 18 dpi, were examined by RNA-104 

sequencing. Specific aims of this study were to investigate i) visible blood ingestion from 105 

various sampling locations, ii) development of lice from locations differing in blood access, 106 

and iii) differences in gene expression of immobile lice from locations with unequal access to 107 

blood. 108 
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MATERIAL AND METHODS 109 

Animals 110 

Atlantic salmon lice (L. salmonis salmonis) (Skern-Mauritzen et al., 2014) were raised on 111 

Atlantic salmon in tanks with seawater (salinity 34.5‰ and temperature 10 °C) (Hamre et al., 112 

2009). A laboratory strain of L. salmonis called LsGulen (Hamre et al., 2009) was used. Fish 113 

were daily handfed commercial dry pellets and maintained according to Norwegian animal 114 

welfare regulations. Experiments conducted herein were approved by the governmental 115 

Norwegian Animal Research Authority (ID7704, no 2010/245410). Fish were anesthetized by 116 

a mixture of methomidate (5 mg/l) and benzocaine (60 mg/l) prior to handling. For sampling of 117 

early developmental stages of lice, fish were killed by a swift blow to the head. Salmon louse 118 

egg string pairs were incubated and hatched in incubators in a seawater flow through system 119 

(Hamre et al., 2009). Emerging copepodids were used to infect fish in 500-liter tanks. 120 

Copepodids between 4 and 14 days post hatching were used. A total of 34 or 37 fish in the two 121 

experiments respectively were infected with about 70 copepodids per fish. The amount of 122 

copepodids used was estimated as described by Hamre et al. (2009). Prior to infestation, the 123 

tank water was lowered and copepodids spread on the surface. 124 

Experiment termination and tissue sampling 125 

At 10 and 18 dpi, fish were sacrificed and lice were removed with forceps and photographed. 126 

The gills were cut out and observed under a microscope. Any lice present were sampled, 127 

photographed and placed on RNAlater in individual tubes. Measurements of lice were done on 128 

photographs. Salmon louse developmental stages were determined by measuring the total 129 

length (TL) and cephalothorax length (CL) as earlier described (Eichner et al., 2018, 2015). For 130 

RNA isolation prior to RNA-seq, lice were sorted into groups of equal developmental status 131 

within each group as described by Eichner et al. (2018), and between groups from different 132 
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sampling locations (gills, skin). Five chalimus I or four chalimus II lice respectively were 133 

pooled together in one sample. Eight (Ex1, 10 dpi), six (Ex2, 10 dpi) or five (18 dpi) replicates 134 

were sampled per group (lice sampled from gills, lice sampled from skin). After RNA isolation, 135 

samples from both 10 dpi experiments and from one of the 18 dpi experiments were analyzed 136 

by RNA-seq.  137 

RNA isolation and sequencing 138 

RNA was isolated as described before (Eichner et al., 2014). In brief, pools of four or five 139 

chalimus larvae were homogenized in TRI reagent and mixed with chloroform (both Merck). 140 

The water phase was withdrawn and further used with the RNeasy micro kit (Qiagen) for RNA 141 

isolation according to the manufacturer’s instructions. RNA was stored at -80 °C until being 142 

used. Library preparation and RNA-sequencing were conducted by the Norwegian Sequencing 143 

Centre, Oslo as previously described (Eichner et al., 2018). Briefly, sequencing libraries were 144 

prepared from 0.5 µg total RNA using the TruSeq stranded mRNA reagents (Illumina). Indexed 145 

libraries were blended into a single pool and sequenced during three runs of a NextSeq 500 146 

instrument (Illumina) using 76 base pair (bp) single end reads. Image analysis and base calling 147 

were performed using Illumina's RTA software version 2.4.11, and data were converted to fastq 148 

format using bcl2fastq version 2.17.1.14. Raw sequencing data has been deposited in the NCBI 149 

database under BioProject ID PRJNA577842. 150 

Data processing of RNA-seq 151 

Obtained sequences were quality controlled by FastQC v0.11.5 (Andrews, 2016). Reports were 152 

summarized using MultiQC 1.0 (Ewels et al., 2016). As reference genomes, we used a 153 

combination of the Ensembl Metazoa reference assembly of the nuclear genome (LSalAtl2s, 154 

http://metazoa.ensembl.org/Lepeophtheirus_salmonis) and the mitochondrial genome RefSeq 155 

sequence NC_007215.1 (Tjensvoll et al., 2005). The gene models found in Ensembl Metazoa 156 
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were further augmented with gene models derived from full-length sequences of LsFer1 and 157 

LsFer4 obtained by rapid amplification of cDNA ends (RACE) (Heggland et al., 2019b), by 158 

aligning the RACE consensus sequences against the nuclear assembly with GMAP (Wu and 159 

Watanabe, 2005). RNA-seq reads were aligned against the reference using the STAR aligner 160 

(Dobin et al., 2013). Then, alignments were sorted and indexed using SAM-tools (Li et al., 161 

2009) and saved in BAM format. Technical replicates were merged prior to counting using the 162 

merge function in SAM-tools. RNA-seq reads and their overlap with annotated nuclear and 163 

mitochondrial transcripts were counted using featureCounts (Liao et al., 2014), using settings 164 

for strand-specific and reverse stranded libraries. 165 

Differential expression (DE) analysis was done with DESeq2 (Love et al., 2014) on raw counts 166 

using Galaxy (Giardine et al., 2005) under the Norwegian e-Infrastructure for Life Sciences 167 

(NeLS) platform (Tekle et al., 2018). Prior to DE analysis, all transcripts with less than four 168 

counts were removed. Venn diagrams were prepared using the BioVenn platform 169 

(http://www.biovenn.nl/) (Hulsen et al., 2008). Hierarchical clustering as well as GO annotation 170 

enrichment were performed in J-Express (Dysvik and Jonassen, 2001; Stavrum et al., 2008). 171 

GO terms were summarized in REVIGO (Supek et al., 2011). 172 

Transcript annotation 173 

Protein-coding transcripts were annotated by running NCBI-Blast+, BlastP version 2.6.0+ 174 

(Altschul et al., 1990; Camacho et al., 2009) of their corresponding predicted Ensembl protein 175 

sequences against the GenBank (NR) (https://www.ncbi.nlm.nih.gov/) and SwissProt (Bairoch 176 

and Apweiler, 2000) databases. GO terms (full terms and GOslim annotation) and protein 177 

families (Pfam) were automatically assigned by InterProScan 5 (Jones et al., 2014). 178 
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RESULTS 179 

Distribution and characteristics of lice 180 

Figure 1 depicts the distribution of different developmental stages and instar ages of lice on the 181 

host at 10 and 18 dpi. At 10 dpi, most lice are attached to the fins, but there is also a high 182 

proportion of lice on the body and gills. At 18 dpi, however, the highest proportion of lice is 183 

found on the body of the salmon. Different stages are distributed differently between sites. At 184 

10 dpi, there are chalimus II larvae (mainly males) on the body and fins, but none on gills. Here, 185 

we rather find chalimus I (higher proportion of middle than old) larvae. At 18 dpi, there are 186 

preadult I females on the body and fins, but not on the gills. On gills, we rather find a higher 187 

proportion of old chalimus II females at 18 dpi. There is a higher proportion of preadult I male 188 

lice found on the body compared with the fins. On the fins, most of the preadult I lice are young 189 

females. 190 

Upon termination of the two experiments at 18 dpi, all lice were removed from the salmon, and 191 

their settlement site, developmental stage, the presence of a frontal filament, and the visibility 192 

of an intestine filled with blood were assessed (Table 1). On the body and fins, most lice were 193 

at the preadult I stage, while on the gills, most lice were in the chalimus II stage. The majority 194 

of the preadult I lice were located on the host body, and the minority was located on the gills. 195 

The preadult I lice on the gills, however, were more often secured by their frontal filament. Of 196 

the preadult I lice still attached by the filament, only the ones on the gills had a blood-filled 197 

intestine (Fig. 2c). None of the lice on the fins had a blood-filled intestine, and on the host body, 198 

only the mobile lice had apparently fed on blood. Additionally, chalimus I (Fig. 2a) and 199 

chalimus II (Fig. 2b) larvae attached to the gills had fed on blood, whereas lice of the same ages 200 

on the fins and body had no visible blood in the intestine. 201 
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Effect of gill settlement on gene expression in chalimus larvae 202 

In order to determine the effect of gill settlement on the gene expression in chalimus larvae, 203 

RNA-sequencing of pooled individuals was performed. All counts per million (CPM) values 204 

can be found in Supplementary Table S1. The overall gene expression of the individual samples 205 

in comparison with chalimus I and chalimus II larvae of different instar age (data taken from 206 

Eichner et al. 2018) is shown in a correspondence analysis (CA) plot (Fig. 4).  207 

All lice from this study sampled at 10 dpi are clustering together with chalimus I larvae sampled 208 

directly before molting as well as molting ones (old, molt) from Eichner et al. (2018) and all 209 

lice sampled at 18 dpi from this study are clustering with chalimus II lice sampled directly 210 

before molting (Eichner et al., 2018). Lice sampled from gills and lice sampled from skin 211 

differed also slightly in their overall gene expression. Lice from Ex1 at 10 dpi cluster together 212 

with lice from the respective group (from gills or from skin) of Ex2, showing that the two 213 

experiments are composed of comparable batches of lice. DE analyses were performed for each 214 

experiment separately. MA plots as well as a principle component analysis (PCA) for each 215 

experiment are shown in Figure 5.  A list of all genes with log2 fold change and false discovery 216 

rate (FDR) adjusted p-values (padj) for each experiment can be found in Supplementary Table 217 

S2. 5878 genes were differentially expressed in at least one of the experiments (Supplementary 218 

Table S3).  219 

Most DE genes were found in Experiment 1, 10 dpi (2188 or 2015 for gill and skins samples 220 

respectively). In Experiment 2, 10 dpi only, 1112 or 1081 transcripts respectively were found, 221 

of which 79% or 68% respectively are overlapping with the ones found in Ex1. DE genes found 222 

at 18 dpi are less overlapping with DE genes found in Ex1 at 10 dpi. Only 43% or 32% 223 

respectively of the genes found here are overlapping with genes from the respective groups in 224 

Ex1, 10 dpi and 35% or 28% respectively are overlapping with Ex2, 10 dpi (Fig. 3). 616 genes 225 

are DE in all three experiments, of which 355 are elevated in lice samples from gills and 202 226 
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are elevated in lice samples from skin (Supplementary Table S6 and S7), while 59 are 227 

significant different, but regulation directions are differing between experiments (31 elevated 228 

in lice from gills at 10 dpi but lower at 18 dpi, 24 the other way around and 4 are differing 229 

between the two experiments sampled at day 10) (Supplementary Table S8). Transcripts solely 230 

regulated at either 10 dpi or 18 dpi are listed in Supplementary Table S4 and S5, respectively. 231 

We found a high number (49) of genes annotated with Pfam domain PF00040: “Fibronectin 232 

type II domain” among the DE genes. Mostly, these are elevated in lice sampled from gills at 233 

10 dpi. However, a smaller number of PF00040 is within under the DE genes which are elevated 234 

in lice sampled from skin than from gills. Additionally, the Pfam domain PF00089: “Trypsin”, 235 

are mostly found in the group of lice sampled from gills.  236 

The sizes and overlaps of gene sets that were DE in each experiment separated by expression 237 

pattern (elevated in lice sampled from gills or elevated in lice sampled from skin respectively) 238 

are depicted together with most representative GO terms in Figure 3 Venn diagrams. All 239 

significantly enriched GO terms are listed in Supplementary Table S9 where summarized GO 240 

annotations belonging to biological process are visualized in a TreeMap (REVIGO). “Peptidase 241 

activity” is an enriched GO term in lice sampled from gills across all groups (except the ones 242 

exclusively found in Ex2, 10 dpi), and in particular “serine type endopeptidase activity”, 243 

whereas “serine-type endopeptidase inhibitor activity” is enriched in lice sampled from skin. 244 

Notably, ”glycolysis” as well as “oxidoreductase activity” are GO terms highly enriched in 245 

genes elevated in lice sampled from gills. GO terms containing “phosphorylation” as well as 246 

“phosphatase” are found enriched in nearly all groups in genes elevated in lice sampled from 247 

skin (also here, the exception is the ones exclusively found in Ex2, 10 dpi).  248 
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Equal gene expression changes throughout all three experiments 249 

To determine which genes may be important in relation to the blood meal in general, 250 

independent of the stage of the lice in the different experiments, we investigated the transcripts 251 

which were either significantly elevated in lice sampled from gills in all three experiments, or 252 

significantly elevated in lice sampled from skin. We found 355 transcripts elevated in all three 253 

experiments in lice from gills, and 202 from skin. Of the 355 genes elevated in lice sampled 254 

from gills, 60% had predicted Pfam domains, and of the 202 elevated in lice sampled from skin, 255 

82% had predicted Pfam domains. A highly prevalent Pfam domain in the DE genes found in 256 

all 3 experiments elevated in lice sampled from gills is PF00089: Trypsin; 108-279. Other more 257 

frequent found domains are PF01400: Astacin (Peptidase family M12A), PF02469: Fasciclin 258 

domain, PF05649: Peptidase family M13, PF00171: Aldehyde dehydrogenase family, as well 259 

as different Zinc finger domains. In the group of DE genes which were elevated in lice sampled 260 

from skin, prevalent domains are PF00040: Fibronectin type II domain; PF00069: Protein 261 

kinase domain, PF00096: Zinc finger, PF00135: Carboxylesterase family, PF01391: Collagen 262 

triple helix repeat. A full list can be found in Supplementary Table S6 and S7. GOslim was used 263 

to minimize GO categories. DE genes in lice sampled from gills fall under fewer GOslim 264 

categories than DE genes elevated in lice from skin, even though there are more genes in former 265 

DE group (Fig. 6). Often, genes in the group found elevated in lice sampled from gills fall under 266 

the enriched GO group “catalytic activity” (all are shown in Fig. 6a). Remarkably strong 267 

enriched (factor 30) DE genes elevated in lice from skin, are genes belonging to “extracellular 268 

matrix”. However, only five genes are in that group. More than 30 genes were found in GO 269 

categories “catalytic activity”, “hydrolase activity”, “binding” and “ion binding” (Fig. 6b). All 270 

enriched GOslim terms, numbers of genes found in each category, and enrichment factor for 271 

the two groups are shown in Figure 6. 272 
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42% of the 355 genes elevated in lice sampled from gills have a fold-change more than two 273 

compared to skin. When also taking the p-value into account we find 21%, which are strongly 274 

regulated (average fold-change over two and average padj-value ≤ 0.005). In this group, the 275 

strongest elevated transcript is most similar to a nematode astacin (EMLSAT00000010457). 276 

Among the other strong ones regulated are three transcripts with FNII domains, another 277 

transcript with an astacin domain, as well as nine transcripts with trypsin domains, as well as a 278 

chemosensory protein (EMLSAT00000005105), yet also many transcripts with no annotation 279 

or known protein domains. There are several transcripts with similarity to various proteases that 280 

are up-regulated in lice from gills. All genes are listed in Supplementary Table S6. 281 

In the group of genes elevated in lice sampled from skin, we find fewer genes highly 282 

differentially expressed than in lice sampled from gills. Only 16% have a fold-change of two 283 

or higher compared to samples from gills. Most up-regulated in this group is a transcript with 284 

no predicted annotation or Pfam domains (EMLSAT00000009920). Among the strongest 285 

elevated genes in all three experiments (average fold-change over two and p-value ≤ 0.005) in 286 

lice sampled from skin are several transcripts with predicted FNII domains. Moreover, we find 287 

several genes with no annotation or known protein domains. All genes are listed in 288 

Supplementary Table S7. 289 

We further looked at the expression profile of these transcripts during the course of 290 

development, as well as in various tissues (Edvardsen et al., 2014; Eichner et al., 2018; 291 

http://licebase.org) . We were particularly interested in determining if these transcripts were 292 

also elevated in the louse intestine compared with other tissues, or if these transcripts are up- 293 

or down-regulated after attachment or after molting to preadult, the expected time point for 294 

accessing host blood. Of the 202 genes elevated in lice from the skin, 124 were also investigated 295 

in an oligo microarray regarding to expression in different tissues (gut adult female, gut adult 296 
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male, ovaries, testis, subcuticular tissue and brain) and from the 355 genes elevated in lice 297 

sampled from gills 209 were represented in that study (Edvardsen et al., 2014). 298 

Among transcripts elevated in lice sampled from gills, 94 (26%) are higher expressed in the 299 

intestine (only 5% of transcripts were lowest in intestine compared with other tissues 300 

investigated) (LiceBase). Moreover, 39 of these were very highly expressed in the intestine, 301 

compared to other tissues (more than 100 times) (LiceBase). 77 of these elevated in intestine 302 

were also analyzed in the microarray study investigating different tissues of L. salmonis and 52 303 

were also found highest expressed in the intestine there (Edvardsen et al., 2014). 66% of the 304 

transcripts are elevated after attachment and 55% are higher expressed in preadult lice than in 305 

chalimus II when comparing to the time series data (Eichner et al., 2018). 306 

Only 17 (8%) of the transcripts in the DE gene group elevated in lice sampled from skin are 307 

also higher expressed in the intestine than in other investigated tissues (12% lowest of all tissues 308 

investigated) (LiceBase). Only two were much higher (more than 100 times) expressed in 309 

intestine than other tissues (LiceBase). However, the ten of these also found on the oligo 310 

microarray were not highest expressed in the intestine, except one (EMLSAT00000008355) 311 

(Edvardsen et al., 2014). Here two others were found highest expressed compared with the other 312 

tissues analyzed. 57% of the transcripts are elevated after attachment. Nearly all of the strongest 313 

regulated transcripts are elevated after attachment when comparing with LiceBase data. 53% 314 

are higher expressed in preadult lice than chalimus II (Eichner et al., 2018). 315 

DISCUSSION 316 

In this study, we have investigated the biology of blood-feeding in the marine ectoparasitic 317 

salmon louse with a special focus on gene expression of immobile lice situated on host gills. 318 

We chose immobile lice, because this allowed us to focus on those individuals that had stayed 319 

at one location at least since extruding the frontal filament in the late copepodid stage. Being 320 
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attached to the gills allowed the lice to initiate blood-feeding prior to becoming mobile. Two 321 

parallel experiments terminated at 10 days post infestation, and one experiment terminated at 322 

18 days post infestation were included in the RNA-seq and subsequent gene expression 323 

analyses. 324 

At 10 dpi, the amount of lice is rather evenly distributed between the investigated body parts 325 

(32 or 29% on body, 43 or 39% on fins and 24 or 30% on gills in Ex1 and Ex2 respectively). 326 

The favored site at 18 dpi is the body with 66 or 61% in Ex1 or Ex2 respectively (15 or 14% 327 

on fins and 17 or 23% on gills). Lice at day 10 are in chalimus I or chalimus II stage and attached 328 

by the frontal filament. At day 18, we found 75 or 74% preadult lice in Ex1 or Ex2 respectively. 329 

Of these, 10 or 21% respectively are attached with a filament, while the others are mobile and 330 

can freely move on the fish. The finding that lice are differently distributed when being mobile 331 

rather than attached, and mainly found on the body of the fish, suggests that the mobile preadult 332 

lice choose the general body surface as a preferred feeding site and migrate there from host fins 333 

and gills when becoming mobile. The majority (80-90%) of the preadult I lice on fins are 334 

females. Female lice are known to develop slower than males (Hamre et al., 2019, 2013), and 335 

this as well indicates that the lice tend to leave the fins for other host feeding areas when 336 

becoming mobile. A preadult I louse that is still attached to its host by its frontal filament has 337 

recently molted from the chalimus II stage, and has stayed at that feeding site since attachment. 338 

There are no preadult I lice with a visible blood-filled intestine on the fins, whereas we find this 339 

on the gills and the body. Interestingly, of the lice still on their filament, only those on gills 340 

have apparently fed on blood. Moreover, already in the chalimus I stage, we find lice with 341 

blood-filled guts on the gills, but not on any other feeding site. As the preadult I lice on the 342 

body with a blood-filled intestine are mobile, these lice have either started with blood-feeding 343 

in the mobile preadult I stage or are preadult lice migrated from the gills, meaning that blood-344 
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feeding is initiated from the mobile preadult I stage and onwards in the development of the 345 

salmon louse occurring under natural conditions. 346 

Development of lice on the gills was delayed, compared to development of lice on body or fins. 347 

At 10 dpi, no chalimus II lice were found and a higher proportion of chalimus I lice was of less 348 

developed instar age on gills. Comparing only the attached chalimus at 18 dpi (25% of all lice), 349 

48 or 59% in Ex1 or 2 respectively are found on gills. In addition, on gills, there is a higher 350 

proportion of male chalimus II lice, which develop faster than females. Developing on host gills 351 

caused the salmon lice to develop slower than those developing on other locations. There have 352 

been contradicting results about this in the past (Johnson, 1993; Johnson and Albright, 1992), 353 

however here we have determined instar ages, and not only the developmental stages, which 354 

adds more confidence to our results. 355 

We conclude that during the normal development on the body or the fins, the salmon louse does 356 

not start to feed on blood until reaching the mobile preadult I stage. By that reasoning, we 357 

wanted to compare gene expression of chalimus larvae located on the vascular gills with access 358 

to blood with that of chalimus larvae of equal development from the rest of the body. The 359 

salmon louse has approximately 13,000 protein encoding genes 360 

(http://metazoa.ensembl.org/Lepeophtheirus_salmonis), and we find in our RNA-seq analyses 361 

that over 5800 genes had an altered expression in at least one of our experiments. As expected, 362 

we found a higher amount of overlapping DE genes in the two experiments sampled at 10 dpi. 363 

These are chalimus I larvae, which are soon molting to chalimus II, while lice sampled at 18 364 

dpi are chalimus II larvae, shortly prior to molting to preadult I lice. As such, all lice are sampled 365 

at a similar instar age. However, phenotype and lifestyle differ in preadult lice and one can 366 

expect expression of genes in preparation for this stage in the lice sampled at 18 dpi. The high 367 

amount of DE genes exclusively found in Ex1, 10 dpi could be caused by batch differences 368 

between Ex1 and Ex2, or could be as a result of more powerful statistics due to a higher amount 369 
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of parallel samples (8 vs 6 biological parallels of each group in Ex1 and Ex2, respectively). 370 

However, we know also that minor differences in development have a high impact on gene 371 

expression (Eichner et al., 2018), and individual differences occurring within groups, with 372 

possible consequences between groups, could bias the results. 373 

To investigate gene expression caused by nutrition differences, we mainly concentrated on the 374 

DE genes found in all 3 experiments. Transcripts over-expressed in lice sampled from gills 375 

could be important for hematophagy. However, many (70 of 74) of the strongest DE genes in 376 

this group are not highest expressed in the intestine, but rather other tissues, suggesting these 377 

contribute to other functions in the louse that may be modified by hematophagy. Genes elevated 378 

in lice from gills show a more homogenous GO annotation (fewer GOslim categories) than the 379 

ones elevated in lice from skin, suggesting that several DE genes are involved in the same 380 

processes. There are also more genes with a greater fold change within the group of DE genes 381 

elevated in lice sampled from gills (42% over 2-fold change, whereas only 16% in lice sampled 382 

from skin), pointing towards a high demand of these gene products when feeding on blood. 383 

However, as GO terms can be unspecific or general, the following discussion deals with 384 

selected groups of transcripts. 385 

Iron and heme 386 

Among the regulated transcripts, the iron storage units of ferritin (LsFer1 (RACE sequence) 387 

and LsFer2: EMLSAT00000006305) are both elevated in chalimus larvae sampled from gills 388 

compared with other settlement sites. We have previously established that these genes are 389 

important for the adult female salmon louse blood-feeding and reproductive success, as the 390 

parasite had a clear gut and failed to produce viable eggs upon silencing the two genes 391 

(Heggland et al., 2019b). Blood contains several iron-proteins, and when initiating blood-392 

feeding, the salmon louse needs to obtain a way of storing and detoxifying iron absorbed from 393 

the blood. Up-regulating ferritin when ingesting a blood meal is therefore an important defense 394 
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mechanism for a blood-feeding parasite. The putative heme scavenger receptor, LsHSCARB 395 

(EMLSAT00000005382), is elevated in lice on gills at 18 dpi compared to lice on skin. We 396 

recently found that upon silencing LsHSCARB by RNA interference, adult female lice had 397 

absorbed less heme and produced fewer viable eggs and less offspring (Heggland et al., 2019a). 398 

Lacking early (10 dpi) transcriptional elevation of LsHSCARB could indicated alternative 399 

mechanisms of absorption during the earlier developmental stages, or the existence of a post-400 

transcriptional mode of regulating the LsHSCARB protein. Alternatively, the lack of early 401 

regulation might serve to maintain homeostasis of heme levels when feeding on the vascular 402 

gills. 403 

Detoxification 404 

A Glutathione S-transferase (GST) (PF02798) transcript (EMLSAT00000009830) was 405 

elevated in lice on gills in all experiments. GSTs are major detoxification enzymes. A GST in 406 

the hard tick Ixodes ricinus (IrGST1) (GenBank ID: MF984398) was also found to be elevated 407 

in the midgut of blood-fed ticks compared with serum-fed ticks (Perner et al., 2016). Further 408 

characterization of IrGST1 showed that it was heme-inducible and the recombinant protein was 409 

able to bind heme in vitro (Perner et al., 2018). The authors speculated that IrGST1 is important 410 

for detoxifying excess heme to avoid cytotoxicity in the tick (Perner et al., 2018). Recombinant 411 

GSTX2 (GenBank ID: AAK64286.1) of A. aegypti also binds heme (Lumjuan et al., 2007), and 412 

was elevated in a heme-incubated A. aegypti Aag2 cell line (Bottino-Rojas et al., 2015). Of the 413 

six different predicted salmon louse proteins with the GST domain (PF02798), 414 

EMLSAP00000009830 is the most similar to both IrGST1 and A. aegypti GSTX2. The 415 

connection of GST and blood-feeding in the salmon louse is an interesting topic for future 416 

studies, as we per today do not know what mechanisms the salmon louse depends on to detoxify 417 

heme. 418 

 419 



19 

 

Digestion 420 

Food protein hydrolysis is a fundamental step of digestion, and is mediated by peptidases that 421 

enzymatically cleave peptide bonds. Blood is highly enriched in protein, and one of the most 422 

abundant ones is the gas transporter hemoglobin. Investigating changes in the salmon louse 423 

transcriptome upon initiating blood-feeding could thus give clues as to which enzymes are 424 

essential for breakdown of blood components. Trypsin is a digestive enzyme belonging to the 425 

S1A subfamily of serine endopeptidases, and five main trypsin-encoding transcripts in the 426 

salmon louse intestine have previously been characterized (Johnson et al., 2002; Kvamme et 427 

al., 2004). Trypsins and other proteins involved in protein degradation were found elevated e.g. 428 

in blood-fed mosquito A. aegypti (Bonizzoni et al., 2011). Twenty-eight transcripts with trypsin 429 

as the only predicted protein domain (PFAM: PF00089) (29 in total with trypsin + other 430 

domains) were found to be elevated in lice on host gills at day 10 (Ex1 and 2) and 18 dpi. Of 431 

these, 11 are predicted to be highest expressed in the intestine compared with other tissues 432 

investigated in the salmon louse (LiceBase; Edvardsen et al., 2014; Supplementary Table S6). 433 

A heat map showing the expression patterns for all transcripts with trypsin domains found DE 434 

in all 3 experiments taken from LiceBase and from the time-series study are shown in a 435 

hierarchical cluster in Figure 7.  LsTryp1 (GenBank ID: AY294257, best blast hit: 436 

EMLSAT00000004828) is elevated in all three experiments in lice on gills. One transcript with 437 

a trypsin domain only (EMLSAT00000004988) is found to be elevated in lice on host skin at 438 

both 10 dpi (Ex1 and Ex2) and at 18 dpi. RNA-seq data in LiceBase however show that this 439 

transcript has a low expression in the louse intestine and is rather expressed in antenna and feet. 440 

It might therefore be of importance for other purposes than blood meal digestion. 441 

Peptidases other than trypsins are also regulated in lice on host gills. There are 17 transcripts 442 

with Pfam domains “peptidase” other than trypsins elevated in lice on gills in all experiments. 443 

Among these are four transcripts with Astacin-domains (Peptidase family M12A) and five are 444 



20 

 

M13 peptidases (Fig. 7). Both groups are metallopeptidases, and are enriched in arthropods. 445 

Astacin-like metallopeptidases are implicated in digestive processes, but are also reported to 446 

have anticoagulative effects, as they are found to have fibrinogenolytic activity in spider 447 

venoms (Trevisan-Silva et al., 2010). M13 metallopeptidases are widely distributed in animals, 448 

and e.g. make up the major group of the hematophagous tick degradome (Mulenga and Erikson, 449 

2011). Furthermore, we also find many of the same types of peptidases elevated rather in lice 450 

from skin (one with Astacin domain, two with Peptidase family M13 domain). This could 451 

indicate different modes of digesting a blood meal versus digesting components of ingested 452 

salmon skin. Further investigation into the elevated trypsins and other peptidases expressed in 453 

the salmon louse gut should be conducted. 454 

Putative anti-coagulation 455 

Blood coagulation is a key mechanism in maintaining homeostasis in vertebrates if a blood 456 

vessel were to rupture. A parasite feeding on vertebrate blood would therefore require 457 

mechanisms in order to counteract this to maintain its feeding habit. Anti-coagulation factors 458 

targeting host proteins could thus be vital for the successful blood-feeding in the parasitizing 459 

arthropod. A thrombin (coagulation factor) inhibitor, hemalin, was found to be important to 460 

avoid clotting of the blood meal in the bush tick Haemaphysalis longicornis (Liao et al., 2009). 461 

A salmon louse transcript (EMLSAT00000003009) encoding two Kunitz/Bovine pancreatic 462 

trypsin inhibitor domains (PF00014), as also found in the tick hemalin, was elevated here in all 463 

experiments in lice on gills. However, four other transcripts with the same domain were 464 

elevated in lice from skin in all three experiments (EMLSAT00000000152, 465 

EMLSAT00000007907, EMLSAT00000008877 and EMLSAT00000009255).  466 

We also find serine protease inhibitors (serpins, PF00079) regulated. From the 15 predicted 467 

serpin transcripts in the louse, four were DE in all three experiments. Two were elevated in lice 468 

on gills (EMLSAT00000010931 and EMLSAT00000001743), one elevated in lice on skin 469 
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(EMLSAT00000011353), while the last (EMLSAT00000005224) was expressed lower at 10 470 

dpi, but elevated at 18 dpi in the lice sampled from gills. One transcript 471 

(EMLSAT00000000552) was elevated in lice on gills at 10 dpi (Ex1 and Ex2). Anti-coagulation 472 

factors could be targets for pest control as they are likely secreted and in contact with the host, 473 

and thus probably vital for the host-parasite interaction. 474 

Fibronectin type II 475 

The approximately 60 amino acid long fibronectin type II (FNII) domain (PF00040) is a protein 476 

domain found within the glycoprotein fibronectin. It contains four conserved cysteine residues 477 

that form disulfide bridges. These residues are important for e.g. fibronectin’s collagen binding 478 

properties (Guidry et al., 1990). The FNII domain is also found within the vertebrate blood 479 

coagulation protein Factor XII (McMullen and Fujikawa, 1985). The FNII domain is the most 480 

expanded protein domain of the salmon louse with over 200 copies within over 80 genes 481 

identified so far (http://metazoa.ensembl.org/Lepeophtheirus_salmonis). Some of these genes 482 

(LsFNII1, 2 and 3) have been characterized, and are expressed in tegumental type 1 (teg1) 483 

glands of the salmon louse (Harasimczuk et al., 2018; Øvergård et al., 2016). Teg1 glands are 484 

exocrine and their secretory ducts are extending to the dorsal and ventral side of the salmon 485 

louse (Øvergård et al., 2016). The functions of FNII-containing proteins have not been 486 

determined in the salmon louse, however it has been suggested that proteins with the domain 487 

may be of importance for lubricating the integument and functioning as an anti-fouling agent, 488 

or as part of the salmon louse fuzzy coat (acid mucopolysaccharide layer (Bron et al., 2000)) 489 

(Harasimczuk et al., 2018). Genes with FNII domains expressed in teg1 glands have also been 490 

suggested to be of  importance for host immune modulation by the parasite (Øvergård et al., 491 

2016). 492 

We find that several FNII-containing genes are significantly regulated in chalimus larvae in our 493 

dataset. Five transcripts with predicted FNII domains are elevated in all three experiments in 494 
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lice on gills. Of these, all but one (EMLSAT00000011958) are predicted to be up-regulated 495 

after louse attachment (http://licebase.org; Supplementary Table S6) (Fig. 7). Seven transcripts 496 

with FNII are rather found elevated in lice on skin in all three experiments. Here as well, all but 497 

one transcript (EMLSAT00000006178) are up-regulated after louse attachment 498 

(http://licebase.org; Supplementary Table S7). The FNII encoding genes characterized by 499 

Øvergård et al. (2016) and Harasimczuk et al. (2018) are not among the transcripts regulated in 500 

all experiments here (LsFNII1: EMLSAT00000012082, LsFNII2: EMLSAT00000007294, 501 

LsFNII3: EMLSAT00000009744), however LsFNII1 was elevated in both experiments at 10 502 

dpi, and LsFNII3 at 18 dpi as well as in Ex1 10 dpi. The transcripts elevated in lice on gills 503 

should be further characterized, in order to elucidate a possible role of FNII in blood-feeding. 504 

Given the earlier reports that FNII domains in vertebrates may be important for blood clotting, 505 

one hypothesis is that proteins with FNII domains only could have an anti-coagulant effect.  506 

CONCLUSIONS 507 

Blood is a major dietary component for the ectoparasitic salmon louse, which the parasite has 508 

access to when attached to a salmonid host. We find that the salmon louse initiates blood-509 

feeding during the mobile preadult I stage. However, if the parasite is attached to host gills, it 510 

may start feeding on blood already at the chalimus I stage. The premature onset of blood-511 

feeding caused lice on gills to develop at a slower pace than lice that were attached to host fins 512 

and general body surfaces. Chalimus lice of equivalent age on gills versus other attachment 513 

sites were therefore analyzed for gene expression comparisons. Several genes are elevated in 514 

lice attached to the gills, and among these, we find e.g. genes of importance for the absorption, 515 

storage and/or transportation of the pro-oxidative molecules iron and heme, digestive and 516 

detoxification enzymes, genes that could be important for anti-clotting of host blood, and 517 
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several genes with FNII domains. The results of this study raise a number of new gene targets 518 

to investigate further in order to elucidate the blood-feeding habit of the infamous salmon louse. 519 

ACKNOWLEDGEMENTS 520 

This research has been funded by The Research Council of Norway, SFI-Sea Lice Research 521 

Centre, grant number 203513/O30 and 226266. Further, this work was funded by the ELIXIR2 522 

(270068) infrastructure grant from the Research Council of Norway to MD. The sequencing 523 

service was provided by the Norwegian Sequencing Centre (www.sequencing.uio.no); a 524 

national technology platform hosted by the University of Oslo and supported by the "Functional 525 

Genomics" and "Infrastructure" programs of the Research Council of Norway and the South-526 

Eastern Regional Health Authorities.  527 

AVAILABILITY OF DATA 528 

The datasets supporting the conclusions of this article are included within the article and its 529 

additional files. Raw RNA-sequencing data files have been deposited to NCBI BioProject under 530 

the accession number PRJNA577842. A preprint of this manuscript and its supplementary files 531 

have been made publicly available on bioRxiv: https://doi.org/10.1101/815316.   532 



24 

 

REFERENCES 533 

Aaen, S.M., Helgesen, K.O., Bakke, M.J., Kaur, K., Horsberg, T.E., 2015. Drug resistance in sea lice: a 534 

threat to salmonid aquaculture. Trends Parasitol. 31, 72–81. 535 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search 536 

tool. J. Mol. Biol. 215, 403–410. 537 

Andrews, S., 2016. FastQC: A quality control tool for high throughput sequence data 538 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 539 

Bairoch, A., Apweiler, R., 2000. The SWISS-PROT protein sequence database and its supplement 540 

TrEMBL in 2000. Nucleic Acids Res. 28, 45–48. 541 

Bjørn, P.A., Finstad, B., 1998. The development of salmon lice (Lepeophtheirus salmonis) on artificially 542 

infected post smolts of sea trout (Salmo trutta). Can. J. Zool. 76, 970–977.  543 

Bonizzoni, M., Dunn, W.A., Campbell, C.L., Olson, K.E., Dimon, M.T., Marinotti, O., James, A.A., 544 

2011. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector 545 

species, Aedes aegypti. BMC Genomics 12, 1–13. doi:10.1186/1471-2164-12-82 546 

Bottino-Rojas, V., Talyuli, O.A.C., Jupatanakul, N., Sim, S., Dimopoulos, G., Venancio, T.M., Bahia, 547 

A.C., Sorgine, M.H., Oliveira, P.L., Paiva-Silva, G.O., 2015. Heme signaling impacts global gene 548 

expression, immunity and Dengue virus infectivity in Aedes aegypti. PLoS One 1–19.  549 

Braden, L.M., Sutherland, B.J.G., Koop, B.F., Jones, S.R.M., 2017. Enhanced transcriptomic responses 550 

in the Pacific salmon louse Lepeophtheirus salmonis oncorhynchi to the non-native Atlantic 551 

Salmon Salmo salar suggests increased parasite fitness. BMC Genomics 18, 1–14. 552 

Brandal, P.O., Egidius, E., Romslo, I., 1976. Host blood: a major food component for the parasitic 553 

copepod Lepeophtheirus salmonis Kröyeri, 1838 (Crustacea: Caligidae). Nor. J. Zool. 24, 341–554 

343. 555 

Bron, J.E., Shinn, A.P., Sommerville, C., 2000. Ultrastructure of the cuticle of the chalimus larva of the 556 

salmon louse Lepeophtheirus salmonis (Krøyer, 1837) (Copepoda: Caligidae). Contrib. to Zool. 557 

69, 39–49. 558 

Bron, J.E., Sommerville, C., Jones, M., Rae, G.H., 1991. The settlement and attachment of early stages 559 

of the salmon louse, Lepeophtheirus salmonis (Copepoda: Caligidae) on the salmon host, Salmo 560 

salar. J. Zool. 224, 201–212. 561 

Bron, J.E., Sommerville, C., Rae, G.H., 1993. The functional morphology of the alimentary canal of 562 

larval stages of the parasitic copepod Lepeophtheirus salmonis. Zool. Soc. London 203, 207–220. 563 

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., 2009. 564 

BLAST+: architecture and applications. BMC Bioinformatics 9, 1–9. 565 

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., 566 

Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 567 

Dysvik, B., Jonassen, I., 2001. J-Express: exploring gene expression data using Java. Bioinformatics 17, 568 

369–370. 569 

Edvardsen, R.B., Dalvin, S., Furmanek, T., Malde, K., Mæhle, S., Kvamme, B.O., Skern-Mauritzen, R., 570 



25 

 

2014. Gene expression in five salmon louse (Lepeophtheirus salmonis, Krøyer 1837) tissues. Mar. 571 

Genomics 18, 39–44. 572 

Eichner, C., Dondrup, M., Nilsen, F., 2018. RNA sequencing reveals distinct gene expression patterns 573 

during the development of parasitic larval stages of the salmon louse (Lepeophtheirus salmonis). 574 

J. Fish Dis. 41, 1005–1029. 575 

Eichner, C., Frost, P., Dysvik, B., Jonassen, I., Kristiansen, B., Nilsen, F., 2008. Salmon louse 576 

(Lepeophtheirus salmonis) transcriptomes during post molting maturation and egg production, 577 

revealed using EST-sequencing and microarray analysis. BMC Genomics 9, 1–15. 578 

Eichner, C., Hamre, L.A., Nilsen, F., 2015. Instar growth and molt increments in Lepeophtheirus 579 

salmonis (Copepoda: Caligidae) chalimus larvae. Parasitol. Int. 64, 86–96. 580 

Eichner, C., Nilsen, F., Grotmol, S., Dalvin, S., 2014. A method for stable gene knock-down by RNA 581 

interference in larvae of the salmon louse (Lepeophtheirus salmonis). Exp. Parasitol. 140, 44–51. 582 

Ewels, P., Magnusson, M., Lundin, S., Max, K., 2016. MultiQC: summarize analysis results for multiple 583 

tools and samples in a single report. Bioinformatics 32, 3047–3048. 584 

Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, 585 

D., Albert, I., Taylor, J., Miller, W., Kent, W.J., Nekrutenko, A., 2005. Galaxy: a platform for 586 

interactive large-scale genome analysis. Genome Res. 15, 1451–1455. 587 

Gonzalez-Alanis, P., Wright, G.M., Johnson, S.C., Burka, J.F., 2001. Frontal filament morphogenesis 588 

in the salmon louse Lepeophtheirus salmonis. J. Parasitol. 87, 561–574. 589 

Grimnes, A., Jakobsen, P.J., 1996. The physiological effects of salmon lice infection on post-smolt of 590 

Atlantic salmon. J. Fish Biol. 48, 1179–1194. 591 

Guidry, C., Miller, E.J., Hook, M., 1990. A second fibronectin-binding region is present in collagen α 592 

chains. J. Biol. Chem. 265, 19230–19236. 593 

Hamre, L.A., Bui, S., Oppedal, F., Skern-Mauritzen, R., Dalvin, S., 2019. Development of the salmon 594 

louse Lepeophtheirus salmonis parasitic stages in temperatures ranging from 3 to 24 °C. Aquac. 595 

Environ. Interact. 11, 429–443. 596 

Hamre, L.A., Eichner, C., Caipang, C.M.A., Dalvin, S.T., Bron, J.E., Nilsen, F., Boxshall, G., Skern-597 

Mauritzen, R., 2013. The salmon louse Lepeophtheirus salmonis (Copepoda: Caligidae) life cycle 598 

has only two chalimus stages. PLoS One 8, 1–9. 599 

Hamre, L.A., Glover, K.A., Nilsen, F., 2009. Establishment and characterisation of salmon louse 600 

(Lepeophtheirus salmonis (Krøyer 1837)) laboratory strains. Parasitol. Int. 58, 451–460. 601 

Harasimczuk, E., Øvergård, A.-C., Grotmol, S., Nilsen, F., Dalvin, S., 2018. Characterization of three 602 

salmon louse (Lepeophtheirus salmonis) genes with fibronectin II domains expressed by 603 

tegumental type 1 glands. Mol. Biochem. Parasitol. 219, 1–9. 604 

Heggland, E.I., Eichner, C., Støve, S.I., Martinez, A., Nilsen, F., Dondrup, M., 2019a. A scavenger 605 

receptor B (CD36)-like protein is a potential mediator of intestinal heme absorption in the 606 

hematophagous ectoparasite Lepeophtheirus salmonis. Sci. Rep. 9, 1–14.  607 

Heggland, E.I., Tröße, C., Eichner, C., Nilsen, F., 2019b. Heavy and light chain homologs of ferritin are 608 

essential for blood-feeding and egg production of the ectoparasitic copepod Lepeophtheirus 609 

salmonis. Mol. Biochem. Parasitol. 232, 1–10.  610 



26 

 

Huang, X., Poelchau, M.F., Armbruster, P.A., 2015. Global transcriptional dynamics of diapause 611 

induction in non-blood-fed and blood-fed Aedes albopictus. PLoS Negl. Trop. Dis. 1–28. 612 

Hulsen, T., de Vlieg, J., Alkema, W., 2008. BioVenn – a web application for the comparison and 613 

visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 1–6.  614 

Johnson, S.C., 1993. A comparison of development and growth rates of Lepeophtheirus salmonis 615 

(Copepoda: Caligidae) on naive Atlantic (Salmo salar) and chinook (Oncorhynchus tshawytscha) 616 

salmon, in: Boxshall, G.A., Defaye, D. (Eds.), Pathgens of Wild and Farmed Fish: Sea Lice. Ellis 617 

Horwood, pp. 68–80. 618 

Johnson, S.C., Albright, L.J., 1992. Comparative susceptibility and histopathology of the response of 619 

naive Atlantic, chinook and coho salmon to experimental infection with Lepeophtheirus salmonis 620 

(Copepoda: Caligidae). Dis. Aquat. Organ. 14, 179–193. 621 

Johnson, S.C., Albright, L.J., 1991a. The developmental stages of Lepeophtheirus salmonis (Krøyer, 622 

1837) (Copepoda: Caligidae). Can. J. Zool. 69, 929–950. 623 

Johnson, S.C., Albright, L.J., 1991b. Development, growth, and survival of Lepeophtheirus salmonis 624 

(Copepoda: Caligidae) under laboratory conditions. J. Mar. Biol. Assoc. United Kingdom 71, 425–625 

436. 626 

Johnson, S.C., Ewart, K. V., Osborne, J.A., Delage, D., Ross, N.W., Murray, H.M., 2002. Molecular 627 

cloning of trypsin cDNAs and trypsin gene expression in the salmon louse Lepeophtheirus 628 

salmonis (Copepoda: Caligidae). Parasitol. Res. 88, 789–796. 629 

Jones, M.W., Sommerville, C., Bron, J., 1990. The histopathology associated with the juvenile stages 630 

of Lepeophtheirus salmonis on the Atlantic salmon, Salmo salar L. J. Fish Dis. 13, 303–310. 631 

Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., 632 

Mitchell, A., Nuka, G., Pesseat, S., Quinn, A.F., Sangrador-Vegas, A., Scheremetjew, M., Yong, 633 

S.-Y., Lopez, R., Hunter, S., 2014. Sequence analysis InterProScan 5: genome-scale protein 634 

function classification. Bioinformatics 30, 1236–1240. 635 

Khan, M.T., Dalvin, S., Nilsen, F., Male, R., 2017. Microsomal triglyceride transfer protein in the 636 

ectoparasitic crustacean salmon louse (Lepeophtheirus salmonis). J. Lipid Res. 58, 1613–1623. 637 

Kotsyfakis, M., Schwarz, A., Erhart, J., Ribeiro, J.M.C., 2015. Tissue- and time-dependent transcription 638 

in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci. Rep. 639 

5, 1–10. 640 

Kvamme, B.O., Skern, R., Frost, P., Nilsen, F., 2004. Molecular characterisation of five trypsin-like 641 

peptidase transcripts from the salmon louse (Lepeophtheirus salmonis) intestine. Int. J. Parasitol. 642 

34, 823–832. 643 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, 644 

R., 1000 Genome Project Data Processing Subgroup, 2009. The sequence alignment/map format 645 

and SAMtools. Bioinformatics 25, 2078–2079.  646 

Liao, M., Zhou, J., Gong, H., Boldbaatar, D., Shirafuji, R., Battur, B., Nishikawa, Y., Fujisaki, K., 2009. 647 

Hemalin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick 648 

Haemaphysalis longicornis. J. Insect Physiol. 55, 165–174.  649 

Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts: an efficient general purpose program for assigning 650 



27 

 

sequence reads to genomic features. Bioinformatics 30, 923–930.  651 

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-652 

seq data with DESeq2. Genome Biol. 15, 1–21. 653 

Lumjuan, N., Stevenson, B.J., Prapanthadara, L., Somboon, P., Brophy, P.M., Loftus, B.J., Severson, 654 

D.W., Ranson, H., 2007. The Aedes aegypti glutathione transferase family. Insect Biochem. Mol. 655 

Biol. 37, 1026–1035.  656 

Marinotti, O., Nguyen, Q.K., Calvo, E., James, A.A., Ribeiro, J.M.C., 2005. Microarray analysis of 657 

genes showing variable expression following a blood meal in Anopheles gambiae. Insect Mol. 658 

Biol. 14, 365–373. 659 

McMullen, B.A., Fujikawa, K., 1985. Amino acid sequence of the heavy chain of human a-Factor XIIa 660 

(activated Hageman factor). J. Biol. Chem. 260, 5328–5341. 661 

Mulenga, A., Erikson, K., 2011. A snapshot of the Ixodes scapularis degradome. Gene 482, 78–93. 662 

Nayduch, D., Lee, M.B., Saski, C.A., 2014. The reference transcriptome of the adult female biting midge 663 

(Culicoides sonorensis) and differential gene expression profiling during teneral, blood, and 664 

sucrose feeding conditions. PLoS One 9, 1–15. 665 

Nylund, A., Økland, S., Bjørknes, B., 1992. Anatomy and ultrastructure of the alimentary canal in 666 

Lepeophtheirus salmonis (Copepoda: Siphonostomatoida). J. Crustac. Biol. 12, 423–437. 667 

Perner, J., Kotál, J., Hatalová, T., Urbanová, V., Bartosova-Sojkova, P., Brophy, P.M., Kopácek, P., 668 

2018. Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding 669 

protein. Insect Biochem. Mol. Biol. 95, 44–54. 670 

Perner, J., Provazník, J., Schrenková, J., Urbanová, V., Ribeiro, J.M.C., Kopáček, P., 2016. RNA-seq 671 

analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci. Rep. 6, 1–18. 672 

Poley, J.D., Sutherland, B.J.G., Jones, S.R.M., Koop, B.F., Fast, M.D., 2016. Sex-biased gene 673 

expression and sequence conservation in Atlantic and Pacific salmon lice (Lepeophtheirus 674 

salmonis). BMC Genomics 17, 1–16. 675 

Skern-Mauritzen, R., Torrissen, O., Glover, K.A., 2014. Pacific and Atlantic Lepeophtheirus salmonis 676 

(Krøyer, 1838) are allopatric subspecies: Lepeophtheirus salmonis salmonis and L. salmonis 677 

oncorhynchi subspecies novo. BMC Genet. 15, 1–9. 678 

Stavrum, A.K., Petersen, K., Jonassen, I., Dysvik, B., 2008. Analysis of gene‐expression data using J‐679 

Express. Curr. Protoc. Bioinforma. 21, 7.3.1-7.3.25. 680 

Supek, F., Bosnjak, M., Skunca, N., Smuc, T., 2011. REVIGO summarizes and visualizes long lists of 681 

gene ontology terms. PLoS One 6, 1–9. 682 

Sutherland, B.J.G., Covello, J.M., Friend, S.E., Poley, J.D., Koczka, K.W., Purcell, S.L., MacLeod, T.L., 683 

Donovan, B.R., Pino, J., González-Vecino, J.L., Gonzalez, J., Troncoso, J., Koop, B.F., 684 

Wadsworth, S.L., Fast, M.D., 2017. Host-parasite transcriptomics during immunostimulant-685 

enhanced rejection of salmon lice (Lepeophtheirus salmonis) by Atlantic salmon (Salmo salar). 686 

Facets 2, 477–495. 687 

Sutherland, B.J.G., Jantzen, S.G., Yasuike, M., Sanderson, D.S., Koop, B.F., Jones, S.R.M., 2012. 688 

Transcriptomics of coping strategies in free-swimming Lepeophtheirus salmonis (Copepoda) 689 



28 

 

larvae responding to abiotic stress. Mol. Ecol. 21, 6000–6014. 690 

Sutherland, B.J.G., Poley, J.D., Igboeli, O.O., Jantzen, J.R., Fast, M.D., Koop, B.F., Jones, S.R.M., 691 

2014. Transcriptomic responses to emamectin benzoate in Pacific and Atlantic Canada salmon lice 692 

Lepeophtheirus salmonis with differing levels of drug resistance. Evol. Appl. 8, 133–148. 693 

Tekle, K.M., Gundersen, S., Klepper, K., Bongo, L.A., Raknes, I.A., Li, X., Zhang, W., Andreetta, C., 694 

Mulugeta, T.D., Kalaš, M., Rye, M.B., Hjerde, E., Samy, J.K.A., Fornous, G., Azab, A., Våge, 695 

D.I., Hovig, E., Willassen, N.P., Drabløs, F., Nygård, S., Petersen, K., Jonassen, I., 2018. 696 

Norwegian e-Infrastructure for Life Sciences (NeLS) [version 1; peer review: 2 approved]. 697 

F1000Research 7, 1–15. 698 

Tjensvoll, K., Hodneland, K., Nilsen, F., Nylund, A., 2005. Genetic characterization of the 699 

mitochondrial DNA from Lepeophtheirus salmonis (Crustacea; Copepoda). A new gene 700 

organization revealed. Gene 353, 218–230. 701 

Treasurer, J.W., Wadsworth, S.L., 2004. Interspecific comparison of experimental and natural routes of 702 

Lepeophtheirus salmonis and Caligus elongatus challenge and consequences for distribution of 703 

chalimus on salmonids and therapeutant screening. Aquac. Res. 35, 773–783. 704 

Trevisan-Silva, D., Gremski, L.H., Chaim, O.M., Silveira, R.B. da, Meissner, G.O., Mangili, O.C., 705 

Barbaro, K.C., Gremski, W., Veiga, S.S., Senff-Ribeiro, A., 2010. Astacin-like metalloproteases 706 

are a gene family of toxins present in the venom of different species of the brown spider (genus 707 

Loxosceles). Biochimie 92, 21–32. 708 

Wu, T.D., Watanabe, C.K., 2005. GMAP: a genomic mapping and alignment program for mRNA and 709 

EST sequences. Bioinformatics 21, 1859–1875.  710 

Øvergård, A.-C., Hamre, L.A., Harasimczuk, E., Dalvin, S., Nilsen, F., Grotmol, S., 2016. Exocrine 711 

glands of Lepeophtheirus salmonis (Copepoda: Caligidae): distribution, developmental 712 

appearance, and site of secretion. J. Morphol. 277, 1616–1630.  713 



29 

 

FIGURES AND TABLES 714 

Table 1. Number and characteristic of preadult I lice sampled from different parts of the fish at 715 

18 days post infestation. Ex1: 34 fish (average 43 lice per fish), Ex2: 37 fish (average 24 lice 716 

per fish). Pad1 = preadult I, ch2 = chalimus II. 717 

 
Experiment 1 Experiment 2 

body fin gills body fin gills 

% pad1 of total (pad1 + ch2) 93 50 29 92 62 35 

% female of pad1 33 80 5 31 90 1 

# pad1 found 228 40 27 206 55 62 

# pad1 on filament 12 10 7 12 21 36 

# pad1 with visible blood 30 0 18 27 0 53 

# pad1 with visible blood on filament 0 0 2 0 0 30 

% pad1 on filament 5 25 74 6 38 58 

% pad1 with visible blood 13 0 67 13 0 85 

% pad1 with visible blood on filament 0 0 11 0 0 57 

  718 
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 719 

Figure 1. Distribution of different stages and instar ages of lice on fish at 10 days post 720 

infestation and at 18 days post infestation sampled from the fish body, fins and gills 721 

respectively. Lice instar ages were defined on photographs as described in the main text.  722 
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 723 

Figure 2. Photographs of salmon lice with (right) and without (left) a blood-filled intestine. 724 

Chalimus I larvae sampled 10 days post infestation (a). Chalimus II larvae sampled 18 days 725 

post infestation (b). Preadult I lice on frontal filament sampled 18 days post infestation (c). The 726 

lice with blood-filled guts were sampled from the gills, and the others were sampled from the 727 

fins of their host. Scale bars = 1 mm.  728 

a                                         b c                                                                               
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 729 

Figure 3. Venn diagram showing the number of differentially expressed genes between 730 

chalimus larvae sampled from gills versus those sampled from skin, found in three different 731 

experiments, at 10 or 18 days post infestation. Representative GO terms for each group are 732 

given in the table in the bottom panel. The numbers of genes elevated in chalimus larvae 733 

sampled from gills are shown in (a) and the ones elevated in chalimus larvae sampled from fish 734 

skin are shown in (b). A full list of enriched GO terms are shown in Supplementary Table S9. 735 
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 736 

Figure 4. Correspondence analysis (CA) plot of the samples analyzed (pink and turquoise dots) 737 

in comparison with other chalimus larvae divided into various instar ages taken from Eichner 738 

et al. (2018). Ch1 = chalimus I, Ch2 = chalimus II, Ex = experiment.   739 
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 740 

Figure 5 a) MA plot comparing the different conditions (lice sampled from gills vs lice sampled 741 

from skin at 10 days post infestation (DPI) and 18 DPI respectively) in the three experiments: 742 

Experiment (Ex) 1, sampled at 10DPI, Ex2 sampled at 10DPI and Ex2 sampled at 18DPI. The 743 

average log intensity for a dot in the plot (A) is shown on the x-axis and the binary logarithm 744 

of the intensity ratio (M) is shown on the y-axis. b) Principle component analysis (PCA) plots 745 

of the same data. 746 
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 747 

Figure 6. GOslim annotations of genes elevated in lice sampled from gills (a) and genes 748 

elevated in lice sampled from skin (b) in all three experiments. Columns indicate the number 749 

of genes in each GOslim category, while black dots show the enrichment of genes in that 750 

category in relation to number of genes of the specific category in the whole dataset. 751 
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 752 

Figure 7. Hierarchical clustering of the expression profiles of genes found DE in all three 753 

experiments with trypsin, other peptidase and FNII domains after expression profiles from 754 

LiceBase (various tissues and stages) and from the time series study (average values of 755 

biological parallels) by Eichner et al. (2018). A blue stippled line is separating planktonic and 756 

parasitic stages. Stable IDs with font in blue = domains other than trypsin predicted as well, 757 

green = predicted M13 peptidases, red = predicted astacin peptidases. 758 
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